1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/racct.h> 73 #include <sys/rwlock.h> 74 #include <sys/stat.h> 75 #include <sys/sysctl.h> 76 #include <sys/syslog.h> 77 #include <sys/vnode.h> 78 #include <sys/conf.h> 79 80 #include <ufs/ufs/dir.h> 81 #include <ufs/ufs/extattr.h> 82 #include <ufs/ufs/quota.h> 83 #include <ufs/ufs/inode.h> 84 #include <ufs/ufs/ufsmount.h> 85 #include <ufs/ffs/fs.h> 86 #include <ufs/ffs/softdep.h> 87 #include <ufs/ffs/ffs_extern.h> 88 #include <ufs/ufs/ufs_extern.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_extern.h> 92 #include <vm/vm_object.h> 93 94 #include <geom/geom.h> 95 96 #include <ddb/ddb.h> 97 98 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 99 100 #ifndef SOFTUPDATES 101 102 int 103 softdep_flushfiles(oldmnt, flags, td) 104 struct mount *oldmnt; 105 int flags; 106 struct thread *td; 107 { 108 109 panic("softdep_flushfiles called"); 110 } 111 112 int 113 softdep_mount(devvp, mp, fs, cred) 114 struct vnode *devvp; 115 struct mount *mp; 116 struct fs *fs; 117 struct ucred *cred; 118 { 119 120 return (0); 121 } 122 123 void 124 softdep_initialize() 125 { 126 127 return; 128 } 129 130 void 131 softdep_uninitialize() 132 { 133 134 return; 135 } 136 137 void 138 softdep_unmount(mp) 139 struct mount *mp; 140 { 141 142 panic("softdep_unmount called"); 143 } 144 145 void 146 softdep_setup_sbupdate(ump, fs, bp) 147 struct ufsmount *ump; 148 struct fs *fs; 149 struct buf *bp; 150 { 151 152 panic("softdep_setup_sbupdate called"); 153 } 154 155 void 156 softdep_setup_inomapdep(bp, ip, newinum, mode) 157 struct buf *bp; 158 struct inode *ip; 159 ino_t newinum; 160 int mode; 161 { 162 163 panic("softdep_setup_inomapdep called"); 164 } 165 166 void 167 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 168 struct buf *bp; 169 struct mount *mp; 170 ufs2_daddr_t newblkno; 171 int frags; 172 int oldfrags; 173 { 174 175 panic("softdep_setup_blkmapdep called"); 176 } 177 178 void 179 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 180 struct inode *ip; 181 ufs_lbn_t lbn; 182 ufs2_daddr_t newblkno; 183 ufs2_daddr_t oldblkno; 184 long newsize; 185 long oldsize; 186 struct buf *bp; 187 { 188 189 panic("softdep_setup_allocdirect called"); 190 } 191 192 void 193 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 194 struct inode *ip; 195 ufs_lbn_t lbn; 196 ufs2_daddr_t newblkno; 197 ufs2_daddr_t oldblkno; 198 long newsize; 199 long oldsize; 200 struct buf *bp; 201 { 202 203 panic("softdep_setup_allocext called"); 204 } 205 206 void 207 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 208 struct inode *ip; 209 ufs_lbn_t lbn; 210 struct buf *bp; 211 int ptrno; 212 ufs2_daddr_t newblkno; 213 ufs2_daddr_t oldblkno; 214 struct buf *nbp; 215 { 216 217 panic("softdep_setup_allocindir_page called"); 218 } 219 220 void 221 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 222 struct buf *nbp; 223 struct inode *ip; 224 struct buf *bp; 225 int ptrno; 226 ufs2_daddr_t newblkno; 227 { 228 229 panic("softdep_setup_allocindir_meta called"); 230 } 231 232 void 233 softdep_journal_freeblocks(ip, cred, length, flags) 234 struct inode *ip; 235 struct ucred *cred; 236 off_t length; 237 int flags; 238 { 239 240 panic("softdep_journal_freeblocks called"); 241 } 242 243 void 244 softdep_journal_fsync(ip) 245 struct inode *ip; 246 { 247 248 panic("softdep_journal_fsync called"); 249 } 250 251 void 252 softdep_setup_freeblocks(ip, length, flags) 253 struct inode *ip; 254 off_t length; 255 int flags; 256 { 257 258 panic("softdep_setup_freeblocks called"); 259 } 260 261 void 262 softdep_freefile(pvp, ino, mode) 263 struct vnode *pvp; 264 ino_t ino; 265 int mode; 266 { 267 268 panic("softdep_freefile called"); 269 } 270 271 int 272 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 273 struct buf *bp; 274 struct inode *dp; 275 off_t diroffset; 276 ino_t newinum; 277 struct buf *newdirbp; 278 int isnewblk; 279 { 280 281 panic("softdep_setup_directory_add called"); 282 } 283 284 void 285 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 286 struct buf *bp; 287 struct inode *dp; 288 caddr_t base; 289 caddr_t oldloc; 290 caddr_t newloc; 291 int entrysize; 292 { 293 294 panic("softdep_change_directoryentry_offset called"); 295 } 296 297 void 298 softdep_setup_remove(bp, dp, ip, isrmdir) 299 struct buf *bp; 300 struct inode *dp; 301 struct inode *ip; 302 int isrmdir; 303 { 304 305 panic("softdep_setup_remove called"); 306 } 307 308 void 309 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 310 struct buf *bp; 311 struct inode *dp; 312 struct inode *ip; 313 ino_t newinum; 314 int isrmdir; 315 { 316 317 panic("softdep_setup_directory_change called"); 318 } 319 320 void 321 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 322 struct mount *mp; 323 struct buf *bp; 324 ufs2_daddr_t blkno; 325 int frags; 326 struct workhead *wkhd; 327 { 328 329 panic("%s called", __FUNCTION__); 330 } 331 332 void 333 softdep_setup_inofree(mp, bp, ino, wkhd) 334 struct mount *mp; 335 struct buf *bp; 336 ino_t ino; 337 struct workhead *wkhd; 338 { 339 340 panic("%s called", __FUNCTION__); 341 } 342 343 void 344 softdep_setup_unlink(dp, ip) 345 struct inode *dp; 346 struct inode *ip; 347 { 348 349 panic("%s called", __FUNCTION__); 350 } 351 352 void 353 softdep_setup_link(dp, ip) 354 struct inode *dp; 355 struct inode *ip; 356 { 357 358 panic("%s called", __FUNCTION__); 359 } 360 361 void 362 softdep_revert_link(dp, ip) 363 struct inode *dp; 364 struct inode *ip; 365 { 366 367 panic("%s called", __FUNCTION__); 368 } 369 370 void 371 softdep_setup_rmdir(dp, ip) 372 struct inode *dp; 373 struct inode *ip; 374 { 375 376 panic("%s called", __FUNCTION__); 377 } 378 379 void 380 softdep_revert_rmdir(dp, ip) 381 struct inode *dp; 382 struct inode *ip; 383 { 384 385 panic("%s called", __FUNCTION__); 386 } 387 388 void 389 softdep_setup_create(dp, ip) 390 struct inode *dp; 391 struct inode *ip; 392 { 393 394 panic("%s called", __FUNCTION__); 395 } 396 397 void 398 softdep_revert_create(dp, ip) 399 struct inode *dp; 400 struct inode *ip; 401 { 402 403 panic("%s called", __FUNCTION__); 404 } 405 406 void 407 softdep_setup_mkdir(dp, ip) 408 struct inode *dp; 409 struct inode *ip; 410 { 411 412 panic("%s called", __FUNCTION__); 413 } 414 415 void 416 softdep_revert_mkdir(dp, ip) 417 struct inode *dp; 418 struct inode *ip; 419 { 420 421 panic("%s called", __FUNCTION__); 422 } 423 424 void 425 softdep_setup_dotdot_link(dp, ip) 426 struct inode *dp; 427 struct inode *ip; 428 { 429 430 panic("%s called", __FUNCTION__); 431 } 432 433 int 434 softdep_prealloc(vp, waitok) 435 struct vnode *vp; 436 int waitok; 437 { 438 439 panic("%s called", __FUNCTION__); 440 } 441 442 int 443 softdep_journal_lookup(mp, vpp) 444 struct mount *mp; 445 struct vnode **vpp; 446 { 447 448 return (ENOENT); 449 } 450 451 void 452 softdep_change_linkcnt(ip) 453 struct inode *ip; 454 { 455 456 panic("softdep_change_linkcnt called"); 457 } 458 459 void 460 softdep_load_inodeblock(ip) 461 struct inode *ip; 462 { 463 464 panic("softdep_load_inodeblock called"); 465 } 466 467 void 468 softdep_update_inodeblock(ip, bp, waitfor) 469 struct inode *ip; 470 struct buf *bp; 471 int waitfor; 472 { 473 474 panic("softdep_update_inodeblock called"); 475 } 476 477 int 478 softdep_fsync(vp) 479 struct vnode *vp; /* the "in_core" copy of the inode */ 480 { 481 482 return (0); 483 } 484 485 void 486 softdep_fsync_mountdev(vp) 487 struct vnode *vp; 488 { 489 490 return; 491 } 492 493 int 494 softdep_flushworklist(oldmnt, countp, td) 495 struct mount *oldmnt; 496 int *countp; 497 struct thread *td; 498 { 499 500 *countp = 0; 501 return (0); 502 } 503 504 int 505 softdep_sync_metadata(struct vnode *vp) 506 { 507 508 panic("softdep_sync_metadata called"); 509 } 510 511 int 512 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 513 { 514 515 panic("softdep_sync_buf called"); 516 } 517 518 int 519 softdep_slowdown(vp) 520 struct vnode *vp; 521 { 522 523 panic("softdep_slowdown called"); 524 } 525 526 int 527 softdep_request_cleanup(fs, vp, cred, resource) 528 struct fs *fs; 529 struct vnode *vp; 530 struct ucred *cred; 531 int resource; 532 { 533 534 return (0); 535 } 536 537 int 538 softdep_check_suspend(struct mount *mp, 539 struct vnode *devvp, 540 int softdep_depcnt, 541 int softdep_accdepcnt, 542 int secondary_writes, 543 int secondary_accwrites) 544 { 545 struct bufobj *bo; 546 int error; 547 548 (void) softdep_depcnt, 549 (void) softdep_accdepcnt; 550 551 bo = &devvp->v_bufobj; 552 ASSERT_BO_WLOCKED(bo); 553 554 MNT_ILOCK(mp); 555 while (mp->mnt_secondary_writes != 0) { 556 BO_UNLOCK(bo); 557 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 558 (PUSER - 1) | PDROP, "secwr", 0); 559 BO_LOCK(bo); 560 MNT_ILOCK(mp); 561 } 562 563 /* 564 * Reasons for needing more work before suspend: 565 * - Dirty buffers on devvp. 566 * - Secondary writes occurred after start of vnode sync loop 567 */ 568 error = 0; 569 if (bo->bo_numoutput > 0 || 570 bo->bo_dirty.bv_cnt > 0 || 571 secondary_writes != 0 || 572 mp->mnt_secondary_writes != 0 || 573 secondary_accwrites != mp->mnt_secondary_accwrites) 574 error = EAGAIN; 575 BO_UNLOCK(bo); 576 return (error); 577 } 578 579 void 580 softdep_get_depcounts(struct mount *mp, 581 int *softdepactivep, 582 int *softdepactiveaccp) 583 { 584 (void) mp; 585 *softdepactivep = 0; 586 *softdepactiveaccp = 0; 587 } 588 589 void 590 softdep_buf_append(bp, wkhd) 591 struct buf *bp; 592 struct workhead *wkhd; 593 { 594 595 panic("softdep_buf_appendwork called"); 596 } 597 598 void 599 softdep_inode_append(ip, cred, wkhd) 600 struct inode *ip; 601 struct ucred *cred; 602 struct workhead *wkhd; 603 { 604 605 panic("softdep_inode_appendwork called"); 606 } 607 608 void 609 softdep_freework(wkhd) 610 struct workhead *wkhd; 611 { 612 613 panic("softdep_freework called"); 614 } 615 616 #else 617 618 FEATURE(softupdates, "FFS soft-updates support"); 619 620 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 621 "soft updates stats"); 622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 623 "total dependencies allocated"); 624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 625 "high use dependencies allocated"); 626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 627 "current dependencies allocated"); 628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 629 "current dependencies written"); 630 631 unsigned long dep_current[D_LAST + 1]; 632 unsigned long dep_highuse[D_LAST + 1]; 633 unsigned long dep_total[D_LAST + 1]; 634 unsigned long dep_write[D_LAST + 1]; 635 636 #define SOFTDEP_TYPE(type, str, long) \ 637 static MALLOC_DEFINE(M_ ## type, #str, long); \ 638 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 639 &dep_total[D_ ## type], 0, ""); \ 640 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 641 &dep_current[D_ ## type], 0, ""); \ 642 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 643 &dep_highuse[D_ ## type], 0, ""); \ 644 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 645 &dep_write[D_ ## type], 0, ""); 646 647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 650 "Block or frag allocated from cyl group map"); 651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 675 676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 677 678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 681 682 #define M_SOFTDEP_FLAGS (M_WAITOK) 683 684 /* 685 * translate from workitem type to memory type 686 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 687 */ 688 static struct malloc_type *memtype[] = { 689 M_PAGEDEP, 690 M_INODEDEP, 691 M_BMSAFEMAP, 692 M_NEWBLK, 693 M_ALLOCDIRECT, 694 M_INDIRDEP, 695 M_ALLOCINDIR, 696 M_FREEFRAG, 697 M_FREEBLKS, 698 M_FREEFILE, 699 M_DIRADD, 700 M_MKDIR, 701 M_DIRREM, 702 M_NEWDIRBLK, 703 M_FREEWORK, 704 M_FREEDEP, 705 M_JADDREF, 706 M_JREMREF, 707 M_JMVREF, 708 M_JNEWBLK, 709 M_JFREEBLK, 710 M_JFREEFRAG, 711 M_JSEG, 712 M_JSEGDEP, 713 M_SBDEP, 714 M_JTRUNC, 715 M_JFSYNC, 716 M_SENTINEL 717 }; 718 719 #define DtoM(type) (memtype[type]) 720 721 /* 722 * Names of malloc types. 723 */ 724 #define TYPENAME(type) \ 725 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 726 /* 727 * End system adaptation definitions. 728 */ 729 730 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 731 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 732 733 /* 734 * Internal function prototypes. 735 */ 736 static void check_clear_deps(struct mount *); 737 static void softdep_error(char *, int); 738 static int softdep_process_worklist(struct mount *, int); 739 static int softdep_waitidle(struct mount *, int); 740 static void drain_output(struct vnode *); 741 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 742 static int check_inodedep_free(struct inodedep *); 743 static void clear_remove(struct mount *); 744 static void clear_inodedeps(struct mount *); 745 static void unlinked_inodedep(struct mount *, struct inodedep *); 746 static void clear_unlinked_inodedep(struct inodedep *); 747 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 748 static int flush_pagedep_deps(struct vnode *, struct mount *, 749 struct diraddhd *); 750 static int free_pagedep(struct pagedep *); 751 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 752 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 753 static int flush_deplist(struct allocdirectlst *, int, int *); 754 static int sync_cgs(struct mount *, int); 755 static int handle_written_filepage(struct pagedep *, struct buf *, int); 756 static int handle_written_sbdep(struct sbdep *, struct buf *); 757 static void initiate_write_sbdep(struct sbdep *); 758 static void diradd_inode_written(struct diradd *, struct inodedep *); 759 static int handle_written_indirdep(struct indirdep *, struct buf *, 760 struct buf**, int); 761 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 762 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 763 uint8_t *); 764 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 765 static void handle_written_jaddref(struct jaddref *); 766 static void handle_written_jremref(struct jremref *); 767 static void handle_written_jseg(struct jseg *, struct buf *); 768 static void handle_written_jnewblk(struct jnewblk *); 769 static void handle_written_jblkdep(struct jblkdep *); 770 static void handle_written_jfreefrag(struct jfreefrag *); 771 static void complete_jseg(struct jseg *); 772 static void complete_jsegs(struct jseg *); 773 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 774 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 775 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 776 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 777 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 778 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 779 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 780 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 781 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 782 static inline void inoref_write(struct inoref *, struct jseg *, 783 struct jrefrec *); 784 static void handle_allocdirect_partdone(struct allocdirect *, 785 struct workhead *); 786 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 787 struct workhead *); 788 static void indirdep_complete(struct indirdep *); 789 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 790 static void indirblk_insert(struct freework *); 791 static void indirblk_remove(struct freework *); 792 static void handle_allocindir_partdone(struct allocindir *); 793 static void initiate_write_filepage(struct pagedep *, struct buf *); 794 static void initiate_write_indirdep(struct indirdep*, struct buf *); 795 static void handle_written_mkdir(struct mkdir *, int); 796 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 797 uint8_t *); 798 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 799 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 800 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 801 static void handle_workitem_freefile(struct freefile *); 802 static int handle_workitem_remove(struct dirrem *, int); 803 static struct dirrem *newdirrem(struct buf *, struct inode *, 804 struct inode *, int, struct dirrem **); 805 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 806 struct buf *); 807 static void cancel_indirdep(struct indirdep *, struct buf *, 808 struct freeblks *); 809 static void free_indirdep(struct indirdep *); 810 static void free_diradd(struct diradd *, struct workhead *); 811 static void merge_diradd(struct inodedep *, struct diradd *); 812 static void complete_diradd(struct diradd *); 813 static struct diradd *diradd_lookup(struct pagedep *, int); 814 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 815 struct jremref *); 816 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 817 struct jremref *); 818 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 819 struct jremref *, struct jremref *); 820 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 821 struct jremref *); 822 static void cancel_allocindir(struct allocindir *, struct buf *bp, 823 struct freeblks *, int); 824 static int setup_trunc_indir(struct freeblks *, struct inode *, 825 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 826 static void complete_trunc_indir(struct freework *); 827 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 828 int); 829 static void complete_mkdir(struct mkdir *); 830 static void free_newdirblk(struct newdirblk *); 831 static void free_jremref(struct jremref *); 832 static void free_jaddref(struct jaddref *); 833 static void free_jsegdep(struct jsegdep *); 834 static void free_jsegs(struct jblocks *); 835 static void rele_jseg(struct jseg *); 836 static void free_jseg(struct jseg *, struct jblocks *); 837 static void free_jnewblk(struct jnewblk *); 838 static void free_jblkdep(struct jblkdep *); 839 static void free_jfreefrag(struct jfreefrag *); 840 static void free_freedep(struct freedep *); 841 static void journal_jremref(struct dirrem *, struct jremref *, 842 struct inodedep *); 843 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 844 static int cancel_jaddref(struct jaddref *, struct inodedep *, 845 struct workhead *); 846 static void cancel_jfreefrag(struct jfreefrag *); 847 static inline void setup_freedirect(struct freeblks *, struct inode *, 848 int, int); 849 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 850 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 851 ufs_lbn_t, int); 852 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 853 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 854 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 855 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 856 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 857 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 858 int, int); 859 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 860 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 861 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 862 static void newblk_freefrag(struct newblk*); 863 static void free_newblk(struct newblk *); 864 static void cancel_allocdirect(struct allocdirectlst *, 865 struct allocdirect *, struct freeblks *); 866 static int check_inode_unwritten(struct inodedep *); 867 static int free_inodedep(struct inodedep *); 868 static void freework_freeblock(struct freework *); 869 static void freework_enqueue(struct freework *); 870 static int handle_workitem_freeblocks(struct freeblks *, int); 871 static int handle_complete_freeblocks(struct freeblks *, int); 872 static void handle_workitem_indirblk(struct freework *); 873 static void handle_written_freework(struct freework *); 874 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 875 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 876 struct workhead *); 877 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 878 struct inodedep *, struct allocindir *, ufs_lbn_t); 879 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 880 ufs2_daddr_t, ufs_lbn_t); 881 static void handle_workitem_freefrag(struct freefrag *); 882 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 883 ufs_lbn_t); 884 static void allocdirect_merge(struct allocdirectlst *, 885 struct allocdirect *, struct allocdirect *); 886 static struct freefrag *allocindir_merge(struct allocindir *, 887 struct allocindir *); 888 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 889 struct bmsafemap **); 890 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 891 int cg, struct bmsafemap *); 892 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 893 struct newblk **); 894 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 895 static int inodedep_find(struct inodedep_hashhead *, ino_t, 896 struct inodedep **); 897 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 898 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 899 int, struct pagedep **); 900 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 901 struct pagedep **); 902 static void pause_timer(void *); 903 static int request_cleanup(struct mount *, int); 904 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 905 static void schedule_cleanup(struct mount *); 906 static void softdep_ast_cleanup_proc(struct thread *); 907 static int process_worklist_item(struct mount *, int, int); 908 static void process_removes(struct vnode *); 909 static void process_truncates(struct vnode *); 910 static void jwork_move(struct workhead *, struct workhead *); 911 static void jwork_insert(struct workhead *, struct jsegdep *); 912 static void add_to_worklist(struct worklist *, int); 913 static void wake_worklist(struct worklist *); 914 static void wait_worklist(struct worklist *, char *); 915 static void remove_from_worklist(struct worklist *); 916 static void softdep_flush(void *); 917 static void softdep_flushjournal(struct mount *); 918 static int softdep_speedup(struct ufsmount *); 919 static void worklist_speedup(struct mount *); 920 static int journal_mount(struct mount *, struct fs *, struct ucred *); 921 static void journal_unmount(struct ufsmount *); 922 static int journal_space(struct ufsmount *, int); 923 static void journal_suspend(struct ufsmount *); 924 static int journal_unsuspend(struct ufsmount *ump); 925 static void softdep_prelink(struct vnode *, struct vnode *); 926 static void add_to_journal(struct worklist *); 927 static void remove_from_journal(struct worklist *); 928 static bool softdep_excess_items(struct ufsmount *, int); 929 static void softdep_process_journal(struct mount *, struct worklist *, int); 930 static struct jremref *newjremref(struct dirrem *, struct inode *, 931 struct inode *ip, off_t, nlink_t); 932 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 933 uint16_t); 934 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 935 uint16_t); 936 static inline struct jsegdep *inoref_jseg(struct inoref *); 937 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 938 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 939 ufs2_daddr_t, int); 940 static void adjust_newfreework(struct freeblks *, int); 941 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 942 static void move_newblock_dep(struct jaddref *, struct inodedep *); 943 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 944 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 945 ufs2_daddr_t, long, ufs_lbn_t); 946 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 947 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 948 static int jwait(struct worklist *, int); 949 static struct inodedep *inodedep_lookup_ip(struct inode *); 950 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 951 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 952 static void handle_jwork(struct workhead *); 953 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 954 struct mkdir **); 955 static struct jblocks *jblocks_create(void); 956 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 957 static void jblocks_free(struct jblocks *, struct mount *, int); 958 static void jblocks_destroy(struct jblocks *); 959 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 960 961 /* 962 * Exported softdep operations. 963 */ 964 static void softdep_disk_io_initiation(struct buf *); 965 static void softdep_disk_write_complete(struct buf *); 966 static void softdep_deallocate_dependencies(struct buf *); 967 static int softdep_count_dependencies(struct buf *bp, int); 968 969 /* 970 * Global lock over all of soft updates. 971 */ 972 static struct mtx lk; 973 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 974 975 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 976 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 977 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 978 979 /* 980 * Per-filesystem soft-updates locking. 981 */ 982 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 983 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 984 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 985 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 986 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 987 RA_WLOCKED) 988 989 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 990 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 991 992 /* 993 * Worklist queue management. 994 * These routines require that the lock be held. 995 */ 996 #ifndef /* NOT */ DEBUG 997 #define WORKLIST_INSERT(head, item) do { \ 998 (item)->wk_state |= ONWORKLIST; \ 999 LIST_INSERT_HEAD(head, item, wk_list); \ 1000 } while (0) 1001 #define WORKLIST_REMOVE(item) do { \ 1002 (item)->wk_state &= ~ONWORKLIST; \ 1003 LIST_REMOVE(item, wk_list); \ 1004 } while (0) 1005 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1006 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1007 1008 #else /* DEBUG */ 1009 static void worklist_insert(struct workhead *, struct worklist *, int); 1010 static void worklist_remove(struct worklist *, int); 1011 1012 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1013 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1014 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1015 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1016 1017 static void 1018 worklist_insert(head, item, locked) 1019 struct workhead *head; 1020 struct worklist *item; 1021 int locked; 1022 { 1023 1024 if (locked) 1025 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1026 if (item->wk_state & ONWORKLIST) 1027 panic("worklist_insert: %p %s(0x%X) already on list", 1028 item, TYPENAME(item->wk_type), item->wk_state); 1029 item->wk_state |= ONWORKLIST; 1030 LIST_INSERT_HEAD(head, item, wk_list); 1031 } 1032 1033 static void 1034 worklist_remove(item, locked) 1035 struct worklist *item; 1036 int locked; 1037 { 1038 1039 if (locked) 1040 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1041 if ((item->wk_state & ONWORKLIST) == 0) 1042 panic("worklist_remove: %p %s(0x%X) not on list", 1043 item, TYPENAME(item->wk_type), item->wk_state); 1044 item->wk_state &= ~ONWORKLIST; 1045 LIST_REMOVE(item, wk_list); 1046 } 1047 #endif /* DEBUG */ 1048 1049 /* 1050 * Merge two jsegdeps keeping only the oldest one as newer references 1051 * can't be discarded until after older references. 1052 */ 1053 static inline struct jsegdep * 1054 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1055 { 1056 struct jsegdep *swp; 1057 1058 if (two == NULL) 1059 return (one); 1060 1061 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1062 swp = one; 1063 one = two; 1064 two = swp; 1065 } 1066 WORKLIST_REMOVE(&two->jd_list); 1067 free_jsegdep(two); 1068 1069 return (one); 1070 } 1071 1072 /* 1073 * If two freedeps are compatible free one to reduce list size. 1074 */ 1075 static inline struct freedep * 1076 freedep_merge(struct freedep *one, struct freedep *two) 1077 { 1078 if (two == NULL) 1079 return (one); 1080 1081 if (one->fd_freework == two->fd_freework) { 1082 WORKLIST_REMOVE(&two->fd_list); 1083 free_freedep(two); 1084 } 1085 return (one); 1086 } 1087 1088 /* 1089 * Move journal work from one list to another. Duplicate freedeps and 1090 * jsegdeps are coalesced to keep the lists as small as possible. 1091 */ 1092 static void 1093 jwork_move(dst, src) 1094 struct workhead *dst; 1095 struct workhead *src; 1096 { 1097 struct freedep *freedep; 1098 struct jsegdep *jsegdep; 1099 struct worklist *wkn; 1100 struct worklist *wk; 1101 1102 KASSERT(dst != src, 1103 ("jwork_move: dst == src")); 1104 freedep = NULL; 1105 jsegdep = NULL; 1106 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1107 if (wk->wk_type == D_JSEGDEP) 1108 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1109 else if (wk->wk_type == D_FREEDEP) 1110 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1111 } 1112 1113 while ((wk = LIST_FIRST(src)) != NULL) { 1114 WORKLIST_REMOVE(wk); 1115 WORKLIST_INSERT(dst, wk); 1116 if (wk->wk_type == D_JSEGDEP) { 1117 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1118 continue; 1119 } 1120 if (wk->wk_type == D_FREEDEP) 1121 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1122 } 1123 } 1124 1125 static void 1126 jwork_insert(dst, jsegdep) 1127 struct workhead *dst; 1128 struct jsegdep *jsegdep; 1129 { 1130 struct jsegdep *jsegdepn; 1131 struct worklist *wk; 1132 1133 LIST_FOREACH(wk, dst, wk_list) 1134 if (wk->wk_type == D_JSEGDEP) 1135 break; 1136 if (wk == NULL) { 1137 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1138 return; 1139 } 1140 jsegdepn = WK_JSEGDEP(wk); 1141 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1142 WORKLIST_REMOVE(wk); 1143 free_jsegdep(jsegdepn); 1144 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1145 } else 1146 free_jsegdep(jsegdep); 1147 } 1148 1149 /* 1150 * Routines for tracking and managing workitems. 1151 */ 1152 static void workitem_free(struct worklist *, int); 1153 static void workitem_alloc(struct worklist *, int, struct mount *); 1154 static void workitem_reassign(struct worklist *, int); 1155 1156 #define WORKITEM_FREE(item, type) \ 1157 workitem_free((struct worklist *)(item), (type)) 1158 #define WORKITEM_REASSIGN(item, type) \ 1159 workitem_reassign((struct worklist *)(item), (type)) 1160 1161 static void 1162 workitem_free(item, type) 1163 struct worklist *item; 1164 int type; 1165 { 1166 struct ufsmount *ump; 1167 1168 #ifdef DEBUG 1169 if (item->wk_state & ONWORKLIST) 1170 panic("workitem_free: %s(0x%X) still on list", 1171 TYPENAME(item->wk_type), item->wk_state); 1172 if (item->wk_type != type && type != D_NEWBLK) 1173 panic("workitem_free: type mismatch %s != %s", 1174 TYPENAME(item->wk_type), TYPENAME(type)); 1175 #endif 1176 if (item->wk_state & IOWAITING) 1177 wakeup(item); 1178 ump = VFSTOUFS(item->wk_mp); 1179 LOCK_OWNED(ump); 1180 KASSERT(ump->softdep_deps > 0, 1181 ("workitem_free: %s: softdep_deps going negative", 1182 ump->um_fs->fs_fsmnt)); 1183 if (--ump->softdep_deps == 0 && ump->softdep_req) 1184 wakeup(&ump->softdep_deps); 1185 KASSERT(dep_current[item->wk_type] > 0, 1186 ("workitem_free: %s: dep_current[%s] going negative", 1187 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1188 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1189 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1190 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1191 atomic_subtract_long(&dep_current[item->wk_type], 1); 1192 ump->softdep_curdeps[item->wk_type] -= 1; 1193 free(item, DtoM(type)); 1194 } 1195 1196 static void 1197 workitem_alloc(item, type, mp) 1198 struct worklist *item; 1199 int type; 1200 struct mount *mp; 1201 { 1202 struct ufsmount *ump; 1203 1204 item->wk_type = type; 1205 item->wk_mp = mp; 1206 item->wk_state = 0; 1207 1208 ump = VFSTOUFS(mp); 1209 ACQUIRE_GBLLOCK(&lk); 1210 dep_current[type]++; 1211 if (dep_current[type] > dep_highuse[type]) 1212 dep_highuse[type] = dep_current[type]; 1213 dep_total[type]++; 1214 FREE_GBLLOCK(&lk); 1215 ACQUIRE_LOCK(ump); 1216 ump->softdep_curdeps[type] += 1; 1217 ump->softdep_deps++; 1218 ump->softdep_accdeps++; 1219 FREE_LOCK(ump); 1220 } 1221 1222 static void 1223 workitem_reassign(item, newtype) 1224 struct worklist *item; 1225 int newtype; 1226 { 1227 struct ufsmount *ump; 1228 1229 ump = VFSTOUFS(item->wk_mp); 1230 LOCK_OWNED(ump); 1231 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1232 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1233 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1234 ump->softdep_curdeps[item->wk_type] -= 1; 1235 ump->softdep_curdeps[newtype] += 1; 1236 KASSERT(dep_current[item->wk_type] > 0, 1237 ("workitem_reassign: %s: dep_current[%s] going negative", 1238 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1239 ACQUIRE_GBLLOCK(&lk); 1240 dep_current[newtype]++; 1241 dep_current[item->wk_type]--; 1242 if (dep_current[newtype] > dep_highuse[newtype]) 1243 dep_highuse[newtype] = dep_current[newtype]; 1244 dep_total[newtype]++; 1245 FREE_GBLLOCK(&lk); 1246 item->wk_type = newtype; 1247 } 1248 1249 /* 1250 * Workitem queue management 1251 */ 1252 static int max_softdeps; /* maximum number of structs before slowdown */ 1253 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1254 static int proc_waiting; /* tracks whether we have a timeout posted */ 1255 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1256 static struct callout softdep_callout; 1257 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1258 static int req_clear_remove; /* syncer process flush some freeblks */ 1259 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1260 1261 /* 1262 * runtime statistics 1263 */ 1264 static int stat_flush_threads; /* number of softdep flushing threads */ 1265 static int stat_worklist_push; /* number of worklist cleanups */ 1266 static int stat_blk_limit_push; /* number of times block limit neared */ 1267 static int stat_ino_limit_push; /* number of times inode limit neared */ 1268 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1269 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1270 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1271 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1272 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1273 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1274 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1275 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1276 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1277 static int stat_journal_min; /* Times hit journal min threshold */ 1278 static int stat_journal_low; /* Times hit journal low threshold */ 1279 static int stat_journal_wait; /* Times blocked in jwait(). */ 1280 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1281 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1282 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1283 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1284 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1285 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1286 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1287 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1288 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1289 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1290 1291 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1292 &max_softdeps, 0, ""); 1293 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1294 &tickdelay, 0, ""); 1295 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1296 &stat_flush_threads, 0, ""); 1297 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1298 &stat_worklist_push, 0,""); 1299 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1300 &stat_blk_limit_push, 0,""); 1301 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1302 &stat_ino_limit_push, 0,""); 1303 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1304 &stat_blk_limit_hit, 0, ""); 1305 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1306 &stat_ino_limit_hit, 0, ""); 1307 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1308 &stat_sync_limit_hit, 0, ""); 1309 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1310 &stat_indir_blk_ptrs, 0, ""); 1311 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1312 &stat_inode_bitmap, 0, ""); 1313 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1314 &stat_direct_blk_ptrs, 0, ""); 1315 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1316 &stat_dir_entry, 0, ""); 1317 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1318 &stat_jaddref, 0, ""); 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1320 &stat_jnewblk, 0, ""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1322 &stat_journal_low, 0, ""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1324 &stat_journal_min, 0, ""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1326 &stat_journal_wait, 0, ""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1328 &stat_jwait_filepage, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1330 &stat_jwait_freeblks, 0, ""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1332 &stat_jwait_inode, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1334 &stat_jwait_newblk, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1336 &stat_cleanup_blkrequests, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1338 &stat_cleanup_inorequests, 0, ""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1340 &stat_cleanup_high_delay, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1342 &stat_cleanup_retries, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1344 &stat_cleanup_failures, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1346 &softdep_flushcache, 0, ""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1348 &stat_emptyjblocks, 0, ""); 1349 1350 SYSCTL_DECL(_vfs_ffs); 1351 1352 /* Whether to recompute the summary at mount time */ 1353 static int compute_summary_at_mount = 0; 1354 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1355 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1356 static int print_threads = 0; 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1358 &print_threads, 0, "Notify flusher thread start/stop"); 1359 1360 /* List of all filesystems mounted with soft updates */ 1361 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1362 1363 /* 1364 * This function cleans the worklist for a filesystem. 1365 * Each filesystem running with soft dependencies gets its own 1366 * thread to run in this function. The thread is started up in 1367 * softdep_mount and shutdown in softdep_unmount. They show up 1368 * as part of the kernel "bufdaemon" process whose process 1369 * entry is available in bufdaemonproc. 1370 */ 1371 static int searchfailed; 1372 extern struct proc *bufdaemonproc; 1373 static void 1374 softdep_flush(addr) 1375 void *addr; 1376 { 1377 struct mount *mp; 1378 struct thread *td; 1379 struct ufsmount *ump; 1380 1381 td = curthread; 1382 td->td_pflags |= TDP_NORUNNINGBUF; 1383 mp = (struct mount *)addr; 1384 ump = VFSTOUFS(mp); 1385 atomic_add_int(&stat_flush_threads, 1); 1386 ACQUIRE_LOCK(ump); 1387 ump->softdep_flags &= ~FLUSH_STARTING; 1388 wakeup(&ump->softdep_flushtd); 1389 FREE_LOCK(ump); 1390 if (print_threads) { 1391 if (stat_flush_threads == 1) 1392 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1393 bufdaemonproc->p_pid); 1394 printf("Start thread %s\n", td->td_name); 1395 } 1396 for (;;) { 1397 while (softdep_process_worklist(mp, 0) > 0 || 1398 (MOUNTEDSUJ(mp) && 1399 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1400 kthread_suspend_check(); 1401 ACQUIRE_LOCK(ump); 1402 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1403 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1404 "sdflush", hz / 2); 1405 ump->softdep_flags &= ~FLUSH_CLEANUP; 1406 /* 1407 * Check to see if we are done and need to exit. 1408 */ 1409 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1410 FREE_LOCK(ump); 1411 continue; 1412 } 1413 ump->softdep_flags &= ~FLUSH_EXIT; 1414 FREE_LOCK(ump); 1415 wakeup(&ump->softdep_flags); 1416 if (print_threads) 1417 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1418 atomic_subtract_int(&stat_flush_threads, 1); 1419 kthread_exit(); 1420 panic("kthread_exit failed\n"); 1421 } 1422 } 1423 1424 static void 1425 worklist_speedup(mp) 1426 struct mount *mp; 1427 { 1428 struct ufsmount *ump; 1429 1430 ump = VFSTOUFS(mp); 1431 LOCK_OWNED(ump); 1432 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1433 ump->softdep_flags |= FLUSH_CLEANUP; 1434 wakeup(&ump->softdep_flushtd); 1435 } 1436 1437 static int 1438 softdep_speedup(ump) 1439 struct ufsmount *ump; 1440 { 1441 struct ufsmount *altump; 1442 struct mount_softdeps *sdp; 1443 1444 LOCK_OWNED(ump); 1445 worklist_speedup(ump->um_mountp); 1446 bd_speedup(); 1447 /* 1448 * If we have global shortages, then we need other 1449 * filesystems to help with the cleanup. Here we wakeup a 1450 * flusher thread for a filesystem that is over its fair 1451 * share of resources. 1452 */ 1453 if (req_clear_inodedeps || req_clear_remove) { 1454 ACQUIRE_GBLLOCK(&lk); 1455 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1456 if ((altump = sdp->sd_ump) == ump) 1457 continue; 1458 if (((req_clear_inodedeps && 1459 altump->softdep_curdeps[D_INODEDEP] > 1460 max_softdeps / stat_flush_threads) || 1461 (req_clear_remove && 1462 altump->softdep_curdeps[D_DIRREM] > 1463 (max_softdeps / 2) / stat_flush_threads)) && 1464 TRY_ACQUIRE_LOCK(altump)) 1465 break; 1466 } 1467 if (sdp == NULL) { 1468 searchfailed++; 1469 FREE_GBLLOCK(&lk); 1470 } else { 1471 /* 1472 * Move to the end of the list so we pick a 1473 * different one on out next try. 1474 */ 1475 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1476 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1477 FREE_GBLLOCK(&lk); 1478 if ((altump->softdep_flags & 1479 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1480 altump->softdep_flags |= FLUSH_CLEANUP; 1481 altump->um_softdep->sd_cleanups++; 1482 wakeup(&altump->softdep_flushtd); 1483 FREE_LOCK(altump); 1484 } 1485 } 1486 return (speedup_syncer()); 1487 } 1488 1489 /* 1490 * Add an item to the end of the work queue. 1491 * This routine requires that the lock be held. 1492 * This is the only routine that adds items to the list. 1493 * The following routine is the only one that removes items 1494 * and does so in order from first to last. 1495 */ 1496 1497 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1498 #define WK_NODELAY 0x0002 /* Process immediately. */ 1499 1500 static void 1501 add_to_worklist(wk, flags) 1502 struct worklist *wk; 1503 int flags; 1504 { 1505 struct ufsmount *ump; 1506 1507 ump = VFSTOUFS(wk->wk_mp); 1508 LOCK_OWNED(ump); 1509 if (wk->wk_state & ONWORKLIST) 1510 panic("add_to_worklist: %s(0x%X) already on list", 1511 TYPENAME(wk->wk_type), wk->wk_state); 1512 wk->wk_state |= ONWORKLIST; 1513 if (ump->softdep_on_worklist == 0) { 1514 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1515 ump->softdep_worklist_tail = wk; 1516 } else if (flags & WK_HEAD) { 1517 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1518 } else { 1519 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1520 ump->softdep_worklist_tail = wk; 1521 } 1522 ump->softdep_on_worklist += 1; 1523 if (flags & WK_NODELAY) 1524 worklist_speedup(wk->wk_mp); 1525 } 1526 1527 /* 1528 * Remove the item to be processed. If we are removing the last 1529 * item on the list, we need to recalculate the tail pointer. 1530 */ 1531 static void 1532 remove_from_worklist(wk) 1533 struct worklist *wk; 1534 { 1535 struct ufsmount *ump; 1536 1537 ump = VFSTOUFS(wk->wk_mp); 1538 WORKLIST_REMOVE(wk); 1539 if (ump->softdep_worklist_tail == wk) 1540 ump->softdep_worklist_tail = 1541 (struct worklist *)wk->wk_list.le_prev; 1542 ump->softdep_on_worklist -= 1; 1543 } 1544 1545 static void 1546 wake_worklist(wk) 1547 struct worklist *wk; 1548 { 1549 if (wk->wk_state & IOWAITING) { 1550 wk->wk_state &= ~IOWAITING; 1551 wakeup(wk); 1552 } 1553 } 1554 1555 static void 1556 wait_worklist(wk, wmesg) 1557 struct worklist *wk; 1558 char *wmesg; 1559 { 1560 struct ufsmount *ump; 1561 1562 ump = VFSTOUFS(wk->wk_mp); 1563 wk->wk_state |= IOWAITING; 1564 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1565 } 1566 1567 /* 1568 * Process that runs once per second to handle items in the background queue. 1569 * 1570 * Note that we ensure that everything is done in the order in which they 1571 * appear in the queue. The code below depends on this property to ensure 1572 * that blocks of a file are freed before the inode itself is freed. This 1573 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1574 * until all the old ones have been purged from the dependency lists. 1575 */ 1576 static int 1577 softdep_process_worklist(mp, full) 1578 struct mount *mp; 1579 int full; 1580 { 1581 int cnt, matchcnt; 1582 struct ufsmount *ump; 1583 long starttime; 1584 1585 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1586 if (MOUNTEDSOFTDEP(mp) == 0) 1587 return (0); 1588 matchcnt = 0; 1589 ump = VFSTOUFS(mp); 1590 ACQUIRE_LOCK(ump); 1591 starttime = time_second; 1592 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1593 check_clear_deps(mp); 1594 while (ump->softdep_on_worklist > 0) { 1595 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1596 break; 1597 else 1598 matchcnt += cnt; 1599 check_clear_deps(mp); 1600 /* 1601 * We do not generally want to stop for buffer space, but if 1602 * we are really being a buffer hog, we will stop and wait. 1603 */ 1604 if (should_yield()) { 1605 FREE_LOCK(ump); 1606 kern_yield(PRI_USER); 1607 bwillwrite(); 1608 ACQUIRE_LOCK(ump); 1609 } 1610 /* 1611 * Never allow processing to run for more than one 1612 * second. This gives the syncer thread the opportunity 1613 * to pause if appropriate. 1614 */ 1615 if (!full && starttime != time_second) 1616 break; 1617 } 1618 if (full == 0) 1619 journal_unsuspend(ump); 1620 FREE_LOCK(ump); 1621 return (matchcnt); 1622 } 1623 1624 /* 1625 * Process all removes associated with a vnode if we are running out of 1626 * journal space. Any other process which attempts to flush these will 1627 * be unable as we have the vnodes locked. 1628 */ 1629 static void 1630 process_removes(vp) 1631 struct vnode *vp; 1632 { 1633 struct inodedep *inodedep; 1634 struct dirrem *dirrem; 1635 struct ufsmount *ump; 1636 struct mount *mp; 1637 ino_t inum; 1638 1639 mp = vp->v_mount; 1640 ump = VFSTOUFS(mp); 1641 LOCK_OWNED(ump); 1642 inum = VTOI(vp)->i_number; 1643 for (;;) { 1644 top: 1645 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1646 return; 1647 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1648 /* 1649 * If another thread is trying to lock this vnode 1650 * it will fail but we must wait for it to do so 1651 * before we can proceed. 1652 */ 1653 if (dirrem->dm_state & INPROGRESS) { 1654 wait_worklist(&dirrem->dm_list, "pwrwait"); 1655 goto top; 1656 } 1657 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1658 (COMPLETE | ONWORKLIST)) 1659 break; 1660 } 1661 if (dirrem == NULL) 1662 return; 1663 remove_from_worklist(&dirrem->dm_list); 1664 FREE_LOCK(ump); 1665 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1666 panic("process_removes: suspended filesystem"); 1667 handle_workitem_remove(dirrem, 0); 1668 vn_finished_secondary_write(mp); 1669 ACQUIRE_LOCK(ump); 1670 } 1671 } 1672 1673 /* 1674 * Process all truncations associated with a vnode if we are running out 1675 * of journal space. This is called when the vnode lock is already held 1676 * and no other process can clear the truncation. This function returns 1677 * a value greater than zero if it did any work. 1678 */ 1679 static void 1680 process_truncates(vp) 1681 struct vnode *vp; 1682 { 1683 struct inodedep *inodedep; 1684 struct freeblks *freeblks; 1685 struct ufsmount *ump; 1686 struct mount *mp; 1687 ino_t inum; 1688 int cgwait; 1689 1690 mp = vp->v_mount; 1691 ump = VFSTOUFS(mp); 1692 LOCK_OWNED(ump); 1693 inum = VTOI(vp)->i_number; 1694 for (;;) { 1695 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1696 return; 1697 cgwait = 0; 1698 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1699 /* Journal entries not yet written. */ 1700 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1701 jwait(&LIST_FIRST( 1702 &freeblks->fb_jblkdephd)->jb_list, 1703 MNT_WAIT); 1704 break; 1705 } 1706 /* Another thread is executing this item. */ 1707 if (freeblks->fb_state & INPROGRESS) { 1708 wait_worklist(&freeblks->fb_list, "ptrwait"); 1709 break; 1710 } 1711 /* Freeblks is waiting on a inode write. */ 1712 if ((freeblks->fb_state & COMPLETE) == 0) { 1713 FREE_LOCK(ump); 1714 ffs_update(vp, 1); 1715 ACQUIRE_LOCK(ump); 1716 break; 1717 } 1718 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1719 (ALLCOMPLETE | ONWORKLIST)) { 1720 remove_from_worklist(&freeblks->fb_list); 1721 freeblks->fb_state |= INPROGRESS; 1722 FREE_LOCK(ump); 1723 if (vn_start_secondary_write(NULL, &mp, 1724 V_NOWAIT)) 1725 panic("process_truncates: " 1726 "suspended filesystem"); 1727 handle_workitem_freeblocks(freeblks, 0); 1728 vn_finished_secondary_write(mp); 1729 ACQUIRE_LOCK(ump); 1730 break; 1731 } 1732 if (freeblks->fb_cgwait) 1733 cgwait++; 1734 } 1735 if (cgwait) { 1736 FREE_LOCK(ump); 1737 sync_cgs(mp, MNT_WAIT); 1738 ffs_sync_snap(mp, MNT_WAIT); 1739 ACQUIRE_LOCK(ump); 1740 continue; 1741 } 1742 if (freeblks == NULL) 1743 break; 1744 } 1745 return; 1746 } 1747 1748 /* 1749 * Process one item on the worklist. 1750 */ 1751 static int 1752 process_worklist_item(mp, target, flags) 1753 struct mount *mp; 1754 int target; 1755 int flags; 1756 { 1757 struct worklist sentinel; 1758 struct worklist *wk; 1759 struct ufsmount *ump; 1760 int matchcnt; 1761 int error; 1762 1763 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1764 /* 1765 * If we are being called because of a process doing a 1766 * copy-on-write, then it is not safe to write as we may 1767 * recurse into the copy-on-write routine. 1768 */ 1769 if (curthread->td_pflags & TDP_COWINPROGRESS) 1770 return (-1); 1771 PHOLD(curproc); /* Don't let the stack go away. */ 1772 ump = VFSTOUFS(mp); 1773 LOCK_OWNED(ump); 1774 matchcnt = 0; 1775 sentinel.wk_mp = NULL; 1776 sentinel.wk_type = D_SENTINEL; 1777 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1778 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1779 wk = LIST_NEXT(&sentinel, wk_list)) { 1780 if (wk->wk_type == D_SENTINEL) { 1781 LIST_REMOVE(&sentinel, wk_list); 1782 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1783 continue; 1784 } 1785 if (wk->wk_state & INPROGRESS) 1786 panic("process_worklist_item: %p already in progress.", 1787 wk); 1788 wk->wk_state |= INPROGRESS; 1789 remove_from_worklist(wk); 1790 FREE_LOCK(ump); 1791 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1792 panic("process_worklist_item: suspended filesystem"); 1793 switch (wk->wk_type) { 1794 case D_DIRREM: 1795 /* removal of a directory entry */ 1796 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1797 break; 1798 1799 case D_FREEBLKS: 1800 /* releasing blocks and/or fragments from a file */ 1801 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1802 flags); 1803 break; 1804 1805 case D_FREEFRAG: 1806 /* releasing a fragment when replaced as a file grows */ 1807 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1808 error = 0; 1809 break; 1810 1811 case D_FREEFILE: 1812 /* releasing an inode when its link count drops to 0 */ 1813 handle_workitem_freefile(WK_FREEFILE(wk)); 1814 error = 0; 1815 break; 1816 1817 default: 1818 panic("%s_process_worklist: Unknown type %s", 1819 "softdep", TYPENAME(wk->wk_type)); 1820 /* NOTREACHED */ 1821 } 1822 vn_finished_secondary_write(mp); 1823 ACQUIRE_LOCK(ump); 1824 if (error == 0) { 1825 if (++matchcnt == target) 1826 break; 1827 continue; 1828 } 1829 /* 1830 * We have to retry the worklist item later. Wake up any 1831 * waiters who may be able to complete it immediately and 1832 * add the item back to the head so we don't try to execute 1833 * it again. 1834 */ 1835 wk->wk_state &= ~INPROGRESS; 1836 wake_worklist(wk); 1837 add_to_worklist(wk, WK_HEAD); 1838 } 1839 LIST_REMOVE(&sentinel, wk_list); 1840 /* Sentinal could've become the tail from remove_from_worklist. */ 1841 if (ump->softdep_worklist_tail == &sentinel) 1842 ump->softdep_worklist_tail = 1843 (struct worklist *)sentinel.wk_list.le_prev; 1844 PRELE(curproc); 1845 return (matchcnt); 1846 } 1847 1848 /* 1849 * Move dependencies from one buffer to another. 1850 */ 1851 int 1852 softdep_move_dependencies(oldbp, newbp) 1853 struct buf *oldbp; 1854 struct buf *newbp; 1855 { 1856 struct worklist *wk, *wktail; 1857 struct ufsmount *ump; 1858 int dirty; 1859 1860 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1861 return (0); 1862 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1863 ("softdep_move_dependencies called on non-softdep filesystem")); 1864 dirty = 0; 1865 wktail = NULL; 1866 ump = VFSTOUFS(wk->wk_mp); 1867 ACQUIRE_LOCK(ump); 1868 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1869 LIST_REMOVE(wk, wk_list); 1870 if (wk->wk_type == D_BMSAFEMAP && 1871 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1872 dirty = 1; 1873 if (wktail == NULL) 1874 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1875 else 1876 LIST_INSERT_AFTER(wktail, wk, wk_list); 1877 wktail = wk; 1878 } 1879 FREE_LOCK(ump); 1880 1881 return (dirty); 1882 } 1883 1884 /* 1885 * Purge the work list of all items associated with a particular mount point. 1886 */ 1887 int 1888 softdep_flushworklist(oldmnt, countp, td) 1889 struct mount *oldmnt; 1890 int *countp; 1891 struct thread *td; 1892 { 1893 struct vnode *devvp; 1894 struct ufsmount *ump; 1895 int count, error; 1896 1897 /* 1898 * Alternately flush the block device associated with the mount 1899 * point and process any dependencies that the flushing 1900 * creates. We continue until no more worklist dependencies 1901 * are found. 1902 */ 1903 *countp = 0; 1904 error = 0; 1905 ump = VFSTOUFS(oldmnt); 1906 devvp = ump->um_devvp; 1907 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1908 *countp += count; 1909 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1910 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1911 VOP_UNLOCK(devvp, 0); 1912 if (error != 0) 1913 break; 1914 } 1915 return (error); 1916 } 1917 1918 #define SU_WAITIDLE_RETRIES 20 1919 static int 1920 softdep_waitidle(struct mount *mp, int flags __unused) 1921 { 1922 struct ufsmount *ump; 1923 struct vnode *devvp; 1924 struct thread *td; 1925 int error, i; 1926 1927 ump = VFSTOUFS(mp); 1928 devvp = ump->um_devvp; 1929 td = curthread; 1930 error = 0; 1931 ACQUIRE_LOCK(ump); 1932 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1933 ump->softdep_req = 1; 1934 KASSERT((flags & FORCECLOSE) == 0 || 1935 ump->softdep_on_worklist == 0, 1936 ("softdep_waitidle: work added after flush")); 1937 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1938 "softdeps", 10 * hz); 1939 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1940 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1941 VOP_UNLOCK(devvp, 0); 1942 ACQUIRE_LOCK(ump); 1943 if (error != 0) 1944 break; 1945 } 1946 ump->softdep_req = 0; 1947 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1948 error = EBUSY; 1949 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1950 mp); 1951 } 1952 FREE_LOCK(ump); 1953 return (error); 1954 } 1955 1956 /* 1957 * Flush all vnodes and worklist items associated with a specified mount point. 1958 */ 1959 int 1960 softdep_flushfiles(oldmnt, flags, td) 1961 struct mount *oldmnt; 1962 int flags; 1963 struct thread *td; 1964 { 1965 #ifdef QUOTA 1966 struct ufsmount *ump; 1967 int i; 1968 #endif 1969 int error, early, depcount, loopcnt, retry_flush_count, retry; 1970 int morework; 1971 1972 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1973 ("softdep_flushfiles called on non-softdep filesystem")); 1974 loopcnt = 10; 1975 retry_flush_count = 3; 1976 retry_flush: 1977 error = 0; 1978 1979 /* 1980 * Alternately flush the vnodes associated with the mount 1981 * point and process any dependencies that the flushing 1982 * creates. In theory, this loop can happen at most twice, 1983 * but we give it a few extra just to be sure. 1984 */ 1985 for (; loopcnt > 0; loopcnt--) { 1986 /* 1987 * Do another flush in case any vnodes were brought in 1988 * as part of the cleanup operations. 1989 */ 1990 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1991 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1992 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1993 break; 1994 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1995 depcount == 0) 1996 break; 1997 } 1998 /* 1999 * If we are unmounting then it is an error to fail. If we 2000 * are simply trying to downgrade to read-only, then filesystem 2001 * activity can keep us busy forever, so we just fail with EBUSY. 2002 */ 2003 if (loopcnt == 0) { 2004 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2005 panic("softdep_flushfiles: looping"); 2006 error = EBUSY; 2007 } 2008 if (!error) 2009 error = softdep_waitidle(oldmnt, flags); 2010 if (!error) { 2011 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2012 retry = 0; 2013 MNT_ILOCK(oldmnt); 2014 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 2015 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 2016 morework = oldmnt->mnt_nvnodelistsize > 0; 2017 #ifdef QUOTA 2018 ump = VFSTOUFS(oldmnt); 2019 UFS_LOCK(ump); 2020 for (i = 0; i < MAXQUOTAS; i++) { 2021 if (ump->um_quotas[i] != NULLVP) 2022 morework = 1; 2023 } 2024 UFS_UNLOCK(ump); 2025 #endif 2026 if (morework) { 2027 if (--retry_flush_count > 0) { 2028 retry = 1; 2029 loopcnt = 3; 2030 } else 2031 error = EBUSY; 2032 } 2033 MNT_IUNLOCK(oldmnt); 2034 if (retry) 2035 goto retry_flush; 2036 } 2037 } 2038 return (error); 2039 } 2040 2041 /* 2042 * Structure hashing. 2043 * 2044 * There are four types of structures that can be looked up: 2045 * 1) pagedep structures identified by mount point, inode number, 2046 * and logical block. 2047 * 2) inodedep structures identified by mount point and inode number. 2048 * 3) newblk structures identified by mount point and 2049 * physical block number. 2050 * 4) bmsafemap structures identified by mount point and 2051 * cylinder group number. 2052 * 2053 * The "pagedep" and "inodedep" dependency structures are hashed 2054 * separately from the file blocks and inodes to which they correspond. 2055 * This separation helps when the in-memory copy of an inode or 2056 * file block must be replaced. It also obviates the need to access 2057 * an inode or file page when simply updating (or de-allocating) 2058 * dependency structures. Lookup of newblk structures is needed to 2059 * find newly allocated blocks when trying to associate them with 2060 * their allocdirect or allocindir structure. 2061 * 2062 * The lookup routines optionally create and hash a new instance when 2063 * an existing entry is not found. The bmsafemap lookup routine always 2064 * allocates a new structure if an existing one is not found. 2065 */ 2066 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2067 2068 /* 2069 * Structures and routines associated with pagedep caching. 2070 */ 2071 #define PAGEDEP_HASH(ump, inum, lbn) \ 2072 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2073 2074 static int 2075 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2076 struct pagedep_hashhead *pagedephd; 2077 ino_t ino; 2078 ufs_lbn_t lbn; 2079 struct pagedep **pagedeppp; 2080 { 2081 struct pagedep *pagedep; 2082 2083 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2084 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2085 *pagedeppp = pagedep; 2086 return (1); 2087 } 2088 } 2089 *pagedeppp = NULL; 2090 return (0); 2091 } 2092 /* 2093 * Look up a pagedep. Return 1 if found, 0 otherwise. 2094 * If not found, allocate if DEPALLOC flag is passed. 2095 * Found or allocated entry is returned in pagedeppp. 2096 * This routine must be called with splbio interrupts blocked. 2097 */ 2098 static int 2099 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2100 struct mount *mp; 2101 struct buf *bp; 2102 ino_t ino; 2103 ufs_lbn_t lbn; 2104 int flags; 2105 struct pagedep **pagedeppp; 2106 { 2107 struct pagedep *pagedep; 2108 struct pagedep_hashhead *pagedephd; 2109 struct worklist *wk; 2110 struct ufsmount *ump; 2111 int ret; 2112 int i; 2113 2114 ump = VFSTOUFS(mp); 2115 LOCK_OWNED(ump); 2116 if (bp) { 2117 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2118 if (wk->wk_type == D_PAGEDEP) { 2119 *pagedeppp = WK_PAGEDEP(wk); 2120 return (1); 2121 } 2122 } 2123 } 2124 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2125 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2126 if (ret) { 2127 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2128 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2129 return (1); 2130 } 2131 if ((flags & DEPALLOC) == 0) 2132 return (0); 2133 FREE_LOCK(ump); 2134 pagedep = malloc(sizeof(struct pagedep), 2135 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2136 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2137 ACQUIRE_LOCK(ump); 2138 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2139 if (*pagedeppp) { 2140 /* 2141 * This should never happen since we only create pagedeps 2142 * with the vnode lock held. Could be an assert. 2143 */ 2144 WORKITEM_FREE(pagedep, D_PAGEDEP); 2145 return (ret); 2146 } 2147 pagedep->pd_ino = ino; 2148 pagedep->pd_lbn = lbn; 2149 LIST_INIT(&pagedep->pd_dirremhd); 2150 LIST_INIT(&pagedep->pd_pendinghd); 2151 for (i = 0; i < DAHASHSZ; i++) 2152 LIST_INIT(&pagedep->pd_diraddhd[i]); 2153 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2154 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2155 *pagedeppp = pagedep; 2156 return (0); 2157 } 2158 2159 /* 2160 * Structures and routines associated with inodedep caching. 2161 */ 2162 #define INODEDEP_HASH(ump, inum) \ 2163 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2164 2165 static int 2166 inodedep_find(inodedephd, inum, inodedeppp) 2167 struct inodedep_hashhead *inodedephd; 2168 ino_t inum; 2169 struct inodedep **inodedeppp; 2170 { 2171 struct inodedep *inodedep; 2172 2173 LIST_FOREACH(inodedep, inodedephd, id_hash) 2174 if (inum == inodedep->id_ino) 2175 break; 2176 if (inodedep) { 2177 *inodedeppp = inodedep; 2178 return (1); 2179 } 2180 *inodedeppp = NULL; 2181 2182 return (0); 2183 } 2184 /* 2185 * Look up an inodedep. Return 1 if found, 0 if not found. 2186 * If not found, allocate if DEPALLOC flag is passed. 2187 * Found or allocated entry is returned in inodedeppp. 2188 * This routine must be called with splbio interrupts blocked. 2189 */ 2190 static int 2191 inodedep_lookup(mp, inum, flags, inodedeppp) 2192 struct mount *mp; 2193 ino_t inum; 2194 int flags; 2195 struct inodedep **inodedeppp; 2196 { 2197 struct inodedep *inodedep; 2198 struct inodedep_hashhead *inodedephd; 2199 struct ufsmount *ump; 2200 struct fs *fs; 2201 2202 ump = VFSTOUFS(mp); 2203 LOCK_OWNED(ump); 2204 fs = ump->um_fs; 2205 inodedephd = INODEDEP_HASH(ump, inum); 2206 2207 if (inodedep_find(inodedephd, inum, inodedeppp)) 2208 return (1); 2209 if ((flags & DEPALLOC) == 0) 2210 return (0); 2211 /* 2212 * If the system is over its limit and our filesystem is 2213 * responsible for more than our share of that usage and 2214 * we are not in a rush, request some inodedep cleanup. 2215 */ 2216 if (softdep_excess_items(ump, D_INODEDEP)) 2217 schedule_cleanup(mp); 2218 else 2219 FREE_LOCK(ump); 2220 inodedep = malloc(sizeof(struct inodedep), 2221 M_INODEDEP, M_SOFTDEP_FLAGS); 2222 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2223 ACQUIRE_LOCK(ump); 2224 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2225 WORKITEM_FREE(inodedep, D_INODEDEP); 2226 return (1); 2227 } 2228 inodedep->id_fs = fs; 2229 inodedep->id_ino = inum; 2230 inodedep->id_state = ALLCOMPLETE; 2231 inodedep->id_nlinkdelta = 0; 2232 inodedep->id_savedino1 = NULL; 2233 inodedep->id_savedsize = -1; 2234 inodedep->id_savedextsize = -1; 2235 inodedep->id_savednlink = -1; 2236 inodedep->id_bmsafemap = NULL; 2237 inodedep->id_mkdiradd = NULL; 2238 LIST_INIT(&inodedep->id_dirremhd); 2239 LIST_INIT(&inodedep->id_pendinghd); 2240 LIST_INIT(&inodedep->id_inowait); 2241 LIST_INIT(&inodedep->id_bufwait); 2242 TAILQ_INIT(&inodedep->id_inoreflst); 2243 TAILQ_INIT(&inodedep->id_inoupdt); 2244 TAILQ_INIT(&inodedep->id_newinoupdt); 2245 TAILQ_INIT(&inodedep->id_extupdt); 2246 TAILQ_INIT(&inodedep->id_newextupdt); 2247 TAILQ_INIT(&inodedep->id_freeblklst); 2248 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2249 *inodedeppp = inodedep; 2250 return (0); 2251 } 2252 2253 /* 2254 * Structures and routines associated with newblk caching. 2255 */ 2256 #define NEWBLK_HASH(ump, inum) \ 2257 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2258 2259 static int 2260 newblk_find(newblkhd, newblkno, flags, newblkpp) 2261 struct newblk_hashhead *newblkhd; 2262 ufs2_daddr_t newblkno; 2263 int flags; 2264 struct newblk **newblkpp; 2265 { 2266 struct newblk *newblk; 2267 2268 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2269 if (newblkno != newblk->nb_newblkno) 2270 continue; 2271 /* 2272 * If we're creating a new dependency don't match those that 2273 * have already been converted to allocdirects. This is for 2274 * a frag extend. 2275 */ 2276 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2277 continue; 2278 break; 2279 } 2280 if (newblk) { 2281 *newblkpp = newblk; 2282 return (1); 2283 } 2284 *newblkpp = NULL; 2285 return (0); 2286 } 2287 2288 /* 2289 * Look up a newblk. Return 1 if found, 0 if not found. 2290 * If not found, allocate if DEPALLOC flag is passed. 2291 * Found or allocated entry is returned in newblkpp. 2292 */ 2293 static int 2294 newblk_lookup(mp, newblkno, flags, newblkpp) 2295 struct mount *mp; 2296 ufs2_daddr_t newblkno; 2297 int flags; 2298 struct newblk **newblkpp; 2299 { 2300 struct newblk *newblk; 2301 struct newblk_hashhead *newblkhd; 2302 struct ufsmount *ump; 2303 2304 ump = VFSTOUFS(mp); 2305 LOCK_OWNED(ump); 2306 newblkhd = NEWBLK_HASH(ump, newblkno); 2307 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2308 return (1); 2309 if ((flags & DEPALLOC) == 0) 2310 return (0); 2311 if (softdep_excess_items(ump, D_NEWBLK) || 2312 softdep_excess_items(ump, D_ALLOCDIRECT) || 2313 softdep_excess_items(ump, D_ALLOCINDIR)) 2314 schedule_cleanup(mp); 2315 else 2316 FREE_LOCK(ump); 2317 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2318 M_SOFTDEP_FLAGS | M_ZERO); 2319 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2320 ACQUIRE_LOCK(ump); 2321 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2322 WORKITEM_FREE(newblk, D_NEWBLK); 2323 return (1); 2324 } 2325 newblk->nb_freefrag = NULL; 2326 LIST_INIT(&newblk->nb_indirdeps); 2327 LIST_INIT(&newblk->nb_newdirblk); 2328 LIST_INIT(&newblk->nb_jwork); 2329 newblk->nb_state = ATTACHED; 2330 newblk->nb_newblkno = newblkno; 2331 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2332 *newblkpp = newblk; 2333 return (0); 2334 } 2335 2336 /* 2337 * Structures and routines associated with freed indirect block caching. 2338 */ 2339 #define INDIR_HASH(ump, blkno) \ 2340 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2341 2342 /* 2343 * Lookup an indirect block in the indir hash table. The freework is 2344 * removed and potentially freed. The caller must do a blocking journal 2345 * write before writing to the blkno. 2346 */ 2347 static int 2348 indirblk_lookup(mp, blkno) 2349 struct mount *mp; 2350 ufs2_daddr_t blkno; 2351 { 2352 struct freework *freework; 2353 struct indir_hashhead *wkhd; 2354 struct ufsmount *ump; 2355 2356 ump = VFSTOUFS(mp); 2357 wkhd = INDIR_HASH(ump, blkno); 2358 TAILQ_FOREACH(freework, wkhd, fw_next) { 2359 if (freework->fw_blkno != blkno) 2360 continue; 2361 indirblk_remove(freework); 2362 return (1); 2363 } 2364 return (0); 2365 } 2366 2367 /* 2368 * Insert an indirect block represented by freework into the indirblk 2369 * hash table so that it may prevent the block from being re-used prior 2370 * to the journal being written. 2371 */ 2372 static void 2373 indirblk_insert(freework) 2374 struct freework *freework; 2375 { 2376 struct jblocks *jblocks; 2377 struct jseg *jseg; 2378 struct ufsmount *ump; 2379 2380 ump = VFSTOUFS(freework->fw_list.wk_mp); 2381 jblocks = ump->softdep_jblocks; 2382 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2383 if (jseg == NULL) 2384 return; 2385 2386 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2387 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2388 fw_next); 2389 freework->fw_state &= ~DEPCOMPLETE; 2390 } 2391 2392 static void 2393 indirblk_remove(freework) 2394 struct freework *freework; 2395 { 2396 struct ufsmount *ump; 2397 2398 ump = VFSTOUFS(freework->fw_list.wk_mp); 2399 LIST_REMOVE(freework, fw_segs); 2400 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2401 freework->fw_state |= DEPCOMPLETE; 2402 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2403 WORKITEM_FREE(freework, D_FREEWORK); 2404 } 2405 2406 /* 2407 * Executed during filesystem system initialization before 2408 * mounting any filesystems. 2409 */ 2410 void 2411 softdep_initialize() 2412 { 2413 2414 TAILQ_INIT(&softdepmounts); 2415 #ifdef __LP64__ 2416 max_softdeps = desiredvnodes * 4; 2417 #else 2418 max_softdeps = desiredvnodes * 2; 2419 #endif 2420 2421 /* initialise bioops hack */ 2422 bioops.io_start = softdep_disk_io_initiation; 2423 bioops.io_complete = softdep_disk_write_complete; 2424 bioops.io_deallocate = softdep_deallocate_dependencies; 2425 bioops.io_countdeps = softdep_count_dependencies; 2426 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2427 2428 /* Initialize the callout with an mtx. */ 2429 callout_init_mtx(&softdep_callout, &lk, 0); 2430 } 2431 2432 /* 2433 * Executed after all filesystems have been unmounted during 2434 * filesystem module unload. 2435 */ 2436 void 2437 softdep_uninitialize() 2438 { 2439 2440 /* clear bioops hack */ 2441 bioops.io_start = NULL; 2442 bioops.io_complete = NULL; 2443 bioops.io_deallocate = NULL; 2444 bioops.io_countdeps = NULL; 2445 softdep_ast_cleanup = NULL; 2446 2447 callout_drain(&softdep_callout); 2448 } 2449 2450 /* 2451 * Called at mount time to notify the dependency code that a 2452 * filesystem wishes to use it. 2453 */ 2454 int 2455 softdep_mount(devvp, mp, fs, cred) 2456 struct vnode *devvp; 2457 struct mount *mp; 2458 struct fs *fs; 2459 struct ucred *cred; 2460 { 2461 struct csum_total cstotal; 2462 struct mount_softdeps *sdp; 2463 struct ufsmount *ump; 2464 struct cg *cgp; 2465 struct buf *bp; 2466 int i, error, cyl; 2467 2468 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2469 M_WAITOK | M_ZERO); 2470 MNT_ILOCK(mp); 2471 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2472 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2473 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2474 MNTK_SOFTDEP | MNTK_NOASYNC; 2475 } 2476 ump = VFSTOUFS(mp); 2477 ump->um_softdep = sdp; 2478 MNT_IUNLOCK(mp); 2479 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2480 sdp->sd_ump = ump; 2481 LIST_INIT(&ump->softdep_workitem_pending); 2482 LIST_INIT(&ump->softdep_journal_pending); 2483 TAILQ_INIT(&ump->softdep_unlinked); 2484 LIST_INIT(&ump->softdep_dirtycg); 2485 ump->softdep_worklist_tail = NULL; 2486 ump->softdep_on_worklist = 0; 2487 ump->softdep_deps = 0; 2488 LIST_INIT(&ump->softdep_mkdirlisthd); 2489 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2490 &ump->pagedep_hash_size); 2491 ump->pagedep_nextclean = 0; 2492 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2493 &ump->inodedep_hash_size); 2494 ump->inodedep_nextclean = 0; 2495 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2496 &ump->newblk_hash_size); 2497 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2498 &ump->bmsafemap_hash_size); 2499 i = 1 << (ffs(desiredvnodes / 10) - 1); 2500 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2501 M_FREEWORK, M_WAITOK); 2502 ump->indir_hash_size = i - 1; 2503 for (i = 0; i <= ump->indir_hash_size; i++) 2504 TAILQ_INIT(&ump->indir_hashtbl[i]); 2505 ACQUIRE_GBLLOCK(&lk); 2506 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2507 FREE_GBLLOCK(&lk); 2508 if ((fs->fs_flags & FS_SUJ) && 2509 (error = journal_mount(mp, fs, cred)) != 0) { 2510 printf("Failed to start journal: %d\n", error); 2511 softdep_unmount(mp); 2512 return (error); 2513 } 2514 /* 2515 * Start our flushing thread in the bufdaemon process. 2516 */ 2517 ACQUIRE_LOCK(ump); 2518 ump->softdep_flags |= FLUSH_STARTING; 2519 FREE_LOCK(ump); 2520 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2521 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2522 mp->mnt_stat.f_mntonname); 2523 ACQUIRE_LOCK(ump); 2524 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2525 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2526 hz / 2); 2527 } 2528 FREE_LOCK(ump); 2529 /* 2530 * When doing soft updates, the counters in the 2531 * superblock may have gotten out of sync. Recomputation 2532 * can take a long time and can be deferred for background 2533 * fsck. However, the old behavior of scanning the cylinder 2534 * groups and recalculating them at mount time is available 2535 * by setting vfs.ffs.compute_summary_at_mount to one. 2536 */ 2537 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2538 return (0); 2539 bzero(&cstotal, sizeof cstotal); 2540 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2541 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2542 fs->fs_cgsize, cred, &bp)) != 0) { 2543 brelse(bp); 2544 softdep_unmount(mp); 2545 return (error); 2546 } 2547 cgp = (struct cg *)bp->b_data; 2548 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2549 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2550 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2551 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2552 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2553 brelse(bp); 2554 } 2555 #ifdef DEBUG 2556 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2557 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2558 #endif 2559 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2560 return (0); 2561 } 2562 2563 void 2564 softdep_unmount(mp) 2565 struct mount *mp; 2566 { 2567 struct ufsmount *ump; 2568 #ifdef INVARIANTS 2569 int i; 2570 #endif 2571 2572 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2573 ("softdep_unmount called on non-softdep filesystem")); 2574 ump = VFSTOUFS(mp); 2575 MNT_ILOCK(mp); 2576 mp->mnt_flag &= ~MNT_SOFTDEP; 2577 if (MOUNTEDSUJ(mp) == 0) { 2578 MNT_IUNLOCK(mp); 2579 } else { 2580 mp->mnt_flag &= ~MNT_SUJ; 2581 MNT_IUNLOCK(mp); 2582 journal_unmount(ump); 2583 } 2584 /* 2585 * Shut down our flushing thread. Check for NULL is if 2586 * softdep_mount errors out before the thread has been created. 2587 */ 2588 if (ump->softdep_flushtd != NULL) { 2589 ACQUIRE_LOCK(ump); 2590 ump->softdep_flags |= FLUSH_EXIT; 2591 wakeup(&ump->softdep_flushtd); 2592 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2593 "sdwait", 0); 2594 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2595 ("Thread shutdown failed")); 2596 } 2597 /* 2598 * Free up our resources. 2599 */ 2600 ACQUIRE_GBLLOCK(&lk); 2601 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2602 FREE_GBLLOCK(&lk); 2603 rw_destroy(LOCK_PTR(ump)); 2604 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2605 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2606 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2607 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2608 ump->bmsafemap_hash_size); 2609 free(ump->indir_hashtbl, M_FREEWORK); 2610 #ifdef INVARIANTS 2611 for (i = 0; i <= D_LAST; i++) 2612 KASSERT(ump->softdep_curdeps[i] == 0, 2613 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2614 TYPENAME(i), ump->softdep_curdeps[i])); 2615 #endif 2616 free(ump->um_softdep, M_MOUNTDATA); 2617 } 2618 2619 static struct jblocks * 2620 jblocks_create(void) 2621 { 2622 struct jblocks *jblocks; 2623 2624 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2625 TAILQ_INIT(&jblocks->jb_segs); 2626 jblocks->jb_avail = 10; 2627 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2628 M_JBLOCKS, M_WAITOK | M_ZERO); 2629 2630 return (jblocks); 2631 } 2632 2633 static ufs2_daddr_t 2634 jblocks_alloc(jblocks, bytes, actual) 2635 struct jblocks *jblocks; 2636 int bytes; 2637 int *actual; 2638 { 2639 ufs2_daddr_t daddr; 2640 struct jextent *jext; 2641 int freecnt; 2642 int blocks; 2643 2644 blocks = bytes / DEV_BSIZE; 2645 jext = &jblocks->jb_extent[jblocks->jb_head]; 2646 freecnt = jext->je_blocks - jblocks->jb_off; 2647 if (freecnt == 0) { 2648 jblocks->jb_off = 0; 2649 if (++jblocks->jb_head > jblocks->jb_used) 2650 jblocks->jb_head = 0; 2651 jext = &jblocks->jb_extent[jblocks->jb_head]; 2652 freecnt = jext->je_blocks; 2653 } 2654 if (freecnt > blocks) 2655 freecnt = blocks; 2656 *actual = freecnt * DEV_BSIZE; 2657 daddr = jext->je_daddr + jblocks->jb_off; 2658 jblocks->jb_off += freecnt; 2659 jblocks->jb_free -= freecnt; 2660 2661 return (daddr); 2662 } 2663 2664 static void 2665 jblocks_free(jblocks, mp, bytes) 2666 struct jblocks *jblocks; 2667 struct mount *mp; 2668 int bytes; 2669 { 2670 2671 LOCK_OWNED(VFSTOUFS(mp)); 2672 jblocks->jb_free += bytes / DEV_BSIZE; 2673 if (jblocks->jb_suspended) 2674 worklist_speedup(mp); 2675 wakeup(jblocks); 2676 } 2677 2678 static void 2679 jblocks_destroy(jblocks) 2680 struct jblocks *jblocks; 2681 { 2682 2683 if (jblocks->jb_extent) 2684 free(jblocks->jb_extent, M_JBLOCKS); 2685 free(jblocks, M_JBLOCKS); 2686 } 2687 2688 static void 2689 jblocks_add(jblocks, daddr, blocks) 2690 struct jblocks *jblocks; 2691 ufs2_daddr_t daddr; 2692 int blocks; 2693 { 2694 struct jextent *jext; 2695 2696 jblocks->jb_blocks += blocks; 2697 jblocks->jb_free += blocks; 2698 jext = &jblocks->jb_extent[jblocks->jb_used]; 2699 /* Adding the first block. */ 2700 if (jext->je_daddr == 0) { 2701 jext->je_daddr = daddr; 2702 jext->je_blocks = blocks; 2703 return; 2704 } 2705 /* Extending the last extent. */ 2706 if (jext->je_daddr + jext->je_blocks == daddr) { 2707 jext->je_blocks += blocks; 2708 return; 2709 } 2710 /* Adding a new extent. */ 2711 if (++jblocks->jb_used == jblocks->jb_avail) { 2712 jblocks->jb_avail *= 2; 2713 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2714 M_JBLOCKS, M_WAITOK | M_ZERO); 2715 memcpy(jext, jblocks->jb_extent, 2716 sizeof(struct jextent) * jblocks->jb_used); 2717 free(jblocks->jb_extent, M_JBLOCKS); 2718 jblocks->jb_extent = jext; 2719 } 2720 jext = &jblocks->jb_extent[jblocks->jb_used]; 2721 jext->je_daddr = daddr; 2722 jext->je_blocks = blocks; 2723 return; 2724 } 2725 2726 int 2727 softdep_journal_lookup(mp, vpp) 2728 struct mount *mp; 2729 struct vnode **vpp; 2730 { 2731 struct componentname cnp; 2732 struct vnode *dvp; 2733 ino_t sujournal; 2734 int error; 2735 2736 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2737 if (error) 2738 return (error); 2739 bzero(&cnp, sizeof(cnp)); 2740 cnp.cn_nameiop = LOOKUP; 2741 cnp.cn_flags = ISLASTCN; 2742 cnp.cn_thread = curthread; 2743 cnp.cn_cred = curthread->td_ucred; 2744 cnp.cn_pnbuf = SUJ_FILE; 2745 cnp.cn_nameptr = SUJ_FILE; 2746 cnp.cn_namelen = strlen(SUJ_FILE); 2747 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2748 vput(dvp); 2749 if (error != 0) 2750 return (error); 2751 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2752 return (error); 2753 } 2754 2755 /* 2756 * Open and verify the journal file. 2757 */ 2758 static int 2759 journal_mount(mp, fs, cred) 2760 struct mount *mp; 2761 struct fs *fs; 2762 struct ucred *cred; 2763 { 2764 struct jblocks *jblocks; 2765 struct ufsmount *ump; 2766 struct vnode *vp; 2767 struct inode *ip; 2768 ufs2_daddr_t blkno; 2769 int bcount; 2770 int error; 2771 int i; 2772 2773 ump = VFSTOUFS(mp); 2774 ump->softdep_journal_tail = NULL; 2775 ump->softdep_on_journal = 0; 2776 ump->softdep_accdeps = 0; 2777 ump->softdep_req = 0; 2778 ump->softdep_jblocks = NULL; 2779 error = softdep_journal_lookup(mp, &vp); 2780 if (error != 0) { 2781 printf("Failed to find journal. Use tunefs to create one\n"); 2782 return (error); 2783 } 2784 ip = VTOI(vp); 2785 if (ip->i_size < SUJ_MIN) { 2786 error = ENOSPC; 2787 goto out; 2788 } 2789 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2790 jblocks = jblocks_create(); 2791 for (i = 0; i < bcount; i++) { 2792 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2793 if (error) 2794 break; 2795 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2796 } 2797 if (error) { 2798 jblocks_destroy(jblocks); 2799 goto out; 2800 } 2801 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2802 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2803 ump->softdep_jblocks = jblocks; 2804 out: 2805 if (error == 0) { 2806 MNT_ILOCK(mp); 2807 mp->mnt_flag |= MNT_SUJ; 2808 mp->mnt_flag &= ~MNT_SOFTDEP; 2809 MNT_IUNLOCK(mp); 2810 /* 2811 * Only validate the journal contents if the 2812 * filesystem is clean, otherwise we write the logs 2813 * but they'll never be used. If the filesystem was 2814 * still dirty when we mounted it the journal is 2815 * invalid and a new journal can only be valid if it 2816 * starts from a clean mount. 2817 */ 2818 if (fs->fs_clean) { 2819 DIP_SET(ip, i_modrev, fs->fs_mtime); 2820 ip->i_flags |= IN_MODIFIED; 2821 ffs_update(vp, 1); 2822 } 2823 } 2824 vput(vp); 2825 return (error); 2826 } 2827 2828 static void 2829 journal_unmount(ump) 2830 struct ufsmount *ump; 2831 { 2832 2833 if (ump->softdep_jblocks) 2834 jblocks_destroy(ump->softdep_jblocks); 2835 ump->softdep_jblocks = NULL; 2836 } 2837 2838 /* 2839 * Called when a journal record is ready to be written. Space is allocated 2840 * and the journal entry is created when the journal is flushed to stable 2841 * store. 2842 */ 2843 static void 2844 add_to_journal(wk) 2845 struct worklist *wk; 2846 { 2847 struct ufsmount *ump; 2848 2849 ump = VFSTOUFS(wk->wk_mp); 2850 LOCK_OWNED(ump); 2851 if (wk->wk_state & ONWORKLIST) 2852 panic("add_to_journal: %s(0x%X) already on list", 2853 TYPENAME(wk->wk_type), wk->wk_state); 2854 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2855 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2856 ump->softdep_jblocks->jb_age = ticks; 2857 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2858 } else 2859 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2860 ump->softdep_journal_tail = wk; 2861 ump->softdep_on_journal += 1; 2862 } 2863 2864 /* 2865 * Remove an arbitrary item for the journal worklist maintain the tail 2866 * pointer. This happens when a new operation obviates the need to 2867 * journal an old operation. 2868 */ 2869 static void 2870 remove_from_journal(wk) 2871 struct worklist *wk; 2872 { 2873 struct ufsmount *ump; 2874 2875 ump = VFSTOUFS(wk->wk_mp); 2876 LOCK_OWNED(ump); 2877 #ifdef SUJ_DEBUG 2878 { 2879 struct worklist *wkn; 2880 2881 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2882 if (wkn == wk) 2883 break; 2884 if (wkn == NULL) 2885 panic("remove_from_journal: %p is not in journal", wk); 2886 } 2887 #endif 2888 /* 2889 * We emulate a TAILQ to save space in most structures which do not 2890 * require TAILQ semantics. Here we must update the tail position 2891 * when removing the tail which is not the final entry. This works 2892 * only if the worklist linkage are at the beginning of the structure. 2893 */ 2894 if (ump->softdep_journal_tail == wk) 2895 ump->softdep_journal_tail = 2896 (struct worklist *)wk->wk_list.le_prev; 2897 2898 WORKLIST_REMOVE(wk); 2899 ump->softdep_on_journal -= 1; 2900 } 2901 2902 /* 2903 * Check for journal space as well as dependency limits so the prelink 2904 * code can throttle both journaled and non-journaled filesystems. 2905 * Threshold is 0 for low and 1 for min. 2906 */ 2907 static int 2908 journal_space(ump, thresh) 2909 struct ufsmount *ump; 2910 int thresh; 2911 { 2912 struct jblocks *jblocks; 2913 int limit, avail; 2914 2915 jblocks = ump->softdep_jblocks; 2916 if (jblocks == NULL) 2917 return (1); 2918 /* 2919 * We use a tighter restriction here to prevent request_cleanup() 2920 * running in threads from running into locks we currently hold. 2921 * We have to be over the limit and our filesystem has to be 2922 * responsible for more than our share of that usage. 2923 */ 2924 limit = (max_softdeps / 10) * 9; 2925 if (dep_current[D_INODEDEP] > limit && 2926 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2927 return (0); 2928 if (thresh) 2929 thresh = jblocks->jb_min; 2930 else 2931 thresh = jblocks->jb_low; 2932 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2933 avail = jblocks->jb_free - avail; 2934 2935 return (avail > thresh); 2936 } 2937 2938 static void 2939 journal_suspend(ump) 2940 struct ufsmount *ump; 2941 { 2942 struct jblocks *jblocks; 2943 struct mount *mp; 2944 2945 mp = UFSTOVFS(ump); 2946 jblocks = ump->softdep_jblocks; 2947 MNT_ILOCK(mp); 2948 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2949 stat_journal_min++; 2950 mp->mnt_kern_flag |= MNTK_SUSPEND; 2951 mp->mnt_susp_owner = ump->softdep_flushtd; 2952 } 2953 jblocks->jb_suspended = 1; 2954 MNT_IUNLOCK(mp); 2955 } 2956 2957 static int 2958 journal_unsuspend(struct ufsmount *ump) 2959 { 2960 struct jblocks *jblocks; 2961 struct mount *mp; 2962 2963 mp = UFSTOVFS(ump); 2964 jblocks = ump->softdep_jblocks; 2965 2966 if (jblocks != NULL && jblocks->jb_suspended && 2967 journal_space(ump, jblocks->jb_min)) { 2968 jblocks->jb_suspended = 0; 2969 FREE_LOCK(ump); 2970 mp->mnt_susp_owner = curthread; 2971 vfs_write_resume(mp, 0); 2972 ACQUIRE_LOCK(ump); 2973 return (1); 2974 } 2975 return (0); 2976 } 2977 2978 /* 2979 * Called before any allocation function to be certain that there is 2980 * sufficient space in the journal prior to creating any new records. 2981 * Since in the case of block allocation we may have multiple locked 2982 * buffers at the time of the actual allocation we can not block 2983 * when the journal records are created. Doing so would create a deadlock 2984 * if any of these buffers needed to be flushed to reclaim space. Instead 2985 * we require a sufficiently large amount of available space such that 2986 * each thread in the system could have passed this allocation check and 2987 * still have sufficient free space. With 20% of a minimum journal size 2988 * of 1MB we have 6553 records available. 2989 */ 2990 int 2991 softdep_prealloc(vp, waitok) 2992 struct vnode *vp; 2993 int waitok; 2994 { 2995 struct ufsmount *ump; 2996 2997 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 2998 ("softdep_prealloc called on non-softdep filesystem")); 2999 /* 3000 * Nothing to do if we are not running journaled soft updates. 3001 * If we currently hold the snapshot lock, we must avoid 3002 * handling other resources that could cause deadlock. Do not 3003 * touch quotas vnode since it is typically recursed with 3004 * other vnode locks held. 3005 */ 3006 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3007 (vp->v_vflag & VV_SYSTEM) != 0) 3008 return (0); 3009 ump = VFSTOUFS(vp->v_mount); 3010 ACQUIRE_LOCK(ump); 3011 if (journal_space(ump, 0)) { 3012 FREE_LOCK(ump); 3013 return (0); 3014 } 3015 stat_journal_low++; 3016 FREE_LOCK(ump); 3017 if (waitok == MNT_NOWAIT) 3018 return (ENOSPC); 3019 /* 3020 * Attempt to sync this vnode once to flush any journal 3021 * work attached to it. 3022 */ 3023 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3024 ffs_syncvnode(vp, waitok, 0); 3025 ACQUIRE_LOCK(ump); 3026 process_removes(vp); 3027 process_truncates(vp); 3028 if (journal_space(ump, 0) == 0) { 3029 softdep_speedup(ump); 3030 if (journal_space(ump, 1) == 0) 3031 journal_suspend(ump); 3032 } 3033 FREE_LOCK(ump); 3034 3035 return (0); 3036 } 3037 3038 /* 3039 * Before adjusting a link count on a vnode verify that we have sufficient 3040 * journal space. If not, process operations that depend on the currently 3041 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3042 * and softdep flush threads can not acquire these locks to reclaim space. 3043 */ 3044 static void 3045 softdep_prelink(dvp, vp) 3046 struct vnode *dvp; 3047 struct vnode *vp; 3048 { 3049 struct ufsmount *ump; 3050 3051 ump = VFSTOUFS(dvp->v_mount); 3052 LOCK_OWNED(ump); 3053 /* 3054 * Nothing to do if we have sufficient journal space. 3055 * If we currently hold the snapshot lock, we must avoid 3056 * handling other resources that could cause deadlock. 3057 */ 3058 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3059 return; 3060 stat_journal_low++; 3061 FREE_LOCK(ump); 3062 if (vp) 3063 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3064 ffs_syncvnode(dvp, MNT_WAIT, 0); 3065 ACQUIRE_LOCK(ump); 3066 /* Process vp before dvp as it may create .. removes. */ 3067 if (vp) { 3068 process_removes(vp); 3069 process_truncates(vp); 3070 } 3071 process_removes(dvp); 3072 process_truncates(dvp); 3073 softdep_speedup(ump); 3074 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3075 if (journal_space(ump, 0) == 0) { 3076 softdep_speedup(ump); 3077 if (journal_space(ump, 1) == 0) 3078 journal_suspend(ump); 3079 } 3080 } 3081 3082 static void 3083 jseg_write(ump, jseg, data) 3084 struct ufsmount *ump; 3085 struct jseg *jseg; 3086 uint8_t *data; 3087 { 3088 struct jsegrec *rec; 3089 3090 rec = (struct jsegrec *)data; 3091 rec->jsr_seq = jseg->js_seq; 3092 rec->jsr_oldest = jseg->js_oldseq; 3093 rec->jsr_cnt = jseg->js_cnt; 3094 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3095 rec->jsr_crc = 0; 3096 rec->jsr_time = ump->um_fs->fs_mtime; 3097 } 3098 3099 static inline void 3100 inoref_write(inoref, jseg, rec) 3101 struct inoref *inoref; 3102 struct jseg *jseg; 3103 struct jrefrec *rec; 3104 { 3105 3106 inoref->if_jsegdep->jd_seg = jseg; 3107 rec->jr_ino = inoref->if_ino; 3108 rec->jr_parent = inoref->if_parent; 3109 rec->jr_nlink = inoref->if_nlink; 3110 rec->jr_mode = inoref->if_mode; 3111 rec->jr_diroff = inoref->if_diroff; 3112 } 3113 3114 static void 3115 jaddref_write(jaddref, jseg, data) 3116 struct jaddref *jaddref; 3117 struct jseg *jseg; 3118 uint8_t *data; 3119 { 3120 struct jrefrec *rec; 3121 3122 rec = (struct jrefrec *)data; 3123 rec->jr_op = JOP_ADDREF; 3124 inoref_write(&jaddref->ja_ref, jseg, rec); 3125 } 3126 3127 static void 3128 jremref_write(jremref, jseg, data) 3129 struct jremref *jremref; 3130 struct jseg *jseg; 3131 uint8_t *data; 3132 { 3133 struct jrefrec *rec; 3134 3135 rec = (struct jrefrec *)data; 3136 rec->jr_op = JOP_REMREF; 3137 inoref_write(&jremref->jr_ref, jseg, rec); 3138 } 3139 3140 static void 3141 jmvref_write(jmvref, jseg, data) 3142 struct jmvref *jmvref; 3143 struct jseg *jseg; 3144 uint8_t *data; 3145 { 3146 struct jmvrec *rec; 3147 3148 rec = (struct jmvrec *)data; 3149 rec->jm_op = JOP_MVREF; 3150 rec->jm_ino = jmvref->jm_ino; 3151 rec->jm_parent = jmvref->jm_parent; 3152 rec->jm_oldoff = jmvref->jm_oldoff; 3153 rec->jm_newoff = jmvref->jm_newoff; 3154 } 3155 3156 static void 3157 jnewblk_write(jnewblk, jseg, data) 3158 struct jnewblk *jnewblk; 3159 struct jseg *jseg; 3160 uint8_t *data; 3161 { 3162 struct jblkrec *rec; 3163 3164 jnewblk->jn_jsegdep->jd_seg = jseg; 3165 rec = (struct jblkrec *)data; 3166 rec->jb_op = JOP_NEWBLK; 3167 rec->jb_ino = jnewblk->jn_ino; 3168 rec->jb_blkno = jnewblk->jn_blkno; 3169 rec->jb_lbn = jnewblk->jn_lbn; 3170 rec->jb_frags = jnewblk->jn_frags; 3171 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3172 } 3173 3174 static void 3175 jfreeblk_write(jfreeblk, jseg, data) 3176 struct jfreeblk *jfreeblk; 3177 struct jseg *jseg; 3178 uint8_t *data; 3179 { 3180 struct jblkrec *rec; 3181 3182 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3183 rec = (struct jblkrec *)data; 3184 rec->jb_op = JOP_FREEBLK; 3185 rec->jb_ino = jfreeblk->jf_ino; 3186 rec->jb_blkno = jfreeblk->jf_blkno; 3187 rec->jb_lbn = jfreeblk->jf_lbn; 3188 rec->jb_frags = jfreeblk->jf_frags; 3189 rec->jb_oldfrags = 0; 3190 } 3191 3192 static void 3193 jfreefrag_write(jfreefrag, jseg, data) 3194 struct jfreefrag *jfreefrag; 3195 struct jseg *jseg; 3196 uint8_t *data; 3197 { 3198 struct jblkrec *rec; 3199 3200 jfreefrag->fr_jsegdep->jd_seg = jseg; 3201 rec = (struct jblkrec *)data; 3202 rec->jb_op = JOP_FREEBLK; 3203 rec->jb_ino = jfreefrag->fr_ino; 3204 rec->jb_blkno = jfreefrag->fr_blkno; 3205 rec->jb_lbn = jfreefrag->fr_lbn; 3206 rec->jb_frags = jfreefrag->fr_frags; 3207 rec->jb_oldfrags = 0; 3208 } 3209 3210 static void 3211 jtrunc_write(jtrunc, jseg, data) 3212 struct jtrunc *jtrunc; 3213 struct jseg *jseg; 3214 uint8_t *data; 3215 { 3216 struct jtrncrec *rec; 3217 3218 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3219 rec = (struct jtrncrec *)data; 3220 rec->jt_op = JOP_TRUNC; 3221 rec->jt_ino = jtrunc->jt_ino; 3222 rec->jt_size = jtrunc->jt_size; 3223 rec->jt_extsize = jtrunc->jt_extsize; 3224 } 3225 3226 static void 3227 jfsync_write(jfsync, jseg, data) 3228 struct jfsync *jfsync; 3229 struct jseg *jseg; 3230 uint8_t *data; 3231 { 3232 struct jtrncrec *rec; 3233 3234 rec = (struct jtrncrec *)data; 3235 rec->jt_op = JOP_SYNC; 3236 rec->jt_ino = jfsync->jfs_ino; 3237 rec->jt_size = jfsync->jfs_size; 3238 rec->jt_extsize = jfsync->jfs_extsize; 3239 } 3240 3241 static void 3242 softdep_flushjournal(mp) 3243 struct mount *mp; 3244 { 3245 struct jblocks *jblocks; 3246 struct ufsmount *ump; 3247 3248 if (MOUNTEDSUJ(mp) == 0) 3249 return; 3250 ump = VFSTOUFS(mp); 3251 jblocks = ump->softdep_jblocks; 3252 ACQUIRE_LOCK(ump); 3253 while (ump->softdep_on_journal) { 3254 jblocks->jb_needseg = 1; 3255 softdep_process_journal(mp, NULL, MNT_WAIT); 3256 } 3257 FREE_LOCK(ump); 3258 } 3259 3260 static void softdep_synchronize_completed(struct bio *); 3261 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3262 3263 static void 3264 softdep_synchronize_completed(bp) 3265 struct bio *bp; 3266 { 3267 struct jseg *oldest; 3268 struct jseg *jseg; 3269 struct ufsmount *ump; 3270 3271 /* 3272 * caller1 marks the last segment written before we issued the 3273 * synchronize cache. 3274 */ 3275 jseg = bp->bio_caller1; 3276 if (jseg == NULL) { 3277 g_destroy_bio(bp); 3278 return; 3279 } 3280 ump = VFSTOUFS(jseg->js_list.wk_mp); 3281 ACQUIRE_LOCK(ump); 3282 oldest = NULL; 3283 /* 3284 * Mark all the journal entries waiting on the synchronize cache 3285 * as completed so they may continue on. 3286 */ 3287 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3288 jseg->js_state |= COMPLETE; 3289 oldest = jseg; 3290 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3291 } 3292 /* 3293 * Restart deferred journal entry processing from the oldest 3294 * completed jseg. 3295 */ 3296 if (oldest) 3297 complete_jsegs(oldest); 3298 3299 FREE_LOCK(ump); 3300 g_destroy_bio(bp); 3301 } 3302 3303 /* 3304 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3305 * barriers. The journal must be written prior to any blocks that depend 3306 * on it and the journal can not be released until the blocks have be 3307 * written. This code handles both barriers simultaneously. 3308 */ 3309 static void 3310 softdep_synchronize(bp, ump, caller1) 3311 struct bio *bp; 3312 struct ufsmount *ump; 3313 void *caller1; 3314 { 3315 3316 bp->bio_cmd = BIO_FLUSH; 3317 bp->bio_flags |= BIO_ORDERED; 3318 bp->bio_data = NULL; 3319 bp->bio_offset = ump->um_cp->provider->mediasize; 3320 bp->bio_length = 0; 3321 bp->bio_done = softdep_synchronize_completed; 3322 bp->bio_caller1 = caller1; 3323 g_io_request(bp, 3324 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3325 } 3326 3327 /* 3328 * Flush some journal records to disk. 3329 */ 3330 static void 3331 softdep_process_journal(mp, needwk, flags) 3332 struct mount *mp; 3333 struct worklist *needwk; 3334 int flags; 3335 { 3336 struct jblocks *jblocks; 3337 struct ufsmount *ump; 3338 struct worklist *wk; 3339 struct jseg *jseg; 3340 struct buf *bp; 3341 struct bio *bio; 3342 uint8_t *data; 3343 struct fs *fs; 3344 int shouldflush; 3345 int segwritten; 3346 int jrecmin; /* Minimum records per block. */ 3347 int jrecmax; /* Maximum records per block. */ 3348 int size; 3349 int cnt; 3350 int off; 3351 int devbsize; 3352 3353 if (MOUNTEDSUJ(mp) == 0) 3354 return; 3355 shouldflush = softdep_flushcache; 3356 bio = NULL; 3357 jseg = NULL; 3358 ump = VFSTOUFS(mp); 3359 LOCK_OWNED(ump); 3360 fs = ump->um_fs; 3361 jblocks = ump->softdep_jblocks; 3362 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3363 /* 3364 * We write anywhere between a disk block and fs block. The upper 3365 * bound is picked to prevent buffer cache fragmentation and limit 3366 * processing time per I/O. 3367 */ 3368 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3369 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3370 segwritten = 0; 3371 for (;;) { 3372 cnt = ump->softdep_on_journal; 3373 /* 3374 * Criteria for writing a segment: 3375 * 1) We have a full block. 3376 * 2) We're called from jwait() and haven't found the 3377 * journal item yet. 3378 * 3) Always write if needseg is set. 3379 * 4) If we are called from process_worklist and have 3380 * not yet written anything we write a partial block 3381 * to enforce a 1 second maximum latency on journal 3382 * entries. 3383 */ 3384 if (cnt < (jrecmax - 1) && needwk == NULL && 3385 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3386 break; 3387 cnt++; 3388 /* 3389 * Verify some free journal space. softdep_prealloc() should 3390 * guarantee that we don't run out so this is indicative of 3391 * a problem with the flow control. Try to recover 3392 * gracefully in any event. 3393 */ 3394 while (jblocks->jb_free == 0) { 3395 if (flags != MNT_WAIT) 3396 break; 3397 printf("softdep: Out of journal space!\n"); 3398 softdep_speedup(ump); 3399 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3400 } 3401 FREE_LOCK(ump); 3402 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3403 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3404 LIST_INIT(&jseg->js_entries); 3405 LIST_INIT(&jseg->js_indirs); 3406 jseg->js_state = ATTACHED; 3407 if (shouldflush == 0) 3408 jseg->js_state |= COMPLETE; 3409 else if (bio == NULL) 3410 bio = g_alloc_bio(); 3411 jseg->js_jblocks = jblocks; 3412 bp = geteblk(fs->fs_bsize, 0); 3413 ACQUIRE_LOCK(ump); 3414 /* 3415 * If there was a race while we were allocating the block 3416 * and jseg the entry we care about was likely written. 3417 * We bail out in both the WAIT and NOWAIT case and assume 3418 * the caller will loop if the entry it cares about is 3419 * not written. 3420 */ 3421 cnt = ump->softdep_on_journal; 3422 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3423 bp->b_flags |= B_INVAL | B_NOCACHE; 3424 WORKITEM_FREE(jseg, D_JSEG); 3425 FREE_LOCK(ump); 3426 brelse(bp); 3427 ACQUIRE_LOCK(ump); 3428 break; 3429 } 3430 /* 3431 * Calculate the disk block size required for the available 3432 * records rounded to the min size. 3433 */ 3434 if (cnt == 0) 3435 size = devbsize; 3436 else if (cnt < jrecmax) 3437 size = howmany(cnt, jrecmin) * devbsize; 3438 else 3439 size = fs->fs_bsize; 3440 /* 3441 * Allocate a disk block for this journal data and account 3442 * for truncation of the requested size if enough contiguous 3443 * space was not available. 3444 */ 3445 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3446 bp->b_lblkno = bp->b_blkno; 3447 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3448 bp->b_bcount = size; 3449 bp->b_flags &= ~B_INVAL; 3450 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3451 /* 3452 * Initialize our jseg with cnt records. Assign the next 3453 * sequence number to it and link it in-order. 3454 */ 3455 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3456 jseg->js_buf = bp; 3457 jseg->js_cnt = cnt; 3458 jseg->js_refs = cnt + 1; /* Self ref. */ 3459 jseg->js_size = size; 3460 jseg->js_seq = jblocks->jb_nextseq++; 3461 if (jblocks->jb_oldestseg == NULL) 3462 jblocks->jb_oldestseg = jseg; 3463 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3464 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3465 if (jblocks->jb_writeseg == NULL) 3466 jblocks->jb_writeseg = jseg; 3467 /* 3468 * Start filling in records from the pending list. 3469 */ 3470 data = bp->b_data; 3471 off = 0; 3472 3473 /* 3474 * Always put a header on the first block. 3475 * XXX As with below, there might not be a chance to get 3476 * into the loop. Ensure that something valid is written. 3477 */ 3478 jseg_write(ump, jseg, data); 3479 off += JREC_SIZE; 3480 data = bp->b_data + off; 3481 3482 /* 3483 * XXX Something is wrong here. There's no work to do, 3484 * but we need to perform and I/O and allow it to complete 3485 * anyways. 3486 */ 3487 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3488 stat_emptyjblocks++; 3489 3490 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3491 != NULL) { 3492 if (cnt == 0) 3493 break; 3494 /* Place a segment header on every device block. */ 3495 if ((off % devbsize) == 0) { 3496 jseg_write(ump, jseg, data); 3497 off += JREC_SIZE; 3498 data = bp->b_data + off; 3499 } 3500 if (wk == needwk) 3501 needwk = NULL; 3502 remove_from_journal(wk); 3503 wk->wk_state |= INPROGRESS; 3504 WORKLIST_INSERT(&jseg->js_entries, wk); 3505 switch (wk->wk_type) { 3506 case D_JADDREF: 3507 jaddref_write(WK_JADDREF(wk), jseg, data); 3508 break; 3509 case D_JREMREF: 3510 jremref_write(WK_JREMREF(wk), jseg, data); 3511 break; 3512 case D_JMVREF: 3513 jmvref_write(WK_JMVREF(wk), jseg, data); 3514 break; 3515 case D_JNEWBLK: 3516 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3517 break; 3518 case D_JFREEBLK: 3519 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3520 break; 3521 case D_JFREEFRAG: 3522 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3523 break; 3524 case D_JTRUNC: 3525 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3526 break; 3527 case D_JFSYNC: 3528 jfsync_write(WK_JFSYNC(wk), jseg, data); 3529 break; 3530 default: 3531 panic("process_journal: Unknown type %s", 3532 TYPENAME(wk->wk_type)); 3533 /* NOTREACHED */ 3534 } 3535 off += JREC_SIZE; 3536 data = bp->b_data + off; 3537 cnt--; 3538 } 3539 3540 /* Clear any remaining space so we don't leak kernel data */ 3541 if (size > off) 3542 bzero(data, size - off); 3543 3544 /* 3545 * Write this one buffer and continue. 3546 */ 3547 segwritten = 1; 3548 jblocks->jb_needseg = 0; 3549 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3550 FREE_LOCK(ump); 3551 pbgetvp(ump->um_devvp, bp); 3552 /* 3553 * We only do the blocking wait once we find the journal 3554 * entry we're looking for. 3555 */ 3556 if (needwk == NULL && flags == MNT_WAIT) 3557 bwrite(bp); 3558 else 3559 bawrite(bp); 3560 ACQUIRE_LOCK(ump); 3561 } 3562 /* 3563 * If we wrote a segment issue a synchronize cache so the journal 3564 * is reflected on disk before the data is written. Since reclaiming 3565 * journal space also requires writing a journal record this 3566 * process also enforces a barrier before reclamation. 3567 */ 3568 if (segwritten && shouldflush) { 3569 softdep_synchronize(bio, ump, 3570 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3571 } else if (bio) 3572 g_destroy_bio(bio); 3573 /* 3574 * If we've suspended the filesystem because we ran out of journal 3575 * space either try to sync it here to make some progress or 3576 * unsuspend it if we already have. 3577 */ 3578 if (flags == 0 && jblocks->jb_suspended) { 3579 if (journal_unsuspend(ump)) 3580 return; 3581 FREE_LOCK(ump); 3582 VFS_SYNC(mp, MNT_NOWAIT); 3583 ffs_sbupdate(ump, MNT_WAIT, 0); 3584 ACQUIRE_LOCK(ump); 3585 } 3586 } 3587 3588 /* 3589 * Complete a jseg, allowing all dependencies awaiting journal writes 3590 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3591 * structures so that the journal segment can be freed to reclaim space. 3592 */ 3593 static void 3594 complete_jseg(jseg) 3595 struct jseg *jseg; 3596 { 3597 struct worklist *wk; 3598 struct jmvref *jmvref; 3599 #ifdef INVARIANTS 3600 int i = 0; 3601 #endif 3602 3603 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3604 WORKLIST_REMOVE(wk); 3605 wk->wk_state &= ~INPROGRESS; 3606 wk->wk_state |= COMPLETE; 3607 KASSERT(i++ < jseg->js_cnt, 3608 ("handle_written_jseg: overflow %d >= %d", 3609 i - 1, jseg->js_cnt)); 3610 switch (wk->wk_type) { 3611 case D_JADDREF: 3612 handle_written_jaddref(WK_JADDREF(wk)); 3613 break; 3614 case D_JREMREF: 3615 handle_written_jremref(WK_JREMREF(wk)); 3616 break; 3617 case D_JMVREF: 3618 rele_jseg(jseg); /* No jsegdep. */ 3619 jmvref = WK_JMVREF(wk); 3620 LIST_REMOVE(jmvref, jm_deps); 3621 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3622 free_pagedep(jmvref->jm_pagedep); 3623 WORKITEM_FREE(jmvref, D_JMVREF); 3624 break; 3625 case D_JNEWBLK: 3626 handle_written_jnewblk(WK_JNEWBLK(wk)); 3627 break; 3628 case D_JFREEBLK: 3629 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3630 break; 3631 case D_JTRUNC: 3632 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3633 break; 3634 case D_JFSYNC: 3635 rele_jseg(jseg); /* No jsegdep. */ 3636 WORKITEM_FREE(wk, D_JFSYNC); 3637 break; 3638 case D_JFREEFRAG: 3639 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3640 break; 3641 default: 3642 panic("handle_written_jseg: Unknown type %s", 3643 TYPENAME(wk->wk_type)); 3644 /* NOTREACHED */ 3645 } 3646 } 3647 /* Release the self reference so the structure may be freed. */ 3648 rele_jseg(jseg); 3649 } 3650 3651 /* 3652 * Determine which jsegs are ready for completion processing. Waits for 3653 * synchronize cache to complete as well as forcing in-order completion 3654 * of journal entries. 3655 */ 3656 static void 3657 complete_jsegs(jseg) 3658 struct jseg *jseg; 3659 { 3660 struct jblocks *jblocks; 3661 struct jseg *jsegn; 3662 3663 jblocks = jseg->js_jblocks; 3664 /* 3665 * Don't allow out of order completions. If this isn't the first 3666 * block wait for it to write before we're done. 3667 */ 3668 if (jseg != jblocks->jb_writeseg) 3669 return; 3670 /* Iterate through available jsegs processing their entries. */ 3671 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3672 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3673 jsegn = TAILQ_NEXT(jseg, js_next); 3674 complete_jseg(jseg); 3675 jseg = jsegn; 3676 } 3677 jblocks->jb_writeseg = jseg; 3678 /* 3679 * Attempt to free jsegs now that oldestwrseq may have advanced. 3680 */ 3681 free_jsegs(jblocks); 3682 } 3683 3684 /* 3685 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3686 * the final completions. 3687 */ 3688 static void 3689 handle_written_jseg(jseg, bp) 3690 struct jseg *jseg; 3691 struct buf *bp; 3692 { 3693 3694 if (jseg->js_refs == 0) 3695 panic("handle_written_jseg: No self-reference on %p", jseg); 3696 jseg->js_state |= DEPCOMPLETE; 3697 /* 3698 * We'll never need this buffer again, set flags so it will be 3699 * discarded. 3700 */ 3701 bp->b_flags |= B_INVAL | B_NOCACHE; 3702 pbrelvp(bp); 3703 complete_jsegs(jseg); 3704 } 3705 3706 static inline struct jsegdep * 3707 inoref_jseg(inoref) 3708 struct inoref *inoref; 3709 { 3710 struct jsegdep *jsegdep; 3711 3712 jsegdep = inoref->if_jsegdep; 3713 inoref->if_jsegdep = NULL; 3714 3715 return (jsegdep); 3716 } 3717 3718 /* 3719 * Called once a jremref has made it to stable store. The jremref is marked 3720 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3721 * for the jremref to complete will be awoken by free_jremref. 3722 */ 3723 static void 3724 handle_written_jremref(jremref) 3725 struct jremref *jremref; 3726 { 3727 struct inodedep *inodedep; 3728 struct jsegdep *jsegdep; 3729 struct dirrem *dirrem; 3730 3731 /* Grab the jsegdep. */ 3732 jsegdep = inoref_jseg(&jremref->jr_ref); 3733 /* 3734 * Remove us from the inoref list. 3735 */ 3736 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3737 0, &inodedep) == 0) 3738 panic("handle_written_jremref: Lost inodedep"); 3739 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3740 /* 3741 * Complete the dirrem. 3742 */ 3743 dirrem = jremref->jr_dirrem; 3744 jremref->jr_dirrem = NULL; 3745 LIST_REMOVE(jremref, jr_deps); 3746 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3747 jwork_insert(&dirrem->dm_jwork, jsegdep); 3748 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3749 (dirrem->dm_state & COMPLETE) != 0) 3750 add_to_worklist(&dirrem->dm_list, 0); 3751 free_jremref(jremref); 3752 } 3753 3754 /* 3755 * Called once a jaddref has made it to stable store. The dependency is 3756 * marked complete and any dependent structures are added to the inode 3757 * bufwait list to be completed as soon as it is written. If a bitmap write 3758 * depends on this entry we move the inode into the inodedephd of the 3759 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3760 */ 3761 static void 3762 handle_written_jaddref(jaddref) 3763 struct jaddref *jaddref; 3764 { 3765 struct jsegdep *jsegdep; 3766 struct inodedep *inodedep; 3767 struct diradd *diradd; 3768 struct mkdir *mkdir; 3769 3770 /* Grab the jsegdep. */ 3771 jsegdep = inoref_jseg(&jaddref->ja_ref); 3772 mkdir = NULL; 3773 diradd = NULL; 3774 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3775 0, &inodedep) == 0) 3776 panic("handle_written_jaddref: Lost inodedep."); 3777 if (jaddref->ja_diradd == NULL) 3778 panic("handle_written_jaddref: No dependency"); 3779 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3780 diradd = jaddref->ja_diradd; 3781 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3782 } else if (jaddref->ja_state & MKDIR_PARENT) { 3783 mkdir = jaddref->ja_mkdir; 3784 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3785 } else if (jaddref->ja_state & MKDIR_BODY) 3786 mkdir = jaddref->ja_mkdir; 3787 else 3788 panic("handle_written_jaddref: Unknown dependency %p", 3789 jaddref->ja_diradd); 3790 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3791 /* 3792 * Remove us from the inode list. 3793 */ 3794 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3795 /* 3796 * The mkdir may be waiting on the jaddref to clear before freeing. 3797 */ 3798 if (mkdir) { 3799 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3800 ("handle_written_jaddref: Incorrect type for mkdir %s", 3801 TYPENAME(mkdir->md_list.wk_type))); 3802 mkdir->md_jaddref = NULL; 3803 diradd = mkdir->md_diradd; 3804 mkdir->md_state |= DEPCOMPLETE; 3805 complete_mkdir(mkdir); 3806 } 3807 jwork_insert(&diradd->da_jwork, jsegdep); 3808 if (jaddref->ja_state & NEWBLOCK) { 3809 inodedep->id_state |= ONDEPLIST; 3810 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3811 inodedep, id_deps); 3812 } 3813 free_jaddref(jaddref); 3814 } 3815 3816 /* 3817 * Called once a jnewblk journal is written. The allocdirect or allocindir 3818 * is placed in the bmsafemap to await notification of a written bitmap. If 3819 * the operation was canceled we add the segdep to the appropriate 3820 * dependency to free the journal space once the canceling operation 3821 * completes. 3822 */ 3823 static void 3824 handle_written_jnewblk(jnewblk) 3825 struct jnewblk *jnewblk; 3826 { 3827 struct bmsafemap *bmsafemap; 3828 struct freefrag *freefrag; 3829 struct freework *freework; 3830 struct jsegdep *jsegdep; 3831 struct newblk *newblk; 3832 3833 /* Grab the jsegdep. */ 3834 jsegdep = jnewblk->jn_jsegdep; 3835 jnewblk->jn_jsegdep = NULL; 3836 if (jnewblk->jn_dep == NULL) 3837 panic("handle_written_jnewblk: No dependency for the segdep."); 3838 switch (jnewblk->jn_dep->wk_type) { 3839 case D_NEWBLK: 3840 case D_ALLOCDIRECT: 3841 case D_ALLOCINDIR: 3842 /* 3843 * Add the written block to the bmsafemap so it can 3844 * be notified when the bitmap is on disk. 3845 */ 3846 newblk = WK_NEWBLK(jnewblk->jn_dep); 3847 newblk->nb_jnewblk = NULL; 3848 if ((newblk->nb_state & GOINGAWAY) == 0) { 3849 bmsafemap = newblk->nb_bmsafemap; 3850 newblk->nb_state |= ONDEPLIST; 3851 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3852 nb_deps); 3853 } 3854 jwork_insert(&newblk->nb_jwork, jsegdep); 3855 break; 3856 case D_FREEFRAG: 3857 /* 3858 * A newblock being removed by a freefrag when replaced by 3859 * frag extension. 3860 */ 3861 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3862 freefrag->ff_jdep = NULL; 3863 jwork_insert(&freefrag->ff_jwork, jsegdep); 3864 break; 3865 case D_FREEWORK: 3866 /* 3867 * A direct block was removed by truncate. 3868 */ 3869 freework = WK_FREEWORK(jnewblk->jn_dep); 3870 freework->fw_jnewblk = NULL; 3871 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3872 break; 3873 default: 3874 panic("handle_written_jnewblk: Unknown type %d.", 3875 jnewblk->jn_dep->wk_type); 3876 } 3877 jnewblk->jn_dep = NULL; 3878 free_jnewblk(jnewblk); 3879 } 3880 3881 /* 3882 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3883 * an in-flight allocation that has not yet been committed. Divorce us 3884 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3885 * to the worklist. 3886 */ 3887 static void 3888 cancel_jfreefrag(jfreefrag) 3889 struct jfreefrag *jfreefrag; 3890 { 3891 struct freefrag *freefrag; 3892 3893 if (jfreefrag->fr_jsegdep) { 3894 free_jsegdep(jfreefrag->fr_jsegdep); 3895 jfreefrag->fr_jsegdep = NULL; 3896 } 3897 freefrag = jfreefrag->fr_freefrag; 3898 jfreefrag->fr_freefrag = NULL; 3899 free_jfreefrag(jfreefrag); 3900 freefrag->ff_state |= DEPCOMPLETE; 3901 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3902 } 3903 3904 /* 3905 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3906 */ 3907 static void 3908 free_jfreefrag(jfreefrag) 3909 struct jfreefrag *jfreefrag; 3910 { 3911 3912 if (jfreefrag->fr_state & INPROGRESS) 3913 WORKLIST_REMOVE(&jfreefrag->fr_list); 3914 else if (jfreefrag->fr_state & ONWORKLIST) 3915 remove_from_journal(&jfreefrag->fr_list); 3916 if (jfreefrag->fr_freefrag != NULL) 3917 panic("free_jfreefrag: Still attached to a freefrag."); 3918 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3919 } 3920 3921 /* 3922 * Called when the journal write for a jfreefrag completes. The parent 3923 * freefrag is added to the worklist if this completes its dependencies. 3924 */ 3925 static void 3926 handle_written_jfreefrag(jfreefrag) 3927 struct jfreefrag *jfreefrag; 3928 { 3929 struct jsegdep *jsegdep; 3930 struct freefrag *freefrag; 3931 3932 /* Grab the jsegdep. */ 3933 jsegdep = jfreefrag->fr_jsegdep; 3934 jfreefrag->fr_jsegdep = NULL; 3935 freefrag = jfreefrag->fr_freefrag; 3936 if (freefrag == NULL) 3937 panic("handle_written_jfreefrag: No freefrag."); 3938 freefrag->ff_state |= DEPCOMPLETE; 3939 freefrag->ff_jdep = NULL; 3940 jwork_insert(&freefrag->ff_jwork, jsegdep); 3941 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3942 add_to_worklist(&freefrag->ff_list, 0); 3943 jfreefrag->fr_freefrag = NULL; 3944 free_jfreefrag(jfreefrag); 3945 } 3946 3947 /* 3948 * Called when the journal write for a jfreeblk completes. The jfreeblk 3949 * is removed from the freeblks list of pending journal writes and the 3950 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3951 * have been reclaimed. 3952 */ 3953 static void 3954 handle_written_jblkdep(jblkdep) 3955 struct jblkdep *jblkdep; 3956 { 3957 struct freeblks *freeblks; 3958 struct jsegdep *jsegdep; 3959 3960 /* Grab the jsegdep. */ 3961 jsegdep = jblkdep->jb_jsegdep; 3962 jblkdep->jb_jsegdep = NULL; 3963 freeblks = jblkdep->jb_freeblks; 3964 LIST_REMOVE(jblkdep, jb_deps); 3965 jwork_insert(&freeblks->fb_jwork, jsegdep); 3966 /* 3967 * If the freeblks is all journaled, we can add it to the worklist. 3968 */ 3969 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3970 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3971 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3972 3973 free_jblkdep(jblkdep); 3974 } 3975 3976 static struct jsegdep * 3977 newjsegdep(struct worklist *wk) 3978 { 3979 struct jsegdep *jsegdep; 3980 3981 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3982 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3983 jsegdep->jd_seg = NULL; 3984 3985 return (jsegdep); 3986 } 3987 3988 static struct jmvref * 3989 newjmvref(dp, ino, oldoff, newoff) 3990 struct inode *dp; 3991 ino_t ino; 3992 off_t oldoff; 3993 off_t newoff; 3994 { 3995 struct jmvref *jmvref; 3996 3997 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3998 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 3999 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4000 jmvref->jm_parent = dp->i_number; 4001 jmvref->jm_ino = ino; 4002 jmvref->jm_oldoff = oldoff; 4003 jmvref->jm_newoff = newoff; 4004 4005 return (jmvref); 4006 } 4007 4008 /* 4009 * Allocate a new jremref that tracks the removal of ip from dp with the 4010 * directory entry offset of diroff. Mark the entry as ATTACHED and 4011 * DEPCOMPLETE as we have all the information required for the journal write 4012 * and the directory has already been removed from the buffer. The caller 4013 * is responsible for linking the jremref into the pagedep and adding it 4014 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4015 * a DOTDOT addition so handle_workitem_remove() can properly assign 4016 * the jsegdep when we're done. 4017 */ 4018 static struct jremref * 4019 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4020 off_t diroff, nlink_t nlink) 4021 { 4022 struct jremref *jremref; 4023 4024 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4025 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4026 jremref->jr_state = ATTACHED; 4027 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4028 nlink, ip->i_mode); 4029 jremref->jr_dirrem = dirrem; 4030 4031 return (jremref); 4032 } 4033 4034 static inline void 4035 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4036 nlink_t nlink, uint16_t mode) 4037 { 4038 4039 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4040 inoref->if_diroff = diroff; 4041 inoref->if_ino = ino; 4042 inoref->if_parent = parent; 4043 inoref->if_nlink = nlink; 4044 inoref->if_mode = mode; 4045 } 4046 4047 /* 4048 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4049 * directory offset may not be known until later. The caller is responsible 4050 * adding the entry to the journal when this information is available. nlink 4051 * should be the link count prior to the addition and mode is only required 4052 * to have the correct FMT. 4053 */ 4054 static struct jaddref * 4055 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4056 uint16_t mode) 4057 { 4058 struct jaddref *jaddref; 4059 4060 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4061 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4062 jaddref->ja_state = ATTACHED; 4063 jaddref->ja_mkdir = NULL; 4064 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4065 4066 return (jaddref); 4067 } 4068 4069 /* 4070 * Create a new free dependency for a freework. The caller is responsible 4071 * for adjusting the reference count when it has the lock held. The freedep 4072 * will track an outstanding bitmap write that will ultimately clear the 4073 * freework to continue. 4074 */ 4075 static struct freedep * 4076 newfreedep(struct freework *freework) 4077 { 4078 struct freedep *freedep; 4079 4080 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4081 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4082 freedep->fd_freework = freework; 4083 4084 return (freedep); 4085 } 4086 4087 /* 4088 * Free a freedep structure once the buffer it is linked to is written. If 4089 * this is the last reference to the freework schedule it for completion. 4090 */ 4091 static void 4092 free_freedep(freedep) 4093 struct freedep *freedep; 4094 { 4095 struct freework *freework; 4096 4097 freework = freedep->fd_freework; 4098 freework->fw_freeblks->fb_cgwait--; 4099 if (--freework->fw_ref == 0) 4100 freework_enqueue(freework); 4101 WORKITEM_FREE(freedep, D_FREEDEP); 4102 } 4103 4104 /* 4105 * Allocate a new freework structure that may be a level in an indirect 4106 * when parent is not NULL or a top level block when it is. The top level 4107 * freework structures are allocated without the per-filesystem lock held 4108 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4109 */ 4110 static struct freework * 4111 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4112 struct ufsmount *ump; 4113 struct freeblks *freeblks; 4114 struct freework *parent; 4115 ufs_lbn_t lbn; 4116 ufs2_daddr_t nb; 4117 int frags; 4118 int off; 4119 int journal; 4120 { 4121 struct freework *freework; 4122 4123 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4124 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4125 freework->fw_state = ATTACHED; 4126 freework->fw_jnewblk = NULL; 4127 freework->fw_freeblks = freeblks; 4128 freework->fw_parent = parent; 4129 freework->fw_lbn = lbn; 4130 freework->fw_blkno = nb; 4131 freework->fw_frags = frags; 4132 freework->fw_indir = NULL; 4133 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4134 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4135 freework->fw_start = freework->fw_off = off; 4136 if (journal) 4137 newjfreeblk(freeblks, lbn, nb, frags); 4138 if (parent == NULL) { 4139 ACQUIRE_LOCK(ump); 4140 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4141 freeblks->fb_ref++; 4142 FREE_LOCK(ump); 4143 } 4144 4145 return (freework); 4146 } 4147 4148 /* 4149 * Eliminate a jfreeblk for a block that does not need journaling. 4150 */ 4151 static void 4152 cancel_jfreeblk(freeblks, blkno) 4153 struct freeblks *freeblks; 4154 ufs2_daddr_t blkno; 4155 { 4156 struct jfreeblk *jfreeblk; 4157 struct jblkdep *jblkdep; 4158 4159 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4160 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4161 continue; 4162 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4163 if (jfreeblk->jf_blkno == blkno) 4164 break; 4165 } 4166 if (jblkdep == NULL) 4167 return; 4168 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4169 free_jsegdep(jblkdep->jb_jsegdep); 4170 LIST_REMOVE(jblkdep, jb_deps); 4171 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4172 } 4173 4174 /* 4175 * Allocate a new jfreeblk to journal top level block pointer when truncating 4176 * a file. The caller must add this to the worklist when the per-filesystem 4177 * lock is held. 4178 */ 4179 static struct jfreeblk * 4180 newjfreeblk(freeblks, lbn, blkno, frags) 4181 struct freeblks *freeblks; 4182 ufs_lbn_t lbn; 4183 ufs2_daddr_t blkno; 4184 int frags; 4185 { 4186 struct jfreeblk *jfreeblk; 4187 4188 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4189 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4190 freeblks->fb_list.wk_mp); 4191 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4192 jfreeblk->jf_dep.jb_freeblks = freeblks; 4193 jfreeblk->jf_ino = freeblks->fb_inum; 4194 jfreeblk->jf_lbn = lbn; 4195 jfreeblk->jf_blkno = blkno; 4196 jfreeblk->jf_frags = frags; 4197 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4198 4199 return (jfreeblk); 4200 } 4201 4202 /* 4203 * The journal is only prepared to handle full-size block numbers, so we 4204 * have to adjust the record to reflect the change to a full-size block. 4205 * For example, suppose we have a block made up of fragments 8-15 and 4206 * want to free its last two fragments. We are given a request that says: 4207 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4208 * where frags are the number of fragments to free and oldfrags are the 4209 * number of fragments to keep. To block align it, we have to change it to 4210 * have a valid full-size blkno, so it becomes: 4211 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4212 */ 4213 static void 4214 adjust_newfreework(freeblks, frag_offset) 4215 struct freeblks *freeblks; 4216 int frag_offset; 4217 { 4218 struct jfreeblk *jfreeblk; 4219 4220 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4221 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4222 ("adjust_newfreework: Missing freeblks dependency")); 4223 4224 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4225 jfreeblk->jf_blkno -= frag_offset; 4226 jfreeblk->jf_frags += frag_offset; 4227 } 4228 4229 /* 4230 * Allocate a new jtrunc to track a partial truncation. 4231 */ 4232 static struct jtrunc * 4233 newjtrunc(freeblks, size, extsize) 4234 struct freeblks *freeblks; 4235 off_t size; 4236 int extsize; 4237 { 4238 struct jtrunc *jtrunc; 4239 4240 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4241 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4242 freeblks->fb_list.wk_mp); 4243 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4244 jtrunc->jt_dep.jb_freeblks = freeblks; 4245 jtrunc->jt_ino = freeblks->fb_inum; 4246 jtrunc->jt_size = size; 4247 jtrunc->jt_extsize = extsize; 4248 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4249 4250 return (jtrunc); 4251 } 4252 4253 /* 4254 * If we're canceling a new bitmap we have to search for another ref 4255 * to move into the bmsafemap dep. This might be better expressed 4256 * with another structure. 4257 */ 4258 static void 4259 move_newblock_dep(jaddref, inodedep) 4260 struct jaddref *jaddref; 4261 struct inodedep *inodedep; 4262 { 4263 struct inoref *inoref; 4264 struct jaddref *jaddrefn; 4265 4266 jaddrefn = NULL; 4267 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4268 inoref = TAILQ_NEXT(inoref, if_deps)) { 4269 if ((jaddref->ja_state & NEWBLOCK) && 4270 inoref->if_list.wk_type == D_JADDREF) { 4271 jaddrefn = (struct jaddref *)inoref; 4272 break; 4273 } 4274 } 4275 if (jaddrefn == NULL) 4276 return; 4277 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4278 jaddrefn->ja_state |= jaddref->ja_state & 4279 (ATTACHED | UNDONE | NEWBLOCK); 4280 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4281 jaddref->ja_state |= ATTACHED; 4282 LIST_REMOVE(jaddref, ja_bmdeps); 4283 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4284 ja_bmdeps); 4285 } 4286 4287 /* 4288 * Cancel a jaddref either before it has been written or while it is being 4289 * written. This happens when a link is removed before the add reaches 4290 * the disk. The jaddref dependency is kept linked into the bmsafemap 4291 * and inode to prevent the link count or bitmap from reaching the disk 4292 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4293 * required. 4294 * 4295 * Returns 1 if the canceled addref requires journaling of the remove and 4296 * 0 otherwise. 4297 */ 4298 static int 4299 cancel_jaddref(jaddref, inodedep, wkhd) 4300 struct jaddref *jaddref; 4301 struct inodedep *inodedep; 4302 struct workhead *wkhd; 4303 { 4304 struct inoref *inoref; 4305 struct jsegdep *jsegdep; 4306 int needsj; 4307 4308 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4309 ("cancel_jaddref: Canceling complete jaddref")); 4310 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4311 needsj = 1; 4312 else 4313 needsj = 0; 4314 if (inodedep == NULL) 4315 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4316 0, &inodedep) == 0) 4317 panic("cancel_jaddref: Lost inodedep"); 4318 /* 4319 * We must adjust the nlink of any reference operation that follows 4320 * us so that it is consistent with the in-memory reference. This 4321 * ensures that inode nlink rollbacks always have the correct link. 4322 */ 4323 if (needsj == 0) { 4324 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4325 inoref = TAILQ_NEXT(inoref, if_deps)) { 4326 if (inoref->if_state & GOINGAWAY) 4327 break; 4328 inoref->if_nlink--; 4329 } 4330 } 4331 jsegdep = inoref_jseg(&jaddref->ja_ref); 4332 if (jaddref->ja_state & NEWBLOCK) 4333 move_newblock_dep(jaddref, inodedep); 4334 wake_worklist(&jaddref->ja_list); 4335 jaddref->ja_mkdir = NULL; 4336 if (jaddref->ja_state & INPROGRESS) { 4337 jaddref->ja_state &= ~INPROGRESS; 4338 WORKLIST_REMOVE(&jaddref->ja_list); 4339 jwork_insert(wkhd, jsegdep); 4340 } else { 4341 free_jsegdep(jsegdep); 4342 if (jaddref->ja_state & DEPCOMPLETE) 4343 remove_from_journal(&jaddref->ja_list); 4344 } 4345 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4346 /* 4347 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4348 * can arrange for them to be freed with the bitmap. Otherwise we 4349 * no longer need this addref attached to the inoreflst and it 4350 * will incorrectly adjust nlink if we leave it. 4351 */ 4352 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4353 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4354 if_deps); 4355 jaddref->ja_state |= COMPLETE; 4356 free_jaddref(jaddref); 4357 return (needsj); 4358 } 4359 /* 4360 * Leave the head of the list for jsegdeps for fast merging. 4361 */ 4362 if (LIST_FIRST(wkhd) != NULL) { 4363 jaddref->ja_state |= ONWORKLIST; 4364 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4365 } else 4366 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4367 4368 return (needsj); 4369 } 4370 4371 /* 4372 * Attempt to free a jaddref structure when some work completes. This 4373 * should only succeed once the entry is written and all dependencies have 4374 * been notified. 4375 */ 4376 static void 4377 free_jaddref(jaddref) 4378 struct jaddref *jaddref; 4379 { 4380 4381 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4382 return; 4383 if (jaddref->ja_ref.if_jsegdep) 4384 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4385 jaddref, jaddref->ja_state); 4386 if (jaddref->ja_state & NEWBLOCK) 4387 LIST_REMOVE(jaddref, ja_bmdeps); 4388 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4389 panic("free_jaddref: Bad state %p(0x%X)", 4390 jaddref, jaddref->ja_state); 4391 if (jaddref->ja_mkdir != NULL) 4392 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4393 WORKITEM_FREE(jaddref, D_JADDREF); 4394 } 4395 4396 /* 4397 * Free a jremref structure once it has been written or discarded. 4398 */ 4399 static void 4400 free_jremref(jremref) 4401 struct jremref *jremref; 4402 { 4403 4404 if (jremref->jr_ref.if_jsegdep) 4405 free_jsegdep(jremref->jr_ref.if_jsegdep); 4406 if (jremref->jr_state & INPROGRESS) 4407 panic("free_jremref: IO still pending"); 4408 WORKITEM_FREE(jremref, D_JREMREF); 4409 } 4410 4411 /* 4412 * Free a jnewblk structure. 4413 */ 4414 static void 4415 free_jnewblk(jnewblk) 4416 struct jnewblk *jnewblk; 4417 { 4418 4419 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4420 return; 4421 LIST_REMOVE(jnewblk, jn_deps); 4422 if (jnewblk->jn_dep != NULL) 4423 panic("free_jnewblk: Dependency still attached."); 4424 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4425 } 4426 4427 /* 4428 * Cancel a jnewblk which has been been made redundant by frag extension. 4429 */ 4430 static void 4431 cancel_jnewblk(jnewblk, wkhd) 4432 struct jnewblk *jnewblk; 4433 struct workhead *wkhd; 4434 { 4435 struct jsegdep *jsegdep; 4436 4437 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4438 jsegdep = jnewblk->jn_jsegdep; 4439 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4440 panic("cancel_jnewblk: Invalid state"); 4441 jnewblk->jn_jsegdep = NULL; 4442 jnewblk->jn_dep = NULL; 4443 jnewblk->jn_state |= GOINGAWAY; 4444 if (jnewblk->jn_state & INPROGRESS) { 4445 jnewblk->jn_state &= ~INPROGRESS; 4446 WORKLIST_REMOVE(&jnewblk->jn_list); 4447 jwork_insert(wkhd, jsegdep); 4448 } else { 4449 free_jsegdep(jsegdep); 4450 remove_from_journal(&jnewblk->jn_list); 4451 } 4452 wake_worklist(&jnewblk->jn_list); 4453 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4454 } 4455 4456 static void 4457 free_jblkdep(jblkdep) 4458 struct jblkdep *jblkdep; 4459 { 4460 4461 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4462 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4463 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4464 WORKITEM_FREE(jblkdep, D_JTRUNC); 4465 else 4466 panic("free_jblkdep: Unexpected type %s", 4467 TYPENAME(jblkdep->jb_list.wk_type)); 4468 } 4469 4470 /* 4471 * Free a single jseg once it is no longer referenced in memory or on 4472 * disk. Reclaim journal blocks and dependencies waiting for the segment 4473 * to disappear. 4474 */ 4475 static void 4476 free_jseg(jseg, jblocks) 4477 struct jseg *jseg; 4478 struct jblocks *jblocks; 4479 { 4480 struct freework *freework; 4481 4482 /* 4483 * Free freework structures that were lingering to indicate freed 4484 * indirect blocks that forced journal write ordering on reallocate. 4485 */ 4486 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4487 indirblk_remove(freework); 4488 if (jblocks->jb_oldestseg == jseg) 4489 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4490 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4491 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4492 KASSERT(LIST_EMPTY(&jseg->js_entries), 4493 ("free_jseg: Freed jseg has valid entries.")); 4494 WORKITEM_FREE(jseg, D_JSEG); 4495 } 4496 4497 /* 4498 * Free all jsegs that meet the criteria for being reclaimed and update 4499 * oldestseg. 4500 */ 4501 static void 4502 free_jsegs(jblocks) 4503 struct jblocks *jblocks; 4504 { 4505 struct jseg *jseg; 4506 4507 /* 4508 * Free only those jsegs which have none allocated before them to 4509 * preserve the journal space ordering. 4510 */ 4511 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4512 /* 4513 * Only reclaim space when nothing depends on this journal 4514 * set and another set has written that it is no longer 4515 * valid. 4516 */ 4517 if (jseg->js_refs != 0) { 4518 jblocks->jb_oldestseg = jseg; 4519 return; 4520 } 4521 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4522 break; 4523 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4524 break; 4525 /* 4526 * We can free jsegs that didn't write entries when 4527 * oldestwrseq == js_seq. 4528 */ 4529 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4530 jseg->js_cnt != 0) 4531 break; 4532 free_jseg(jseg, jblocks); 4533 } 4534 /* 4535 * If we exited the loop above we still must discover the 4536 * oldest valid segment. 4537 */ 4538 if (jseg) 4539 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4540 jseg = TAILQ_NEXT(jseg, js_next)) 4541 if (jseg->js_refs != 0) 4542 break; 4543 jblocks->jb_oldestseg = jseg; 4544 /* 4545 * The journal has no valid records but some jsegs may still be 4546 * waiting on oldestwrseq to advance. We force a small record 4547 * out to permit these lingering records to be reclaimed. 4548 */ 4549 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4550 jblocks->jb_needseg = 1; 4551 } 4552 4553 /* 4554 * Release one reference to a jseg and free it if the count reaches 0. This 4555 * should eventually reclaim journal space as well. 4556 */ 4557 static void 4558 rele_jseg(jseg) 4559 struct jseg *jseg; 4560 { 4561 4562 KASSERT(jseg->js_refs > 0, 4563 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4564 if (--jseg->js_refs != 0) 4565 return; 4566 free_jsegs(jseg->js_jblocks); 4567 } 4568 4569 /* 4570 * Release a jsegdep and decrement the jseg count. 4571 */ 4572 static void 4573 free_jsegdep(jsegdep) 4574 struct jsegdep *jsegdep; 4575 { 4576 4577 if (jsegdep->jd_seg) 4578 rele_jseg(jsegdep->jd_seg); 4579 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4580 } 4581 4582 /* 4583 * Wait for a journal item to make it to disk. Initiate journal processing 4584 * if required. 4585 */ 4586 static int 4587 jwait(wk, waitfor) 4588 struct worklist *wk; 4589 int waitfor; 4590 { 4591 4592 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4593 /* 4594 * Blocking journal waits cause slow synchronous behavior. Record 4595 * stats on the frequency of these blocking operations. 4596 */ 4597 if (waitfor == MNT_WAIT) { 4598 stat_journal_wait++; 4599 switch (wk->wk_type) { 4600 case D_JREMREF: 4601 case D_JMVREF: 4602 stat_jwait_filepage++; 4603 break; 4604 case D_JTRUNC: 4605 case D_JFREEBLK: 4606 stat_jwait_freeblks++; 4607 break; 4608 case D_JNEWBLK: 4609 stat_jwait_newblk++; 4610 break; 4611 case D_JADDREF: 4612 stat_jwait_inode++; 4613 break; 4614 default: 4615 break; 4616 } 4617 } 4618 /* 4619 * If IO has not started we process the journal. We can't mark the 4620 * worklist item as IOWAITING because we drop the lock while 4621 * processing the journal and the worklist entry may be freed after 4622 * this point. The caller may call back in and re-issue the request. 4623 */ 4624 if ((wk->wk_state & INPROGRESS) == 0) { 4625 softdep_process_journal(wk->wk_mp, wk, waitfor); 4626 if (waitfor != MNT_WAIT) 4627 return (EBUSY); 4628 return (0); 4629 } 4630 if (waitfor != MNT_WAIT) 4631 return (EBUSY); 4632 wait_worklist(wk, "jwait"); 4633 return (0); 4634 } 4635 4636 /* 4637 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4638 * appropriate. This is a convenience function to reduce duplicate code 4639 * for the setup and revert functions below. 4640 */ 4641 static struct inodedep * 4642 inodedep_lookup_ip(ip) 4643 struct inode *ip; 4644 { 4645 struct inodedep *inodedep; 4646 4647 KASSERT(ip->i_nlink >= ip->i_effnlink, 4648 ("inodedep_lookup_ip: bad delta")); 4649 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4650 &inodedep); 4651 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4652 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4653 4654 return (inodedep); 4655 } 4656 4657 /* 4658 * Called prior to creating a new inode and linking it to a directory. The 4659 * jaddref structure must already be allocated by softdep_setup_inomapdep 4660 * and it is discovered here so we can initialize the mode and update 4661 * nlinkdelta. 4662 */ 4663 void 4664 softdep_setup_create(dp, ip) 4665 struct inode *dp; 4666 struct inode *ip; 4667 { 4668 struct inodedep *inodedep; 4669 struct jaddref *jaddref; 4670 struct vnode *dvp; 4671 4672 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4673 ("softdep_setup_create called on non-softdep filesystem")); 4674 KASSERT(ip->i_nlink == 1, 4675 ("softdep_setup_create: Invalid link count.")); 4676 dvp = ITOV(dp); 4677 ACQUIRE_LOCK(ITOUMP(dp)); 4678 inodedep = inodedep_lookup_ip(ip); 4679 if (DOINGSUJ(dvp)) { 4680 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4681 inoreflst); 4682 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4683 ("softdep_setup_create: No addref structure present.")); 4684 } 4685 softdep_prelink(dvp, NULL); 4686 FREE_LOCK(ITOUMP(dp)); 4687 } 4688 4689 /* 4690 * Create a jaddref structure to track the addition of a DOTDOT link when 4691 * we are reparenting an inode as part of a rename. This jaddref will be 4692 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4693 * non-journaling softdep. 4694 */ 4695 void 4696 softdep_setup_dotdot_link(dp, ip) 4697 struct inode *dp; 4698 struct inode *ip; 4699 { 4700 struct inodedep *inodedep; 4701 struct jaddref *jaddref; 4702 struct vnode *dvp; 4703 4704 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4705 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4706 dvp = ITOV(dp); 4707 jaddref = NULL; 4708 /* 4709 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4710 * is used as a normal link would be. 4711 */ 4712 if (DOINGSUJ(dvp)) 4713 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4714 dp->i_effnlink - 1, dp->i_mode); 4715 ACQUIRE_LOCK(ITOUMP(dp)); 4716 inodedep = inodedep_lookup_ip(dp); 4717 if (jaddref) 4718 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4719 if_deps); 4720 softdep_prelink(dvp, ITOV(ip)); 4721 FREE_LOCK(ITOUMP(dp)); 4722 } 4723 4724 /* 4725 * Create a jaddref structure to track a new link to an inode. The directory 4726 * offset is not known until softdep_setup_directory_add or 4727 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4728 * softdep. 4729 */ 4730 void 4731 softdep_setup_link(dp, ip) 4732 struct inode *dp; 4733 struct inode *ip; 4734 { 4735 struct inodedep *inodedep; 4736 struct jaddref *jaddref; 4737 struct vnode *dvp; 4738 4739 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4740 ("softdep_setup_link called on non-softdep filesystem")); 4741 dvp = ITOV(dp); 4742 jaddref = NULL; 4743 if (DOINGSUJ(dvp)) 4744 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4745 ip->i_mode); 4746 ACQUIRE_LOCK(ITOUMP(dp)); 4747 inodedep = inodedep_lookup_ip(ip); 4748 if (jaddref) 4749 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4750 if_deps); 4751 softdep_prelink(dvp, ITOV(ip)); 4752 FREE_LOCK(ITOUMP(dp)); 4753 } 4754 4755 /* 4756 * Called to create the jaddref structures to track . and .. references as 4757 * well as lookup and further initialize the incomplete jaddref created 4758 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4759 * nlinkdelta for non-journaling softdep. 4760 */ 4761 void 4762 softdep_setup_mkdir(dp, ip) 4763 struct inode *dp; 4764 struct inode *ip; 4765 { 4766 struct inodedep *inodedep; 4767 struct jaddref *dotdotaddref; 4768 struct jaddref *dotaddref; 4769 struct jaddref *jaddref; 4770 struct vnode *dvp; 4771 4772 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4773 ("softdep_setup_mkdir called on non-softdep filesystem")); 4774 dvp = ITOV(dp); 4775 dotaddref = dotdotaddref = NULL; 4776 if (DOINGSUJ(dvp)) { 4777 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4778 ip->i_mode); 4779 dotaddref->ja_state |= MKDIR_BODY; 4780 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4781 dp->i_effnlink - 1, dp->i_mode); 4782 dotdotaddref->ja_state |= MKDIR_PARENT; 4783 } 4784 ACQUIRE_LOCK(ITOUMP(dp)); 4785 inodedep = inodedep_lookup_ip(ip); 4786 if (DOINGSUJ(dvp)) { 4787 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4788 inoreflst); 4789 KASSERT(jaddref != NULL, 4790 ("softdep_setup_mkdir: No addref structure present.")); 4791 KASSERT(jaddref->ja_parent == dp->i_number, 4792 ("softdep_setup_mkdir: bad parent %ju", 4793 (uintmax_t)jaddref->ja_parent)); 4794 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4795 if_deps); 4796 } 4797 inodedep = inodedep_lookup_ip(dp); 4798 if (DOINGSUJ(dvp)) 4799 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4800 &dotdotaddref->ja_ref, if_deps); 4801 softdep_prelink(ITOV(dp), NULL); 4802 FREE_LOCK(ITOUMP(dp)); 4803 } 4804 4805 /* 4806 * Called to track nlinkdelta of the inode and parent directories prior to 4807 * unlinking a directory. 4808 */ 4809 void 4810 softdep_setup_rmdir(dp, ip) 4811 struct inode *dp; 4812 struct inode *ip; 4813 { 4814 struct vnode *dvp; 4815 4816 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4817 ("softdep_setup_rmdir called on non-softdep filesystem")); 4818 dvp = ITOV(dp); 4819 ACQUIRE_LOCK(ITOUMP(dp)); 4820 (void) inodedep_lookup_ip(ip); 4821 (void) inodedep_lookup_ip(dp); 4822 softdep_prelink(dvp, ITOV(ip)); 4823 FREE_LOCK(ITOUMP(dp)); 4824 } 4825 4826 /* 4827 * Called to track nlinkdelta of the inode and parent directories prior to 4828 * unlink. 4829 */ 4830 void 4831 softdep_setup_unlink(dp, ip) 4832 struct inode *dp; 4833 struct inode *ip; 4834 { 4835 struct vnode *dvp; 4836 4837 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4838 ("softdep_setup_unlink called on non-softdep filesystem")); 4839 dvp = ITOV(dp); 4840 ACQUIRE_LOCK(ITOUMP(dp)); 4841 (void) inodedep_lookup_ip(ip); 4842 (void) inodedep_lookup_ip(dp); 4843 softdep_prelink(dvp, ITOV(ip)); 4844 FREE_LOCK(ITOUMP(dp)); 4845 } 4846 4847 /* 4848 * Called to release the journal structures created by a failed non-directory 4849 * creation. Adjusts nlinkdelta for non-journaling softdep. 4850 */ 4851 void 4852 softdep_revert_create(dp, ip) 4853 struct inode *dp; 4854 struct inode *ip; 4855 { 4856 struct inodedep *inodedep; 4857 struct jaddref *jaddref; 4858 struct vnode *dvp; 4859 4860 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4861 ("softdep_revert_create called on non-softdep filesystem")); 4862 dvp = ITOV(dp); 4863 ACQUIRE_LOCK(ITOUMP(dp)); 4864 inodedep = inodedep_lookup_ip(ip); 4865 if (DOINGSUJ(dvp)) { 4866 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4867 inoreflst); 4868 KASSERT(jaddref->ja_parent == dp->i_number, 4869 ("softdep_revert_create: addref parent mismatch")); 4870 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4871 } 4872 FREE_LOCK(ITOUMP(dp)); 4873 } 4874 4875 /* 4876 * Called to release the journal structures created by a failed link 4877 * addition. Adjusts nlinkdelta for non-journaling softdep. 4878 */ 4879 void 4880 softdep_revert_link(dp, ip) 4881 struct inode *dp; 4882 struct inode *ip; 4883 { 4884 struct inodedep *inodedep; 4885 struct jaddref *jaddref; 4886 struct vnode *dvp; 4887 4888 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4889 ("softdep_revert_link called on non-softdep filesystem")); 4890 dvp = ITOV(dp); 4891 ACQUIRE_LOCK(ITOUMP(dp)); 4892 inodedep = inodedep_lookup_ip(ip); 4893 if (DOINGSUJ(dvp)) { 4894 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4895 inoreflst); 4896 KASSERT(jaddref->ja_parent == dp->i_number, 4897 ("softdep_revert_link: addref parent mismatch")); 4898 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4899 } 4900 FREE_LOCK(ITOUMP(dp)); 4901 } 4902 4903 /* 4904 * Called to release the journal structures created by a failed mkdir 4905 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4906 */ 4907 void 4908 softdep_revert_mkdir(dp, ip) 4909 struct inode *dp; 4910 struct inode *ip; 4911 { 4912 struct inodedep *inodedep; 4913 struct jaddref *jaddref; 4914 struct jaddref *dotaddref; 4915 struct vnode *dvp; 4916 4917 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4918 ("softdep_revert_mkdir called on non-softdep filesystem")); 4919 dvp = ITOV(dp); 4920 4921 ACQUIRE_LOCK(ITOUMP(dp)); 4922 inodedep = inodedep_lookup_ip(dp); 4923 if (DOINGSUJ(dvp)) { 4924 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4925 inoreflst); 4926 KASSERT(jaddref->ja_parent == ip->i_number, 4927 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4928 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4929 } 4930 inodedep = inodedep_lookup_ip(ip); 4931 if (DOINGSUJ(dvp)) { 4932 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4933 inoreflst); 4934 KASSERT(jaddref->ja_parent == dp->i_number, 4935 ("softdep_revert_mkdir: addref parent mismatch")); 4936 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4937 inoreflst, if_deps); 4938 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4939 KASSERT(dotaddref->ja_parent == ip->i_number, 4940 ("softdep_revert_mkdir: dot addref parent mismatch")); 4941 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4942 } 4943 FREE_LOCK(ITOUMP(dp)); 4944 } 4945 4946 /* 4947 * Called to correct nlinkdelta after a failed rmdir. 4948 */ 4949 void 4950 softdep_revert_rmdir(dp, ip) 4951 struct inode *dp; 4952 struct inode *ip; 4953 { 4954 4955 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4956 ("softdep_revert_rmdir called on non-softdep filesystem")); 4957 ACQUIRE_LOCK(ITOUMP(dp)); 4958 (void) inodedep_lookup_ip(ip); 4959 (void) inodedep_lookup_ip(dp); 4960 FREE_LOCK(ITOUMP(dp)); 4961 } 4962 4963 /* 4964 * Protecting the freemaps (or bitmaps). 4965 * 4966 * To eliminate the need to execute fsck before mounting a filesystem 4967 * after a power failure, one must (conservatively) guarantee that the 4968 * on-disk copy of the bitmaps never indicate that a live inode or block is 4969 * free. So, when a block or inode is allocated, the bitmap should be 4970 * updated (on disk) before any new pointers. When a block or inode is 4971 * freed, the bitmap should not be updated until all pointers have been 4972 * reset. The latter dependency is handled by the delayed de-allocation 4973 * approach described below for block and inode de-allocation. The former 4974 * dependency is handled by calling the following procedure when a block or 4975 * inode is allocated. When an inode is allocated an "inodedep" is created 4976 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4977 * Each "inodedep" is also inserted into the hash indexing structure so 4978 * that any additional link additions can be made dependent on the inode 4979 * allocation. 4980 * 4981 * The ufs filesystem maintains a number of free block counts (e.g., per 4982 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4983 * in addition to the bitmaps. These counts are used to improve efficiency 4984 * during allocation and therefore must be consistent with the bitmaps. 4985 * There is no convenient way to guarantee post-crash consistency of these 4986 * counts with simple update ordering, for two main reasons: (1) The counts 4987 * and bitmaps for a single cylinder group block are not in the same disk 4988 * sector. If a disk write is interrupted (e.g., by power failure), one may 4989 * be written and the other not. (2) Some of the counts are located in the 4990 * superblock rather than the cylinder group block. So, we focus our soft 4991 * updates implementation on protecting the bitmaps. When mounting a 4992 * filesystem, we recompute the auxiliary counts from the bitmaps. 4993 */ 4994 4995 /* 4996 * Called just after updating the cylinder group block to allocate an inode. 4997 */ 4998 void 4999 softdep_setup_inomapdep(bp, ip, newinum, mode) 5000 struct buf *bp; /* buffer for cylgroup block with inode map */ 5001 struct inode *ip; /* inode related to allocation */ 5002 ino_t newinum; /* new inode number being allocated */ 5003 int mode; 5004 { 5005 struct inodedep *inodedep; 5006 struct bmsafemap *bmsafemap; 5007 struct jaddref *jaddref; 5008 struct mount *mp; 5009 struct fs *fs; 5010 5011 mp = ITOVFS(ip); 5012 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5013 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5014 fs = VFSTOUFS(mp)->um_fs; 5015 jaddref = NULL; 5016 5017 /* 5018 * Allocate the journal reference add structure so that the bitmap 5019 * can be dependent on it. 5020 */ 5021 if (MOUNTEDSUJ(mp)) { 5022 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5023 jaddref->ja_state |= NEWBLOCK; 5024 } 5025 5026 /* 5027 * Create a dependency for the newly allocated inode. 5028 * Panic if it already exists as something is seriously wrong. 5029 * Otherwise add it to the dependency list for the buffer holding 5030 * the cylinder group map from which it was allocated. 5031 * 5032 * We have to preallocate a bmsafemap entry in case it is needed 5033 * in bmsafemap_lookup since once we allocate the inodedep, we 5034 * have to finish initializing it before we can FREE_LOCK(). 5035 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5036 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5037 * creating the inodedep as it can be freed during the time 5038 * that we FREE_LOCK() while allocating the inodedep. We must 5039 * call workitem_alloc() before entering the locked section as 5040 * it also acquires the lock and we must avoid trying doing so 5041 * recursively. 5042 */ 5043 bmsafemap = malloc(sizeof(struct bmsafemap), 5044 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5045 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5046 ACQUIRE_LOCK(ITOUMP(ip)); 5047 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5048 panic("softdep_setup_inomapdep: dependency %p for new" 5049 "inode already exists", inodedep); 5050 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5051 if (jaddref) { 5052 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5053 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5054 if_deps); 5055 } else { 5056 inodedep->id_state |= ONDEPLIST; 5057 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5058 } 5059 inodedep->id_bmsafemap = bmsafemap; 5060 inodedep->id_state &= ~DEPCOMPLETE; 5061 FREE_LOCK(ITOUMP(ip)); 5062 } 5063 5064 /* 5065 * Called just after updating the cylinder group block to 5066 * allocate block or fragment. 5067 */ 5068 void 5069 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5070 struct buf *bp; /* buffer for cylgroup block with block map */ 5071 struct mount *mp; /* filesystem doing allocation */ 5072 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5073 int frags; /* Number of fragments. */ 5074 int oldfrags; /* Previous number of fragments for extend. */ 5075 { 5076 struct newblk *newblk; 5077 struct bmsafemap *bmsafemap; 5078 struct jnewblk *jnewblk; 5079 struct ufsmount *ump; 5080 struct fs *fs; 5081 5082 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5083 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5084 ump = VFSTOUFS(mp); 5085 fs = ump->um_fs; 5086 jnewblk = NULL; 5087 /* 5088 * Create a dependency for the newly allocated block. 5089 * Add it to the dependency list for the buffer holding 5090 * the cylinder group map from which it was allocated. 5091 */ 5092 if (MOUNTEDSUJ(mp)) { 5093 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5094 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5095 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5096 jnewblk->jn_state = ATTACHED; 5097 jnewblk->jn_blkno = newblkno; 5098 jnewblk->jn_frags = frags; 5099 jnewblk->jn_oldfrags = oldfrags; 5100 #ifdef SUJ_DEBUG 5101 { 5102 struct cg *cgp; 5103 uint8_t *blksfree; 5104 long bno; 5105 int i; 5106 5107 cgp = (struct cg *)bp->b_data; 5108 blksfree = cg_blksfree(cgp); 5109 bno = dtogd(fs, jnewblk->jn_blkno); 5110 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5111 i++) { 5112 if (isset(blksfree, bno + i)) 5113 panic("softdep_setup_blkmapdep: " 5114 "free fragment %d from %d-%d " 5115 "state 0x%X dep %p", i, 5116 jnewblk->jn_oldfrags, 5117 jnewblk->jn_frags, 5118 jnewblk->jn_state, 5119 jnewblk->jn_dep); 5120 } 5121 } 5122 #endif 5123 } 5124 5125 CTR3(KTR_SUJ, 5126 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5127 newblkno, frags, oldfrags); 5128 ACQUIRE_LOCK(ump); 5129 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5130 panic("softdep_setup_blkmapdep: found block"); 5131 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5132 dtog(fs, newblkno), NULL); 5133 if (jnewblk) { 5134 jnewblk->jn_dep = (struct worklist *)newblk; 5135 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5136 } else { 5137 newblk->nb_state |= ONDEPLIST; 5138 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5139 } 5140 newblk->nb_bmsafemap = bmsafemap; 5141 newblk->nb_jnewblk = jnewblk; 5142 FREE_LOCK(ump); 5143 } 5144 5145 #define BMSAFEMAP_HASH(ump, cg) \ 5146 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5147 5148 static int 5149 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5150 struct bmsafemap_hashhead *bmsafemaphd; 5151 int cg; 5152 struct bmsafemap **bmsafemapp; 5153 { 5154 struct bmsafemap *bmsafemap; 5155 5156 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5157 if (bmsafemap->sm_cg == cg) 5158 break; 5159 if (bmsafemap) { 5160 *bmsafemapp = bmsafemap; 5161 return (1); 5162 } 5163 *bmsafemapp = NULL; 5164 5165 return (0); 5166 } 5167 5168 /* 5169 * Find the bmsafemap associated with a cylinder group buffer. 5170 * If none exists, create one. The buffer must be locked when 5171 * this routine is called and this routine must be called with 5172 * the softdep lock held. To avoid giving up the lock while 5173 * allocating a new bmsafemap, a preallocated bmsafemap may be 5174 * provided. If it is provided but not needed, it is freed. 5175 */ 5176 static struct bmsafemap * 5177 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5178 struct mount *mp; 5179 struct buf *bp; 5180 int cg; 5181 struct bmsafemap *newbmsafemap; 5182 { 5183 struct bmsafemap_hashhead *bmsafemaphd; 5184 struct bmsafemap *bmsafemap, *collision; 5185 struct worklist *wk; 5186 struct ufsmount *ump; 5187 5188 ump = VFSTOUFS(mp); 5189 LOCK_OWNED(ump); 5190 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5191 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5192 if (wk->wk_type == D_BMSAFEMAP) { 5193 if (newbmsafemap) 5194 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5195 return (WK_BMSAFEMAP(wk)); 5196 } 5197 } 5198 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5199 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5200 if (newbmsafemap) 5201 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5202 return (bmsafemap); 5203 } 5204 if (newbmsafemap) { 5205 bmsafemap = newbmsafemap; 5206 } else { 5207 FREE_LOCK(ump); 5208 bmsafemap = malloc(sizeof(struct bmsafemap), 5209 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5210 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5211 ACQUIRE_LOCK(ump); 5212 } 5213 bmsafemap->sm_buf = bp; 5214 LIST_INIT(&bmsafemap->sm_inodedephd); 5215 LIST_INIT(&bmsafemap->sm_inodedepwr); 5216 LIST_INIT(&bmsafemap->sm_newblkhd); 5217 LIST_INIT(&bmsafemap->sm_newblkwr); 5218 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5219 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5220 LIST_INIT(&bmsafemap->sm_freehd); 5221 LIST_INIT(&bmsafemap->sm_freewr); 5222 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5223 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5224 return (collision); 5225 } 5226 bmsafemap->sm_cg = cg; 5227 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5228 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5229 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5230 return (bmsafemap); 5231 } 5232 5233 /* 5234 * Direct block allocation dependencies. 5235 * 5236 * When a new block is allocated, the corresponding disk locations must be 5237 * initialized (with zeros or new data) before the on-disk inode points to 5238 * them. Also, the freemap from which the block was allocated must be 5239 * updated (on disk) before the inode's pointer. These two dependencies are 5240 * independent of each other and are needed for all file blocks and indirect 5241 * blocks that are pointed to directly by the inode. Just before the 5242 * "in-core" version of the inode is updated with a newly allocated block 5243 * number, a procedure (below) is called to setup allocation dependency 5244 * structures. These structures are removed when the corresponding 5245 * dependencies are satisfied or when the block allocation becomes obsolete 5246 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5247 * fragment that gets upgraded). All of these cases are handled in 5248 * procedures described later. 5249 * 5250 * When a file extension causes a fragment to be upgraded, either to a larger 5251 * fragment or to a full block, the on-disk location may change (if the 5252 * previous fragment could not simply be extended). In this case, the old 5253 * fragment must be de-allocated, but not until after the inode's pointer has 5254 * been updated. In most cases, this is handled by later procedures, which 5255 * will construct a "freefrag" structure to be added to the workitem queue 5256 * when the inode update is complete (or obsolete). The main exception to 5257 * this is when an allocation occurs while a pending allocation dependency 5258 * (for the same block pointer) remains. This case is handled in the main 5259 * allocation dependency setup procedure by immediately freeing the 5260 * unreferenced fragments. 5261 */ 5262 void 5263 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5264 struct inode *ip; /* inode to which block is being added */ 5265 ufs_lbn_t off; /* block pointer within inode */ 5266 ufs2_daddr_t newblkno; /* disk block number being added */ 5267 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5268 long newsize; /* size of new block */ 5269 long oldsize; /* size of new block */ 5270 struct buf *bp; /* bp for allocated block */ 5271 { 5272 struct allocdirect *adp, *oldadp; 5273 struct allocdirectlst *adphead; 5274 struct freefrag *freefrag; 5275 struct inodedep *inodedep; 5276 struct pagedep *pagedep; 5277 struct jnewblk *jnewblk; 5278 struct newblk *newblk; 5279 struct mount *mp; 5280 ufs_lbn_t lbn; 5281 5282 lbn = bp->b_lblkno; 5283 mp = ITOVFS(ip); 5284 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5285 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5286 if (oldblkno && oldblkno != newblkno) 5287 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5288 else 5289 freefrag = NULL; 5290 5291 CTR6(KTR_SUJ, 5292 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5293 "off %jd newsize %ld oldsize %d", 5294 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5295 ACQUIRE_LOCK(ITOUMP(ip)); 5296 if (off >= UFS_NDADDR) { 5297 if (lbn > 0) 5298 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5299 lbn, off); 5300 /* allocating an indirect block */ 5301 if (oldblkno != 0) 5302 panic("softdep_setup_allocdirect: non-zero indir"); 5303 } else { 5304 if (off != lbn) 5305 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5306 lbn, off); 5307 /* 5308 * Allocating a direct block. 5309 * 5310 * If we are allocating a directory block, then we must 5311 * allocate an associated pagedep to track additions and 5312 * deletions. 5313 */ 5314 if ((ip->i_mode & IFMT) == IFDIR) 5315 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5316 &pagedep); 5317 } 5318 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5319 panic("softdep_setup_allocdirect: lost block"); 5320 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5321 ("softdep_setup_allocdirect: newblk already initialized")); 5322 /* 5323 * Convert the newblk to an allocdirect. 5324 */ 5325 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5326 adp = (struct allocdirect *)newblk; 5327 newblk->nb_freefrag = freefrag; 5328 adp->ad_offset = off; 5329 adp->ad_oldblkno = oldblkno; 5330 adp->ad_newsize = newsize; 5331 adp->ad_oldsize = oldsize; 5332 5333 /* 5334 * Finish initializing the journal. 5335 */ 5336 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5337 jnewblk->jn_ino = ip->i_number; 5338 jnewblk->jn_lbn = lbn; 5339 add_to_journal(&jnewblk->jn_list); 5340 } 5341 if (freefrag && freefrag->ff_jdep != NULL && 5342 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5343 add_to_journal(freefrag->ff_jdep); 5344 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5345 adp->ad_inodedep = inodedep; 5346 5347 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5348 /* 5349 * The list of allocdirects must be kept in sorted and ascending 5350 * order so that the rollback routines can quickly determine the 5351 * first uncommitted block (the size of the file stored on disk 5352 * ends at the end of the lowest committed fragment, or if there 5353 * are no fragments, at the end of the highest committed block). 5354 * Since files generally grow, the typical case is that the new 5355 * block is to be added at the end of the list. We speed this 5356 * special case by checking against the last allocdirect in the 5357 * list before laboriously traversing the list looking for the 5358 * insertion point. 5359 */ 5360 adphead = &inodedep->id_newinoupdt; 5361 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5362 if (oldadp == NULL || oldadp->ad_offset <= off) { 5363 /* insert at end of list */ 5364 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5365 if (oldadp != NULL && oldadp->ad_offset == off) 5366 allocdirect_merge(adphead, adp, oldadp); 5367 FREE_LOCK(ITOUMP(ip)); 5368 return; 5369 } 5370 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5371 if (oldadp->ad_offset >= off) 5372 break; 5373 } 5374 if (oldadp == NULL) 5375 panic("softdep_setup_allocdirect: lost entry"); 5376 /* insert in middle of list */ 5377 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5378 if (oldadp->ad_offset == off) 5379 allocdirect_merge(adphead, adp, oldadp); 5380 5381 FREE_LOCK(ITOUMP(ip)); 5382 } 5383 5384 /* 5385 * Merge a newer and older journal record to be stored either in a 5386 * newblock or freefrag. This handles aggregating journal records for 5387 * fragment allocation into a second record as well as replacing a 5388 * journal free with an aborted journal allocation. A segment for the 5389 * oldest record will be placed on wkhd if it has been written. If not 5390 * the segment for the newer record will suffice. 5391 */ 5392 static struct worklist * 5393 jnewblk_merge(new, old, wkhd) 5394 struct worklist *new; 5395 struct worklist *old; 5396 struct workhead *wkhd; 5397 { 5398 struct jnewblk *njnewblk; 5399 struct jnewblk *jnewblk; 5400 5401 /* Handle NULLs to simplify callers. */ 5402 if (new == NULL) 5403 return (old); 5404 if (old == NULL) 5405 return (new); 5406 /* Replace a jfreefrag with a jnewblk. */ 5407 if (new->wk_type == D_JFREEFRAG) { 5408 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5409 panic("jnewblk_merge: blkno mismatch: %p, %p", 5410 old, new); 5411 cancel_jfreefrag(WK_JFREEFRAG(new)); 5412 return (old); 5413 } 5414 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5415 panic("jnewblk_merge: Bad type: old %d new %d\n", 5416 old->wk_type, new->wk_type); 5417 /* 5418 * Handle merging of two jnewblk records that describe 5419 * different sets of fragments in the same block. 5420 */ 5421 jnewblk = WK_JNEWBLK(old); 5422 njnewblk = WK_JNEWBLK(new); 5423 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5424 panic("jnewblk_merge: Merging disparate blocks."); 5425 /* 5426 * The record may be rolled back in the cg. 5427 */ 5428 if (jnewblk->jn_state & UNDONE) { 5429 jnewblk->jn_state &= ~UNDONE; 5430 njnewblk->jn_state |= UNDONE; 5431 njnewblk->jn_state &= ~ATTACHED; 5432 } 5433 /* 5434 * We modify the newer addref and free the older so that if neither 5435 * has been written the most up-to-date copy will be on disk. If 5436 * both have been written but rolled back we only temporarily need 5437 * one of them to fix the bits when the cg write completes. 5438 */ 5439 jnewblk->jn_state |= ATTACHED | COMPLETE; 5440 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5441 cancel_jnewblk(jnewblk, wkhd); 5442 WORKLIST_REMOVE(&jnewblk->jn_list); 5443 free_jnewblk(jnewblk); 5444 return (new); 5445 } 5446 5447 /* 5448 * Replace an old allocdirect dependency with a newer one. 5449 * This routine must be called with splbio interrupts blocked. 5450 */ 5451 static void 5452 allocdirect_merge(adphead, newadp, oldadp) 5453 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5454 struct allocdirect *newadp; /* allocdirect being added */ 5455 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5456 { 5457 struct worklist *wk; 5458 struct freefrag *freefrag; 5459 5460 freefrag = NULL; 5461 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5462 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5463 newadp->ad_oldsize != oldadp->ad_newsize || 5464 newadp->ad_offset >= UFS_NDADDR) 5465 panic("%s %jd != new %jd || old size %ld != new %ld", 5466 "allocdirect_merge: old blkno", 5467 (intmax_t)newadp->ad_oldblkno, 5468 (intmax_t)oldadp->ad_newblkno, 5469 newadp->ad_oldsize, oldadp->ad_newsize); 5470 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5471 newadp->ad_oldsize = oldadp->ad_oldsize; 5472 /* 5473 * If the old dependency had a fragment to free or had never 5474 * previously had a block allocated, then the new dependency 5475 * can immediately post its freefrag and adopt the old freefrag. 5476 * This action is done by swapping the freefrag dependencies. 5477 * The new dependency gains the old one's freefrag, and the 5478 * old one gets the new one and then immediately puts it on 5479 * the worklist when it is freed by free_newblk. It is 5480 * not possible to do this swap when the old dependency had a 5481 * non-zero size but no previous fragment to free. This condition 5482 * arises when the new block is an extension of the old block. 5483 * Here, the first part of the fragment allocated to the new 5484 * dependency is part of the block currently claimed on disk by 5485 * the old dependency, so cannot legitimately be freed until the 5486 * conditions for the new dependency are fulfilled. 5487 */ 5488 freefrag = newadp->ad_freefrag; 5489 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5490 newadp->ad_freefrag = oldadp->ad_freefrag; 5491 oldadp->ad_freefrag = freefrag; 5492 } 5493 /* 5494 * If we are tracking a new directory-block allocation, 5495 * move it from the old allocdirect to the new allocdirect. 5496 */ 5497 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5498 WORKLIST_REMOVE(wk); 5499 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5500 panic("allocdirect_merge: extra newdirblk"); 5501 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5502 } 5503 TAILQ_REMOVE(adphead, oldadp, ad_next); 5504 /* 5505 * We need to move any journal dependencies over to the freefrag 5506 * that releases this block if it exists. Otherwise we are 5507 * extending an existing block and we'll wait until that is 5508 * complete to release the journal space and extend the 5509 * new journal to cover this old space as well. 5510 */ 5511 if (freefrag == NULL) { 5512 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5513 panic("allocdirect_merge: %jd != %jd", 5514 oldadp->ad_newblkno, newadp->ad_newblkno); 5515 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5516 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5517 &oldadp->ad_block.nb_jnewblk->jn_list, 5518 &newadp->ad_block.nb_jwork); 5519 oldadp->ad_block.nb_jnewblk = NULL; 5520 cancel_newblk(&oldadp->ad_block, NULL, 5521 &newadp->ad_block.nb_jwork); 5522 } else { 5523 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5524 &freefrag->ff_list, &freefrag->ff_jwork); 5525 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5526 &freefrag->ff_jwork); 5527 } 5528 free_newblk(&oldadp->ad_block); 5529 } 5530 5531 /* 5532 * Allocate a jfreefrag structure to journal a single block free. 5533 */ 5534 static struct jfreefrag * 5535 newjfreefrag(freefrag, ip, blkno, size, lbn) 5536 struct freefrag *freefrag; 5537 struct inode *ip; 5538 ufs2_daddr_t blkno; 5539 long size; 5540 ufs_lbn_t lbn; 5541 { 5542 struct jfreefrag *jfreefrag; 5543 struct fs *fs; 5544 5545 fs = ITOFS(ip); 5546 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5547 M_SOFTDEP_FLAGS); 5548 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5549 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5550 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5551 jfreefrag->fr_ino = ip->i_number; 5552 jfreefrag->fr_lbn = lbn; 5553 jfreefrag->fr_blkno = blkno; 5554 jfreefrag->fr_frags = numfrags(fs, size); 5555 jfreefrag->fr_freefrag = freefrag; 5556 5557 return (jfreefrag); 5558 } 5559 5560 /* 5561 * Allocate a new freefrag structure. 5562 */ 5563 static struct freefrag * 5564 newfreefrag(ip, blkno, size, lbn) 5565 struct inode *ip; 5566 ufs2_daddr_t blkno; 5567 long size; 5568 ufs_lbn_t lbn; 5569 { 5570 struct freefrag *freefrag; 5571 struct ufsmount *ump; 5572 struct fs *fs; 5573 5574 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5575 ip->i_number, blkno, size, lbn); 5576 ump = ITOUMP(ip); 5577 fs = ump->um_fs; 5578 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5579 panic("newfreefrag: frag size"); 5580 freefrag = malloc(sizeof(struct freefrag), 5581 M_FREEFRAG, M_SOFTDEP_FLAGS); 5582 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5583 freefrag->ff_state = ATTACHED; 5584 LIST_INIT(&freefrag->ff_jwork); 5585 freefrag->ff_inum = ip->i_number; 5586 freefrag->ff_vtype = ITOV(ip)->v_type; 5587 freefrag->ff_blkno = blkno; 5588 freefrag->ff_fragsize = size; 5589 5590 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5591 freefrag->ff_jdep = (struct worklist *) 5592 newjfreefrag(freefrag, ip, blkno, size, lbn); 5593 } else { 5594 freefrag->ff_state |= DEPCOMPLETE; 5595 freefrag->ff_jdep = NULL; 5596 } 5597 5598 return (freefrag); 5599 } 5600 5601 /* 5602 * This workitem de-allocates fragments that were replaced during 5603 * file block allocation. 5604 */ 5605 static void 5606 handle_workitem_freefrag(freefrag) 5607 struct freefrag *freefrag; 5608 { 5609 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5610 struct workhead wkhd; 5611 5612 CTR3(KTR_SUJ, 5613 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5614 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5615 /* 5616 * It would be illegal to add new completion items to the 5617 * freefrag after it was schedule to be done so it must be 5618 * safe to modify the list head here. 5619 */ 5620 LIST_INIT(&wkhd); 5621 ACQUIRE_LOCK(ump); 5622 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5623 /* 5624 * If the journal has not been written we must cancel it here. 5625 */ 5626 if (freefrag->ff_jdep) { 5627 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5628 panic("handle_workitem_freefrag: Unexpected type %d\n", 5629 freefrag->ff_jdep->wk_type); 5630 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5631 } 5632 FREE_LOCK(ump); 5633 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5634 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5635 ACQUIRE_LOCK(ump); 5636 WORKITEM_FREE(freefrag, D_FREEFRAG); 5637 FREE_LOCK(ump); 5638 } 5639 5640 /* 5641 * Set up a dependency structure for an external attributes data block. 5642 * This routine follows much of the structure of softdep_setup_allocdirect. 5643 * See the description of softdep_setup_allocdirect above for details. 5644 */ 5645 void 5646 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5647 struct inode *ip; 5648 ufs_lbn_t off; 5649 ufs2_daddr_t newblkno; 5650 ufs2_daddr_t oldblkno; 5651 long newsize; 5652 long oldsize; 5653 struct buf *bp; 5654 { 5655 struct allocdirect *adp, *oldadp; 5656 struct allocdirectlst *adphead; 5657 struct freefrag *freefrag; 5658 struct inodedep *inodedep; 5659 struct jnewblk *jnewblk; 5660 struct newblk *newblk; 5661 struct mount *mp; 5662 struct ufsmount *ump; 5663 ufs_lbn_t lbn; 5664 5665 mp = ITOVFS(ip); 5666 ump = VFSTOUFS(mp); 5667 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5668 ("softdep_setup_allocext called on non-softdep filesystem")); 5669 KASSERT(off < UFS_NXADDR, 5670 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5671 5672 lbn = bp->b_lblkno; 5673 if (oldblkno && oldblkno != newblkno) 5674 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5675 else 5676 freefrag = NULL; 5677 5678 ACQUIRE_LOCK(ump); 5679 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5680 panic("softdep_setup_allocext: lost block"); 5681 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5682 ("softdep_setup_allocext: newblk already initialized")); 5683 /* 5684 * Convert the newblk to an allocdirect. 5685 */ 5686 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5687 adp = (struct allocdirect *)newblk; 5688 newblk->nb_freefrag = freefrag; 5689 adp->ad_offset = off; 5690 adp->ad_oldblkno = oldblkno; 5691 adp->ad_newsize = newsize; 5692 adp->ad_oldsize = oldsize; 5693 adp->ad_state |= EXTDATA; 5694 5695 /* 5696 * Finish initializing the journal. 5697 */ 5698 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5699 jnewblk->jn_ino = ip->i_number; 5700 jnewblk->jn_lbn = lbn; 5701 add_to_journal(&jnewblk->jn_list); 5702 } 5703 if (freefrag && freefrag->ff_jdep != NULL && 5704 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5705 add_to_journal(freefrag->ff_jdep); 5706 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5707 adp->ad_inodedep = inodedep; 5708 5709 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5710 /* 5711 * The list of allocdirects must be kept in sorted and ascending 5712 * order so that the rollback routines can quickly determine the 5713 * first uncommitted block (the size of the file stored on disk 5714 * ends at the end of the lowest committed fragment, or if there 5715 * are no fragments, at the end of the highest committed block). 5716 * Since files generally grow, the typical case is that the new 5717 * block is to be added at the end of the list. We speed this 5718 * special case by checking against the last allocdirect in the 5719 * list before laboriously traversing the list looking for the 5720 * insertion point. 5721 */ 5722 adphead = &inodedep->id_newextupdt; 5723 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5724 if (oldadp == NULL || oldadp->ad_offset <= off) { 5725 /* insert at end of list */ 5726 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5727 if (oldadp != NULL && oldadp->ad_offset == off) 5728 allocdirect_merge(adphead, adp, oldadp); 5729 FREE_LOCK(ump); 5730 return; 5731 } 5732 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5733 if (oldadp->ad_offset >= off) 5734 break; 5735 } 5736 if (oldadp == NULL) 5737 panic("softdep_setup_allocext: lost entry"); 5738 /* insert in middle of list */ 5739 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5740 if (oldadp->ad_offset == off) 5741 allocdirect_merge(adphead, adp, oldadp); 5742 FREE_LOCK(ump); 5743 } 5744 5745 /* 5746 * Indirect block allocation dependencies. 5747 * 5748 * The same dependencies that exist for a direct block also exist when 5749 * a new block is allocated and pointed to by an entry in a block of 5750 * indirect pointers. The undo/redo states described above are also 5751 * used here. Because an indirect block contains many pointers that 5752 * may have dependencies, a second copy of the entire in-memory indirect 5753 * block is kept. The buffer cache copy is always completely up-to-date. 5754 * The second copy, which is used only as a source for disk writes, 5755 * contains only the safe pointers (i.e., those that have no remaining 5756 * update dependencies). The second copy is freed when all pointers 5757 * are safe. The cache is not allowed to replace indirect blocks with 5758 * pending update dependencies. If a buffer containing an indirect 5759 * block with dependencies is written, these routines will mark it 5760 * dirty again. It can only be successfully written once all the 5761 * dependencies are removed. The ffs_fsync routine in conjunction with 5762 * softdep_sync_metadata work together to get all the dependencies 5763 * removed so that a file can be successfully written to disk. Three 5764 * procedures are used when setting up indirect block pointer 5765 * dependencies. The division is necessary because of the organization 5766 * of the "balloc" routine and because of the distinction between file 5767 * pages and file metadata blocks. 5768 */ 5769 5770 /* 5771 * Allocate a new allocindir structure. 5772 */ 5773 static struct allocindir * 5774 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5775 struct inode *ip; /* inode for file being extended */ 5776 int ptrno; /* offset of pointer in indirect block */ 5777 ufs2_daddr_t newblkno; /* disk block number being added */ 5778 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5779 ufs_lbn_t lbn; 5780 { 5781 struct newblk *newblk; 5782 struct allocindir *aip; 5783 struct freefrag *freefrag; 5784 struct jnewblk *jnewblk; 5785 5786 if (oldblkno) 5787 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn); 5788 else 5789 freefrag = NULL; 5790 ACQUIRE_LOCK(ITOUMP(ip)); 5791 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5792 panic("new_allocindir: lost block"); 5793 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5794 ("newallocindir: newblk already initialized")); 5795 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5796 newblk->nb_freefrag = freefrag; 5797 aip = (struct allocindir *)newblk; 5798 aip->ai_offset = ptrno; 5799 aip->ai_oldblkno = oldblkno; 5800 aip->ai_lbn = lbn; 5801 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5802 jnewblk->jn_ino = ip->i_number; 5803 jnewblk->jn_lbn = lbn; 5804 add_to_journal(&jnewblk->jn_list); 5805 } 5806 if (freefrag && freefrag->ff_jdep != NULL && 5807 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5808 add_to_journal(freefrag->ff_jdep); 5809 return (aip); 5810 } 5811 5812 /* 5813 * Called just before setting an indirect block pointer 5814 * to a newly allocated file page. 5815 */ 5816 void 5817 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5818 struct inode *ip; /* inode for file being extended */ 5819 ufs_lbn_t lbn; /* allocated block number within file */ 5820 struct buf *bp; /* buffer with indirect blk referencing page */ 5821 int ptrno; /* offset of pointer in indirect block */ 5822 ufs2_daddr_t newblkno; /* disk block number being added */ 5823 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5824 struct buf *nbp; /* buffer holding allocated page */ 5825 { 5826 struct inodedep *inodedep; 5827 struct freefrag *freefrag; 5828 struct allocindir *aip; 5829 struct pagedep *pagedep; 5830 struct mount *mp; 5831 struct ufsmount *ump; 5832 5833 mp = ITOVFS(ip); 5834 ump = VFSTOUFS(mp); 5835 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5836 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5837 KASSERT(lbn == nbp->b_lblkno, 5838 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5839 lbn, bp->b_lblkno)); 5840 CTR4(KTR_SUJ, 5841 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5842 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5843 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5844 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5845 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5846 /* 5847 * If we are allocating a directory page, then we must 5848 * allocate an associated pagedep to track additions and 5849 * deletions. 5850 */ 5851 if ((ip->i_mode & IFMT) == IFDIR) 5852 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5853 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5854 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5855 FREE_LOCK(ump); 5856 if (freefrag) 5857 handle_workitem_freefrag(freefrag); 5858 } 5859 5860 /* 5861 * Called just before setting an indirect block pointer to a 5862 * newly allocated indirect block. 5863 */ 5864 void 5865 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5866 struct buf *nbp; /* newly allocated indirect block */ 5867 struct inode *ip; /* inode for file being extended */ 5868 struct buf *bp; /* indirect block referencing allocated block */ 5869 int ptrno; /* offset of pointer in indirect block */ 5870 ufs2_daddr_t newblkno; /* disk block number being added */ 5871 { 5872 struct inodedep *inodedep; 5873 struct allocindir *aip; 5874 struct ufsmount *ump; 5875 ufs_lbn_t lbn; 5876 5877 ump = ITOUMP(ip); 5878 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5879 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5880 CTR3(KTR_SUJ, 5881 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5882 ip->i_number, newblkno, ptrno); 5883 lbn = nbp->b_lblkno; 5884 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5885 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5886 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5887 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5888 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5889 panic("softdep_setup_allocindir_meta: Block already existed"); 5890 FREE_LOCK(ump); 5891 } 5892 5893 static void 5894 indirdep_complete(indirdep) 5895 struct indirdep *indirdep; 5896 { 5897 struct allocindir *aip; 5898 5899 LIST_REMOVE(indirdep, ir_next); 5900 indirdep->ir_state |= DEPCOMPLETE; 5901 5902 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5903 LIST_REMOVE(aip, ai_next); 5904 free_newblk(&aip->ai_block); 5905 } 5906 /* 5907 * If this indirdep is not attached to a buf it was simply waiting 5908 * on completion to clear completehd. free_indirdep() asserts 5909 * that nothing is dangling. 5910 */ 5911 if ((indirdep->ir_state & ONWORKLIST) == 0) 5912 free_indirdep(indirdep); 5913 } 5914 5915 static struct indirdep * 5916 indirdep_lookup(mp, ip, bp) 5917 struct mount *mp; 5918 struct inode *ip; 5919 struct buf *bp; 5920 { 5921 struct indirdep *indirdep, *newindirdep; 5922 struct newblk *newblk; 5923 struct ufsmount *ump; 5924 struct worklist *wk; 5925 struct fs *fs; 5926 ufs2_daddr_t blkno; 5927 5928 ump = VFSTOUFS(mp); 5929 LOCK_OWNED(ump); 5930 indirdep = NULL; 5931 newindirdep = NULL; 5932 fs = ump->um_fs; 5933 for (;;) { 5934 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5935 if (wk->wk_type != D_INDIRDEP) 5936 continue; 5937 indirdep = WK_INDIRDEP(wk); 5938 break; 5939 } 5940 /* Found on the buffer worklist, no new structure to free. */ 5941 if (indirdep != NULL && newindirdep == NULL) 5942 return (indirdep); 5943 if (indirdep != NULL && newindirdep != NULL) 5944 panic("indirdep_lookup: simultaneous create"); 5945 /* None found on the buffer and a new structure is ready. */ 5946 if (indirdep == NULL && newindirdep != NULL) 5947 break; 5948 /* None found and no new structure available. */ 5949 FREE_LOCK(ump); 5950 newindirdep = malloc(sizeof(struct indirdep), 5951 M_INDIRDEP, M_SOFTDEP_FLAGS); 5952 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5953 newindirdep->ir_state = ATTACHED; 5954 if (I_IS_UFS1(ip)) 5955 newindirdep->ir_state |= UFS1FMT; 5956 TAILQ_INIT(&newindirdep->ir_trunc); 5957 newindirdep->ir_saveddata = NULL; 5958 LIST_INIT(&newindirdep->ir_deplisthd); 5959 LIST_INIT(&newindirdep->ir_donehd); 5960 LIST_INIT(&newindirdep->ir_writehd); 5961 LIST_INIT(&newindirdep->ir_completehd); 5962 if (bp->b_blkno == bp->b_lblkno) { 5963 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5964 NULL, NULL); 5965 bp->b_blkno = blkno; 5966 } 5967 newindirdep->ir_freeblks = NULL; 5968 newindirdep->ir_savebp = 5969 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5970 newindirdep->ir_bp = bp; 5971 BUF_KERNPROC(newindirdep->ir_savebp); 5972 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5973 ACQUIRE_LOCK(ump); 5974 } 5975 indirdep = newindirdep; 5976 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5977 /* 5978 * If the block is not yet allocated we don't set DEPCOMPLETE so 5979 * that we don't free dependencies until the pointers are valid. 5980 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5981 * than using the hash. 5982 */ 5983 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5984 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5985 else 5986 indirdep->ir_state |= DEPCOMPLETE; 5987 return (indirdep); 5988 } 5989 5990 /* 5991 * Called to finish the allocation of the "aip" allocated 5992 * by one of the two routines above. 5993 */ 5994 static struct freefrag * 5995 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5996 struct buf *bp; /* in-memory copy of the indirect block */ 5997 struct inode *ip; /* inode for file being extended */ 5998 struct inodedep *inodedep; /* Inodedep for ip */ 5999 struct allocindir *aip; /* allocindir allocated by the above routines */ 6000 ufs_lbn_t lbn; /* Logical block number for this block. */ 6001 { 6002 struct fs *fs; 6003 struct indirdep *indirdep; 6004 struct allocindir *oldaip; 6005 struct freefrag *freefrag; 6006 struct mount *mp; 6007 struct ufsmount *ump; 6008 6009 mp = ITOVFS(ip); 6010 ump = VFSTOUFS(mp); 6011 LOCK_OWNED(ump); 6012 fs = ump->um_fs; 6013 if (bp->b_lblkno >= 0) 6014 panic("setup_allocindir_phase2: not indir blk"); 6015 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6016 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6017 indirdep = indirdep_lookup(mp, ip, bp); 6018 KASSERT(indirdep->ir_savebp != NULL, 6019 ("setup_allocindir_phase2 NULL ir_savebp")); 6020 aip->ai_indirdep = indirdep; 6021 /* 6022 * Check for an unwritten dependency for this indirect offset. If 6023 * there is, merge the old dependency into the new one. This happens 6024 * as a result of reallocblk only. 6025 */ 6026 freefrag = NULL; 6027 if (aip->ai_oldblkno != 0) { 6028 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6029 if (oldaip->ai_offset == aip->ai_offset) { 6030 freefrag = allocindir_merge(aip, oldaip); 6031 goto done; 6032 } 6033 } 6034 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6035 if (oldaip->ai_offset == aip->ai_offset) { 6036 freefrag = allocindir_merge(aip, oldaip); 6037 goto done; 6038 } 6039 } 6040 } 6041 done: 6042 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6043 return (freefrag); 6044 } 6045 6046 /* 6047 * Merge two allocindirs which refer to the same block. Move newblock 6048 * dependencies and setup the freefrags appropriately. 6049 */ 6050 static struct freefrag * 6051 allocindir_merge(aip, oldaip) 6052 struct allocindir *aip; 6053 struct allocindir *oldaip; 6054 { 6055 struct freefrag *freefrag; 6056 struct worklist *wk; 6057 6058 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6059 panic("allocindir_merge: blkno"); 6060 aip->ai_oldblkno = oldaip->ai_oldblkno; 6061 freefrag = aip->ai_freefrag; 6062 aip->ai_freefrag = oldaip->ai_freefrag; 6063 oldaip->ai_freefrag = NULL; 6064 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6065 /* 6066 * If we are tracking a new directory-block allocation, 6067 * move it from the old allocindir to the new allocindir. 6068 */ 6069 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6070 WORKLIST_REMOVE(wk); 6071 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6072 panic("allocindir_merge: extra newdirblk"); 6073 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6074 } 6075 /* 6076 * We can skip journaling for this freefrag and just complete 6077 * any pending journal work for the allocindir that is being 6078 * removed after the freefrag completes. 6079 */ 6080 if (freefrag->ff_jdep) 6081 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6082 LIST_REMOVE(oldaip, ai_next); 6083 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6084 &freefrag->ff_list, &freefrag->ff_jwork); 6085 free_newblk(&oldaip->ai_block); 6086 6087 return (freefrag); 6088 } 6089 6090 static inline void 6091 setup_freedirect(freeblks, ip, i, needj) 6092 struct freeblks *freeblks; 6093 struct inode *ip; 6094 int i; 6095 int needj; 6096 { 6097 struct ufsmount *ump; 6098 ufs2_daddr_t blkno; 6099 int frags; 6100 6101 blkno = DIP(ip, i_db[i]); 6102 if (blkno == 0) 6103 return; 6104 DIP_SET(ip, i_db[i], 0); 6105 ump = ITOUMP(ip); 6106 frags = sblksize(ump->um_fs, ip->i_size, i); 6107 frags = numfrags(ump->um_fs, frags); 6108 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6109 } 6110 6111 static inline void 6112 setup_freeext(freeblks, ip, i, needj) 6113 struct freeblks *freeblks; 6114 struct inode *ip; 6115 int i; 6116 int needj; 6117 { 6118 struct ufsmount *ump; 6119 ufs2_daddr_t blkno; 6120 int frags; 6121 6122 blkno = ip->i_din2->di_extb[i]; 6123 if (blkno == 0) 6124 return; 6125 ip->i_din2->di_extb[i] = 0; 6126 ump = ITOUMP(ip); 6127 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6128 frags = numfrags(ump->um_fs, frags); 6129 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6130 } 6131 6132 static inline void 6133 setup_freeindir(freeblks, ip, i, lbn, needj) 6134 struct freeblks *freeblks; 6135 struct inode *ip; 6136 int i; 6137 ufs_lbn_t lbn; 6138 int needj; 6139 { 6140 struct ufsmount *ump; 6141 ufs2_daddr_t blkno; 6142 6143 blkno = DIP(ip, i_ib[i]); 6144 if (blkno == 0) 6145 return; 6146 DIP_SET(ip, i_ib[i], 0); 6147 ump = ITOUMP(ip); 6148 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6149 0, needj); 6150 } 6151 6152 static inline struct freeblks * 6153 newfreeblks(mp, ip) 6154 struct mount *mp; 6155 struct inode *ip; 6156 { 6157 struct freeblks *freeblks; 6158 6159 freeblks = malloc(sizeof(struct freeblks), 6160 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6161 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6162 LIST_INIT(&freeblks->fb_jblkdephd); 6163 LIST_INIT(&freeblks->fb_jwork); 6164 freeblks->fb_ref = 0; 6165 freeblks->fb_cgwait = 0; 6166 freeblks->fb_state = ATTACHED; 6167 freeblks->fb_uid = ip->i_uid; 6168 freeblks->fb_inum = ip->i_number; 6169 freeblks->fb_vtype = ITOV(ip)->v_type; 6170 freeblks->fb_modrev = DIP(ip, i_modrev); 6171 freeblks->fb_devvp = ITODEVVP(ip); 6172 freeblks->fb_chkcnt = 0; 6173 freeblks->fb_len = 0; 6174 6175 return (freeblks); 6176 } 6177 6178 static void 6179 trunc_indirdep(indirdep, freeblks, bp, off) 6180 struct indirdep *indirdep; 6181 struct freeblks *freeblks; 6182 struct buf *bp; 6183 int off; 6184 { 6185 struct allocindir *aip, *aipn; 6186 6187 /* 6188 * The first set of allocindirs won't be in savedbp. 6189 */ 6190 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6191 if (aip->ai_offset > off) 6192 cancel_allocindir(aip, bp, freeblks, 1); 6193 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6194 if (aip->ai_offset > off) 6195 cancel_allocindir(aip, bp, freeblks, 1); 6196 /* 6197 * These will exist in savedbp. 6198 */ 6199 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6200 if (aip->ai_offset > off) 6201 cancel_allocindir(aip, NULL, freeblks, 0); 6202 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6203 if (aip->ai_offset > off) 6204 cancel_allocindir(aip, NULL, freeblks, 0); 6205 } 6206 6207 /* 6208 * Follow the chain of indirects down to lastlbn creating a freework 6209 * structure for each. This will be used to start indir_trunc() at 6210 * the right offset and create the journal records for the parrtial 6211 * truncation. A second step will handle the truncated dependencies. 6212 */ 6213 static int 6214 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6215 struct freeblks *freeblks; 6216 struct inode *ip; 6217 ufs_lbn_t lbn; 6218 ufs_lbn_t lastlbn; 6219 ufs2_daddr_t blkno; 6220 { 6221 struct indirdep *indirdep; 6222 struct indirdep *indirn; 6223 struct freework *freework; 6224 struct newblk *newblk; 6225 struct mount *mp; 6226 struct ufsmount *ump; 6227 struct buf *bp; 6228 uint8_t *start; 6229 uint8_t *end; 6230 ufs_lbn_t lbnadd; 6231 int level; 6232 int error; 6233 int off; 6234 6235 6236 freework = NULL; 6237 if (blkno == 0) 6238 return (0); 6239 mp = freeblks->fb_list.wk_mp; 6240 ump = VFSTOUFS(mp); 6241 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6242 if ((bp->b_flags & B_CACHE) == 0) { 6243 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6244 bp->b_iocmd = BIO_READ; 6245 bp->b_flags &= ~B_INVAL; 6246 bp->b_ioflags &= ~BIO_ERROR; 6247 vfs_busy_pages(bp, 0); 6248 bp->b_iooffset = dbtob(bp->b_blkno); 6249 bstrategy(bp); 6250 #ifdef RACCT 6251 if (racct_enable) { 6252 PROC_LOCK(curproc); 6253 racct_add_buf(curproc, bp, 0); 6254 PROC_UNLOCK(curproc); 6255 } 6256 #endif /* RACCT */ 6257 curthread->td_ru.ru_inblock++; 6258 error = bufwait(bp); 6259 if (error) { 6260 brelse(bp); 6261 return (error); 6262 } 6263 } 6264 level = lbn_level(lbn); 6265 lbnadd = lbn_offset(ump->um_fs, level); 6266 /* 6267 * Compute the offset of the last block we want to keep. Store 6268 * in the freework the first block we want to completely free. 6269 */ 6270 off = (lastlbn - -(lbn + level)) / lbnadd; 6271 if (off + 1 == NINDIR(ump->um_fs)) 6272 goto nowork; 6273 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6274 /* 6275 * Link the freework into the indirdep. This will prevent any new 6276 * allocations from proceeding until we are finished with the 6277 * truncate and the block is written. 6278 */ 6279 ACQUIRE_LOCK(ump); 6280 indirdep = indirdep_lookup(mp, ip, bp); 6281 if (indirdep->ir_freeblks) 6282 panic("setup_trunc_indir: indirdep already truncated."); 6283 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6284 freework->fw_indir = indirdep; 6285 /* 6286 * Cancel any allocindirs that will not make it to disk. 6287 * We have to do this for all copies of the indirdep that 6288 * live on this newblk. 6289 */ 6290 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6291 newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk); 6292 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6293 trunc_indirdep(indirn, freeblks, bp, off); 6294 } else 6295 trunc_indirdep(indirdep, freeblks, bp, off); 6296 FREE_LOCK(ump); 6297 /* 6298 * Creation is protected by the buf lock. The saveddata is only 6299 * needed if a full truncation follows a partial truncation but it 6300 * is difficult to allocate in that case so we fetch it anyway. 6301 */ 6302 if (indirdep->ir_saveddata == NULL) 6303 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6304 M_SOFTDEP_FLAGS); 6305 nowork: 6306 /* Fetch the blkno of the child and the zero start offset. */ 6307 if (I_IS_UFS1(ip)) { 6308 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6309 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6310 } else { 6311 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6312 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6313 } 6314 if (freework) { 6315 /* Zero the truncated pointers. */ 6316 end = bp->b_data + bp->b_bcount; 6317 bzero(start, end - start); 6318 bdwrite(bp); 6319 } else 6320 bqrelse(bp); 6321 if (level == 0) 6322 return (0); 6323 lbn++; /* adjust level */ 6324 lbn -= (off * lbnadd); 6325 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6326 } 6327 6328 /* 6329 * Complete the partial truncation of an indirect block setup by 6330 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6331 * copy and writes them to disk before the freeblks is allowed to complete. 6332 */ 6333 static void 6334 complete_trunc_indir(freework) 6335 struct freework *freework; 6336 { 6337 struct freework *fwn; 6338 struct indirdep *indirdep; 6339 struct ufsmount *ump; 6340 struct buf *bp; 6341 uintptr_t start; 6342 int count; 6343 6344 ump = VFSTOUFS(freework->fw_list.wk_mp); 6345 LOCK_OWNED(ump); 6346 indirdep = freework->fw_indir; 6347 for (;;) { 6348 bp = indirdep->ir_bp; 6349 /* See if the block was discarded. */ 6350 if (bp == NULL) 6351 break; 6352 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6353 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6354 break; 6355 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6356 LOCK_PTR(ump)) == 0) 6357 BUF_UNLOCK(bp); 6358 ACQUIRE_LOCK(ump); 6359 } 6360 freework->fw_state |= DEPCOMPLETE; 6361 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6362 /* 6363 * Zero the pointers in the saved copy. 6364 */ 6365 if (indirdep->ir_state & UFS1FMT) 6366 start = sizeof(ufs1_daddr_t); 6367 else 6368 start = sizeof(ufs2_daddr_t); 6369 start *= freework->fw_start; 6370 count = indirdep->ir_savebp->b_bcount - start; 6371 start += (uintptr_t)indirdep->ir_savebp->b_data; 6372 bzero((char *)start, count); 6373 /* 6374 * We need to start the next truncation in the list if it has not 6375 * been started yet. 6376 */ 6377 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6378 if (fwn != NULL) { 6379 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6380 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6381 if ((fwn->fw_state & ONWORKLIST) == 0) 6382 freework_enqueue(fwn); 6383 } 6384 /* 6385 * If bp is NULL the block was fully truncated, restore 6386 * the saved block list otherwise free it if it is no 6387 * longer needed. 6388 */ 6389 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6390 if (bp == NULL) 6391 bcopy(indirdep->ir_saveddata, 6392 indirdep->ir_savebp->b_data, 6393 indirdep->ir_savebp->b_bcount); 6394 free(indirdep->ir_saveddata, M_INDIRDEP); 6395 indirdep->ir_saveddata = NULL; 6396 } 6397 /* 6398 * When bp is NULL there is a full truncation pending. We 6399 * must wait for this full truncation to be journaled before 6400 * we can release this freework because the disk pointers will 6401 * never be written as zero. 6402 */ 6403 if (bp == NULL) { 6404 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6405 handle_written_freework(freework); 6406 else 6407 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6408 &freework->fw_list); 6409 } else { 6410 /* Complete when the real copy is written. */ 6411 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6412 BUF_UNLOCK(bp); 6413 } 6414 } 6415 6416 /* 6417 * Calculate the number of blocks we are going to release where datablocks 6418 * is the current total and length is the new file size. 6419 */ 6420 static ufs2_daddr_t 6421 blkcount(fs, datablocks, length) 6422 struct fs *fs; 6423 ufs2_daddr_t datablocks; 6424 off_t length; 6425 { 6426 off_t totblks, numblks; 6427 6428 totblks = 0; 6429 numblks = howmany(length, fs->fs_bsize); 6430 if (numblks <= UFS_NDADDR) { 6431 totblks = howmany(length, fs->fs_fsize); 6432 goto out; 6433 } 6434 totblks = blkstofrags(fs, numblks); 6435 numblks -= UFS_NDADDR; 6436 /* 6437 * Count all single, then double, then triple indirects required. 6438 * Subtracting one indirects worth of blocks for each pass 6439 * acknowledges one of each pointed to by the inode. 6440 */ 6441 for (;;) { 6442 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6443 numblks -= NINDIR(fs); 6444 if (numblks <= 0) 6445 break; 6446 numblks = howmany(numblks, NINDIR(fs)); 6447 } 6448 out: 6449 totblks = fsbtodb(fs, totblks); 6450 /* 6451 * Handle sparse files. We can't reclaim more blocks than the inode 6452 * references. We will correct it later in handle_complete_freeblks() 6453 * when we know the real count. 6454 */ 6455 if (totblks > datablocks) 6456 return (0); 6457 return (datablocks - totblks); 6458 } 6459 6460 /* 6461 * Handle freeblocks for journaled softupdate filesystems. 6462 * 6463 * Contrary to normal softupdates, we must preserve the block pointers in 6464 * indirects until their subordinates are free. This is to avoid journaling 6465 * every block that is freed which may consume more space than the journal 6466 * itself. The recovery program will see the free block journals at the 6467 * base of the truncated area and traverse them to reclaim space. The 6468 * pointers in the inode may be cleared immediately after the journal 6469 * records are written because each direct and indirect pointer in the 6470 * inode is recorded in a journal. This permits full truncation to proceed 6471 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6472 * 6473 * The algorithm is as follows: 6474 * 1) Traverse the in-memory state and create journal entries to release 6475 * the relevant blocks and full indirect trees. 6476 * 2) Traverse the indirect block chain adding partial truncation freework 6477 * records to indirects in the path to lastlbn. The freework will 6478 * prevent new allocation dependencies from being satisfied in this 6479 * indirect until the truncation completes. 6480 * 3) Read and lock the inode block, performing an update with the new size 6481 * and pointers. This prevents truncated data from becoming valid on 6482 * disk through step 4. 6483 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6484 * eliminate journal work for those records that do not require it. 6485 * 5) Schedule the journal records to be written followed by the inode block. 6486 * 6) Allocate any necessary frags for the end of file. 6487 * 7) Zero any partially truncated blocks. 6488 * 6489 * From this truncation proceeds asynchronously using the freework and 6490 * indir_trunc machinery. The file will not be extended again into a 6491 * partially truncated indirect block until all work is completed but 6492 * the normal dependency mechanism ensures that it is rolled back/forward 6493 * as appropriate. Further truncation may occur without delay and is 6494 * serialized in indir_trunc(). 6495 */ 6496 void 6497 softdep_journal_freeblocks(ip, cred, length, flags) 6498 struct inode *ip; /* The inode whose length is to be reduced */ 6499 struct ucred *cred; 6500 off_t length; /* The new length for the file */ 6501 int flags; /* IO_EXT and/or IO_NORMAL */ 6502 { 6503 struct freeblks *freeblks, *fbn; 6504 struct worklist *wk, *wkn; 6505 struct inodedep *inodedep; 6506 struct jblkdep *jblkdep; 6507 struct allocdirect *adp, *adpn; 6508 struct ufsmount *ump; 6509 struct fs *fs; 6510 struct buf *bp; 6511 struct vnode *vp; 6512 struct mount *mp; 6513 ufs2_daddr_t extblocks, datablocks; 6514 ufs_lbn_t tmpval, lbn, lastlbn; 6515 int frags, lastoff, iboff, allocblock, needj, error, i; 6516 6517 ump = ITOUMP(ip); 6518 mp = UFSTOVFS(ump); 6519 fs = ump->um_fs; 6520 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6521 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6522 vp = ITOV(ip); 6523 needj = 1; 6524 iboff = -1; 6525 allocblock = 0; 6526 extblocks = 0; 6527 datablocks = 0; 6528 frags = 0; 6529 freeblks = newfreeblks(mp, ip); 6530 ACQUIRE_LOCK(ump); 6531 /* 6532 * If we're truncating a removed file that will never be written 6533 * we don't need to journal the block frees. The canceled journals 6534 * for the allocations will suffice. 6535 */ 6536 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6537 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6538 length == 0) 6539 needj = 0; 6540 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6541 ip->i_number, length, needj); 6542 FREE_LOCK(ump); 6543 /* 6544 * Calculate the lbn that we are truncating to. This results in -1 6545 * if we're truncating the 0 bytes. So it is the last lbn we want 6546 * to keep, not the first lbn we want to truncate. 6547 */ 6548 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6549 lastoff = blkoff(fs, length); 6550 /* 6551 * Compute frags we are keeping in lastlbn. 0 means all. 6552 */ 6553 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6554 frags = fragroundup(fs, lastoff); 6555 /* adp offset of last valid allocdirect. */ 6556 iboff = lastlbn; 6557 } else if (lastlbn > 0) 6558 iboff = UFS_NDADDR; 6559 if (fs->fs_magic == FS_UFS2_MAGIC) 6560 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6561 /* 6562 * Handle normal data blocks and indirects. This section saves 6563 * values used after the inode update to complete frag and indirect 6564 * truncation. 6565 */ 6566 if ((flags & IO_NORMAL) != 0) { 6567 /* 6568 * Handle truncation of whole direct and indirect blocks. 6569 */ 6570 for (i = iboff + 1; i < UFS_NDADDR; i++) 6571 setup_freedirect(freeblks, ip, i, needj); 6572 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6573 i < UFS_NIADDR; 6574 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6575 /* Release a whole indirect tree. */ 6576 if (lbn > lastlbn) { 6577 setup_freeindir(freeblks, ip, i, -lbn -i, 6578 needj); 6579 continue; 6580 } 6581 iboff = i + UFS_NDADDR; 6582 /* 6583 * Traverse partially truncated indirect tree. 6584 */ 6585 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6586 setup_trunc_indir(freeblks, ip, -lbn - i, 6587 lastlbn, DIP(ip, i_ib[i])); 6588 } 6589 /* 6590 * Handle partial truncation to a frag boundary. 6591 */ 6592 if (frags) { 6593 ufs2_daddr_t blkno; 6594 long oldfrags; 6595 6596 oldfrags = blksize(fs, ip, lastlbn); 6597 blkno = DIP(ip, i_db[lastlbn]); 6598 if (blkno && oldfrags != frags) { 6599 oldfrags -= frags; 6600 oldfrags = numfrags(fs, oldfrags); 6601 blkno += numfrags(fs, frags); 6602 newfreework(ump, freeblks, NULL, lastlbn, 6603 blkno, oldfrags, 0, needj); 6604 if (needj) 6605 adjust_newfreework(freeblks, 6606 numfrags(fs, frags)); 6607 } else if (blkno == 0) 6608 allocblock = 1; 6609 } 6610 /* 6611 * Add a journal record for partial truncate if we are 6612 * handling indirect blocks. Non-indirects need no extra 6613 * journaling. 6614 */ 6615 if (length != 0 && lastlbn >= UFS_NDADDR) { 6616 ip->i_flag |= IN_TRUNCATED; 6617 newjtrunc(freeblks, length, 0); 6618 } 6619 ip->i_size = length; 6620 DIP_SET(ip, i_size, ip->i_size); 6621 datablocks = DIP(ip, i_blocks) - extblocks; 6622 if (length != 0) 6623 datablocks = blkcount(fs, datablocks, length); 6624 freeblks->fb_len = length; 6625 } 6626 if ((flags & IO_EXT) != 0) { 6627 for (i = 0; i < UFS_NXADDR; i++) 6628 setup_freeext(freeblks, ip, i, needj); 6629 ip->i_din2->di_extsize = 0; 6630 datablocks += extblocks; 6631 } 6632 #ifdef QUOTA 6633 /* Reference the quotas in case the block count is wrong in the end. */ 6634 quotaref(vp, freeblks->fb_quota); 6635 (void) chkdq(ip, -datablocks, NOCRED, 0); 6636 #endif 6637 freeblks->fb_chkcnt = -datablocks; 6638 UFS_LOCK(ump); 6639 fs->fs_pendingblocks += datablocks; 6640 UFS_UNLOCK(ump); 6641 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6642 /* 6643 * Handle truncation of incomplete alloc direct dependencies. We 6644 * hold the inode block locked to prevent incomplete dependencies 6645 * from reaching the disk while we are eliminating those that 6646 * have been truncated. This is a partially inlined ffs_update(). 6647 */ 6648 ufs_itimes(vp); 6649 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6650 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6651 (int)fs->fs_bsize, cred, &bp); 6652 if (error) { 6653 brelse(bp); 6654 softdep_error("softdep_journal_freeblocks", error); 6655 return; 6656 } 6657 if (bp->b_bufsize == fs->fs_bsize) 6658 bp->b_flags |= B_CLUSTEROK; 6659 softdep_update_inodeblock(ip, bp, 0); 6660 if (ump->um_fstype == UFS1) 6661 *((struct ufs1_dinode *)bp->b_data + 6662 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6663 else 6664 *((struct ufs2_dinode *)bp->b_data + 6665 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6666 ACQUIRE_LOCK(ump); 6667 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6668 if ((inodedep->id_state & IOSTARTED) != 0) 6669 panic("softdep_setup_freeblocks: inode busy"); 6670 /* 6671 * Add the freeblks structure to the list of operations that 6672 * must await the zero'ed inode being written to disk. If we 6673 * still have a bitmap dependency (needj), then the inode 6674 * has never been written to disk, so we can process the 6675 * freeblks below once we have deleted the dependencies. 6676 */ 6677 if (needj) 6678 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6679 else 6680 freeblks->fb_state |= COMPLETE; 6681 if ((flags & IO_NORMAL) != 0) { 6682 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6683 if (adp->ad_offset > iboff) 6684 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6685 freeblks); 6686 /* 6687 * Truncate the allocdirect. We could eliminate 6688 * or modify journal records as well. 6689 */ 6690 else if (adp->ad_offset == iboff && frags) 6691 adp->ad_newsize = frags; 6692 } 6693 } 6694 if ((flags & IO_EXT) != 0) 6695 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6696 cancel_allocdirect(&inodedep->id_extupdt, adp, 6697 freeblks); 6698 /* 6699 * Scan the bufwait list for newblock dependencies that will never 6700 * make it to disk. 6701 */ 6702 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6703 if (wk->wk_type != D_ALLOCDIRECT) 6704 continue; 6705 adp = WK_ALLOCDIRECT(wk); 6706 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6707 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6708 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6709 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6710 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6711 } 6712 } 6713 /* 6714 * Add journal work. 6715 */ 6716 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6717 add_to_journal(&jblkdep->jb_list); 6718 FREE_LOCK(ump); 6719 bdwrite(bp); 6720 /* 6721 * Truncate dependency structures beyond length. 6722 */ 6723 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6724 /* 6725 * This is only set when we need to allocate a fragment because 6726 * none existed at the end of a frag-sized file. It handles only 6727 * allocating a new, zero filled block. 6728 */ 6729 if (allocblock) { 6730 ip->i_size = length - lastoff; 6731 DIP_SET(ip, i_size, ip->i_size); 6732 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6733 if (error != 0) { 6734 softdep_error("softdep_journal_freeblks", error); 6735 return; 6736 } 6737 ip->i_size = length; 6738 DIP_SET(ip, i_size, length); 6739 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6740 allocbuf(bp, frags); 6741 ffs_update(vp, 0); 6742 bawrite(bp); 6743 } else if (lastoff != 0 && vp->v_type != VDIR) { 6744 int size; 6745 6746 /* 6747 * Zero the end of a truncated frag or block. 6748 */ 6749 size = sblksize(fs, length, lastlbn); 6750 error = bread(vp, lastlbn, size, cred, &bp); 6751 if (error) { 6752 softdep_error("softdep_journal_freeblks", error); 6753 return; 6754 } 6755 bzero((char *)bp->b_data + lastoff, size - lastoff); 6756 bawrite(bp); 6757 6758 } 6759 ACQUIRE_LOCK(ump); 6760 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6761 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6762 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6763 /* 6764 * We zero earlier truncations so they don't erroneously 6765 * update i_blocks. 6766 */ 6767 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6768 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6769 fbn->fb_len = 0; 6770 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6771 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6772 freeblks->fb_state |= INPROGRESS; 6773 else 6774 freeblks = NULL; 6775 FREE_LOCK(ump); 6776 if (freeblks) 6777 handle_workitem_freeblocks(freeblks, 0); 6778 trunc_pages(ip, length, extblocks, flags); 6779 6780 } 6781 6782 /* 6783 * Flush a JOP_SYNC to the journal. 6784 */ 6785 void 6786 softdep_journal_fsync(ip) 6787 struct inode *ip; 6788 { 6789 struct jfsync *jfsync; 6790 struct ufsmount *ump; 6791 6792 ump = ITOUMP(ip); 6793 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6794 ("softdep_journal_fsync called on non-softdep filesystem")); 6795 if ((ip->i_flag & IN_TRUNCATED) == 0) 6796 return; 6797 ip->i_flag &= ~IN_TRUNCATED; 6798 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6799 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6800 jfsync->jfs_size = ip->i_size; 6801 jfsync->jfs_ino = ip->i_number; 6802 ACQUIRE_LOCK(ump); 6803 add_to_journal(&jfsync->jfs_list); 6804 jwait(&jfsync->jfs_list, MNT_WAIT); 6805 FREE_LOCK(ump); 6806 } 6807 6808 /* 6809 * Block de-allocation dependencies. 6810 * 6811 * When blocks are de-allocated, the on-disk pointers must be nullified before 6812 * the blocks are made available for use by other files. (The true 6813 * requirement is that old pointers must be nullified before new on-disk 6814 * pointers are set. We chose this slightly more stringent requirement to 6815 * reduce complexity.) Our implementation handles this dependency by updating 6816 * the inode (or indirect block) appropriately but delaying the actual block 6817 * de-allocation (i.e., freemap and free space count manipulation) until 6818 * after the updated versions reach stable storage. After the disk is 6819 * updated, the blocks can be safely de-allocated whenever it is convenient. 6820 * This implementation handles only the common case of reducing a file's 6821 * length to zero. Other cases are handled by the conventional synchronous 6822 * write approach. 6823 * 6824 * The ffs implementation with which we worked double-checks 6825 * the state of the block pointers and file size as it reduces 6826 * a file's length. Some of this code is replicated here in our 6827 * soft updates implementation. The freeblks->fb_chkcnt field is 6828 * used to transfer a part of this information to the procedure 6829 * that eventually de-allocates the blocks. 6830 * 6831 * This routine should be called from the routine that shortens 6832 * a file's length, before the inode's size or block pointers 6833 * are modified. It will save the block pointer information for 6834 * later release and zero the inode so that the calling routine 6835 * can release it. 6836 */ 6837 void 6838 softdep_setup_freeblocks(ip, length, flags) 6839 struct inode *ip; /* The inode whose length is to be reduced */ 6840 off_t length; /* The new length for the file */ 6841 int flags; /* IO_EXT and/or IO_NORMAL */ 6842 { 6843 struct ufs1_dinode *dp1; 6844 struct ufs2_dinode *dp2; 6845 struct freeblks *freeblks; 6846 struct inodedep *inodedep; 6847 struct allocdirect *adp; 6848 struct ufsmount *ump; 6849 struct buf *bp; 6850 struct fs *fs; 6851 ufs2_daddr_t extblocks, datablocks; 6852 struct mount *mp; 6853 int i, delay, error; 6854 ufs_lbn_t tmpval; 6855 ufs_lbn_t lbn; 6856 6857 ump = ITOUMP(ip); 6858 mp = UFSTOVFS(ump); 6859 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6860 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6861 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6862 ip->i_number, length); 6863 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6864 fs = ump->um_fs; 6865 if ((error = bread(ump->um_devvp, 6866 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6867 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6868 brelse(bp); 6869 softdep_error("softdep_setup_freeblocks", error); 6870 return; 6871 } 6872 freeblks = newfreeblks(mp, ip); 6873 extblocks = 0; 6874 datablocks = 0; 6875 if (fs->fs_magic == FS_UFS2_MAGIC) 6876 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6877 if ((flags & IO_NORMAL) != 0) { 6878 for (i = 0; i < UFS_NDADDR; i++) 6879 setup_freedirect(freeblks, ip, i, 0); 6880 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6881 i < UFS_NIADDR; 6882 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6883 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6884 ip->i_size = 0; 6885 DIP_SET(ip, i_size, 0); 6886 datablocks = DIP(ip, i_blocks) - extblocks; 6887 } 6888 if ((flags & IO_EXT) != 0) { 6889 for (i = 0; i < UFS_NXADDR; i++) 6890 setup_freeext(freeblks, ip, i, 0); 6891 ip->i_din2->di_extsize = 0; 6892 datablocks += extblocks; 6893 } 6894 #ifdef QUOTA 6895 /* Reference the quotas in case the block count is wrong in the end. */ 6896 quotaref(ITOV(ip), freeblks->fb_quota); 6897 (void) chkdq(ip, -datablocks, NOCRED, 0); 6898 #endif 6899 freeblks->fb_chkcnt = -datablocks; 6900 UFS_LOCK(ump); 6901 fs->fs_pendingblocks += datablocks; 6902 UFS_UNLOCK(ump); 6903 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6904 /* 6905 * Push the zero'ed inode to to its disk buffer so that we are free 6906 * to delete its dependencies below. Once the dependencies are gone 6907 * the buffer can be safely released. 6908 */ 6909 if (ump->um_fstype == UFS1) { 6910 dp1 = ((struct ufs1_dinode *)bp->b_data + 6911 ino_to_fsbo(fs, ip->i_number)); 6912 ip->i_din1->di_freelink = dp1->di_freelink; 6913 *dp1 = *ip->i_din1; 6914 } else { 6915 dp2 = ((struct ufs2_dinode *)bp->b_data + 6916 ino_to_fsbo(fs, ip->i_number)); 6917 ip->i_din2->di_freelink = dp2->di_freelink; 6918 *dp2 = *ip->i_din2; 6919 } 6920 /* 6921 * Find and eliminate any inode dependencies. 6922 */ 6923 ACQUIRE_LOCK(ump); 6924 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6925 if ((inodedep->id_state & IOSTARTED) != 0) 6926 panic("softdep_setup_freeblocks: inode busy"); 6927 /* 6928 * Add the freeblks structure to the list of operations that 6929 * must await the zero'ed inode being written to disk. If we 6930 * still have a bitmap dependency (delay == 0), then the inode 6931 * has never been written to disk, so we can process the 6932 * freeblks below once we have deleted the dependencies. 6933 */ 6934 delay = (inodedep->id_state & DEPCOMPLETE); 6935 if (delay) 6936 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6937 else 6938 freeblks->fb_state |= COMPLETE; 6939 /* 6940 * Because the file length has been truncated to zero, any 6941 * pending block allocation dependency structures associated 6942 * with this inode are obsolete and can simply be de-allocated. 6943 * We must first merge the two dependency lists to get rid of 6944 * any duplicate freefrag structures, then purge the merged list. 6945 * If we still have a bitmap dependency, then the inode has never 6946 * been written to disk, so we can free any fragments without delay. 6947 */ 6948 if (flags & IO_NORMAL) { 6949 merge_inode_lists(&inodedep->id_newinoupdt, 6950 &inodedep->id_inoupdt); 6951 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 6952 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6953 freeblks); 6954 } 6955 if (flags & IO_EXT) { 6956 merge_inode_lists(&inodedep->id_newextupdt, 6957 &inodedep->id_extupdt); 6958 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6959 cancel_allocdirect(&inodedep->id_extupdt, adp, 6960 freeblks); 6961 } 6962 FREE_LOCK(ump); 6963 bdwrite(bp); 6964 trunc_dependencies(ip, freeblks, -1, 0, flags); 6965 ACQUIRE_LOCK(ump); 6966 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6967 (void) free_inodedep(inodedep); 6968 freeblks->fb_state |= DEPCOMPLETE; 6969 /* 6970 * If the inode with zeroed block pointers is now on disk 6971 * we can start freeing blocks. 6972 */ 6973 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6974 freeblks->fb_state |= INPROGRESS; 6975 else 6976 freeblks = NULL; 6977 FREE_LOCK(ump); 6978 if (freeblks) 6979 handle_workitem_freeblocks(freeblks, 0); 6980 trunc_pages(ip, length, extblocks, flags); 6981 } 6982 6983 /* 6984 * Eliminate pages from the page cache that back parts of this inode and 6985 * adjust the vnode pager's idea of our size. This prevents stale data 6986 * from hanging around in the page cache. 6987 */ 6988 static void 6989 trunc_pages(ip, length, extblocks, flags) 6990 struct inode *ip; 6991 off_t length; 6992 ufs2_daddr_t extblocks; 6993 int flags; 6994 { 6995 struct vnode *vp; 6996 struct fs *fs; 6997 ufs_lbn_t lbn; 6998 off_t end, extend; 6999 7000 vp = ITOV(ip); 7001 fs = ITOFS(ip); 7002 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7003 if ((flags & IO_EXT) != 0) 7004 vn_pages_remove(vp, extend, 0); 7005 if ((flags & IO_NORMAL) == 0) 7006 return; 7007 BO_LOCK(&vp->v_bufobj); 7008 drain_output(vp); 7009 BO_UNLOCK(&vp->v_bufobj); 7010 /* 7011 * The vnode pager eliminates file pages we eliminate indirects 7012 * below. 7013 */ 7014 vnode_pager_setsize(vp, length); 7015 /* 7016 * Calculate the end based on the last indirect we want to keep. If 7017 * the block extends into indirects we can just use the negative of 7018 * its lbn. Doubles and triples exist at lower numbers so we must 7019 * be careful not to remove those, if they exist. double and triple 7020 * indirect lbns do not overlap with others so it is not important 7021 * to verify how many levels are required. 7022 */ 7023 lbn = lblkno(fs, length); 7024 if (lbn >= UFS_NDADDR) { 7025 /* Calculate the virtual lbn of the triple indirect. */ 7026 lbn = -lbn - (UFS_NIADDR - 1); 7027 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7028 } else 7029 end = extend; 7030 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7031 } 7032 7033 /* 7034 * See if the buf bp is in the range eliminated by truncation. 7035 */ 7036 static int 7037 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7038 struct buf *bp; 7039 int *blkoffp; 7040 ufs_lbn_t lastlbn; 7041 int lastoff; 7042 int flags; 7043 { 7044 ufs_lbn_t lbn; 7045 7046 *blkoffp = 0; 7047 /* Only match ext/normal blocks as appropriate. */ 7048 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7049 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7050 return (0); 7051 /* ALTDATA is always a full truncation. */ 7052 if ((bp->b_xflags & BX_ALTDATA) != 0) 7053 return (1); 7054 /* -1 is full truncation. */ 7055 if (lastlbn == -1) 7056 return (1); 7057 /* 7058 * If this is a partial truncate we only want those 7059 * blocks and indirect blocks that cover the range 7060 * we're after. 7061 */ 7062 lbn = bp->b_lblkno; 7063 if (lbn < 0) 7064 lbn = -(lbn + lbn_level(lbn)); 7065 if (lbn < lastlbn) 7066 return (0); 7067 /* Here we only truncate lblkno if it's partial. */ 7068 if (lbn == lastlbn) { 7069 if (lastoff == 0) 7070 return (0); 7071 *blkoffp = lastoff; 7072 } 7073 return (1); 7074 } 7075 7076 /* 7077 * Eliminate any dependencies that exist in memory beyond lblkno:off 7078 */ 7079 static void 7080 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7081 struct inode *ip; 7082 struct freeblks *freeblks; 7083 ufs_lbn_t lastlbn; 7084 int lastoff; 7085 int flags; 7086 { 7087 struct bufobj *bo; 7088 struct vnode *vp; 7089 struct buf *bp; 7090 int blkoff; 7091 7092 /* 7093 * We must wait for any I/O in progress to finish so that 7094 * all potential buffers on the dirty list will be visible. 7095 * Once they are all there, walk the list and get rid of 7096 * any dependencies. 7097 */ 7098 vp = ITOV(ip); 7099 bo = &vp->v_bufobj; 7100 BO_LOCK(bo); 7101 drain_output(vp); 7102 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7103 bp->b_vflags &= ~BV_SCANNED; 7104 restart: 7105 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7106 if (bp->b_vflags & BV_SCANNED) 7107 continue; 7108 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7109 bp->b_vflags |= BV_SCANNED; 7110 continue; 7111 } 7112 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7113 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7114 goto restart; 7115 BO_UNLOCK(bo); 7116 if (deallocate_dependencies(bp, freeblks, blkoff)) 7117 bqrelse(bp); 7118 else 7119 brelse(bp); 7120 BO_LOCK(bo); 7121 goto restart; 7122 } 7123 /* 7124 * Now do the work of vtruncbuf while also matching indirect blocks. 7125 */ 7126 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7127 bp->b_vflags &= ~BV_SCANNED; 7128 cleanrestart: 7129 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7130 if (bp->b_vflags & BV_SCANNED) 7131 continue; 7132 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7133 bp->b_vflags |= BV_SCANNED; 7134 continue; 7135 } 7136 if (BUF_LOCK(bp, 7137 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7138 BO_LOCKPTR(bo)) == ENOLCK) { 7139 BO_LOCK(bo); 7140 goto cleanrestart; 7141 } 7142 bp->b_vflags |= BV_SCANNED; 7143 bremfree(bp); 7144 if (blkoff != 0) { 7145 allocbuf(bp, blkoff); 7146 bqrelse(bp); 7147 } else { 7148 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7149 brelse(bp); 7150 } 7151 BO_LOCK(bo); 7152 goto cleanrestart; 7153 } 7154 drain_output(vp); 7155 BO_UNLOCK(bo); 7156 } 7157 7158 static int 7159 cancel_pagedep(pagedep, freeblks, blkoff) 7160 struct pagedep *pagedep; 7161 struct freeblks *freeblks; 7162 int blkoff; 7163 { 7164 struct jremref *jremref; 7165 struct jmvref *jmvref; 7166 struct dirrem *dirrem, *tmp; 7167 int i; 7168 7169 /* 7170 * Copy any directory remove dependencies to the list 7171 * to be processed after the freeblks proceeds. If 7172 * directory entry never made it to disk they 7173 * can be dumped directly onto the work list. 7174 */ 7175 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7176 /* Skip this directory removal if it is intended to remain. */ 7177 if (dirrem->dm_offset < blkoff) 7178 continue; 7179 /* 7180 * If there are any dirrems we wait for the journal write 7181 * to complete and then restart the buf scan as the lock 7182 * has been dropped. 7183 */ 7184 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7185 jwait(&jremref->jr_list, MNT_WAIT); 7186 return (ERESTART); 7187 } 7188 LIST_REMOVE(dirrem, dm_next); 7189 dirrem->dm_dirinum = pagedep->pd_ino; 7190 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7191 } 7192 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7193 jwait(&jmvref->jm_list, MNT_WAIT); 7194 return (ERESTART); 7195 } 7196 /* 7197 * When we're partially truncating a pagedep we just want to flush 7198 * journal entries and return. There can not be any adds in the 7199 * truncated portion of the directory and newblk must remain if 7200 * part of the block remains. 7201 */ 7202 if (blkoff != 0) { 7203 struct diradd *dap; 7204 7205 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7206 if (dap->da_offset > blkoff) 7207 panic("cancel_pagedep: diradd %p off %d > %d", 7208 dap, dap->da_offset, blkoff); 7209 for (i = 0; i < DAHASHSZ; i++) 7210 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7211 if (dap->da_offset > blkoff) 7212 panic("cancel_pagedep: diradd %p off %d > %d", 7213 dap, dap->da_offset, blkoff); 7214 return (0); 7215 } 7216 /* 7217 * There should be no directory add dependencies present 7218 * as the directory could not be truncated until all 7219 * children were removed. 7220 */ 7221 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7222 ("deallocate_dependencies: pendinghd != NULL")); 7223 for (i = 0; i < DAHASHSZ; i++) 7224 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7225 ("deallocate_dependencies: diraddhd != NULL")); 7226 if ((pagedep->pd_state & NEWBLOCK) != 0) 7227 free_newdirblk(pagedep->pd_newdirblk); 7228 if (free_pagedep(pagedep) == 0) 7229 panic("Failed to free pagedep %p", pagedep); 7230 return (0); 7231 } 7232 7233 /* 7234 * Reclaim any dependency structures from a buffer that is about to 7235 * be reallocated to a new vnode. The buffer must be locked, thus, 7236 * no I/O completion operations can occur while we are manipulating 7237 * its associated dependencies. The mutex is held so that other I/O's 7238 * associated with related dependencies do not occur. 7239 */ 7240 static int 7241 deallocate_dependencies(bp, freeblks, off) 7242 struct buf *bp; 7243 struct freeblks *freeblks; 7244 int off; 7245 { 7246 struct indirdep *indirdep; 7247 struct pagedep *pagedep; 7248 struct worklist *wk, *wkn; 7249 struct ufsmount *ump; 7250 7251 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 7252 goto done; 7253 ump = VFSTOUFS(wk->wk_mp); 7254 ACQUIRE_LOCK(ump); 7255 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7256 switch (wk->wk_type) { 7257 case D_INDIRDEP: 7258 indirdep = WK_INDIRDEP(wk); 7259 if (bp->b_lblkno >= 0 || 7260 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7261 panic("deallocate_dependencies: not indir"); 7262 cancel_indirdep(indirdep, bp, freeblks); 7263 continue; 7264 7265 case D_PAGEDEP: 7266 pagedep = WK_PAGEDEP(wk); 7267 if (cancel_pagedep(pagedep, freeblks, off)) { 7268 FREE_LOCK(ump); 7269 return (ERESTART); 7270 } 7271 continue; 7272 7273 case D_ALLOCINDIR: 7274 /* 7275 * Simply remove the allocindir, we'll find it via 7276 * the indirdep where we can clear pointers if 7277 * needed. 7278 */ 7279 WORKLIST_REMOVE(wk); 7280 continue; 7281 7282 case D_FREEWORK: 7283 /* 7284 * A truncation is waiting for the zero'd pointers 7285 * to be written. It can be freed when the freeblks 7286 * is journaled. 7287 */ 7288 WORKLIST_REMOVE(wk); 7289 wk->wk_state |= ONDEPLIST; 7290 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7291 break; 7292 7293 case D_ALLOCDIRECT: 7294 if (off != 0) 7295 continue; 7296 /* FALLTHROUGH */ 7297 default: 7298 panic("deallocate_dependencies: Unexpected type %s", 7299 TYPENAME(wk->wk_type)); 7300 /* NOTREACHED */ 7301 } 7302 } 7303 FREE_LOCK(ump); 7304 done: 7305 /* 7306 * Don't throw away this buf, we were partially truncating and 7307 * some deps may always remain. 7308 */ 7309 if (off) { 7310 allocbuf(bp, off); 7311 bp->b_vflags |= BV_SCANNED; 7312 return (EBUSY); 7313 } 7314 bp->b_flags |= B_INVAL | B_NOCACHE; 7315 7316 return (0); 7317 } 7318 7319 /* 7320 * An allocdirect is being canceled due to a truncate. We must make sure 7321 * the journal entry is released in concert with the blkfree that releases 7322 * the storage. Completed journal entries must not be released until the 7323 * space is no longer pointed to by the inode or in the bitmap. 7324 */ 7325 static void 7326 cancel_allocdirect(adphead, adp, freeblks) 7327 struct allocdirectlst *adphead; 7328 struct allocdirect *adp; 7329 struct freeblks *freeblks; 7330 { 7331 struct freework *freework; 7332 struct newblk *newblk; 7333 struct worklist *wk; 7334 7335 TAILQ_REMOVE(adphead, adp, ad_next); 7336 newblk = (struct newblk *)adp; 7337 freework = NULL; 7338 /* 7339 * Find the correct freework structure. 7340 */ 7341 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7342 if (wk->wk_type != D_FREEWORK) 7343 continue; 7344 freework = WK_FREEWORK(wk); 7345 if (freework->fw_blkno == newblk->nb_newblkno) 7346 break; 7347 } 7348 if (freework == NULL) 7349 panic("cancel_allocdirect: Freework not found"); 7350 /* 7351 * If a newblk exists at all we still have the journal entry that 7352 * initiated the allocation so we do not need to journal the free. 7353 */ 7354 cancel_jfreeblk(freeblks, freework->fw_blkno); 7355 /* 7356 * If the journal hasn't been written the jnewblk must be passed 7357 * to the call to ffs_blkfree that reclaims the space. We accomplish 7358 * this by linking the journal dependency into the freework to be 7359 * freed when freework_freeblock() is called. If the journal has 7360 * been written we can simply reclaim the journal space when the 7361 * freeblks work is complete. 7362 */ 7363 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7364 &freeblks->fb_jwork); 7365 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7366 } 7367 7368 7369 /* 7370 * Cancel a new block allocation. May be an indirect or direct block. We 7371 * remove it from various lists and return any journal record that needs to 7372 * be resolved by the caller. 7373 * 7374 * A special consideration is made for indirects which were never pointed 7375 * at on disk and will never be found once this block is released. 7376 */ 7377 static struct jnewblk * 7378 cancel_newblk(newblk, wk, wkhd) 7379 struct newblk *newblk; 7380 struct worklist *wk; 7381 struct workhead *wkhd; 7382 { 7383 struct jnewblk *jnewblk; 7384 7385 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7386 7387 newblk->nb_state |= GOINGAWAY; 7388 /* 7389 * Previously we traversed the completedhd on each indirdep 7390 * attached to this newblk to cancel them and gather journal 7391 * work. Since we need only the oldest journal segment and 7392 * the lowest point on the tree will always have the oldest 7393 * journal segment we are free to release the segments 7394 * of any subordinates and may leave the indirdep list to 7395 * indirdep_complete() when this newblk is freed. 7396 */ 7397 if (newblk->nb_state & ONDEPLIST) { 7398 newblk->nb_state &= ~ONDEPLIST; 7399 LIST_REMOVE(newblk, nb_deps); 7400 } 7401 if (newblk->nb_state & ONWORKLIST) 7402 WORKLIST_REMOVE(&newblk->nb_list); 7403 /* 7404 * If the journal entry hasn't been written we save a pointer to 7405 * the dependency that frees it until it is written or the 7406 * superseding operation completes. 7407 */ 7408 jnewblk = newblk->nb_jnewblk; 7409 if (jnewblk != NULL && wk != NULL) { 7410 newblk->nb_jnewblk = NULL; 7411 jnewblk->jn_dep = wk; 7412 } 7413 if (!LIST_EMPTY(&newblk->nb_jwork)) 7414 jwork_move(wkhd, &newblk->nb_jwork); 7415 /* 7416 * When truncating we must free the newdirblk early to remove 7417 * the pagedep from the hash before returning. 7418 */ 7419 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7420 free_newdirblk(WK_NEWDIRBLK(wk)); 7421 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7422 panic("cancel_newblk: extra newdirblk"); 7423 7424 return (jnewblk); 7425 } 7426 7427 /* 7428 * Schedule the freefrag associated with a newblk to be released once 7429 * the pointers are written and the previous block is no longer needed. 7430 */ 7431 static void 7432 newblk_freefrag(newblk) 7433 struct newblk *newblk; 7434 { 7435 struct freefrag *freefrag; 7436 7437 if (newblk->nb_freefrag == NULL) 7438 return; 7439 freefrag = newblk->nb_freefrag; 7440 newblk->nb_freefrag = NULL; 7441 freefrag->ff_state |= COMPLETE; 7442 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7443 add_to_worklist(&freefrag->ff_list, 0); 7444 } 7445 7446 /* 7447 * Free a newblk. Generate a new freefrag work request if appropriate. 7448 * This must be called after the inode pointer and any direct block pointers 7449 * are valid or fully removed via truncate or frag extension. 7450 */ 7451 static void 7452 free_newblk(newblk) 7453 struct newblk *newblk; 7454 { 7455 struct indirdep *indirdep; 7456 struct worklist *wk; 7457 7458 KASSERT(newblk->nb_jnewblk == NULL, 7459 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7460 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7461 ("free_newblk: unclaimed newblk")); 7462 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7463 newblk_freefrag(newblk); 7464 if (newblk->nb_state & ONDEPLIST) 7465 LIST_REMOVE(newblk, nb_deps); 7466 if (newblk->nb_state & ONWORKLIST) 7467 WORKLIST_REMOVE(&newblk->nb_list); 7468 LIST_REMOVE(newblk, nb_hash); 7469 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7470 free_newdirblk(WK_NEWDIRBLK(wk)); 7471 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7472 panic("free_newblk: extra newdirblk"); 7473 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7474 indirdep_complete(indirdep); 7475 handle_jwork(&newblk->nb_jwork); 7476 WORKITEM_FREE(newblk, D_NEWBLK); 7477 } 7478 7479 /* 7480 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7481 * This routine must be called with splbio interrupts blocked. 7482 */ 7483 static void 7484 free_newdirblk(newdirblk) 7485 struct newdirblk *newdirblk; 7486 { 7487 struct pagedep *pagedep; 7488 struct diradd *dap; 7489 struct worklist *wk; 7490 7491 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7492 WORKLIST_REMOVE(&newdirblk->db_list); 7493 /* 7494 * If the pagedep is still linked onto the directory buffer 7495 * dependency chain, then some of the entries on the 7496 * pd_pendinghd list may not be committed to disk yet. In 7497 * this case, we will simply clear the NEWBLOCK flag and 7498 * let the pd_pendinghd list be processed when the pagedep 7499 * is next written. If the pagedep is no longer on the buffer 7500 * dependency chain, then all the entries on the pd_pending 7501 * list are committed to disk and we can free them here. 7502 */ 7503 pagedep = newdirblk->db_pagedep; 7504 pagedep->pd_state &= ~NEWBLOCK; 7505 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7506 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7507 free_diradd(dap, NULL); 7508 /* 7509 * If no dependencies remain, the pagedep will be freed. 7510 */ 7511 free_pagedep(pagedep); 7512 } 7513 /* Should only ever be one item in the list. */ 7514 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7515 WORKLIST_REMOVE(wk); 7516 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7517 } 7518 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7519 } 7520 7521 /* 7522 * Prepare an inode to be freed. The actual free operation is not 7523 * done until the zero'ed inode has been written to disk. 7524 */ 7525 void 7526 softdep_freefile(pvp, ino, mode) 7527 struct vnode *pvp; 7528 ino_t ino; 7529 int mode; 7530 { 7531 struct inode *ip = VTOI(pvp); 7532 struct inodedep *inodedep; 7533 struct freefile *freefile; 7534 struct freeblks *freeblks; 7535 struct ufsmount *ump; 7536 7537 ump = ITOUMP(ip); 7538 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7539 ("softdep_freefile called on non-softdep filesystem")); 7540 /* 7541 * This sets up the inode de-allocation dependency. 7542 */ 7543 freefile = malloc(sizeof(struct freefile), 7544 M_FREEFILE, M_SOFTDEP_FLAGS); 7545 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7546 freefile->fx_mode = mode; 7547 freefile->fx_oldinum = ino; 7548 freefile->fx_devvp = ump->um_devvp; 7549 LIST_INIT(&freefile->fx_jwork); 7550 UFS_LOCK(ump); 7551 ump->um_fs->fs_pendinginodes += 1; 7552 UFS_UNLOCK(ump); 7553 7554 /* 7555 * If the inodedep does not exist, then the zero'ed inode has 7556 * been written to disk. If the allocated inode has never been 7557 * written to disk, then the on-disk inode is zero'ed. In either 7558 * case we can free the file immediately. If the journal was 7559 * canceled before being written the inode will never make it to 7560 * disk and we must send the canceled journal entrys to 7561 * ffs_freefile() to be cleared in conjunction with the bitmap. 7562 * Any blocks waiting on the inode to write can be safely freed 7563 * here as it will never been written. 7564 */ 7565 ACQUIRE_LOCK(ump); 7566 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7567 if (inodedep) { 7568 /* 7569 * Clear out freeblks that no longer need to reference 7570 * this inode. 7571 */ 7572 while ((freeblks = 7573 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7574 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7575 fb_next); 7576 freeblks->fb_state &= ~ONDEPLIST; 7577 } 7578 /* 7579 * Remove this inode from the unlinked list. 7580 */ 7581 if (inodedep->id_state & UNLINKED) { 7582 /* 7583 * Save the journal work to be freed with the bitmap 7584 * before we clear UNLINKED. Otherwise it can be lost 7585 * if the inode block is written. 7586 */ 7587 handle_bufwait(inodedep, &freefile->fx_jwork); 7588 clear_unlinked_inodedep(inodedep); 7589 /* 7590 * Re-acquire inodedep as we've dropped the 7591 * per-filesystem lock in clear_unlinked_inodedep(). 7592 */ 7593 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7594 } 7595 } 7596 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7597 FREE_LOCK(ump); 7598 handle_workitem_freefile(freefile); 7599 return; 7600 } 7601 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7602 inodedep->id_state |= GOINGAWAY; 7603 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7604 FREE_LOCK(ump); 7605 if (ip->i_number == ino) 7606 ip->i_flag |= IN_MODIFIED; 7607 } 7608 7609 /* 7610 * Check to see if an inode has never been written to disk. If 7611 * so free the inodedep and return success, otherwise return failure. 7612 * This routine must be called with splbio interrupts blocked. 7613 * 7614 * If we still have a bitmap dependency, then the inode has never 7615 * been written to disk. Drop the dependency as it is no longer 7616 * necessary since the inode is being deallocated. We set the 7617 * ALLCOMPLETE flags since the bitmap now properly shows that the 7618 * inode is not allocated. Even if the inode is actively being 7619 * written, it has been rolled back to its zero'ed state, so we 7620 * are ensured that a zero inode is what is on the disk. For short 7621 * lived files, this change will usually result in removing all the 7622 * dependencies from the inode so that it can be freed immediately. 7623 */ 7624 static int 7625 check_inode_unwritten(inodedep) 7626 struct inodedep *inodedep; 7627 { 7628 7629 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7630 7631 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7632 !LIST_EMPTY(&inodedep->id_dirremhd) || 7633 !LIST_EMPTY(&inodedep->id_pendinghd) || 7634 !LIST_EMPTY(&inodedep->id_bufwait) || 7635 !LIST_EMPTY(&inodedep->id_inowait) || 7636 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7637 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7638 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7639 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7640 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7641 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7642 inodedep->id_mkdiradd != NULL || 7643 inodedep->id_nlinkdelta != 0) 7644 return (0); 7645 /* 7646 * Another process might be in initiate_write_inodeblock_ufs[12] 7647 * trying to allocate memory without holding "Softdep Lock". 7648 */ 7649 if ((inodedep->id_state & IOSTARTED) != 0 && 7650 inodedep->id_savedino1 == NULL) 7651 return (0); 7652 7653 if (inodedep->id_state & ONDEPLIST) 7654 LIST_REMOVE(inodedep, id_deps); 7655 inodedep->id_state &= ~ONDEPLIST; 7656 inodedep->id_state |= ALLCOMPLETE; 7657 inodedep->id_bmsafemap = NULL; 7658 if (inodedep->id_state & ONWORKLIST) 7659 WORKLIST_REMOVE(&inodedep->id_list); 7660 if (inodedep->id_savedino1 != NULL) { 7661 free(inodedep->id_savedino1, M_SAVEDINO); 7662 inodedep->id_savedino1 = NULL; 7663 } 7664 if (free_inodedep(inodedep) == 0) 7665 panic("check_inode_unwritten: busy inode"); 7666 return (1); 7667 } 7668 7669 static int 7670 check_inodedep_free(inodedep) 7671 struct inodedep *inodedep; 7672 { 7673 7674 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7675 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7676 !LIST_EMPTY(&inodedep->id_dirremhd) || 7677 !LIST_EMPTY(&inodedep->id_pendinghd) || 7678 !LIST_EMPTY(&inodedep->id_bufwait) || 7679 !LIST_EMPTY(&inodedep->id_inowait) || 7680 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7681 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7682 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7683 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7684 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7685 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7686 inodedep->id_mkdiradd != NULL || 7687 inodedep->id_nlinkdelta != 0 || 7688 inodedep->id_savedino1 != NULL) 7689 return (0); 7690 return (1); 7691 } 7692 7693 /* 7694 * Try to free an inodedep structure. Return 1 if it could be freed. 7695 */ 7696 static int 7697 free_inodedep(inodedep) 7698 struct inodedep *inodedep; 7699 { 7700 7701 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7702 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7703 !check_inodedep_free(inodedep)) 7704 return (0); 7705 if (inodedep->id_state & ONDEPLIST) 7706 LIST_REMOVE(inodedep, id_deps); 7707 LIST_REMOVE(inodedep, id_hash); 7708 WORKITEM_FREE(inodedep, D_INODEDEP); 7709 return (1); 7710 } 7711 7712 /* 7713 * Free the block referenced by a freework structure. The parent freeblks 7714 * structure is released and completed when the final cg bitmap reaches 7715 * the disk. This routine may be freeing a jnewblk which never made it to 7716 * disk in which case we do not have to wait as the operation is undone 7717 * in memory immediately. 7718 */ 7719 static void 7720 freework_freeblock(freework) 7721 struct freework *freework; 7722 { 7723 struct freeblks *freeblks; 7724 struct jnewblk *jnewblk; 7725 struct ufsmount *ump; 7726 struct workhead wkhd; 7727 struct fs *fs; 7728 int bsize; 7729 int needj; 7730 7731 ump = VFSTOUFS(freework->fw_list.wk_mp); 7732 LOCK_OWNED(ump); 7733 /* 7734 * Handle partial truncate separately. 7735 */ 7736 if (freework->fw_indir) { 7737 complete_trunc_indir(freework); 7738 return; 7739 } 7740 freeblks = freework->fw_freeblks; 7741 fs = ump->um_fs; 7742 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7743 bsize = lfragtosize(fs, freework->fw_frags); 7744 LIST_INIT(&wkhd); 7745 /* 7746 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7747 * on the indirblk hashtable and prevents premature freeing. 7748 */ 7749 freework->fw_state |= DEPCOMPLETE; 7750 /* 7751 * SUJ needs to wait for the segment referencing freed indirect 7752 * blocks to expire so that we know the checker will not confuse 7753 * a re-allocated indirect block with its old contents. 7754 */ 7755 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7756 indirblk_insert(freework); 7757 /* 7758 * If we are canceling an existing jnewblk pass it to the free 7759 * routine, otherwise pass the freeblk which will ultimately 7760 * release the freeblks. If we're not journaling, we can just 7761 * free the freeblks immediately. 7762 */ 7763 jnewblk = freework->fw_jnewblk; 7764 if (jnewblk != NULL) { 7765 cancel_jnewblk(jnewblk, &wkhd); 7766 needj = 0; 7767 } else if (needj) { 7768 freework->fw_state |= DELAYEDFREE; 7769 freeblks->fb_cgwait++; 7770 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7771 } 7772 FREE_LOCK(ump); 7773 freeblks_free(ump, freeblks, btodb(bsize)); 7774 CTR4(KTR_SUJ, 7775 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7776 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7777 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7778 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7779 ACQUIRE_LOCK(ump); 7780 /* 7781 * The jnewblk will be discarded and the bits in the map never 7782 * made it to disk. We can immediately free the freeblk. 7783 */ 7784 if (needj == 0) 7785 handle_written_freework(freework); 7786 } 7787 7788 /* 7789 * We enqueue freework items that need processing back on the freeblks and 7790 * add the freeblks to the worklist. This makes it easier to find all work 7791 * required to flush a truncation in process_truncates(). 7792 */ 7793 static void 7794 freework_enqueue(freework) 7795 struct freework *freework; 7796 { 7797 struct freeblks *freeblks; 7798 7799 freeblks = freework->fw_freeblks; 7800 if ((freework->fw_state & INPROGRESS) == 0) 7801 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7802 if ((freeblks->fb_state & 7803 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7804 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7805 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7806 } 7807 7808 /* 7809 * Start, continue, or finish the process of freeing an indirect block tree. 7810 * The free operation may be paused at any point with fw_off containing the 7811 * offset to restart from. This enables us to implement some flow control 7812 * for large truncates which may fan out and generate a huge number of 7813 * dependencies. 7814 */ 7815 static void 7816 handle_workitem_indirblk(freework) 7817 struct freework *freework; 7818 { 7819 struct freeblks *freeblks; 7820 struct ufsmount *ump; 7821 struct fs *fs; 7822 7823 freeblks = freework->fw_freeblks; 7824 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7825 fs = ump->um_fs; 7826 if (freework->fw_state & DEPCOMPLETE) { 7827 handle_written_freework(freework); 7828 return; 7829 } 7830 if (freework->fw_off == NINDIR(fs)) { 7831 freework_freeblock(freework); 7832 return; 7833 } 7834 freework->fw_state |= INPROGRESS; 7835 FREE_LOCK(ump); 7836 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7837 freework->fw_lbn); 7838 ACQUIRE_LOCK(ump); 7839 } 7840 7841 /* 7842 * Called when a freework structure attached to a cg buf is written. The 7843 * ref on either the parent or the freeblks structure is released and 7844 * the freeblks is added back to the worklist if there is more work to do. 7845 */ 7846 static void 7847 handle_written_freework(freework) 7848 struct freework *freework; 7849 { 7850 struct freeblks *freeblks; 7851 struct freework *parent; 7852 7853 freeblks = freework->fw_freeblks; 7854 parent = freework->fw_parent; 7855 if (freework->fw_state & DELAYEDFREE) 7856 freeblks->fb_cgwait--; 7857 freework->fw_state |= COMPLETE; 7858 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7859 WORKITEM_FREE(freework, D_FREEWORK); 7860 if (parent) { 7861 if (--parent->fw_ref == 0) 7862 freework_enqueue(parent); 7863 return; 7864 } 7865 if (--freeblks->fb_ref != 0) 7866 return; 7867 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7868 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7869 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7870 } 7871 7872 /* 7873 * This workitem routine performs the block de-allocation. 7874 * The workitem is added to the pending list after the updated 7875 * inode block has been written to disk. As mentioned above, 7876 * checks regarding the number of blocks de-allocated (compared 7877 * to the number of blocks allocated for the file) are also 7878 * performed in this function. 7879 */ 7880 static int 7881 handle_workitem_freeblocks(freeblks, flags) 7882 struct freeblks *freeblks; 7883 int flags; 7884 { 7885 struct freework *freework; 7886 struct newblk *newblk; 7887 struct allocindir *aip; 7888 struct ufsmount *ump; 7889 struct worklist *wk; 7890 7891 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7892 ("handle_workitem_freeblocks: Journal entries not written.")); 7893 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7894 ACQUIRE_LOCK(ump); 7895 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7896 WORKLIST_REMOVE(wk); 7897 switch (wk->wk_type) { 7898 case D_DIRREM: 7899 wk->wk_state |= COMPLETE; 7900 add_to_worklist(wk, 0); 7901 continue; 7902 7903 case D_ALLOCDIRECT: 7904 free_newblk(WK_NEWBLK(wk)); 7905 continue; 7906 7907 case D_ALLOCINDIR: 7908 aip = WK_ALLOCINDIR(wk); 7909 freework = NULL; 7910 if (aip->ai_state & DELAYEDFREE) { 7911 FREE_LOCK(ump); 7912 freework = newfreework(ump, freeblks, NULL, 7913 aip->ai_lbn, aip->ai_newblkno, 7914 ump->um_fs->fs_frag, 0, 0); 7915 ACQUIRE_LOCK(ump); 7916 } 7917 newblk = WK_NEWBLK(wk); 7918 if (newblk->nb_jnewblk) { 7919 freework->fw_jnewblk = newblk->nb_jnewblk; 7920 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7921 newblk->nb_jnewblk = NULL; 7922 } 7923 free_newblk(newblk); 7924 continue; 7925 7926 case D_FREEWORK: 7927 freework = WK_FREEWORK(wk); 7928 if (freework->fw_lbn <= -UFS_NDADDR) 7929 handle_workitem_indirblk(freework); 7930 else 7931 freework_freeblock(freework); 7932 continue; 7933 default: 7934 panic("handle_workitem_freeblocks: Unknown type %s", 7935 TYPENAME(wk->wk_type)); 7936 } 7937 } 7938 if (freeblks->fb_ref != 0) { 7939 freeblks->fb_state &= ~INPROGRESS; 7940 wake_worklist(&freeblks->fb_list); 7941 freeblks = NULL; 7942 } 7943 FREE_LOCK(ump); 7944 if (freeblks) 7945 return handle_complete_freeblocks(freeblks, flags); 7946 return (0); 7947 } 7948 7949 /* 7950 * Handle completion of block free via truncate. This allows fs_pending 7951 * to track the actual free block count more closely than if we only updated 7952 * it at the end. We must be careful to handle cases where the block count 7953 * on free was incorrect. 7954 */ 7955 static void 7956 freeblks_free(ump, freeblks, blocks) 7957 struct ufsmount *ump; 7958 struct freeblks *freeblks; 7959 int blocks; 7960 { 7961 struct fs *fs; 7962 ufs2_daddr_t remain; 7963 7964 UFS_LOCK(ump); 7965 remain = -freeblks->fb_chkcnt; 7966 freeblks->fb_chkcnt += blocks; 7967 if (remain > 0) { 7968 if (remain < blocks) 7969 blocks = remain; 7970 fs = ump->um_fs; 7971 fs->fs_pendingblocks -= blocks; 7972 } 7973 UFS_UNLOCK(ump); 7974 } 7975 7976 /* 7977 * Once all of the freework workitems are complete we can retire the 7978 * freeblocks dependency and any journal work awaiting completion. This 7979 * can not be called until all other dependencies are stable on disk. 7980 */ 7981 static int 7982 handle_complete_freeblocks(freeblks, flags) 7983 struct freeblks *freeblks; 7984 int flags; 7985 { 7986 struct inodedep *inodedep; 7987 struct inode *ip; 7988 struct vnode *vp; 7989 struct fs *fs; 7990 struct ufsmount *ump; 7991 ufs2_daddr_t spare; 7992 7993 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7994 fs = ump->um_fs; 7995 flags = LK_EXCLUSIVE | flags; 7996 spare = freeblks->fb_chkcnt; 7997 7998 /* 7999 * If we did not release the expected number of blocks we may have 8000 * to adjust the inode block count here. Only do so if it wasn't 8001 * a truncation to zero and the modrev still matches. 8002 */ 8003 if (spare && freeblks->fb_len != 0) { 8004 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8005 flags, &vp, FFSV_FORCEINSMQ) != 0) 8006 return (EBUSY); 8007 ip = VTOI(vp); 8008 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8009 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8010 ip->i_flag |= IN_CHANGE; 8011 /* 8012 * We must wait so this happens before the 8013 * journal is reclaimed. 8014 */ 8015 ffs_update(vp, 1); 8016 } 8017 vput(vp); 8018 } 8019 if (spare < 0) { 8020 UFS_LOCK(ump); 8021 fs->fs_pendingblocks += spare; 8022 UFS_UNLOCK(ump); 8023 } 8024 #ifdef QUOTA 8025 /* Handle spare. */ 8026 if (spare) 8027 quotaadj(freeblks->fb_quota, ump, -spare); 8028 quotarele(freeblks->fb_quota); 8029 #endif 8030 ACQUIRE_LOCK(ump); 8031 if (freeblks->fb_state & ONDEPLIST) { 8032 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8033 0, &inodedep); 8034 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8035 freeblks->fb_state &= ~ONDEPLIST; 8036 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8037 free_inodedep(inodedep); 8038 } 8039 /* 8040 * All of the freeblock deps must be complete prior to this call 8041 * so it's now safe to complete earlier outstanding journal entries. 8042 */ 8043 handle_jwork(&freeblks->fb_jwork); 8044 WORKITEM_FREE(freeblks, D_FREEBLKS); 8045 FREE_LOCK(ump); 8046 return (0); 8047 } 8048 8049 /* 8050 * Release blocks associated with the freeblks and stored in the indirect 8051 * block dbn. If level is greater than SINGLE, the block is an indirect block 8052 * and recursive calls to indirtrunc must be used to cleanse other indirect 8053 * blocks. 8054 * 8055 * This handles partial and complete truncation of blocks. Partial is noted 8056 * with goingaway == 0. In this case the freework is completed after the 8057 * zero'd indirects are written to disk. For full truncation the freework 8058 * is completed after the block is freed. 8059 */ 8060 static void 8061 indir_trunc(freework, dbn, lbn) 8062 struct freework *freework; 8063 ufs2_daddr_t dbn; 8064 ufs_lbn_t lbn; 8065 { 8066 struct freework *nfreework; 8067 struct workhead wkhd; 8068 struct freeblks *freeblks; 8069 struct buf *bp; 8070 struct fs *fs; 8071 struct indirdep *indirdep; 8072 struct ufsmount *ump; 8073 ufs1_daddr_t *bap1; 8074 ufs2_daddr_t nb, nnb, *bap2; 8075 ufs_lbn_t lbnadd, nlbn; 8076 int i, nblocks, ufs1fmt; 8077 int freedblocks; 8078 int goingaway; 8079 int freedeps; 8080 int needj; 8081 int level; 8082 int cnt; 8083 8084 freeblks = freework->fw_freeblks; 8085 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8086 fs = ump->um_fs; 8087 /* 8088 * Get buffer of block pointers to be freed. There are three cases: 8089 * 8090 * 1) Partial truncate caches the indirdep pointer in the freework 8091 * which provides us a back copy to the save bp which holds the 8092 * pointers we want to clear. When this completes the zero 8093 * pointers are written to the real copy. 8094 * 2) The indirect is being completely truncated, cancel_indirdep() 8095 * eliminated the real copy and placed the indirdep on the saved 8096 * copy. The indirdep and buf are discarded when this completes. 8097 * 3) The indirect was not in memory, we read a copy off of the disk 8098 * using the devvp and drop and invalidate the buffer when we're 8099 * done. 8100 */ 8101 goingaway = 1; 8102 indirdep = NULL; 8103 if (freework->fw_indir != NULL) { 8104 goingaway = 0; 8105 indirdep = freework->fw_indir; 8106 bp = indirdep->ir_savebp; 8107 if (bp == NULL || bp->b_blkno != dbn) 8108 panic("indir_trunc: Bad saved buf %p blkno %jd", 8109 bp, (intmax_t)dbn); 8110 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8111 /* 8112 * The lock prevents the buf dep list from changing and 8113 * indirects on devvp should only ever have one dependency. 8114 */ 8115 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8116 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8117 panic("indir_trunc: Bad indirdep %p from buf %p", 8118 indirdep, bp); 8119 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8120 NOCRED, &bp) != 0) { 8121 brelse(bp); 8122 return; 8123 } 8124 ACQUIRE_LOCK(ump); 8125 /* Protects against a race with complete_trunc_indir(). */ 8126 freework->fw_state &= ~INPROGRESS; 8127 /* 8128 * If we have an indirdep we need to enforce the truncation order 8129 * and discard it when it is complete. 8130 */ 8131 if (indirdep) { 8132 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8133 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8134 /* 8135 * Add the complete truncate to the list on the 8136 * indirdep to enforce in-order processing. 8137 */ 8138 if (freework->fw_indir == NULL) 8139 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8140 freework, fw_next); 8141 FREE_LOCK(ump); 8142 return; 8143 } 8144 /* 8145 * If we're goingaway, free the indirdep. Otherwise it will 8146 * linger until the write completes. 8147 */ 8148 if (goingaway) 8149 free_indirdep(indirdep); 8150 } 8151 FREE_LOCK(ump); 8152 /* Initialize pointers depending on block size. */ 8153 if (ump->um_fstype == UFS1) { 8154 bap1 = (ufs1_daddr_t *)bp->b_data; 8155 nb = bap1[freework->fw_off]; 8156 ufs1fmt = 1; 8157 bap2 = NULL; 8158 } else { 8159 bap2 = (ufs2_daddr_t *)bp->b_data; 8160 nb = bap2[freework->fw_off]; 8161 ufs1fmt = 0; 8162 bap1 = NULL; 8163 } 8164 level = lbn_level(lbn); 8165 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8166 lbnadd = lbn_offset(fs, level); 8167 nblocks = btodb(fs->fs_bsize); 8168 nfreework = freework; 8169 freedeps = 0; 8170 cnt = 0; 8171 /* 8172 * Reclaim blocks. Traverses into nested indirect levels and 8173 * arranges for the current level to be freed when subordinates 8174 * are free when journaling. 8175 */ 8176 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8177 if (i != NINDIR(fs) - 1) { 8178 if (ufs1fmt) 8179 nnb = bap1[i+1]; 8180 else 8181 nnb = bap2[i+1]; 8182 } else 8183 nnb = 0; 8184 if (nb == 0) 8185 continue; 8186 cnt++; 8187 if (level != 0) { 8188 nlbn = (lbn + 1) - (i * lbnadd); 8189 if (needj != 0) { 8190 nfreework = newfreework(ump, freeblks, freework, 8191 nlbn, nb, fs->fs_frag, 0, 0); 8192 freedeps++; 8193 } 8194 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8195 } else { 8196 struct freedep *freedep; 8197 8198 /* 8199 * Attempt to aggregate freedep dependencies for 8200 * all blocks being released to the same CG. 8201 */ 8202 LIST_INIT(&wkhd); 8203 if (needj != 0 && 8204 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8205 freedep = newfreedep(freework); 8206 WORKLIST_INSERT_UNLOCKED(&wkhd, 8207 &freedep->fd_list); 8208 freedeps++; 8209 } 8210 CTR3(KTR_SUJ, 8211 "indir_trunc: ino %d blkno %jd size %ld", 8212 freeblks->fb_inum, nb, fs->fs_bsize); 8213 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8214 fs->fs_bsize, freeblks->fb_inum, 8215 freeblks->fb_vtype, &wkhd); 8216 } 8217 } 8218 if (goingaway) { 8219 bp->b_flags |= B_INVAL | B_NOCACHE; 8220 brelse(bp); 8221 } 8222 freedblocks = 0; 8223 if (level == 0) 8224 freedblocks = (nblocks * cnt); 8225 if (needj == 0) 8226 freedblocks += nblocks; 8227 freeblks_free(ump, freeblks, freedblocks); 8228 /* 8229 * If we are journaling set up the ref counts and offset so this 8230 * indirect can be completed when its children are free. 8231 */ 8232 if (needj) { 8233 ACQUIRE_LOCK(ump); 8234 freework->fw_off = i; 8235 freework->fw_ref += freedeps; 8236 freework->fw_ref -= NINDIR(fs) + 1; 8237 if (level == 0) 8238 freeblks->fb_cgwait += freedeps; 8239 if (freework->fw_ref == 0) 8240 freework_freeblock(freework); 8241 FREE_LOCK(ump); 8242 return; 8243 } 8244 /* 8245 * If we're not journaling we can free the indirect now. 8246 */ 8247 dbn = dbtofsb(fs, dbn); 8248 CTR3(KTR_SUJ, 8249 "indir_trunc 2: ino %d blkno %jd size %ld", 8250 freeblks->fb_inum, dbn, fs->fs_bsize); 8251 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8252 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8253 /* Non SUJ softdep does single-threaded truncations. */ 8254 if (freework->fw_blkno == dbn) { 8255 freework->fw_state |= ALLCOMPLETE; 8256 ACQUIRE_LOCK(ump); 8257 handle_written_freework(freework); 8258 FREE_LOCK(ump); 8259 } 8260 return; 8261 } 8262 8263 /* 8264 * Cancel an allocindir when it is removed via truncation. When bp is not 8265 * NULL the indirect never appeared on disk and is scheduled to be freed 8266 * independently of the indir so we can more easily track journal work. 8267 */ 8268 static void 8269 cancel_allocindir(aip, bp, freeblks, trunc) 8270 struct allocindir *aip; 8271 struct buf *bp; 8272 struct freeblks *freeblks; 8273 int trunc; 8274 { 8275 struct indirdep *indirdep; 8276 struct freefrag *freefrag; 8277 struct newblk *newblk; 8278 8279 newblk = (struct newblk *)aip; 8280 LIST_REMOVE(aip, ai_next); 8281 /* 8282 * We must eliminate the pointer in bp if it must be freed on its 8283 * own due to partial truncate or pending journal work. 8284 */ 8285 if (bp && (trunc || newblk->nb_jnewblk)) { 8286 /* 8287 * Clear the pointer and mark the aip to be freed 8288 * directly if it never existed on disk. 8289 */ 8290 aip->ai_state |= DELAYEDFREE; 8291 indirdep = aip->ai_indirdep; 8292 if (indirdep->ir_state & UFS1FMT) 8293 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8294 else 8295 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8296 } 8297 /* 8298 * When truncating the previous pointer will be freed via 8299 * savedbp. Eliminate the freefrag which would dup free. 8300 */ 8301 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8302 newblk->nb_freefrag = NULL; 8303 if (freefrag->ff_jdep) 8304 cancel_jfreefrag( 8305 WK_JFREEFRAG(freefrag->ff_jdep)); 8306 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8307 WORKITEM_FREE(freefrag, D_FREEFRAG); 8308 } 8309 /* 8310 * If the journal hasn't been written the jnewblk must be passed 8311 * to the call to ffs_blkfree that reclaims the space. We accomplish 8312 * this by leaving the journal dependency on the newblk to be freed 8313 * when a freework is created in handle_workitem_freeblocks(). 8314 */ 8315 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8316 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8317 } 8318 8319 /* 8320 * Create the mkdir dependencies for . and .. in a new directory. Link them 8321 * in to a newdirblk so any subsequent additions are tracked properly. The 8322 * caller is responsible for adding the mkdir1 dependency to the journal 8323 * and updating id_mkdiradd. This function returns with the per-filesystem 8324 * lock held. 8325 */ 8326 static struct mkdir * 8327 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8328 struct diradd *dap; 8329 ino_t newinum; 8330 ino_t dinum; 8331 struct buf *newdirbp; 8332 struct mkdir **mkdirp; 8333 { 8334 struct newblk *newblk; 8335 struct pagedep *pagedep; 8336 struct inodedep *inodedep; 8337 struct newdirblk *newdirblk; 8338 struct mkdir *mkdir1, *mkdir2; 8339 struct worklist *wk; 8340 struct jaddref *jaddref; 8341 struct ufsmount *ump; 8342 struct mount *mp; 8343 8344 mp = dap->da_list.wk_mp; 8345 ump = VFSTOUFS(mp); 8346 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8347 M_SOFTDEP_FLAGS); 8348 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8349 LIST_INIT(&newdirblk->db_mkdir); 8350 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8351 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8352 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8353 mkdir1->md_diradd = dap; 8354 mkdir1->md_jaddref = NULL; 8355 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8356 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8357 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8358 mkdir2->md_diradd = dap; 8359 mkdir2->md_jaddref = NULL; 8360 if (MOUNTEDSUJ(mp) == 0) { 8361 mkdir1->md_state |= DEPCOMPLETE; 8362 mkdir2->md_state |= DEPCOMPLETE; 8363 } 8364 /* 8365 * Dependency on "." and ".." being written to disk. 8366 */ 8367 mkdir1->md_buf = newdirbp; 8368 ACQUIRE_LOCK(VFSTOUFS(mp)); 8369 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8370 /* 8371 * We must link the pagedep, allocdirect, and newdirblk for 8372 * the initial file page so the pointer to the new directory 8373 * is not written until the directory contents are live and 8374 * any subsequent additions are not marked live until the 8375 * block is reachable via the inode. 8376 */ 8377 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8378 panic("setup_newdir: lost pagedep"); 8379 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8380 if (wk->wk_type == D_ALLOCDIRECT) 8381 break; 8382 if (wk == NULL) 8383 panic("setup_newdir: lost allocdirect"); 8384 if (pagedep->pd_state & NEWBLOCK) 8385 panic("setup_newdir: NEWBLOCK already set"); 8386 newblk = WK_NEWBLK(wk); 8387 pagedep->pd_state |= NEWBLOCK; 8388 pagedep->pd_newdirblk = newdirblk; 8389 newdirblk->db_pagedep = pagedep; 8390 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8391 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8392 /* 8393 * Look up the inodedep for the parent directory so that we 8394 * can link mkdir2 into the pending dotdot jaddref or 8395 * the inode write if there is none. If the inode is 8396 * ALLCOMPLETE and no jaddref is present all dependencies have 8397 * been satisfied and mkdir2 can be freed. 8398 */ 8399 inodedep_lookup(mp, dinum, 0, &inodedep); 8400 if (MOUNTEDSUJ(mp)) { 8401 if (inodedep == NULL) 8402 panic("setup_newdir: Lost parent."); 8403 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8404 inoreflst); 8405 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8406 (jaddref->ja_state & MKDIR_PARENT), 8407 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8408 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8409 mkdir2->md_jaddref = jaddref; 8410 jaddref->ja_mkdir = mkdir2; 8411 } else if (inodedep == NULL || 8412 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8413 dap->da_state &= ~MKDIR_PARENT; 8414 WORKITEM_FREE(mkdir2, D_MKDIR); 8415 mkdir2 = NULL; 8416 } else { 8417 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8418 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8419 } 8420 *mkdirp = mkdir2; 8421 8422 return (mkdir1); 8423 } 8424 8425 /* 8426 * Directory entry addition dependencies. 8427 * 8428 * When adding a new directory entry, the inode (with its incremented link 8429 * count) must be written to disk before the directory entry's pointer to it. 8430 * Also, if the inode is newly allocated, the corresponding freemap must be 8431 * updated (on disk) before the directory entry's pointer. These requirements 8432 * are met via undo/redo on the directory entry's pointer, which consists 8433 * simply of the inode number. 8434 * 8435 * As directory entries are added and deleted, the free space within a 8436 * directory block can become fragmented. The ufs filesystem will compact 8437 * a fragmented directory block to make space for a new entry. When this 8438 * occurs, the offsets of previously added entries change. Any "diradd" 8439 * dependency structures corresponding to these entries must be updated with 8440 * the new offsets. 8441 */ 8442 8443 /* 8444 * This routine is called after the in-memory inode's link 8445 * count has been incremented, but before the directory entry's 8446 * pointer to the inode has been set. 8447 */ 8448 int 8449 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8450 struct buf *bp; /* buffer containing directory block */ 8451 struct inode *dp; /* inode for directory */ 8452 off_t diroffset; /* offset of new entry in directory */ 8453 ino_t newinum; /* inode referenced by new directory entry */ 8454 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8455 int isnewblk; /* entry is in a newly allocated block */ 8456 { 8457 int offset; /* offset of new entry within directory block */ 8458 ufs_lbn_t lbn; /* block in directory containing new entry */ 8459 struct fs *fs; 8460 struct diradd *dap; 8461 struct newblk *newblk; 8462 struct pagedep *pagedep; 8463 struct inodedep *inodedep; 8464 struct newdirblk *newdirblk; 8465 struct mkdir *mkdir1, *mkdir2; 8466 struct jaddref *jaddref; 8467 struct ufsmount *ump; 8468 struct mount *mp; 8469 int isindir; 8470 8471 mp = ITOVFS(dp); 8472 ump = VFSTOUFS(mp); 8473 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8474 ("softdep_setup_directory_add called on non-softdep filesystem")); 8475 /* 8476 * Whiteouts have no dependencies. 8477 */ 8478 if (newinum == UFS_WINO) { 8479 if (newdirbp != NULL) 8480 bdwrite(newdirbp); 8481 return (0); 8482 } 8483 jaddref = NULL; 8484 mkdir1 = mkdir2 = NULL; 8485 fs = ump->um_fs; 8486 lbn = lblkno(fs, diroffset); 8487 offset = blkoff(fs, diroffset); 8488 dap = malloc(sizeof(struct diradd), M_DIRADD, 8489 M_SOFTDEP_FLAGS|M_ZERO); 8490 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8491 dap->da_offset = offset; 8492 dap->da_newinum = newinum; 8493 dap->da_state = ATTACHED; 8494 LIST_INIT(&dap->da_jwork); 8495 isindir = bp->b_lblkno >= UFS_NDADDR; 8496 newdirblk = NULL; 8497 if (isnewblk && 8498 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8499 newdirblk = malloc(sizeof(struct newdirblk), 8500 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8501 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8502 LIST_INIT(&newdirblk->db_mkdir); 8503 } 8504 /* 8505 * If we're creating a new directory setup the dependencies and set 8506 * the dap state to wait for them. Otherwise it's COMPLETE and 8507 * we can move on. 8508 */ 8509 if (newdirbp == NULL) { 8510 dap->da_state |= DEPCOMPLETE; 8511 ACQUIRE_LOCK(ump); 8512 } else { 8513 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8514 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8515 &mkdir2); 8516 } 8517 /* 8518 * Link into parent directory pagedep to await its being written. 8519 */ 8520 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8521 #ifdef DEBUG 8522 if (diradd_lookup(pagedep, offset) != NULL) 8523 panic("softdep_setup_directory_add: %p already at off %d\n", 8524 diradd_lookup(pagedep, offset), offset); 8525 #endif 8526 dap->da_pagedep = pagedep; 8527 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8528 da_pdlist); 8529 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8530 /* 8531 * If we're journaling, link the diradd into the jaddref so it 8532 * may be completed after the journal entry is written. Otherwise, 8533 * link the diradd into its inodedep. If the inode is not yet 8534 * written place it on the bufwait list, otherwise do the post-inode 8535 * write processing to put it on the id_pendinghd list. 8536 */ 8537 if (MOUNTEDSUJ(mp)) { 8538 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8539 inoreflst); 8540 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8541 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8542 jaddref->ja_diroff = diroffset; 8543 jaddref->ja_diradd = dap; 8544 add_to_journal(&jaddref->ja_list); 8545 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8546 diradd_inode_written(dap, inodedep); 8547 else 8548 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8549 /* 8550 * Add the journal entries for . and .. links now that the primary 8551 * link is written. 8552 */ 8553 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8554 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8555 inoreflst, if_deps); 8556 KASSERT(jaddref != NULL && 8557 jaddref->ja_ino == jaddref->ja_parent && 8558 (jaddref->ja_state & MKDIR_BODY), 8559 ("softdep_setup_directory_add: bad dot jaddref %p", 8560 jaddref)); 8561 mkdir1->md_jaddref = jaddref; 8562 jaddref->ja_mkdir = mkdir1; 8563 /* 8564 * It is important that the dotdot journal entry 8565 * is added prior to the dot entry since dot writes 8566 * both the dot and dotdot links. These both must 8567 * be added after the primary link for the journal 8568 * to remain consistent. 8569 */ 8570 add_to_journal(&mkdir2->md_jaddref->ja_list); 8571 add_to_journal(&jaddref->ja_list); 8572 } 8573 /* 8574 * If we are adding a new directory remember this diradd so that if 8575 * we rename it we can keep the dot and dotdot dependencies. If 8576 * we are adding a new name for an inode that has a mkdiradd we 8577 * must be in rename and we have to move the dot and dotdot 8578 * dependencies to this new name. The old name is being orphaned 8579 * soon. 8580 */ 8581 if (mkdir1 != NULL) { 8582 if (inodedep->id_mkdiradd != NULL) 8583 panic("softdep_setup_directory_add: Existing mkdir"); 8584 inodedep->id_mkdiradd = dap; 8585 } else if (inodedep->id_mkdiradd) 8586 merge_diradd(inodedep, dap); 8587 if (newdirblk != NULL) { 8588 /* 8589 * There is nothing to do if we are already tracking 8590 * this block. 8591 */ 8592 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8593 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8594 FREE_LOCK(ump); 8595 return (0); 8596 } 8597 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8598 == 0) 8599 panic("softdep_setup_directory_add: lost entry"); 8600 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8601 pagedep->pd_state |= NEWBLOCK; 8602 pagedep->pd_newdirblk = newdirblk; 8603 newdirblk->db_pagedep = pagedep; 8604 FREE_LOCK(ump); 8605 /* 8606 * If we extended into an indirect signal direnter to sync. 8607 */ 8608 if (isindir) 8609 return (1); 8610 return (0); 8611 } 8612 FREE_LOCK(ump); 8613 return (0); 8614 } 8615 8616 /* 8617 * This procedure is called to change the offset of a directory 8618 * entry when compacting a directory block which must be owned 8619 * exclusively by the caller. Note that the actual entry movement 8620 * must be done in this procedure to ensure that no I/O completions 8621 * occur while the move is in progress. 8622 */ 8623 void 8624 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8625 struct buf *bp; /* Buffer holding directory block. */ 8626 struct inode *dp; /* inode for directory */ 8627 caddr_t base; /* address of dp->i_offset */ 8628 caddr_t oldloc; /* address of old directory location */ 8629 caddr_t newloc; /* address of new directory location */ 8630 int entrysize; /* size of directory entry */ 8631 { 8632 int offset, oldoffset, newoffset; 8633 struct pagedep *pagedep; 8634 struct jmvref *jmvref; 8635 struct diradd *dap; 8636 struct direct *de; 8637 struct mount *mp; 8638 struct ufsmount *ump; 8639 ufs_lbn_t lbn; 8640 int flags; 8641 8642 mp = ITOVFS(dp); 8643 ump = VFSTOUFS(mp); 8644 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8645 ("softdep_change_directoryentry_offset called on " 8646 "non-softdep filesystem")); 8647 de = (struct direct *)oldloc; 8648 jmvref = NULL; 8649 flags = 0; 8650 /* 8651 * Moves are always journaled as it would be too complex to 8652 * determine if any affected adds or removes are present in the 8653 * journal. 8654 */ 8655 if (MOUNTEDSUJ(mp)) { 8656 flags = DEPALLOC; 8657 jmvref = newjmvref(dp, de->d_ino, 8658 dp->i_offset + (oldloc - base), 8659 dp->i_offset + (newloc - base)); 8660 } 8661 lbn = lblkno(ump->um_fs, dp->i_offset); 8662 offset = blkoff(ump->um_fs, dp->i_offset); 8663 oldoffset = offset + (oldloc - base); 8664 newoffset = offset + (newloc - base); 8665 ACQUIRE_LOCK(ump); 8666 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8667 goto done; 8668 dap = diradd_lookup(pagedep, oldoffset); 8669 if (dap) { 8670 dap->da_offset = newoffset; 8671 newoffset = DIRADDHASH(newoffset); 8672 oldoffset = DIRADDHASH(oldoffset); 8673 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8674 newoffset != oldoffset) { 8675 LIST_REMOVE(dap, da_pdlist); 8676 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8677 dap, da_pdlist); 8678 } 8679 } 8680 done: 8681 if (jmvref) { 8682 jmvref->jm_pagedep = pagedep; 8683 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8684 add_to_journal(&jmvref->jm_list); 8685 } 8686 bcopy(oldloc, newloc, entrysize); 8687 FREE_LOCK(ump); 8688 } 8689 8690 /* 8691 * Move the mkdir dependencies and journal work from one diradd to another 8692 * when renaming a directory. The new name must depend on the mkdir deps 8693 * completing as the old name did. Directories can only have one valid link 8694 * at a time so one must be canonical. 8695 */ 8696 static void 8697 merge_diradd(inodedep, newdap) 8698 struct inodedep *inodedep; 8699 struct diradd *newdap; 8700 { 8701 struct diradd *olddap; 8702 struct mkdir *mkdir, *nextmd; 8703 struct ufsmount *ump; 8704 short state; 8705 8706 olddap = inodedep->id_mkdiradd; 8707 inodedep->id_mkdiradd = newdap; 8708 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8709 newdap->da_state &= ~DEPCOMPLETE; 8710 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8711 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8712 mkdir = nextmd) { 8713 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8714 if (mkdir->md_diradd != olddap) 8715 continue; 8716 mkdir->md_diradd = newdap; 8717 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8718 newdap->da_state |= state; 8719 olddap->da_state &= ~state; 8720 if ((olddap->da_state & 8721 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8722 break; 8723 } 8724 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8725 panic("merge_diradd: unfound ref"); 8726 } 8727 /* 8728 * Any mkdir related journal items are not safe to be freed until 8729 * the new name is stable. 8730 */ 8731 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8732 olddap->da_state |= DEPCOMPLETE; 8733 complete_diradd(olddap); 8734 } 8735 8736 /* 8737 * Move the diradd to the pending list when all diradd dependencies are 8738 * complete. 8739 */ 8740 static void 8741 complete_diradd(dap) 8742 struct diradd *dap; 8743 { 8744 struct pagedep *pagedep; 8745 8746 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8747 if (dap->da_state & DIRCHG) 8748 pagedep = dap->da_previous->dm_pagedep; 8749 else 8750 pagedep = dap->da_pagedep; 8751 LIST_REMOVE(dap, da_pdlist); 8752 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8753 } 8754 } 8755 8756 /* 8757 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8758 * add entries and conditonally journal the remove. 8759 */ 8760 static void 8761 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8762 struct diradd *dap; 8763 struct dirrem *dirrem; 8764 struct jremref *jremref; 8765 struct jremref *dotremref; 8766 struct jremref *dotdotremref; 8767 { 8768 struct inodedep *inodedep; 8769 struct jaddref *jaddref; 8770 struct inoref *inoref; 8771 struct ufsmount *ump; 8772 struct mkdir *mkdir; 8773 8774 /* 8775 * If no remove references were allocated we're on a non-journaled 8776 * filesystem and can skip the cancel step. 8777 */ 8778 if (jremref == NULL) { 8779 free_diradd(dap, NULL); 8780 return; 8781 } 8782 /* 8783 * Cancel the primary name an free it if it does not require 8784 * journaling. 8785 */ 8786 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8787 0, &inodedep) != 0) { 8788 /* Abort the addref that reference this diradd. */ 8789 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8790 if (inoref->if_list.wk_type != D_JADDREF) 8791 continue; 8792 jaddref = (struct jaddref *)inoref; 8793 if (jaddref->ja_diradd != dap) 8794 continue; 8795 if (cancel_jaddref(jaddref, inodedep, 8796 &dirrem->dm_jwork) == 0) { 8797 free_jremref(jremref); 8798 jremref = NULL; 8799 } 8800 break; 8801 } 8802 } 8803 /* 8804 * Cancel subordinate names and free them if they do not require 8805 * journaling. 8806 */ 8807 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8808 ump = VFSTOUFS(dap->da_list.wk_mp); 8809 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8810 if (mkdir->md_diradd != dap) 8811 continue; 8812 if ((jaddref = mkdir->md_jaddref) == NULL) 8813 continue; 8814 mkdir->md_jaddref = NULL; 8815 if (mkdir->md_state & MKDIR_PARENT) { 8816 if (cancel_jaddref(jaddref, NULL, 8817 &dirrem->dm_jwork) == 0) { 8818 free_jremref(dotdotremref); 8819 dotdotremref = NULL; 8820 } 8821 } else { 8822 if (cancel_jaddref(jaddref, inodedep, 8823 &dirrem->dm_jwork) == 0) { 8824 free_jremref(dotremref); 8825 dotremref = NULL; 8826 } 8827 } 8828 } 8829 } 8830 8831 if (jremref) 8832 journal_jremref(dirrem, jremref, inodedep); 8833 if (dotremref) 8834 journal_jremref(dirrem, dotremref, inodedep); 8835 if (dotdotremref) 8836 journal_jremref(dirrem, dotdotremref, NULL); 8837 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8838 free_diradd(dap, &dirrem->dm_jwork); 8839 } 8840 8841 /* 8842 * Free a diradd dependency structure. This routine must be called 8843 * with splbio interrupts blocked. 8844 */ 8845 static void 8846 free_diradd(dap, wkhd) 8847 struct diradd *dap; 8848 struct workhead *wkhd; 8849 { 8850 struct dirrem *dirrem; 8851 struct pagedep *pagedep; 8852 struct inodedep *inodedep; 8853 struct mkdir *mkdir, *nextmd; 8854 struct ufsmount *ump; 8855 8856 ump = VFSTOUFS(dap->da_list.wk_mp); 8857 LOCK_OWNED(ump); 8858 LIST_REMOVE(dap, da_pdlist); 8859 if (dap->da_state & ONWORKLIST) 8860 WORKLIST_REMOVE(&dap->da_list); 8861 if ((dap->da_state & DIRCHG) == 0) { 8862 pagedep = dap->da_pagedep; 8863 } else { 8864 dirrem = dap->da_previous; 8865 pagedep = dirrem->dm_pagedep; 8866 dirrem->dm_dirinum = pagedep->pd_ino; 8867 dirrem->dm_state |= COMPLETE; 8868 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8869 add_to_worklist(&dirrem->dm_list, 0); 8870 } 8871 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8872 0, &inodedep) != 0) 8873 if (inodedep->id_mkdiradd == dap) 8874 inodedep->id_mkdiradd = NULL; 8875 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8876 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8877 mkdir = nextmd) { 8878 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8879 if (mkdir->md_diradd != dap) 8880 continue; 8881 dap->da_state &= 8882 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8883 LIST_REMOVE(mkdir, md_mkdirs); 8884 if (mkdir->md_state & ONWORKLIST) 8885 WORKLIST_REMOVE(&mkdir->md_list); 8886 if (mkdir->md_jaddref != NULL) 8887 panic("free_diradd: Unexpected jaddref"); 8888 WORKITEM_FREE(mkdir, D_MKDIR); 8889 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8890 break; 8891 } 8892 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8893 panic("free_diradd: unfound ref"); 8894 } 8895 if (inodedep) 8896 free_inodedep(inodedep); 8897 /* 8898 * Free any journal segments waiting for the directory write. 8899 */ 8900 handle_jwork(&dap->da_jwork); 8901 WORKITEM_FREE(dap, D_DIRADD); 8902 } 8903 8904 /* 8905 * Directory entry removal dependencies. 8906 * 8907 * When removing a directory entry, the entry's inode pointer must be 8908 * zero'ed on disk before the corresponding inode's link count is decremented 8909 * (possibly freeing the inode for re-use). This dependency is handled by 8910 * updating the directory entry but delaying the inode count reduction until 8911 * after the directory block has been written to disk. After this point, the 8912 * inode count can be decremented whenever it is convenient. 8913 */ 8914 8915 /* 8916 * This routine should be called immediately after removing 8917 * a directory entry. The inode's link count should not be 8918 * decremented by the calling procedure -- the soft updates 8919 * code will do this task when it is safe. 8920 */ 8921 void 8922 softdep_setup_remove(bp, dp, ip, isrmdir) 8923 struct buf *bp; /* buffer containing directory block */ 8924 struct inode *dp; /* inode for the directory being modified */ 8925 struct inode *ip; /* inode for directory entry being removed */ 8926 int isrmdir; /* indicates if doing RMDIR */ 8927 { 8928 struct dirrem *dirrem, *prevdirrem; 8929 struct inodedep *inodedep; 8930 struct ufsmount *ump; 8931 int direct; 8932 8933 ump = ITOUMP(ip); 8934 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 8935 ("softdep_setup_remove called on non-softdep filesystem")); 8936 /* 8937 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8938 * newdirrem() to setup the full directory remove which requires 8939 * isrmdir > 1. 8940 */ 8941 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8942 /* 8943 * Add the dirrem to the inodedep's pending remove list for quick 8944 * discovery later. 8945 */ 8946 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 8947 panic("softdep_setup_remove: Lost inodedep."); 8948 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8949 dirrem->dm_state |= ONDEPLIST; 8950 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8951 8952 /* 8953 * If the COMPLETE flag is clear, then there were no active 8954 * entries and we want to roll back to a zeroed entry until 8955 * the new inode is committed to disk. If the COMPLETE flag is 8956 * set then we have deleted an entry that never made it to 8957 * disk. If the entry we deleted resulted from a name change, 8958 * then the old name still resides on disk. We cannot delete 8959 * its inode (returned to us in prevdirrem) until the zeroed 8960 * directory entry gets to disk. The new inode has never been 8961 * referenced on the disk, so can be deleted immediately. 8962 */ 8963 if ((dirrem->dm_state & COMPLETE) == 0) { 8964 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8965 dm_next); 8966 FREE_LOCK(ump); 8967 } else { 8968 if (prevdirrem != NULL) 8969 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8970 prevdirrem, dm_next); 8971 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8972 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8973 FREE_LOCK(ump); 8974 if (direct) 8975 handle_workitem_remove(dirrem, 0); 8976 } 8977 } 8978 8979 /* 8980 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8981 * pd_pendinghd list of a pagedep. 8982 */ 8983 static struct diradd * 8984 diradd_lookup(pagedep, offset) 8985 struct pagedep *pagedep; 8986 int offset; 8987 { 8988 struct diradd *dap; 8989 8990 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8991 if (dap->da_offset == offset) 8992 return (dap); 8993 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8994 if (dap->da_offset == offset) 8995 return (dap); 8996 return (NULL); 8997 } 8998 8999 /* 9000 * Search for a .. diradd dependency in a directory that is being removed. 9001 * If the directory was renamed to a new parent we have a diradd rather 9002 * than a mkdir for the .. entry. We need to cancel it now before 9003 * it is found in truncate(). 9004 */ 9005 static struct jremref * 9006 cancel_diradd_dotdot(ip, dirrem, jremref) 9007 struct inode *ip; 9008 struct dirrem *dirrem; 9009 struct jremref *jremref; 9010 { 9011 struct pagedep *pagedep; 9012 struct diradd *dap; 9013 struct worklist *wk; 9014 9015 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9016 return (jremref); 9017 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9018 if (dap == NULL) 9019 return (jremref); 9020 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9021 /* 9022 * Mark any journal work as belonging to the parent so it is freed 9023 * with the .. reference. 9024 */ 9025 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9026 wk->wk_state |= MKDIR_PARENT; 9027 return (NULL); 9028 } 9029 9030 /* 9031 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9032 * replace it with a dirrem/diradd pair as a result of re-parenting a 9033 * directory. This ensures that we don't simultaneously have a mkdir and 9034 * a diradd for the same .. entry. 9035 */ 9036 static struct jremref * 9037 cancel_mkdir_dotdot(ip, dirrem, jremref) 9038 struct inode *ip; 9039 struct dirrem *dirrem; 9040 struct jremref *jremref; 9041 { 9042 struct inodedep *inodedep; 9043 struct jaddref *jaddref; 9044 struct ufsmount *ump; 9045 struct mkdir *mkdir; 9046 struct diradd *dap; 9047 struct mount *mp; 9048 9049 mp = ITOVFS(ip); 9050 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9051 return (jremref); 9052 dap = inodedep->id_mkdiradd; 9053 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9054 return (jremref); 9055 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9056 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9057 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9058 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9059 break; 9060 if (mkdir == NULL) 9061 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9062 if ((jaddref = mkdir->md_jaddref) != NULL) { 9063 mkdir->md_jaddref = NULL; 9064 jaddref->ja_state &= ~MKDIR_PARENT; 9065 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9066 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9067 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9068 journal_jremref(dirrem, jremref, inodedep); 9069 jremref = NULL; 9070 } 9071 } 9072 if (mkdir->md_state & ONWORKLIST) 9073 WORKLIST_REMOVE(&mkdir->md_list); 9074 mkdir->md_state |= ALLCOMPLETE; 9075 complete_mkdir(mkdir); 9076 return (jremref); 9077 } 9078 9079 static void 9080 journal_jremref(dirrem, jremref, inodedep) 9081 struct dirrem *dirrem; 9082 struct jremref *jremref; 9083 struct inodedep *inodedep; 9084 { 9085 9086 if (inodedep == NULL) 9087 if (inodedep_lookup(jremref->jr_list.wk_mp, 9088 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9089 panic("journal_jremref: Lost inodedep"); 9090 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9091 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9092 add_to_journal(&jremref->jr_list); 9093 } 9094 9095 static void 9096 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9097 struct dirrem *dirrem; 9098 struct jremref *jremref; 9099 struct jremref *dotremref; 9100 struct jremref *dotdotremref; 9101 { 9102 struct inodedep *inodedep; 9103 9104 9105 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9106 &inodedep) == 0) 9107 panic("dirrem_journal: Lost inodedep"); 9108 journal_jremref(dirrem, jremref, inodedep); 9109 if (dotremref) 9110 journal_jremref(dirrem, dotremref, inodedep); 9111 if (dotdotremref) 9112 journal_jremref(dirrem, dotdotremref, NULL); 9113 } 9114 9115 /* 9116 * Allocate a new dirrem if appropriate and return it along with 9117 * its associated pagedep. Called without a lock, returns with lock. 9118 */ 9119 static struct dirrem * 9120 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9121 struct buf *bp; /* buffer containing directory block */ 9122 struct inode *dp; /* inode for the directory being modified */ 9123 struct inode *ip; /* inode for directory entry being removed */ 9124 int isrmdir; /* indicates if doing RMDIR */ 9125 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9126 { 9127 int offset; 9128 ufs_lbn_t lbn; 9129 struct diradd *dap; 9130 struct dirrem *dirrem; 9131 struct pagedep *pagedep; 9132 struct jremref *jremref; 9133 struct jremref *dotremref; 9134 struct jremref *dotdotremref; 9135 struct vnode *dvp; 9136 struct ufsmount *ump; 9137 9138 /* 9139 * Whiteouts have no deletion dependencies. 9140 */ 9141 if (ip == NULL) 9142 panic("newdirrem: whiteout"); 9143 dvp = ITOV(dp); 9144 ump = ITOUMP(dp); 9145 9146 /* 9147 * If the system is over its limit and our filesystem is 9148 * responsible for more than our share of that usage and 9149 * we are not a snapshot, request some inodedep cleanup. 9150 * Limiting the number of dirrem structures will also limit 9151 * the number of freefile and freeblks structures. 9152 */ 9153 ACQUIRE_LOCK(ump); 9154 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9155 schedule_cleanup(UFSTOVFS(ump)); 9156 else 9157 FREE_LOCK(ump); 9158 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9159 M_ZERO); 9160 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9161 LIST_INIT(&dirrem->dm_jremrefhd); 9162 LIST_INIT(&dirrem->dm_jwork); 9163 dirrem->dm_state = isrmdir ? RMDIR : 0; 9164 dirrem->dm_oldinum = ip->i_number; 9165 *prevdirremp = NULL; 9166 /* 9167 * Allocate remove reference structures to track journal write 9168 * dependencies. We will always have one for the link and 9169 * when doing directories we will always have one more for dot. 9170 * When renaming a directory we skip the dotdot link change so 9171 * this is not needed. 9172 */ 9173 jremref = dotremref = dotdotremref = NULL; 9174 if (DOINGSUJ(dvp)) { 9175 if (isrmdir) { 9176 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9177 ip->i_effnlink + 2); 9178 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9179 ip->i_effnlink + 1); 9180 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9181 dp->i_effnlink + 1); 9182 dotdotremref->jr_state |= MKDIR_PARENT; 9183 } else 9184 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9185 ip->i_effnlink + 1); 9186 } 9187 ACQUIRE_LOCK(ump); 9188 lbn = lblkno(ump->um_fs, dp->i_offset); 9189 offset = blkoff(ump->um_fs, dp->i_offset); 9190 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9191 &pagedep); 9192 dirrem->dm_pagedep = pagedep; 9193 dirrem->dm_offset = offset; 9194 /* 9195 * If we're renaming a .. link to a new directory, cancel any 9196 * existing MKDIR_PARENT mkdir. If it has already been canceled 9197 * the jremref is preserved for any potential diradd in this 9198 * location. This can not coincide with a rmdir. 9199 */ 9200 if (dp->i_offset == DOTDOT_OFFSET) { 9201 if (isrmdir) 9202 panic("newdirrem: .. directory change during remove?"); 9203 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9204 } 9205 /* 9206 * If we're removing a directory search for the .. dependency now and 9207 * cancel it. Any pending journal work will be added to the dirrem 9208 * to be completed when the workitem remove completes. 9209 */ 9210 if (isrmdir) 9211 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9212 /* 9213 * Check for a diradd dependency for the same directory entry. 9214 * If present, then both dependencies become obsolete and can 9215 * be de-allocated. 9216 */ 9217 dap = diradd_lookup(pagedep, offset); 9218 if (dap == NULL) { 9219 /* 9220 * Link the jremref structures into the dirrem so they are 9221 * written prior to the pagedep. 9222 */ 9223 if (jremref) 9224 dirrem_journal(dirrem, jremref, dotremref, 9225 dotdotremref); 9226 return (dirrem); 9227 } 9228 /* 9229 * Must be ATTACHED at this point. 9230 */ 9231 if ((dap->da_state & ATTACHED) == 0) 9232 panic("newdirrem: not ATTACHED"); 9233 if (dap->da_newinum != ip->i_number) 9234 panic("newdirrem: inum %ju should be %ju", 9235 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9236 /* 9237 * If we are deleting a changed name that never made it to disk, 9238 * then return the dirrem describing the previous inode (which 9239 * represents the inode currently referenced from this entry on disk). 9240 */ 9241 if ((dap->da_state & DIRCHG) != 0) { 9242 *prevdirremp = dap->da_previous; 9243 dap->da_state &= ~DIRCHG; 9244 dap->da_pagedep = pagedep; 9245 } 9246 /* 9247 * We are deleting an entry that never made it to disk. 9248 * Mark it COMPLETE so we can delete its inode immediately. 9249 */ 9250 dirrem->dm_state |= COMPLETE; 9251 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9252 #ifdef SUJ_DEBUG 9253 if (isrmdir == 0) { 9254 struct worklist *wk; 9255 9256 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9257 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9258 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9259 } 9260 #endif 9261 9262 return (dirrem); 9263 } 9264 9265 /* 9266 * Directory entry change dependencies. 9267 * 9268 * Changing an existing directory entry requires that an add operation 9269 * be completed first followed by a deletion. The semantics for the addition 9270 * are identical to the description of adding a new entry above except 9271 * that the rollback is to the old inode number rather than zero. Once 9272 * the addition dependency is completed, the removal is done as described 9273 * in the removal routine above. 9274 */ 9275 9276 /* 9277 * This routine should be called immediately after changing 9278 * a directory entry. The inode's link count should not be 9279 * decremented by the calling procedure -- the soft updates 9280 * code will perform this task when it is safe. 9281 */ 9282 void 9283 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9284 struct buf *bp; /* buffer containing directory block */ 9285 struct inode *dp; /* inode for the directory being modified */ 9286 struct inode *ip; /* inode for directory entry being removed */ 9287 ino_t newinum; /* new inode number for changed entry */ 9288 int isrmdir; /* indicates if doing RMDIR */ 9289 { 9290 int offset; 9291 struct diradd *dap = NULL; 9292 struct dirrem *dirrem, *prevdirrem; 9293 struct pagedep *pagedep; 9294 struct inodedep *inodedep; 9295 struct jaddref *jaddref; 9296 struct mount *mp; 9297 struct ufsmount *ump; 9298 9299 mp = ITOVFS(dp); 9300 ump = VFSTOUFS(mp); 9301 offset = blkoff(ump->um_fs, dp->i_offset); 9302 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9303 ("softdep_setup_directory_change called on non-softdep filesystem")); 9304 9305 /* 9306 * Whiteouts do not need diradd dependencies. 9307 */ 9308 if (newinum != UFS_WINO) { 9309 dap = malloc(sizeof(struct diradd), 9310 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9311 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9312 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9313 dap->da_offset = offset; 9314 dap->da_newinum = newinum; 9315 LIST_INIT(&dap->da_jwork); 9316 } 9317 9318 /* 9319 * Allocate a new dirrem and ACQUIRE_LOCK. 9320 */ 9321 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9322 pagedep = dirrem->dm_pagedep; 9323 /* 9324 * The possible values for isrmdir: 9325 * 0 - non-directory file rename 9326 * 1 - directory rename within same directory 9327 * inum - directory rename to new directory of given inode number 9328 * When renaming to a new directory, we are both deleting and 9329 * creating a new directory entry, so the link count on the new 9330 * directory should not change. Thus we do not need the followup 9331 * dirrem which is usually done in handle_workitem_remove. We set 9332 * the DIRCHG flag to tell handle_workitem_remove to skip the 9333 * followup dirrem. 9334 */ 9335 if (isrmdir > 1) 9336 dirrem->dm_state |= DIRCHG; 9337 9338 /* 9339 * Whiteouts have no additional dependencies, 9340 * so just put the dirrem on the correct list. 9341 */ 9342 if (newinum == UFS_WINO) { 9343 if ((dirrem->dm_state & COMPLETE) == 0) { 9344 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9345 dm_next); 9346 } else { 9347 dirrem->dm_dirinum = pagedep->pd_ino; 9348 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9349 add_to_worklist(&dirrem->dm_list, 0); 9350 } 9351 FREE_LOCK(ump); 9352 return; 9353 } 9354 /* 9355 * Add the dirrem to the inodedep's pending remove list for quick 9356 * discovery later. A valid nlinkdelta ensures that this lookup 9357 * will not fail. 9358 */ 9359 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9360 panic("softdep_setup_directory_change: Lost inodedep."); 9361 dirrem->dm_state |= ONDEPLIST; 9362 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9363 9364 /* 9365 * If the COMPLETE flag is clear, then there were no active 9366 * entries and we want to roll back to the previous inode until 9367 * the new inode is committed to disk. If the COMPLETE flag is 9368 * set, then we have deleted an entry that never made it to disk. 9369 * If the entry we deleted resulted from a name change, then the old 9370 * inode reference still resides on disk. Any rollback that we do 9371 * needs to be to that old inode (returned to us in prevdirrem). If 9372 * the entry we deleted resulted from a create, then there is 9373 * no entry on the disk, so we want to roll back to zero rather 9374 * than the uncommitted inode. In either of the COMPLETE cases we 9375 * want to immediately free the unwritten and unreferenced inode. 9376 */ 9377 if ((dirrem->dm_state & COMPLETE) == 0) { 9378 dap->da_previous = dirrem; 9379 } else { 9380 if (prevdirrem != NULL) { 9381 dap->da_previous = prevdirrem; 9382 } else { 9383 dap->da_state &= ~DIRCHG; 9384 dap->da_pagedep = pagedep; 9385 } 9386 dirrem->dm_dirinum = pagedep->pd_ino; 9387 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9388 add_to_worklist(&dirrem->dm_list, 0); 9389 } 9390 /* 9391 * Lookup the jaddref for this journal entry. We must finish 9392 * initializing it and make the diradd write dependent on it. 9393 * If we're not journaling, put it on the id_bufwait list if the 9394 * inode is not yet written. If it is written, do the post-inode 9395 * write processing to put it on the id_pendinghd list. 9396 */ 9397 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9398 if (MOUNTEDSUJ(mp)) { 9399 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9400 inoreflst); 9401 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9402 ("softdep_setup_directory_change: bad jaddref %p", 9403 jaddref)); 9404 jaddref->ja_diroff = dp->i_offset; 9405 jaddref->ja_diradd = dap; 9406 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9407 dap, da_pdlist); 9408 add_to_journal(&jaddref->ja_list); 9409 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9410 dap->da_state |= COMPLETE; 9411 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9412 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9413 } else { 9414 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9415 dap, da_pdlist); 9416 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9417 } 9418 /* 9419 * If we're making a new name for a directory that has not been 9420 * committed when need to move the dot and dotdot references to 9421 * this new name. 9422 */ 9423 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9424 merge_diradd(inodedep, dap); 9425 FREE_LOCK(ump); 9426 } 9427 9428 /* 9429 * Called whenever the link count on an inode is changed. 9430 * It creates an inode dependency so that the new reference(s) 9431 * to the inode cannot be committed to disk until the updated 9432 * inode has been written. 9433 */ 9434 void 9435 softdep_change_linkcnt(ip) 9436 struct inode *ip; /* the inode with the increased link count */ 9437 { 9438 struct inodedep *inodedep; 9439 struct ufsmount *ump; 9440 9441 ump = ITOUMP(ip); 9442 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9443 ("softdep_change_linkcnt called on non-softdep filesystem")); 9444 ACQUIRE_LOCK(ump); 9445 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9446 if (ip->i_nlink < ip->i_effnlink) 9447 panic("softdep_change_linkcnt: bad delta"); 9448 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9449 FREE_LOCK(ump); 9450 } 9451 9452 /* 9453 * Attach a sbdep dependency to the superblock buf so that we can keep 9454 * track of the head of the linked list of referenced but unlinked inodes. 9455 */ 9456 void 9457 softdep_setup_sbupdate(ump, fs, bp) 9458 struct ufsmount *ump; 9459 struct fs *fs; 9460 struct buf *bp; 9461 { 9462 struct sbdep *sbdep; 9463 struct worklist *wk; 9464 9465 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9466 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9467 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9468 if (wk->wk_type == D_SBDEP) 9469 break; 9470 if (wk != NULL) 9471 return; 9472 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9473 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9474 sbdep->sb_fs = fs; 9475 sbdep->sb_ump = ump; 9476 ACQUIRE_LOCK(ump); 9477 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9478 FREE_LOCK(ump); 9479 } 9480 9481 /* 9482 * Return the first unlinked inodedep which is ready to be the head of the 9483 * list. The inodedep and all those after it must have valid next pointers. 9484 */ 9485 static struct inodedep * 9486 first_unlinked_inodedep(ump) 9487 struct ufsmount *ump; 9488 { 9489 struct inodedep *inodedep; 9490 struct inodedep *idp; 9491 9492 LOCK_OWNED(ump); 9493 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9494 inodedep; inodedep = idp) { 9495 if ((inodedep->id_state & UNLINKNEXT) == 0) 9496 return (NULL); 9497 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9498 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9499 break; 9500 if ((inodedep->id_state & UNLINKPREV) == 0) 9501 break; 9502 } 9503 return (inodedep); 9504 } 9505 9506 /* 9507 * Set the sujfree unlinked head pointer prior to writing a superblock. 9508 */ 9509 static void 9510 initiate_write_sbdep(sbdep) 9511 struct sbdep *sbdep; 9512 { 9513 struct inodedep *inodedep; 9514 struct fs *bpfs; 9515 struct fs *fs; 9516 9517 bpfs = sbdep->sb_fs; 9518 fs = sbdep->sb_ump->um_fs; 9519 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9520 if (inodedep) { 9521 fs->fs_sujfree = inodedep->id_ino; 9522 inodedep->id_state |= UNLINKPREV; 9523 } else 9524 fs->fs_sujfree = 0; 9525 bpfs->fs_sujfree = fs->fs_sujfree; 9526 } 9527 9528 /* 9529 * After a superblock is written determine whether it must be written again 9530 * due to a changing unlinked list head. 9531 */ 9532 static int 9533 handle_written_sbdep(sbdep, bp) 9534 struct sbdep *sbdep; 9535 struct buf *bp; 9536 { 9537 struct inodedep *inodedep; 9538 struct fs *fs; 9539 9540 LOCK_OWNED(sbdep->sb_ump); 9541 fs = sbdep->sb_fs; 9542 /* 9543 * If the superblock doesn't match the in-memory list start over. 9544 */ 9545 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9546 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9547 (inodedep == NULL && fs->fs_sujfree != 0)) { 9548 bdirty(bp); 9549 return (1); 9550 } 9551 WORKITEM_FREE(sbdep, D_SBDEP); 9552 if (fs->fs_sujfree == 0) 9553 return (0); 9554 /* 9555 * Now that we have a record of this inode in stable store allow it 9556 * to be written to free up pending work. Inodes may see a lot of 9557 * write activity after they are unlinked which we must not hold up. 9558 */ 9559 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9560 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9561 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9562 inodedep, inodedep->id_state); 9563 if (inodedep->id_state & UNLINKONLIST) 9564 break; 9565 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9566 } 9567 9568 return (0); 9569 } 9570 9571 /* 9572 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9573 */ 9574 static void 9575 unlinked_inodedep(mp, inodedep) 9576 struct mount *mp; 9577 struct inodedep *inodedep; 9578 { 9579 struct ufsmount *ump; 9580 9581 ump = VFSTOUFS(mp); 9582 LOCK_OWNED(ump); 9583 if (MOUNTEDSUJ(mp) == 0) 9584 return; 9585 ump->um_fs->fs_fmod = 1; 9586 if (inodedep->id_state & UNLINKED) 9587 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9588 inodedep->id_state |= UNLINKED; 9589 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9590 } 9591 9592 /* 9593 * Remove an inodedep from the unlinked inodedep list. This may require 9594 * disk writes if the inode has made it that far. 9595 */ 9596 static void 9597 clear_unlinked_inodedep(inodedep) 9598 struct inodedep *inodedep; 9599 { 9600 struct ufsmount *ump; 9601 struct inodedep *idp; 9602 struct inodedep *idn; 9603 struct fs *fs; 9604 struct buf *bp; 9605 ino_t ino; 9606 ino_t nino; 9607 ino_t pino; 9608 int error; 9609 9610 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9611 fs = ump->um_fs; 9612 ino = inodedep->id_ino; 9613 error = 0; 9614 for (;;) { 9615 LOCK_OWNED(ump); 9616 KASSERT((inodedep->id_state & UNLINKED) != 0, 9617 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9618 inodedep)); 9619 /* 9620 * If nothing has yet been written simply remove us from 9621 * the in memory list and return. This is the most common 9622 * case where handle_workitem_remove() loses the final 9623 * reference. 9624 */ 9625 if ((inodedep->id_state & UNLINKLINKS) == 0) 9626 break; 9627 /* 9628 * If we have a NEXT pointer and no PREV pointer we can simply 9629 * clear NEXT's PREV and remove ourselves from the list. Be 9630 * careful not to clear PREV if the superblock points at 9631 * next as well. 9632 */ 9633 idn = TAILQ_NEXT(inodedep, id_unlinked); 9634 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9635 if (idn && fs->fs_sujfree != idn->id_ino) 9636 idn->id_state &= ~UNLINKPREV; 9637 break; 9638 } 9639 /* 9640 * Here we have an inodedep which is actually linked into 9641 * the list. We must remove it by forcing a write to the 9642 * link before us, whether it be the superblock or an inode. 9643 * Unfortunately the list may change while we're waiting 9644 * on the buf lock for either resource so we must loop until 9645 * we lock the right one. If both the superblock and an 9646 * inode point to this inode we must clear the inode first 9647 * followed by the superblock. 9648 */ 9649 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9650 pino = 0; 9651 if (idp && (idp->id_state & UNLINKNEXT)) 9652 pino = idp->id_ino; 9653 FREE_LOCK(ump); 9654 if (pino == 0) { 9655 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9656 (int)fs->fs_sbsize, 0, 0, 0); 9657 } else { 9658 error = bread(ump->um_devvp, 9659 fsbtodb(fs, ino_to_fsba(fs, pino)), 9660 (int)fs->fs_bsize, NOCRED, &bp); 9661 if (error) 9662 brelse(bp); 9663 } 9664 ACQUIRE_LOCK(ump); 9665 if (error) 9666 break; 9667 /* If the list has changed restart the loop. */ 9668 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9669 nino = 0; 9670 if (idp && (idp->id_state & UNLINKNEXT)) 9671 nino = idp->id_ino; 9672 if (nino != pino || 9673 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9674 FREE_LOCK(ump); 9675 brelse(bp); 9676 ACQUIRE_LOCK(ump); 9677 continue; 9678 } 9679 nino = 0; 9680 idn = TAILQ_NEXT(inodedep, id_unlinked); 9681 if (idn) 9682 nino = idn->id_ino; 9683 /* 9684 * Remove us from the in memory list. After this we cannot 9685 * access the inodedep. 9686 */ 9687 KASSERT((inodedep->id_state & UNLINKED) != 0, 9688 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9689 inodedep)); 9690 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9691 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9692 FREE_LOCK(ump); 9693 /* 9694 * The predecessor's next pointer is manually updated here 9695 * so that the NEXT flag is never cleared for an element 9696 * that is in the list. 9697 */ 9698 if (pino == 0) { 9699 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9700 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9701 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9702 bp); 9703 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9704 ((struct ufs1_dinode *)bp->b_data + 9705 ino_to_fsbo(fs, pino))->di_freelink = nino; 9706 else 9707 ((struct ufs2_dinode *)bp->b_data + 9708 ino_to_fsbo(fs, pino))->di_freelink = nino; 9709 /* 9710 * If the bwrite fails we have no recourse to recover. The 9711 * filesystem is corrupted already. 9712 */ 9713 bwrite(bp); 9714 ACQUIRE_LOCK(ump); 9715 /* 9716 * If the superblock pointer still needs to be cleared force 9717 * a write here. 9718 */ 9719 if (fs->fs_sujfree == ino) { 9720 FREE_LOCK(ump); 9721 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9722 (int)fs->fs_sbsize, 0, 0, 0); 9723 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9724 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9725 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9726 bp); 9727 bwrite(bp); 9728 ACQUIRE_LOCK(ump); 9729 } 9730 9731 if (fs->fs_sujfree != ino) 9732 return; 9733 panic("clear_unlinked_inodedep: Failed to clear free head"); 9734 } 9735 if (inodedep->id_ino == fs->fs_sujfree) 9736 panic("clear_unlinked_inodedep: Freeing head of free list"); 9737 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9738 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9739 return; 9740 } 9741 9742 /* 9743 * This workitem decrements the inode's link count. 9744 * If the link count reaches zero, the file is removed. 9745 */ 9746 static int 9747 handle_workitem_remove(dirrem, flags) 9748 struct dirrem *dirrem; 9749 int flags; 9750 { 9751 struct inodedep *inodedep; 9752 struct workhead dotdotwk; 9753 struct worklist *wk; 9754 struct ufsmount *ump; 9755 struct mount *mp; 9756 struct vnode *vp; 9757 struct inode *ip; 9758 ino_t oldinum; 9759 9760 if (dirrem->dm_state & ONWORKLIST) 9761 panic("handle_workitem_remove: dirrem %p still on worklist", 9762 dirrem); 9763 oldinum = dirrem->dm_oldinum; 9764 mp = dirrem->dm_list.wk_mp; 9765 ump = VFSTOUFS(mp); 9766 flags |= LK_EXCLUSIVE; 9767 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9768 return (EBUSY); 9769 ip = VTOI(vp); 9770 ACQUIRE_LOCK(ump); 9771 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9772 panic("handle_workitem_remove: lost inodedep"); 9773 if (dirrem->dm_state & ONDEPLIST) 9774 LIST_REMOVE(dirrem, dm_inonext); 9775 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9776 ("handle_workitem_remove: Journal entries not written.")); 9777 9778 /* 9779 * Move all dependencies waiting on the remove to complete 9780 * from the dirrem to the inode inowait list to be completed 9781 * after the inode has been updated and written to disk. Any 9782 * marked MKDIR_PARENT are saved to be completed when the .. ref 9783 * is removed. 9784 */ 9785 LIST_INIT(&dotdotwk); 9786 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9787 WORKLIST_REMOVE(wk); 9788 if (wk->wk_state & MKDIR_PARENT) { 9789 wk->wk_state &= ~MKDIR_PARENT; 9790 WORKLIST_INSERT(&dotdotwk, wk); 9791 continue; 9792 } 9793 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9794 } 9795 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9796 /* 9797 * Normal file deletion. 9798 */ 9799 if ((dirrem->dm_state & RMDIR) == 0) { 9800 ip->i_nlink--; 9801 DIP_SET(ip, i_nlink, ip->i_nlink); 9802 ip->i_flag |= IN_CHANGE; 9803 if (ip->i_nlink < ip->i_effnlink) 9804 panic("handle_workitem_remove: bad file delta"); 9805 if (ip->i_nlink == 0) 9806 unlinked_inodedep(mp, inodedep); 9807 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9808 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9809 ("handle_workitem_remove: worklist not empty. %s", 9810 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9811 WORKITEM_FREE(dirrem, D_DIRREM); 9812 FREE_LOCK(ump); 9813 goto out; 9814 } 9815 /* 9816 * Directory deletion. Decrement reference count for both the 9817 * just deleted parent directory entry and the reference for ".". 9818 * Arrange to have the reference count on the parent decremented 9819 * to account for the loss of "..". 9820 */ 9821 ip->i_nlink -= 2; 9822 DIP_SET(ip, i_nlink, ip->i_nlink); 9823 ip->i_flag |= IN_CHANGE; 9824 if (ip->i_nlink < ip->i_effnlink) 9825 panic("handle_workitem_remove: bad dir delta"); 9826 if (ip->i_nlink == 0) 9827 unlinked_inodedep(mp, inodedep); 9828 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9829 /* 9830 * Rename a directory to a new parent. Since, we are both deleting 9831 * and creating a new directory entry, the link count on the new 9832 * directory should not change. Thus we skip the followup dirrem. 9833 */ 9834 if (dirrem->dm_state & DIRCHG) { 9835 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9836 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9837 WORKITEM_FREE(dirrem, D_DIRREM); 9838 FREE_LOCK(ump); 9839 goto out; 9840 } 9841 dirrem->dm_state = ONDEPLIST; 9842 dirrem->dm_oldinum = dirrem->dm_dirinum; 9843 /* 9844 * Place the dirrem on the parent's diremhd list. 9845 */ 9846 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9847 panic("handle_workitem_remove: lost dir inodedep"); 9848 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9849 /* 9850 * If the allocated inode has never been written to disk, then 9851 * the on-disk inode is zero'ed and we can remove the file 9852 * immediately. When journaling if the inode has been marked 9853 * unlinked and not DEPCOMPLETE we know it can never be written. 9854 */ 9855 inodedep_lookup(mp, oldinum, 0, &inodedep); 9856 if (inodedep == NULL || 9857 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9858 check_inode_unwritten(inodedep)) { 9859 FREE_LOCK(ump); 9860 vput(vp); 9861 return handle_workitem_remove(dirrem, flags); 9862 } 9863 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9864 FREE_LOCK(ump); 9865 ip->i_flag |= IN_CHANGE; 9866 out: 9867 ffs_update(vp, 0); 9868 vput(vp); 9869 return (0); 9870 } 9871 9872 /* 9873 * Inode de-allocation dependencies. 9874 * 9875 * When an inode's link count is reduced to zero, it can be de-allocated. We 9876 * found it convenient to postpone de-allocation until after the inode is 9877 * written to disk with its new link count (zero). At this point, all of the 9878 * on-disk inode's block pointers are nullified and, with careful dependency 9879 * list ordering, all dependencies related to the inode will be satisfied and 9880 * the corresponding dependency structures de-allocated. So, if/when the 9881 * inode is reused, there will be no mixing of old dependencies with new 9882 * ones. This artificial dependency is set up by the block de-allocation 9883 * procedure above (softdep_setup_freeblocks) and completed by the 9884 * following procedure. 9885 */ 9886 static void 9887 handle_workitem_freefile(freefile) 9888 struct freefile *freefile; 9889 { 9890 struct workhead wkhd; 9891 struct fs *fs; 9892 struct inodedep *idp; 9893 struct ufsmount *ump; 9894 int error; 9895 9896 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9897 fs = ump->um_fs; 9898 #ifdef DEBUG 9899 ACQUIRE_LOCK(ump); 9900 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9901 FREE_LOCK(ump); 9902 if (error) 9903 panic("handle_workitem_freefile: inodedep %p survived", idp); 9904 #endif 9905 UFS_LOCK(ump); 9906 fs->fs_pendinginodes -= 1; 9907 UFS_UNLOCK(ump); 9908 LIST_INIT(&wkhd); 9909 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9910 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9911 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9912 softdep_error("handle_workitem_freefile", error); 9913 ACQUIRE_LOCK(ump); 9914 WORKITEM_FREE(freefile, D_FREEFILE); 9915 FREE_LOCK(ump); 9916 } 9917 9918 9919 /* 9920 * Helper function which unlinks marker element from work list and returns 9921 * the next element on the list. 9922 */ 9923 static __inline struct worklist * 9924 markernext(struct worklist *marker) 9925 { 9926 struct worklist *next; 9927 9928 next = LIST_NEXT(marker, wk_list); 9929 LIST_REMOVE(marker, wk_list); 9930 return next; 9931 } 9932 9933 /* 9934 * Disk writes. 9935 * 9936 * The dependency structures constructed above are most actively used when file 9937 * system blocks are written to disk. No constraints are placed on when a 9938 * block can be written, but unsatisfied update dependencies are made safe by 9939 * modifying (or replacing) the source memory for the duration of the disk 9940 * write. When the disk write completes, the memory block is again brought 9941 * up-to-date. 9942 * 9943 * In-core inode structure reclamation. 9944 * 9945 * Because there are a finite number of "in-core" inode structures, they are 9946 * reused regularly. By transferring all inode-related dependencies to the 9947 * in-memory inode block and indexing them separately (via "inodedep"s), we 9948 * can allow "in-core" inode structures to be reused at any time and avoid 9949 * any increase in contention. 9950 * 9951 * Called just before entering the device driver to initiate a new disk I/O. 9952 * The buffer must be locked, thus, no I/O completion operations can occur 9953 * while we are manipulating its associated dependencies. 9954 */ 9955 static void 9956 softdep_disk_io_initiation(bp) 9957 struct buf *bp; /* structure describing disk write to occur */ 9958 { 9959 struct worklist *wk; 9960 struct worklist marker; 9961 struct inodedep *inodedep; 9962 struct freeblks *freeblks; 9963 struct jblkdep *jblkdep; 9964 struct newblk *newblk; 9965 struct ufsmount *ump; 9966 9967 /* 9968 * We only care about write operations. There should never 9969 * be dependencies for reads. 9970 */ 9971 if (bp->b_iocmd != BIO_WRITE) 9972 panic("softdep_disk_io_initiation: not write"); 9973 9974 if (bp->b_vflags & BV_BKGRDINPROG) 9975 panic("softdep_disk_io_initiation: Writing buffer with " 9976 "background write in progress: %p", bp); 9977 9978 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 9979 return; 9980 ump = VFSTOUFS(wk->wk_mp); 9981 9982 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9983 PHOLD(curproc); /* Don't swap out kernel stack */ 9984 ACQUIRE_LOCK(ump); 9985 /* 9986 * Do any necessary pre-I/O processing. 9987 */ 9988 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9989 wk = markernext(&marker)) { 9990 LIST_INSERT_AFTER(wk, &marker, wk_list); 9991 switch (wk->wk_type) { 9992 9993 case D_PAGEDEP: 9994 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9995 continue; 9996 9997 case D_INODEDEP: 9998 inodedep = WK_INODEDEP(wk); 9999 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10000 initiate_write_inodeblock_ufs1(inodedep, bp); 10001 else 10002 initiate_write_inodeblock_ufs2(inodedep, bp); 10003 continue; 10004 10005 case D_INDIRDEP: 10006 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10007 continue; 10008 10009 case D_BMSAFEMAP: 10010 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10011 continue; 10012 10013 case D_JSEG: 10014 WK_JSEG(wk)->js_buf = NULL; 10015 continue; 10016 10017 case D_FREEBLKS: 10018 freeblks = WK_FREEBLKS(wk); 10019 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10020 /* 10021 * We have to wait for the freeblks to be journaled 10022 * before we can write an inodeblock with updated 10023 * pointers. Be careful to arrange the marker so 10024 * we revisit the freeblks if it's not removed by 10025 * the first jwait(). 10026 */ 10027 if (jblkdep != NULL) { 10028 LIST_REMOVE(&marker, wk_list); 10029 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10030 jwait(&jblkdep->jb_list, MNT_WAIT); 10031 } 10032 continue; 10033 case D_ALLOCDIRECT: 10034 case D_ALLOCINDIR: 10035 /* 10036 * We have to wait for the jnewblk to be journaled 10037 * before we can write to a block if the contents 10038 * may be confused with an earlier file's indirect 10039 * at recovery time. Handle the marker as described 10040 * above. 10041 */ 10042 newblk = WK_NEWBLK(wk); 10043 if (newblk->nb_jnewblk != NULL && 10044 indirblk_lookup(newblk->nb_list.wk_mp, 10045 newblk->nb_newblkno)) { 10046 LIST_REMOVE(&marker, wk_list); 10047 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10048 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10049 } 10050 continue; 10051 10052 case D_SBDEP: 10053 initiate_write_sbdep(WK_SBDEP(wk)); 10054 continue; 10055 10056 case D_MKDIR: 10057 case D_FREEWORK: 10058 case D_FREEDEP: 10059 case D_JSEGDEP: 10060 continue; 10061 10062 default: 10063 panic("handle_disk_io_initiation: Unexpected type %s", 10064 TYPENAME(wk->wk_type)); 10065 /* NOTREACHED */ 10066 } 10067 } 10068 FREE_LOCK(ump); 10069 PRELE(curproc); /* Allow swapout of kernel stack */ 10070 } 10071 10072 /* 10073 * Called from within the procedure above to deal with unsatisfied 10074 * allocation dependencies in a directory. The buffer must be locked, 10075 * thus, no I/O completion operations can occur while we are 10076 * manipulating its associated dependencies. 10077 */ 10078 static void 10079 initiate_write_filepage(pagedep, bp) 10080 struct pagedep *pagedep; 10081 struct buf *bp; 10082 { 10083 struct jremref *jremref; 10084 struct jmvref *jmvref; 10085 struct dirrem *dirrem; 10086 struct diradd *dap; 10087 struct direct *ep; 10088 int i; 10089 10090 if (pagedep->pd_state & IOSTARTED) { 10091 /* 10092 * This can only happen if there is a driver that does not 10093 * understand chaining. Here biodone will reissue the call 10094 * to strategy for the incomplete buffers. 10095 */ 10096 printf("initiate_write_filepage: already started\n"); 10097 return; 10098 } 10099 pagedep->pd_state |= IOSTARTED; 10100 /* 10101 * Wait for all journal remove dependencies to hit the disk. 10102 * We can not allow any potentially conflicting directory adds 10103 * to be visible before removes and rollback is too difficult. 10104 * The per-filesystem lock may be dropped and re-acquired, however 10105 * we hold the buf locked so the dependency can not go away. 10106 */ 10107 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10108 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10109 jwait(&jremref->jr_list, MNT_WAIT); 10110 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10111 jwait(&jmvref->jm_list, MNT_WAIT); 10112 for (i = 0; i < DAHASHSZ; i++) { 10113 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10114 ep = (struct direct *) 10115 ((char *)bp->b_data + dap->da_offset); 10116 if (ep->d_ino != dap->da_newinum) 10117 panic("%s: dir inum %ju != new %ju", 10118 "initiate_write_filepage", 10119 (uintmax_t)ep->d_ino, 10120 (uintmax_t)dap->da_newinum); 10121 if (dap->da_state & DIRCHG) 10122 ep->d_ino = dap->da_previous->dm_oldinum; 10123 else 10124 ep->d_ino = 0; 10125 dap->da_state &= ~ATTACHED; 10126 dap->da_state |= UNDONE; 10127 } 10128 } 10129 } 10130 10131 /* 10132 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10133 * Note that any bug fixes made to this routine must be done in the 10134 * version found below. 10135 * 10136 * Called from within the procedure above to deal with unsatisfied 10137 * allocation dependencies in an inodeblock. The buffer must be 10138 * locked, thus, no I/O completion operations can occur while we 10139 * are manipulating its associated dependencies. 10140 */ 10141 static void 10142 initiate_write_inodeblock_ufs1(inodedep, bp) 10143 struct inodedep *inodedep; 10144 struct buf *bp; /* The inode block */ 10145 { 10146 struct allocdirect *adp, *lastadp; 10147 struct ufs1_dinode *dp; 10148 struct ufs1_dinode *sip; 10149 struct inoref *inoref; 10150 struct ufsmount *ump; 10151 struct fs *fs; 10152 ufs_lbn_t i; 10153 #ifdef INVARIANTS 10154 ufs_lbn_t prevlbn = 0; 10155 #endif 10156 int deplist; 10157 10158 if (inodedep->id_state & IOSTARTED) 10159 panic("initiate_write_inodeblock_ufs1: already started"); 10160 inodedep->id_state |= IOSTARTED; 10161 fs = inodedep->id_fs; 10162 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10163 LOCK_OWNED(ump); 10164 dp = (struct ufs1_dinode *)bp->b_data + 10165 ino_to_fsbo(fs, inodedep->id_ino); 10166 10167 /* 10168 * If we're on the unlinked list but have not yet written our 10169 * next pointer initialize it here. 10170 */ 10171 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10172 struct inodedep *inon; 10173 10174 inon = TAILQ_NEXT(inodedep, id_unlinked); 10175 dp->di_freelink = inon ? inon->id_ino : 0; 10176 } 10177 /* 10178 * If the bitmap is not yet written, then the allocated 10179 * inode cannot be written to disk. 10180 */ 10181 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10182 if (inodedep->id_savedino1 != NULL) 10183 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10184 FREE_LOCK(ump); 10185 sip = malloc(sizeof(struct ufs1_dinode), 10186 M_SAVEDINO, M_SOFTDEP_FLAGS); 10187 ACQUIRE_LOCK(ump); 10188 inodedep->id_savedino1 = sip; 10189 *inodedep->id_savedino1 = *dp; 10190 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10191 dp->di_gen = inodedep->id_savedino1->di_gen; 10192 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10193 return; 10194 } 10195 /* 10196 * If no dependencies, then there is nothing to roll back. 10197 */ 10198 inodedep->id_savedsize = dp->di_size; 10199 inodedep->id_savedextsize = 0; 10200 inodedep->id_savednlink = dp->di_nlink; 10201 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10202 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10203 return; 10204 /* 10205 * Revert the link count to that of the first unwritten journal entry. 10206 */ 10207 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10208 if (inoref) 10209 dp->di_nlink = inoref->if_nlink; 10210 /* 10211 * Set the dependencies to busy. 10212 */ 10213 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10214 adp = TAILQ_NEXT(adp, ad_next)) { 10215 #ifdef INVARIANTS 10216 if (deplist != 0 && prevlbn >= adp->ad_offset) 10217 panic("softdep_write_inodeblock: lbn order"); 10218 prevlbn = adp->ad_offset; 10219 if (adp->ad_offset < UFS_NDADDR && 10220 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10221 panic("%s: direct pointer #%jd mismatch %d != %jd", 10222 "softdep_write_inodeblock", 10223 (intmax_t)adp->ad_offset, 10224 dp->di_db[adp->ad_offset], 10225 (intmax_t)adp->ad_newblkno); 10226 if (adp->ad_offset >= UFS_NDADDR && 10227 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10228 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10229 "softdep_write_inodeblock", 10230 (intmax_t)adp->ad_offset - UFS_NDADDR, 10231 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10232 (intmax_t)adp->ad_newblkno); 10233 deplist |= 1 << adp->ad_offset; 10234 if ((adp->ad_state & ATTACHED) == 0) 10235 panic("softdep_write_inodeblock: Unknown state 0x%x", 10236 adp->ad_state); 10237 #endif /* INVARIANTS */ 10238 adp->ad_state &= ~ATTACHED; 10239 adp->ad_state |= UNDONE; 10240 } 10241 /* 10242 * The on-disk inode cannot claim to be any larger than the last 10243 * fragment that has been written. Otherwise, the on-disk inode 10244 * might have fragments that were not the last block in the file 10245 * which would corrupt the filesystem. 10246 */ 10247 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10248 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10249 if (adp->ad_offset >= UFS_NDADDR) 10250 break; 10251 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10252 /* keep going until hitting a rollback to a frag */ 10253 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10254 continue; 10255 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10256 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10257 #ifdef INVARIANTS 10258 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10259 panic("softdep_write_inodeblock: lost dep1"); 10260 #endif /* INVARIANTS */ 10261 dp->di_db[i] = 0; 10262 } 10263 for (i = 0; i < UFS_NIADDR; i++) { 10264 #ifdef INVARIANTS 10265 if (dp->di_ib[i] != 0 && 10266 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10267 panic("softdep_write_inodeblock: lost dep2"); 10268 #endif /* INVARIANTS */ 10269 dp->di_ib[i] = 0; 10270 } 10271 return; 10272 } 10273 /* 10274 * If we have zero'ed out the last allocated block of the file, 10275 * roll back the size to the last currently allocated block. 10276 * We know that this last allocated block is a full-sized as 10277 * we already checked for fragments in the loop above. 10278 */ 10279 if (lastadp != NULL && 10280 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10281 for (i = lastadp->ad_offset; i >= 0; i--) 10282 if (dp->di_db[i] != 0) 10283 break; 10284 dp->di_size = (i + 1) * fs->fs_bsize; 10285 } 10286 /* 10287 * The only dependencies are for indirect blocks. 10288 * 10289 * The file size for indirect block additions is not guaranteed. 10290 * Such a guarantee would be non-trivial to achieve. The conventional 10291 * synchronous write implementation also does not make this guarantee. 10292 * Fsck should catch and fix discrepancies. Arguably, the file size 10293 * can be over-estimated without destroying integrity when the file 10294 * moves into the indirect blocks (i.e., is large). If we want to 10295 * postpone fsck, we are stuck with this argument. 10296 */ 10297 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10298 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10299 } 10300 10301 /* 10302 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10303 * Note that any bug fixes made to this routine must be done in the 10304 * version found above. 10305 * 10306 * Called from within the procedure above to deal with unsatisfied 10307 * allocation dependencies in an inodeblock. The buffer must be 10308 * locked, thus, no I/O completion operations can occur while we 10309 * are manipulating its associated dependencies. 10310 */ 10311 static void 10312 initiate_write_inodeblock_ufs2(inodedep, bp) 10313 struct inodedep *inodedep; 10314 struct buf *bp; /* The inode block */ 10315 { 10316 struct allocdirect *adp, *lastadp; 10317 struct ufs2_dinode *dp; 10318 struct ufs2_dinode *sip; 10319 struct inoref *inoref; 10320 struct ufsmount *ump; 10321 struct fs *fs; 10322 ufs_lbn_t i; 10323 #ifdef INVARIANTS 10324 ufs_lbn_t prevlbn = 0; 10325 #endif 10326 int deplist; 10327 10328 if (inodedep->id_state & IOSTARTED) 10329 panic("initiate_write_inodeblock_ufs2: already started"); 10330 inodedep->id_state |= IOSTARTED; 10331 fs = inodedep->id_fs; 10332 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10333 LOCK_OWNED(ump); 10334 dp = (struct ufs2_dinode *)bp->b_data + 10335 ino_to_fsbo(fs, inodedep->id_ino); 10336 10337 /* 10338 * If we're on the unlinked list but have not yet written our 10339 * next pointer initialize it here. 10340 */ 10341 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10342 struct inodedep *inon; 10343 10344 inon = TAILQ_NEXT(inodedep, id_unlinked); 10345 dp->di_freelink = inon ? inon->id_ino : 0; 10346 } 10347 /* 10348 * If the bitmap is not yet written, then the allocated 10349 * inode cannot be written to disk. 10350 */ 10351 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10352 if (inodedep->id_savedino2 != NULL) 10353 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10354 FREE_LOCK(ump); 10355 sip = malloc(sizeof(struct ufs2_dinode), 10356 M_SAVEDINO, M_SOFTDEP_FLAGS); 10357 ACQUIRE_LOCK(ump); 10358 inodedep->id_savedino2 = sip; 10359 *inodedep->id_savedino2 = *dp; 10360 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10361 dp->di_gen = inodedep->id_savedino2->di_gen; 10362 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10363 return; 10364 } 10365 /* 10366 * If no dependencies, then there is nothing to roll back. 10367 */ 10368 inodedep->id_savedsize = dp->di_size; 10369 inodedep->id_savedextsize = dp->di_extsize; 10370 inodedep->id_savednlink = dp->di_nlink; 10371 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10372 TAILQ_EMPTY(&inodedep->id_extupdt) && 10373 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10374 return; 10375 /* 10376 * Revert the link count to that of the first unwritten journal entry. 10377 */ 10378 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10379 if (inoref) 10380 dp->di_nlink = inoref->if_nlink; 10381 10382 /* 10383 * Set the ext data dependencies to busy. 10384 */ 10385 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10386 adp = TAILQ_NEXT(adp, ad_next)) { 10387 #ifdef INVARIANTS 10388 if (deplist != 0 && prevlbn >= adp->ad_offset) 10389 panic("softdep_write_inodeblock: lbn order"); 10390 prevlbn = adp->ad_offset; 10391 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10392 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10393 "softdep_write_inodeblock", 10394 (intmax_t)adp->ad_offset, 10395 (intmax_t)dp->di_extb[adp->ad_offset], 10396 (intmax_t)adp->ad_newblkno); 10397 deplist |= 1 << adp->ad_offset; 10398 if ((adp->ad_state & ATTACHED) == 0) 10399 panic("softdep_write_inodeblock: Unknown state 0x%x", 10400 adp->ad_state); 10401 #endif /* INVARIANTS */ 10402 adp->ad_state &= ~ATTACHED; 10403 adp->ad_state |= UNDONE; 10404 } 10405 /* 10406 * The on-disk inode cannot claim to be any larger than the last 10407 * fragment that has been written. Otherwise, the on-disk inode 10408 * might have fragments that were not the last block in the ext 10409 * data which would corrupt the filesystem. 10410 */ 10411 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10412 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10413 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10414 /* keep going until hitting a rollback to a frag */ 10415 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10416 continue; 10417 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10418 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10419 #ifdef INVARIANTS 10420 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10421 panic("softdep_write_inodeblock: lost dep1"); 10422 #endif /* INVARIANTS */ 10423 dp->di_extb[i] = 0; 10424 } 10425 lastadp = NULL; 10426 break; 10427 } 10428 /* 10429 * If we have zero'ed out the last allocated block of the ext 10430 * data, roll back the size to the last currently allocated block. 10431 * We know that this last allocated block is a full-sized as 10432 * we already checked for fragments in the loop above. 10433 */ 10434 if (lastadp != NULL && 10435 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10436 for (i = lastadp->ad_offset; i >= 0; i--) 10437 if (dp->di_extb[i] != 0) 10438 break; 10439 dp->di_extsize = (i + 1) * fs->fs_bsize; 10440 } 10441 /* 10442 * Set the file data dependencies to busy. 10443 */ 10444 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10445 adp = TAILQ_NEXT(adp, ad_next)) { 10446 #ifdef INVARIANTS 10447 if (deplist != 0 && prevlbn >= adp->ad_offset) 10448 panic("softdep_write_inodeblock: lbn order"); 10449 if ((adp->ad_state & ATTACHED) == 0) 10450 panic("inodedep %p and adp %p not attached", inodedep, adp); 10451 prevlbn = adp->ad_offset; 10452 if (adp->ad_offset < UFS_NDADDR && 10453 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10454 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10455 "softdep_write_inodeblock", 10456 (intmax_t)adp->ad_offset, 10457 (intmax_t)dp->di_db[adp->ad_offset], 10458 (intmax_t)adp->ad_newblkno); 10459 if (adp->ad_offset >= UFS_NDADDR && 10460 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10461 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10462 "softdep_write_inodeblock:", 10463 (intmax_t)adp->ad_offset - UFS_NDADDR, 10464 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10465 (intmax_t)adp->ad_newblkno); 10466 deplist |= 1 << adp->ad_offset; 10467 if ((adp->ad_state & ATTACHED) == 0) 10468 panic("softdep_write_inodeblock: Unknown state 0x%x", 10469 adp->ad_state); 10470 #endif /* INVARIANTS */ 10471 adp->ad_state &= ~ATTACHED; 10472 adp->ad_state |= UNDONE; 10473 } 10474 /* 10475 * The on-disk inode cannot claim to be any larger than the last 10476 * fragment that has been written. Otherwise, the on-disk inode 10477 * might have fragments that were not the last block in the file 10478 * which would corrupt the filesystem. 10479 */ 10480 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10481 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10482 if (adp->ad_offset >= UFS_NDADDR) 10483 break; 10484 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10485 /* keep going until hitting a rollback to a frag */ 10486 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10487 continue; 10488 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10489 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10490 #ifdef INVARIANTS 10491 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10492 panic("softdep_write_inodeblock: lost dep2"); 10493 #endif /* INVARIANTS */ 10494 dp->di_db[i] = 0; 10495 } 10496 for (i = 0; i < UFS_NIADDR; i++) { 10497 #ifdef INVARIANTS 10498 if (dp->di_ib[i] != 0 && 10499 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10500 panic("softdep_write_inodeblock: lost dep3"); 10501 #endif /* INVARIANTS */ 10502 dp->di_ib[i] = 0; 10503 } 10504 return; 10505 } 10506 /* 10507 * If we have zero'ed out the last allocated block of the file, 10508 * roll back the size to the last currently allocated block. 10509 * We know that this last allocated block is a full-sized as 10510 * we already checked for fragments in the loop above. 10511 */ 10512 if (lastadp != NULL && 10513 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10514 for (i = lastadp->ad_offset; i >= 0; i--) 10515 if (dp->di_db[i] != 0) 10516 break; 10517 dp->di_size = (i + 1) * fs->fs_bsize; 10518 } 10519 /* 10520 * The only dependencies are for indirect blocks. 10521 * 10522 * The file size for indirect block additions is not guaranteed. 10523 * Such a guarantee would be non-trivial to achieve. The conventional 10524 * synchronous write implementation also does not make this guarantee. 10525 * Fsck should catch and fix discrepancies. Arguably, the file size 10526 * can be over-estimated without destroying integrity when the file 10527 * moves into the indirect blocks (i.e., is large). If we want to 10528 * postpone fsck, we are stuck with this argument. 10529 */ 10530 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10531 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10532 } 10533 10534 /* 10535 * Cancel an indirdep as a result of truncation. Release all of the 10536 * children allocindirs and place their journal work on the appropriate 10537 * list. 10538 */ 10539 static void 10540 cancel_indirdep(indirdep, bp, freeblks) 10541 struct indirdep *indirdep; 10542 struct buf *bp; 10543 struct freeblks *freeblks; 10544 { 10545 struct allocindir *aip; 10546 10547 /* 10548 * None of the indirect pointers will ever be visible, 10549 * so they can simply be tossed. GOINGAWAY ensures 10550 * that allocated pointers will be saved in the buffer 10551 * cache until they are freed. Note that they will 10552 * only be able to be found by their physical address 10553 * since the inode mapping the logical address will 10554 * be gone. The save buffer used for the safe copy 10555 * was allocated in setup_allocindir_phase2 using 10556 * the physical address so it could be used for this 10557 * purpose. Hence we swap the safe copy with the real 10558 * copy, allowing the safe copy to be freed and holding 10559 * on to the real copy for later use in indir_trunc. 10560 */ 10561 if (indirdep->ir_state & GOINGAWAY) 10562 panic("cancel_indirdep: already gone"); 10563 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10564 indirdep->ir_state |= DEPCOMPLETE; 10565 LIST_REMOVE(indirdep, ir_next); 10566 } 10567 indirdep->ir_state |= GOINGAWAY; 10568 /* 10569 * Pass in bp for blocks still have journal writes 10570 * pending so we can cancel them on their own. 10571 */ 10572 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10573 cancel_allocindir(aip, bp, freeblks, 0); 10574 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10575 cancel_allocindir(aip, NULL, freeblks, 0); 10576 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10577 cancel_allocindir(aip, NULL, freeblks, 0); 10578 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10579 cancel_allocindir(aip, NULL, freeblks, 0); 10580 /* 10581 * If there are pending partial truncations we need to keep the 10582 * old block copy around until they complete. This is because 10583 * the current b_data is not a perfect superset of the available 10584 * blocks. 10585 */ 10586 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10587 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10588 else 10589 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10590 WORKLIST_REMOVE(&indirdep->ir_list); 10591 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10592 indirdep->ir_bp = NULL; 10593 indirdep->ir_freeblks = freeblks; 10594 } 10595 10596 /* 10597 * Free an indirdep once it no longer has new pointers to track. 10598 */ 10599 static void 10600 free_indirdep(indirdep) 10601 struct indirdep *indirdep; 10602 { 10603 10604 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10605 ("free_indirdep: Indir trunc list not empty.")); 10606 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10607 ("free_indirdep: Complete head not empty.")); 10608 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10609 ("free_indirdep: write head not empty.")); 10610 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10611 ("free_indirdep: done head not empty.")); 10612 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10613 ("free_indirdep: deplist head not empty.")); 10614 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10615 ("free_indirdep: %p still on newblk list.", indirdep)); 10616 KASSERT(indirdep->ir_saveddata == NULL, 10617 ("free_indirdep: %p still has saved data.", indirdep)); 10618 if (indirdep->ir_state & ONWORKLIST) 10619 WORKLIST_REMOVE(&indirdep->ir_list); 10620 WORKITEM_FREE(indirdep, D_INDIRDEP); 10621 } 10622 10623 /* 10624 * Called before a write to an indirdep. This routine is responsible for 10625 * rolling back pointers to a safe state which includes only those 10626 * allocindirs which have been completed. 10627 */ 10628 static void 10629 initiate_write_indirdep(indirdep, bp) 10630 struct indirdep *indirdep; 10631 struct buf *bp; 10632 { 10633 struct ufsmount *ump; 10634 10635 indirdep->ir_state |= IOSTARTED; 10636 if (indirdep->ir_state & GOINGAWAY) 10637 panic("disk_io_initiation: indirdep gone"); 10638 /* 10639 * If there are no remaining dependencies, this will be writing 10640 * the real pointers. 10641 */ 10642 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10643 TAILQ_EMPTY(&indirdep->ir_trunc)) 10644 return; 10645 /* 10646 * Replace up-to-date version with safe version. 10647 */ 10648 if (indirdep->ir_saveddata == NULL) { 10649 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10650 LOCK_OWNED(ump); 10651 FREE_LOCK(ump); 10652 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10653 M_SOFTDEP_FLAGS); 10654 ACQUIRE_LOCK(ump); 10655 } 10656 indirdep->ir_state &= ~ATTACHED; 10657 indirdep->ir_state |= UNDONE; 10658 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10659 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10660 bp->b_bcount); 10661 } 10662 10663 /* 10664 * Called when an inode has been cleared in a cg bitmap. This finally 10665 * eliminates any canceled jaddrefs 10666 */ 10667 void 10668 softdep_setup_inofree(mp, bp, ino, wkhd) 10669 struct mount *mp; 10670 struct buf *bp; 10671 ino_t ino; 10672 struct workhead *wkhd; 10673 { 10674 struct worklist *wk, *wkn; 10675 struct inodedep *inodedep; 10676 struct ufsmount *ump; 10677 uint8_t *inosused; 10678 struct cg *cgp; 10679 struct fs *fs; 10680 10681 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10682 ("softdep_setup_inofree called on non-softdep filesystem")); 10683 ump = VFSTOUFS(mp); 10684 ACQUIRE_LOCK(ump); 10685 fs = ump->um_fs; 10686 cgp = (struct cg *)bp->b_data; 10687 inosused = cg_inosused(cgp); 10688 if (isset(inosused, ino % fs->fs_ipg)) 10689 panic("softdep_setup_inofree: inode %ju not freed.", 10690 (uintmax_t)ino); 10691 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10692 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10693 (uintmax_t)ino, inodedep); 10694 if (wkhd) { 10695 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10696 if (wk->wk_type != D_JADDREF) 10697 continue; 10698 WORKLIST_REMOVE(wk); 10699 /* 10700 * We can free immediately even if the jaddref 10701 * isn't attached in a background write as now 10702 * the bitmaps are reconciled. 10703 */ 10704 wk->wk_state |= COMPLETE | ATTACHED; 10705 free_jaddref(WK_JADDREF(wk)); 10706 } 10707 jwork_move(&bp->b_dep, wkhd); 10708 } 10709 FREE_LOCK(ump); 10710 } 10711 10712 10713 /* 10714 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10715 * map. Any dependencies waiting for the write to clear are added to the 10716 * buf's list and any jnewblks that are being canceled are discarded 10717 * immediately. 10718 */ 10719 void 10720 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10721 struct mount *mp; 10722 struct buf *bp; 10723 ufs2_daddr_t blkno; 10724 int frags; 10725 struct workhead *wkhd; 10726 { 10727 struct bmsafemap *bmsafemap; 10728 struct jnewblk *jnewblk; 10729 struct ufsmount *ump; 10730 struct worklist *wk; 10731 struct fs *fs; 10732 #ifdef SUJ_DEBUG 10733 uint8_t *blksfree; 10734 struct cg *cgp; 10735 ufs2_daddr_t jstart; 10736 ufs2_daddr_t jend; 10737 ufs2_daddr_t end; 10738 long bno; 10739 int i; 10740 #endif 10741 10742 CTR3(KTR_SUJ, 10743 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10744 blkno, frags, wkhd); 10745 10746 ump = VFSTOUFS(mp); 10747 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10748 ("softdep_setup_blkfree called on non-softdep filesystem")); 10749 ACQUIRE_LOCK(ump); 10750 /* Lookup the bmsafemap so we track when it is dirty. */ 10751 fs = ump->um_fs; 10752 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10753 /* 10754 * Detach any jnewblks which have been canceled. They must linger 10755 * until the bitmap is cleared again by ffs_blkfree() to prevent 10756 * an unjournaled allocation from hitting the disk. 10757 */ 10758 if (wkhd) { 10759 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10760 CTR2(KTR_SUJ, 10761 "softdep_setup_blkfree: blkno %jd wk type %d", 10762 blkno, wk->wk_type); 10763 WORKLIST_REMOVE(wk); 10764 if (wk->wk_type != D_JNEWBLK) { 10765 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10766 continue; 10767 } 10768 jnewblk = WK_JNEWBLK(wk); 10769 KASSERT(jnewblk->jn_state & GOINGAWAY, 10770 ("softdep_setup_blkfree: jnewblk not canceled.")); 10771 #ifdef SUJ_DEBUG 10772 /* 10773 * Assert that this block is free in the bitmap 10774 * before we discard the jnewblk. 10775 */ 10776 cgp = (struct cg *)bp->b_data; 10777 blksfree = cg_blksfree(cgp); 10778 bno = dtogd(fs, jnewblk->jn_blkno); 10779 for (i = jnewblk->jn_oldfrags; 10780 i < jnewblk->jn_frags; i++) { 10781 if (isset(blksfree, bno + i)) 10782 continue; 10783 panic("softdep_setup_blkfree: not free"); 10784 } 10785 #endif 10786 /* 10787 * Even if it's not attached we can free immediately 10788 * as the new bitmap is correct. 10789 */ 10790 wk->wk_state |= COMPLETE | ATTACHED; 10791 free_jnewblk(jnewblk); 10792 } 10793 } 10794 10795 #ifdef SUJ_DEBUG 10796 /* 10797 * Assert that we are not freeing a block which has an outstanding 10798 * allocation dependency. 10799 */ 10800 fs = VFSTOUFS(mp)->um_fs; 10801 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10802 end = blkno + frags; 10803 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10804 /* 10805 * Don't match against blocks that will be freed when the 10806 * background write is done. 10807 */ 10808 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10809 (COMPLETE | DEPCOMPLETE)) 10810 continue; 10811 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10812 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10813 if ((blkno >= jstart && blkno < jend) || 10814 (end > jstart && end <= jend)) { 10815 printf("state 0x%X %jd - %d %d dep %p\n", 10816 jnewblk->jn_state, jnewblk->jn_blkno, 10817 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10818 jnewblk->jn_dep); 10819 panic("softdep_setup_blkfree: " 10820 "%jd-%jd(%d) overlaps with %jd-%jd", 10821 blkno, end, frags, jstart, jend); 10822 } 10823 } 10824 #endif 10825 FREE_LOCK(ump); 10826 } 10827 10828 /* 10829 * Revert a block allocation when the journal record that describes it 10830 * is not yet written. 10831 */ 10832 static int 10833 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10834 struct jnewblk *jnewblk; 10835 struct fs *fs; 10836 struct cg *cgp; 10837 uint8_t *blksfree; 10838 { 10839 ufs1_daddr_t fragno; 10840 long cgbno, bbase; 10841 int frags, blk; 10842 int i; 10843 10844 frags = 0; 10845 cgbno = dtogd(fs, jnewblk->jn_blkno); 10846 /* 10847 * We have to test which frags need to be rolled back. We may 10848 * be operating on a stale copy when doing background writes. 10849 */ 10850 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10851 if (isclr(blksfree, cgbno + i)) 10852 frags++; 10853 if (frags == 0) 10854 return (0); 10855 /* 10856 * This is mostly ffs_blkfree() sans some validation and 10857 * superblock updates. 10858 */ 10859 if (frags == fs->fs_frag) { 10860 fragno = fragstoblks(fs, cgbno); 10861 ffs_setblock(fs, blksfree, fragno); 10862 ffs_clusteracct(fs, cgp, fragno, 1); 10863 cgp->cg_cs.cs_nbfree++; 10864 } else { 10865 cgbno += jnewblk->jn_oldfrags; 10866 bbase = cgbno - fragnum(fs, cgbno); 10867 /* Decrement the old frags. */ 10868 blk = blkmap(fs, blksfree, bbase); 10869 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10870 /* Deallocate the fragment */ 10871 for (i = 0; i < frags; i++) 10872 setbit(blksfree, cgbno + i); 10873 cgp->cg_cs.cs_nffree += frags; 10874 /* Add back in counts associated with the new frags */ 10875 blk = blkmap(fs, blksfree, bbase); 10876 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10877 /* If a complete block has been reassembled, account for it. */ 10878 fragno = fragstoblks(fs, bbase); 10879 if (ffs_isblock(fs, blksfree, fragno)) { 10880 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10881 ffs_clusteracct(fs, cgp, fragno, 1); 10882 cgp->cg_cs.cs_nbfree++; 10883 } 10884 } 10885 stat_jnewblk++; 10886 jnewblk->jn_state &= ~ATTACHED; 10887 jnewblk->jn_state |= UNDONE; 10888 10889 return (frags); 10890 } 10891 10892 static void 10893 initiate_write_bmsafemap(bmsafemap, bp) 10894 struct bmsafemap *bmsafemap; 10895 struct buf *bp; /* The cg block. */ 10896 { 10897 struct jaddref *jaddref; 10898 struct jnewblk *jnewblk; 10899 uint8_t *inosused; 10900 uint8_t *blksfree; 10901 struct cg *cgp; 10902 struct fs *fs; 10903 ino_t ino; 10904 10905 /* 10906 * If this is a background write, we did this at the time that 10907 * the copy was made, so do not need to do it again. 10908 */ 10909 if (bmsafemap->sm_state & IOSTARTED) 10910 return; 10911 bmsafemap->sm_state |= IOSTARTED; 10912 /* 10913 * Clear any inode allocations which are pending journal writes. 10914 */ 10915 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10916 cgp = (struct cg *)bp->b_data; 10917 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10918 inosused = cg_inosused(cgp); 10919 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10920 ino = jaddref->ja_ino % fs->fs_ipg; 10921 if (isset(inosused, ino)) { 10922 if ((jaddref->ja_mode & IFMT) == IFDIR) 10923 cgp->cg_cs.cs_ndir--; 10924 cgp->cg_cs.cs_nifree++; 10925 clrbit(inosused, ino); 10926 jaddref->ja_state &= ~ATTACHED; 10927 jaddref->ja_state |= UNDONE; 10928 stat_jaddref++; 10929 } else 10930 panic("initiate_write_bmsafemap: inode %ju " 10931 "marked free", (uintmax_t)jaddref->ja_ino); 10932 } 10933 } 10934 /* 10935 * Clear any block allocations which are pending journal writes. 10936 */ 10937 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10938 cgp = (struct cg *)bp->b_data; 10939 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10940 blksfree = cg_blksfree(cgp); 10941 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10942 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10943 continue; 10944 panic("initiate_write_bmsafemap: block %jd " 10945 "marked free", jnewblk->jn_blkno); 10946 } 10947 } 10948 /* 10949 * Move allocation lists to the written lists so they can be 10950 * cleared once the block write is complete. 10951 */ 10952 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10953 inodedep, id_deps); 10954 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10955 newblk, nb_deps); 10956 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10957 wk_list); 10958 } 10959 10960 /* 10961 * This routine is called during the completion interrupt 10962 * service routine for a disk write (from the procedure called 10963 * by the device driver to inform the filesystem caches of 10964 * a request completion). It should be called early in this 10965 * procedure, before the block is made available to other 10966 * processes or other routines are called. 10967 * 10968 */ 10969 static void 10970 softdep_disk_write_complete(bp) 10971 struct buf *bp; /* describes the completed disk write */ 10972 { 10973 struct worklist *wk; 10974 struct worklist *owk; 10975 struct ufsmount *ump; 10976 struct workhead reattach; 10977 struct freeblks *freeblks; 10978 struct buf *sbp; 10979 10980 /* 10981 * If an error occurred while doing the write, then the data 10982 * has not hit the disk and the dependencies cannot be processed. 10983 * But we do have to go through and roll forward any dependencies 10984 * that were rolled back before the disk write. 10985 */ 10986 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 10987 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 10988 switch (wk->wk_type) { 10989 10990 case D_PAGEDEP: 10991 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 10992 continue; 10993 10994 case D_INODEDEP: 10995 handle_written_inodeblock(WK_INODEDEP(wk), 10996 bp, 0); 10997 continue; 10998 10999 case D_BMSAFEMAP: 11000 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11001 bp, 0); 11002 continue; 11003 11004 case D_INDIRDEP: 11005 handle_written_indirdep(WK_INDIRDEP(wk), 11006 bp, &sbp, 0); 11007 continue; 11008 default: 11009 /* nothing to roll forward */ 11010 continue; 11011 } 11012 } 11013 return; 11014 } 11015 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 11016 return; 11017 ump = VFSTOUFS(wk->wk_mp); 11018 LIST_INIT(&reattach); 11019 /* 11020 * This lock must not be released anywhere in this code segment. 11021 */ 11022 sbp = NULL; 11023 owk = NULL; 11024 ACQUIRE_LOCK(ump); 11025 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11026 WORKLIST_REMOVE(wk); 11027 atomic_add_long(&dep_write[wk->wk_type], 1); 11028 if (wk == owk) 11029 panic("duplicate worklist: %p\n", wk); 11030 owk = wk; 11031 switch (wk->wk_type) { 11032 11033 case D_PAGEDEP: 11034 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11035 WRITESUCCEEDED)) 11036 WORKLIST_INSERT(&reattach, wk); 11037 continue; 11038 11039 case D_INODEDEP: 11040 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11041 WRITESUCCEEDED)) 11042 WORKLIST_INSERT(&reattach, wk); 11043 continue; 11044 11045 case D_BMSAFEMAP: 11046 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11047 WRITESUCCEEDED)) 11048 WORKLIST_INSERT(&reattach, wk); 11049 continue; 11050 11051 case D_MKDIR: 11052 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11053 continue; 11054 11055 case D_ALLOCDIRECT: 11056 wk->wk_state |= COMPLETE; 11057 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11058 continue; 11059 11060 case D_ALLOCINDIR: 11061 wk->wk_state |= COMPLETE; 11062 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11063 continue; 11064 11065 case D_INDIRDEP: 11066 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11067 WRITESUCCEEDED)) 11068 WORKLIST_INSERT(&reattach, wk); 11069 continue; 11070 11071 case D_FREEBLKS: 11072 wk->wk_state |= COMPLETE; 11073 freeblks = WK_FREEBLKS(wk); 11074 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11075 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11076 add_to_worklist(wk, WK_NODELAY); 11077 continue; 11078 11079 case D_FREEWORK: 11080 handle_written_freework(WK_FREEWORK(wk)); 11081 break; 11082 11083 case D_JSEGDEP: 11084 free_jsegdep(WK_JSEGDEP(wk)); 11085 continue; 11086 11087 case D_JSEG: 11088 handle_written_jseg(WK_JSEG(wk), bp); 11089 continue; 11090 11091 case D_SBDEP: 11092 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11093 WORKLIST_INSERT(&reattach, wk); 11094 continue; 11095 11096 case D_FREEDEP: 11097 free_freedep(WK_FREEDEP(wk)); 11098 continue; 11099 11100 default: 11101 panic("handle_disk_write_complete: Unknown type %s", 11102 TYPENAME(wk->wk_type)); 11103 /* NOTREACHED */ 11104 } 11105 } 11106 /* 11107 * Reattach any requests that must be redone. 11108 */ 11109 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11110 WORKLIST_REMOVE(wk); 11111 WORKLIST_INSERT(&bp->b_dep, wk); 11112 } 11113 FREE_LOCK(ump); 11114 if (sbp) 11115 brelse(sbp); 11116 } 11117 11118 /* 11119 * Called from within softdep_disk_write_complete above. Note that 11120 * this routine is always called from interrupt level with further 11121 * splbio interrupts blocked. 11122 */ 11123 static void 11124 handle_allocdirect_partdone(adp, wkhd) 11125 struct allocdirect *adp; /* the completed allocdirect */ 11126 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11127 { 11128 struct allocdirectlst *listhead; 11129 struct allocdirect *listadp; 11130 struct inodedep *inodedep; 11131 long bsize; 11132 11133 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11134 return; 11135 /* 11136 * The on-disk inode cannot claim to be any larger than the last 11137 * fragment that has been written. Otherwise, the on-disk inode 11138 * might have fragments that were not the last block in the file 11139 * which would corrupt the filesystem. Thus, we cannot free any 11140 * allocdirects after one whose ad_oldblkno claims a fragment as 11141 * these blocks must be rolled back to zero before writing the inode. 11142 * We check the currently active set of allocdirects in id_inoupdt 11143 * or id_extupdt as appropriate. 11144 */ 11145 inodedep = adp->ad_inodedep; 11146 bsize = inodedep->id_fs->fs_bsize; 11147 if (adp->ad_state & EXTDATA) 11148 listhead = &inodedep->id_extupdt; 11149 else 11150 listhead = &inodedep->id_inoupdt; 11151 TAILQ_FOREACH(listadp, listhead, ad_next) { 11152 /* found our block */ 11153 if (listadp == adp) 11154 break; 11155 /* continue if ad_oldlbn is not a fragment */ 11156 if (listadp->ad_oldsize == 0 || 11157 listadp->ad_oldsize == bsize) 11158 continue; 11159 /* hit a fragment */ 11160 return; 11161 } 11162 /* 11163 * If we have reached the end of the current list without 11164 * finding the just finished dependency, then it must be 11165 * on the future dependency list. Future dependencies cannot 11166 * be freed until they are moved to the current list. 11167 */ 11168 if (listadp == NULL) { 11169 #ifdef DEBUG 11170 if (adp->ad_state & EXTDATA) 11171 listhead = &inodedep->id_newextupdt; 11172 else 11173 listhead = &inodedep->id_newinoupdt; 11174 TAILQ_FOREACH(listadp, listhead, ad_next) 11175 /* found our block */ 11176 if (listadp == adp) 11177 break; 11178 if (listadp == NULL) 11179 panic("handle_allocdirect_partdone: lost dep"); 11180 #endif /* DEBUG */ 11181 return; 11182 } 11183 /* 11184 * If we have found the just finished dependency, then queue 11185 * it along with anything that follows it that is complete. 11186 * Since the pointer has not yet been written in the inode 11187 * as the dependency prevents it, place the allocdirect on the 11188 * bufwait list where it will be freed once the pointer is 11189 * valid. 11190 */ 11191 if (wkhd == NULL) 11192 wkhd = &inodedep->id_bufwait; 11193 for (; adp; adp = listadp) { 11194 listadp = TAILQ_NEXT(adp, ad_next); 11195 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11196 return; 11197 TAILQ_REMOVE(listhead, adp, ad_next); 11198 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11199 } 11200 } 11201 11202 /* 11203 * Called from within softdep_disk_write_complete above. This routine 11204 * completes successfully written allocindirs. 11205 */ 11206 static void 11207 handle_allocindir_partdone(aip) 11208 struct allocindir *aip; /* the completed allocindir */ 11209 { 11210 struct indirdep *indirdep; 11211 11212 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11213 return; 11214 indirdep = aip->ai_indirdep; 11215 LIST_REMOVE(aip, ai_next); 11216 /* 11217 * Don't set a pointer while the buffer is undergoing IO or while 11218 * we have active truncations. 11219 */ 11220 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11221 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11222 return; 11223 } 11224 if (indirdep->ir_state & UFS1FMT) 11225 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11226 aip->ai_newblkno; 11227 else 11228 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11229 aip->ai_newblkno; 11230 /* 11231 * Await the pointer write before freeing the allocindir. 11232 */ 11233 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11234 } 11235 11236 /* 11237 * Release segments held on a jwork list. 11238 */ 11239 static void 11240 handle_jwork(wkhd) 11241 struct workhead *wkhd; 11242 { 11243 struct worklist *wk; 11244 11245 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11246 WORKLIST_REMOVE(wk); 11247 switch (wk->wk_type) { 11248 case D_JSEGDEP: 11249 free_jsegdep(WK_JSEGDEP(wk)); 11250 continue; 11251 case D_FREEDEP: 11252 free_freedep(WK_FREEDEP(wk)); 11253 continue; 11254 case D_FREEFRAG: 11255 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11256 WORKITEM_FREE(wk, D_FREEFRAG); 11257 continue; 11258 case D_FREEWORK: 11259 handle_written_freework(WK_FREEWORK(wk)); 11260 continue; 11261 default: 11262 panic("handle_jwork: Unknown type %s\n", 11263 TYPENAME(wk->wk_type)); 11264 } 11265 } 11266 } 11267 11268 /* 11269 * Handle the bufwait list on an inode when it is safe to release items 11270 * held there. This normally happens after an inode block is written but 11271 * may be delayed and handled later if there are pending journal items that 11272 * are not yet safe to be released. 11273 */ 11274 static struct freefile * 11275 handle_bufwait(inodedep, refhd) 11276 struct inodedep *inodedep; 11277 struct workhead *refhd; 11278 { 11279 struct jaddref *jaddref; 11280 struct freefile *freefile; 11281 struct worklist *wk; 11282 11283 freefile = NULL; 11284 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11285 WORKLIST_REMOVE(wk); 11286 switch (wk->wk_type) { 11287 case D_FREEFILE: 11288 /* 11289 * We defer adding freefile to the worklist 11290 * until all other additions have been made to 11291 * ensure that it will be done after all the 11292 * old blocks have been freed. 11293 */ 11294 if (freefile != NULL) 11295 panic("handle_bufwait: freefile"); 11296 freefile = WK_FREEFILE(wk); 11297 continue; 11298 11299 case D_MKDIR: 11300 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11301 continue; 11302 11303 case D_DIRADD: 11304 diradd_inode_written(WK_DIRADD(wk), inodedep); 11305 continue; 11306 11307 case D_FREEFRAG: 11308 wk->wk_state |= COMPLETE; 11309 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11310 add_to_worklist(wk, 0); 11311 continue; 11312 11313 case D_DIRREM: 11314 wk->wk_state |= COMPLETE; 11315 add_to_worklist(wk, 0); 11316 continue; 11317 11318 case D_ALLOCDIRECT: 11319 case D_ALLOCINDIR: 11320 free_newblk(WK_NEWBLK(wk)); 11321 continue; 11322 11323 case D_JNEWBLK: 11324 wk->wk_state |= COMPLETE; 11325 free_jnewblk(WK_JNEWBLK(wk)); 11326 continue; 11327 11328 /* 11329 * Save freed journal segments and add references on 11330 * the supplied list which will delay their release 11331 * until the cg bitmap is cleared on disk. 11332 */ 11333 case D_JSEGDEP: 11334 if (refhd == NULL) 11335 free_jsegdep(WK_JSEGDEP(wk)); 11336 else 11337 WORKLIST_INSERT(refhd, wk); 11338 continue; 11339 11340 case D_JADDREF: 11341 jaddref = WK_JADDREF(wk); 11342 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11343 if_deps); 11344 /* 11345 * Transfer any jaddrefs to the list to be freed with 11346 * the bitmap if we're handling a removed file. 11347 */ 11348 if (refhd == NULL) { 11349 wk->wk_state |= COMPLETE; 11350 free_jaddref(jaddref); 11351 } else 11352 WORKLIST_INSERT(refhd, wk); 11353 continue; 11354 11355 default: 11356 panic("handle_bufwait: Unknown type %p(%s)", 11357 wk, TYPENAME(wk->wk_type)); 11358 /* NOTREACHED */ 11359 } 11360 } 11361 return (freefile); 11362 } 11363 /* 11364 * Called from within softdep_disk_write_complete above to restore 11365 * in-memory inode block contents to their most up-to-date state. Note 11366 * that this routine is always called from interrupt level with further 11367 * interrupts from this device blocked. 11368 * 11369 * If the write did not succeed, we will do all the roll-forward 11370 * operations, but we will not take the actions that will allow its 11371 * dependencies to be processed. 11372 */ 11373 static int 11374 handle_written_inodeblock(inodedep, bp, flags) 11375 struct inodedep *inodedep; 11376 struct buf *bp; /* buffer containing the inode block */ 11377 int flags; 11378 { 11379 struct freefile *freefile; 11380 struct allocdirect *adp, *nextadp; 11381 struct ufs1_dinode *dp1 = NULL; 11382 struct ufs2_dinode *dp2 = NULL; 11383 struct workhead wkhd; 11384 int hadchanges, fstype; 11385 ino_t freelink; 11386 11387 LIST_INIT(&wkhd); 11388 hadchanges = 0; 11389 freefile = NULL; 11390 if ((inodedep->id_state & IOSTARTED) == 0) 11391 panic("handle_written_inodeblock: not started"); 11392 inodedep->id_state &= ~IOSTARTED; 11393 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11394 fstype = UFS1; 11395 dp1 = (struct ufs1_dinode *)bp->b_data + 11396 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11397 freelink = dp1->di_freelink; 11398 } else { 11399 fstype = UFS2; 11400 dp2 = (struct ufs2_dinode *)bp->b_data + 11401 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11402 freelink = dp2->di_freelink; 11403 } 11404 /* 11405 * Leave this inodeblock dirty until it's in the list. 11406 */ 11407 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11408 (flags & WRITESUCCEEDED)) { 11409 struct inodedep *inon; 11410 11411 inon = TAILQ_NEXT(inodedep, id_unlinked); 11412 if ((inon == NULL && freelink == 0) || 11413 (inon && inon->id_ino == freelink)) { 11414 if (inon) 11415 inon->id_state |= UNLINKPREV; 11416 inodedep->id_state |= UNLINKNEXT; 11417 } 11418 hadchanges = 1; 11419 } 11420 /* 11421 * If we had to rollback the inode allocation because of 11422 * bitmaps being incomplete, then simply restore it. 11423 * Keep the block dirty so that it will not be reclaimed until 11424 * all associated dependencies have been cleared and the 11425 * corresponding updates written to disk. 11426 */ 11427 if (inodedep->id_savedino1 != NULL) { 11428 hadchanges = 1; 11429 if (fstype == UFS1) 11430 *dp1 = *inodedep->id_savedino1; 11431 else 11432 *dp2 = *inodedep->id_savedino2; 11433 free(inodedep->id_savedino1, M_SAVEDINO); 11434 inodedep->id_savedino1 = NULL; 11435 if ((bp->b_flags & B_DELWRI) == 0) 11436 stat_inode_bitmap++; 11437 bdirty(bp); 11438 /* 11439 * If the inode is clear here and GOINGAWAY it will never 11440 * be written. Process the bufwait and clear any pending 11441 * work which may include the freefile. 11442 */ 11443 if (inodedep->id_state & GOINGAWAY) 11444 goto bufwait; 11445 return (1); 11446 } 11447 if (flags & WRITESUCCEEDED) 11448 inodedep->id_state |= COMPLETE; 11449 /* 11450 * Roll forward anything that had to be rolled back before 11451 * the inode could be updated. 11452 */ 11453 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11454 nextadp = TAILQ_NEXT(adp, ad_next); 11455 if (adp->ad_state & ATTACHED) 11456 panic("handle_written_inodeblock: new entry"); 11457 if (fstype == UFS1) { 11458 if (adp->ad_offset < UFS_NDADDR) { 11459 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11460 panic("%s %s #%jd mismatch %d != %jd", 11461 "handle_written_inodeblock:", 11462 "direct pointer", 11463 (intmax_t)adp->ad_offset, 11464 dp1->di_db[adp->ad_offset], 11465 (intmax_t)adp->ad_oldblkno); 11466 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11467 } else { 11468 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11469 0) 11470 panic("%s: %s #%jd allocated as %d", 11471 "handle_written_inodeblock", 11472 "indirect pointer", 11473 (intmax_t)adp->ad_offset - 11474 UFS_NDADDR, 11475 dp1->di_ib[adp->ad_offset - 11476 UFS_NDADDR]); 11477 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11478 adp->ad_newblkno; 11479 } 11480 } else { 11481 if (adp->ad_offset < UFS_NDADDR) { 11482 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11483 panic("%s: %s #%jd %s %jd != %jd", 11484 "handle_written_inodeblock", 11485 "direct pointer", 11486 (intmax_t)adp->ad_offset, "mismatch", 11487 (intmax_t)dp2->di_db[adp->ad_offset], 11488 (intmax_t)adp->ad_oldblkno); 11489 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11490 } else { 11491 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11492 0) 11493 panic("%s: %s #%jd allocated as %jd", 11494 "handle_written_inodeblock", 11495 "indirect pointer", 11496 (intmax_t)adp->ad_offset - 11497 UFS_NDADDR, 11498 (intmax_t) 11499 dp2->di_ib[adp->ad_offset - 11500 UFS_NDADDR]); 11501 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11502 adp->ad_newblkno; 11503 } 11504 } 11505 adp->ad_state &= ~UNDONE; 11506 adp->ad_state |= ATTACHED; 11507 hadchanges = 1; 11508 } 11509 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11510 nextadp = TAILQ_NEXT(adp, ad_next); 11511 if (adp->ad_state & ATTACHED) 11512 panic("handle_written_inodeblock: new entry"); 11513 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11514 panic("%s: direct pointers #%jd %s %jd != %jd", 11515 "handle_written_inodeblock", 11516 (intmax_t)adp->ad_offset, "mismatch", 11517 (intmax_t)dp2->di_extb[adp->ad_offset], 11518 (intmax_t)adp->ad_oldblkno); 11519 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11520 adp->ad_state &= ~UNDONE; 11521 adp->ad_state |= ATTACHED; 11522 hadchanges = 1; 11523 } 11524 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11525 stat_direct_blk_ptrs++; 11526 /* 11527 * Reset the file size to its most up-to-date value. 11528 */ 11529 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11530 panic("handle_written_inodeblock: bad size"); 11531 if (inodedep->id_savednlink > UFS_LINK_MAX) 11532 panic("handle_written_inodeblock: Invalid link count " 11533 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11534 inodedep); 11535 if (fstype == UFS1) { 11536 if (dp1->di_nlink != inodedep->id_savednlink) { 11537 dp1->di_nlink = inodedep->id_savednlink; 11538 hadchanges = 1; 11539 } 11540 if (dp1->di_size != inodedep->id_savedsize) { 11541 dp1->di_size = inodedep->id_savedsize; 11542 hadchanges = 1; 11543 } 11544 } else { 11545 if (dp2->di_nlink != inodedep->id_savednlink) { 11546 dp2->di_nlink = inodedep->id_savednlink; 11547 hadchanges = 1; 11548 } 11549 if (dp2->di_size != inodedep->id_savedsize) { 11550 dp2->di_size = inodedep->id_savedsize; 11551 hadchanges = 1; 11552 } 11553 if (dp2->di_extsize != inodedep->id_savedextsize) { 11554 dp2->di_extsize = inodedep->id_savedextsize; 11555 hadchanges = 1; 11556 } 11557 } 11558 inodedep->id_savedsize = -1; 11559 inodedep->id_savedextsize = -1; 11560 inodedep->id_savednlink = -1; 11561 /* 11562 * If there were any rollbacks in the inode block, then it must be 11563 * marked dirty so that its will eventually get written back in 11564 * its correct form. 11565 */ 11566 if (hadchanges) 11567 bdirty(bp); 11568 bufwait: 11569 /* 11570 * If the write did not succeed, we have done all the roll-forward 11571 * operations, but we cannot take the actions that will allow its 11572 * dependencies to be processed. 11573 */ 11574 if ((flags & WRITESUCCEEDED) == 0) 11575 return (hadchanges); 11576 /* 11577 * Process any allocdirects that completed during the update. 11578 */ 11579 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11580 handle_allocdirect_partdone(adp, &wkhd); 11581 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11582 handle_allocdirect_partdone(adp, &wkhd); 11583 /* 11584 * Process deallocations that were held pending until the 11585 * inode had been written to disk. Freeing of the inode 11586 * is delayed until after all blocks have been freed to 11587 * avoid creation of new <vfsid, inum, lbn> triples 11588 * before the old ones have been deleted. Completely 11589 * unlinked inodes are not processed until the unlinked 11590 * inode list is written or the last reference is removed. 11591 */ 11592 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11593 freefile = handle_bufwait(inodedep, NULL); 11594 if (freefile && !LIST_EMPTY(&wkhd)) { 11595 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11596 freefile = NULL; 11597 } 11598 } 11599 /* 11600 * Move rolled forward dependency completions to the bufwait list 11601 * now that those that were already written have been processed. 11602 */ 11603 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11604 panic("handle_written_inodeblock: bufwait but no changes"); 11605 jwork_move(&inodedep->id_bufwait, &wkhd); 11606 11607 if (freefile != NULL) { 11608 /* 11609 * If the inode is goingaway it was never written. Fake up 11610 * the state here so free_inodedep() can succeed. 11611 */ 11612 if (inodedep->id_state & GOINGAWAY) 11613 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11614 if (free_inodedep(inodedep) == 0) 11615 panic("handle_written_inodeblock: live inodedep %p", 11616 inodedep); 11617 add_to_worklist(&freefile->fx_list, 0); 11618 return (0); 11619 } 11620 11621 /* 11622 * If no outstanding dependencies, free it. 11623 */ 11624 if (free_inodedep(inodedep) || 11625 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11626 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11627 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11628 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11629 return (0); 11630 return (hadchanges); 11631 } 11632 11633 /* 11634 * Perform needed roll-forwards and kick off any dependencies that 11635 * can now be processed. 11636 * 11637 * If the write did not succeed, we will do all the roll-forward 11638 * operations, but we will not take the actions that will allow its 11639 * dependencies to be processed. 11640 */ 11641 static int 11642 handle_written_indirdep(indirdep, bp, bpp, flags) 11643 struct indirdep *indirdep; 11644 struct buf *bp; 11645 struct buf **bpp; 11646 int flags; 11647 { 11648 struct allocindir *aip; 11649 struct buf *sbp; 11650 int chgs; 11651 11652 if (indirdep->ir_state & GOINGAWAY) 11653 panic("handle_written_indirdep: indirdep gone"); 11654 if ((indirdep->ir_state & IOSTARTED) == 0) 11655 panic("handle_written_indirdep: IO not started"); 11656 chgs = 0; 11657 /* 11658 * If there were rollbacks revert them here. 11659 */ 11660 if (indirdep->ir_saveddata) { 11661 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11662 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11663 free(indirdep->ir_saveddata, M_INDIRDEP); 11664 indirdep->ir_saveddata = NULL; 11665 } 11666 chgs = 1; 11667 } 11668 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11669 indirdep->ir_state |= ATTACHED; 11670 /* 11671 * If the write did not succeed, we have done all the roll-forward 11672 * operations, but we cannot take the actions that will allow its 11673 * dependencies to be processed. 11674 */ 11675 if ((flags & WRITESUCCEEDED) == 0) { 11676 stat_indir_blk_ptrs++; 11677 bdirty(bp); 11678 return (1); 11679 } 11680 /* 11681 * Move allocindirs with written pointers to the completehd if 11682 * the indirdep's pointer is not yet written. Otherwise 11683 * free them here. 11684 */ 11685 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11686 LIST_REMOVE(aip, ai_next); 11687 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11688 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11689 ai_next); 11690 newblk_freefrag(&aip->ai_block); 11691 continue; 11692 } 11693 free_newblk(&aip->ai_block); 11694 } 11695 /* 11696 * Move allocindirs that have finished dependency processing from 11697 * the done list to the write list after updating the pointers. 11698 */ 11699 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11700 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11701 handle_allocindir_partdone(aip); 11702 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11703 panic("disk_write_complete: not gone"); 11704 chgs = 1; 11705 } 11706 } 11707 /* 11708 * Preserve the indirdep if there were any changes or if it is not 11709 * yet valid on disk. 11710 */ 11711 if (chgs) { 11712 stat_indir_blk_ptrs++; 11713 bdirty(bp); 11714 return (1); 11715 } 11716 /* 11717 * If there were no changes we can discard the savedbp and detach 11718 * ourselves from the buf. We are only carrying completed pointers 11719 * in this case. 11720 */ 11721 sbp = indirdep->ir_savebp; 11722 sbp->b_flags |= B_INVAL | B_NOCACHE; 11723 indirdep->ir_savebp = NULL; 11724 indirdep->ir_bp = NULL; 11725 if (*bpp != NULL) 11726 panic("handle_written_indirdep: bp already exists."); 11727 *bpp = sbp; 11728 /* 11729 * The indirdep may not be freed until its parent points at it. 11730 */ 11731 if (indirdep->ir_state & DEPCOMPLETE) 11732 free_indirdep(indirdep); 11733 11734 return (0); 11735 } 11736 11737 /* 11738 * Process a diradd entry after its dependent inode has been written. 11739 * This routine must be called with splbio interrupts blocked. 11740 */ 11741 static void 11742 diradd_inode_written(dap, inodedep) 11743 struct diradd *dap; 11744 struct inodedep *inodedep; 11745 { 11746 11747 dap->da_state |= COMPLETE; 11748 complete_diradd(dap); 11749 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11750 } 11751 11752 /* 11753 * Returns true if the bmsafemap will have rollbacks when written. Must only 11754 * be called with the per-filesystem lock and the buf lock on the cg held. 11755 */ 11756 static int 11757 bmsafemap_backgroundwrite(bmsafemap, bp) 11758 struct bmsafemap *bmsafemap; 11759 struct buf *bp; 11760 { 11761 int dirty; 11762 11763 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11764 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11765 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11766 /* 11767 * If we're initiating a background write we need to process the 11768 * rollbacks as they exist now, not as they exist when IO starts. 11769 * No other consumers will look at the contents of the shadowed 11770 * buf so this is safe to do here. 11771 */ 11772 if (bp->b_xflags & BX_BKGRDMARKER) 11773 initiate_write_bmsafemap(bmsafemap, bp); 11774 11775 return (dirty); 11776 } 11777 11778 /* 11779 * Re-apply an allocation when a cg write is complete. 11780 */ 11781 static int 11782 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11783 struct jnewblk *jnewblk; 11784 struct fs *fs; 11785 struct cg *cgp; 11786 uint8_t *blksfree; 11787 { 11788 ufs1_daddr_t fragno; 11789 ufs2_daddr_t blkno; 11790 long cgbno, bbase; 11791 int frags, blk; 11792 int i; 11793 11794 frags = 0; 11795 cgbno = dtogd(fs, jnewblk->jn_blkno); 11796 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11797 if (isclr(blksfree, cgbno + i)) 11798 panic("jnewblk_rollforward: re-allocated fragment"); 11799 frags++; 11800 } 11801 if (frags == fs->fs_frag) { 11802 blkno = fragstoblks(fs, cgbno); 11803 ffs_clrblock(fs, blksfree, (long)blkno); 11804 ffs_clusteracct(fs, cgp, blkno, -1); 11805 cgp->cg_cs.cs_nbfree--; 11806 } else { 11807 bbase = cgbno - fragnum(fs, cgbno); 11808 cgbno += jnewblk->jn_oldfrags; 11809 /* If a complete block had been reassembled, account for it. */ 11810 fragno = fragstoblks(fs, bbase); 11811 if (ffs_isblock(fs, blksfree, fragno)) { 11812 cgp->cg_cs.cs_nffree += fs->fs_frag; 11813 ffs_clusteracct(fs, cgp, fragno, -1); 11814 cgp->cg_cs.cs_nbfree--; 11815 } 11816 /* Decrement the old frags. */ 11817 blk = blkmap(fs, blksfree, bbase); 11818 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11819 /* Allocate the fragment */ 11820 for (i = 0; i < frags; i++) 11821 clrbit(blksfree, cgbno + i); 11822 cgp->cg_cs.cs_nffree -= frags; 11823 /* Add back in counts associated with the new frags */ 11824 blk = blkmap(fs, blksfree, bbase); 11825 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11826 } 11827 return (frags); 11828 } 11829 11830 /* 11831 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11832 * changes if it's not a background write. Set all written dependencies 11833 * to DEPCOMPLETE and free the structure if possible. 11834 * 11835 * If the write did not succeed, we will do all the roll-forward 11836 * operations, but we will not take the actions that will allow its 11837 * dependencies to be processed. 11838 */ 11839 static int 11840 handle_written_bmsafemap(bmsafemap, bp, flags) 11841 struct bmsafemap *bmsafemap; 11842 struct buf *bp; 11843 int flags; 11844 { 11845 struct newblk *newblk; 11846 struct inodedep *inodedep; 11847 struct jaddref *jaddref, *jatmp; 11848 struct jnewblk *jnewblk, *jntmp; 11849 struct ufsmount *ump; 11850 uint8_t *inosused; 11851 uint8_t *blksfree; 11852 struct cg *cgp; 11853 struct fs *fs; 11854 ino_t ino; 11855 int foreground; 11856 int chgs; 11857 11858 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11859 panic("handle_written_bmsafemap: Not started\n"); 11860 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11861 chgs = 0; 11862 bmsafemap->sm_state &= ~IOSTARTED; 11863 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11864 /* 11865 * If write was successful, release journal work that was waiting 11866 * on the write. Otherwise move the work back. 11867 */ 11868 if (flags & WRITESUCCEEDED) 11869 handle_jwork(&bmsafemap->sm_freewr); 11870 else 11871 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11872 worklist, wk_list); 11873 11874 /* 11875 * Restore unwritten inode allocation pending jaddref writes. 11876 */ 11877 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11878 cgp = (struct cg *)bp->b_data; 11879 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11880 inosused = cg_inosused(cgp); 11881 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11882 ja_bmdeps, jatmp) { 11883 if ((jaddref->ja_state & UNDONE) == 0) 11884 continue; 11885 ino = jaddref->ja_ino % fs->fs_ipg; 11886 if (isset(inosused, ino)) 11887 panic("handle_written_bmsafemap: " 11888 "re-allocated inode"); 11889 /* Do the roll-forward only if it's a real copy. */ 11890 if (foreground) { 11891 if ((jaddref->ja_mode & IFMT) == IFDIR) 11892 cgp->cg_cs.cs_ndir++; 11893 cgp->cg_cs.cs_nifree--; 11894 setbit(inosused, ino); 11895 chgs = 1; 11896 } 11897 jaddref->ja_state &= ~UNDONE; 11898 jaddref->ja_state |= ATTACHED; 11899 free_jaddref(jaddref); 11900 } 11901 } 11902 /* 11903 * Restore any block allocations which are pending journal writes. 11904 */ 11905 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11906 cgp = (struct cg *)bp->b_data; 11907 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11908 blksfree = cg_blksfree(cgp); 11909 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11910 jntmp) { 11911 if ((jnewblk->jn_state & UNDONE) == 0) 11912 continue; 11913 /* Do the roll-forward only if it's a real copy. */ 11914 if (foreground && 11915 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11916 chgs = 1; 11917 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11918 jnewblk->jn_state |= ATTACHED; 11919 free_jnewblk(jnewblk); 11920 } 11921 } 11922 /* 11923 * If the write did not succeed, we have done all the roll-forward 11924 * operations, but we cannot take the actions that will allow its 11925 * dependencies to be processed. 11926 */ 11927 if ((flags & WRITESUCCEEDED) == 0) { 11928 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11929 newblk, nb_deps); 11930 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11931 worklist, wk_list); 11932 if (foreground) 11933 bdirty(bp); 11934 return (1); 11935 } 11936 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11937 newblk->nb_state |= DEPCOMPLETE; 11938 newblk->nb_state &= ~ONDEPLIST; 11939 newblk->nb_bmsafemap = NULL; 11940 LIST_REMOVE(newblk, nb_deps); 11941 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11942 handle_allocdirect_partdone( 11943 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11944 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11945 handle_allocindir_partdone( 11946 WK_ALLOCINDIR(&newblk->nb_list)); 11947 else if (newblk->nb_list.wk_type != D_NEWBLK) 11948 panic("handle_written_bmsafemap: Unexpected type: %s", 11949 TYPENAME(newblk->nb_list.wk_type)); 11950 } 11951 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11952 inodedep->id_state |= DEPCOMPLETE; 11953 inodedep->id_state &= ~ONDEPLIST; 11954 LIST_REMOVE(inodedep, id_deps); 11955 inodedep->id_bmsafemap = NULL; 11956 } 11957 LIST_REMOVE(bmsafemap, sm_next); 11958 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11959 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11960 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11961 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11962 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11963 LIST_REMOVE(bmsafemap, sm_hash); 11964 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11965 return (0); 11966 } 11967 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11968 if (foreground) 11969 bdirty(bp); 11970 return (1); 11971 } 11972 11973 /* 11974 * Try to free a mkdir dependency. 11975 */ 11976 static void 11977 complete_mkdir(mkdir) 11978 struct mkdir *mkdir; 11979 { 11980 struct diradd *dap; 11981 11982 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11983 return; 11984 LIST_REMOVE(mkdir, md_mkdirs); 11985 dap = mkdir->md_diradd; 11986 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11987 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11988 dap->da_state |= DEPCOMPLETE; 11989 complete_diradd(dap); 11990 } 11991 WORKITEM_FREE(mkdir, D_MKDIR); 11992 } 11993 11994 /* 11995 * Handle the completion of a mkdir dependency. 11996 */ 11997 static void 11998 handle_written_mkdir(mkdir, type) 11999 struct mkdir *mkdir; 12000 int type; 12001 { 12002 12003 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12004 panic("handle_written_mkdir: bad type"); 12005 mkdir->md_state |= COMPLETE; 12006 complete_mkdir(mkdir); 12007 } 12008 12009 static int 12010 free_pagedep(pagedep) 12011 struct pagedep *pagedep; 12012 { 12013 int i; 12014 12015 if (pagedep->pd_state & NEWBLOCK) 12016 return (0); 12017 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12018 return (0); 12019 for (i = 0; i < DAHASHSZ; i++) 12020 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12021 return (0); 12022 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12023 return (0); 12024 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12025 return (0); 12026 if (pagedep->pd_state & ONWORKLIST) 12027 WORKLIST_REMOVE(&pagedep->pd_list); 12028 LIST_REMOVE(pagedep, pd_hash); 12029 WORKITEM_FREE(pagedep, D_PAGEDEP); 12030 12031 return (1); 12032 } 12033 12034 /* 12035 * Called from within softdep_disk_write_complete above. 12036 * A write operation was just completed. Removed inodes can 12037 * now be freed and associated block pointers may be committed. 12038 * Note that this routine is always called from interrupt level 12039 * with further interrupts from this device blocked. 12040 * 12041 * If the write did not succeed, we will do all the roll-forward 12042 * operations, but we will not take the actions that will allow its 12043 * dependencies to be processed. 12044 */ 12045 static int 12046 handle_written_filepage(pagedep, bp, flags) 12047 struct pagedep *pagedep; 12048 struct buf *bp; /* buffer containing the written page */ 12049 int flags; 12050 { 12051 struct dirrem *dirrem; 12052 struct diradd *dap, *nextdap; 12053 struct direct *ep; 12054 int i, chgs; 12055 12056 if ((pagedep->pd_state & IOSTARTED) == 0) 12057 panic("handle_written_filepage: not started"); 12058 pagedep->pd_state &= ~IOSTARTED; 12059 if ((flags & WRITESUCCEEDED) == 0) 12060 goto rollforward; 12061 /* 12062 * Process any directory removals that have been committed. 12063 */ 12064 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12065 LIST_REMOVE(dirrem, dm_next); 12066 dirrem->dm_state |= COMPLETE; 12067 dirrem->dm_dirinum = pagedep->pd_ino; 12068 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12069 ("handle_written_filepage: Journal entries not written.")); 12070 add_to_worklist(&dirrem->dm_list, 0); 12071 } 12072 /* 12073 * Free any directory additions that have been committed. 12074 * If it is a newly allocated block, we have to wait until 12075 * the on-disk directory inode claims the new block. 12076 */ 12077 if ((pagedep->pd_state & NEWBLOCK) == 0) 12078 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12079 free_diradd(dap, NULL); 12080 rollforward: 12081 /* 12082 * Uncommitted directory entries must be restored. 12083 */ 12084 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12085 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12086 dap = nextdap) { 12087 nextdap = LIST_NEXT(dap, da_pdlist); 12088 if (dap->da_state & ATTACHED) 12089 panic("handle_written_filepage: attached"); 12090 ep = (struct direct *) 12091 ((char *)bp->b_data + dap->da_offset); 12092 ep->d_ino = dap->da_newinum; 12093 dap->da_state &= ~UNDONE; 12094 dap->da_state |= ATTACHED; 12095 chgs = 1; 12096 /* 12097 * If the inode referenced by the directory has 12098 * been written out, then the dependency can be 12099 * moved to the pending list. 12100 */ 12101 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12102 LIST_REMOVE(dap, da_pdlist); 12103 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12104 da_pdlist); 12105 } 12106 } 12107 } 12108 /* 12109 * If there were any rollbacks in the directory, then it must be 12110 * marked dirty so that its will eventually get written back in 12111 * its correct form. 12112 */ 12113 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12114 if ((bp->b_flags & B_DELWRI) == 0) 12115 stat_dir_entry++; 12116 bdirty(bp); 12117 return (1); 12118 } 12119 /* 12120 * If we are not waiting for a new directory block to be 12121 * claimed by its inode, then the pagedep will be freed. 12122 * Otherwise it will remain to track any new entries on 12123 * the page in case they are fsync'ed. 12124 */ 12125 free_pagedep(pagedep); 12126 return (0); 12127 } 12128 12129 /* 12130 * Writing back in-core inode structures. 12131 * 12132 * The filesystem only accesses an inode's contents when it occupies an 12133 * "in-core" inode structure. These "in-core" structures are separate from 12134 * the page frames used to cache inode blocks. Only the latter are 12135 * transferred to/from the disk. So, when the updated contents of the 12136 * "in-core" inode structure are copied to the corresponding in-memory inode 12137 * block, the dependencies are also transferred. The following procedure is 12138 * called when copying a dirty "in-core" inode to a cached inode block. 12139 */ 12140 12141 /* 12142 * Called when an inode is loaded from disk. If the effective link count 12143 * differed from the actual link count when it was last flushed, then we 12144 * need to ensure that the correct effective link count is put back. 12145 */ 12146 void 12147 softdep_load_inodeblock(ip) 12148 struct inode *ip; /* the "in_core" copy of the inode */ 12149 { 12150 struct inodedep *inodedep; 12151 struct ufsmount *ump; 12152 12153 ump = ITOUMP(ip); 12154 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12155 ("softdep_load_inodeblock called on non-softdep filesystem")); 12156 /* 12157 * Check for alternate nlink count. 12158 */ 12159 ip->i_effnlink = ip->i_nlink; 12160 ACQUIRE_LOCK(ump); 12161 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12162 FREE_LOCK(ump); 12163 return; 12164 } 12165 ip->i_effnlink -= inodedep->id_nlinkdelta; 12166 FREE_LOCK(ump); 12167 } 12168 12169 /* 12170 * This routine is called just before the "in-core" inode 12171 * information is to be copied to the in-memory inode block. 12172 * Recall that an inode block contains several inodes. If 12173 * the force flag is set, then the dependencies will be 12174 * cleared so that the update can always be made. Note that 12175 * the buffer is locked when this routine is called, so we 12176 * will never be in the middle of writing the inode block 12177 * to disk. 12178 */ 12179 void 12180 softdep_update_inodeblock(ip, bp, waitfor) 12181 struct inode *ip; /* the "in_core" copy of the inode */ 12182 struct buf *bp; /* the buffer containing the inode block */ 12183 int waitfor; /* nonzero => update must be allowed */ 12184 { 12185 struct inodedep *inodedep; 12186 struct inoref *inoref; 12187 struct ufsmount *ump; 12188 struct worklist *wk; 12189 struct mount *mp; 12190 struct buf *ibp; 12191 struct fs *fs; 12192 int error; 12193 12194 ump = ITOUMP(ip); 12195 mp = UFSTOVFS(ump); 12196 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12197 ("softdep_update_inodeblock called on non-softdep filesystem")); 12198 fs = ump->um_fs; 12199 /* 12200 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12201 * does not have access to the in-core ip so must write directly into 12202 * the inode block buffer when setting freelink. 12203 */ 12204 if (fs->fs_magic == FS_UFS1_MAGIC) 12205 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12206 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12207 else 12208 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12209 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12210 /* 12211 * If the effective link count is not equal to the actual link 12212 * count, then we must track the difference in an inodedep while 12213 * the inode is (potentially) tossed out of the cache. Otherwise, 12214 * if there is no existing inodedep, then there are no dependencies 12215 * to track. 12216 */ 12217 ACQUIRE_LOCK(ump); 12218 again: 12219 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12220 FREE_LOCK(ump); 12221 if (ip->i_effnlink != ip->i_nlink) 12222 panic("softdep_update_inodeblock: bad link count"); 12223 return; 12224 } 12225 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12226 panic("softdep_update_inodeblock: bad delta"); 12227 /* 12228 * If we're flushing all dependencies we must also move any waiting 12229 * for journal writes onto the bufwait list prior to I/O. 12230 */ 12231 if (waitfor) { 12232 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12233 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12234 == DEPCOMPLETE) { 12235 jwait(&inoref->if_list, MNT_WAIT); 12236 goto again; 12237 } 12238 } 12239 } 12240 /* 12241 * Changes have been initiated. Anything depending on these 12242 * changes cannot occur until this inode has been written. 12243 */ 12244 inodedep->id_state &= ~COMPLETE; 12245 if ((inodedep->id_state & ONWORKLIST) == 0) 12246 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12247 /* 12248 * Any new dependencies associated with the incore inode must 12249 * now be moved to the list associated with the buffer holding 12250 * the in-memory copy of the inode. Once merged process any 12251 * allocdirects that are completed by the merger. 12252 */ 12253 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12254 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12255 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12256 NULL); 12257 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12258 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12259 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12260 NULL); 12261 /* 12262 * Now that the inode has been pushed into the buffer, the 12263 * operations dependent on the inode being written to disk 12264 * can be moved to the id_bufwait so that they will be 12265 * processed when the buffer I/O completes. 12266 */ 12267 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12268 WORKLIST_REMOVE(wk); 12269 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12270 } 12271 /* 12272 * Newly allocated inodes cannot be written until the bitmap 12273 * that allocates them have been written (indicated by 12274 * DEPCOMPLETE being set in id_state). If we are doing a 12275 * forced sync (e.g., an fsync on a file), we force the bitmap 12276 * to be written so that the update can be done. 12277 */ 12278 if (waitfor == 0) { 12279 FREE_LOCK(ump); 12280 return; 12281 } 12282 retry: 12283 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12284 FREE_LOCK(ump); 12285 return; 12286 } 12287 ibp = inodedep->id_bmsafemap->sm_buf; 12288 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12289 if (ibp == NULL) { 12290 /* 12291 * If ibp came back as NULL, the dependency could have been 12292 * freed while we slept. Look it up again, and check to see 12293 * that it has completed. 12294 */ 12295 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12296 goto retry; 12297 FREE_LOCK(ump); 12298 return; 12299 } 12300 FREE_LOCK(ump); 12301 if ((error = bwrite(ibp)) != 0) 12302 softdep_error("softdep_update_inodeblock: bwrite", error); 12303 } 12304 12305 /* 12306 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12307 * old inode dependency list (such as id_inoupdt). This routine must be 12308 * called with splbio interrupts blocked. 12309 */ 12310 static void 12311 merge_inode_lists(newlisthead, oldlisthead) 12312 struct allocdirectlst *newlisthead; 12313 struct allocdirectlst *oldlisthead; 12314 { 12315 struct allocdirect *listadp, *newadp; 12316 12317 newadp = TAILQ_FIRST(newlisthead); 12318 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12319 if (listadp->ad_offset < newadp->ad_offset) { 12320 listadp = TAILQ_NEXT(listadp, ad_next); 12321 continue; 12322 } 12323 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12324 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12325 if (listadp->ad_offset == newadp->ad_offset) { 12326 allocdirect_merge(oldlisthead, newadp, 12327 listadp); 12328 listadp = newadp; 12329 } 12330 newadp = TAILQ_FIRST(newlisthead); 12331 } 12332 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12333 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12334 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12335 } 12336 } 12337 12338 /* 12339 * If we are doing an fsync, then we must ensure that any directory 12340 * entries for the inode have been written after the inode gets to disk. 12341 */ 12342 int 12343 softdep_fsync(vp) 12344 struct vnode *vp; /* the "in_core" copy of the inode */ 12345 { 12346 struct inodedep *inodedep; 12347 struct pagedep *pagedep; 12348 struct inoref *inoref; 12349 struct ufsmount *ump; 12350 struct worklist *wk; 12351 struct diradd *dap; 12352 struct mount *mp; 12353 struct vnode *pvp; 12354 struct inode *ip; 12355 struct buf *bp; 12356 struct fs *fs; 12357 struct thread *td = curthread; 12358 int error, flushparent, pagedep_new_block; 12359 ino_t parentino; 12360 ufs_lbn_t lbn; 12361 12362 ip = VTOI(vp); 12363 mp = vp->v_mount; 12364 ump = VFSTOUFS(mp); 12365 fs = ump->um_fs; 12366 if (MOUNTEDSOFTDEP(mp) == 0) 12367 return (0); 12368 ACQUIRE_LOCK(ump); 12369 restart: 12370 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12371 FREE_LOCK(ump); 12372 return (0); 12373 } 12374 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12375 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12376 == DEPCOMPLETE) { 12377 jwait(&inoref->if_list, MNT_WAIT); 12378 goto restart; 12379 } 12380 } 12381 if (!LIST_EMPTY(&inodedep->id_inowait) || 12382 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12383 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12384 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12385 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12386 panic("softdep_fsync: pending ops %p", inodedep); 12387 for (error = 0, flushparent = 0; ; ) { 12388 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12389 break; 12390 if (wk->wk_type != D_DIRADD) 12391 panic("softdep_fsync: Unexpected type %s", 12392 TYPENAME(wk->wk_type)); 12393 dap = WK_DIRADD(wk); 12394 /* 12395 * Flush our parent if this directory entry has a MKDIR_PARENT 12396 * dependency or is contained in a newly allocated block. 12397 */ 12398 if (dap->da_state & DIRCHG) 12399 pagedep = dap->da_previous->dm_pagedep; 12400 else 12401 pagedep = dap->da_pagedep; 12402 parentino = pagedep->pd_ino; 12403 lbn = pagedep->pd_lbn; 12404 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12405 panic("softdep_fsync: dirty"); 12406 if ((dap->da_state & MKDIR_PARENT) || 12407 (pagedep->pd_state & NEWBLOCK)) 12408 flushparent = 1; 12409 else 12410 flushparent = 0; 12411 /* 12412 * If we are being fsync'ed as part of vgone'ing this vnode, 12413 * then we will not be able to release and recover the 12414 * vnode below, so we just have to give up on writing its 12415 * directory entry out. It will eventually be written, just 12416 * not now, but then the user was not asking to have it 12417 * written, so we are not breaking any promises. 12418 */ 12419 if (vp->v_iflag & VI_DOOMED) 12420 break; 12421 /* 12422 * We prevent deadlock by always fetching inodes from the 12423 * root, moving down the directory tree. Thus, when fetching 12424 * our parent directory, we first try to get the lock. If 12425 * that fails, we must unlock ourselves before requesting 12426 * the lock on our parent. See the comment in ufs_lookup 12427 * for details on possible races. 12428 */ 12429 FREE_LOCK(ump); 12430 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12431 FFSV_FORCEINSMQ)) { 12432 error = vfs_busy(mp, MBF_NOWAIT); 12433 if (error != 0) { 12434 vfs_ref(mp); 12435 VOP_UNLOCK(vp, 0); 12436 error = vfs_busy(mp, 0); 12437 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12438 vfs_rel(mp); 12439 if (error != 0) 12440 return (ENOENT); 12441 if (vp->v_iflag & VI_DOOMED) { 12442 vfs_unbusy(mp); 12443 return (ENOENT); 12444 } 12445 } 12446 VOP_UNLOCK(vp, 0); 12447 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12448 &pvp, FFSV_FORCEINSMQ); 12449 vfs_unbusy(mp); 12450 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12451 if (vp->v_iflag & VI_DOOMED) { 12452 if (error == 0) 12453 vput(pvp); 12454 error = ENOENT; 12455 } 12456 if (error != 0) 12457 return (error); 12458 } 12459 /* 12460 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12461 * that are contained in direct blocks will be resolved by 12462 * doing a ffs_update. Pagedeps contained in indirect blocks 12463 * may require a complete sync'ing of the directory. So, we 12464 * try the cheap and fast ffs_update first, and if that fails, 12465 * then we do the slower ffs_syncvnode of the directory. 12466 */ 12467 if (flushparent) { 12468 int locked; 12469 12470 if ((error = ffs_update(pvp, 1)) != 0) { 12471 vput(pvp); 12472 return (error); 12473 } 12474 ACQUIRE_LOCK(ump); 12475 locked = 1; 12476 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12477 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12478 if (wk->wk_type != D_DIRADD) 12479 panic("softdep_fsync: Unexpected type %s", 12480 TYPENAME(wk->wk_type)); 12481 dap = WK_DIRADD(wk); 12482 if (dap->da_state & DIRCHG) 12483 pagedep = dap->da_previous->dm_pagedep; 12484 else 12485 pagedep = dap->da_pagedep; 12486 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12487 FREE_LOCK(ump); 12488 locked = 0; 12489 if (pagedep_new_block && (error = 12490 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12491 vput(pvp); 12492 return (error); 12493 } 12494 } 12495 } 12496 if (locked) 12497 FREE_LOCK(ump); 12498 } 12499 /* 12500 * Flush directory page containing the inode's name. 12501 */ 12502 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12503 &bp); 12504 if (error == 0) 12505 error = bwrite(bp); 12506 else 12507 brelse(bp); 12508 vput(pvp); 12509 if (error != 0) 12510 return (error); 12511 ACQUIRE_LOCK(ump); 12512 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12513 break; 12514 } 12515 FREE_LOCK(ump); 12516 return (0); 12517 } 12518 12519 /* 12520 * Flush all the dirty bitmaps associated with the block device 12521 * before flushing the rest of the dirty blocks so as to reduce 12522 * the number of dependencies that will have to be rolled back. 12523 * 12524 * XXX Unused? 12525 */ 12526 void 12527 softdep_fsync_mountdev(vp) 12528 struct vnode *vp; 12529 { 12530 struct buf *bp, *nbp; 12531 struct worklist *wk; 12532 struct bufobj *bo; 12533 12534 if (!vn_isdisk(vp, NULL)) 12535 panic("softdep_fsync_mountdev: vnode not a disk"); 12536 bo = &vp->v_bufobj; 12537 restart: 12538 BO_LOCK(bo); 12539 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12540 /* 12541 * If it is already scheduled, skip to the next buffer. 12542 */ 12543 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12544 continue; 12545 12546 if ((bp->b_flags & B_DELWRI) == 0) 12547 panic("softdep_fsync_mountdev: not dirty"); 12548 /* 12549 * We are only interested in bitmaps with outstanding 12550 * dependencies. 12551 */ 12552 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12553 wk->wk_type != D_BMSAFEMAP || 12554 (bp->b_vflags & BV_BKGRDINPROG)) { 12555 BUF_UNLOCK(bp); 12556 continue; 12557 } 12558 BO_UNLOCK(bo); 12559 bremfree(bp); 12560 (void) bawrite(bp); 12561 goto restart; 12562 } 12563 drain_output(vp); 12564 BO_UNLOCK(bo); 12565 } 12566 12567 /* 12568 * Sync all cylinder groups that were dirty at the time this function is 12569 * called. Newly dirtied cgs will be inserted before the sentinel. This 12570 * is used to flush freedep activity that may be holding up writes to a 12571 * indirect block. 12572 */ 12573 static int 12574 sync_cgs(mp, waitfor) 12575 struct mount *mp; 12576 int waitfor; 12577 { 12578 struct bmsafemap *bmsafemap; 12579 struct bmsafemap *sentinel; 12580 struct ufsmount *ump; 12581 struct buf *bp; 12582 int error; 12583 12584 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12585 sentinel->sm_cg = -1; 12586 ump = VFSTOUFS(mp); 12587 error = 0; 12588 ACQUIRE_LOCK(ump); 12589 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12590 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12591 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12592 /* Skip sentinels and cgs with no work to release. */ 12593 if (bmsafemap->sm_cg == -1 || 12594 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12595 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12596 LIST_REMOVE(sentinel, sm_next); 12597 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12598 continue; 12599 } 12600 /* 12601 * If we don't get the lock and we're waiting try again, if 12602 * not move on to the next buf and try to sync it. 12603 */ 12604 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12605 if (bp == NULL && waitfor == MNT_WAIT) 12606 continue; 12607 LIST_REMOVE(sentinel, sm_next); 12608 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12609 if (bp == NULL) 12610 continue; 12611 FREE_LOCK(ump); 12612 if (waitfor == MNT_NOWAIT) 12613 bawrite(bp); 12614 else 12615 error = bwrite(bp); 12616 ACQUIRE_LOCK(ump); 12617 if (error) 12618 break; 12619 } 12620 LIST_REMOVE(sentinel, sm_next); 12621 FREE_LOCK(ump); 12622 free(sentinel, M_BMSAFEMAP); 12623 return (error); 12624 } 12625 12626 /* 12627 * This routine is called when we are trying to synchronously flush a 12628 * file. This routine must eliminate any filesystem metadata dependencies 12629 * so that the syncing routine can succeed. 12630 */ 12631 int 12632 softdep_sync_metadata(struct vnode *vp) 12633 { 12634 struct inode *ip; 12635 int error; 12636 12637 ip = VTOI(vp); 12638 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12639 ("softdep_sync_metadata called on non-softdep filesystem")); 12640 /* 12641 * Ensure that any direct block dependencies have been cleared, 12642 * truncations are started, and inode references are journaled. 12643 */ 12644 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12645 /* 12646 * Write all journal records to prevent rollbacks on devvp. 12647 */ 12648 if (vp->v_type == VCHR) 12649 softdep_flushjournal(vp->v_mount); 12650 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12651 /* 12652 * Ensure that all truncates are written so we won't find deps on 12653 * indirect blocks. 12654 */ 12655 process_truncates(vp); 12656 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12657 12658 return (error); 12659 } 12660 12661 /* 12662 * This routine is called when we are attempting to sync a buf with 12663 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12664 * other IO it can but returns EBUSY if the buffer is not yet able to 12665 * be written. Dependencies which will not cause rollbacks will always 12666 * return 0. 12667 */ 12668 int 12669 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12670 { 12671 struct indirdep *indirdep; 12672 struct pagedep *pagedep; 12673 struct allocindir *aip; 12674 struct newblk *newblk; 12675 struct ufsmount *ump; 12676 struct buf *nbp; 12677 struct worklist *wk; 12678 int i, error; 12679 12680 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12681 ("softdep_sync_buf called on non-softdep filesystem")); 12682 /* 12683 * For VCHR we just don't want to force flush any dependencies that 12684 * will cause rollbacks. 12685 */ 12686 if (vp->v_type == VCHR) { 12687 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12688 return (EBUSY); 12689 return (0); 12690 } 12691 ump = VFSTOUFS(vp->v_mount); 12692 ACQUIRE_LOCK(ump); 12693 /* 12694 * As we hold the buffer locked, none of its dependencies 12695 * will disappear. 12696 */ 12697 error = 0; 12698 top: 12699 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12700 switch (wk->wk_type) { 12701 12702 case D_ALLOCDIRECT: 12703 case D_ALLOCINDIR: 12704 newblk = WK_NEWBLK(wk); 12705 if (newblk->nb_jnewblk != NULL) { 12706 if (waitfor == MNT_NOWAIT) { 12707 error = EBUSY; 12708 goto out_unlock; 12709 } 12710 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12711 goto top; 12712 } 12713 if (newblk->nb_state & DEPCOMPLETE || 12714 waitfor == MNT_NOWAIT) 12715 continue; 12716 nbp = newblk->nb_bmsafemap->sm_buf; 12717 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12718 if (nbp == NULL) 12719 goto top; 12720 FREE_LOCK(ump); 12721 if ((error = bwrite(nbp)) != 0) 12722 goto out; 12723 ACQUIRE_LOCK(ump); 12724 continue; 12725 12726 case D_INDIRDEP: 12727 indirdep = WK_INDIRDEP(wk); 12728 if (waitfor == MNT_NOWAIT) { 12729 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12730 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12731 error = EBUSY; 12732 goto out_unlock; 12733 } 12734 } 12735 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12736 panic("softdep_sync_buf: truncation pending."); 12737 restart: 12738 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12739 newblk = (struct newblk *)aip; 12740 if (newblk->nb_jnewblk != NULL) { 12741 jwait(&newblk->nb_jnewblk->jn_list, 12742 waitfor); 12743 goto restart; 12744 } 12745 if (newblk->nb_state & DEPCOMPLETE) 12746 continue; 12747 nbp = newblk->nb_bmsafemap->sm_buf; 12748 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12749 if (nbp == NULL) 12750 goto restart; 12751 FREE_LOCK(ump); 12752 if ((error = bwrite(nbp)) != 0) 12753 goto out; 12754 ACQUIRE_LOCK(ump); 12755 goto restart; 12756 } 12757 continue; 12758 12759 case D_PAGEDEP: 12760 /* 12761 * Only flush directory entries in synchronous passes. 12762 */ 12763 if (waitfor != MNT_WAIT) { 12764 error = EBUSY; 12765 goto out_unlock; 12766 } 12767 /* 12768 * While syncing snapshots, we must allow recursive 12769 * lookups. 12770 */ 12771 BUF_AREC(bp); 12772 /* 12773 * We are trying to sync a directory that may 12774 * have dependencies on both its own metadata 12775 * and/or dependencies on the inodes of any 12776 * recently allocated files. We walk its diradd 12777 * lists pushing out the associated inode. 12778 */ 12779 pagedep = WK_PAGEDEP(wk); 12780 for (i = 0; i < DAHASHSZ; i++) { 12781 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12782 continue; 12783 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12784 &pagedep->pd_diraddhd[i]))) { 12785 BUF_NOREC(bp); 12786 goto out_unlock; 12787 } 12788 } 12789 BUF_NOREC(bp); 12790 continue; 12791 12792 case D_FREEWORK: 12793 case D_FREEDEP: 12794 case D_JSEGDEP: 12795 case D_JNEWBLK: 12796 continue; 12797 12798 default: 12799 panic("softdep_sync_buf: Unknown type %s", 12800 TYPENAME(wk->wk_type)); 12801 /* NOTREACHED */ 12802 } 12803 } 12804 out_unlock: 12805 FREE_LOCK(ump); 12806 out: 12807 return (error); 12808 } 12809 12810 /* 12811 * Flush the dependencies associated with an inodedep. 12812 * Called with splbio blocked. 12813 */ 12814 static int 12815 flush_inodedep_deps(vp, mp, ino) 12816 struct vnode *vp; 12817 struct mount *mp; 12818 ino_t ino; 12819 { 12820 struct inodedep *inodedep; 12821 struct inoref *inoref; 12822 struct ufsmount *ump; 12823 int error, waitfor; 12824 12825 /* 12826 * This work is done in two passes. The first pass grabs most 12827 * of the buffers and begins asynchronously writing them. The 12828 * only way to wait for these asynchronous writes is to sleep 12829 * on the filesystem vnode which may stay busy for a long time 12830 * if the filesystem is active. So, instead, we make a second 12831 * pass over the dependencies blocking on each write. In the 12832 * usual case we will be blocking against a write that we 12833 * initiated, so when it is done the dependency will have been 12834 * resolved. Thus the second pass is expected to end quickly. 12835 * We give a brief window at the top of the loop to allow 12836 * any pending I/O to complete. 12837 */ 12838 ump = VFSTOUFS(mp); 12839 LOCK_OWNED(ump); 12840 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12841 if (error) 12842 return (error); 12843 FREE_LOCK(ump); 12844 ACQUIRE_LOCK(ump); 12845 restart: 12846 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12847 return (0); 12848 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12849 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12850 == DEPCOMPLETE) { 12851 jwait(&inoref->if_list, MNT_WAIT); 12852 goto restart; 12853 } 12854 } 12855 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12856 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12857 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12858 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12859 continue; 12860 /* 12861 * If pass2, we are done, otherwise do pass 2. 12862 */ 12863 if (waitfor == MNT_WAIT) 12864 break; 12865 waitfor = MNT_WAIT; 12866 } 12867 /* 12868 * Try freeing inodedep in case all dependencies have been removed. 12869 */ 12870 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12871 (void) free_inodedep(inodedep); 12872 return (0); 12873 } 12874 12875 /* 12876 * Flush an inode dependency list. 12877 * Called with splbio blocked. 12878 */ 12879 static int 12880 flush_deplist(listhead, waitfor, errorp) 12881 struct allocdirectlst *listhead; 12882 int waitfor; 12883 int *errorp; 12884 { 12885 struct allocdirect *adp; 12886 struct newblk *newblk; 12887 struct ufsmount *ump; 12888 struct buf *bp; 12889 12890 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12891 return (0); 12892 ump = VFSTOUFS(adp->ad_list.wk_mp); 12893 LOCK_OWNED(ump); 12894 TAILQ_FOREACH(adp, listhead, ad_next) { 12895 newblk = (struct newblk *)adp; 12896 if (newblk->nb_jnewblk != NULL) { 12897 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12898 return (1); 12899 } 12900 if (newblk->nb_state & DEPCOMPLETE) 12901 continue; 12902 bp = newblk->nb_bmsafemap->sm_buf; 12903 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12904 if (bp == NULL) { 12905 if (waitfor == MNT_NOWAIT) 12906 continue; 12907 return (1); 12908 } 12909 FREE_LOCK(ump); 12910 if (waitfor == MNT_NOWAIT) 12911 bawrite(bp); 12912 else 12913 *errorp = bwrite(bp); 12914 ACQUIRE_LOCK(ump); 12915 return (1); 12916 } 12917 return (0); 12918 } 12919 12920 /* 12921 * Flush dependencies associated with an allocdirect block. 12922 */ 12923 static int 12924 flush_newblk_dep(vp, mp, lbn) 12925 struct vnode *vp; 12926 struct mount *mp; 12927 ufs_lbn_t lbn; 12928 { 12929 struct newblk *newblk; 12930 struct ufsmount *ump; 12931 struct bufobj *bo; 12932 struct inode *ip; 12933 struct buf *bp; 12934 ufs2_daddr_t blkno; 12935 int error; 12936 12937 error = 0; 12938 bo = &vp->v_bufobj; 12939 ip = VTOI(vp); 12940 blkno = DIP(ip, i_db[lbn]); 12941 if (blkno == 0) 12942 panic("flush_newblk_dep: Missing block"); 12943 ump = VFSTOUFS(mp); 12944 ACQUIRE_LOCK(ump); 12945 /* 12946 * Loop until all dependencies related to this block are satisfied. 12947 * We must be careful to restart after each sleep in case a write 12948 * completes some part of this process for us. 12949 */ 12950 for (;;) { 12951 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12952 FREE_LOCK(ump); 12953 break; 12954 } 12955 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12956 panic("flush_newblk_deps: Bad newblk %p", newblk); 12957 /* 12958 * Flush the journal. 12959 */ 12960 if (newblk->nb_jnewblk != NULL) { 12961 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12962 continue; 12963 } 12964 /* 12965 * Write the bitmap dependency. 12966 */ 12967 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12968 bp = newblk->nb_bmsafemap->sm_buf; 12969 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12970 if (bp == NULL) 12971 continue; 12972 FREE_LOCK(ump); 12973 error = bwrite(bp); 12974 if (error) 12975 break; 12976 ACQUIRE_LOCK(ump); 12977 continue; 12978 } 12979 /* 12980 * Write the buffer. 12981 */ 12982 FREE_LOCK(ump); 12983 BO_LOCK(bo); 12984 bp = gbincore(bo, lbn); 12985 if (bp != NULL) { 12986 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12987 LK_INTERLOCK, BO_LOCKPTR(bo)); 12988 if (error == ENOLCK) { 12989 ACQUIRE_LOCK(ump); 12990 error = 0; 12991 continue; /* Slept, retry */ 12992 } 12993 if (error != 0) 12994 break; /* Failed */ 12995 if (bp->b_flags & B_DELWRI) { 12996 bremfree(bp); 12997 error = bwrite(bp); 12998 if (error) 12999 break; 13000 } else 13001 BUF_UNLOCK(bp); 13002 } else 13003 BO_UNLOCK(bo); 13004 /* 13005 * We have to wait for the direct pointers to 13006 * point at the newdirblk before the dependency 13007 * will go away. 13008 */ 13009 error = ffs_update(vp, 1); 13010 if (error) 13011 break; 13012 ACQUIRE_LOCK(ump); 13013 } 13014 return (error); 13015 } 13016 13017 /* 13018 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13019 * Called with splbio blocked. 13020 */ 13021 static int 13022 flush_pagedep_deps(pvp, mp, diraddhdp) 13023 struct vnode *pvp; 13024 struct mount *mp; 13025 struct diraddhd *diraddhdp; 13026 { 13027 struct inodedep *inodedep; 13028 struct inoref *inoref; 13029 struct ufsmount *ump; 13030 struct diradd *dap; 13031 struct vnode *vp; 13032 int error = 0; 13033 struct buf *bp; 13034 ino_t inum; 13035 struct diraddhd unfinished; 13036 13037 LIST_INIT(&unfinished); 13038 ump = VFSTOUFS(mp); 13039 LOCK_OWNED(ump); 13040 restart: 13041 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13042 /* 13043 * Flush ourselves if this directory entry 13044 * has a MKDIR_PARENT dependency. 13045 */ 13046 if (dap->da_state & MKDIR_PARENT) { 13047 FREE_LOCK(ump); 13048 if ((error = ffs_update(pvp, 1)) != 0) 13049 break; 13050 ACQUIRE_LOCK(ump); 13051 /* 13052 * If that cleared dependencies, go on to next. 13053 */ 13054 if (dap != LIST_FIRST(diraddhdp)) 13055 continue; 13056 /* 13057 * All MKDIR_PARENT dependencies and all the 13058 * NEWBLOCK pagedeps that are contained in direct 13059 * blocks were resolved by doing above ffs_update. 13060 * Pagedeps contained in indirect blocks may 13061 * require a complete sync'ing of the directory. 13062 * We are in the midst of doing a complete sync, 13063 * so if they are not resolved in this pass we 13064 * defer them for now as they will be sync'ed by 13065 * our caller shortly. 13066 */ 13067 LIST_REMOVE(dap, da_pdlist); 13068 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13069 continue; 13070 } 13071 /* 13072 * A newly allocated directory must have its "." and 13073 * ".." entries written out before its name can be 13074 * committed in its parent. 13075 */ 13076 inum = dap->da_newinum; 13077 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13078 panic("flush_pagedep_deps: lost inode1"); 13079 /* 13080 * Wait for any pending journal adds to complete so we don't 13081 * cause rollbacks while syncing. 13082 */ 13083 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13084 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13085 == DEPCOMPLETE) { 13086 jwait(&inoref->if_list, MNT_WAIT); 13087 goto restart; 13088 } 13089 } 13090 if (dap->da_state & MKDIR_BODY) { 13091 FREE_LOCK(ump); 13092 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13093 FFSV_FORCEINSMQ))) 13094 break; 13095 error = flush_newblk_dep(vp, mp, 0); 13096 /* 13097 * If we still have the dependency we might need to 13098 * update the vnode to sync the new link count to 13099 * disk. 13100 */ 13101 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13102 error = ffs_update(vp, 1); 13103 vput(vp); 13104 if (error != 0) 13105 break; 13106 ACQUIRE_LOCK(ump); 13107 /* 13108 * If that cleared dependencies, go on to next. 13109 */ 13110 if (dap != LIST_FIRST(diraddhdp)) 13111 continue; 13112 if (dap->da_state & MKDIR_BODY) { 13113 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13114 &inodedep); 13115 panic("flush_pagedep_deps: MKDIR_BODY " 13116 "inodedep %p dap %p vp %p", 13117 inodedep, dap, vp); 13118 } 13119 } 13120 /* 13121 * Flush the inode on which the directory entry depends. 13122 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13123 * the only remaining dependency is that the updated inode 13124 * count must get pushed to disk. The inode has already 13125 * been pushed into its inode buffer (via VOP_UPDATE) at 13126 * the time of the reference count change. So we need only 13127 * locate that buffer, ensure that there will be no rollback 13128 * caused by a bitmap dependency, then write the inode buffer. 13129 */ 13130 retry: 13131 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13132 panic("flush_pagedep_deps: lost inode"); 13133 /* 13134 * If the inode still has bitmap dependencies, 13135 * push them to disk. 13136 */ 13137 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13138 bp = inodedep->id_bmsafemap->sm_buf; 13139 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13140 if (bp == NULL) 13141 goto retry; 13142 FREE_LOCK(ump); 13143 if ((error = bwrite(bp)) != 0) 13144 break; 13145 ACQUIRE_LOCK(ump); 13146 if (dap != LIST_FIRST(diraddhdp)) 13147 continue; 13148 } 13149 /* 13150 * If the inode is still sitting in a buffer waiting 13151 * to be written or waiting for the link count to be 13152 * adjusted update it here to flush it to disk. 13153 */ 13154 if (dap == LIST_FIRST(diraddhdp)) { 13155 FREE_LOCK(ump); 13156 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13157 FFSV_FORCEINSMQ))) 13158 break; 13159 error = ffs_update(vp, 1); 13160 vput(vp); 13161 if (error) 13162 break; 13163 ACQUIRE_LOCK(ump); 13164 } 13165 /* 13166 * If we have failed to get rid of all the dependencies 13167 * then something is seriously wrong. 13168 */ 13169 if (dap == LIST_FIRST(diraddhdp)) { 13170 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13171 panic("flush_pagedep_deps: failed to flush " 13172 "inodedep %p ino %ju dap %p", 13173 inodedep, (uintmax_t)inum, dap); 13174 } 13175 } 13176 if (error) 13177 ACQUIRE_LOCK(ump); 13178 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13179 LIST_REMOVE(dap, da_pdlist); 13180 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13181 } 13182 return (error); 13183 } 13184 13185 /* 13186 * A large burst of file addition or deletion activity can drive the 13187 * memory load excessively high. First attempt to slow things down 13188 * using the techniques below. If that fails, this routine requests 13189 * the offending operations to fall back to running synchronously 13190 * until the memory load returns to a reasonable level. 13191 */ 13192 int 13193 softdep_slowdown(vp) 13194 struct vnode *vp; 13195 { 13196 struct ufsmount *ump; 13197 int jlow; 13198 int max_softdeps_hard; 13199 13200 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13201 ("softdep_slowdown called on non-softdep filesystem")); 13202 ump = VFSTOUFS(vp->v_mount); 13203 ACQUIRE_LOCK(ump); 13204 jlow = 0; 13205 /* 13206 * Check for journal space if needed. 13207 */ 13208 if (DOINGSUJ(vp)) { 13209 if (journal_space(ump, 0) == 0) 13210 jlow = 1; 13211 } 13212 /* 13213 * If the system is under its limits and our filesystem is 13214 * not responsible for more than our share of the usage and 13215 * we are not low on journal space, then no need to slow down. 13216 */ 13217 max_softdeps_hard = max_softdeps * 11 / 10; 13218 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13219 dep_current[D_INODEDEP] < max_softdeps_hard && 13220 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13221 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13222 ump->softdep_curdeps[D_DIRREM] < 13223 (max_softdeps_hard / 2) / stat_flush_threads && 13224 ump->softdep_curdeps[D_INODEDEP] < 13225 max_softdeps_hard / stat_flush_threads && 13226 ump->softdep_curdeps[D_INDIRDEP] < 13227 (max_softdeps_hard / 1000) / stat_flush_threads && 13228 ump->softdep_curdeps[D_FREEBLKS] < 13229 max_softdeps_hard / stat_flush_threads) { 13230 FREE_LOCK(ump); 13231 return (0); 13232 } 13233 /* 13234 * If the journal is low or our filesystem is over its limit 13235 * then speedup the cleanup. 13236 */ 13237 if (ump->softdep_curdeps[D_INDIRDEP] < 13238 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13239 softdep_speedup(ump); 13240 stat_sync_limit_hit += 1; 13241 FREE_LOCK(ump); 13242 /* 13243 * We only slow down the rate at which new dependencies are 13244 * generated if we are not using journaling. With journaling, 13245 * the cleanup should always be sufficient to keep things 13246 * under control. 13247 */ 13248 if (DOINGSUJ(vp)) 13249 return (0); 13250 return (1); 13251 } 13252 13253 /* 13254 * Called by the allocation routines when they are about to fail 13255 * in the hope that we can free up the requested resource (inodes 13256 * or disk space). 13257 * 13258 * First check to see if the work list has anything on it. If it has, 13259 * clean up entries until we successfully free the requested resource. 13260 * Because this process holds inodes locked, we cannot handle any remove 13261 * requests that might block on a locked inode as that could lead to 13262 * deadlock. If the worklist yields none of the requested resource, 13263 * start syncing out vnodes to free up the needed space. 13264 */ 13265 int 13266 softdep_request_cleanup(fs, vp, cred, resource) 13267 struct fs *fs; 13268 struct vnode *vp; 13269 struct ucred *cred; 13270 int resource; 13271 { 13272 struct ufsmount *ump; 13273 struct mount *mp; 13274 long starttime; 13275 ufs2_daddr_t needed; 13276 int error, failed_vnode; 13277 13278 /* 13279 * If we are being called because of a process doing a 13280 * copy-on-write, then it is not safe to process any 13281 * worklist items as we will recurse into the copyonwrite 13282 * routine. This will result in an incoherent snapshot. 13283 * If the vnode that we hold is a snapshot, we must avoid 13284 * handling other resources that could cause deadlock. 13285 */ 13286 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13287 return (0); 13288 13289 if (resource == FLUSH_BLOCKS_WAIT) 13290 stat_cleanup_blkrequests += 1; 13291 else 13292 stat_cleanup_inorequests += 1; 13293 13294 mp = vp->v_mount; 13295 ump = VFSTOUFS(mp); 13296 mtx_assert(UFS_MTX(ump), MA_OWNED); 13297 UFS_UNLOCK(ump); 13298 error = ffs_update(vp, 1); 13299 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13300 UFS_LOCK(ump); 13301 return (0); 13302 } 13303 /* 13304 * If we are in need of resources, start by cleaning up 13305 * any block removals associated with our inode. 13306 */ 13307 ACQUIRE_LOCK(ump); 13308 process_removes(vp); 13309 process_truncates(vp); 13310 FREE_LOCK(ump); 13311 /* 13312 * Now clean up at least as many resources as we will need. 13313 * 13314 * When requested to clean up inodes, the number that are needed 13315 * is set by the number of simultaneous writers (mnt_writeopcount) 13316 * plus a bit of slop (2) in case some more writers show up while 13317 * we are cleaning. 13318 * 13319 * When requested to free up space, the amount of space that 13320 * we need is enough blocks to allocate a full-sized segment 13321 * (fs_contigsumsize). The number of such segments that will 13322 * be needed is set by the number of simultaneous writers 13323 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13324 * writers show up while we are cleaning. 13325 * 13326 * Additionally, if we are unpriviledged and allocating space, 13327 * we need to ensure that we clean up enough blocks to get the 13328 * needed number of blocks over the threshold of the minimum 13329 * number of blocks required to be kept free by the filesystem 13330 * (fs_minfree). 13331 */ 13332 if (resource == FLUSH_INODES_WAIT) { 13333 needed = vp->v_mount->mnt_writeopcount + 2; 13334 } else if (resource == FLUSH_BLOCKS_WAIT) { 13335 needed = (vp->v_mount->mnt_writeopcount + 2) * 13336 fs->fs_contigsumsize; 13337 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 13338 needed += fragstoblks(fs, 13339 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13340 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13341 } else { 13342 UFS_LOCK(ump); 13343 printf("softdep_request_cleanup: Unknown resource type %d\n", 13344 resource); 13345 return (0); 13346 } 13347 starttime = time_second; 13348 retry: 13349 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13350 fs->fs_cstotal.cs_nbfree <= needed) || 13351 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13352 fs->fs_cstotal.cs_nifree <= needed)) { 13353 ACQUIRE_LOCK(ump); 13354 if (ump->softdep_on_worklist > 0 && 13355 process_worklist_item(UFSTOVFS(ump), 13356 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13357 stat_worklist_push += 1; 13358 FREE_LOCK(ump); 13359 } 13360 /* 13361 * If we still need resources and there are no more worklist 13362 * entries to process to obtain them, we have to start flushing 13363 * the dirty vnodes to force the release of additional requests 13364 * to the worklist that we can then process to reap addition 13365 * resources. We walk the vnodes associated with the mount point 13366 * until we get the needed worklist requests that we can reap. 13367 * 13368 * If there are several threads all needing to clean the same 13369 * mount point, only one is allowed to walk the mount list. 13370 * When several threads all try to walk the same mount list, 13371 * they end up competing with each other and often end up in 13372 * livelock. This approach ensures that forward progress is 13373 * made at the cost of occational ENOSPC errors being returned 13374 * that might otherwise have been avoided. 13375 */ 13376 error = 1; 13377 if ((resource == FLUSH_BLOCKS_WAIT && 13378 fs->fs_cstotal.cs_nbfree <= needed) || 13379 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13380 fs->fs_cstotal.cs_nifree <= needed)) { 13381 ACQUIRE_LOCK(ump); 13382 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13383 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13384 FREE_LOCK(ump); 13385 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13386 ACQUIRE_LOCK(ump); 13387 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13388 FREE_LOCK(ump); 13389 if (ump->softdep_on_worklist > 0) { 13390 stat_cleanup_retries += 1; 13391 if (!failed_vnode) 13392 goto retry; 13393 } 13394 } else { 13395 FREE_LOCK(ump); 13396 error = 0; 13397 } 13398 stat_cleanup_failures += 1; 13399 } 13400 if (time_second - starttime > stat_cleanup_high_delay) 13401 stat_cleanup_high_delay = time_second - starttime; 13402 UFS_LOCK(ump); 13403 return (error); 13404 } 13405 13406 /* 13407 * Scan the vnodes for the specified mount point flushing out any 13408 * vnodes that can be locked without waiting. Finally, try to flush 13409 * the device associated with the mount point if it can be locked 13410 * without waiting. 13411 * 13412 * We return 0 if we were able to lock every vnode in our scan. 13413 * If we had to skip one or more vnodes, we return 1. 13414 */ 13415 static int 13416 softdep_request_cleanup_flush(mp, ump) 13417 struct mount *mp; 13418 struct ufsmount *ump; 13419 { 13420 struct thread *td; 13421 struct vnode *lvp, *mvp; 13422 int failed_vnode; 13423 13424 failed_vnode = 0; 13425 td = curthread; 13426 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13427 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13428 VI_UNLOCK(lvp); 13429 continue; 13430 } 13431 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13432 td) != 0) { 13433 failed_vnode = 1; 13434 continue; 13435 } 13436 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13437 vput(lvp); 13438 continue; 13439 } 13440 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13441 vput(lvp); 13442 } 13443 lvp = ump->um_devvp; 13444 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13445 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13446 VOP_UNLOCK(lvp, 0); 13447 } 13448 return (failed_vnode); 13449 } 13450 13451 static bool 13452 softdep_excess_items(struct ufsmount *ump, int item) 13453 { 13454 13455 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13456 return (dep_current[item] > max_softdeps && 13457 ump->softdep_curdeps[item] > max_softdeps / 13458 stat_flush_threads); 13459 } 13460 13461 static void 13462 schedule_cleanup(struct mount *mp) 13463 { 13464 struct ufsmount *ump; 13465 struct thread *td; 13466 13467 ump = VFSTOUFS(mp); 13468 LOCK_OWNED(ump); 13469 FREE_LOCK(ump); 13470 td = curthread; 13471 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13472 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13473 /* 13474 * No ast is delivered to kernel threads, so nobody 13475 * would deref the mp. Some kernel threads 13476 * explicitely check for AST, e.g. NFS daemon does 13477 * this in the serving loop. 13478 */ 13479 return; 13480 } 13481 if (td->td_su != NULL) 13482 vfs_rel(td->td_su); 13483 vfs_ref(mp); 13484 td->td_su = mp; 13485 thread_lock(td); 13486 td->td_flags |= TDF_ASTPENDING; 13487 thread_unlock(td); 13488 } 13489 13490 static void 13491 softdep_ast_cleanup_proc(struct thread *td) 13492 { 13493 struct mount *mp; 13494 struct ufsmount *ump; 13495 int error; 13496 bool req; 13497 13498 while ((mp = td->td_su) != NULL) { 13499 td->td_su = NULL; 13500 error = vfs_busy(mp, MBF_NOWAIT); 13501 vfs_rel(mp); 13502 if (error != 0) 13503 return; 13504 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13505 ump = VFSTOUFS(mp); 13506 for (;;) { 13507 req = false; 13508 ACQUIRE_LOCK(ump); 13509 if (softdep_excess_items(ump, D_INODEDEP)) { 13510 req = true; 13511 request_cleanup(mp, FLUSH_INODES); 13512 } 13513 if (softdep_excess_items(ump, D_DIRREM)) { 13514 req = true; 13515 request_cleanup(mp, FLUSH_BLOCKS); 13516 } 13517 FREE_LOCK(ump); 13518 if (softdep_excess_items(ump, D_NEWBLK) || 13519 softdep_excess_items(ump, D_ALLOCDIRECT) || 13520 softdep_excess_items(ump, D_ALLOCINDIR)) { 13521 error = vn_start_write(NULL, &mp, 13522 V_WAIT); 13523 if (error == 0) { 13524 req = true; 13525 VFS_SYNC(mp, MNT_WAIT); 13526 vn_finished_write(mp); 13527 } 13528 } 13529 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13530 break; 13531 } 13532 } 13533 vfs_unbusy(mp); 13534 } 13535 if ((mp = td->td_su) != NULL) { 13536 td->td_su = NULL; 13537 vfs_rel(mp); 13538 } 13539 } 13540 13541 /* 13542 * If memory utilization has gotten too high, deliberately slow things 13543 * down and speed up the I/O processing. 13544 */ 13545 static int 13546 request_cleanup(mp, resource) 13547 struct mount *mp; 13548 int resource; 13549 { 13550 struct thread *td = curthread; 13551 struct ufsmount *ump; 13552 13553 ump = VFSTOUFS(mp); 13554 LOCK_OWNED(ump); 13555 /* 13556 * We never hold up the filesystem syncer or buf daemon. 13557 */ 13558 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13559 return (0); 13560 /* 13561 * First check to see if the work list has gotten backlogged. 13562 * If it has, co-opt this process to help clean up two entries. 13563 * Because this process may hold inodes locked, we cannot 13564 * handle any remove requests that might block on a locked 13565 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13566 * to avoid recursively processing the worklist. 13567 */ 13568 if (ump->softdep_on_worklist > max_softdeps / 10) { 13569 td->td_pflags |= TDP_SOFTDEP; 13570 process_worklist_item(mp, 2, LK_NOWAIT); 13571 td->td_pflags &= ~TDP_SOFTDEP; 13572 stat_worklist_push += 2; 13573 return(1); 13574 } 13575 /* 13576 * Next, we attempt to speed up the syncer process. If that 13577 * is successful, then we allow the process to continue. 13578 */ 13579 if (softdep_speedup(ump) && 13580 resource != FLUSH_BLOCKS_WAIT && 13581 resource != FLUSH_INODES_WAIT) 13582 return(0); 13583 /* 13584 * If we are resource constrained on inode dependencies, try 13585 * flushing some dirty inodes. Otherwise, we are constrained 13586 * by file deletions, so try accelerating flushes of directories 13587 * with removal dependencies. We would like to do the cleanup 13588 * here, but we probably hold an inode locked at this point and 13589 * that might deadlock against one that we try to clean. So, 13590 * the best that we can do is request the syncer daemon to do 13591 * the cleanup for us. 13592 */ 13593 switch (resource) { 13594 13595 case FLUSH_INODES: 13596 case FLUSH_INODES_WAIT: 13597 ACQUIRE_GBLLOCK(&lk); 13598 stat_ino_limit_push += 1; 13599 req_clear_inodedeps += 1; 13600 FREE_GBLLOCK(&lk); 13601 stat_countp = &stat_ino_limit_hit; 13602 break; 13603 13604 case FLUSH_BLOCKS: 13605 case FLUSH_BLOCKS_WAIT: 13606 ACQUIRE_GBLLOCK(&lk); 13607 stat_blk_limit_push += 1; 13608 req_clear_remove += 1; 13609 FREE_GBLLOCK(&lk); 13610 stat_countp = &stat_blk_limit_hit; 13611 break; 13612 13613 default: 13614 panic("request_cleanup: unknown type"); 13615 } 13616 /* 13617 * Hopefully the syncer daemon will catch up and awaken us. 13618 * We wait at most tickdelay before proceeding in any case. 13619 */ 13620 ACQUIRE_GBLLOCK(&lk); 13621 FREE_LOCK(ump); 13622 proc_waiting += 1; 13623 if (callout_pending(&softdep_callout) == FALSE) 13624 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13625 pause_timer, 0); 13626 13627 if ((td->td_pflags & TDP_KTHREAD) == 0) 13628 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13629 proc_waiting -= 1; 13630 FREE_GBLLOCK(&lk); 13631 ACQUIRE_LOCK(ump); 13632 return (1); 13633 } 13634 13635 /* 13636 * Awaken processes pausing in request_cleanup and clear proc_waiting 13637 * to indicate that there is no longer a timer running. Pause_timer 13638 * will be called with the global softdep mutex (&lk) locked. 13639 */ 13640 static void 13641 pause_timer(arg) 13642 void *arg; 13643 { 13644 13645 GBLLOCK_OWNED(&lk); 13646 /* 13647 * The callout_ API has acquired mtx and will hold it around this 13648 * function call. 13649 */ 13650 *stat_countp += proc_waiting; 13651 wakeup(&proc_waiting); 13652 } 13653 13654 /* 13655 * If requested, try removing inode or removal dependencies. 13656 */ 13657 static void 13658 check_clear_deps(mp) 13659 struct mount *mp; 13660 { 13661 13662 /* 13663 * If we are suspended, it may be because of our using 13664 * too many inodedeps, so help clear them out. 13665 */ 13666 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13667 clear_inodedeps(mp); 13668 /* 13669 * General requests for cleanup of backed up dependencies 13670 */ 13671 ACQUIRE_GBLLOCK(&lk); 13672 if (req_clear_inodedeps) { 13673 req_clear_inodedeps -= 1; 13674 FREE_GBLLOCK(&lk); 13675 clear_inodedeps(mp); 13676 ACQUIRE_GBLLOCK(&lk); 13677 wakeup(&proc_waiting); 13678 } 13679 if (req_clear_remove) { 13680 req_clear_remove -= 1; 13681 FREE_GBLLOCK(&lk); 13682 clear_remove(mp); 13683 ACQUIRE_GBLLOCK(&lk); 13684 wakeup(&proc_waiting); 13685 } 13686 FREE_GBLLOCK(&lk); 13687 } 13688 13689 /* 13690 * Flush out a directory with at least one removal dependency in an effort to 13691 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13692 */ 13693 static void 13694 clear_remove(mp) 13695 struct mount *mp; 13696 { 13697 struct pagedep_hashhead *pagedephd; 13698 struct pagedep *pagedep; 13699 struct ufsmount *ump; 13700 struct vnode *vp; 13701 struct bufobj *bo; 13702 int error, cnt; 13703 ino_t ino; 13704 13705 ump = VFSTOUFS(mp); 13706 LOCK_OWNED(ump); 13707 13708 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13709 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13710 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13711 ump->pagedep_nextclean = 0; 13712 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13713 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13714 continue; 13715 ino = pagedep->pd_ino; 13716 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13717 continue; 13718 FREE_LOCK(ump); 13719 13720 /* 13721 * Let unmount clear deps 13722 */ 13723 error = vfs_busy(mp, MBF_NOWAIT); 13724 if (error != 0) 13725 goto finish_write; 13726 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13727 FFSV_FORCEINSMQ); 13728 vfs_unbusy(mp); 13729 if (error != 0) { 13730 softdep_error("clear_remove: vget", error); 13731 goto finish_write; 13732 } 13733 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13734 softdep_error("clear_remove: fsync", error); 13735 bo = &vp->v_bufobj; 13736 BO_LOCK(bo); 13737 drain_output(vp); 13738 BO_UNLOCK(bo); 13739 vput(vp); 13740 finish_write: 13741 vn_finished_write(mp); 13742 ACQUIRE_LOCK(ump); 13743 return; 13744 } 13745 } 13746 } 13747 13748 /* 13749 * Clear out a block of dirty inodes in an effort to reduce 13750 * the number of inodedep dependency structures. 13751 */ 13752 static void 13753 clear_inodedeps(mp) 13754 struct mount *mp; 13755 { 13756 struct inodedep_hashhead *inodedephd; 13757 struct inodedep *inodedep; 13758 struct ufsmount *ump; 13759 struct vnode *vp; 13760 struct fs *fs; 13761 int error, cnt; 13762 ino_t firstino, lastino, ino; 13763 13764 ump = VFSTOUFS(mp); 13765 fs = ump->um_fs; 13766 LOCK_OWNED(ump); 13767 /* 13768 * Pick a random inode dependency to be cleared. 13769 * We will then gather up all the inodes in its block 13770 * that have dependencies and flush them out. 13771 */ 13772 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13773 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13774 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13775 ump->inodedep_nextclean = 0; 13776 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13777 break; 13778 } 13779 if (inodedep == NULL) 13780 return; 13781 /* 13782 * Find the last inode in the block with dependencies. 13783 */ 13784 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13785 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13786 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13787 break; 13788 /* 13789 * Asynchronously push all but the last inode with dependencies. 13790 * Synchronously push the last inode with dependencies to ensure 13791 * that the inode block gets written to free up the inodedeps. 13792 */ 13793 for (ino = firstino; ino <= lastino; ino++) { 13794 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13795 continue; 13796 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13797 continue; 13798 FREE_LOCK(ump); 13799 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13800 if (error != 0) { 13801 vn_finished_write(mp); 13802 ACQUIRE_LOCK(ump); 13803 return; 13804 } 13805 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13806 FFSV_FORCEINSMQ)) != 0) { 13807 softdep_error("clear_inodedeps: vget", error); 13808 vfs_unbusy(mp); 13809 vn_finished_write(mp); 13810 ACQUIRE_LOCK(ump); 13811 return; 13812 } 13813 vfs_unbusy(mp); 13814 if (ino == lastino) { 13815 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13816 softdep_error("clear_inodedeps: fsync1", error); 13817 } else { 13818 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13819 softdep_error("clear_inodedeps: fsync2", error); 13820 BO_LOCK(&vp->v_bufobj); 13821 drain_output(vp); 13822 BO_UNLOCK(&vp->v_bufobj); 13823 } 13824 vput(vp); 13825 vn_finished_write(mp); 13826 ACQUIRE_LOCK(ump); 13827 } 13828 } 13829 13830 void 13831 softdep_buf_append(bp, wkhd) 13832 struct buf *bp; 13833 struct workhead *wkhd; 13834 { 13835 struct worklist *wk; 13836 struct ufsmount *ump; 13837 13838 if ((wk = LIST_FIRST(wkhd)) == NULL) 13839 return; 13840 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13841 ("softdep_buf_append called on non-softdep filesystem")); 13842 ump = VFSTOUFS(wk->wk_mp); 13843 ACQUIRE_LOCK(ump); 13844 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13845 WORKLIST_REMOVE(wk); 13846 WORKLIST_INSERT(&bp->b_dep, wk); 13847 } 13848 FREE_LOCK(ump); 13849 13850 } 13851 13852 void 13853 softdep_inode_append(ip, cred, wkhd) 13854 struct inode *ip; 13855 struct ucred *cred; 13856 struct workhead *wkhd; 13857 { 13858 struct buf *bp; 13859 struct fs *fs; 13860 struct ufsmount *ump; 13861 int error; 13862 13863 ump = ITOUMP(ip); 13864 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13865 ("softdep_inode_append called on non-softdep filesystem")); 13866 fs = ump->um_fs; 13867 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13868 (int)fs->fs_bsize, cred, &bp); 13869 if (error) { 13870 bqrelse(bp); 13871 softdep_freework(wkhd); 13872 return; 13873 } 13874 softdep_buf_append(bp, wkhd); 13875 bqrelse(bp); 13876 } 13877 13878 void 13879 softdep_freework(wkhd) 13880 struct workhead *wkhd; 13881 { 13882 struct worklist *wk; 13883 struct ufsmount *ump; 13884 13885 if ((wk = LIST_FIRST(wkhd)) == NULL) 13886 return; 13887 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13888 ("softdep_freework called on non-softdep filesystem")); 13889 ump = VFSTOUFS(wk->wk_mp); 13890 ACQUIRE_LOCK(ump); 13891 handle_jwork(wkhd); 13892 FREE_LOCK(ump); 13893 } 13894 13895 /* 13896 * Function to determine if the buffer has outstanding dependencies 13897 * that will cause a roll-back if the buffer is written. If wantcount 13898 * is set, return number of dependencies, otherwise just yes or no. 13899 */ 13900 static int 13901 softdep_count_dependencies(bp, wantcount) 13902 struct buf *bp; 13903 int wantcount; 13904 { 13905 struct worklist *wk; 13906 struct ufsmount *ump; 13907 struct bmsafemap *bmsafemap; 13908 struct freework *freework; 13909 struct inodedep *inodedep; 13910 struct indirdep *indirdep; 13911 struct freeblks *freeblks; 13912 struct allocindir *aip; 13913 struct pagedep *pagedep; 13914 struct dirrem *dirrem; 13915 struct newblk *newblk; 13916 struct mkdir *mkdir; 13917 struct diradd *dap; 13918 struct vnode *vp; 13919 struct mount *mp; 13920 int i, retval; 13921 13922 retval = 0; 13923 if (LIST_EMPTY(&bp->b_dep)) 13924 return (0); 13925 vp = bp->b_vp; 13926 13927 /* 13928 * The ump mount point is stable after we get a correct 13929 * pointer, since bp is locked and this prevents unmount from 13930 * proceed. But to get to it, we cannot dereference bp->b_dep 13931 * head wk_mp, because we do not yet own SU ump lock and 13932 * workitem might be freed while dereferenced. 13933 */ 13934 retry: 13935 if (vp->v_type == VCHR) { 13936 VI_LOCK(vp); 13937 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 13938 VI_UNLOCK(vp); 13939 if (mp == NULL) 13940 goto retry; 13941 } else if (vp->v_type == VREG) { 13942 mp = vp->v_mount; 13943 } else { 13944 return (0); 13945 } 13946 ump = VFSTOUFS(mp); 13947 13948 ACQUIRE_LOCK(ump); 13949 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13950 switch (wk->wk_type) { 13951 13952 case D_INODEDEP: 13953 inodedep = WK_INODEDEP(wk); 13954 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13955 /* bitmap allocation dependency */ 13956 retval += 1; 13957 if (!wantcount) 13958 goto out; 13959 } 13960 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13961 /* direct block pointer dependency */ 13962 retval += 1; 13963 if (!wantcount) 13964 goto out; 13965 } 13966 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13967 /* direct block pointer dependency */ 13968 retval += 1; 13969 if (!wantcount) 13970 goto out; 13971 } 13972 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13973 /* Add reference dependency. */ 13974 retval += 1; 13975 if (!wantcount) 13976 goto out; 13977 } 13978 continue; 13979 13980 case D_INDIRDEP: 13981 indirdep = WK_INDIRDEP(wk); 13982 13983 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13984 /* indirect truncation dependency */ 13985 retval += 1; 13986 if (!wantcount) 13987 goto out; 13988 } 13989 13990 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13991 /* indirect block pointer dependency */ 13992 retval += 1; 13993 if (!wantcount) 13994 goto out; 13995 } 13996 continue; 13997 13998 case D_PAGEDEP: 13999 pagedep = WK_PAGEDEP(wk); 14000 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14001 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14002 /* Journal remove ref dependency. */ 14003 retval += 1; 14004 if (!wantcount) 14005 goto out; 14006 } 14007 } 14008 for (i = 0; i < DAHASHSZ; i++) { 14009 14010 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14011 /* directory entry dependency */ 14012 retval += 1; 14013 if (!wantcount) 14014 goto out; 14015 } 14016 } 14017 continue; 14018 14019 case D_BMSAFEMAP: 14020 bmsafemap = WK_BMSAFEMAP(wk); 14021 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14022 /* Add reference dependency. */ 14023 retval += 1; 14024 if (!wantcount) 14025 goto out; 14026 } 14027 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14028 /* Allocate block dependency. */ 14029 retval += 1; 14030 if (!wantcount) 14031 goto out; 14032 } 14033 continue; 14034 14035 case D_FREEBLKS: 14036 freeblks = WK_FREEBLKS(wk); 14037 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14038 /* Freeblk journal dependency. */ 14039 retval += 1; 14040 if (!wantcount) 14041 goto out; 14042 } 14043 continue; 14044 14045 case D_ALLOCDIRECT: 14046 case D_ALLOCINDIR: 14047 newblk = WK_NEWBLK(wk); 14048 if (newblk->nb_jnewblk) { 14049 /* Journal allocate dependency. */ 14050 retval += 1; 14051 if (!wantcount) 14052 goto out; 14053 } 14054 continue; 14055 14056 case D_MKDIR: 14057 mkdir = WK_MKDIR(wk); 14058 if (mkdir->md_jaddref) { 14059 /* Journal reference dependency. */ 14060 retval += 1; 14061 if (!wantcount) 14062 goto out; 14063 } 14064 continue; 14065 14066 case D_FREEWORK: 14067 case D_FREEDEP: 14068 case D_JSEGDEP: 14069 case D_JSEG: 14070 case D_SBDEP: 14071 /* never a dependency on these blocks */ 14072 continue; 14073 14074 default: 14075 panic("softdep_count_dependencies: Unexpected type %s", 14076 TYPENAME(wk->wk_type)); 14077 /* NOTREACHED */ 14078 } 14079 } 14080 out: 14081 FREE_LOCK(ump); 14082 return (retval); 14083 } 14084 14085 /* 14086 * Acquire exclusive access to a buffer. 14087 * Must be called with a locked mtx parameter. 14088 * Return acquired buffer or NULL on failure. 14089 */ 14090 static struct buf * 14091 getdirtybuf(bp, lock, waitfor) 14092 struct buf *bp; 14093 struct rwlock *lock; 14094 int waitfor; 14095 { 14096 int error; 14097 14098 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14099 if (waitfor != MNT_WAIT) 14100 return (NULL); 14101 error = BUF_LOCK(bp, 14102 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14103 /* 14104 * Even if we successfully acquire bp here, we have dropped 14105 * lock, which may violates our guarantee. 14106 */ 14107 if (error == 0) 14108 BUF_UNLOCK(bp); 14109 else if (error != ENOLCK) 14110 panic("getdirtybuf: inconsistent lock: %d", error); 14111 rw_wlock(lock); 14112 return (NULL); 14113 } 14114 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14115 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14116 rw_wunlock(lock); 14117 BO_LOCK(bp->b_bufobj); 14118 BUF_UNLOCK(bp); 14119 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14120 bp->b_vflags |= BV_BKGRDWAIT; 14121 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14122 PRIBIO | PDROP, "getbuf", 0); 14123 } else 14124 BO_UNLOCK(bp->b_bufobj); 14125 rw_wlock(lock); 14126 return (NULL); 14127 } 14128 BUF_UNLOCK(bp); 14129 if (waitfor != MNT_WAIT) 14130 return (NULL); 14131 /* 14132 * The lock argument must be bp->b_vp's mutex in 14133 * this case. 14134 */ 14135 #ifdef DEBUG_VFS_LOCKS 14136 if (bp->b_vp->v_type != VCHR) 14137 ASSERT_BO_WLOCKED(bp->b_bufobj); 14138 #endif 14139 bp->b_vflags |= BV_BKGRDWAIT; 14140 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14141 return (NULL); 14142 } 14143 if ((bp->b_flags & B_DELWRI) == 0) { 14144 BUF_UNLOCK(bp); 14145 return (NULL); 14146 } 14147 bremfree(bp); 14148 return (bp); 14149 } 14150 14151 14152 /* 14153 * Check if it is safe to suspend the file system now. On entry, 14154 * the vnode interlock for devvp should be held. Return 0 with 14155 * the mount interlock held if the file system can be suspended now, 14156 * otherwise return EAGAIN with the mount interlock held. 14157 */ 14158 int 14159 softdep_check_suspend(struct mount *mp, 14160 struct vnode *devvp, 14161 int softdep_depcnt, 14162 int softdep_accdepcnt, 14163 int secondary_writes, 14164 int secondary_accwrites) 14165 { 14166 struct bufobj *bo; 14167 struct ufsmount *ump; 14168 struct inodedep *inodedep; 14169 int error, unlinked; 14170 14171 bo = &devvp->v_bufobj; 14172 ASSERT_BO_WLOCKED(bo); 14173 14174 /* 14175 * If we are not running with soft updates, then we need only 14176 * deal with secondary writes as we try to suspend. 14177 */ 14178 if (MOUNTEDSOFTDEP(mp) == 0) { 14179 MNT_ILOCK(mp); 14180 while (mp->mnt_secondary_writes != 0) { 14181 BO_UNLOCK(bo); 14182 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14183 (PUSER - 1) | PDROP, "secwr", 0); 14184 BO_LOCK(bo); 14185 MNT_ILOCK(mp); 14186 } 14187 14188 /* 14189 * Reasons for needing more work before suspend: 14190 * - Dirty buffers on devvp. 14191 * - Secondary writes occurred after start of vnode sync loop 14192 */ 14193 error = 0; 14194 if (bo->bo_numoutput > 0 || 14195 bo->bo_dirty.bv_cnt > 0 || 14196 secondary_writes != 0 || 14197 mp->mnt_secondary_writes != 0 || 14198 secondary_accwrites != mp->mnt_secondary_accwrites) 14199 error = EAGAIN; 14200 BO_UNLOCK(bo); 14201 return (error); 14202 } 14203 14204 /* 14205 * If we are running with soft updates, then we need to coordinate 14206 * with them as we try to suspend. 14207 */ 14208 ump = VFSTOUFS(mp); 14209 for (;;) { 14210 if (!TRY_ACQUIRE_LOCK(ump)) { 14211 BO_UNLOCK(bo); 14212 ACQUIRE_LOCK(ump); 14213 FREE_LOCK(ump); 14214 BO_LOCK(bo); 14215 continue; 14216 } 14217 MNT_ILOCK(mp); 14218 if (mp->mnt_secondary_writes != 0) { 14219 FREE_LOCK(ump); 14220 BO_UNLOCK(bo); 14221 msleep(&mp->mnt_secondary_writes, 14222 MNT_MTX(mp), 14223 (PUSER - 1) | PDROP, "secwr", 0); 14224 BO_LOCK(bo); 14225 continue; 14226 } 14227 break; 14228 } 14229 14230 unlinked = 0; 14231 if (MOUNTEDSUJ(mp)) { 14232 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14233 inodedep != NULL; 14234 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14235 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14236 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14237 UNLINKONLIST) || 14238 !check_inodedep_free(inodedep)) 14239 continue; 14240 unlinked++; 14241 } 14242 } 14243 14244 /* 14245 * Reasons for needing more work before suspend: 14246 * - Dirty buffers on devvp. 14247 * - Softdep activity occurred after start of vnode sync loop 14248 * - Secondary writes occurred after start of vnode sync loop 14249 */ 14250 error = 0; 14251 if (bo->bo_numoutput > 0 || 14252 bo->bo_dirty.bv_cnt > 0 || 14253 softdep_depcnt != unlinked || 14254 ump->softdep_deps != unlinked || 14255 softdep_accdepcnt != ump->softdep_accdeps || 14256 secondary_writes != 0 || 14257 mp->mnt_secondary_writes != 0 || 14258 secondary_accwrites != mp->mnt_secondary_accwrites) 14259 error = EAGAIN; 14260 FREE_LOCK(ump); 14261 BO_UNLOCK(bo); 14262 return (error); 14263 } 14264 14265 14266 /* 14267 * Get the number of dependency structures for the file system, both 14268 * the current number and the total number allocated. These will 14269 * later be used to detect that softdep processing has occurred. 14270 */ 14271 void 14272 softdep_get_depcounts(struct mount *mp, 14273 int *softdep_depsp, 14274 int *softdep_accdepsp) 14275 { 14276 struct ufsmount *ump; 14277 14278 if (MOUNTEDSOFTDEP(mp) == 0) { 14279 *softdep_depsp = 0; 14280 *softdep_accdepsp = 0; 14281 return; 14282 } 14283 ump = VFSTOUFS(mp); 14284 ACQUIRE_LOCK(ump); 14285 *softdep_depsp = ump->softdep_deps; 14286 *softdep_accdepsp = ump->softdep_accdeps; 14287 FREE_LOCK(ump); 14288 } 14289 14290 /* 14291 * Wait for pending output on a vnode to complete. 14292 * Must be called with vnode lock and interlock locked. 14293 * 14294 * XXX: Should just be a call to bufobj_wwait(). 14295 */ 14296 static void 14297 drain_output(vp) 14298 struct vnode *vp; 14299 { 14300 struct bufobj *bo; 14301 14302 bo = &vp->v_bufobj; 14303 ASSERT_VOP_LOCKED(vp, "drain_output"); 14304 ASSERT_BO_WLOCKED(bo); 14305 14306 while (bo->bo_numoutput) { 14307 bo->bo_flag |= BO_WWAIT; 14308 msleep((caddr_t)&bo->bo_numoutput, 14309 BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0); 14310 } 14311 } 14312 14313 /* 14314 * Called whenever a buffer that is being invalidated or reallocated 14315 * contains dependencies. This should only happen if an I/O error has 14316 * occurred. The routine is called with the buffer locked. 14317 */ 14318 static void 14319 softdep_deallocate_dependencies(bp) 14320 struct buf *bp; 14321 { 14322 14323 if ((bp->b_ioflags & BIO_ERROR) == 0) 14324 panic("softdep_deallocate_dependencies: dangling deps"); 14325 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14326 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14327 else 14328 printf("softdep_deallocate_dependencies: " 14329 "got error %d while accessing filesystem\n", bp->b_error); 14330 if (bp->b_error != ENXIO) 14331 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14332 } 14333 14334 /* 14335 * Function to handle asynchronous write errors in the filesystem. 14336 */ 14337 static void 14338 softdep_error(func, error) 14339 char *func; 14340 int error; 14341 { 14342 14343 /* XXX should do something better! */ 14344 printf("%s: got error %d while accessing filesystem\n", func, error); 14345 } 14346 14347 #ifdef DDB 14348 14349 static void 14350 inodedep_print(struct inodedep *inodedep, int verbose) 14351 { 14352 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %jd nlink %jd" 14353 " saveino %p\n", 14354 inodedep, inodedep->id_fs, inodedep->id_state, 14355 (intmax_t)inodedep->id_ino, 14356 (intmax_t)fsbtodb(inodedep->id_fs, 14357 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14358 (intmax_t)inodedep->id_nlinkdelta, 14359 (intmax_t)inodedep->id_savednlink, 14360 inodedep->id_savedino1); 14361 14362 if (verbose == 0) 14363 return; 14364 14365 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 14366 "mkdiradd %p\n", 14367 LIST_FIRST(&inodedep->id_pendinghd), 14368 LIST_FIRST(&inodedep->id_bufwait), 14369 LIST_FIRST(&inodedep->id_inowait), 14370 TAILQ_FIRST(&inodedep->id_inoreflst), 14371 inodedep->id_mkdiradd); 14372 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 14373 TAILQ_FIRST(&inodedep->id_inoupdt), 14374 TAILQ_FIRST(&inodedep->id_newinoupdt), 14375 TAILQ_FIRST(&inodedep->id_extupdt), 14376 TAILQ_FIRST(&inodedep->id_newextupdt)); 14377 } 14378 14379 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 14380 { 14381 14382 if (have_addr == 0) { 14383 db_printf("Address required\n"); 14384 return; 14385 } 14386 inodedep_print((struct inodedep*)addr, 1); 14387 } 14388 14389 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 14390 { 14391 struct inodedep_hashhead *inodedephd; 14392 struct inodedep *inodedep; 14393 struct ufsmount *ump; 14394 int cnt; 14395 14396 if (have_addr == 0) { 14397 db_printf("Address required\n"); 14398 return; 14399 } 14400 ump = (struct ufsmount *)addr; 14401 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14402 inodedephd = &ump->inodedep_hashtbl[cnt]; 14403 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14404 inodedep_print(inodedep, 0); 14405 } 14406 } 14407 } 14408 14409 DB_SHOW_COMMAND(worklist, db_show_worklist) 14410 { 14411 struct worklist *wk; 14412 14413 if (have_addr == 0) { 14414 db_printf("Address required\n"); 14415 return; 14416 } 14417 wk = (struct worklist *)addr; 14418 printf("worklist: %p type %s state 0x%X\n", 14419 wk, TYPENAME(wk->wk_type), wk->wk_state); 14420 } 14421 14422 DB_SHOW_COMMAND(workhead, db_show_workhead) 14423 { 14424 struct workhead *wkhd; 14425 struct worklist *wk; 14426 int i; 14427 14428 if (have_addr == 0) { 14429 db_printf("Address required\n"); 14430 return; 14431 } 14432 wkhd = (struct workhead *)addr; 14433 wk = LIST_FIRST(wkhd); 14434 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 14435 db_printf("worklist: %p type %s state 0x%X", 14436 wk, TYPENAME(wk->wk_type), wk->wk_state); 14437 if (i == 100) 14438 db_printf("workhead overflow"); 14439 printf("\n"); 14440 } 14441 14442 14443 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 14444 { 14445 struct mkdirlist *mkdirlisthd; 14446 struct jaddref *jaddref; 14447 struct diradd *diradd; 14448 struct mkdir *mkdir; 14449 14450 if (have_addr == 0) { 14451 db_printf("Address required\n"); 14452 return; 14453 } 14454 mkdirlisthd = (struct mkdirlist *)addr; 14455 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14456 diradd = mkdir->md_diradd; 14457 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 14458 mkdir, mkdir->md_state, diradd, diradd->da_state); 14459 if ((jaddref = mkdir->md_jaddref) != NULL) 14460 db_printf(" jaddref %p jaddref state 0x%X", 14461 jaddref, jaddref->ja_state); 14462 db_printf("\n"); 14463 } 14464 } 14465 14466 /* exported to ffs_vfsops.c */ 14467 extern void db_print_ffs(struct ufsmount *ump); 14468 void 14469 db_print_ffs(struct ufsmount *ump) 14470 { 14471 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 14472 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 14473 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 14474 ump->softdep_deps, ump->softdep_req); 14475 } 14476 14477 #endif /* DDB */ 14478 14479 #endif /* SOFTUPDATES */ 14480