xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 094fc1ed0f2627525c7b0342efcbad5be7a8546a)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/racct.h>
73 #include <sys/rwlock.h>
74 #include <sys/stat.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/vnode.h>
78 #include <sys/conf.h>
79 
80 #include <ufs/ufs/dir.h>
81 #include <ufs/ufs/extattr.h>
82 #include <ufs/ufs/quota.h>
83 #include <ufs/ufs/inode.h>
84 #include <ufs/ufs/ufsmount.h>
85 #include <ufs/ffs/fs.h>
86 #include <ufs/ffs/softdep.h>
87 #include <ufs/ffs/ffs_extern.h>
88 #include <ufs/ufs/ufs_extern.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_extern.h>
92 #include <vm/vm_object.h>
93 
94 #include <geom/geom.h>
95 
96 #include <ddb/ddb.h>
97 
98 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
99 
100 #ifndef SOFTUPDATES
101 
102 int
103 softdep_flushfiles(oldmnt, flags, td)
104 	struct mount *oldmnt;
105 	int flags;
106 	struct thread *td;
107 {
108 
109 	panic("softdep_flushfiles called");
110 }
111 
112 int
113 softdep_mount(devvp, mp, fs, cred)
114 	struct vnode *devvp;
115 	struct mount *mp;
116 	struct fs *fs;
117 	struct ucred *cred;
118 {
119 
120 	return (0);
121 }
122 
123 void
124 softdep_initialize()
125 {
126 
127 	return;
128 }
129 
130 void
131 softdep_uninitialize()
132 {
133 
134 	return;
135 }
136 
137 void
138 softdep_unmount(mp)
139 	struct mount *mp;
140 {
141 
142 	panic("softdep_unmount called");
143 }
144 
145 void
146 softdep_setup_sbupdate(ump, fs, bp)
147 	struct ufsmount *ump;
148 	struct fs *fs;
149 	struct buf *bp;
150 {
151 
152 	panic("softdep_setup_sbupdate called");
153 }
154 
155 void
156 softdep_setup_inomapdep(bp, ip, newinum, mode)
157 	struct buf *bp;
158 	struct inode *ip;
159 	ino_t newinum;
160 	int mode;
161 {
162 
163 	panic("softdep_setup_inomapdep called");
164 }
165 
166 void
167 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
168 	struct buf *bp;
169 	struct mount *mp;
170 	ufs2_daddr_t newblkno;
171 	int frags;
172 	int oldfrags;
173 {
174 
175 	panic("softdep_setup_blkmapdep called");
176 }
177 
178 void
179 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
180 	struct inode *ip;
181 	ufs_lbn_t lbn;
182 	ufs2_daddr_t newblkno;
183 	ufs2_daddr_t oldblkno;
184 	long newsize;
185 	long oldsize;
186 	struct buf *bp;
187 {
188 
189 	panic("softdep_setup_allocdirect called");
190 }
191 
192 void
193 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
194 	struct inode *ip;
195 	ufs_lbn_t lbn;
196 	ufs2_daddr_t newblkno;
197 	ufs2_daddr_t oldblkno;
198 	long newsize;
199 	long oldsize;
200 	struct buf *bp;
201 {
202 
203 	panic("softdep_setup_allocext called");
204 }
205 
206 void
207 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
208 	struct inode *ip;
209 	ufs_lbn_t lbn;
210 	struct buf *bp;
211 	int ptrno;
212 	ufs2_daddr_t newblkno;
213 	ufs2_daddr_t oldblkno;
214 	struct buf *nbp;
215 {
216 
217 	panic("softdep_setup_allocindir_page called");
218 }
219 
220 void
221 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
222 	struct buf *nbp;
223 	struct inode *ip;
224 	struct buf *bp;
225 	int ptrno;
226 	ufs2_daddr_t newblkno;
227 {
228 
229 	panic("softdep_setup_allocindir_meta called");
230 }
231 
232 void
233 softdep_journal_freeblocks(ip, cred, length, flags)
234 	struct inode *ip;
235 	struct ucred *cred;
236 	off_t length;
237 	int flags;
238 {
239 
240 	panic("softdep_journal_freeblocks called");
241 }
242 
243 void
244 softdep_journal_fsync(ip)
245 	struct inode *ip;
246 {
247 
248 	panic("softdep_journal_fsync called");
249 }
250 
251 void
252 softdep_setup_freeblocks(ip, length, flags)
253 	struct inode *ip;
254 	off_t length;
255 	int flags;
256 {
257 
258 	panic("softdep_setup_freeblocks called");
259 }
260 
261 void
262 softdep_freefile(pvp, ino, mode)
263 		struct vnode *pvp;
264 		ino_t ino;
265 		int mode;
266 {
267 
268 	panic("softdep_freefile called");
269 }
270 
271 int
272 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
273 	struct buf *bp;
274 	struct inode *dp;
275 	off_t diroffset;
276 	ino_t newinum;
277 	struct buf *newdirbp;
278 	int isnewblk;
279 {
280 
281 	panic("softdep_setup_directory_add called");
282 }
283 
284 void
285 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
286 	struct buf *bp;
287 	struct inode *dp;
288 	caddr_t base;
289 	caddr_t oldloc;
290 	caddr_t newloc;
291 	int entrysize;
292 {
293 
294 	panic("softdep_change_directoryentry_offset called");
295 }
296 
297 void
298 softdep_setup_remove(bp, dp, ip, isrmdir)
299 	struct buf *bp;
300 	struct inode *dp;
301 	struct inode *ip;
302 	int isrmdir;
303 {
304 
305 	panic("softdep_setup_remove called");
306 }
307 
308 void
309 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
310 	struct buf *bp;
311 	struct inode *dp;
312 	struct inode *ip;
313 	ino_t newinum;
314 	int isrmdir;
315 {
316 
317 	panic("softdep_setup_directory_change called");
318 }
319 
320 void
321 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
322 	struct mount *mp;
323 	struct buf *bp;
324 	ufs2_daddr_t blkno;
325 	int frags;
326 	struct workhead *wkhd;
327 {
328 
329 	panic("%s called", __FUNCTION__);
330 }
331 
332 void
333 softdep_setup_inofree(mp, bp, ino, wkhd)
334 	struct mount *mp;
335 	struct buf *bp;
336 	ino_t ino;
337 	struct workhead *wkhd;
338 {
339 
340 	panic("%s called", __FUNCTION__);
341 }
342 
343 void
344 softdep_setup_unlink(dp, ip)
345 	struct inode *dp;
346 	struct inode *ip;
347 {
348 
349 	panic("%s called", __FUNCTION__);
350 }
351 
352 void
353 softdep_setup_link(dp, ip)
354 	struct inode *dp;
355 	struct inode *ip;
356 {
357 
358 	panic("%s called", __FUNCTION__);
359 }
360 
361 void
362 softdep_revert_link(dp, ip)
363 	struct inode *dp;
364 	struct inode *ip;
365 {
366 
367 	panic("%s called", __FUNCTION__);
368 }
369 
370 void
371 softdep_setup_rmdir(dp, ip)
372 	struct inode *dp;
373 	struct inode *ip;
374 {
375 
376 	panic("%s called", __FUNCTION__);
377 }
378 
379 void
380 softdep_revert_rmdir(dp, ip)
381 	struct inode *dp;
382 	struct inode *ip;
383 {
384 
385 	panic("%s called", __FUNCTION__);
386 }
387 
388 void
389 softdep_setup_create(dp, ip)
390 	struct inode *dp;
391 	struct inode *ip;
392 {
393 
394 	panic("%s called", __FUNCTION__);
395 }
396 
397 void
398 softdep_revert_create(dp, ip)
399 	struct inode *dp;
400 	struct inode *ip;
401 {
402 
403 	panic("%s called", __FUNCTION__);
404 }
405 
406 void
407 softdep_setup_mkdir(dp, ip)
408 	struct inode *dp;
409 	struct inode *ip;
410 {
411 
412 	panic("%s called", __FUNCTION__);
413 }
414 
415 void
416 softdep_revert_mkdir(dp, ip)
417 	struct inode *dp;
418 	struct inode *ip;
419 {
420 
421 	panic("%s called", __FUNCTION__);
422 }
423 
424 void
425 softdep_setup_dotdot_link(dp, ip)
426 	struct inode *dp;
427 	struct inode *ip;
428 {
429 
430 	panic("%s called", __FUNCTION__);
431 }
432 
433 int
434 softdep_prealloc(vp, waitok)
435 	struct vnode *vp;
436 	int waitok;
437 {
438 
439 	panic("%s called", __FUNCTION__);
440 }
441 
442 int
443 softdep_journal_lookup(mp, vpp)
444 	struct mount *mp;
445 	struct vnode **vpp;
446 {
447 
448 	return (ENOENT);
449 }
450 
451 void
452 softdep_change_linkcnt(ip)
453 	struct inode *ip;
454 {
455 
456 	panic("softdep_change_linkcnt called");
457 }
458 
459 void
460 softdep_load_inodeblock(ip)
461 	struct inode *ip;
462 {
463 
464 	panic("softdep_load_inodeblock called");
465 }
466 
467 void
468 softdep_update_inodeblock(ip, bp, waitfor)
469 	struct inode *ip;
470 	struct buf *bp;
471 	int waitfor;
472 {
473 
474 	panic("softdep_update_inodeblock called");
475 }
476 
477 int
478 softdep_fsync(vp)
479 	struct vnode *vp;	/* the "in_core" copy of the inode */
480 {
481 
482 	return (0);
483 }
484 
485 void
486 softdep_fsync_mountdev(vp)
487 	struct vnode *vp;
488 {
489 
490 	return;
491 }
492 
493 int
494 softdep_flushworklist(oldmnt, countp, td)
495 	struct mount *oldmnt;
496 	int *countp;
497 	struct thread *td;
498 {
499 
500 	*countp = 0;
501 	return (0);
502 }
503 
504 int
505 softdep_sync_metadata(struct vnode *vp)
506 {
507 
508 	panic("softdep_sync_metadata called");
509 }
510 
511 int
512 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
513 {
514 
515 	panic("softdep_sync_buf called");
516 }
517 
518 int
519 softdep_slowdown(vp)
520 	struct vnode *vp;
521 {
522 
523 	panic("softdep_slowdown called");
524 }
525 
526 int
527 softdep_request_cleanup(fs, vp, cred, resource)
528 	struct fs *fs;
529 	struct vnode *vp;
530 	struct ucred *cred;
531 	int resource;
532 {
533 
534 	return (0);
535 }
536 
537 int
538 softdep_check_suspend(struct mount *mp,
539 		      struct vnode *devvp,
540 		      int softdep_depcnt,
541 		      int softdep_accdepcnt,
542 		      int secondary_writes,
543 		      int secondary_accwrites)
544 {
545 	struct bufobj *bo;
546 	int error;
547 
548 	(void) softdep_depcnt,
549 	(void) softdep_accdepcnt;
550 
551 	bo = &devvp->v_bufobj;
552 	ASSERT_BO_WLOCKED(bo);
553 
554 	MNT_ILOCK(mp);
555 	while (mp->mnt_secondary_writes != 0) {
556 		BO_UNLOCK(bo);
557 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
558 		    (PUSER - 1) | PDROP, "secwr", 0);
559 		BO_LOCK(bo);
560 		MNT_ILOCK(mp);
561 	}
562 
563 	/*
564 	 * Reasons for needing more work before suspend:
565 	 * - Dirty buffers on devvp.
566 	 * - Secondary writes occurred after start of vnode sync loop
567 	 */
568 	error = 0;
569 	if (bo->bo_numoutput > 0 ||
570 	    bo->bo_dirty.bv_cnt > 0 ||
571 	    secondary_writes != 0 ||
572 	    mp->mnt_secondary_writes != 0 ||
573 	    secondary_accwrites != mp->mnt_secondary_accwrites)
574 		error = EAGAIN;
575 	BO_UNLOCK(bo);
576 	return (error);
577 }
578 
579 void
580 softdep_get_depcounts(struct mount *mp,
581 		      int *softdepactivep,
582 		      int *softdepactiveaccp)
583 {
584 	(void) mp;
585 	*softdepactivep = 0;
586 	*softdepactiveaccp = 0;
587 }
588 
589 void
590 softdep_buf_append(bp, wkhd)
591 	struct buf *bp;
592 	struct workhead *wkhd;
593 {
594 
595 	panic("softdep_buf_appendwork called");
596 }
597 
598 void
599 softdep_inode_append(ip, cred, wkhd)
600 	struct inode *ip;
601 	struct ucred *cred;
602 	struct workhead *wkhd;
603 {
604 
605 	panic("softdep_inode_appendwork called");
606 }
607 
608 void
609 softdep_freework(wkhd)
610 	struct workhead *wkhd;
611 {
612 
613 	panic("softdep_freework called");
614 }
615 
616 #else
617 
618 FEATURE(softupdates, "FFS soft-updates support");
619 
620 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
621     "soft updates stats");
622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
623     "total dependencies allocated");
624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
625     "high use dependencies allocated");
626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
627     "current dependencies allocated");
628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
629     "current dependencies written");
630 
631 unsigned long dep_current[D_LAST + 1];
632 unsigned long dep_highuse[D_LAST + 1];
633 unsigned long dep_total[D_LAST + 1];
634 unsigned long dep_write[D_LAST + 1];
635 
636 #define	SOFTDEP_TYPE(type, str, long)					\
637     static MALLOC_DEFINE(M_ ## type, #str, long);			\
638     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
639 	&dep_total[D_ ## type], 0, "");					\
640     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
641 	&dep_current[D_ ## type], 0, "");				\
642     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
643 	&dep_highuse[D_ ## type], 0, "");				\
644     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
645 	&dep_write[D_ ## type], 0, "");
646 
647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
650     "Block or frag allocated from cyl group map");
651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
675 
676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
677 
678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
681 
682 #define M_SOFTDEP_FLAGS	(M_WAITOK)
683 
684 /*
685  * translate from workitem type to memory type
686  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
687  */
688 static struct malloc_type *memtype[] = {
689 	M_PAGEDEP,
690 	M_INODEDEP,
691 	M_BMSAFEMAP,
692 	M_NEWBLK,
693 	M_ALLOCDIRECT,
694 	M_INDIRDEP,
695 	M_ALLOCINDIR,
696 	M_FREEFRAG,
697 	M_FREEBLKS,
698 	M_FREEFILE,
699 	M_DIRADD,
700 	M_MKDIR,
701 	M_DIRREM,
702 	M_NEWDIRBLK,
703 	M_FREEWORK,
704 	M_FREEDEP,
705 	M_JADDREF,
706 	M_JREMREF,
707 	M_JMVREF,
708 	M_JNEWBLK,
709 	M_JFREEBLK,
710 	M_JFREEFRAG,
711 	M_JSEG,
712 	M_JSEGDEP,
713 	M_SBDEP,
714 	M_JTRUNC,
715 	M_JFSYNC,
716 	M_SENTINEL
717 };
718 
719 #define DtoM(type) (memtype[type])
720 
721 /*
722  * Names of malloc types.
723  */
724 #define TYPENAME(type)  \
725 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
726 /*
727  * End system adaptation definitions.
728  */
729 
730 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
731 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
732 
733 /*
734  * Internal function prototypes.
735  */
736 static	void check_clear_deps(struct mount *);
737 static	void softdep_error(char *, int);
738 static	int softdep_process_worklist(struct mount *, int);
739 static	int softdep_waitidle(struct mount *, int);
740 static	void drain_output(struct vnode *);
741 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
742 static	int check_inodedep_free(struct inodedep *);
743 static	void clear_remove(struct mount *);
744 static	void clear_inodedeps(struct mount *);
745 static	void unlinked_inodedep(struct mount *, struct inodedep *);
746 static	void clear_unlinked_inodedep(struct inodedep *);
747 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
748 static	int flush_pagedep_deps(struct vnode *, struct mount *,
749 	    struct diraddhd *);
750 static	int free_pagedep(struct pagedep *);
751 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
752 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
753 static	int flush_deplist(struct allocdirectlst *, int, int *);
754 static	int sync_cgs(struct mount *, int);
755 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
756 static	int handle_written_sbdep(struct sbdep *, struct buf *);
757 static	void initiate_write_sbdep(struct sbdep *);
758 static	void diradd_inode_written(struct diradd *, struct inodedep *);
759 static	int handle_written_indirdep(struct indirdep *, struct buf *,
760 	    struct buf**, int);
761 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
762 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
763 	    uint8_t *);
764 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
765 static	void handle_written_jaddref(struct jaddref *);
766 static	void handle_written_jremref(struct jremref *);
767 static	void handle_written_jseg(struct jseg *, struct buf *);
768 static	void handle_written_jnewblk(struct jnewblk *);
769 static	void handle_written_jblkdep(struct jblkdep *);
770 static	void handle_written_jfreefrag(struct jfreefrag *);
771 static	void complete_jseg(struct jseg *);
772 static	void complete_jsegs(struct jseg *);
773 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
774 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
775 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
776 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
777 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
778 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
779 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
780 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
781 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
782 static	inline void inoref_write(struct inoref *, struct jseg *,
783 	    struct jrefrec *);
784 static	void handle_allocdirect_partdone(struct allocdirect *,
785 	    struct workhead *);
786 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
787 	    struct workhead *);
788 static	void indirdep_complete(struct indirdep *);
789 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
790 static	void indirblk_insert(struct freework *);
791 static	void indirblk_remove(struct freework *);
792 static	void handle_allocindir_partdone(struct allocindir *);
793 static	void initiate_write_filepage(struct pagedep *, struct buf *);
794 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
795 static	void handle_written_mkdir(struct mkdir *, int);
796 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
797 	    uint8_t *);
798 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
799 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
800 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
801 static	void handle_workitem_freefile(struct freefile *);
802 static	int handle_workitem_remove(struct dirrem *, int);
803 static	struct dirrem *newdirrem(struct buf *, struct inode *,
804 	    struct inode *, int, struct dirrem **);
805 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
806 	    struct buf *);
807 static	void cancel_indirdep(struct indirdep *, struct buf *,
808 	    struct freeblks *);
809 static	void free_indirdep(struct indirdep *);
810 static	void free_diradd(struct diradd *, struct workhead *);
811 static	void merge_diradd(struct inodedep *, struct diradd *);
812 static	void complete_diradd(struct diradd *);
813 static	struct diradd *diradd_lookup(struct pagedep *, int);
814 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
815 	    struct jremref *);
816 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
817 	    struct jremref *);
818 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
819 	    struct jremref *, struct jremref *);
820 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
821 	    struct jremref *);
822 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
823 	    struct freeblks *, int);
824 static	int setup_trunc_indir(struct freeblks *, struct inode *,
825 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
826 static	void complete_trunc_indir(struct freework *);
827 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
828 	    int);
829 static	void complete_mkdir(struct mkdir *);
830 static	void free_newdirblk(struct newdirblk *);
831 static	void free_jremref(struct jremref *);
832 static	void free_jaddref(struct jaddref *);
833 static	void free_jsegdep(struct jsegdep *);
834 static	void free_jsegs(struct jblocks *);
835 static	void rele_jseg(struct jseg *);
836 static	void free_jseg(struct jseg *, struct jblocks *);
837 static	void free_jnewblk(struct jnewblk *);
838 static	void free_jblkdep(struct jblkdep *);
839 static	void free_jfreefrag(struct jfreefrag *);
840 static	void free_freedep(struct freedep *);
841 static	void journal_jremref(struct dirrem *, struct jremref *,
842 	    struct inodedep *);
843 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
844 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
845 	    struct workhead *);
846 static	void cancel_jfreefrag(struct jfreefrag *);
847 static	inline void setup_freedirect(struct freeblks *, struct inode *,
848 	    int, int);
849 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
850 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
851 	    ufs_lbn_t, int);
852 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
853 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
854 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
855 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
856 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
857 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
858 	    int, int);
859 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
860 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
861 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
862 static	void newblk_freefrag(struct newblk*);
863 static	void free_newblk(struct newblk *);
864 static	void cancel_allocdirect(struct allocdirectlst *,
865 	    struct allocdirect *, struct freeblks *);
866 static	int check_inode_unwritten(struct inodedep *);
867 static	int free_inodedep(struct inodedep *);
868 static	void freework_freeblock(struct freework *);
869 static	void freework_enqueue(struct freework *);
870 static	int handle_workitem_freeblocks(struct freeblks *, int);
871 static	int handle_complete_freeblocks(struct freeblks *, int);
872 static	void handle_workitem_indirblk(struct freework *);
873 static	void handle_written_freework(struct freework *);
874 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
875 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
876 	    struct workhead *);
877 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
878 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
879 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
880 	    ufs2_daddr_t, ufs_lbn_t);
881 static	void handle_workitem_freefrag(struct freefrag *);
882 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
883 	    ufs_lbn_t);
884 static	void allocdirect_merge(struct allocdirectlst *,
885 	    struct allocdirect *, struct allocdirect *);
886 static	struct freefrag *allocindir_merge(struct allocindir *,
887 	    struct allocindir *);
888 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
889 	    struct bmsafemap **);
890 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
891 	    int cg, struct bmsafemap *);
892 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
893 	    struct newblk **);
894 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
895 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
896 	    struct inodedep **);
897 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
898 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
899 	    int, struct pagedep **);
900 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
901 	    struct pagedep **);
902 static	void pause_timer(void *);
903 static	int request_cleanup(struct mount *, int);
904 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
905 static	void schedule_cleanup(struct mount *);
906 static void softdep_ast_cleanup_proc(struct thread *);
907 static	int process_worklist_item(struct mount *, int, int);
908 static	void process_removes(struct vnode *);
909 static	void process_truncates(struct vnode *);
910 static	void jwork_move(struct workhead *, struct workhead *);
911 static	void jwork_insert(struct workhead *, struct jsegdep *);
912 static	void add_to_worklist(struct worklist *, int);
913 static	void wake_worklist(struct worklist *);
914 static	void wait_worklist(struct worklist *, char *);
915 static	void remove_from_worklist(struct worklist *);
916 static	void softdep_flush(void *);
917 static	void softdep_flushjournal(struct mount *);
918 static	int softdep_speedup(struct ufsmount *);
919 static	void worklist_speedup(struct mount *);
920 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
921 static	void journal_unmount(struct ufsmount *);
922 static	int journal_space(struct ufsmount *, int);
923 static	void journal_suspend(struct ufsmount *);
924 static	int journal_unsuspend(struct ufsmount *ump);
925 static	void softdep_prelink(struct vnode *, struct vnode *);
926 static	void add_to_journal(struct worklist *);
927 static	void remove_from_journal(struct worklist *);
928 static	bool softdep_excess_items(struct ufsmount *, int);
929 static	void softdep_process_journal(struct mount *, struct worklist *, int);
930 static	struct jremref *newjremref(struct dirrem *, struct inode *,
931 	    struct inode *ip, off_t, nlink_t);
932 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
933 	    uint16_t);
934 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
935 	    uint16_t);
936 static	inline struct jsegdep *inoref_jseg(struct inoref *);
937 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
938 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
939 	    ufs2_daddr_t, int);
940 static	void adjust_newfreework(struct freeblks *, int);
941 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
942 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
943 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
944 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
945 	    ufs2_daddr_t, long, ufs_lbn_t);
946 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
947 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
948 static	int jwait(struct worklist *, int);
949 static	struct inodedep *inodedep_lookup_ip(struct inode *);
950 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
951 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
952 static	void handle_jwork(struct workhead *);
953 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
954 	    struct mkdir **);
955 static	struct jblocks *jblocks_create(void);
956 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
957 static	void jblocks_free(struct jblocks *, struct mount *, int);
958 static	void jblocks_destroy(struct jblocks *);
959 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
960 
961 /*
962  * Exported softdep operations.
963  */
964 static	void softdep_disk_io_initiation(struct buf *);
965 static	void softdep_disk_write_complete(struct buf *);
966 static	void softdep_deallocate_dependencies(struct buf *);
967 static	int softdep_count_dependencies(struct buf *bp, int);
968 
969 /*
970  * Global lock over all of soft updates.
971  */
972 static struct mtx lk;
973 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
974 
975 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
976 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
977 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
978 
979 /*
980  * Per-filesystem soft-updates locking.
981  */
982 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
983 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
984 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
985 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
986 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
987 				    RA_WLOCKED)
988 
989 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
990 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
991 
992 /*
993  * Worklist queue management.
994  * These routines require that the lock be held.
995  */
996 #ifndef /* NOT */ DEBUG
997 #define WORKLIST_INSERT(head, item) do {	\
998 	(item)->wk_state |= ONWORKLIST;		\
999 	LIST_INSERT_HEAD(head, item, wk_list);	\
1000 } while (0)
1001 #define WORKLIST_REMOVE(item) do {		\
1002 	(item)->wk_state &= ~ONWORKLIST;	\
1003 	LIST_REMOVE(item, wk_list);		\
1004 } while (0)
1005 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1006 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1007 
1008 #else /* DEBUG */
1009 static	void worklist_insert(struct workhead *, struct worklist *, int);
1010 static	void worklist_remove(struct worklist *, int);
1011 
1012 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1013 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1014 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1015 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1016 
1017 static void
1018 worklist_insert(head, item, locked)
1019 	struct workhead *head;
1020 	struct worklist *item;
1021 	int locked;
1022 {
1023 
1024 	if (locked)
1025 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1026 	if (item->wk_state & ONWORKLIST)
1027 		panic("worklist_insert: %p %s(0x%X) already on list",
1028 		    item, TYPENAME(item->wk_type), item->wk_state);
1029 	item->wk_state |= ONWORKLIST;
1030 	LIST_INSERT_HEAD(head, item, wk_list);
1031 }
1032 
1033 static void
1034 worklist_remove(item, locked)
1035 	struct worklist *item;
1036 	int locked;
1037 {
1038 
1039 	if (locked)
1040 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1041 	if ((item->wk_state & ONWORKLIST) == 0)
1042 		panic("worklist_remove: %p %s(0x%X) not on list",
1043 		    item, TYPENAME(item->wk_type), item->wk_state);
1044 	item->wk_state &= ~ONWORKLIST;
1045 	LIST_REMOVE(item, wk_list);
1046 }
1047 #endif /* DEBUG */
1048 
1049 /*
1050  * Merge two jsegdeps keeping only the oldest one as newer references
1051  * can't be discarded until after older references.
1052  */
1053 static inline struct jsegdep *
1054 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1055 {
1056 	struct jsegdep *swp;
1057 
1058 	if (two == NULL)
1059 		return (one);
1060 
1061 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1062 		swp = one;
1063 		one = two;
1064 		two = swp;
1065 	}
1066 	WORKLIST_REMOVE(&two->jd_list);
1067 	free_jsegdep(two);
1068 
1069 	return (one);
1070 }
1071 
1072 /*
1073  * If two freedeps are compatible free one to reduce list size.
1074  */
1075 static inline struct freedep *
1076 freedep_merge(struct freedep *one, struct freedep *two)
1077 {
1078 	if (two == NULL)
1079 		return (one);
1080 
1081 	if (one->fd_freework == two->fd_freework) {
1082 		WORKLIST_REMOVE(&two->fd_list);
1083 		free_freedep(two);
1084 	}
1085 	return (one);
1086 }
1087 
1088 /*
1089  * Move journal work from one list to another.  Duplicate freedeps and
1090  * jsegdeps are coalesced to keep the lists as small as possible.
1091  */
1092 static void
1093 jwork_move(dst, src)
1094 	struct workhead *dst;
1095 	struct workhead *src;
1096 {
1097 	struct freedep *freedep;
1098 	struct jsegdep *jsegdep;
1099 	struct worklist *wkn;
1100 	struct worklist *wk;
1101 
1102 	KASSERT(dst != src,
1103 	    ("jwork_move: dst == src"));
1104 	freedep = NULL;
1105 	jsegdep = NULL;
1106 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1107 		if (wk->wk_type == D_JSEGDEP)
1108 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1109 		else if (wk->wk_type == D_FREEDEP)
1110 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1111 	}
1112 
1113 	while ((wk = LIST_FIRST(src)) != NULL) {
1114 		WORKLIST_REMOVE(wk);
1115 		WORKLIST_INSERT(dst, wk);
1116 		if (wk->wk_type == D_JSEGDEP) {
1117 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1118 			continue;
1119 		}
1120 		if (wk->wk_type == D_FREEDEP)
1121 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1122 	}
1123 }
1124 
1125 static void
1126 jwork_insert(dst, jsegdep)
1127 	struct workhead *dst;
1128 	struct jsegdep *jsegdep;
1129 {
1130 	struct jsegdep *jsegdepn;
1131 	struct worklist *wk;
1132 
1133 	LIST_FOREACH(wk, dst, wk_list)
1134 		if (wk->wk_type == D_JSEGDEP)
1135 			break;
1136 	if (wk == NULL) {
1137 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1138 		return;
1139 	}
1140 	jsegdepn = WK_JSEGDEP(wk);
1141 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1142 		WORKLIST_REMOVE(wk);
1143 		free_jsegdep(jsegdepn);
1144 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1145 	} else
1146 		free_jsegdep(jsegdep);
1147 }
1148 
1149 /*
1150  * Routines for tracking and managing workitems.
1151  */
1152 static	void workitem_free(struct worklist *, int);
1153 static	void workitem_alloc(struct worklist *, int, struct mount *);
1154 static	void workitem_reassign(struct worklist *, int);
1155 
1156 #define	WORKITEM_FREE(item, type) \
1157 	workitem_free((struct worklist *)(item), (type))
1158 #define	WORKITEM_REASSIGN(item, type) \
1159 	workitem_reassign((struct worklist *)(item), (type))
1160 
1161 static void
1162 workitem_free(item, type)
1163 	struct worklist *item;
1164 	int type;
1165 {
1166 	struct ufsmount *ump;
1167 
1168 #ifdef DEBUG
1169 	if (item->wk_state & ONWORKLIST)
1170 		panic("workitem_free: %s(0x%X) still on list",
1171 		    TYPENAME(item->wk_type), item->wk_state);
1172 	if (item->wk_type != type && type != D_NEWBLK)
1173 		panic("workitem_free: type mismatch %s != %s",
1174 		    TYPENAME(item->wk_type), TYPENAME(type));
1175 #endif
1176 	if (item->wk_state & IOWAITING)
1177 		wakeup(item);
1178 	ump = VFSTOUFS(item->wk_mp);
1179 	LOCK_OWNED(ump);
1180 	KASSERT(ump->softdep_deps > 0,
1181 	    ("workitem_free: %s: softdep_deps going negative",
1182 	    ump->um_fs->fs_fsmnt));
1183 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1184 		wakeup(&ump->softdep_deps);
1185 	KASSERT(dep_current[item->wk_type] > 0,
1186 	    ("workitem_free: %s: dep_current[%s] going negative",
1187 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1188 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1189 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1190 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1191 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1192 	ump->softdep_curdeps[item->wk_type] -= 1;
1193 	free(item, DtoM(type));
1194 }
1195 
1196 static void
1197 workitem_alloc(item, type, mp)
1198 	struct worklist *item;
1199 	int type;
1200 	struct mount *mp;
1201 {
1202 	struct ufsmount *ump;
1203 
1204 	item->wk_type = type;
1205 	item->wk_mp = mp;
1206 	item->wk_state = 0;
1207 
1208 	ump = VFSTOUFS(mp);
1209 	ACQUIRE_GBLLOCK(&lk);
1210 	dep_current[type]++;
1211 	if (dep_current[type] > dep_highuse[type])
1212 		dep_highuse[type] = dep_current[type];
1213 	dep_total[type]++;
1214 	FREE_GBLLOCK(&lk);
1215 	ACQUIRE_LOCK(ump);
1216 	ump->softdep_curdeps[type] += 1;
1217 	ump->softdep_deps++;
1218 	ump->softdep_accdeps++;
1219 	FREE_LOCK(ump);
1220 }
1221 
1222 static void
1223 workitem_reassign(item, newtype)
1224 	struct worklist *item;
1225 	int newtype;
1226 {
1227 	struct ufsmount *ump;
1228 
1229 	ump = VFSTOUFS(item->wk_mp);
1230 	LOCK_OWNED(ump);
1231 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1232 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1233 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1234 	ump->softdep_curdeps[item->wk_type] -= 1;
1235 	ump->softdep_curdeps[newtype] += 1;
1236 	KASSERT(dep_current[item->wk_type] > 0,
1237 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1238 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1239 	ACQUIRE_GBLLOCK(&lk);
1240 	dep_current[newtype]++;
1241 	dep_current[item->wk_type]--;
1242 	if (dep_current[newtype] > dep_highuse[newtype])
1243 		dep_highuse[newtype] = dep_current[newtype];
1244 	dep_total[newtype]++;
1245 	FREE_GBLLOCK(&lk);
1246 	item->wk_type = newtype;
1247 }
1248 
1249 /*
1250  * Workitem queue management
1251  */
1252 static int max_softdeps;	/* maximum number of structs before slowdown */
1253 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1254 static int proc_waiting;	/* tracks whether we have a timeout posted */
1255 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1256 static struct callout softdep_callout;
1257 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1258 static int req_clear_remove;	/* syncer process flush some freeblks */
1259 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1260 
1261 /*
1262  * runtime statistics
1263  */
1264 static int stat_flush_threads;	/* number of softdep flushing threads */
1265 static int stat_worklist_push;	/* number of worklist cleanups */
1266 static int stat_blk_limit_push;	/* number of times block limit neared */
1267 static int stat_ino_limit_push;	/* number of times inode limit neared */
1268 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1269 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1270 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1271 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1272 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1273 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1274 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1275 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1276 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1277 static int stat_journal_min;	/* Times hit journal min threshold */
1278 static int stat_journal_low;	/* Times hit journal low threshold */
1279 static int stat_journal_wait;	/* Times blocked in jwait(). */
1280 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1281 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1282 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1283 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1284 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1285 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1286 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1287 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1288 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1289 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1290 
1291 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1292     &max_softdeps, 0, "");
1293 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1294     &tickdelay, 0, "");
1295 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1296     &stat_flush_threads, 0, "");
1297 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1298     &stat_worklist_push, 0,"");
1299 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1300     &stat_blk_limit_push, 0,"");
1301 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1302     &stat_ino_limit_push, 0,"");
1303 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1304     &stat_blk_limit_hit, 0, "");
1305 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1306     &stat_ino_limit_hit, 0, "");
1307 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1308     &stat_sync_limit_hit, 0, "");
1309 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1310     &stat_indir_blk_ptrs, 0, "");
1311 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1312     &stat_inode_bitmap, 0, "");
1313 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1314     &stat_direct_blk_ptrs, 0, "");
1315 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1316     &stat_dir_entry, 0, "");
1317 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1318     &stat_jaddref, 0, "");
1319 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1320     &stat_jnewblk, 0, "");
1321 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1322     &stat_journal_low, 0, "");
1323 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1324     &stat_journal_min, 0, "");
1325 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1326     &stat_journal_wait, 0, "");
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1328     &stat_jwait_filepage, 0, "");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1330     &stat_jwait_freeblks, 0, "");
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1332     &stat_jwait_inode, 0, "");
1333 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1334     &stat_jwait_newblk, 0, "");
1335 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1336     &stat_cleanup_blkrequests, 0, "");
1337 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1338     &stat_cleanup_inorequests, 0, "");
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1340     &stat_cleanup_high_delay, 0, "");
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1342     &stat_cleanup_retries, 0, "");
1343 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1344     &stat_cleanup_failures, 0, "");
1345 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1346     &softdep_flushcache, 0, "");
1347 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1348     &stat_emptyjblocks, 0, "");
1349 
1350 SYSCTL_DECL(_vfs_ffs);
1351 
1352 /* Whether to recompute the summary at mount time */
1353 static int compute_summary_at_mount = 0;
1354 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1355 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1356 static int print_threads = 0;
1357 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1358     &print_threads, 0, "Notify flusher thread start/stop");
1359 
1360 /* List of all filesystems mounted with soft updates */
1361 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1362 
1363 /*
1364  * This function cleans the worklist for a filesystem.
1365  * Each filesystem running with soft dependencies gets its own
1366  * thread to run in this function. The thread is started up in
1367  * softdep_mount and shutdown in softdep_unmount. They show up
1368  * as part of the kernel "bufdaemon" process whose process
1369  * entry is available in bufdaemonproc.
1370  */
1371 static int searchfailed;
1372 extern struct proc *bufdaemonproc;
1373 static void
1374 softdep_flush(addr)
1375 	void *addr;
1376 {
1377 	struct mount *mp;
1378 	struct thread *td;
1379 	struct ufsmount *ump;
1380 
1381 	td = curthread;
1382 	td->td_pflags |= TDP_NORUNNINGBUF;
1383 	mp = (struct mount *)addr;
1384 	ump = VFSTOUFS(mp);
1385 	atomic_add_int(&stat_flush_threads, 1);
1386 	ACQUIRE_LOCK(ump);
1387 	ump->softdep_flags &= ~FLUSH_STARTING;
1388 	wakeup(&ump->softdep_flushtd);
1389 	FREE_LOCK(ump);
1390 	if (print_threads) {
1391 		if (stat_flush_threads == 1)
1392 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1393 			    bufdaemonproc->p_pid);
1394 		printf("Start thread %s\n", td->td_name);
1395 	}
1396 	for (;;) {
1397 		while (softdep_process_worklist(mp, 0) > 0 ||
1398 		    (MOUNTEDSUJ(mp) &&
1399 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1400 			kthread_suspend_check();
1401 		ACQUIRE_LOCK(ump);
1402 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1403 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1404 			    "sdflush", hz / 2);
1405 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1406 		/*
1407 		 * Check to see if we are done and need to exit.
1408 		 */
1409 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1410 			FREE_LOCK(ump);
1411 			continue;
1412 		}
1413 		ump->softdep_flags &= ~FLUSH_EXIT;
1414 		FREE_LOCK(ump);
1415 		wakeup(&ump->softdep_flags);
1416 		if (print_threads)
1417 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1418 		atomic_subtract_int(&stat_flush_threads, 1);
1419 		kthread_exit();
1420 		panic("kthread_exit failed\n");
1421 	}
1422 }
1423 
1424 static void
1425 worklist_speedup(mp)
1426 	struct mount *mp;
1427 {
1428 	struct ufsmount *ump;
1429 
1430 	ump = VFSTOUFS(mp);
1431 	LOCK_OWNED(ump);
1432 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1433 		ump->softdep_flags |= FLUSH_CLEANUP;
1434 	wakeup(&ump->softdep_flushtd);
1435 }
1436 
1437 static int
1438 softdep_speedup(ump)
1439 	struct ufsmount *ump;
1440 {
1441 	struct ufsmount *altump;
1442 	struct mount_softdeps *sdp;
1443 
1444 	LOCK_OWNED(ump);
1445 	worklist_speedup(ump->um_mountp);
1446 	bd_speedup();
1447 	/*
1448 	 * If we have global shortages, then we need other
1449 	 * filesystems to help with the cleanup. Here we wakeup a
1450 	 * flusher thread for a filesystem that is over its fair
1451 	 * share of resources.
1452 	 */
1453 	if (req_clear_inodedeps || req_clear_remove) {
1454 		ACQUIRE_GBLLOCK(&lk);
1455 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1456 			if ((altump = sdp->sd_ump) == ump)
1457 				continue;
1458 			if (((req_clear_inodedeps &&
1459 			    altump->softdep_curdeps[D_INODEDEP] >
1460 			    max_softdeps / stat_flush_threads) ||
1461 			    (req_clear_remove &&
1462 			    altump->softdep_curdeps[D_DIRREM] >
1463 			    (max_softdeps / 2) / stat_flush_threads)) &&
1464 			    TRY_ACQUIRE_LOCK(altump))
1465 				break;
1466 		}
1467 		if (sdp == NULL) {
1468 			searchfailed++;
1469 			FREE_GBLLOCK(&lk);
1470 		} else {
1471 			/*
1472 			 * Move to the end of the list so we pick a
1473 			 * different one on out next try.
1474 			 */
1475 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1476 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1477 			FREE_GBLLOCK(&lk);
1478 			if ((altump->softdep_flags &
1479 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1480 				altump->softdep_flags |= FLUSH_CLEANUP;
1481 			altump->um_softdep->sd_cleanups++;
1482 			wakeup(&altump->softdep_flushtd);
1483 			FREE_LOCK(altump);
1484 		}
1485 	}
1486 	return (speedup_syncer());
1487 }
1488 
1489 /*
1490  * Add an item to the end of the work queue.
1491  * This routine requires that the lock be held.
1492  * This is the only routine that adds items to the list.
1493  * The following routine is the only one that removes items
1494  * and does so in order from first to last.
1495  */
1496 
1497 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1498 #define	WK_NODELAY	0x0002	/* Process immediately. */
1499 
1500 static void
1501 add_to_worklist(wk, flags)
1502 	struct worklist *wk;
1503 	int flags;
1504 {
1505 	struct ufsmount *ump;
1506 
1507 	ump = VFSTOUFS(wk->wk_mp);
1508 	LOCK_OWNED(ump);
1509 	if (wk->wk_state & ONWORKLIST)
1510 		panic("add_to_worklist: %s(0x%X) already on list",
1511 		    TYPENAME(wk->wk_type), wk->wk_state);
1512 	wk->wk_state |= ONWORKLIST;
1513 	if (ump->softdep_on_worklist == 0) {
1514 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1515 		ump->softdep_worklist_tail = wk;
1516 	} else if (flags & WK_HEAD) {
1517 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1518 	} else {
1519 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1520 		ump->softdep_worklist_tail = wk;
1521 	}
1522 	ump->softdep_on_worklist += 1;
1523 	if (flags & WK_NODELAY)
1524 		worklist_speedup(wk->wk_mp);
1525 }
1526 
1527 /*
1528  * Remove the item to be processed. If we are removing the last
1529  * item on the list, we need to recalculate the tail pointer.
1530  */
1531 static void
1532 remove_from_worklist(wk)
1533 	struct worklist *wk;
1534 {
1535 	struct ufsmount *ump;
1536 
1537 	ump = VFSTOUFS(wk->wk_mp);
1538 	WORKLIST_REMOVE(wk);
1539 	if (ump->softdep_worklist_tail == wk)
1540 		ump->softdep_worklist_tail =
1541 		    (struct worklist *)wk->wk_list.le_prev;
1542 	ump->softdep_on_worklist -= 1;
1543 }
1544 
1545 static void
1546 wake_worklist(wk)
1547 	struct worklist *wk;
1548 {
1549 	if (wk->wk_state & IOWAITING) {
1550 		wk->wk_state &= ~IOWAITING;
1551 		wakeup(wk);
1552 	}
1553 }
1554 
1555 static void
1556 wait_worklist(wk, wmesg)
1557 	struct worklist *wk;
1558 	char *wmesg;
1559 {
1560 	struct ufsmount *ump;
1561 
1562 	ump = VFSTOUFS(wk->wk_mp);
1563 	wk->wk_state |= IOWAITING;
1564 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1565 }
1566 
1567 /*
1568  * Process that runs once per second to handle items in the background queue.
1569  *
1570  * Note that we ensure that everything is done in the order in which they
1571  * appear in the queue. The code below depends on this property to ensure
1572  * that blocks of a file are freed before the inode itself is freed. This
1573  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1574  * until all the old ones have been purged from the dependency lists.
1575  */
1576 static int
1577 softdep_process_worklist(mp, full)
1578 	struct mount *mp;
1579 	int full;
1580 {
1581 	int cnt, matchcnt;
1582 	struct ufsmount *ump;
1583 	long starttime;
1584 
1585 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1586 	if (MOUNTEDSOFTDEP(mp) == 0)
1587 		return (0);
1588 	matchcnt = 0;
1589 	ump = VFSTOUFS(mp);
1590 	ACQUIRE_LOCK(ump);
1591 	starttime = time_second;
1592 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1593 	check_clear_deps(mp);
1594 	while (ump->softdep_on_worklist > 0) {
1595 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1596 			break;
1597 		else
1598 			matchcnt += cnt;
1599 		check_clear_deps(mp);
1600 		/*
1601 		 * We do not generally want to stop for buffer space, but if
1602 		 * we are really being a buffer hog, we will stop and wait.
1603 		 */
1604 		if (should_yield()) {
1605 			FREE_LOCK(ump);
1606 			kern_yield(PRI_USER);
1607 			bwillwrite();
1608 			ACQUIRE_LOCK(ump);
1609 		}
1610 		/*
1611 		 * Never allow processing to run for more than one
1612 		 * second. This gives the syncer thread the opportunity
1613 		 * to pause if appropriate.
1614 		 */
1615 		if (!full && starttime != time_second)
1616 			break;
1617 	}
1618 	if (full == 0)
1619 		journal_unsuspend(ump);
1620 	FREE_LOCK(ump);
1621 	return (matchcnt);
1622 }
1623 
1624 /*
1625  * Process all removes associated with a vnode if we are running out of
1626  * journal space.  Any other process which attempts to flush these will
1627  * be unable as we have the vnodes locked.
1628  */
1629 static void
1630 process_removes(vp)
1631 	struct vnode *vp;
1632 {
1633 	struct inodedep *inodedep;
1634 	struct dirrem *dirrem;
1635 	struct ufsmount *ump;
1636 	struct mount *mp;
1637 	ino_t inum;
1638 
1639 	mp = vp->v_mount;
1640 	ump = VFSTOUFS(mp);
1641 	LOCK_OWNED(ump);
1642 	inum = VTOI(vp)->i_number;
1643 	for (;;) {
1644 top:
1645 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1646 			return;
1647 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1648 			/*
1649 			 * If another thread is trying to lock this vnode
1650 			 * it will fail but we must wait for it to do so
1651 			 * before we can proceed.
1652 			 */
1653 			if (dirrem->dm_state & INPROGRESS) {
1654 				wait_worklist(&dirrem->dm_list, "pwrwait");
1655 				goto top;
1656 			}
1657 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1658 			    (COMPLETE | ONWORKLIST))
1659 				break;
1660 		}
1661 		if (dirrem == NULL)
1662 			return;
1663 		remove_from_worklist(&dirrem->dm_list);
1664 		FREE_LOCK(ump);
1665 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1666 			panic("process_removes: suspended filesystem");
1667 		handle_workitem_remove(dirrem, 0);
1668 		vn_finished_secondary_write(mp);
1669 		ACQUIRE_LOCK(ump);
1670 	}
1671 }
1672 
1673 /*
1674  * Process all truncations associated with a vnode if we are running out
1675  * of journal space.  This is called when the vnode lock is already held
1676  * and no other process can clear the truncation.  This function returns
1677  * a value greater than zero if it did any work.
1678  */
1679 static void
1680 process_truncates(vp)
1681 	struct vnode *vp;
1682 {
1683 	struct inodedep *inodedep;
1684 	struct freeblks *freeblks;
1685 	struct ufsmount *ump;
1686 	struct mount *mp;
1687 	ino_t inum;
1688 	int cgwait;
1689 
1690 	mp = vp->v_mount;
1691 	ump = VFSTOUFS(mp);
1692 	LOCK_OWNED(ump);
1693 	inum = VTOI(vp)->i_number;
1694 	for (;;) {
1695 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1696 			return;
1697 		cgwait = 0;
1698 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1699 			/* Journal entries not yet written.  */
1700 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1701 				jwait(&LIST_FIRST(
1702 				    &freeblks->fb_jblkdephd)->jb_list,
1703 				    MNT_WAIT);
1704 				break;
1705 			}
1706 			/* Another thread is executing this item. */
1707 			if (freeblks->fb_state & INPROGRESS) {
1708 				wait_worklist(&freeblks->fb_list, "ptrwait");
1709 				break;
1710 			}
1711 			/* Freeblks is waiting on a inode write. */
1712 			if ((freeblks->fb_state & COMPLETE) == 0) {
1713 				FREE_LOCK(ump);
1714 				ffs_update(vp, 1);
1715 				ACQUIRE_LOCK(ump);
1716 				break;
1717 			}
1718 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1719 			    (ALLCOMPLETE | ONWORKLIST)) {
1720 				remove_from_worklist(&freeblks->fb_list);
1721 				freeblks->fb_state |= INPROGRESS;
1722 				FREE_LOCK(ump);
1723 				if (vn_start_secondary_write(NULL, &mp,
1724 				    V_NOWAIT))
1725 					panic("process_truncates: "
1726 					    "suspended filesystem");
1727 				handle_workitem_freeblocks(freeblks, 0);
1728 				vn_finished_secondary_write(mp);
1729 				ACQUIRE_LOCK(ump);
1730 				break;
1731 			}
1732 			if (freeblks->fb_cgwait)
1733 				cgwait++;
1734 		}
1735 		if (cgwait) {
1736 			FREE_LOCK(ump);
1737 			sync_cgs(mp, MNT_WAIT);
1738 			ffs_sync_snap(mp, MNT_WAIT);
1739 			ACQUIRE_LOCK(ump);
1740 			continue;
1741 		}
1742 		if (freeblks == NULL)
1743 			break;
1744 	}
1745 	return;
1746 }
1747 
1748 /*
1749  * Process one item on the worklist.
1750  */
1751 static int
1752 process_worklist_item(mp, target, flags)
1753 	struct mount *mp;
1754 	int target;
1755 	int flags;
1756 {
1757 	struct worklist sentinel;
1758 	struct worklist *wk;
1759 	struct ufsmount *ump;
1760 	int matchcnt;
1761 	int error;
1762 
1763 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1764 	/*
1765 	 * If we are being called because of a process doing a
1766 	 * copy-on-write, then it is not safe to write as we may
1767 	 * recurse into the copy-on-write routine.
1768 	 */
1769 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1770 		return (-1);
1771 	PHOLD(curproc);	/* Don't let the stack go away. */
1772 	ump = VFSTOUFS(mp);
1773 	LOCK_OWNED(ump);
1774 	matchcnt = 0;
1775 	sentinel.wk_mp = NULL;
1776 	sentinel.wk_type = D_SENTINEL;
1777 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1778 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1779 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1780 		if (wk->wk_type == D_SENTINEL) {
1781 			LIST_REMOVE(&sentinel, wk_list);
1782 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1783 			continue;
1784 		}
1785 		if (wk->wk_state & INPROGRESS)
1786 			panic("process_worklist_item: %p already in progress.",
1787 			    wk);
1788 		wk->wk_state |= INPROGRESS;
1789 		remove_from_worklist(wk);
1790 		FREE_LOCK(ump);
1791 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1792 			panic("process_worklist_item: suspended filesystem");
1793 		switch (wk->wk_type) {
1794 		case D_DIRREM:
1795 			/* removal of a directory entry */
1796 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1797 			break;
1798 
1799 		case D_FREEBLKS:
1800 			/* releasing blocks and/or fragments from a file */
1801 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1802 			    flags);
1803 			break;
1804 
1805 		case D_FREEFRAG:
1806 			/* releasing a fragment when replaced as a file grows */
1807 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1808 			error = 0;
1809 			break;
1810 
1811 		case D_FREEFILE:
1812 			/* releasing an inode when its link count drops to 0 */
1813 			handle_workitem_freefile(WK_FREEFILE(wk));
1814 			error = 0;
1815 			break;
1816 
1817 		default:
1818 			panic("%s_process_worklist: Unknown type %s",
1819 			    "softdep", TYPENAME(wk->wk_type));
1820 			/* NOTREACHED */
1821 		}
1822 		vn_finished_secondary_write(mp);
1823 		ACQUIRE_LOCK(ump);
1824 		if (error == 0) {
1825 			if (++matchcnt == target)
1826 				break;
1827 			continue;
1828 		}
1829 		/*
1830 		 * We have to retry the worklist item later.  Wake up any
1831 		 * waiters who may be able to complete it immediately and
1832 		 * add the item back to the head so we don't try to execute
1833 		 * it again.
1834 		 */
1835 		wk->wk_state &= ~INPROGRESS;
1836 		wake_worklist(wk);
1837 		add_to_worklist(wk, WK_HEAD);
1838 	}
1839 	LIST_REMOVE(&sentinel, wk_list);
1840 	/* Sentinal could've become the tail from remove_from_worklist. */
1841 	if (ump->softdep_worklist_tail == &sentinel)
1842 		ump->softdep_worklist_tail =
1843 		    (struct worklist *)sentinel.wk_list.le_prev;
1844 	PRELE(curproc);
1845 	return (matchcnt);
1846 }
1847 
1848 /*
1849  * Move dependencies from one buffer to another.
1850  */
1851 int
1852 softdep_move_dependencies(oldbp, newbp)
1853 	struct buf *oldbp;
1854 	struct buf *newbp;
1855 {
1856 	struct worklist *wk, *wktail;
1857 	struct ufsmount *ump;
1858 	int dirty;
1859 
1860 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1861 		return (0);
1862 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1863 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1864 	dirty = 0;
1865 	wktail = NULL;
1866 	ump = VFSTOUFS(wk->wk_mp);
1867 	ACQUIRE_LOCK(ump);
1868 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1869 		LIST_REMOVE(wk, wk_list);
1870 		if (wk->wk_type == D_BMSAFEMAP &&
1871 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1872 			dirty = 1;
1873 		if (wktail == NULL)
1874 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1875 		else
1876 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1877 		wktail = wk;
1878 	}
1879 	FREE_LOCK(ump);
1880 
1881 	return (dirty);
1882 }
1883 
1884 /*
1885  * Purge the work list of all items associated with a particular mount point.
1886  */
1887 int
1888 softdep_flushworklist(oldmnt, countp, td)
1889 	struct mount *oldmnt;
1890 	int *countp;
1891 	struct thread *td;
1892 {
1893 	struct vnode *devvp;
1894 	struct ufsmount *ump;
1895 	int count, error;
1896 
1897 	/*
1898 	 * Alternately flush the block device associated with the mount
1899 	 * point and process any dependencies that the flushing
1900 	 * creates. We continue until no more worklist dependencies
1901 	 * are found.
1902 	 */
1903 	*countp = 0;
1904 	error = 0;
1905 	ump = VFSTOUFS(oldmnt);
1906 	devvp = ump->um_devvp;
1907 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1908 		*countp += count;
1909 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1910 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1911 		VOP_UNLOCK(devvp, 0);
1912 		if (error != 0)
1913 			break;
1914 	}
1915 	return (error);
1916 }
1917 
1918 #define	SU_WAITIDLE_RETRIES	20
1919 static int
1920 softdep_waitidle(struct mount *mp, int flags __unused)
1921 {
1922 	struct ufsmount *ump;
1923 	struct vnode *devvp;
1924 	struct thread *td;
1925 	int error, i;
1926 
1927 	ump = VFSTOUFS(mp);
1928 	devvp = ump->um_devvp;
1929 	td = curthread;
1930 	error = 0;
1931 	ACQUIRE_LOCK(ump);
1932 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1933 		ump->softdep_req = 1;
1934 		KASSERT((flags & FORCECLOSE) == 0 ||
1935 		    ump->softdep_on_worklist == 0,
1936 		    ("softdep_waitidle: work added after flush"));
1937 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1938 		    "softdeps", 10 * hz);
1939 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1940 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1941 		VOP_UNLOCK(devvp, 0);
1942 		ACQUIRE_LOCK(ump);
1943 		if (error != 0)
1944 			break;
1945 	}
1946 	ump->softdep_req = 0;
1947 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1948 		error = EBUSY;
1949 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1950 		    mp);
1951 	}
1952 	FREE_LOCK(ump);
1953 	return (error);
1954 }
1955 
1956 /*
1957  * Flush all vnodes and worklist items associated with a specified mount point.
1958  */
1959 int
1960 softdep_flushfiles(oldmnt, flags, td)
1961 	struct mount *oldmnt;
1962 	int flags;
1963 	struct thread *td;
1964 {
1965 #ifdef QUOTA
1966 	struct ufsmount *ump;
1967 	int i;
1968 #endif
1969 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1970 	int morework;
1971 
1972 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1973 	    ("softdep_flushfiles called on non-softdep filesystem"));
1974 	loopcnt = 10;
1975 	retry_flush_count = 3;
1976 retry_flush:
1977 	error = 0;
1978 
1979 	/*
1980 	 * Alternately flush the vnodes associated with the mount
1981 	 * point and process any dependencies that the flushing
1982 	 * creates. In theory, this loop can happen at most twice,
1983 	 * but we give it a few extra just to be sure.
1984 	 */
1985 	for (; loopcnt > 0; loopcnt--) {
1986 		/*
1987 		 * Do another flush in case any vnodes were brought in
1988 		 * as part of the cleanup operations.
1989 		 */
1990 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1991 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1992 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1993 			break;
1994 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1995 		    depcount == 0)
1996 			break;
1997 	}
1998 	/*
1999 	 * If we are unmounting then it is an error to fail. If we
2000 	 * are simply trying to downgrade to read-only, then filesystem
2001 	 * activity can keep us busy forever, so we just fail with EBUSY.
2002 	 */
2003 	if (loopcnt == 0) {
2004 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2005 			panic("softdep_flushfiles: looping");
2006 		error = EBUSY;
2007 	}
2008 	if (!error)
2009 		error = softdep_waitidle(oldmnt, flags);
2010 	if (!error) {
2011 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2012 			retry = 0;
2013 			MNT_ILOCK(oldmnt);
2014 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2015 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2016 			morework = oldmnt->mnt_nvnodelistsize > 0;
2017 #ifdef QUOTA
2018 			ump = VFSTOUFS(oldmnt);
2019 			UFS_LOCK(ump);
2020 			for (i = 0; i < MAXQUOTAS; i++) {
2021 				if (ump->um_quotas[i] != NULLVP)
2022 					morework = 1;
2023 			}
2024 			UFS_UNLOCK(ump);
2025 #endif
2026 			if (morework) {
2027 				if (--retry_flush_count > 0) {
2028 					retry = 1;
2029 					loopcnt = 3;
2030 				} else
2031 					error = EBUSY;
2032 			}
2033 			MNT_IUNLOCK(oldmnt);
2034 			if (retry)
2035 				goto retry_flush;
2036 		}
2037 	}
2038 	return (error);
2039 }
2040 
2041 /*
2042  * Structure hashing.
2043  *
2044  * There are four types of structures that can be looked up:
2045  *	1) pagedep structures identified by mount point, inode number,
2046  *	   and logical block.
2047  *	2) inodedep structures identified by mount point and inode number.
2048  *	3) newblk structures identified by mount point and
2049  *	   physical block number.
2050  *	4) bmsafemap structures identified by mount point and
2051  *	   cylinder group number.
2052  *
2053  * The "pagedep" and "inodedep" dependency structures are hashed
2054  * separately from the file blocks and inodes to which they correspond.
2055  * This separation helps when the in-memory copy of an inode or
2056  * file block must be replaced. It also obviates the need to access
2057  * an inode or file page when simply updating (or de-allocating)
2058  * dependency structures. Lookup of newblk structures is needed to
2059  * find newly allocated blocks when trying to associate them with
2060  * their allocdirect or allocindir structure.
2061  *
2062  * The lookup routines optionally create and hash a new instance when
2063  * an existing entry is not found. The bmsafemap lookup routine always
2064  * allocates a new structure if an existing one is not found.
2065  */
2066 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2067 
2068 /*
2069  * Structures and routines associated with pagedep caching.
2070  */
2071 #define	PAGEDEP_HASH(ump, inum, lbn) \
2072 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2073 
2074 static int
2075 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2076 	struct pagedep_hashhead *pagedephd;
2077 	ino_t ino;
2078 	ufs_lbn_t lbn;
2079 	struct pagedep **pagedeppp;
2080 {
2081 	struct pagedep *pagedep;
2082 
2083 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2084 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2085 			*pagedeppp = pagedep;
2086 			return (1);
2087 		}
2088 	}
2089 	*pagedeppp = NULL;
2090 	return (0);
2091 }
2092 /*
2093  * Look up a pagedep. Return 1 if found, 0 otherwise.
2094  * If not found, allocate if DEPALLOC flag is passed.
2095  * Found or allocated entry is returned in pagedeppp.
2096  * This routine must be called with splbio interrupts blocked.
2097  */
2098 static int
2099 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2100 	struct mount *mp;
2101 	struct buf *bp;
2102 	ino_t ino;
2103 	ufs_lbn_t lbn;
2104 	int flags;
2105 	struct pagedep **pagedeppp;
2106 {
2107 	struct pagedep *pagedep;
2108 	struct pagedep_hashhead *pagedephd;
2109 	struct worklist *wk;
2110 	struct ufsmount *ump;
2111 	int ret;
2112 	int i;
2113 
2114 	ump = VFSTOUFS(mp);
2115 	LOCK_OWNED(ump);
2116 	if (bp) {
2117 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2118 			if (wk->wk_type == D_PAGEDEP) {
2119 				*pagedeppp = WK_PAGEDEP(wk);
2120 				return (1);
2121 			}
2122 		}
2123 	}
2124 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2125 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2126 	if (ret) {
2127 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2128 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2129 		return (1);
2130 	}
2131 	if ((flags & DEPALLOC) == 0)
2132 		return (0);
2133 	FREE_LOCK(ump);
2134 	pagedep = malloc(sizeof(struct pagedep),
2135 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2136 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2137 	ACQUIRE_LOCK(ump);
2138 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2139 	if (*pagedeppp) {
2140 		/*
2141 		 * This should never happen since we only create pagedeps
2142 		 * with the vnode lock held.  Could be an assert.
2143 		 */
2144 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2145 		return (ret);
2146 	}
2147 	pagedep->pd_ino = ino;
2148 	pagedep->pd_lbn = lbn;
2149 	LIST_INIT(&pagedep->pd_dirremhd);
2150 	LIST_INIT(&pagedep->pd_pendinghd);
2151 	for (i = 0; i < DAHASHSZ; i++)
2152 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2153 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2154 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2155 	*pagedeppp = pagedep;
2156 	return (0);
2157 }
2158 
2159 /*
2160  * Structures and routines associated with inodedep caching.
2161  */
2162 #define	INODEDEP_HASH(ump, inum) \
2163       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2164 
2165 static int
2166 inodedep_find(inodedephd, inum, inodedeppp)
2167 	struct inodedep_hashhead *inodedephd;
2168 	ino_t inum;
2169 	struct inodedep **inodedeppp;
2170 {
2171 	struct inodedep *inodedep;
2172 
2173 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2174 		if (inum == inodedep->id_ino)
2175 			break;
2176 	if (inodedep) {
2177 		*inodedeppp = inodedep;
2178 		return (1);
2179 	}
2180 	*inodedeppp = NULL;
2181 
2182 	return (0);
2183 }
2184 /*
2185  * Look up an inodedep. Return 1 if found, 0 if not found.
2186  * If not found, allocate if DEPALLOC flag is passed.
2187  * Found or allocated entry is returned in inodedeppp.
2188  * This routine must be called with splbio interrupts blocked.
2189  */
2190 static int
2191 inodedep_lookup(mp, inum, flags, inodedeppp)
2192 	struct mount *mp;
2193 	ino_t inum;
2194 	int flags;
2195 	struct inodedep **inodedeppp;
2196 {
2197 	struct inodedep *inodedep;
2198 	struct inodedep_hashhead *inodedephd;
2199 	struct ufsmount *ump;
2200 	struct fs *fs;
2201 
2202 	ump = VFSTOUFS(mp);
2203 	LOCK_OWNED(ump);
2204 	fs = ump->um_fs;
2205 	inodedephd = INODEDEP_HASH(ump, inum);
2206 
2207 	if (inodedep_find(inodedephd, inum, inodedeppp))
2208 		return (1);
2209 	if ((flags & DEPALLOC) == 0)
2210 		return (0);
2211 	/*
2212 	 * If the system is over its limit and our filesystem is
2213 	 * responsible for more than our share of that usage and
2214 	 * we are not in a rush, request some inodedep cleanup.
2215 	 */
2216 	if (softdep_excess_items(ump, D_INODEDEP))
2217 		schedule_cleanup(mp);
2218 	else
2219 		FREE_LOCK(ump);
2220 	inodedep = malloc(sizeof(struct inodedep),
2221 		M_INODEDEP, M_SOFTDEP_FLAGS);
2222 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2223 	ACQUIRE_LOCK(ump);
2224 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2225 		WORKITEM_FREE(inodedep, D_INODEDEP);
2226 		return (1);
2227 	}
2228 	inodedep->id_fs = fs;
2229 	inodedep->id_ino = inum;
2230 	inodedep->id_state = ALLCOMPLETE;
2231 	inodedep->id_nlinkdelta = 0;
2232 	inodedep->id_savedino1 = NULL;
2233 	inodedep->id_savedsize = -1;
2234 	inodedep->id_savedextsize = -1;
2235 	inodedep->id_savednlink = -1;
2236 	inodedep->id_bmsafemap = NULL;
2237 	inodedep->id_mkdiradd = NULL;
2238 	LIST_INIT(&inodedep->id_dirremhd);
2239 	LIST_INIT(&inodedep->id_pendinghd);
2240 	LIST_INIT(&inodedep->id_inowait);
2241 	LIST_INIT(&inodedep->id_bufwait);
2242 	TAILQ_INIT(&inodedep->id_inoreflst);
2243 	TAILQ_INIT(&inodedep->id_inoupdt);
2244 	TAILQ_INIT(&inodedep->id_newinoupdt);
2245 	TAILQ_INIT(&inodedep->id_extupdt);
2246 	TAILQ_INIT(&inodedep->id_newextupdt);
2247 	TAILQ_INIT(&inodedep->id_freeblklst);
2248 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2249 	*inodedeppp = inodedep;
2250 	return (0);
2251 }
2252 
2253 /*
2254  * Structures and routines associated with newblk caching.
2255  */
2256 #define	NEWBLK_HASH(ump, inum) \
2257 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2258 
2259 static int
2260 newblk_find(newblkhd, newblkno, flags, newblkpp)
2261 	struct newblk_hashhead *newblkhd;
2262 	ufs2_daddr_t newblkno;
2263 	int flags;
2264 	struct newblk **newblkpp;
2265 {
2266 	struct newblk *newblk;
2267 
2268 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2269 		if (newblkno != newblk->nb_newblkno)
2270 			continue;
2271 		/*
2272 		 * If we're creating a new dependency don't match those that
2273 		 * have already been converted to allocdirects.  This is for
2274 		 * a frag extend.
2275 		 */
2276 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2277 			continue;
2278 		break;
2279 	}
2280 	if (newblk) {
2281 		*newblkpp = newblk;
2282 		return (1);
2283 	}
2284 	*newblkpp = NULL;
2285 	return (0);
2286 }
2287 
2288 /*
2289  * Look up a newblk. Return 1 if found, 0 if not found.
2290  * If not found, allocate if DEPALLOC flag is passed.
2291  * Found or allocated entry is returned in newblkpp.
2292  */
2293 static int
2294 newblk_lookup(mp, newblkno, flags, newblkpp)
2295 	struct mount *mp;
2296 	ufs2_daddr_t newblkno;
2297 	int flags;
2298 	struct newblk **newblkpp;
2299 {
2300 	struct newblk *newblk;
2301 	struct newblk_hashhead *newblkhd;
2302 	struct ufsmount *ump;
2303 
2304 	ump = VFSTOUFS(mp);
2305 	LOCK_OWNED(ump);
2306 	newblkhd = NEWBLK_HASH(ump, newblkno);
2307 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2308 		return (1);
2309 	if ((flags & DEPALLOC) == 0)
2310 		return (0);
2311 	if (softdep_excess_items(ump, D_NEWBLK) ||
2312 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2313 	    softdep_excess_items(ump, D_ALLOCINDIR))
2314 		schedule_cleanup(mp);
2315 	else
2316 		FREE_LOCK(ump);
2317 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2318 	    M_SOFTDEP_FLAGS | M_ZERO);
2319 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2320 	ACQUIRE_LOCK(ump);
2321 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2322 		WORKITEM_FREE(newblk, D_NEWBLK);
2323 		return (1);
2324 	}
2325 	newblk->nb_freefrag = NULL;
2326 	LIST_INIT(&newblk->nb_indirdeps);
2327 	LIST_INIT(&newblk->nb_newdirblk);
2328 	LIST_INIT(&newblk->nb_jwork);
2329 	newblk->nb_state = ATTACHED;
2330 	newblk->nb_newblkno = newblkno;
2331 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2332 	*newblkpp = newblk;
2333 	return (0);
2334 }
2335 
2336 /*
2337  * Structures and routines associated with freed indirect block caching.
2338  */
2339 #define	INDIR_HASH(ump, blkno) \
2340 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2341 
2342 /*
2343  * Lookup an indirect block in the indir hash table.  The freework is
2344  * removed and potentially freed.  The caller must do a blocking journal
2345  * write before writing to the blkno.
2346  */
2347 static int
2348 indirblk_lookup(mp, blkno)
2349 	struct mount *mp;
2350 	ufs2_daddr_t blkno;
2351 {
2352 	struct freework *freework;
2353 	struct indir_hashhead *wkhd;
2354 	struct ufsmount *ump;
2355 
2356 	ump = VFSTOUFS(mp);
2357 	wkhd = INDIR_HASH(ump, blkno);
2358 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2359 		if (freework->fw_blkno != blkno)
2360 			continue;
2361 		indirblk_remove(freework);
2362 		return (1);
2363 	}
2364 	return (0);
2365 }
2366 
2367 /*
2368  * Insert an indirect block represented by freework into the indirblk
2369  * hash table so that it may prevent the block from being re-used prior
2370  * to the journal being written.
2371  */
2372 static void
2373 indirblk_insert(freework)
2374 	struct freework *freework;
2375 {
2376 	struct jblocks *jblocks;
2377 	struct jseg *jseg;
2378 	struct ufsmount *ump;
2379 
2380 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2381 	jblocks = ump->softdep_jblocks;
2382 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2383 	if (jseg == NULL)
2384 		return;
2385 
2386 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2387 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2388 	    fw_next);
2389 	freework->fw_state &= ~DEPCOMPLETE;
2390 }
2391 
2392 static void
2393 indirblk_remove(freework)
2394 	struct freework *freework;
2395 {
2396 	struct ufsmount *ump;
2397 
2398 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2399 	LIST_REMOVE(freework, fw_segs);
2400 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2401 	freework->fw_state |= DEPCOMPLETE;
2402 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2403 		WORKITEM_FREE(freework, D_FREEWORK);
2404 }
2405 
2406 /*
2407  * Executed during filesystem system initialization before
2408  * mounting any filesystems.
2409  */
2410 void
2411 softdep_initialize()
2412 {
2413 
2414 	TAILQ_INIT(&softdepmounts);
2415 #ifdef __LP64__
2416 	max_softdeps = desiredvnodes * 4;
2417 #else
2418 	max_softdeps = desiredvnodes * 2;
2419 #endif
2420 
2421 	/* initialise bioops hack */
2422 	bioops.io_start = softdep_disk_io_initiation;
2423 	bioops.io_complete = softdep_disk_write_complete;
2424 	bioops.io_deallocate = softdep_deallocate_dependencies;
2425 	bioops.io_countdeps = softdep_count_dependencies;
2426 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2427 
2428 	/* Initialize the callout with an mtx. */
2429 	callout_init_mtx(&softdep_callout, &lk, 0);
2430 }
2431 
2432 /*
2433  * Executed after all filesystems have been unmounted during
2434  * filesystem module unload.
2435  */
2436 void
2437 softdep_uninitialize()
2438 {
2439 
2440 	/* clear bioops hack */
2441 	bioops.io_start = NULL;
2442 	bioops.io_complete = NULL;
2443 	bioops.io_deallocate = NULL;
2444 	bioops.io_countdeps = NULL;
2445 	softdep_ast_cleanup = NULL;
2446 
2447 	callout_drain(&softdep_callout);
2448 }
2449 
2450 /*
2451  * Called at mount time to notify the dependency code that a
2452  * filesystem wishes to use it.
2453  */
2454 int
2455 softdep_mount(devvp, mp, fs, cred)
2456 	struct vnode *devvp;
2457 	struct mount *mp;
2458 	struct fs *fs;
2459 	struct ucred *cred;
2460 {
2461 	struct csum_total cstotal;
2462 	struct mount_softdeps *sdp;
2463 	struct ufsmount *ump;
2464 	struct cg *cgp;
2465 	struct buf *bp;
2466 	int i, error, cyl;
2467 
2468 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2469 	    M_WAITOK | M_ZERO);
2470 	MNT_ILOCK(mp);
2471 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2472 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2473 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2474 			MNTK_SOFTDEP | MNTK_NOASYNC;
2475 	}
2476 	ump = VFSTOUFS(mp);
2477 	ump->um_softdep = sdp;
2478 	MNT_IUNLOCK(mp);
2479 	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2480 	sdp->sd_ump = ump;
2481 	LIST_INIT(&ump->softdep_workitem_pending);
2482 	LIST_INIT(&ump->softdep_journal_pending);
2483 	TAILQ_INIT(&ump->softdep_unlinked);
2484 	LIST_INIT(&ump->softdep_dirtycg);
2485 	ump->softdep_worklist_tail = NULL;
2486 	ump->softdep_on_worklist = 0;
2487 	ump->softdep_deps = 0;
2488 	LIST_INIT(&ump->softdep_mkdirlisthd);
2489 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2490 	    &ump->pagedep_hash_size);
2491 	ump->pagedep_nextclean = 0;
2492 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2493 	    &ump->inodedep_hash_size);
2494 	ump->inodedep_nextclean = 0;
2495 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2496 	    &ump->newblk_hash_size);
2497 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2498 	    &ump->bmsafemap_hash_size);
2499 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2500 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2501 	    M_FREEWORK, M_WAITOK);
2502 	ump->indir_hash_size = i - 1;
2503 	for (i = 0; i <= ump->indir_hash_size; i++)
2504 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2505 	ACQUIRE_GBLLOCK(&lk);
2506 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2507 	FREE_GBLLOCK(&lk);
2508 	if ((fs->fs_flags & FS_SUJ) &&
2509 	    (error = journal_mount(mp, fs, cred)) != 0) {
2510 		printf("Failed to start journal: %d\n", error);
2511 		softdep_unmount(mp);
2512 		return (error);
2513 	}
2514 	/*
2515 	 * Start our flushing thread in the bufdaemon process.
2516 	 */
2517 	ACQUIRE_LOCK(ump);
2518 	ump->softdep_flags |= FLUSH_STARTING;
2519 	FREE_LOCK(ump);
2520 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2521 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2522 	    mp->mnt_stat.f_mntonname);
2523 	ACQUIRE_LOCK(ump);
2524 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2525 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2526 		    hz / 2);
2527 	}
2528 	FREE_LOCK(ump);
2529 	/*
2530 	 * When doing soft updates, the counters in the
2531 	 * superblock may have gotten out of sync. Recomputation
2532 	 * can take a long time and can be deferred for background
2533 	 * fsck.  However, the old behavior of scanning the cylinder
2534 	 * groups and recalculating them at mount time is available
2535 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2536 	 */
2537 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2538 		return (0);
2539 	bzero(&cstotal, sizeof cstotal);
2540 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2541 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2542 		    fs->fs_cgsize, cred, &bp)) != 0) {
2543 			brelse(bp);
2544 			softdep_unmount(mp);
2545 			return (error);
2546 		}
2547 		cgp = (struct cg *)bp->b_data;
2548 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2549 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2550 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2551 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2552 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2553 		brelse(bp);
2554 	}
2555 #ifdef DEBUG
2556 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2557 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2558 #endif
2559 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2560 	return (0);
2561 }
2562 
2563 void
2564 softdep_unmount(mp)
2565 	struct mount *mp;
2566 {
2567 	struct ufsmount *ump;
2568 #ifdef INVARIANTS
2569 	int i;
2570 #endif
2571 
2572 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2573 	    ("softdep_unmount called on non-softdep filesystem"));
2574 	ump = VFSTOUFS(mp);
2575 	MNT_ILOCK(mp);
2576 	mp->mnt_flag &= ~MNT_SOFTDEP;
2577 	if (MOUNTEDSUJ(mp) == 0) {
2578 		MNT_IUNLOCK(mp);
2579 	} else {
2580 		mp->mnt_flag &= ~MNT_SUJ;
2581 		MNT_IUNLOCK(mp);
2582 		journal_unmount(ump);
2583 	}
2584 	/*
2585 	 * Shut down our flushing thread. Check for NULL is if
2586 	 * softdep_mount errors out before the thread has been created.
2587 	 */
2588 	if (ump->softdep_flushtd != NULL) {
2589 		ACQUIRE_LOCK(ump);
2590 		ump->softdep_flags |= FLUSH_EXIT;
2591 		wakeup(&ump->softdep_flushtd);
2592 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2593 		    "sdwait", 0);
2594 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2595 		    ("Thread shutdown failed"));
2596 	}
2597 	/*
2598 	 * Free up our resources.
2599 	 */
2600 	ACQUIRE_GBLLOCK(&lk);
2601 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2602 	FREE_GBLLOCK(&lk);
2603 	rw_destroy(LOCK_PTR(ump));
2604 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2605 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2606 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2607 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2608 	    ump->bmsafemap_hash_size);
2609 	free(ump->indir_hashtbl, M_FREEWORK);
2610 #ifdef INVARIANTS
2611 	for (i = 0; i <= D_LAST; i++)
2612 		KASSERT(ump->softdep_curdeps[i] == 0,
2613 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2614 		    TYPENAME(i), ump->softdep_curdeps[i]));
2615 #endif
2616 	free(ump->um_softdep, M_MOUNTDATA);
2617 }
2618 
2619 static struct jblocks *
2620 jblocks_create(void)
2621 {
2622 	struct jblocks *jblocks;
2623 
2624 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2625 	TAILQ_INIT(&jblocks->jb_segs);
2626 	jblocks->jb_avail = 10;
2627 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2628 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2629 
2630 	return (jblocks);
2631 }
2632 
2633 static ufs2_daddr_t
2634 jblocks_alloc(jblocks, bytes, actual)
2635 	struct jblocks *jblocks;
2636 	int bytes;
2637 	int *actual;
2638 {
2639 	ufs2_daddr_t daddr;
2640 	struct jextent *jext;
2641 	int freecnt;
2642 	int blocks;
2643 
2644 	blocks = bytes / DEV_BSIZE;
2645 	jext = &jblocks->jb_extent[jblocks->jb_head];
2646 	freecnt = jext->je_blocks - jblocks->jb_off;
2647 	if (freecnt == 0) {
2648 		jblocks->jb_off = 0;
2649 		if (++jblocks->jb_head > jblocks->jb_used)
2650 			jblocks->jb_head = 0;
2651 		jext = &jblocks->jb_extent[jblocks->jb_head];
2652 		freecnt = jext->je_blocks;
2653 	}
2654 	if (freecnt > blocks)
2655 		freecnt = blocks;
2656 	*actual = freecnt * DEV_BSIZE;
2657 	daddr = jext->je_daddr + jblocks->jb_off;
2658 	jblocks->jb_off += freecnt;
2659 	jblocks->jb_free -= freecnt;
2660 
2661 	return (daddr);
2662 }
2663 
2664 static void
2665 jblocks_free(jblocks, mp, bytes)
2666 	struct jblocks *jblocks;
2667 	struct mount *mp;
2668 	int bytes;
2669 {
2670 
2671 	LOCK_OWNED(VFSTOUFS(mp));
2672 	jblocks->jb_free += bytes / DEV_BSIZE;
2673 	if (jblocks->jb_suspended)
2674 		worklist_speedup(mp);
2675 	wakeup(jblocks);
2676 }
2677 
2678 static void
2679 jblocks_destroy(jblocks)
2680 	struct jblocks *jblocks;
2681 {
2682 
2683 	if (jblocks->jb_extent)
2684 		free(jblocks->jb_extent, M_JBLOCKS);
2685 	free(jblocks, M_JBLOCKS);
2686 }
2687 
2688 static void
2689 jblocks_add(jblocks, daddr, blocks)
2690 	struct jblocks *jblocks;
2691 	ufs2_daddr_t daddr;
2692 	int blocks;
2693 {
2694 	struct jextent *jext;
2695 
2696 	jblocks->jb_blocks += blocks;
2697 	jblocks->jb_free += blocks;
2698 	jext = &jblocks->jb_extent[jblocks->jb_used];
2699 	/* Adding the first block. */
2700 	if (jext->je_daddr == 0) {
2701 		jext->je_daddr = daddr;
2702 		jext->je_blocks = blocks;
2703 		return;
2704 	}
2705 	/* Extending the last extent. */
2706 	if (jext->je_daddr + jext->je_blocks == daddr) {
2707 		jext->je_blocks += blocks;
2708 		return;
2709 	}
2710 	/* Adding a new extent. */
2711 	if (++jblocks->jb_used == jblocks->jb_avail) {
2712 		jblocks->jb_avail *= 2;
2713 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2714 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2715 		memcpy(jext, jblocks->jb_extent,
2716 		    sizeof(struct jextent) * jblocks->jb_used);
2717 		free(jblocks->jb_extent, M_JBLOCKS);
2718 		jblocks->jb_extent = jext;
2719 	}
2720 	jext = &jblocks->jb_extent[jblocks->jb_used];
2721 	jext->je_daddr = daddr;
2722 	jext->je_blocks = blocks;
2723 	return;
2724 }
2725 
2726 int
2727 softdep_journal_lookup(mp, vpp)
2728 	struct mount *mp;
2729 	struct vnode **vpp;
2730 {
2731 	struct componentname cnp;
2732 	struct vnode *dvp;
2733 	ino_t sujournal;
2734 	int error;
2735 
2736 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2737 	if (error)
2738 		return (error);
2739 	bzero(&cnp, sizeof(cnp));
2740 	cnp.cn_nameiop = LOOKUP;
2741 	cnp.cn_flags = ISLASTCN;
2742 	cnp.cn_thread = curthread;
2743 	cnp.cn_cred = curthread->td_ucred;
2744 	cnp.cn_pnbuf = SUJ_FILE;
2745 	cnp.cn_nameptr = SUJ_FILE;
2746 	cnp.cn_namelen = strlen(SUJ_FILE);
2747 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2748 	vput(dvp);
2749 	if (error != 0)
2750 		return (error);
2751 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2752 	return (error);
2753 }
2754 
2755 /*
2756  * Open and verify the journal file.
2757  */
2758 static int
2759 journal_mount(mp, fs, cred)
2760 	struct mount *mp;
2761 	struct fs *fs;
2762 	struct ucred *cred;
2763 {
2764 	struct jblocks *jblocks;
2765 	struct ufsmount *ump;
2766 	struct vnode *vp;
2767 	struct inode *ip;
2768 	ufs2_daddr_t blkno;
2769 	int bcount;
2770 	int error;
2771 	int i;
2772 
2773 	ump = VFSTOUFS(mp);
2774 	ump->softdep_journal_tail = NULL;
2775 	ump->softdep_on_journal = 0;
2776 	ump->softdep_accdeps = 0;
2777 	ump->softdep_req = 0;
2778 	ump->softdep_jblocks = NULL;
2779 	error = softdep_journal_lookup(mp, &vp);
2780 	if (error != 0) {
2781 		printf("Failed to find journal.  Use tunefs to create one\n");
2782 		return (error);
2783 	}
2784 	ip = VTOI(vp);
2785 	if (ip->i_size < SUJ_MIN) {
2786 		error = ENOSPC;
2787 		goto out;
2788 	}
2789 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2790 	jblocks = jblocks_create();
2791 	for (i = 0; i < bcount; i++) {
2792 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2793 		if (error)
2794 			break;
2795 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2796 	}
2797 	if (error) {
2798 		jblocks_destroy(jblocks);
2799 		goto out;
2800 	}
2801 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2802 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2803 	ump->softdep_jblocks = jblocks;
2804 out:
2805 	if (error == 0) {
2806 		MNT_ILOCK(mp);
2807 		mp->mnt_flag |= MNT_SUJ;
2808 		mp->mnt_flag &= ~MNT_SOFTDEP;
2809 		MNT_IUNLOCK(mp);
2810 		/*
2811 		 * Only validate the journal contents if the
2812 		 * filesystem is clean, otherwise we write the logs
2813 		 * but they'll never be used.  If the filesystem was
2814 		 * still dirty when we mounted it the journal is
2815 		 * invalid and a new journal can only be valid if it
2816 		 * starts from a clean mount.
2817 		 */
2818 		if (fs->fs_clean) {
2819 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2820 			ip->i_flags |= IN_MODIFIED;
2821 			ffs_update(vp, 1);
2822 		}
2823 	}
2824 	vput(vp);
2825 	return (error);
2826 }
2827 
2828 static void
2829 journal_unmount(ump)
2830 	struct ufsmount *ump;
2831 {
2832 
2833 	if (ump->softdep_jblocks)
2834 		jblocks_destroy(ump->softdep_jblocks);
2835 	ump->softdep_jblocks = NULL;
2836 }
2837 
2838 /*
2839  * Called when a journal record is ready to be written.  Space is allocated
2840  * and the journal entry is created when the journal is flushed to stable
2841  * store.
2842  */
2843 static void
2844 add_to_journal(wk)
2845 	struct worklist *wk;
2846 {
2847 	struct ufsmount *ump;
2848 
2849 	ump = VFSTOUFS(wk->wk_mp);
2850 	LOCK_OWNED(ump);
2851 	if (wk->wk_state & ONWORKLIST)
2852 		panic("add_to_journal: %s(0x%X) already on list",
2853 		    TYPENAME(wk->wk_type), wk->wk_state);
2854 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2855 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2856 		ump->softdep_jblocks->jb_age = ticks;
2857 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2858 	} else
2859 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2860 	ump->softdep_journal_tail = wk;
2861 	ump->softdep_on_journal += 1;
2862 }
2863 
2864 /*
2865  * Remove an arbitrary item for the journal worklist maintain the tail
2866  * pointer.  This happens when a new operation obviates the need to
2867  * journal an old operation.
2868  */
2869 static void
2870 remove_from_journal(wk)
2871 	struct worklist *wk;
2872 {
2873 	struct ufsmount *ump;
2874 
2875 	ump = VFSTOUFS(wk->wk_mp);
2876 	LOCK_OWNED(ump);
2877 #ifdef SUJ_DEBUG
2878 	{
2879 		struct worklist *wkn;
2880 
2881 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2882 			if (wkn == wk)
2883 				break;
2884 		if (wkn == NULL)
2885 			panic("remove_from_journal: %p is not in journal", wk);
2886 	}
2887 #endif
2888 	/*
2889 	 * We emulate a TAILQ to save space in most structures which do not
2890 	 * require TAILQ semantics.  Here we must update the tail position
2891 	 * when removing the tail which is not the final entry. This works
2892 	 * only if the worklist linkage are at the beginning of the structure.
2893 	 */
2894 	if (ump->softdep_journal_tail == wk)
2895 		ump->softdep_journal_tail =
2896 		    (struct worklist *)wk->wk_list.le_prev;
2897 
2898 	WORKLIST_REMOVE(wk);
2899 	ump->softdep_on_journal -= 1;
2900 }
2901 
2902 /*
2903  * Check for journal space as well as dependency limits so the prelink
2904  * code can throttle both journaled and non-journaled filesystems.
2905  * Threshold is 0 for low and 1 for min.
2906  */
2907 static int
2908 journal_space(ump, thresh)
2909 	struct ufsmount *ump;
2910 	int thresh;
2911 {
2912 	struct jblocks *jblocks;
2913 	int limit, avail;
2914 
2915 	jblocks = ump->softdep_jblocks;
2916 	if (jblocks == NULL)
2917 		return (1);
2918 	/*
2919 	 * We use a tighter restriction here to prevent request_cleanup()
2920 	 * running in threads from running into locks we currently hold.
2921 	 * We have to be over the limit and our filesystem has to be
2922 	 * responsible for more than our share of that usage.
2923 	 */
2924 	limit = (max_softdeps / 10) * 9;
2925 	if (dep_current[D_INODEDEP] > limit &&
2926 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2927 		return (0);
2928 	if (thresh)
2929 		thresh = jblocks->jb_min;
2930 	else
2931 		thresh = jblocks->jb_low;
2932 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2933 	avail = jblocks->jb_free - avail;
2934 
2935 	return (avail > thresh);
2936 }
2937 
2938 static void
2939 journal_suspend(ump)
2940 	struct ufsmount *ump;
2941 {
2942 	struct jblocks *jblocks;
2943 	struct mount *mp;
2944 
2945 	mp = UFSTOVFS(ump);
2946 	jblocks = ump->softdep_jblocks;
2947 	MNT_ILOCK(mp);
2948 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2949 		stat_journal_min++;
2950 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2951 		mp->mnt_susp_owner = ump->softdep_flushtd;
2952 	}
2953 	jblocks->jb_suspended = 1;
2954 	MNT_IUNLOCK(mp);
2955 }
2956 
2957 static int
2958 journal_unsuspend(struct ufsmount *ump)
2959 {
2960 	struct jblocks *jblocks;
2961 	struct mount *mp;
2962 
2963 	mp = UFSTOVFS(ump);
2964 	jblocks = ump->softdep_jblocks;
2965 
2966 	if (jblocks != NULL && jblocks->jb_suspended &&
2967 	    journal_space(ump, jblocks->jb_min)) {
2968 		jblocks->jb_suspended = 0;
2969 		FREE_LOCK(ump);
2970 		mp->mnt_susp_owner = curthread;
2971 		vfs_write_resume(mp, 0);
2972 		ACQUIRE_LOCK(ump);
2973 		return (1);
2974 	}
2975 	return (0);
2976 }
2977 
2978 /*
2979  * Called before any allocation function to be certain that there is
2980  * sufficient space in the journal prior to creating any new records.
2981  * Since in the case of block allocation we may have multiple locked
2982  * buffers at the time of the actual allocation we can not block
2983  * when the journal records are created.  Doing so would create a deadlock
2984  * if any of these buffers needed to be flushed to reclaim space.  Instead
2985  * we require a sufficiently large amount of available space such that
2986  * each thread in the system could have passed this allocation check and
2987  * still have sufficient free space.  With 20% of a minimum journal size
2988  * of 1MB we have 6553 records available.
2989  */
2990 int
2991 softdep_prealloc(vp, waitok)
2992 	struct vnode *vp;
2993 	int waitok;
2994 {
2995 	struct ufsmount *ump;
2996 
2997 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2998 	    ("softdep_prealloc called on non-softdep filesystem"));
2999 	/*
3000 	 * Nothing to do if we are not running journaled soft updates.
3001 	 * If we currently hold the snapshot lock, we must avoid
3002 	 * handling other resources that could cause deadlock.  Do not
3003 	 * touch quotas vnode since it is typically recursed with
3004 	 * other vnode locks held.
3005 	 */
3006 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3007 	    (vp->v_vflag & VV_SYSTEM) != 0)
3008 		return (0);
3009 	ump = VFSTOUFS(vp->v_mount);
3010 	ACQUIRE_LOCK(ump);
3011 	if (journal_space(ump, 0)) {
3012 		FREE_LOCK(ump);
3013 		return (0);
3014 	}
3015 	stat_journal_low++;
3016 	FREE_LOCK(ump);
3017 	if (waitok == MNT_NOWAIT)
3018 		return (ENOSPC);
3019 	/*
3020 	 * Attempt to sync this vnode once to flush any journal
3021 	 * work attached to it.
3022 	 */
3023 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3024 		ffs_syncvnode(vp, waitok, 0);
3025 	ACQUIRE_LOCK(ump);
3026 	process_removes(vp);
3027 	process_truncates(vp);
3028 	if (journal_space(ump, 0) == 0) {
3029 		softdep_speedup(ump);
3030 		if (journal_space(ump, 1) == 0)
3031 			journal_suspend(ump);
3032 	}
3033 	FREE_LOCK(ump);
3034 
3035 	return (0);
3036 }
3037 
3038 /*
3039  * Before adjusting a link count on a vnode verify that we have sufficient
3040  * journal space.  If not, process operations that depend on the currently
3041  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3042  * and softdep flush threads can not acquire these locks to reclaim space.
3043  */
3044 static void
3045 softdep_prelink(dvp, vp)
3046 	struct vnode *dvp;
3047 	struct vnode *vp;
3048 {
3049 	struct ufsmount *ump;
3050 
3051 	ump = VFSTOUFS(dvp->v_mount);
3052 	LOCK_OWNED(ump);
3053 	/*
3054 	 * Nothing to do if we have sufficient journal space.
3055 	 * If we currently hold the snapshot lock, we must avoid
3056 	 * handling other resources that could cause deadlock.
3057 	 */
3058 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3059 		return;
3060 	stat_journal_low++;
3061 	FREE_LOCK(ump);
3062 	if (vp)
3063 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3064 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3065 	ACQUIRE_LOCK(ump);
3066 	/* Process vp before dvp as it may create .. removes. */
3067 	if (vp) {
3068 		process_removes(vp);
3069 		process_truncates(vp);
3070 	}
3071 	process_removes(dvp);
3072 	process_truncates(dvp);
3073 	softdep_speedup(ump);
3074 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3075 	if (journal_space(ump, 0) == 0) {
3076 		softdep_speedup(ump);
3077 		if (journal_space(ump, 1) == 0)
3078 			journal_suspend(ump);
3079 	}
3080 }
3081 
3082 static void
3083 jseg_write(ump, jseg, data)
3084 	struct ufsmount *ump;
3085 	struct jseg *jseg;
3086 	uint8_t *data;
3087 {
3088 	struct jsegrec *rec;
3089 
3090 	rec = (struct jsegrec *)data;
3091 	rec->jsr_seq = jseg->js_seq;
3092 	rec->jsr_oldest = jseg->js_oldseq;
3093 	rec->jsr_cnt = jseg->js_cnt;
3094 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3095 	rec->jsr_crc = 0;
3096 	rec->jsr_time = ump->um_fs->fs_mtime;
3097 }
3098 
3099 static inline void
3100 inoref_write(inoref, jseg, rec)
3101 	struct inoref *inoref;
3102 	struct jseg *jseg;
3103 	struct jrefrec *rec;
3104 {
3105 
3106 	inoref->if_jsegdep->jd_seg = jseg;
3107 	rec->jr_ino = inoref->if_ino;
3108 	rec->jr_parent = inoref->if_parent;
3109 	rec->jr_nlink = inoref->if_nlink;
3110 	rec->jr_mode = inoref->if_mode;
3111 	rec->jr_diroff = inoref->if_diroff;
3112 }
3113 
3114 static void
3115 jaddref_write(jaddref, jseg, data)
3116 	struct jaddref *jaddref;
3117 	struct jseg *jseg;
3118 	uint8_t *data;
3119 {
3120 	struct jrefrec *rec;
3121 
3122 	rec = (struct jrefrec *)data;
3123 	rec->jr_op = JOP_ADDREF;
3124 	inoref_write(&jaddref->ja_ref, jseg, rec);
3125 }
3126 
3127 static void
3128 jremref_write(jremref, jseg, data)
3129 	struct jremref *jremref;
3130 	struct jseg *jseg;
3131 	uint8_t *data;
3132 {
3133 	struct jrefrec *rec;
3134 
3135 	rec = (struct jrefrec *)data;
3136 	rec->jr_op = JOP_REMREF;
3137 	inoref_write(&jremref->jr_ref, jseg, rec);
3138 }
3139 
3140 static void
3141 jmvref_write(jmvref, jseg, data)
3142 	struct jmvref *jmvref;
3143 	struct jseg *jseg;
3144 	uint8_t *data;
3145 {
3146 	struct jmvrec *rec;
3147 
3148 	rec = (struct jmvrec *)data;
3149 	rec->jm_op = JOP_MVREF;
3150 	rec->jm_ino = jmvref->jm_ino;
3151 	rec->jm_parent = jmvref->jm_parent;
3152 	rec->jm_oldoff = jmvref->jm_oldoff;
3153 	rec->jm_newoff = jmvref->jm_newoff;
3154 }
3155 
3156 static void
3157 jnewblk_write(jnewblk, jseg, data)
3158 	struct jnewblk *jnewblk;
3159 	struct jseg *jseg;
3160 	uint8_t *data;
3161 {
3162 	struct jblkrec *rec;
3163 
3164 	jnewblk->jn_jsegdep->jd_seg = jseg;
3165 	rec = (struct jblkrec *)data;
3166 	rec->jb_op = JOP_NEWBLK;
3167 	rec->jb_ino = jnewblk->jn_ino;
3168 	rec->jb_blkno = jnewblk->jn_blkno;
3169 	rec->jb_lbn = jnewblk->jn_lbn;
3170 	rec->jb_frags = jnewblk->jn_frags;
3171 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3172 }
3173 
3174 static void
3175 jfreeblk_write(jfreeblk, jseg, data)
3176 	struct jfreeblk *jfreeblk;
3177 	struct jseg *jseg;
3178 	uint8_t *data;
3179 {
3180 	struct jblkrec *rec;
3181 
3182 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3183 	rec = (struct jblkrec *)data;
3184 	rec->jb_op = JOP_FREEBLK;
3185 	rec->jb_ino = jfreeblk->jf_ino;
3186 	rec->jb_blkno = jfreeblk->jf_blkno;
3187 	rec->jb_lbn = jfreeblk->jf_lbn;
3188 	rec->jb_frags = jfreeblk->jf_frags;
3189 	rec->jb_oldfrags = 0;
3190 }
3191 
3192 static void
3193 jfreefrag_write(jfreefrag, jseg, data)
3194 	struct jfreefrag *jfreefrag;
3195 	struct jseg *jseg;
3196 	uint8_t *data;
3197 {
3198 	struct jblkrec *rec;
3199 
3200 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3201 	rec = (struct jblkrec *)data;
3202 	rec->jb_op = JOP_FREEBLK;
3203 	rec->jb_ino = jfreefrag->fr_ino;
3204 	rec->jb_blkno = jfreefrag->fr_blkno;
3205 	rec->jb_lbn = jfreefrag->fr_lbn;
3206 	rec->jb_frags = jfreefrag->fr_frags;
3207 	rec->jb_oldfrags = 0;
3208 }
3209 
3210 static void
3211 jtrunc_write(jtrunc, jseg, data)
3212 	struct jtrunc *jtrunc;
3213 	struct jseg *jseg;
3214 	uint8_t *data;
3215 {
3216 	struct jtrncrec *rec;
3217 
3218 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3219 	rec = (struct jtrncrec *)data;
3220 	rec->jt_op = JOP_TRUNC;
3221 	rec->jt_ino = jtrunc->jt_ino;
3222 	rec->jt_size = jtrunc->jt_size;
3223 	rec->jt_extsize = jtrunc->jt_extsize;
3224 }
3225 
3226 static void
3227 jfsync_write(jfsync, jseg, data)
3228 	struct jfsync *jfsync;
3229 	struct jseg *jseg;
3230 	uint8_t *data;
3231 {
3232 	struct jtrncrec *rec;
3233 
3234 	rec = (struct jtrncrec *)data;
3235 	rec->jt_op = JOP_SYNC;
3236 	rec->jt_ino = jfsync->jfs_ino;
3237 	rec->jt_size = jfsync->jfs_size;
3238 	rec->jt_extsize = jfsync->jfs_extsize;
3239 }
3240 
3241 static void
3242 softdep_flushjournal(mp)
3243 	struct mount *mp;
3244 {
3245 	struct jblocks *jblocks;
3246 	struct ufsmount *ump;
3247 
3248 	if (MOUNTEDSUJ(mp) == 0)
3249 		return;
3250 	ump = VFSTOUFS(mp);
3251 	jblocks = ump->softdep_jblocks;
3252 	ACQUIRE_LOCK(ump);
3253 	while (ump->softdep_on_journal) {
3254 		jblocks->jb_needseg = 1;
3255 		softdep_process_journal(mp, NULL, MNT_WAIT);
3256 	}
3257 	FREE_LOCK(ump);
3258 }
3259 
3260 static void softdep_synchronize_completed(struct bio *);
3261 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3262 
3263 static void
3264 softdep_synchronize_completed(bp)
3265         struct bio *bp;
3266 {
3267 	struct jseg *oldest;
3268 	struct jseg *jseg;
3269 	struct ufsmount *ump;
3270 
3271 	/*
3272 	 * caller1 marks the last segment written before we issued the
3273 	 * synchronize cache.
3274 	 */
3275 	jseg = bp->bio_caller1;
3276 	if (jseg == NULL) {
3277 		g_destroy_bio(bp);
3278 		return;
3279 	}
3280 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3281 	ACQUIRE_LOCK(ump);
3282 	oldest = NULL;
3283 	/*
3284 	 * Mark all the journal entries waiting on the synchronize cache
3285 	 * as completed so they may continue on.
3286 	 */
3287 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3288 		jseg->js_state |= COMPLETE;
3289 		oldest = jseg;
3290 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3291 	}
3292 	/*
3293 	 * Restart deferred journal entry processing from the oldest
3294 	 * completed jseg.
3295 	 */
3296 	if (oldest)
3297 		complete_jsegs(oldest);
3298 
3299 	FREE_LOCK(ump);
3300 	g_destroy_bio(bp);
3301 }
3302 
3303 /*
3304  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3305  * barriers.  The journal must be written prior to any blocks that depend
3306  * on it and the journal can not be released until the blocks have be
3307  * written.  This code handles both barriers simultaneously.
3308  */
3309 static void
3310 softdep_synchronize(bp, ump, caller1)
3311 	struct bio *bp;
3312 	struct ufsmount *ump;
3313 	void *caller1;
3314 {
3315 
3316 	bp->bio_cmd = BIO_FLUSH;
3317 	bp->bio_flags |= BIO_ORDERED;
3318 	bp->bio_data = NULL;
3319 	bp->bio_offset = ump->um_cp->provider->mediasize;
3320 	bp->bio_length = 0;
3321 	bp->bio_done = softdep_synchronize_completed;
3322 	bp->bio_caller1 = caller1;
3323 	g_io_request(bp,
3324 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3325 }
3326 
3327 /*
3328  * Flush some journal records to disk.
3329  */
3330 static void
3331 softdep_process_journal(mp, needwk, flags)
3332 	struct mount *mp;
3333 	struct worklist *needwk;
3334 	int flags;
3335 {
3336 	struct jblocks *jblocks;
3337 	struct ufsmount *ump;
3338 	struct worklist *wk;
3339 	struct jseg *jseg;
3340 	struct buf *bp;
3341 	struct bio *bio;
3342 	uint8_t *data;
3343 	struct fs *fs;
3344 	int shouldflush;
3345 	int segwritten;
3346 	int jrecmin;	/* Minimum records per block. */
3347 	int jrecmax;	/* Maximum records per block. */
3348 	int size;
3349 	int cnt;
3350 	int off;
3351 	int devbsize;
3352 
3353 	if (MOUNTEDSUJ(mp) == 0)
3354 		return;
3355 	shouldflush = softdep_flushcache;
3356 	bio = NULL;
3357 	jseg = NULL;
3358 	ump = VFSTOUFS(mp);
3359 	LOCK_OWNED(ump);
3360 	fs = ump->um_fs;
3361 	jblocks = ump->softdep_jblocks;
3362 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3363 	/*
3364 	 * We write anywhere between a disk block and fs block.  The upper
3365 	 * bound is picked to prevent buffer cache fragmentation and limit
3366 	 * processing time per I/O.
3367 	 */
3368 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3369 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3370 	segwritten = 0;
3371 	for (;;) {
3372 		cnt = ump->softdep_on_journal;
3373 		/*
3374 		 * Criteria for writing a segment:
3375 		 * 1) We have a full block.
3376 		 * 2) We're called from jwait() and haven't found the
3377 		 *    journal item yet.
3378 		 * 3) Always write if needseg is set.
3379 		 * 4) If we are called from process_worklist and have
3380 		 *    not yet written anything we write a partial block
3381 		 *    to enforce a 1 second maximum latency on journal
3382 		 *    entries.
3383 		 */
3384 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3385 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3386 			break;
3387 		cnt++;
3388 		/*
3389 		 * Verify some free journal space.  softdep_prealloc() should
3390 		 * guarantee that we don't run out so this is indicative of
3391 		 * a problem with the flow control.  Try to recover
3392 		 * gracefully in any event.
3393 		 */
3394 		while (jblocks->jb_free == 0) {
3395 			if (flags != MNT_WAIT)
3396 				break;
3397 			printf("softdep: Out of journal space!\n");
3398 			softdep_speedup(ump);
3399 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3400 		}
3401 		FREE_LOCK(ump);
3402 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3403 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3404 		LIST_INIT(&jseg->js_entries);
3405 		LIST_INIT(&jseg->js_indirs);
3406 		jseg->js_state = ATTACHED;
3407 		if (shouldflush == 0)
3408 			jseg->js_state |= COMPLETE;
3409 		else if (bio == NULL)
3410 			bio = g_alloc_bio();
3411 		jseg->js_jblocks = jblocks;
3412 		bp = geteblk(fs->fs_bsize, 0);
3413 		ACQUIRE_LOCK(ump);
3414 		/*
3415 		 * If there was a race while we were allocating the block
3416 		 * and jseg the entry we care about was likely written.
3417 		 * We bail out in both the WAIT and NOWAIT case and assume
3418 		 * the caller will loop if the entry it cares about is
3419 		 * not written.
3420 		 */
3421 		cnt = ump->softdep_on_journal;
3422 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3423 			bp->b_flags |= B_INVAL | B_NOCACHE;
3424 			WORKITEM_FREE(jseg, D_JSEG);
3425 			FREE_LOCK(ump);
3426 			brelse(bp);
3427 			ACQUIRE_LOCK(ump);
3428 			break;
3429 		}
3430 		/*
3431 		 * Calculate the disk block size required for the available
3432 		 * records rounded to the min size.
3433 		 */
3434 		if (cnt == 0)
3435 			size = devbsize;
3436 		else if (cnt < jrecmax)
3437 			size = howmany(cnt, jrecmin) * devbsize;
3438 		else
3439 			size = fs->fs_bsize;
3440 		/*
3441 		 * Allocate a disk block for this journal data and account
3442 		 * for truncation of the requested size if enough contiguous
3443 		 * space was not available.
3444 		 */
3445 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3446 		bp->b_lblkno = bp->b_blkno;
3447 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3448 		bp->b_bcount = size;
3449 		bp->b_flags &= ~B_INVAL;
3450 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3451 		/*
3452 		 * Initialize our jseg with cnt records.  Assign the next
3453 		 * sequence number to it and link it in-order.
3454 		 */
3455 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3456 		jseg->js_buf = bp;
3457 		jseg->js_cnt = cnt;
3458 		jseg->js_refs = cnt + 1;	/* Self ref. */
3459 		jseg->js_size = size;
3460 		jseg->js_seq = jblocks->jb_nextseq++;
3461 		if (jblocks->jb_oldestseg == NULL)
3462 			jblocks->jb_oldestseg = jseg;
3463 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3464 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3465 		if (jblocks->jb_writeseg == NULL)
3466 			jblocks->jb_writeseg = jseg;
3467 		/*
3468 		 * Start filling in records from the pending list.
3469 		 */
3470 		data = bp->b_data;
3471 		off = 0;
3472 
3473 		/*
3474 		 * Always put a header on the first block.
3475 		 * XXX As with below, there might not be a chance to get
3476 		 * into the loop.  Ensure that something valid is written.
3477 		 */
3478 		jseg_write(ump, jseg, data);
3479 		off += JREC_SIZE;
3480 		data = bp->b_data + off;
3481 
3482 		/*
3483 		 * XXX Something is wrong here.  There's no work to do,
3484 		 * but we need to perform and I/O and allow it to complete
3485 		 * anyways.
3486 		 */
3487 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3488 			stat_emptyjblocks++;
3489 
3490 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3491 		    != NULL) {
3492 			if (cnt == 0)
3493 				break;
3494 			/* Place a segment header on every device block. */
3495 			if ((off % devbsize) == 0) {
3496 				jseg_write(ump, jseg, data);
3497 				off += JREC_SIZE;
3498 				data = bp->b_data + off;
3499 			}
3500 			if (wk == needwk)
3501 				needwk = NULL;
3502 			remove_from_journal(wk);
3503 			wk->wk_state |= INPROGRESS;
3504 			WORKLIST_INSERT(&jseg->js_entries, wk);
3505 			switch (wk->wk_type) {
3506 			case D_JADDREF:
3507 				jaddref_write(WK_JADDREF(wk), jseg, data);
3508 				break;
3509 			case D_JREMREF:
3510 				jremref_write(WK_JREMREF(wk), jseg, data);
3511 				break;
3512 			case D_JMVREF:
3513 				jmvref_write(WK_JMVREF(wk), jseg, data);
3514 				break;
3515 			case D_JNEWBLK:
3516 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3517 				break;
3518 			case D_JFREEBLK:
3519 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3520 				break;
3521 			case D_JFREEFRAG:
3522 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3523 				break;
3524 			case D_JTRUNC:
3525 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3526 				break;
3527 			case D_JFSYNC:
3528 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3529 				break;
3530 			default:
3531 				panic("process_journal: Unknown type %s",
3532 				    TYPENAME(wk->wk_type));
3533 				/* NOTREACHED */
3534 			}
3535 			off += JREC_SIZE;
3536 			data = bp->b_data + off;
3537 			cnt--;
3538 		}
3539 
3540 		/* Clear any remaining space so we don't leak kernel data */
3541 		if (size > off)
3542 			bzero(data, size - off);
3543 
3544 		/*
3545 		 * Write this one buffer and continue.
3546 		 */
3547 		segwritten = 1;
3548 		jblocks->jb_needseg = 0;
3549 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3550 		FREE_LOCK(ump);
3551 		pbgetvp(ump->um_devvp, bp);
3552 		/*
3553 		 * We only do the blocking wait once we find the journal
3554 		 * entry we're looking for.
3555 		 */
3556 		if (needwk == NULL && flags == MNT_WAIT)
3557 			bwrite(bp);
3558 		else
3559 			bawrite(bp);
3560 		ACQUIRE_LOCK(ump);
3561 	}
3562 	/*
3563 	 * If we wrote a segment issue a synchronize cache so the journal
3564 	 * is reflected on disk before the data is written.  Since reclaiming
3565 	 * journal space also requires writing a journal record this
3566 	 * process also enforces a barrier before reclamation.
3567 	 */
3568 	if (segwritten && shouldflush) {
3569 		softdep_synchronize(bio, ump,
3570 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3571 	} else if (bio)
3572 		g_destroy_bio(bio);
3573 	/*
3574 	 * If we've suspended the filesystem because we ran out of journal
3575 	 * space either try to sync it here to make some progress or
3576 	 * unsuspend it if we already have.
3577 	 */
3578 	if (flags == 0 && jblocks->jb_suspended) {
3579 		if (journal_unsuspend(ump))
3580 			return;
3581 		FREE_LOCK(ump);
3582 		VFS_SYNC(mp, MNT_NOWAIT);
3583 		ffs_sbupdate(ump, MNT_WAIT, 0);
3584 		ACQUIRE_LOCK(ump);
3585 	}
3586 }
3587 
3588 /*
3589  * Complete a jseg, allowing all dependencies awaiting journal writes
3590  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3591  * structures so that the journal segment can be freed to reclaim space.
3592  */
3593 static void
3594 complete_jseg(jseg)
3595 	struct jseg *jseg;
3596 {
3597 	struct worklist *wk;
3598 	struct jmvref *jmvref;
3599 #ifdef INVARIANTS
3600 	int i = 0;
3601 #endif
3602 
3603 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3604 		WORKLIST_REMOVE(wk);
3605 		wk->wk_state &= ~INPROGRESS;
3606 		wk->wk_state |= COMPLETE;
3607 		KASSERT(i++ < jseg->js_cnt,
3608 		    ("handle_written_jseg: overflow %d >= %d",
3609 		    i - 1, jseg->js_cnt));
3610 		switch (wk->wk_type) {
3611 		case D_JADDREF:
3612 			handle_written_jaddref(WK_JADDREF(wk));
3613 			break;
3614 		case D_JREMREF:
3615 			handle_written_jremref(WK_JREMREF(wk));
3616 			break;
3617 		case D_JMVREF:
3618 			rele_jseg(jseg);	/* No jsegdep. */
3619 			jmvref = WK_JMVREF(wk);
3620 			LIST_REMOVE(jmvref, jm_deps);
3621 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3622 				free_pagedep(jmvref->jm_pagedep);
3623 			WORKITEM_FREE(jmvref, D_JMVREF);
3624 			break;
3625 		case D_JNEWBLK:
3626 			handle_written_jnewblk(WK_JNEWBLK(wk));
3627 			break;
3628 		case D_JFREEBLK:
3629 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3630 			break;
3631 		case D_JTRUNC:
3632 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3633 			break;
3634 		case D_JFSYNC:
3635 			rele_jseg(jseg);	/* No jsegdep. */
3636 			WORKITEM_FREE(wk, D_JFSYNC);
3637 			break;
3638 		case D_JFREEFRAG:
3639 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3640 			break;
3641 		default:
3642 			panic("handle_written_jseg: Unknown type %s",
3643 			    TYPENAME(wk->wk_type));
3644 			/* NOTREACHED */
3645 		}
3646 	}
3647 	/* Release the self reference so the structure may be freed. */
3648 	rele_jseg(jseg);
3649 }
3650 
3651 /*
3652  * Determine which jsegs are ready for completion processing.  Waits for
3653  * synchronize cache to complete as well as forcing in-order completion
3654  * of journal entries.
3655  */
3656 static void
3657 complete_jsegs(jseg)
3658 	struct jseg *jseg;
3659 {
3660 	struct jblocks *jblocks;
3661 	struct jseg *jsegn;
3662 
3663 	jblocks = jseg->js_jblocks;
3664 	/*
3665 	 * Don't allow out of order completions.  If this isn't the first
3666 	 * block wait for it to write before we're done.
3667 	 */
3668 	if (jseg != jblocks->jb_writeseg)
3669 		return;
3670 	/* Iterate through available jsegs processing their entries. */
3671 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3672 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3673 		jsegn = TAILQ_NEXT(jseg, js_next);
3674 		complete_jseg(jseg);
3675 		jseg = jsegn;
3676 	}
3677 	jblocks->jb_writeseg = jseg;
3678 	/*
3679 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3680 	 */
3681 	free_jsegs(jblocks);
3682 }
3683 
3684 /*
3685  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3686  * the final completions.
3687  */
3688 static void
3689 handle_written_jseg(jseg, bp)
3690 	struct jseg *jseg;
3691 	struct buf *bp;
3692 {
3693 
3694 	if (jseg->js_refs == 0)
3695 		panic("handle_written_jseg: No self-reference on %p", jseg);
3696 	jseg->js_state |= DEPCOMPLETE;
3697 	/*
3698 	 * We'll never need this buffer again, set flags so it will be
3699 	 * discarded.
3700 	 */
3701 	bp->b_flags |= B_INVAL | B_NOCACHE;
3702 	pbrelvp(bp);
3703 	complete_jsegs(jseg);
3704 }
3705 
3706 static inline struct jsegdep *
3707 inoref_jseg(inoref)
3708 	struct inoref *inoref;
3709 {
3710 	struct jsegdep *jsegdep;
3711 
3712 	jsegdep = inoref->if_jsegdep;
3713 	inoref->if_jsegdep = NULL;
3714 
3715 	return (jsegdep);
3716 }
3717 
3718 /*
3719  * Called once a jremref has made it to stable store.  The jremref is marked
3720  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3721  * for the jremref to complete will be awoken by free_jremref.
3722  */
3723 static void
3724 handle_written_jremref(jremref)
3725 	struct jremref *jremref;
3726 {
3727 	struct inodedep *inodedep;
3728 	struct jsegdep *jsegdep;
3729 	struct dirrem *dirrem;
3730 
3731 	/* Grab the jsegdep. */
3732 	jsegdep = inoref_jseg(&jremref->jr_ref);
3733 	/*
3734 	 * Remove us from the inoref list.
3735 	 */
3736 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3737 	    0, &inodedep) == 0)
3738 		panic("handle_written_jremref: Lost inodedep");
3739 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3740 	/*
3741 	 * Complete the dirrem.
3742 	 */
3743 	dirrem = jremref->jr_dirrem;
3744 	jremref->jr_dirrem = NULL;
3745 	LIST_REMOVE(jremref, jr_deps);
3746 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3747 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3748 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3749 	    (dirrem->dm_state & COMPLETE) != 0)
3750 		add_to_worklist(&dirrem->dm_list, 0);
3751 	free_jremref(jremref);
3752 }
3753 
3754 /*
3755  * Called once a jaddref has made it to stable store.  The dependency is
3756  * marked complete and any dependent structures are added to the inode
3757  * bufwait list to be completed as soon as it is written.  If a bitmap write
3758  * depends on this entry we move the inode into the inodedephd of the
3759  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3760  */
3761 static void
3762 handle_written_jaddref(jaddref)
3763 	struct jaddref *jaddref;
3764 {
3765 	struct jsegdep *jsegdep;
3766 	struct inodedep *inodedep;
3767 	struct diradd *diradd;
3768 	struct mkdir *mkdir;
3769 
3770 	/* Grab the jsegdep. */
3771 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3772 	mkdir = NULL;
3773 	diradd = NULL;
3774 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3775 	    0, &inodedep) == 0)
3776 		panic("handle_written_jaddref: Lost inodedep.");
3777 	if (jaddref->ja_diradd == NULL)
3778 		panic("handle_written_jaddref: No dependency");
3779 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3780 		diradd = jaddref->ja_diradd;
3781 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3782 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3783 		mkdir = jaddref->ja_mkdir;
3784 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3785 	} else if (jaddref->ja_state & MKDIR_BODY)
3786 		mkdir = jaddref->ja_mkdir;
3787 	else
3788 		panic("handle_written_jaddref: Unknown dependency %p",
3789 		    jaddref->ja_diradd);
3790 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3791 	/*
3792 	 * Remove us from the inode list.
3793 	 */
3794 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3795 	/*
3796 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3797 	 */
3798 	if (mkdir) {
3799 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3800 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3801 		    TYPENAME(mkdir->md_list.wk_type)));
3802 		mkdir->md_jaddref = NULL;
3803 		diradd = mkdir->md_diradd;
3804 		mkdir->md_state |= DEPCOMPLETE;
3805 		complete_mkdir(mkdir);
3806 	}
3807 	jwork_insert(&diradd->da_jwork, jsegdep);
3808 	if (jaddref->ja_state & NEWBLOCK) {
3809 		inodedep->id_state |= ONDEPLIST;
3810 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3811 		    inodedep, id_deps);
3812 	}
3813 	free_jaddref(jaddref);
3814 }
3815 
3816 /*
3817  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3818  * is placed in the bmsafemap to await notification of a written bitmap.  If
3819  * the operation was canceled we add the segdep to the appropriate
3820  * dependency to free the journal space once the canceling operation
3821  * completes.
3822  */
3823 static void
3824 handle_written_jnewblk(jnewblk)
3825 	struct jnewblk *jnewblk;
3826 {
3827 	struct bmsafemap *bmsafemap;
3828 	struct freefrag *freefrag;
3829 	struct freework *freework;
3830 	struct jsegdep *jsegdep;
3831 	struct newblk *newblk;
3832 
3833 	/* Grab the jsegdep. */
3834 	jsegdep = jnewblk->jn_jsegdep;
3835 	jnewblk->jn_jsegdep = NULL;
3836 	if (jnewblk->jn_dep == NULL)
3837 		panic("handle_written_jnewblk: No dependency for the segdep.");
3838 	switch (jnewblk->jn_dep->wk_type) {
3839 	case D_NEWBLK:
3840 	case D_ALLOCDIRECT:
3841 	case D_ALLOCINDIR:
3842 		/*
3843 		 * Add the written block to the bmsafemap so it can
3844 		 * be notified when the bitmap is on disk.
3845 		 */
3846 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3847 		newblk->nb_jnewblk = NULL;
3848 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3849 			bmsafemap = newblk->nb_bmsafemap;
3850 			newblk->nb_state |= ONDEPLIST;
3851 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3852 			    nb_deps);
3853 		}
3854 		jwork_insert(&newblk->nb_jwork, jsegdep);
3855 		break;
3856 	case D_FREEFRAG:
3857 		/*
3858 		 * A newblock being removed by a freefrag when replaced by
3859 		 * frag extension.
3860 		 */
3861 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3862 		freefrag->ff_jdep = NULL;
3863 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3864 		break;
3865 	case D_FREEWORK:
3866 		/*
3867 		 * A direct block was removed by truncate.
3868 		 */
3869 		freework = WK_FREEWORK(jnewblk->jn_dep);
3870 		freework->fw_jnewblk = NULL;
3871 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3872 		break;
3873 	default:
3874 		panic("handle_written_jnewblk: Unknown type %d.",
3875 		    jnewblk->jn_dep->wk_type);
3876 	}
3877 	jnewblk->jn_dep = NULL;
3878 	free_jnewblk(jnewblk);
3879 }
3880 
3881 /*
3882  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3883  * an in-flight allocation that has not yet been committed.  Divorce us
3884  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3885  * to the worklist.
3886  */
3887 static void
3888 cancel_jfreefrag(jfreefrag)
3889 	struct jfreefrag *jfreefrag;
3890 {
3891 	struct freefrag *freefrag;
3892 
3893 	if (jfreefrag->fr_jsegdep) {
3894 		free_jsegdep(jfreefrag->fr_jsegdep);
3895 		jfreefrag->fr_jsegdep = NULL;
3896 	}
3897 	freefrag = jfreefrag->fr_freefrag;
3898 	jfreefrag->fr_freefrag = NULL;
3899 	free_jfreefrag(jfreefrag);
3900 	freefrag->ff_state |= DEPCOMPLETE;
3901 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3902 }
3903 
3904 /*
3905  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3906  */
3907 static void
3908 free_jfreefrag(jfreefrag)
3909 	struct jfreefrag *jfreefrag;
3910 {
3911 
3912 	if (jfreefrag->fr_state & INPROGRESS)
3913 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3914 	else if (jfreefrag->fr_state & ONWORKLIST)
3915 		remove_from_journal(&jfreefrag->fr_list);
3916 	if (jfreefrag->fr_freefrag != NULL)
3917 		panic("free_jfreefrag:  Still attached to a freefrag.");
3918 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3919 }
3920 
3921 /*
3922  * Called when the journal write for a jfreefrag completes.  The parent
3923  * freefrag is added to the worklist if this completes its dependencies.
3924  */
3925 static void
3926 handle_written_jfreefrag(jfreefrag)
3927 	struct jfreefrag *jfreefrag;
3928 {
3929 	struct jsegdep *jsegdep;
3930 	struct freefrag *freefrag;
3931 
3932 	/* Grab the jsegdep. */
3933 	jsegdep = jfreefrag->fr_jsegdep;
3934 	jfreefrag->fr_jsegdep = NULL;
3935 	freefrag = jfreefrag->fr_freefrag;
3936 	if (freefrag == NULL)
3937 		panic("handle_written_jfreefrag: No freefrag.");
3938 	freefrag->ff_state |= DEPCOMPLETE;
3939 	freefrag->ff_jdep = NULL;
3940 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3941 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3942 		add_to_worklist(&freefrag->ff_list, 0);
3943 	jfreefrag->fr_freefrag = NULL;
3944 	free_jfreefrag(jfreefrag);
3945 }
3946 
3947 /*
3948  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3949  * is removed from the freeblks list of pending journal writes and the
3950  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3951  * have been reclaimed.
3952  */
3953 static void
3954 handle_written_jblkdep(jblkdep)
3955 	struct jblkdep *jblkdep;
3956 {
3957 	struct freeblks *freeblks;
3958 	struct jsegdep *jsegdep;
3959 
3960 	/* Grab the jsegdep. */
3961 	jsegdep = jblkdep->jb_jsegdep;
3962 	jblkdep->jb_jsegdep = NULL;
3963 	freeblks = jblkdep->jb_freeblks;
3964 	LIST_REMOVE(jblkdep, jb_deps);
3965 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3966 	/*
3967 	 * If the freeblks is all journaled, we can add it to the worklist.
3968 	 */
3969 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3970 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3971 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3972 
3973 	free_jblkdep(jblkdep);
3974 }
3975 
3976 static struct jsegdep *
3977 newjsegdep(struct worklist *wk)
3978 {
3979 	struct jsegdep *jsegdep;
3980 
3981 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3982 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3983 	jsegdep->jd_seg = NULL;
3984 
3985 	return (jsegdep);
3986 }
3987 
3988 static struct jmvref *
3989 newjmvref(dp, ino, oldoff, newoff)
3990 	struct inode *dp;
3991 	ino_t ino;
3992 	off_t oldoff;
3993 	off_t newoff;
3994 {
3995 	struct jmvref *jmvref;
3996 
3997 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3998 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
3999 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4000 	jmvref->jm_parent = dp->i_number;
4001 	jmvref->jm_ino = ino;
4002 	jmvref->jm_oldoff = oldoff;
4003 	jmvref->jm_newoff = newoff;
4004 
4005 	return (jmvref);
4006 }
4007 
4008 /*
4009  * Allocate a new jremref that tracks the removal of ip from dp with the
4010  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4011  * DEPCOMPLETE as we have all the information required for the journal write
4012  * and the directory has already been removed from the buffer.  The caller
4013  * is responsible for linking the jremref into the pagedep and adding it
4014  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4015  * a DOTDOT addition so handle_workitem_remove() can properly assign
4016  * the jsegdep when we're done.
4017  */
4018 static struct jremref *
4019 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4020     off_t diroff, nlink_t nlink)
4021 {
4022 	struct jremref *jremref;
4023 
4024 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4025 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4026 	jremref->jr_state = ATTACHED;
4027 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4028 	   nlink, ip->i_mode);
4029 	jremref->jr_dirrem = dirrem;
4030 
4031 	return (jremref);
4032 }
4033 
4034 static inline void
4035 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4036     nlink_t nlink, uint16_t mode)
4037 {
4038 
4039 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4040 	inoref->if_diroff = diroff;
4041 	inoref->if_ino = ino;
4042 	inoref->if_parent = parent;
4043 	inoref->if_nlink = nlink;
4044 	inoref->if_mode = mode;
4045 }
4046 
4047 /*
4048  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4049  * directory offset may not be known until later.  The caller is responsible
4050  * adding the entry to the journal when this information is available.  nlink
4051  * should be the link count prior to the addition and mode is only required
4052  * to have the correct FMT.
4053  */
4054 static struct jaddref *
4055 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4056     uint16_t mode)
4057 {
4058 	struct jaddref *jaddref;
4059 
4060 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4061 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4062 	jaddref->ja_state = ATTACHED;
4063 	jaddref->ja_mkdir = NULL;
4064 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4065 
4066 	return (jaddref);
4067 }
4068 
4069 /*
4070  * Create a new free dependency for a freework.  The caller is responsible
4071  * for adjusting the reference count when it has the lock held.  The freedep
4072  * will track an outstanding bitmap write that will ultimately clear the
4073  * freework to continue.
4074  */
4075 static struct freedep *
4076 newfreedep(struct freework *freework)
4077 {
4078 	struct freedep *freedep;
4079 
4080 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4081 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4082 	freedep->fd_freework = freework;
4083 
4084 	return (freedep);
4085 }
4086 
4087 /*
4088  * Free a freedep structure once the buffer it is linked to is written.  If
4089  * this is the last reference to the freework schedule it for completion.
4090  */
4091 static void
4092 free_freedep(freedep)
4093 	struct freedep *freedep;
4094 {
4095 	struct freework *freework;
4096 
4097 	freework = freedep->fd_freework;
4098 	freework->fw_freeblks->fb_cgwait--;
4099 	if (--freework->fw_ref == 0)
4100 		freework_enqueue(freework);
4101 	WORKITEM_FREE(freedep, D_FREEDEP);
4102 }
4103 
4104 /*
4105  * Allocate a new freework structure that may be a level in an indirect
4106  * when parent is not NULL or a top level block when it is.  The top level
4107  * freework structures are allocated without the per-filesystem lock held
4108  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4109  */
4110 static struct freework *
4111 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4112 	struct ufsmount *ump;
4113 	struct freeblks *freeblks;
4114 	struct freework *parent;
4115 	ufs_lbn_t lbn;
4116 	ufs2_daddr_t nb;
4117 	int frags;
4118 	int off;
4119 	int journal;
4120 {
4121 	struct freework *freework;
4122 
4123 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4124 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4125 	freework->fw_state = ATTACHED;
4126 	freework->fw_jnewblk = NULL;
4127 	freework->fw_freeblks = freeblks;
4128 	freework->fw_parent = parent;
4129 	freework->fw_lbn = lbn;
4130 	freework->fw_blkno = nb;
4131 	freework->fw_frags = frags;
4132 	freework->fw_indir = NULL;
4133 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4134 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4135 	freework->fw_start = freework->fw_off = off;
4136 	if (journal)
4137 		newjfreeblk(freeblks, lbn, nb, frags);
4138 	if (parent == NULL) {
4139 		ACQUIRE_LOCK(ump);
4140 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4141 		freeblks->fb_ref++;
4142 		FREE_LOCK(ump);
4143 	}
4144 
4145 	return (freework);
4146 }
4147 
4148 /*
4149  * Eliminate a jfreeblk for a block that does not need journaling.
4150  */
4151 static void
4152 cancel_jfreeblk(freeblks, blkno)
4153 	struct freeblks *freeblks;
4154 	ufs2_daddr_t blkno;
4155 {
4156 	struct jfreeblk *jfreeblk;
4157 	struct jblkdep *jblkdep;
4158 
4159 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4160 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4161 			continue;
4162 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4163 		if (jfreeblk->jf_blkno == blkno)
4164 			break;
4165 	}
4166 	if (jblkdep == NULL)
4167 		return;
4168 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4169 	free_jsegdep(jblkdep->jb_jsegdep);
4170 	LIST_REMOVE(jblkdep, jb_deps);
4171 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4172 }
4173 
4174 /*
4175  * Allocate a new jfreeblk to journal top level block pointer when truncating
4176  * a file.  The caller must add this to the worklist when the per-filesystem
4177  * lock is held.
4178  */
4179 static struct jfreeblk *
4180 newjfreeblk(freeblks, lbn, blkno, frags)
4181 	struct freeblks *freeblks;
4182 	ufs_lbn_t lbn;
4183 	ufs2_daddr_t blkno;
4184 	int frags;
4185 {
4186 	struct jfreeblk *jfreeblk;
4187 
4188 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4189 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4190 	    freeblks->fb_list.wk_mp);
4191 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4192 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4193 	jfreeblk->jf_ino = freeblks->fb_inum;
4194 	jfreeblk->jf_lbn = lbn;
4195 	jfreeblk->jf_blkno = blkno;
4196 	jfreeblk->jf_frags = frags;
4197 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4198 
4199 	return (jfreeblk);
4200 }
4201 
4202 /*
4203  * The journal is only prepared to handle full-size block numbers, so we
4204  * have to adjust the record to reflect the change to a full-size block.
4205  * For example, suppose we have a block made up of fragments 8-15 and
4206  * want to free its last two fragments. We are given a request that says:
4207  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4208  * where frags are the number of fragments to free and oldfrags are the
4209  * number of fragments to keep. To block align it, we have to change it to
4210  * have a valid full-size blkno, so it becomes:
4211  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4212  */
4213 static void
4214 adjust_newfreework(freeblks, frag_offset)
4215 	struct freeblks *freeblks;
4216 	int frag_offset;
4217 {
4218 	struct jfreeblk *jfreeblk;
4219 
4220 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4221 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4222 	    ("adjust_newfreework: Missing freeblks dependency"));
4223 
4224 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4225 	jfreeblk->jf_blkno -= frag_offset;
4226 	jfreeblk->jf_frags += frag_offset;
4227 }
4228 
4229 /*
4230  * Allocate a new jtrunc to track a partial truncation.
4231  */
4232 static struct jtrunc *
4233 newjtrunc(freeblks, size, extsize)
4234 	struct freeblks *freeblks;
4235 	off_t size;
4236 	int extsize;
4237 {
4238 	struct jtrunc *jtrunc;
4239 
4240 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4241 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4242 	    freeblks->fb_list.wk_mp);
4243 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4244 	jtrunc->jt_dep.jb_freeblks = freeblks;
4245 	jtrunc->jt_ino = freeblks->fb_inum;
4246 	jtrunc->jt_size = size;
4247 	jtrunc->jt_extsize = extsize;
4248 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4249 
4250 	return (jtrunc);
4251 }
4252 
4253 /*
4254  * If we're canceling a new bitmap we have to search for another ref
4255  * to move into the bmsafemap dep.  This might be better expressed
4256  * with another structure.
4257  */
4258 static void
4259 move_newblock_dep(jaddref, inodedep)
4260 	struct jaddref *jaddref;
4261 	struct inodedep *inodedep;
4262 {
4263 	struct inoref *inoref;
4264 	struct jaddref *jaddrefn;
4265 
4266 	jaddrefn = NULL;
4267 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4268 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4269 		if ((jaddref->ja_state & NEWBLOCK) &&
4270 		    inoref->if_list.wk_type == D_JADDREF) {
4271 			jaddrefn = (struct jaddref *)inoref;
4272 			break;
4273 		}
4274 	}
4275 	if (jaddrefn == NULL)
4276 		return;
4277 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4278 	jaddrefn->ja_state |= jaddref->ja_state &
4279 	    (ATTACHED | UNDONE | NEWBLOCK);
4280 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4281 	jaddref->ja_state |= ATTACHED;
4282 	LIST_REMOVE(jaddref, ja_bmdeps);
4283 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4284 	    ja_bmdeps);
4285 }
4286 
4287 /*
4288  * Cancel a jaddref either before it has been written or while it is being
4289  * written.  This happens when a link is removed before the add reaches
4290  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4291  * and inode to prevent the link count or bitmap from reaching the disk
4292  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4293  * required.
4294  *
4295  * Returns 1 if the canceled addref requires journaling of the remove and
4296  * 0 otherwise.
4297  */
4298 static int
4299 cancel_jaddref(jaddref, inodedep, wkhd)
4300 	struct jaddref *jaddref;
4301 	struct inodedep *inodedep;
4302 	struct workhead *wkhd;
4303 {
4304 	struct inoref *inoref;
4305 	struct jsegdep *jsegdep;
4306 	int needsj;
4307 
4308 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4309 	    ("cancel_jaddref: Canceling complete jaddref"));
4310 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4311 		needsj = 1;
4312 	else
4313 		needsj = 0;
4314 	if (inodedep == NULL)
4315 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4316 		    0, &inodedep) == 0)
4317 			panic("cancel_jaddref: Lost inodedep");
4318 	/*
4319 	 * We must adjust the nlink of any reference operation that follows
4320 	 * us so that it is consistent with the in-memory reference.  This
4321 	 * ensures that inode nlink rollbacks always have the correct link.
4322 	 */
4323 	if (needsj == 0) {
4324 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4325 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4326 			if (inoref->if_state & GOINGAWAY)
4327 				break;
4328 			inoref->if_nlink--;
4329 		}
4330 	}
4331 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4332 	if (jaddref->ja_state & NEWBLOCK)
4333 		move_newblock_dep(jaddref, inodedep);
4334 	wake_worklist(&jaddref->ja_list);
4335 	jaddref->ja_mkdir = NULL;
4336 	if (jaddref->ja_state & INPROGRESS) {
4337 		jaddref->ja_state &= ~INPROGRESS;
4338 		WORKLIST_REMOVE(&jaddref->ja_list);
4339 		jwork_insert(wkhd, jsegdep);
4340 	} else {
4341 		free_jsegdep(jsegdep);
4342 		if (jaddref->ja_state & DEPCOMPLETE)
4343 			remove_from_journal(&jaddref->ja_list);
4344 	}
4345 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4346 	/*
4347 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4348 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4349 	 * no longer need this addref attached to the inoreflst and it
4350 	 * will incorrectly adjust nlink if we leave it.
4351 	 */
4352 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4353 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4354 		    if_deps);
4355 		jaddref->ja_state |= COMPLETE;
4356 		free_jaddref(jaddref);
4357 		return (needsj);
4358 	}
4359 	/*
4360 	 * Leave the head of the list for jsegdeps for fast merging.
4361 	 */
4362 	if (LIST_FIRST(wkhd) != NULL) {
4363 		jaddref->ja_state |= ONWORKLIST;
4364 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4365 	} else
4366 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4367 
4368 	return (needsj);
4369 }
4370 
4371 /*
4372  * Attempt to free a jaddref structure when some work completes.  This
4373  * should only succeed once the entry is written and all dependencies have
4374  * been notified.
4375  */
4376 static void
4377 free_jaddref(jaddref)
4378 	struct jaddref *jaddref;
4379 {
4380 
4381 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4382 		return;
4383 	if (jaddref->ja_ref.if_jsegdep)
4384 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4385 		    jaddref, jaddref->ja_state);
4386 	if (jaddref->ja_state & NEWBLOCK)
4387 		LIST_REMOVE(jaddref, ja_bmdeps);
4388 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4389 		panic("free_jaddref: Bad state %p(0x%X)",
4390 		    jaddref, jaddref->ja_state);
4391 	if (jaddref->ja_mkdir != NULL)
4392 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4393 	WORKITEM_FREE(jaddref, D_JADDREF);
4394 }
4395 
4396 /*
4397  * Free a jremref structure once it has been written or discarded.
4398  */
4399 static void
4400 free_jremref(jremref)
4401 	struct jremref *jremref;
4402 {
4403 
4404 	if (jremref->jr_ref.if_jsegdep)
4405 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4406 	if (jremref->jr_state & INPROGRESS)
4407 		panic("free_jremref: IO still pending");
4408 	WORKITEM_FREE(jremref, D_JREMREF);
4409 }
4410 
4411 /*
4412  * Free a jnewblk structure.
4413  */
4414 static void
4415 free_jnewblk(jnewblk)
4416 	struct jnewblk *jnewblk;
4417 {
4418 
4419 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4420 		return;
4421 	LIST_REMOVE(jnewblk, jn_deps);
4422 	if (jnewblk->jn_dep != NULL)
4423 		panic("free_jnewblk: Dependency still attached.");
4424 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4425 }
4426 
4427 /*
4428  * Cancel a jnewblk which has been been made redundant by frag extension.
4429  */
4430 static void
4431 cancel_jnewblk(jnewblk, wkhd)
4432 	struct jnewblk *jnewblk;
4433 	struct workhead *wkhd;
4434 {
4435 	struct jsegdep *jsegdep;
4436 
4437 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4438 	jsegdep = jnewblk->jn_jsegdep;
4439 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4440 		panic("cancel_jnewblk: Invalid state");
4441 	jnewblk->jn_jsegdep  = NULL;
4442 	jnewblk->jn_dep = NULL;
4443 	jnewblk->jn_state |= GOINGAWAY;
4444 	if (jnewblk->jn_state & INPROGRESS) {
4445 		jnewblk->jn_state &= ~INPROGRESS;
4446 		WORKLIST_REMOVE(&jnewblk->jn_list);
4447 		jwork_insert(wkhd, jsegdep);
4448 	} else {
4449 		free_jsegdep(jsegdep);
4450 		remove_from_journal(&jnewblk->jn_list);
4451 	}
4452 	wake_worklist(&jnewblk->jn_list);
4453 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4454 }
4455 
4456 static void
4457 free_jblkdep(jblkdep)
4458 	struct jblkdep *jblkdep;
4459 {
4460 
4461 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4462 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4463 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4464 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4465 	else
4466 		panic("free_jblkdep: Unexpected type %s",
4467 		    TYPENAME(jblkdep->jb_list.wk_type));
4468 }
4469 
4470 /*
4471  * Free a single jseg once it is no longer referenced in memory or on
4472  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4473  * to disappear.
4474  */
4475 static void
4476 free_jseg(jseg, jblocks)
4477 	struct jseg *jseg;
4478 	struct jblocks *jblocks;
4479 {
4480 	struct freework *freework;
4481 
4482 	/*
4483 	 * Free freework structures that were lingering to indicate freed
4484 	 * indirect blocks that forced journal write ordering on reallocate.
4485 	 */
4486 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4487 		indirblk_remove(freework);
4488 	if (jblocks->jb_oldestseg == jseg)
4489 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4490 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4491 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4492 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4493 	    ("free_jseg: Freed jseg has valid entries."));
4494 	WORKITEM_FREE(jseg, D_JSEG);
4495 }
4496 
4497 /*
4498  * Free all jsegs that meet the criteria for being reclaimed and update
4499  * oldestseg.
4500  */
4501 static void
4502 free_jsegs(jblocks)
4503 	struct jblocks *jblocks;
4504 {
4505 	struct jseg *jseg;
4506 
4507 	/*
4508 	 * Free only those jsegs which have none allocated before them to
4509 	 * preserve the journal space ordering.
4510 	 */
4511 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4512 		/*
4513 		 * Only reclaim space when nothing depends on this journal
4514 		 * set and another set has written that it is no longer
4515 		 * valid.
4516 		 */
4517 		if (jseg->js_refs != 0) {
4518 			jblocks->jb_oldestseg = jseg;
4519 			return;
4520 		}
4521 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4522 			break;
4523 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4524 			break;
4525 		/*
4526 		 * We can free jsegs that didn't write entries when
4527 		 * oldestwrseq == js_seq.
4528 		 */
4529 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4530 		    jseg->js_cnt != 0)
4531 			break;
4532 		free_jseg(jseg, jblocks);
4533 	}
4534 	/*
4535 	 * If we exited the loop above we still must discover the
4536 	 * oldest valid segment.
4537 	 */
4538 	if (jseg)
4539 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4540 		     jseg = TAILQ_NEXT(jseg, js_next))
4541 			if (jseg->js_refs != 0)
4542 				break;
4543 	jblocks->jb_oldestseg = jseg;
4544 	/*
4545 	 * The journal has no valid records but some jsegs may still be
4546 	 * waiting on oldestwrseq to advance.  We force a small record
4547 	 * out to permit these lingering records to be reclaimed.
4548 	 */
4549 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4550 		jblocks->jb_needseg = 1;
4551 }
4552 
4553 /*
4554  * Release one reference to a jseg and free it if the count reaches 0.  This
4555  * should eventually reclaim journal space as well.
4556  */
4557 static void
4558 rele_jseg(jseg)
4559 	struct jseg *jseg;
4560 {
4561 
4562 	KASSERT(jseg->js_refs > 0,
4563 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4564 	if (--jseg->js_refs != 0)
4565 		return;
4566 	free_jsegs(jseg->js_jblocks);
4567 }
4568 
4569 /*
4570  * Release a jsegdep and decrement the jseg count.
4571  */
4572 static void
4573 free_jsegdep(jsegdep)
4574 	struct jsegdep *jsegdep;
4575 {
4576 
4577 	if (jsegdep->jd_seg)
4578 		rele_jseg(jsegdep->jd_seg);
4579 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4580 }
4581 
4582 /*
4583  * Wait for a journal item to make it to disk.  Initiate journal processing
4584  * if required.
4585  */
4586 static int
4587 jwait(wk, waitfor)
4588 	struct worklist *wk;
4589 	int waitfor;
4590 {
4591 
4592 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4593 	/*
4594 	 * Blocking journal waits cause slow synchronous behavior.  Record
4595 	 * stats on the frequency of these blocking operations.
4596 	 */
4597 	if (waitfor == MNT_WAIT) {
4598 		stat_journal_wait++;
4599 		switch (wk->wk_type) {
4600 		case D_JREMREF:
4601 		case D_JMVREF:
4602 			stat_jwait_filepage++;
4603 			break;
4604 		case D_JTRUNC:
4605 		case D_JFREEBLK:
4606 			stat_jwait_freeblks++;
4607 			break;
4608 		case D_JNEWBLK:
4609 			stat_jwait_newblk++;
4610 			break;
4611 		case D_JADDREF:
4612 			stat_jwait_inode++;
4613 			break;
4614 		default:
4615 			break;
4616 		}
4617 	}
4618 	/*
4619 	 * If IO has not started we process the journal.  We can't mark the
4620 	 * worklist item as IOWAITING because we drop the lock while
4621 	 * processing the journal and the worklist entry may be freed after
4622 	 * this point.  The caller may call back in and re-issue the request.
4623 	 */
4624 	if ((wk->wk_state & INPROGRESS) == 0) {
4625 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4626 		if (waitfor != MNT_WAIT)
4627 			return (EBUSY);
4628 		return (0);
4629 	}
4630 	if (waitfor != MNT_WAIT)
4631 		return (EBUSY);
4632 	wait_worklist(wk, "jwait");
4633 	return (0);
4634 }
4635 
4636 /*
4637  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4638  * appropriate.  This is a convenience function to reduce duplicate code
4639  * for the setup and revert functions below.
4640  */
4641 static struct inodedep *
4642 inodedep_lookup_ip(ip)
4643 	struct inode *ip;
4644 {
4645 	struct inodedep *inodedep;
4646 
4647 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4648 	    ("inodedep_lookup_ip: bad delta"));
4649 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4650 	    &inodedep);
4651 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4652 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4653 
4654 	return (inodedep);
4655 }
4656 
4657 /*
4658  * Called prior to creating a new inode and linking it to a directory.  The
4659  * jaddref structure must already be allocated by softdep_setup_inomapdep
4660  * and it is discovered here so we can initialize the mode and update
4661  * nlinkdelta.
4662  */
4663 void
4664 softdep_setup_create(dp, ip)
4665 	struct inode *dp;
4666 	struct inode *ip;
4667 {
4668 	struct inodedep *inodedep;
4669 	struct jaddref *jaddref;
4670 	struct vnode *dvp;
4671 
4672 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4673 	    ("softdep_setup_create called on non-softdep filesystem"));
4674 	KASSERT(ip->i_nlink == 1,
4675 	    ("softdep_setup_create: Invalid link count."));
4676 	dvp = ITOV(dp);
4677 	ACQUIRE_LOCK(ITOUMP(dp));
4678 	inodedep = inodedep_lookup_ip(ip);
4679 	if (DOINGSUJ(dvp)) {
4680 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4681 		    inoreflst);
4682 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4683 		    ("softdep_setup_create: No addref structure present."));
4684 	}
4685 	softdep_prelink(dvp, NULL);
4686 	FREE_LOCK(ITOUMP(dp));
4687 }
4688 
4689 /*
4690  * Create a jaddref structure to track the addition of a DOTDOT link when
4691  * we are reparenting an inode as part of a rename.  This jaddref will be
4692  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4693  * non-journaling softdep.
4694  */
4695 void
4696 softdep_setup_dotdot_link(dp, ip)
4697 	struct inode *dp;
4698 	struct inode *ip;
4699 {
4700 	struct inodedep *inodedep;
4701 	struct jaddref *jaddref;
4702 	struct vnode *dvp;
4703 
4704 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4705 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4706 	dvp = ITOV(dp);
4707 	jaddref = NULL;
4708 	/*
4709 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4710 	 * is used as a normal link would be.
4711 	 */
4712 	if (DOINGSUJ(dvp))
4713 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4714 		    dp->i_effnlink - 1, dp->i_mode);
4715 	ACQUIRE_LOCK(ITOUMP(dp));
4716 	inodedep = inodedep_lookup_ip(dp);
4717 	if (jaddref)
4718 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4719 		    if_deps);
4720 	softdep_prelink(dvp, ITOV(ip));
4721 	FREE_LOCK(ITOUMP(dp));
4722 }
4723 
4724 /*
4725  * Create a jaddref structure to track a new link to an inode.  The directory
4726  * offset is not known until softdep_setup_directory_add or
4727  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4728  * softdep.
4729  */
4730 void
4731 softdep_setup_link(dp, ip)
4732 	struct inode *dp;
4733 	struct inode *ip;
4734 {
4735 	struct inodedep *inodedep;
4736 	struct jaddref *jaddref;
4737 	struct vnode *dvp;
4738 
4739 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4740 	    ("softdep_setup_link called on non-softdep filesystem"));
4741 	dvp = ITOV(dp);
4742 	jaddref = NULL;
4743 	if (DOINGSUJ(dvp))
4744 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4745 		    ip->i_mode);
4746 	ACQUIRE_LOCK(ITOUMP(dp));
4747 	inodedep = inodedep_lookup_ip(ip);
4748 	if (jaddref)
4749 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4750 		    if_deps);
4751 	softdep_prelink(dvp, ITOV(ip));
4752 	FREE_LOCK(ITOUMP(dp));
4753 }
4754 
4755 /*
4756  * Called to create the jaddref structures to track . and .. references as
4757  * well as lookup and further initialize the incomplete jaddref created
4758  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4759  * nlinkdelta for non-journaling softdep.
4760  */
4761 void
4762 softdep_setup_mkdir(dp, ip)
4763 	struct inode *dp;
4764 	struct inode *ip;
4765 {
4766 	struct inodedep *inodedep;
4767 	struct jaddref *dotdotaddref;
4768 	struct jaddref *dotaddref;
4769 	struct jaddref *jaddref;
4770 	struct vnode *dvp;
4771 
4772 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4773 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4774 	dvp = ITOV(dp);
4775 	dotaddref = dotdotaddref = NULL;
4776 	if (DOINGSUJ(dvp)) {
4777 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4778 		    ip->i_mode);
4779 		dotaddref->ja_state |= MKDIR_BODY;
4780 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4781 		    dp->i_effnlink - 1, dp->i_mode);
4782 		dotdotaddref->ja_state |= MKDIR_PARENT;
4783 	}
4784 	ACQUIRE_LOCK(ITOUMP(dp));
4785 	inodedep = inodedep_lookup_ip(ip);
4786 	if (DOINGSUJ(dvp)) {
4787 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4788 		    inoreflst);
4789 		KASSERT(jaddref != NULL,
4790 		    ("softdep_setup_mkdir: No addref structure present."));
4791 		KASSERT(jaddref->ja_parent == dp->i_number,
4792 		    ("softdep_setup_mkdir: bad parent %ju",
4793 		    (uintmax_t)jaddref->ja_parent));
4794 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4795 		    if_deps);
4796 	}
4797 	inodedep = inodedep_lookup_ip(dp);
4798 	if (DOINGSUJ(dvp))
4799 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4800 		    &dotdotaddref->ja_ref, if_deps);
4801 	softdep_prelink(ITOV(dp), NULL);
4802 	FREE_LOCK(ITOUMP(dp));
4803 }
4804 
4805 /*
4806  * Called to track nlinkdelta of the inode and parent directories prior to
4807  * unlinking a directory.
4808  */
4809 void
4810 softdep_setup_rmdir(dp, ip)
4811 	struct inode *dp;
4812 	struct inode *ip;
4813 {
4814 	struct vnode *dvp;
4815 
4816 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4817 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4818 	dvp = ITOV(dp);
4819 	ACQUIRE_LOCK(ITOUMP(dp));
4820 	(void) inodedep_lookup_ip(ip);
4821 	(void) inodedep_lookup_ip(dp);
4822 	softdep_prelink(dvp, ITOV(ip));
4823 	FREE_LOCK(ITOUMP(dp));
4824 }
4825 
4826 /*
4827  * Called to track nlinkdelta of the inode and parent directories prior to
4828  * unlink.
4829  */
4830 void
4831 softdep_setup_unlink(dp, ip)
4832 	struct inode *dp;
4833 	struct inode *ip;
4834 {
4835 	struct vnode *dvp;
4836 
4837 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4838 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4839 	dvp = ITOV(dp);
4840 	ACQUIRE_LOCK(ITOUMP(dp));
4841 	(void) inodedep_lookup_ip(ip);
4842 	(void) inodedep_lookup_ip(dp);
4843 	softdep_prelink(dvp, ITOV(ip));
4844 	FREE_LOCK(ITOUMP(dp));
4845 }
4846 
4847 /*
4848  * Called to release the journal structures created by a failed non-directory
4849  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4850  */
4851 void
4852 softdep_revert_create(dp, ip)
4853 	struct inode *dp;
4854 	struct inode *ip;
4855 {
4856 	struct inodedep *inodedep;
4857 	struct jaddref *jaddref;
4858 	struct vnode *dvp;
4859 
4860 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4861 	    ("softdep_revert_create called on non-softdep filesystem"));
4862 	dvp = ITOV(dp);
4863 	ACQUIRE_LOCK(ITOUMP(dp));
4864 	inodedep = inodedep_lookup_ip(ip);
4865 	if (DOINGSUJ(dvp)) {
4866 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4867 		    inoreflst);
4868 		KASSERT(jaddref->ja_parent == dp->i_number,
4869 		    ("softdep_revert_create: addref parent mismatch"));
4870 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4871 	}
4872 	FREE_LOCK(ITOUMP(dp));
4873 }
4874 
4875 /*
4876  * Called to release the journal structures created by a failed link
4877  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4878  */
4879 void
4880 softdep_revert_link(dp, ip)
4881 	struct inode *dp;
4882 	struct inode *ip;
4883 {
4884 	struct inodedep *inodedep;
4885 	struct jaddref *jaddref;
4886 	struct vnode *dvp;
4887 
4888 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4889 	    ("softdep_revert_link called on non-softdep filesystem"));
4890 	dvp = ITOV(dp);
4891 	ACQUIRE_LOCK(ITOUMP(dp));
4892 	inodedep = inodedep_lookup_ip(ip);
4893 	if (DOINGSUJ(dvp)) {
4894 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4895 		    inoreflst);
4896 		KASSERT(jaddref->ja_parent == dp->i_number,
4897 		    ("softdep_revert_link: addref parent mismatch"));
4898 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4899 	}
4900 	FREE_LOCK(ITOUMP(dp));
4901 }
4902 
4903 /*
4904  * Called to release the journal structures created by a failed mkdir
4905  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4906  */
4907 void
4908 softdep_revert_mkdir(dp, ip)
4909 	struct inode *dp;
4910 	struct inode *ip;
4911 {
4912 	struct inodedep *inodedep;
4913 	struct jaddref *jaddref;
4914 	struct jaddref *dotaddref;
4915 	struct vnode *dvp;
4916 
4917 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4918 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4919 	dvp = ITOV(dp);
4920 
4921 	ACQUIRE_LOCK(ITOUMP(dp));
4922 	inodedep = inodedep_lookup_ip(dp);
4923 	if (DOINGSUJ(dvp)) {
4924 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4925 		    inoreflst);
4926 		KASSERT(jaddref->ja_parent == ip->i_number,
4927 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4928 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4929 	}
4930 	inodedep = inodedep_lookup_ip(ip);
4931 	if (DOINGSUJ(dvp)) {
4932 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4933 		    inoreflst);
4934 		KASSERT(jaddref->ja_parent == dp->i_number,
4935 		    ("softdep_revert_mkdir: addref parent mismatch"));
4936 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4937 		    inoreflst, if_deps);
4938 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4939 		KASSERT(dotaddref->ja_parent == ip->i_number,
4940 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4941 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4942 	}
4943 	FREE_LOCK(ITOUMP(dp));
4944 }
4945 
4946 /*
4947  * Called to correct nlinkdelta after a failed rmdir.
4948  */
4949 void
4950 softdep_revert_rmdir(dp, ip)
4951 	struct inode *dp;
4952 	struct inode *ip;
4953 {
4954 
4955 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4956 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4957 	ACQUIRE_LOCK(ITOUMP(dp));
4958 	(void) inodedep_lookup_ip(ip);
4959 	(void) inodedep_lookup_ip(dp);
4960 	FREE_LOCK(ITOUMP(dp));
4961 }
4962 
4963 /*
4964  * Protecting the freemaps (or bitmaps).
4965  *
4966  * To eliminate the need to execute fsck before mounting a filesystem
4967  * after a power failure, one must (conservatively) guarantee that the
4968  * on-disk copy of the bitmaps never indicate that a live inode or block is
4969  * free.  So, when a block or inode is allocated, the bitmap should be
4970  * updated (on disk) before any new pointers.  When a block or inode is
4971  * freed, the bitmap should not be updated until all pointers have been
4972  * reset.  The latter dependency is handled by the delayed de-allocation
4973  * approach described below for block and inode de-allocation.  The former
4974  * dependency is handled by calling the following procedure when a block or
4975  * inode is allocated. When an inode is allocated an "inodedep" is created
4976  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4977  * Each "inodedep" is also inserted into the hash indexing structure so
4978  * that any additional link additions can be made dependent on the inode
4979  * allocation.
4980  *
4981  * The ufs filesystem maintains a number of free block counts (e.g., per
4982  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4983  * in addition to the bitmaps.  These counts are used to improve efficiency
4984  * during allocation and therefore must be consistent with the bitmaps.
4985  * There is no convenient way to guarantee post-crash consistency of these
4986  * counts with simple update ordering, for two main reasons: (1) The counts
4987  * and bitmaps for a single cylinder group block are not in the same disk
4988  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4989  * be written and the other not.  (2) Some of the counts are located in the
4990  * superblock rather than the cylinder group block. So, we focus our soft
4991  * updates implementation on protecting the bitmaps. When mounting a
4992  * filesystem, we recompute the auxiliary counts from the bitmaps.
4993  */
4994 
4995 /*
4996  * Called just after updating the cylinder group block to allocate an inode.
4997  */
4998 void
4999 softdep_setup_inomapdep(bp, ip, newinum, mode)
5000 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5001 	struct inode *ip;	/* inode related to allocation */
5002 	ino_t newinum;		/* new inode number being allocated */
5003 	int mode;
5004 {
5005 	struct inodedep *inodedep;
5006 	struct bmsafemap *bmsafemap;
5007 	struct jaddref *jaddref;
5008 	struct mount *mp;
5009 	struct fs *fs;
5010 
5011 	mp = ITOVFS(ip);
5012 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5013 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5014 	fs = VFSTOUFS(mp)->um_fs;
5015 	jaddref = NULL;
5016 
5017 	/*
5018 	 * Allocate the journal reference add structure so that the bitmap
5019 	 * can be dependent on it.
5020 	 */
5021 	if (MOUNTEDSUJ(mp)) {
5022 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5023 		jaddref->ja_state |= NEWBLOCK;
5024 	}
5025 
5026 	/*
5027 	 * Create a dependency for the newly allocated inode.
5028 	 * Panic if it already exists as something is seriously wrong.
5029 	 * Otherwise add it to the dependency list for the buffer holding
5030 	 * the cylinder group map from which it was allocated.
5031 	 *
5032 	 * We have to preallocate a bmsafemap entry in case it is needed
5033 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5034 	 * have to finish initializing it before we can FREE_LOCK().
5035 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5036 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5037 	 * creating the inodedep as it can be freed during the time
5038 	 * that we FREE_LOCK() while allocating the inodedep. We must
5039 	 * call workitem_alloc() before entering the locked section as
5040 	 * it also acquires the lock and we must avoid trying doing so
5041 	 * recursively.
5042 	 */
5043 	bmsafemap = malloc(sizeof(struct bmsafemap),
5044 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5045 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5046 	ACQUIRE_LOCK(ITOUMP(ip));
5047 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5048 		panic("softdep_setup_inomapdep: dependency %p for new"
5049 		    "inode already exists", inodedep);
5050 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5051 	if (jaddref) {
5052 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5053 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5054 		    if_deps);
5055 	} else {
5056 		inodedep->id_state |= ONDEPLIST;
5057 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5058 	}
5059 	inodedep->id_bmsafemap = bmsafemap;
5060 	inodedep->id_state &= ~DEPCOMPLETE;
5061 	FREE_LOCK(ITOUMP(ip));
5062 }
5063 
5064 /*
5065  * Called just after updating the cylinder group block to
5066  * allocate block or fragment.
5067  */
5068 void
5069 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5070 	struct buf *bp;		/* buffer for cylgroup block with block map */
5071 	struct mount *mp;	/* filesystem doing allocation */
5072 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5073 	int frags;		/* Number of fragments. */
5074 	int oldfrags;		/* Previous number of fragments for extend. */
5075 {
5076 	struct newblk *newblk;
5077 	struct bmsafemap *bmsafemap;
5078 	struct jnewblk *jnewblk;
5079 	struct ufsmount *ump;
5080 	struct fs *fs;
5081 
5082 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5083 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5084 	ump = VFSTOUFS(mp);
5085 	fs = ump->um_fs;
5086 	jnewblk = NULL;
5087 	/*
5088 	 * Create a dependency for the newly allocated block.
5089 	 * Add it to the dependency list for the buffer holding
5090 	 * the cylinder group map from which it was allocated.
5091 	 */
5092 	if (MOUNTEDSUJ(mp)) {
5093 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5094 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5095 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5096 		jnewblk->jn_state = ATTACHED;
5097 		jnewblk->jn_blkno = newblkno;
5098 		jnewblk->jn_frags = frags;
5099 		jnewblk->jn_oldfrags = oldfrags;
5100 #ifdef SUJ_DEBUG
5101 		{
5102 			struct cg *cgp;
5103 			uint8_t *blksfree;
5104 			long bno;
5105 			int i;
5106 
5107 			cgp = (struct cg *)bp->b_data;
5108 			blksfree = cg_blksfree(cgp);
5109 			bno = dtogd(fs, jnewblk->jn_blkno);
5110 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5111 			    i++) {
5112 				if (isset(blksfree, bno + i))
5113 					panic("softdep_setup_blkmapdep: "
5114 					    "free fragment %d from %d-%d "
5115 					    "state 0x%X dep %p", i,
5116 					    jnewblk->jn_oldfrags,
5117 					    jnewblk->jn_frags,
5118 					    jnewblk->jn_state,
5119 					    jnewblk->jn_dep);
5120 			}
5121 		}
5122 #endif
5123 	}
5124 
5125 	CTR3(KTR_SUJ,
5126 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5127 	    newblkno, frags, oldfrags);
5128 	ACQUIRE_LOCK(ump);
5129 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5130 		panic("softdep_setup_blkmapdep: found block");
5131 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5132 	    dtog(fs, newblkno), NULL);
5133 	if (jnewblk) {
5134 		jnewblk->jn_dep = (struct worklist *)newblk;
5135 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5136 	} else {
5137 		newblk->nb_state |= ONDEPLIST;
5138 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5139 	}
5140 	newblk->nb_bmsafemap = bmsafemap;
5141 	newblk->nb_jnewblk = jnewblk;
5142 	FREE_LOCK(ump);
5143 }
5144 
5145 #define	BMSAFEMAP_HASH(ump, cg) \
5146       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5147 
5148 static int
5149 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5150 	struct bmsafemap_hashhead *bmsafemaphd;
5151 	int cg;
5152 	struct bmsafemap **bmsafemapp;
5153 {
5154 	struct bmsafemap *bmsafemap;
5155 
5156 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5157 		if (bmsafemap->sm_cg == cg)
5158 			break;
5159 	if (bmsafemap) {
5160 		*bmsafemapp = bmsafemap;
5161 		return (1);
5162 	}
5163 	*bmsafemapp = NULL;
5164 
5165 	return (0);
5166 }
5167 
5168 /*
5169  * Find the bmsafemap associated with a cylinder group buffer.
5170  * If none exists, create one. The buffer must be locked when
5171  * this routine is called and this routine must be called with
5172  * the softdep lock held. To avoid giving up the lock while
5173  * allocating a new bmsafemap, a preallocated bmsafemap may be
5174  * provided. If it is provided but not needed, it is freed.
5175  */
5176 static struct bmsafemap *
5177 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5178 	struct mount *mp;
5179 	struct buf *bp;
5180 	int cg;
5181 	struct bmsafemap *newbmsafemap;
5182 {
5183 	struct bmsafemap_hashhead *bmsafemaphd;
5184 	struct bmsafemap *bmsafemap, *collision;
5185 	struct worklist *wk;
5186 	struct ufsmount *ump;
5187 
5188 	ump = VFSTOUFS(mp);
5189 	LOCK_OWNED(ump);
5190 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5191 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5192 		if (wk->wk_type == D_BMSAFEMAP) {
5193 			if (newbmsafemap)
5194 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5195 			return (WK_BMSAFEMAP(wk));
5196 		}
5197 	}
5198 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5199 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5200 		if (newbmsafemap)
5201 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5202 		return (bmsafemap);
5203 	}
5204 	if (newbmsafemap) {
5205 		bmsafemap = newbmsafemap;
5206 	} else {
5207 		FREE_LOCK(ump);
5208 		bmsafemap = malloc(sizeof(struct bmsafemap),
5209 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5210 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5211 		ACQUIRE_LOCK(ump);
5212 	}
5213 	bmsafemap->sm_buf = bp;
5214 	LIST_INIT(&bmsafemap->sm_inodedephd);
5215 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5216 	LIST_INIT(&bmsafemap->sm_newblkhd);
5217 	LIST_INIT(&bmsafemap->sm_newblkwr);
5218 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5219 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5220 	LIST_INIT(&bmsafemap->sm_freehd);
5221 	LIST_INIT(&bmsafemap->sm_freewr);
5222 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5223 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5224 		return (collision);
5225 	}
5226 	bmsafemap->sm_cg = cg;
5227 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5228 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5229 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5230 	return (bmsafemap);
5231 }
5232 
5233 /*
5234  * Direct block allocation dependencies.
5235  *
5236  * When a new block is allocated, the corresponding disk locations must be
5237  * initialized (with zeros or new data) before the on-disk inode points to
5238  * them.  Also, the freemap from which the block was allocated must be
5239  * updated (on disk) before the inode's pointer. These two dependencies are
5240  * independent of each other and are needed for all file blocks and indirect
5241  * blocks that are pointed to directly by the inode.  Just before the
5242  * "in-core" version of the inode is updated with a newly allocated block
5243  * number, a procedure (below) is called to setup allocation dependency
5244  * structures.  These structures are removed when the corresponding
5245  * dependencies are satisfied or when the block allocation becomes obsolete
5246  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5247  * fragment that gets upgraded).  All of these cases are handled in
5248  * procedures described later.
5249  *
5250  * When a file extension causes a fragment to be upgraded, either to a larger
5251  * fragment or to a full block, the on-disk location may change (if the
5252  * previous fragment could not simply be extended). In this case, the old
5253  * fragment must be de-allocated, but not until after the inode's pointer has
5254  * been updated. In most cases, this is handled by later procedures, which
5255  * will construct a "freefrag" structure to be added to the workitem queue
5256  * when the inode update is complete (or obsolete).  The main exception to
5257  * this is when an allocation occurs while a pending allocation dependency
5258  * (for the same block pointer) remains.  This case is handled in the main
5259  * allocation dependency setup procedure by immediately freeing the
5260  * unreferenced fragments.
5261  */
5262 void
5263 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5264 	struct inode *ip;	/* inode to which block is being added */
5265 	ufs_lbn_t off;		/* block pointer within inode */
5266 	ufs2_daddr_t newblkno;	/* disk block number being added */
5267 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5268 	long newsize;		/* size of new block */
5269 	long oldsize;		/* size of new block */
5270 	struct buf *bp;		/* bp for allocated block */
5271 {
5272 	struct allocdirect *adp, *oldadp;
5273 	struct allocdirectlst *adphead;
5274 	struct freefrag *freefrag;
5275 	struct inodedep *inodedep;
5276 	struct pagedep *pagedep;
5277 	struct jnewblk *jnewblk;
5278 	struct newblk *newblk;
5279 	struct mount *mp;
5280 	ufs_lbn_t lbn;
5281 
5282 	lbn = bp->b_lblkno;
5283 	mp = ITOVFS(ip);
5284 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5285 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5286 	if (oldblkno && oldblkno != newblkno)
5287 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5288 	else
5289 		freefrag = NULL;
5290 
5291 	CTR6(KTR_SUJ,
5292 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5293 	    "off %jd newsize %ld oldsize %d",
5294 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5295 	ACQUIRE_LOCK(ITOUMP(ip));
5296 	if (off >= UFS_NDADDR) {
5297 		if (lbn > 0)
5298 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5299 			    lbn, off);
5300 		/* allocating an indirect block */
5301 		if (oldblkno != 0)
5302 			panic("softdep_setup_allocdirect: non-zero indir");
5303 	} else {
5304 		if (off != lbn)
5305 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5306 			    lbn, off);
5307 		/*
5308 		 * Allocating a direct block.
5309 		 *
5310 		 * If we are allocating a directory block, then we must
5311 		 * allocate an associated pagedep to track additions and
5312 		 * deletions.
5313 		 */
5314 		if ((ip->i_mode & IFMT) == IFDIR)
5315 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5316 			    &pagedep);
5317 	}
5318 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5319 		panic("softdep_setup_allocdirect: lost block");
5320 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5321 	    ("softdep_setup_allocdirect: newblk already initialized"));
5322 	/*
5323 	 * Convert the newblk to an allocdirect.
5324 	 */
5325 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5326 	adp = (struct allocdirect *)newblk;
5327 	newblk->nb_freefrag = freefrag;
5328 	adp->ad_offset = off;
5329 	adp->ad_oldblkno = oldblkno;
5330 	adp->ad_newsize = newsize;
5331 	adp->ad_oldsize = oldsize;
5332 
5333 	/*
5334 	 * Finish initializing the journal.
5335 	 */
5336 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5337 		jnewblk->jn_ino = ip->i_number;
5338 		jnewblk->jn_lbn = lbn;
5339 		add_to_journal(&jnewblk->jn_list);
5340 	}
5341 	if (freefrag && freefrag->ff_jdep != NULL &&
5342 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5343 		add_to_journal(freefrag->ff_jdep);
5344 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5345 	adp->ad_inodedep = inodedep;
5346 
5347 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5348 	/*
5349 	 * The list of allocdirects must be kept in sorted and ascending
5350 	 * order so that the rollback routines can quickly determine the
5351 	 * first uncommitted block (the size of the file stored on disk
5352 	 * ends at the end of the lowest committed fragment, or if there
5353 	 * are no fragments, at the end of the highest committed block).
5354 	 * Since files generally grow, the typical case is that the new
5355 	 * block is to be added at the end of the list. We speed this
5356 	 * special case by checking against the last allocdirect in the
5357 	 * list before laboriously traversing the list looking for the
5358 	 * insertion point.
5359 	 */
5360 	adphead = &inodedep->id_newinoupdt;
5361 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5362 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5363 		/* insert at end of list */
5364 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5365 		if (oldadp != NULL && oldadp->ad_offset == off)
5366 			allocdirect_merge(adphead, adp, oldadp);
5367 		FREE_LOCK(ITOUMP(ip));
5368 		return;
5369 	}
5370 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5371 		if (oldadp->ad_offset >= off)
5372 			break;
5373 	}
5374 	if (oldadp == NULL)
5375 		panic("softdep_setup_allocdirect: lost entry");
5376 	/* insert in middle of list */
5377 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5378 	if (oldadp->ad_offset == off)
5379 		allocdirect_merge(adphead, adp, oldadp);
5380 
5381 	FREE_LOCK(ITOUMP(ip));
5382 }
5383 
5384 /*
5385  * Merge a newer and older journal record to be stored either in a
5386  * newblock or freefrag.  This handles aggregating journal records for
5387  * fragment allocation into a second record as well as replacing a
5388  * journal free with an aborted journal allocation.  A segment for the
5389  * oldest record will be placed on wkhd if it has been written.  If not
5390  * the segment for the newer record will suffice.
5391  */
5392 static struct worklist *
5393 jnewblk_merge(new, old, wkhd)
5394 	struct worklist *new;
5395 	struct worklist *old;
5396 	struct workhead *wkhd;
5397 {
5398 	struct jnewblk *njnewblk;
5399 	struct jnewblk *jnewblk;
5400 
5401 	/* Handle NULLs to simplify callers. */
5402 	if (new == NULL)
5403 		return (old);
5404 	if (old == NULL)
5405 		return (new);
5406 	/* Replace a jfreefrag with a jnewblk. */
5407 	if (new->wk_type == D_JFREEFRAG) {
5408 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5409 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5410 			    old, new);
5411 		cancel_jfreefrag(WK_JFREEFRAG(new));
5412 		return (old);
5413 	}
5414 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5415 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5416 		    old->wk_type, new->wk_type);
5417 	/*
5418 	 * Handle merging of two jnewblk records that describe
5419 	 * different sets of fragments in the same block.
5420 	 */
5421 	jnewblk = WK_JNEWBLK(old);
5422 	njnewblk = WK_JNEWBLK(new);
5423 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5424 		panic("jnewblk_merge: Merging disparate blocks.");
5425 	/*
5426 	 * The record may be rolled back in the cg.
5427 	 */
5428 	if (jnewblk->jn_state & UNDONE) {
5429 		jnewblk->jn_state &= ~UNDONE;
5430 		njnewblk->jn_state |= UNDONE;
5431 		njnewblk->jn_state &= ~ATTACHED;
5432 	}
5433 	/*
5434 	 * We modify the newer addref and free the older so that if neither
5435 	 * has been written the most up-to-date copy will be on disk.  If
5436 	 * both have been written but rolled back we only temporarily need
5437 	 * one of them to fix the bits when the cg write completes.
5438 	 */
5439 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5440 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5441 	cancel_jnewblk(jnewblk, wkhd);
5442 	WORKLIST_REMOVE(&jnewblk->jn_list);
5443 	free_jnewblk(jnewblk);
5444 	return (new);
5445 }
5446 
5447 /*
5448  * Replace an old allocdirect dependency with a newer one.
5449  * This routine must be called with splbio interrupts blocked.
5450  */
5451 static void
5452 allocdirect_merge(adphead, newadp, oldadp)
5453 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5454 	struct allocdirect *newadp;	/* allocdirect being added */
5455 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5456 {
5457 	struct worklist *wk;
5458 	struct freefrag *freefrag;
5459 
5460 	freefrag = NULL;
5461 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5462 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5463 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5464 	    newadp->ad_offset >= UFS_NDADDR)
5465 		panic("%s %jd != new %jd || old size %ld != new %ld",
5466 		    "allocdirect_merge: old blkno",
5467 		    (intmax_t)newadp->ad_oldblkno,
5468 		    (intmax_t)oldadp->ad_newblkno,
5469 		    newadp->ad_oldsize, oldadp->ad_newsize);
5470 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5471 	newadp->ad_oldsize = oldadp->ad_oldsize;
5472 	/*
5473 	 * If the old dependency had a fragment to free or had never
5474 	 * previously had a block allocated, then the new dependency
5475 	 * can immediately post its freefrag and adopt the old freefrag.
5476 	 * This action is done by swapping the freefrag dependencies.
5477 	 * The new dependency gains the old one's freefrag, and the
5478 	 * old one gets the new one and then immediately puts it on
5479 	 * the worklist when it is freed by free_newblk. It is
5480 	 * not possible to do this swap when the old dependency had a
5481 	 * non-zero size but no previous fragment to free. This condition
5482 	 * arises when the new block is an extension of the old block.
5483 	 * Here, the first part of the fragment allocated to the new
5484 	 * dependency is part of the block currently claimed on disk by
5485 	 * the old dependency, so cannot legitimately be freed until the
5486 	 * conditions for the new dependency are fulfilled.
5487 	 */
5488 	freefrag = newadp->ad_freefrag;
5489 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5490 		newadp->ad_freefrag = oldadp->ad_freefrag;
5491 		oldadp->ad_freefrag = freefrag;
5492 	}
5493 	/*
5494 	 * If we are tracking a new directory-block allocation,
5495 	 * move it from the old allocdirect to the new allocdirect.
5496 	 */
5497 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5498 		WORKLIST_REMOVE(wk);
5499 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5500 			panic("allocdirect_merge: extra newdirblk");
5501 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5502 	}
5503 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5504 	/*
5505 	 * We need to move any journal dependencies over to the freefrag
5506 	 * that releases this block if it exists.  Otherwise we are
5507 	 * extending an existing block and we'll wait until that is
5508 	 * complete to release the journal space and extend the
5509 	 * new journal to cover this old space as well.
5510 	 */
5511 	if (freefrag == NULL) {
5512 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5513 			panic("allocdirect_merge: %jd != %jd",
5514 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5515 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5516 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5517 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5518 		    &newadp->ad_block.nb_jwork);
5519 		oldadp->ad_block.nb_jnewblk = NULL;
5520 		cancel_newblk(&oldadp->ad_block, NULL,
5521 		    &newadp->ad_block.nb_jwork);
5522 	} else {
5523 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5524 		    &freefrag->ff_list, &freefrag->ff_jwork);
5525 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5526 		    &freefrag->ff_jwork);
5527 	}
5528 	free_newblk(&oldadp->ad_block);
5529 }
5530 
5531 /*
5532  * Allocate a jfreefrag structure to journal a single block free.
5533  */
5534 static struct jfreefrag *
5535 newjfreefrag(freefrag, ip, blkno, size, lbn)
5536 	struct freefrag *freefrag;
5537 	struct inode *ip;
5538 	ufs2_daddr_t blkno;
5539 	long size;
5540 	ufs_lbn_t lbn;
5541 {
5542 	struct jfreefrag *jfreefrag;
5543 	struct fs *fs;
5544 
5545 	fs = ITOFS(ip);
5546 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5547 	    M_SOFTDEP_FLAGS);
5548 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5549 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5550 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5551 	jfreefrag->fr_ino = ip->i_number;
5552 	jfreefrag->fr_lbn = lbn;
5553 	jfreefrag->fr_blkno = blkno;
5554 	jfreefrag->fr_frags = numfrags(fs, size);
5555 	jfreefrag->fr_freefrag = freefrag;
5556 
5557 	return (jfreefrag);
5558 }
5559 
5560 /*
5561  * Allocate a new freefrag structure.
5562  */
5563 static struct freefrag *
5564 newfreefrag(ip, blkno, size, lbn)
5565 	struct inode *ip;
5566 	ufs2_daddr_t blkno;
5567 	long size;
5568 	ufs_lbn_t lbn;
5569 {
5570 	struct freefrag *freefrag;
5571 	struct ufsmount *ump;
5572 	struct fs *fs;
5573 
5574 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5575 	    ip->i_number, blkno, size, lbn);
5576 	ump = ITOUMP(ip);
5577 	fs = ump->um_fs;
5578 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5579 		panic("newfreefrag: frag size");
5580 	freefrag = malloc(sizeof(struct freefrag),
5581 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5582 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5583 	freefrag->ff_state = ATTACHED;
5584 	LIST_INIT(&freefrag->ff_jwork);
5585 	freefrag->ff_inum = ip->i_number;
5586 	freefrag->ff_vtype = ITOV(ip)->v_type;
5587 	freefrag->ff_blkno = blkno;
5588 	freefrag->ff_fragsize = size;
5589 
5590 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5591 		freefrag->ff_jdep = (struct worklist *)
5592 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5593 	} else {
5594 		freefrag->ff_state |= DEPCOMPLETE;
5595 		freefrag->ff_jdep = NULL;
5596 	}
5597 
5598 	return (freefrag);
5599 }
5600 
5601 /*
5602  * This workitem de-allocates fragments that were replaced during
5603  * file block allocation.
5604  */
5605 static void
5606 handle_workitem_freefrag(freefrag)
5607 	struct freefrag *freefrag;
5608 {
5609 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5610 	struct workhead wkhd;
5611 
5612 	CTR3(KTR_SUJ,
5613 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5614 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5615 	/*
5616 	 * It would be illegal to add new completion items to the
5617 	 * freefrag after it was schedule to be done so it must be
5618 	 * safe to modify the list head here.
5619 	 */
5620 	LIST_INIT(&wkhd);
5621 	ACQUIRE_LOCK(ump);
5622 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5623 	/*
5624 	 * If the journal has not been written we must cancel it here.
5625 	 */
5626 	if (freefrag->ff_jdep) {
5627 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5628 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5629 			    freefrag->ff_jdep->wk_type);
5630 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5631 	}
5632 	FREE_LOCK(ump);
5633 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5634 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5635 	ACQUIRE_LOCK(ump);
5636 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5637 	FREE_LOCK(ump);
5638 }
5639 
5640 /*
5641  * Set up a dependency structure for an external attributes data block.
5642  * This routine follows much of the structure of softdep_setup_allocdirect.
5643  * See the description of softdep_setup_allocdirect above for details.
5644  */
5645 void
5646 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5647 	struct inode *ip;
5648 	ufs_lbn_t off;
5649 	ufs2_daddr_t newblkno;
5650 	ufs2_daddr_t oldblkno;
5651 	long newsize;
5652 	long oldsize;
5653 	struct buf *bp;
5654 {
5655 	struct allocdirect *adp, *oldadp;
5656 	struct allocdirectlst *adphead;
5657 	struct freefrag *freefrag;
5658 	struct inodedep *inodedep;
5659 	struct jnewblk *jnewblk;
5660 	struct newblk *newblk;
5661 	struct mount *mp;
5662 	struct ufsmount *ump;
5663 	ufs_lbn_t lbn;
5664 
5665 	mp = ITOVFS(ip);
5666 	ump = VFSTOUFS(mp);
5667 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5668 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5669 	KASSERT(off < UFS_NXADDR,
5670 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5671 
5672 	lbn = bp->b_lblkno;
5673 	if (oldblkno && oldblkno != newblkno)
5674 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5675 	else
5676 		freefrag = NULL;
5677 
5678 	ACQUIRE_LOCK(ump);
5679 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5680 		panic("softdep_setup_allocext: lost block");
5681 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5682 	    ("softdep_setup_allocext: newblk already initialized"));
5683 	/*
5684 	 * Convert the newblk to an allocdirect.
5685 	 */
5686 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5687 	adp = (struct allocdirect *)newblk;
5688 	newblk->nb_freefrag = freefrag;
5689 	adp->ad_offset = off;
5690 	adp->ad_oldblkno = oldblkno;
5691 	adp->ad_newsize = newsize;
5692 	adp->ad_oldsize = oldsize;
5693 	adp->ad_state |=  EXTDATA;
5694 
5695 	/*
5696 	 * Finish initializing the journal.
5697 	 */
5698 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5699 		jnewblk->jn_ino = ip->i_number;
5700 		jnewblk->jn_lbn = lbn;
5701 		add_to_journal(&jnewblk->jn_list);
5702 	}
5703 	if (freefrag && freefrag->ff_jdep != NULL &&
5704 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5705 		add_to_journal(freefrag->ff_jdep);
5706 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5707 	adp->ad_inodedep = inodedep;
5708 
5709 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5710 	/*
5711 	 * The list of allocdirects must be kept in sorted and ascending
5712 	 * order so that the rollback routines can quickly determine the
5713 	 * first uncommitted block (the size of the file stored on disk
5714 	 * ends at the end of the lowest committed fragment, or if there
5715 	 * are no fragments, at the end of the highest committed block).
5716 	 * Since files generally grow, the typical case is that the new
5717 	 * block is to be added at the end of the list. We speed this
5718 	 * special case by checking against the last allocdirect in the
5719 	 * list before laboriously traversing the list looking for the
5720 	 * insertion point.
5721 	 */
5722 	adphead = &inodedep->id_newextupdt;
5723 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5724 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5725 		/* insert at end of list */
5726 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5727 		if (oldadp != NULL && oldadp->ad_offset == off)
5728 			allocdirect_merge(adphead, adp, oldadp);
5729 		FREE_LOCK(ump);
5730 		return;
5731 	}
5732 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5733 		if (oldadp->ad_offset >= off)
5734 			break;
5735 	}
5736 	if (oldadp == NULL)
5737 		panic("softdep_setup_allocext: lost entry");
5738 	/* insert in middle of list */
5739 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5740 	if (oldadp->ad_offset == off)
5741 		allocdirect_merge(adphead, adp, oldadp);
5742 	FREE_LOCK(ump);
5743 }
5744 
5745 /*
5746  * Indirect block allocation dependencies.
5747  *
5748  * The same dependencies that exist for a direct block also exist when
5749  * a new block is allocated and pointed to by an entry in a block of
5750  * indirect pointers. The undo/redo states described above are also
5751  * used here. Because an indirect block contains many pointers that
5752  * may have dependencies, a second copy of the entire in-memory indirect
5753  * block is kept. The buffer cache copy is always completely up-to-date.
5754  * The second copy, which is used only as a source for disk writes,
5755  * contains only the safe pointers (i.e., those that have no remaining
5756  * update dependencies). The second copy is freed when all pointers
5757  * are safe. The cache is not allowed to replace indirect blocks with
5758  * pending update dependencies. If a buffer containing an indirect
5759  * block with dependencies is written, these routines will mark it
5760  * dirty again. It can only be successfully written once all the
5761  * dependencies are removed. The ffs_fsync routine in conjunction with
5762  * softdep_sync_metadata work together to get all the dependencies
5763  * removed so that a file can be successfully written to disk. Three
5764  * procedures are used when setting up indirect block pointer
5765  * dependencies. The division is necessary because of the organization
5766  * of the "balloc" routine and because of the distinction between file
5767  * pages and file metadata blocks.
5768  */
5769 
5770 /*
5771  * Allocate a new allocindir structure.
5772  */
5773 static struct allocindir *
5774 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5775 	struct inode *ip;	/* inode for file being extended */
5776 	int ptrno;		/* offset of pointer in indirect block */
5777 	ufs2_daddr_t newblkno;	/* disk block number being added */
5778 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5779 	ufs_lbn_t lbn;
5780 {
5781 	struct newblk *newblk;
5782 	struct allocindir *aip;
5783 	struct freefrag *freefrag;
5784 	struct jnewblk *jnewblk;
5785 
5786 	if (oldblkno)
5787 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn);
5788 	else
5789 		freefrag = NULL;
5790 	ACQUIRE_LOCK(ITOUMP(ip));
5791 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5792 		panic("new_allocindir: lost block");
5793 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5794 	    ("newallocindir: newblk already initialized"));
5795 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5796 	newblk->nb_freefrag = freefrag;
5797 	aip = (struct allocindir *)newblk;
5798 	aip->ai_offset = ptrno;
5799 	aip->ai_oldblkno = oldblkno;
5800 	aip->ai_lbn = lbn;
5801 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5802 		jnewblk->jn_ino = ip->i_number;
5803 		jnewblk->jn_lbn = lbn;
5804 		add_to_journal(&jnewblk->jn_list);
5805 	}
5806 	if (freefrag && freefrag->ff_jdep != NULL &&
5807 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5808 		add_to_journal(freefrag->ff_jdep);
5809 	return (aip);
5810 }
5811 
5812 /*
5813  * Called just before setting an indirect block pointer
5814  * to a newly allocated file page.
5815  */
5816 void
5817 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5818 	struct inode *ip;	/* inode for file being extended */
5819 	ufs_lbn_t lbn;		/* allocated block number within file */
5820 	struct buf *bp;		/* buffer with indirect blk referencing page */
5821 	int ptrno;		/* offset of pointer in indirect block */
5822 	ufs2_daddr_t newblkno;	/* disk block number being added */
5823 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5824 	struct buf *nbp;	/* buffer holding allocated page */
5825 {
5826 	struct inodedep *inodedep;
5827 	struct freefrag *freefrag;
5828 	struct allocindir *aip;
5829 	struct pagedep *pagedep;
5830 	struct mount *mp;
5831 	struct ufsmount *ump;
5832 
5833 	mp = ITOVFS(ip);
5834 	ump = VFSTOUFS(mp);
5835 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5836 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5837 	KASSERT(lbn == nbp->b_lblkno,
5838 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5839 	    lbn, bp->b_lblkno));
5840 	CTR4(KTR_SUJ,
5841 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5842 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5843 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5844 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5845 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5846 	/*
5847 	 * If we are allocating a directory page, then we must
5848 	 * allocate an associated pagedep to track additions and
5849 	 * deletions.
5850 	 */
5851 	if ((ip->i_mode & IFMT) == IFDIR)
5852 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5853 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5854 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5855 	FREE_LOCK(ump);
5856 	if (freefrag)
5857 		handle_workitem_freefrag(freefrag);
5858 }
5859 
5860 /*
5861  * Called just before setting an indirect block pointer to a
5862  * newly allocated indirect block.
5863  */
5864 void
5865 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5866 	struct buf *nbp;	/* newly allocated indirect block */
5867 	struct inode *ip;	/* inode for file being extended */
5868 	struct buf *bp;		/* indirect block referencing allocated block */
5869 	int ptrno;		/* offset of pointer in indirect block */
5870 	ufs2_daddr_t newblkno;	/* disk block number being added */
5871 {
5872 	struct inodedep *inodedep;
5873 	struct allocindir *aip;
5874 	struct ufsmount *ump;
5875 	ufs_lbn_t lbn;
5876 
5877 	ump = ITOUMP(ip);
5878 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5879 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5880 	CTR3(KTR_SUJ,
5881 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5882 	    ip->i_number, newblkno, ptrno);
5883 	lbn = nbp->b_lblkno;
5884 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5885 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5886 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5887 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5888 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5889 		panic("softdep_setup_allocindir_meta: Block already existed");
5890 	FREE_LOCK(ump);
5891 }
5892 
5893 static void
5894 indirdep_complete(indirdep)
5895 	struct indirdep *indirdep;
5896 {
5897 	struct allocindir *aip;
5898 
5899 	LIST_REMOVE(indirdep, ir_next);
5900 	indirdep->ir_state |= DEPCOMPLETE;
5901 
5902 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5903 		LIST_REMOVE(aip, ai_next);
5904 		free_newblk(&aip->ai_block);
5905 	}
5906 	/*
5907 	 * If this indirdep is not attached to a buf it was simply waiting
5908 	 * on completion to clear completehd.  free_indirdep() asserts
5909 	 * that nothing is dangling.
5910 	 */
5911 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5912 		free_indirdep(indirdep);
5913 }
5914 
5915 static struct indirdep *
5916 indirdep_lookup(mp, ip, bp)
5917 	struct mount *mp;
5918 	struct inode *ip;
5919 	struct buf *bp;
5920 {
5921 	struct indirdep *indirdep, *newindirdep;
5922 	struct newblk *newblk;
5923 	struct ufsmount *ump;
5924 	struct worklist *wk;
5925 	struct fs *fs;
5926 	ufs2_daddr_t blkno;
5927 
5928 	ump = VFSTOUFS(mp);
5929 	LOCK_OWNED(ump);
5930 	indirdep = NULL;
5931 	newindirdep = NULL;
5932 	fs = ump->um_fs;
5933 	for (;;) {
5934 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5935 			if (wk->wk_type != D_INDIRDEP)
5936 				continue;
5937 			indirdep = WK_INDIRDEP(wk);
5938 			break;
5939 		}
5940 		/* Found on the buffer worklist, no new structure to free. */
5941 		if (indirdep != NULL && newindirdep == NULL)
5942 			return (indirdep);
5943 		if (indirdep != NULL && newindirdep != NULL)
5944 			panic("indirdep_lookup: simultaneous create");
5945 		/* None found on the buffer and a new structure is ready. */
5946 		if (indirdep == NULL && newindirdep != NULL)
5947 			break;
5948 		/* None found and no new structure available. */
5949 		FREE_LOCK(ump);
5950 		newindirdep = malloc(sizeof(struct indirdep),
5951 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5952 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5953 		newindirdep->ir_state = ATTACHED;
5954 		if (I_IS_UFS1(ip))
5955 			newindirdep->ir_state |= UFS1FMT;
5956 		TAILQ_INIT(&newindirdep->ir_trunc);
5957 		newindirdep->ir_saveddata = NULL;
5958 		LIST_INIT(&newindirdep->ir_deplisthd);
5959 		LIST_INIT(&newindirdep->ir_donehd);
5960 		LIST_INIT(&newindirdep->ir_writehd);
5961 		LIST_INIT(&newindirdep->ir_completehd);
5962 		if (bp->b_blkno == bp->b_lblkno) {
5963 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5964 			    NULL, NULL);
5965 			bp->b_blkno = blkno;
5966 		}
5967 		newindirdep->ir_freeblks = NULL;
5968 		newindirdep->ir_savebp =
5969 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5970 		newindirdep->ir_bp = bp;
5971 		BUF_KERNPROC(newindirdep->ir_savebp);
5972 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5973 		ACQUIRE_LOCK(ump);
5974 	}
5975 	indirdep = newindirdep;
5976 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5977 	/*
5978 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5979 	 * that we don't free dependencies until the pointers are valid.
5980 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5981 	 * than using the hash.
5982 	 */
5983 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5984 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5985 	else
5986 		indirdep->ir_state |= DEPCOMPLETE;
5987 	return (indirdep);
5988 }
5989 
5990 /*
5991  * Called to finish the allocation of the "aip" allocated
5992  * by one of the two routines above.
5993  */
5994 static struct freefrag *
5995 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5996 	struct buf *bp;		/* in-memory copy of the indirect block */
5997 	struct inode *ip;	/* inode for file being extended */
5998 	struct inodedep *inodedep; /* Inodedep for ip */
5999 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6000 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6001 {
6002 	struct fs *fs;
6003 	struct indirdep *indirdep;
6004 	struct allocindir *oldaip;
6005 	struct freefrag *freefrag;
6006 	struct mount *mp;
6007 	struct ufsmount *ump;
6008 
6009 	mp = ITOVFS(ip);
6010 	ump = VFSTOUFS(mp);
6011 	LOCK_OWNED(ump);
6012 	fs = ump->um_fs;
6013 	if (bp->b_lblkno >= 0)
6014 		panic("setup_allocindir_phase2: not indir blk");
6015 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6016 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6017 	indirdep = indirdep_lookup(mp, ip, bp);
6018 	KASSERT(indirdep->ir_savebp != NULL,
6019 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6020 	aip->ai_indirdep = indirdep;
6021 	/*
6022 	 * Check for an unwritten dependency for this indirect offset.  If
6023 	 * there is, merge the old dependency into the new one.  This happens
6024 	 * as a result of reallocblk only.
6025 	 */
6026 	freefrag = NULL;
6027 	if (aip->ai_oldblkno != 0) {
6028 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6029 			if (oldaip->ai_offset == aip->ai_offset) {
6030 				freefrag = allocindir_merge(aip, oldaip);
6031 				goto done;
6032 			}
6033 		}
6034 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6035 			if (oldaip->ai_offset == aip->ai_offset) {
6036 				freefrag = allocindir_merge(aip, oldaip);
6037 				goto done;
6038 			}
6039 		}
6040 	}
6041 done:
6042 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6043 	return (freefrag);
6044 }
6045 
6046 /*
6047  * Merge two allocindirs which refer to the same block.  Move newblock
6048  * dependencies and setup the freefrags appropriately.
6049  */
6050 static struct freefrag *
6051 allocindir_merge(aip, oldaip)
6052 	struct allocindir *aip;
6053 	struct allocindir *oldaip;
6054 {
6055 	struct freefrag *freefrag;
6056 	struct worklist *wk;
6057 
6058 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6059 		panic("allocindir_merge: blkno");
6060 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6061 	freefrag = aip->ai_freefrag;
6062 	aip->ai_freefrag = oldaip->ai_freefrag;
6063 	oldaip->ai_freefrag = NULL;
6064 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6065 	/*
6066 	 * If we are tracking a new directory-block allocation,
6067 	 * move it from the old allocindir to the new allocindir.
6068 	 */
6069 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6070 		WORKLIST_REMOVE(wk);
6071 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6072 			panic("allocindir_merge: extra newdirblk");
6073 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6074 	}
6075 	/*
6076 	 * We can skip journaling for this freefrag and just complete
6077 	 * any pending journal work for the allocindir that is being
6078 	 * removed after the freefrag completes.
6079 	 */
6080 	if (freefrag->ff_jdep)
6081 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6082 	LIST_REMOVE(oldaip, ai_next);
6083 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6084 	    &freefrag->ff_list, &freefrag->ff_jwork);
6085 	free_newblk(&oldaip->ai_block);
6086 
6087 	return (freefrag);
6088 }
6089 
6090 static inline void
6091 setup_freedirect(freeblks, ip, i, needj)
6092 	struct freeblks *freeblks;
6093 	struct inode *ip;
6094 	int i;
6095 	int needj;
6096 {
6097 	struct ufsmount *ump;
6098 	ufs2_daddr_t blkno;
6099 	int frags;
6100 
6101 	blkno = DIP(ip, i_db[i]);
6102 	if (blkno == 0)
6103 		return;
6104 	DIP_SET(ip, i_db[i], 0);
6105 	ump = ITOUMP(ip);
6106 	frags = sblksize(ump->um_fs, ip->i_size, i);
6107 	frags = numfrags(ump->um_fs, frags);
6108 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6109 }
6110 
6111 static inline void
6112 setup_freeext(freeblks, ip, i, needj)
6113 	struct freeblks *freeblks;
6114 	struct inode *ip;
6115 	int i;
6116 	int needj;
6117 {
6118 	struct ufsmount *ump;
6119 	ufs2_daddr_t blkno;
6120 	int frags;
6121 
6122 	blkno = ip->i_din2->di_extb[i];
6123 	if (blkno == 0)
6124 		return;
6125 	ip->i_din2->di_extb[i] = 0;
6126 	ump = ITOUMP(ip);
6127 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6128 	frags = numfrags(ump->um_fs, frags);
6129 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6130 }
6131 
6132 static inline void
6133 setup_freeindir(freeblks, ip, i, lbn, needj)
6134 	struct freeblks *freeblks;
6135 	struct inode *ip;
6136 	int i;
6137 	ufs_lbn_t lbn;
6138 	int needj;
6139 {
6140 	struct ufsmount *ump;
6141 	ufs2_daddr_t blkno;
6142 
6143 	blkno = DIP(ip, i_ib[i]);
6144 	if (blkno == 0)
6145 		return;
6146 	DIP_SET(ip, i_ib[i], 0);
6147 	ump = ITOUMP(ip);
6148 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6149 	    0, needj);
6150 }
6151 
6152 static inline struct freeblks *
6153 newfreeblks(mp, ip)
6154 	struct mount *mp;
6155 	struct inode *ip;
6156 {
6157 	struct freeblks *freeblks;
6158 
6159 	freeblks = malloc(sizeof(struct freeblks),
6160 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6161 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6162 	LIST_INIT(&freeblks->fb_jblkdephd);
6163 	LIST_INIT(&freeblks->fb_jwork);
6164 	freeblks->fb_ref = 0;
6165 	freeblks->fb_cgwait = 0;
6166 	freeblks->fb_state = ATTACHED;
6167 	freeblks->fb_uid = ip->i_uid;
6168 	freeblks->fb_inum = ip->i_number;
6169 	freeblks->fb_vtype = ITOV(ip)->v_type;
6170 	freeblks->fb_modrev = DIP(ip, i_modrev);
6171 	freeblks->fb_devvp = ITODEVVP(ip);
6172 	freeblks->fb_chkcnt = 0;
6173 	freeblks->fb_len = 0;
6174 
6175 	return (freeblks);
6176 }
6177 
6178 static void
6179 trunc_indirdep(indirdep, freeblks, bp, off)
6180 	struct indirdep *indirdep;
6181 	struct freeblks *freeblks;
6182 	struct buf *bp;
6183 	int off;
6184 {
6185 	struct allocindir *aip, *aipn;
6186 
6187 	/*
6188 	 * The first set of allocindirs won't be in savedbp.
6189 	 */
6190 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6191 		if (aip->ai_offset > off)
6192 			cancel_allocindir(aip, bp, freeblks, 1);
6193 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6194 		if (aip->ai_offset > off)
6195 			cancel_allocindir(aip, bp, freeblks, 1);
6196 	/*
6197 	 * These will exist in savedbp.
6198 	 */
6199 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6200 		if (aip->ai_offset > off)
6201 			cancel_allocindir(aip, NULL, freeblks, 0);
6202 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6203 		if (aip->ai_offset > off)
6204 			cancel_allocindir(aip, NULL, freeblks, 0);
6205 }
6206 
6207 /*
6208  * Follow the chain of indirects down to lastlbn creating a freework
6209  * structure for each.  This will be used to start indir_trunc() at
6210  * the right offset and create the journal records for the parrtial
6211  * truncation.  A second step will handle the truncated dependencies.
6212  */
6213 static int
6214 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6215 	struct freeblks *freeblks;
6216 	struct inode *ip;
6217 	ufs_lbn_t lbn;
6218 	ufs_lbn_t lastlbn;
6219 	ufs2_daddr_t blkno;
6220 {
6221 	struct indirdep *indirdep;
6222 	struct indirdep *indirn;
6223 	struct freework *freework;
6224 	struct newblk *newblk;
6225 	struct mount *mp;
6226 	struct ufsmount *ump;
6227 	struct buf *bp;
6228 	uint8_t *start;
6229 	uint8_t *end;
6230 	ufs_lbn_t lbnadd;
6231 	int level;
6232 	int error;
6233 	int off;
6234 
6235 
6236 	freework = NULL;
6237 	if (blkno == 0)
6238 		return (0);
6239 	mp = freeblks->fb_list.wk_mp;
6240 	ump = VFSTOUFS(mp);
6241 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6242 	if ((bp->b_flags & B_CACHE) == 0) {
6243 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6244 		bp->b_iocmd = BIO_READ;
6245 		bp->b_flags &= ~B_INVAL;
6246 		bp->b_ioflags &= ~BIO_ERROR;
6247 		vfs_busy_pages(bp, 0);
6248 		bp->b_iooffset = dbtob(bp->b_blkno);
6249 		bstrategy(bp);
6250 #ifdef RACCT
6251 		if (racct_enable) {
6252 			PROC_LOCK(curproc);
6253 			racct_add_buf(curproc, bp, 0);
6254 			PROC_UNLOCK(curproc);
6255 		}
6256 #endif /* RACCT */
6257 		curthread->td_ru.ru_inblock++;
6258 		error = bufwait(bp);
6259 		if (error) {
6260 			brelse(bp);
6261 			return (error);
6262 		}
6263 	}
6264 	level = lbn_level(lbn);
6265 	lbnadd = lbn_offset(ump->um_fs, level);
6266 	/*
6267 	 * Compute the offset of the last block we want to keep.  Store
6268 	 * in the freework the first block we want to completely free.
6269 	 */
6270 	off = (lastlbn - -(lbn + level)) / lbnadd;
6271 	if (off + 1 == NINDIR(ump->um_fs))
6272 		goto nowork;
6273 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6274 	/*
6275 	 * Link the freework into the indirdep.  This will prevent any new
6276 	 * allocations from proceeding until we are finished with the
6277 	 * truncate and the block is written.
6278 	 */
6279 	ACQUIRE_LOCK(ump);
6280 	indirdep = indirdep_lookup(mp, ip, bp);
6281 	if (indirdep->ir_freeblks)
6282 		panic("setup_trunc_indir: indirdep already truncated.");
6283 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6284 	freework->fw_indir = indirdep;
6285 	/*
6286 	 * Cancel any allocindirs that will not make it to disk.
6287 	 * We have to do this for all copies of the indirdep that
6288 	 * live on this newblk.
6289 	 */
6290 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6291 		newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk);
6292 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6293 			trunc_indirdep(indirn, freeblks, bp, off);
6294 	} else
6295 		trunc_indirdep(indirdep, freeblks, bp, off);
6296 	FREE_LOCK(ump);
6297 	/*
6298 	 * Creation is protected by the buf lock. The saveddata is only
6299 	 * needed if a full truncation follows a partial truncation but it
6300 	 * is difficult to allocate in that case so we fetch it anyway.
6301 	 */
6302 	if (indirdep->ir_saveddata == NULL)
6303 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6304 		    M_SOFTDEP_FLAGS);
6305 nowork:
6306 	/* Fetch the blkno of the child and the zero start offset. */
6307 	if (I_IS_UFS1(ip)) {
6308 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6309 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6310 	} else {
6311 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6312 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6313 	}
6314 	if (freework) {
6315 		/* Zero the truncated pointers. */
6316 		end = bp->b_data + bp->b_bcount;
6317 		bzero(start, end - start);
6318 		bdwrite(bp);
6319 	} else
6320 		bqrelse(bp);
6321 	if (level == 0)
6322 		return (0);
6323 	lbn++; /* adjust level */
6324 	lbn -= (off * lbnadd);
6325 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6326 }
6327 
6328 /*
6329  * Complete the partial truncation of an indirect block setup by
6330  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6331  * copy and writes them to disk before the freeblks is allowed to complete.
6332  */
6333 static void
6334 complete_trunc_indir(freework)
6335 	struct freework *freework;
6336 {
6337 	struct freework *fwn;
6338 	struct indirdep *indirdep;
6339 	struct ufsmount *ump;
6340 	struct buf *bp;
6341 	uintptr_t start;
6342 	int count;
6343 
6344 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6345 	LOCK_OWNED(ump);
6346 	indirdep = freework->fw_indir;
6347 	for (;;) {
6348 		bp = indirdep->ir_bp;
6349 		/* See if the block was discarded. */
6350 		if (bp == NULL)
6351 			break;
6352 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6353 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6354 			break;
6355 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6356 		    LOCK_PTR(ump)) == 0)
6357 			BUF_UNLOCK(bp);
6358 		ACQUIRE_LOCK(ump);
6359 	}
6360 	freework->fw_state |= DEPCOMPLETE;
6361 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6362 	/*
6363 	 * Zero the pointers in the saved copy.
6364 	 */
6365 	if (indirdep->ir_state & UFS1FMT)
6366 		start = sizeof(ufs1_daddr_t);
6367 	else
6368 		start = sizeof(ufs2_daddr_t);
6369 	start *= freework->fw_start;
6370 	count = indirdep->ir_savebp->b_bcount - start;
6371 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6372 	bzero((char *)start, count);
6373 	/*
6374 	 * We need to start the next truncation in the list if it has not
6375 	 * been started yet.
6376 	 */
6377 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6378 	if (fwn != NULL) {
6379 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6380 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6381 		if ((fwn->fw_state & ONWORKLIST) == 0)
6382 			freework_enqueue(fwn);
6383 	}
6384 	/*
6385 	 * If bp is NULL the block was fully truncated, restore
6386 	 * the saved block list otherwise free it if it is no
6387 	 * longer needed.
6388 	 */
6389 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6390 		if (bp == NULL)
6391 			bcopy(indirdep->ir_saveddata,
6392 			    indirdep->ir_savebp->b_data,
6393 			    indirdep->ir_savebp->b_bcount);
6394 		free(indirdep->ir_saveddata, M_INDIRDEP);
6395 		indirdep->ir_saveddata = NULL;
6396 	}
6397 	/*
6398 	 * When bp is NULL there is a full truncation pending.  We
6399 	 * must wait for this full truncation to be journaled before
6400 	 * we can release this freework because the disk pointers will
6401 	 * never be written as zero.
6402 	 */
6403 	if (bp == NULL)  {
6404 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6405 			handle_written_freework(freework);
6406 		else
6407 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6408 			   &freework->fw_list);
6409 	} else {
6410 		/* Complete when the real copy is written. */
6411 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6412 		BUF_UNLOCK(bp);
6413 	}
6414 }
6415 
6416 /*
6417  * Calculate the number of blocks we are going to release where datablocks
6418  * is the current total and length is the new file size.
6419  */
6420 static ufs2_daddr_t
6421 blkcount(fs, datablocks, length)
6422 	struct fs *fs;
6423 	ufs2_daddr_t datablocks;
6424 	off_t length;
6425 {
6426 	off_t totblks, numblks;
6427 
6428 	totblks = 0;
6429 	numblks = howmany(length, fs->fs_bsize);
6430 	if (numblks <= UFS_NDADDR) {
6431 		totblks = howmany(length, fs->fs_fsize);
6432 		goto out;
6433 	}
6434         totblks = blkstofrags(fs, numblks);
6435 	numblks -= UFS_NDADDR;
6436 	/*
6437 	 * Count all single, then double, then triple indirects required.
6438 	 * Subtracting one indirects worth of blocks for each pass
6439 	 * acknowledges one of each pointed to by the inode.
6440 	 */
6441 	for (;;) {
6442 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6443 		numblks -= NINDIR(fs);
6444 		if (numblks <= 0)
6445 			break;
6446 		numblks = howmany(numblks, NINDIR(fs));
6447 	}
6448 out:
6449 	totblks = fsbtodb(fs, totblks);
6450 	/*
6451 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6452 	 * references.  We will correct it later in handle_complete_freeblks()
6453 	 * when we know the real count.
6454 	 */
6455 	if (totblks > datablocks)
6456 		return (0);
6457 	return (datablocks - totblks);
6458 }
6459 
6460 /*
6461  * Handle freeblocks for journaled softupdate filesystems.
6462  *
6463  * Contrary to normal softupdates, we must preserve the block pointers in
6464  * indirects until their subordinates are free.  This is to avoid journaling
6465  * every block that is freed which may consume more space than the journal
6466  * itself.  The recovery program will see the free block journals at the
6467  * base of the truncated area and traverse them to reclaim space.  The
6468  * pointers in the inode may be cleared immediately after the journal
6469  * records are written because each direct and indirect pointer in the
6470  * inode is recorded in a journal.  This permits full truncation to proceed
6471  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6472  *
6473  * The algorithm is as follows:
6474  * 1) Traverse the in-memory state and create journal entries to release
6475  *    the relevant blocks and full indirect trees.
6476  * 2) Traverse the indirect block chain adding partial truncation freework
6477  *    records to indirects in the path to lastlbn.  The freework will
6478  *    prevent new allocation dependencies from being satisfied in this
6479  *    indirect until the truncation completes.
6480  * 3) Read and lock the inode block, performing an update with the new size
6481  *    and pointers.  This prevents truncated data from becoming valid on
6482  *    disk through step 4.
6483  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6484  *    eliminate journal work for those records that do not require it.
6485  * 5) Schedule the journal records to be written followed by the inode block.
6486  * 6) Allocate any necessary frags for the end of file.
6487  * 7) Zero any partially truncated blocks.
6488  *
6489  * From this truncation proceeds asynchronously using the freework and
6490  * indir_trunc machinery.  The file will not be extended again into a
6491  * partially truncated indirect block until all work is completed but
6492  * the normal dependency mechanism ensures that it is rolled back/forward
6493  * as appropriate.  Further truncation may occur without delay and is
6494  * serialized in indir_trunc().
6495  */
6496 void
6497 softdep_journal_freeblocks(ip, cred, length, flags)
6498 	struct inode *ip;	/* The inode whose length is to be reduced */
6499 	struct ucred *cred;
6500 	off_t length;		/* The new length for the file */
6501 	int flags;		/* IO_EXT and/or IO_NORMAL */
6502 {
6503 	struct freeblks *freeblks, *fbn;
6504 	struct worklist *wk, *wkn;
6505 	struct inodedep *inodedep;
6506 	struct jblkdep *jblkdep;
6507 	struct allocdirect *adp, *adpn;
6508 	struct ufsmount *ump;
6509 	struct fs *fs;
6510 	struct buf *bp;
6511 	struct vnode *vp;
6512 	struct mount *mp;
6513 	ufs2_daddr_t extblocks, datablocks;
6514 	ufs_lbn_t tmpval, lbn, lastlbn;
6515 	int frags, lastoff, iboff, allocblock, needj, error, i;
6516 
6517 	ump = ITOUMP(ip);
6518 	mp = UFSTOVFS(ump);
6519 	fs = ump->um_fs;
6520 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6521 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6522 	vp = ITOV(ip);
6523 	needj = 1;
6524 	iboff = -1;
6525 	allocblock = 0;
6526 	extblocks = 0;
6527 	datablocks = 0;
6528 	frags = 0;
6529 	freeblks = newfreeblks(mp, ip);
6530 	ACQUIRE_LOCK(ump);
6531 	/*
6532 	 * If we're truncating a removed file that will never be written
6533 	 * we don't need to journal the block frees.  The canceled journals
6534 	 * for the allocations will suffice.
6535 	 */
6536 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6537 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6538 	    length == 0)
6539 		needj = 0;
6540 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6541 	    ip->i_number, length, needj);
6542 	FREE_LOCK(ump);
6543 	/*
6544 	 * Calculate the lbn that we are truncating to.  This results in -1
6545 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6546 	 * to keep, not the first lbn we want to truncate.
6547 	 */
6548 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6549 	lastoff = blkoff(fs, length);
6550 	/*
6551 	 * Compute frags we are keeping in lastlbn.  0 means all.
6552 	 */
6553 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6554 		frags = fragroundup(fs, lastoff);
6555 		/* adp offset of last valid allocdirect. */
6556 		iboff = lastlbn;
6557 	} else if (lastlbn > 0)
6558 		iboff = UFS_NDADDR;
6559 	if (fs->fs_magic == FS_UFS2_MAGIC)
6560 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6561 	/*
6562 	 * Handle normal data blocks and indirects.  This section saves
6563 	 * values used after the inode update to complete frag and indirect
6564 	 * truncation.
6565 	 */
6566 	if ((flags & IO_NORMAL) != 0) {
6567 		/*
6568 		 * Handle truncation of whole direct and indirect blocks.
6569 		 */
6570 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6571 			setup_freedirect(freeblks, ip, i, needj);
6572 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6573 		    i < UFS_NIADDR;
6574 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6575 			/* Release a whole indirect tree. */
6576 			if (lbn > lastlbn) {
6577 				setup_freeindir(freeblks, ip, i, -lbn -i,
6578 				    needj);
6579 				continue;
6580 			}
6581 			iboff = i + UFS_NDADDR;
6582 			/*
6583 			 * Traverse partially truncated indirect tree.
6584 			 */
6585 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6586 				setup_trunc_indir(freeblks, ip, -lbn - i,
6587 				    lastlbn, DIP(ip, i_ib[i]));
6588 		}
6589 		/*
6590 		 * Handle partial truncation to a frag boundary.
6591 		 */
6592 		if (frags) {
6593 			ufs2_daddr_t blkno;
6594 			long oldfrags;
6595 
6596 			oldfrags = blksize(fs, ip, lastlbn);
6597 			blkno = DIP(ip, i_db[lastlbn]);
6598 			if (blkno && oldfrags != frags) {
6599 				oldfrags -= frags;
6600 				oldfrags = numfrags(fs, oldfrags);
6601 				blkno += numfrags(fs, frags);
6602 				newfreework(ump, freeblks, NULL, lastlbn,
6603 				    blkno, oldfrags, 0, needj);
6604 				if (needj)
6605 					adjust_newfreework(freeblks,
6606 					    numfrags(fs, frags));
6607 			} else if (blkno == 0)
6608 				allocblock = 1;
6609 		}
6610 		/*
6611 		 * Add a journal record for partial truncate if we are
6612 		 * handling indirect blocks.  Non-indirects need no extra
6613 		 * journaling.
6614 		 */
6615 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6616 			ip->i_flag |= IN_TRUNCATED;
6617 			newjtrunc(freeblks, length, 0);
6618 		}
6619 		ip->i_size = length;
6620 		DIP_SET(ip, i_size, ip->i_size);
6621 		datablocks = DIP(ip, i_blocks) - extblocks;
6622 		if (length != 0)
6623 			datablocks = blkcount(fs, datablocks, length);
6624 		freeblks->fb_len = length;
6625 	}
6626 	if ((flags & IO_EXT) != 0) {
6627 		for (i = 0; i < UFS_NXADDR; i++)
6628 			setup_freeext(freeblks, ip, i, needj);
6629 		ip->i_din2->di_extsize = 0;
6630 		datablocks += extblocks;
6631 	}
6632 #ifdef QUOTA
6633 	/* Reference the quotas in case the block count is wrong in the end. */
6634 	quotaref(vp, freeblks->fb_quota);
6635 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6636 #endif
6637 	freeblks->fb_chkcnt = -datablocks;
6638 	UFS_LOCK(ump);
6639 	fs->fs_pendingblocks += datablocks;
6640 	UFS_UNLOCK(ump);
6641 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6642 	/*
6643 	 * Handle truncation of incomplete alloc direct dependencies.  We
6644 	 * hold the inode block locked to prevent incomplete dependencies
6645 	 * from reaching the disk while we are eliminating those that
6646 	 * have been truncated.  This is a partially inlined ffs_update().
6647 	 */
6648 	ufs_itimes(vp);
6649 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6650 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6651 	    (int)fs->fs_bsize, cred, &bp);
6652 	if (error) {
6653 		brelse(bp);
6654 		softdep_error("softdep_journal_freeblocks", error);
6655 		return;
6656 	}
6657 	if (bp->b_bufsize == fs->fs_bsize)
6658 		bp->b_flags |= B_CLUSTEROK;
6659 	softdep_update_inodeblock(ip, bp, 0);
6660 	if (ump->um_fstype == UFS1)
6661 		*((struct ufs1_dinode *)bp->b_data +
6662 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6663 	else
6664 		*((struct ufs2_dinode *)bp->b_data +
6665 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6666 	ACQUIRE_LOCK(ump);
6667 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6668 	if ((inodedep->id_state & IOSTARTED) != 0)
6669 		panic("softdep_setup_freeblocks: inode busy");
6670 	/*
6671 	 * Add the freeblks structure to the list of operations that
6672 	 * must await the zero'ed inode being written to disk. If we
6673 	 * still have a bitmap dependency (needj), then the inode
6674 	 * has never been written to disk, so we can process the
6675 	 * freeblks below once we have deleted the dependencies.
6676 	 */
6677 	if (needj)
6678 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6679 	else
6680 		freeblks->fb_state |= COMPLETE;
6681 	if ((flags & IO_NORMAL) != 0) {
6682 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6683 			if (adp->ad_offset > iboff)
6684 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6685 				    freeblks);
6686 			/*
6687 			 * Truncate the allocdirect.  We could eliminate
6688 			 * or modify journal records as well.
6689 			 */
6690 			else if (adp->ad_offset == iboff && frags)
6691 				adp->ad_newsize = frags;
6692 		}
6693 	}
6694 	if ((flags & IO_EXT) != 0)
6695 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6696 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6697 			    freeblks);
6698 	/*
6699 	 * Scan the bufwait list for newblock dependencies that will never
6700 	 * make it to disk.
6701 	 */
6702 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6703 		if (wk->wk_type != D_ALLOCDIRECT)
6704 			continue;
6705 		adp = WK_ALLOCDIRECT(wk);
6706 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6707 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6708 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6709 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6710 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6711 		}
6712 	}
6713 	/*
6714 	 * Add journal work.
6715 	 */
6716 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6717 		add_to_journal(&jblkdep->jb_list);
6718 	FREE_LOCK(ump);
6719 	bdwrite(bp);
6720 	/*
6721 	 * Truncate dependency structures beyond length.
6722 	 */
6723 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6724 	/*
6725 	 * This is only set when we need to allocate a fragment because
6726 	 * none existed at the end of a frag-sized file.  It handles only
6727 	 * allocating a new, zero filled block.
6728 	 */
6729 	if (allocblock) {
6730 		ip->i_size = length - lastoff;
6731 		DIP_SET(ip, i_size, ip->i_size);
6732 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6733 		if (error != 0) {
6734 			softdep_error("softdep_journal_freeblks", error);
6735 			return;
6736 		}
6737 		ip->i_size = length;
6738 		DIP_SET(ip, i_size, length);
6739 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6740 		allocbuf(bp, frags);
6741 		ffs_update(vp, 0);
6742 		bawrite(bp);
6743 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6744 		int size;
6745 
6746 		/*
6747 		 * Zero the end of a truncated frag or block.
6748 		 */
6749 		size = sblksize(fs, length, lastlbn);
6750 		error = bread(vp, lastlbn, size, cred, &bp);
6751 		if (error) {
6752 			softdep_error("softdep_journal_freeblks", error);
6753 			return;
6754 		}
6755 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6756 		bawrite(bp);
6757 
6758 	}
6759 	ACQUIRE_LOCK(ump);
6760 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6761 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6762 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6763 	/*
6764 	 * We zero earlier truncations so they don't erroneously
6765 	 * update i_blocks.
6766 	 */
6767 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6768 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6769 			fbn->fb_len = 0;
6770 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6771 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6772 		freeblks->fb_state |= INPROGRESS;
6773 	else
6774 		freeblks = NULL;
6775 	FREE_LOCK(ump);
6776 	if (freeblks)
6777 		handle_workitem_freeblocks(freeblks, 0);
6778 	trunc_pages(ip, length, extblocks, flags);
6779 
6780 }
6781 
6782 /*
6783  * Flush a JOP_SYNC to the journal.
6784  */
6785 void
6786 softdep_journal_fsync(ip)
6787 	struct inode *ip;
6788 {
6789 	struct jfsync *jfsync;
6790 	struct ufsmount *ump;
6791 
6792 	ump = ITOUMP(ip);
6793 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6794 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6795 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6796 		return;
6797 	ip->i_flag &= ~IN_TRUNCATED;
6798 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6799 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6800 	jfsync->jfs_size = ip->i_size;
6801 	jfsync->jfs_ino = ip->i_number;
6802 	ACQUIRE_LOCK(ump);
6803 	add_to_journal(&jfsync->jfs_list);
6804 	jwait(&jfsync->jfs_list, MNT_WAIT);
6805 	FREE_LOCK(ump);
6806 }
6807 
6808 /*
6809  * Block de-allocation dependencies.
6810  *
6811  * When blocks are de-allocated, the on-disk pointers must be nullified before
6812  * the blocks are made available for use by other files.  (The true
6813  * requirement is that old pointers must be nullified before new on-disk
6814  * pointers are set.  We chose this slightly more stringent requirement to
6815  * reduce complexity.) Our implementation handles this dependency by updating
6816  * the inode (or indirect block) appropriately but delaying the actual block
6817  * de-allocation (i.e., freemap and free space count manipulation) until
6818  * after the updated versions reach stable storage.  After the disk is
6819  * updated, the blocks can be safely de-allocated whenever it is convenient.
6820  * This implementation handles only the common case of reducing a file's
6821  * length to zero. Other cases are handled by the conventional synchronous
6822  * write approach.
6823  *
6824  * The ffs implementation with which we worked double-checks
6825  * the state of the block pointers and file size as it reduces
6826  * a file's length.  Some of this code is replicated here in our
6827  * soft updates implementation.  The freeblks->fb_chkcnt field is
6828  * used to transfer a part of this information to the procedure
6829  * that eventually de-allocates the blocks.
6830  *
6831  * This routine should be called from the routine that shortens
6832  * a file's length, before the inode's size or block pointers
6833  * are modified. It will save the block pointer information for
6834  * later release and zero the inode so that the calling routine
6835  * can release it.
6836  */
6837 void
6838 softdep_setup_freeblocks(ip, length, flags)
6839 	struct inode *ip;	/* The inode whose length is to be reduced */
6840 	off_t length;		/* The new length for the file */
6841 	int flags;		/* IO_EXT and/or IO_NORMAL */
6842 {
6843 	struct ufs1_dinode *dp1;
6844 	struct ufs2_dinode *dp2;
6845 	struct freeblks *freeblks;
6846 	struct inodedep *inodedep;
6847 	struct allocdirect *adp;
6848 	struct ufsmount *ump;
6849 	struct buf *bp;
6850 	struct fs *fs;
6851 	ufs2_daddr_t extblocks, datablocks;
6852 	struct mount *mp;
6853 	int i, delay, error;
6854 	ufs_lbn_t tmpval;
6855 	ufs_lbn_t lbn;
6856 
6857 	ump = ITOUMP(ip);
6858 	mp = UFSTOVFS(ump);
6859 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6860 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6861 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6862 	    ip->i_number, length);
6863 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6864 	fs = ump->um_fs;
6865 	if ((error = bread(ump->um_devvp,
6866 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6867 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6868 		brelse(bp);
6869 		softdep_error("softdep_setup_freeblocks", error);
6870 		return;
6871 	}
6872 	freeblks = newfreeblks(mp, ip);
6873 	extblocks = 0;
6874 	datablocks = 0;
6875 	if (fs->fs_magic == FS_UFS2_MAGIC)
6876 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6877 	if ((flags & IO_NORMAL) != 0) {
6878 		for (i = 0; i < UFS_NDADDR; i++)
6879 			setup_freedirect(freeblks, ip, i, 0);
6880 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6881 		    i < UFS_NIADDR;
6882 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6883 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6884 		ip->i_size = 0;
6885 		DIP_SET(ip, i_size, 0);
6886 		datablocks = DIP(ip, i_blocks) - extblocks;
6887 	}
6888 	if ((flags & IO_EXT) != 0) {
6889 		for (i = 0; i < UFS_NXADDR; i++)
6890 			setup_freeext(freeblks, ip, i, 0);
6891 		ip->i_din2->di_extsize = 0;
6892 		datablocks += extblocks;
6893 	}
6894 #ifdef QUOTA
6895 	/* Reference the quotas in case the block count is wrong in the end. */
6896 	quotaref(ITOV(ip), freeblks->fb_quota);
6897 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6898 #endif
6899 	freeblks->fb_chkcnt = -datablocks;
6900 	UFS_LOCK(ump);
6901 	fs->fs_pendingblocks += datablocks;
6902 	UFS_UNLOCK(ump);
6903 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6904 	/*
6905 	 * Push the zero'ed inode to to its disk buffer so that we are free
6906 	 * to delete its dependencies below. Once the dependencies are gone
6907 	 * the buffer can be safely released.
6908 	 */
6909 	if (ump->um_fstype == UFS1) {
6910 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6911 		    ino_to_fsbo(fs, ip->i_number));
6912 		ip->i_din1->di_freelink = dp1->di_freelink;
6913 		*dp1 = *ip->i_din1;
6914 	} else {
6915 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6916 		    ino_to_fsbo(fs, ip->i_number));
6917 		ip->i_din2->di_freelink = dp2->di_freelink;
6918 		*dp2 = *ip->i_din2;
6919 	}
6920 	/*
6921 	 * Find and eliminate any inode dependencies.
6922 	 */
6923 	ACQUIRE_LOCK(ump);
6924 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6925 	if ((inodedep->id_state & IOSTARTED) != 0)
6926 		panic("softdep_setup_freeblocks: inode busy");
6927 	/*
6928 	 * Add the freeblks structure to the list of operations that
6929 	 * must await the zero'ed inode being written to disk. If we
6930 	 * still have a bitmap dependency (delay == 0), then the inode
6931 	 * has never been written to disk, so we can process the
6932 	 * freeblks below once we have deleted the dependencies.
6933 	 */
6934 	delay = (inodedep->id_state & DEPCOMPLETE);
6935 	if (delay)
6936 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6937 	else
6938 		freeblks->fb_state |= COMPLETE;
6939 	/*
6940 	 * Because the file length has been truncated to zero, any
6941 	 * pending block allocation dependency structures associated
6942 	 * with this inode are obsolete and can simply be de-allocated.
6943 	 * We must first merge the two dependency lists to get rid of
6944 	 * any duplicate freefrag structures, then purge the merged list.
6945 	 * If we still have a bitmap dependency, then the inode has never
6946 	 * been written to disk, so we can free any fragments without delay.
6947 	 */
6948 	if (flags & IO_NORMAL) {
6949 		merge_inode_lists(&inodedep->id_newinoupdt,
6950 		    &inodedep->id_inoupdt);
6951 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
6952 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6953 			    freeblks);
6954 	}
6955 	if (flags & IO_EXT) {
6956 		merge_inode_lists(&inodedep->id_newextupdt,
6957 		    &inodedep->id_extupdt);
6958 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6959 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6960 			    freeblks);
6961 	}
6962 	FREE_LOCK(ump);
6963 	bdwrite(bp);
6964 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6965 	ACQUIRE_LOCK(ump);
6966 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6967 		(void) free_inodedep(inodedep);
6968 	freeblks->fb_state |= DEPCOMPLETE;
6969 	/*
6970 	 * If the inode with zeroed block pointers is now on disk
6971 	 * we can start freeing blocks.
6972 	 */
6973 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6974 		freeblks->fb_state |= INPROGRESS;
6975 	else
6976 		freeblks = NULL;
6977 	FREE_LOCK(ump);
6978 	if (freeblks)
6979 		handle_workitem_freeblocks(freeblks, 0);
6980 	trunc_pages(ip, length, extblocks, flags);
6981 }
6982 
6983 /*
6984  * Eliminate pages from the page cache that back parts of this inode and
6985  * adjust the vnode pager's idea of our size.  This prevents stale data
6986  * from hanging around in the page cache.
6987  */
6988 static void
6989 trunc_pages(ip, length, extblocks, flags)
6990 	struct inode *ip;
6991 	off_t length;
6992 	ufs2_daddr_t extblocks;
6993 	int flags;
6994 {
6995 	struct vnode *vp;
6996 	struct fs *fs;
6997 	ufs_lbn_t lbn;
6998 	off_t end, extend;
6999 
7000 	vp = ITOV(ip);
7001 	fs = ITOFS(ip);
7002 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7003 	if ((flags & IO_EXT) != 0)
7004 		vn_pages_remove(vp, extend, 0);
7005 	if ((flags & IO_NORMAL) == 0)
7006 		return;
7007 	BO_LOCK(&vp->v_bufobj);
7008 	drain_output(vp);
7009 	BO_UNLOCK(&vp->v_bufobj);
7010 	/*
7011 	 * The vnode pager eliminates file pages we eliminate indirects
7012 	 * below.
7013 	 */
7014 	vnode_pager_setsize(vp, length);
7015 	/*
7016 	 * Calculate the end based on the last indirect we want to keep.  If
7017 	 * the block extends into indirects we can just use the negative of
7018 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7019 	 * be careful not to remove those, if they exist.  double and triple
7020 	 * indirect lbns do not overlap with others so it is not important
7021 	 * to verify how many levels are required.
7022 	 */
7023 	lbn = lblkno(fs, length);
7024 	if (lbn >= UFS_NDADDR) {
7025 		/* Calculate the virtual lbn of the triple indirect. */
7026 		lbn = -lbn - (UFS_NIADDR - 1);
7027 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7028 	} else
7029 		end = extend;
7030 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7031 }
7032 
7033 /*
7034  * See if the buf bp is in the range eliminated by truncation.
7035  */
7036 static int
7037 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7038 	struct buf *bp;
7039 	int *blkoffp;
7040 	ufs_lbn_t lastlbn;
7041 	int lastoff;
7042 	int flags;
7043 {
7044 	ufs_lbn_t lbn;
7045 
7046 	*blkoffp = 0;
7047 	/* Only match ext/normal blocks as appropriate. */
7048 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7049 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7050 		return (0);
7051 	/* ALTDATA is always a full truncation. */
7052 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7053 		return (1);
7054 	/* -1 is full truncation. */
7055 	if (lastlbn == -1)
7056 		return (1);
7057 	/*
7058 	 * If this is a partial truncate we only want those
7059 	 * blocks and indirect blocks that cover the range
7060 	 * we're after.
7061 	 */
7062 	lbn = bp->b_lblkno;
7063 	if (lbn < 0)
7064 		lbn = -(lbn + lbn_level(lbn));
7065 	if (lbn < lastlbn)
7066 		return (0);
7067 	/* Here we only truncate lblkno if it's partial. */
7068 	if (lbn == lastlbn) {
7069 		if (lastoff == 0)
7070 			return (0);
7071 		*blkoffp = lastoff;
7072 	}
7073 	return (1);
7074 }
7075 
7076 /*
7077  * Eliminate any dependencies that exist in memory beyond lblkno:off
7078  */
7079 static void
7080 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7081 	struct inode *ip;
7082 	struct freeblks *freeblks;
7083 	ufs_lbn_t lastlbn;
7084 	int lastoff;
7085 	int flags;
7086 {
7087 	struct bufobj *bo;
7088 	struct vnode *vp;
7089 	struct buf *bp;
7090 	int blkoff;
7091 
7092 	/*
7093 	 * We must wait for any I/O in progress to finish so that
7094 	 * all potential buffers on the dirty list will be visible.
7095 	 * Once they are all there, walk the list and get rid of
7096 	 * any dependencies.
7097 	 */
7098 	vp = ITOV(ip);
7099 	bo = &vp->v_bufobj;
7100 	BO_LOCK(bo);
7101 	drain_output(vp);
7102 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7103 		bp->b_vflags &= ~BV_SCANNED;
7104 restart:
7105 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7106 		if (bp->b_vflags & BV_SCANNED)
7107 			continue;
7108 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7109 			bp->b_vflags |= BV_SCANNED;
7110 			continue;
7111 		}
7112 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7113 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7114 			goto restart;
7115 		BO_UNLOCK(bo);
7116 		if (deallocate_dependencies(bp, freeblks, blkoff))
7117 			bqrelse(bp);
7118 		else
7119 			brelse(bp);
7120 		BO_LOCK(bo);
7121 		goto restart;
7122 	}
7123 	/*
7124 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7125 	 */
7126 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7127 		bp->b_vflags &= ~BV_SCANNED;
7128 cleanrestart:
7129 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7130 		if (bp->b_vflags & BV_SCANNED)
7131 			continue;
7132 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7133 			bp->b_vflags |= BV_SCANNED;
7134 			continue;
7135 		}
7136 		if (BUF_LOCK(bp,
7137 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7138 		    BO_LOCKPTR(bo)) == ENOLCK) {
7139 			BO_LOCK(bo);
7140 			goto cleanrestart;
7141 		}
7142 		bp->b_vflags |= BV_SCANNED;
7143 		bremfree(bp);
7144 		if (blkoff != 0) {
7145 			allocbuf(bp, blkoff);
7146 			bqrelse(bp);
7147 		} else {
7148 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7149 			brelse(bp);
7150 		}
7151 		BO_LOCK(bo);
7152 		goto cleanrestart;
7153 	}
7154 	drain_output(vp);
7155 	BO_UNLOCK(bo);
7156 }
7157 
7158 static int
7159 cancel_pagedep(pagedep, freeblks, blkoff)
7160 	struct pagedep *pagedep;
7161 	struct freeblks *freeblks;
7162 	int blkoff;
7163 {
7164 	struct jremref *jremref;
7165 	struct jmvref *jmvref;
7166 	struct dirrem *dirrem, *tmp;
7167 	int i;
7168 
7169 	/*
7170 	 * Copy any directory remove dependencies to the list
7171 	 * to be processed after the freeblks proceeds.  If
7172 	 * directory entry never made it to disk they
7173 	 * can be dumped directly onto the work list.
7174 	 */
7175 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7176 		/* Skip this directory removal if it is intended to remain. */
7177 		if (dirrem->dm_offset < blkoff)
7178 			continue;
7179 		/*
7180 		 * If there are any dirrems we wait for the journal write
7181 		 * to complete and then restart the buf scan as the lock
7182 		 * has been dropped.
7183 		 */
7184 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7185 			jwait(&jremref->jr_list, MNT_WAIT);
7186 			return (ERESTART);
7187 		}
7188 		LIST_REMOVE(dirrem, dm_next);
7189 		dirrem->dm_dirinum = pagedep->pd_ino;
7190 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7191 	}
7192 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7193 		jwait(&jmvref->jm_list, MNT_WAIT);
7194 		return (ERESTART);
7195 	}
7196 	/*
7197 	 * When we're partially truncating a pagedep we just want to flush
7198 	 * journal entries and return.  There can not be any adds in the
7199 	 * truncated portion of the directory and newblk must remain if
7200 	 * part of the block remains.
7201 	 */
7202 	if (blkoff != 0) {
7203 		struct diradd *dap;
7204 
7205 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7206 			if (dap->da_offset > blkoff)
7207 				panic("cancel_pagedep: diradd %p off %d > %d",
7208 				    dap, dap->da_offset, blkoff);
7209 		for (i = 0; i < DAHASHSZ; i++)
7210 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7211 				if (dap->da_offset > blkoff)
7212 					panic("cancel_pagedep: diradd %p off %d > %d",
7213 					    dap, dap->da_offset, blkoff);
7214 		return (0);
7215 	}
7216 	/*
7217 	 * There should be no directory add dependencies present
7218 	 * as the directory could not be truncated until all
7219 	 * children were removed.
7220 	 */
7221 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7222 	    ("deallocate_dependencies: pendinghd != NULL"));
7223 	for (i = 0; i < DAHASHSZ; i++)
7224 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7225 		    ("deallocate_dependencies: diraddhd != NULL"));
7226 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7227 		free_newdirblk(pagedep->pd_newdirblk);
7228 	if (free_pagedep(pagedep) == 0)
7229 		panic("Failed to free pagedep %p", pagedep);
7230 	return (0);
7231 }
7232 
7233 /*
7234  * Reclaim any dependency structures from a buffer that is about to
7235  * be reallocated to a new vnode. The buffer must be locked, thus,
7236  * no I/O completion operations can occur while we are manipulating
7237  * its associated dependencies. The mutex is held so that other I/O's
7238  * associated with related dependencies do not occur.
7239  */
7240 static int
7241 deallocate_dependencies(bp, freeblks, off)
7242 	struct buf *bp;
7243 	struct freeblks *freeblks;
7244 	int off;
7245 {
7246 	struct indirdep *indirdep;
7247 	struct pagedep *pagedep;
7248 	struct worklist *wk, *wkn;
7249 	struct ufsmount *ump;
7250 
7251 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7252 		goto done;
7253 	ump = VFSTOUFS(wk->wk_mp);
7254 	ACQUIRE_LOCK(ump);
7255 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7256 		switch (wk->wk_type) {
7257 		case D_INDIRDEP:
7258 			indirdep = WK_INDIRDEP(wk);
7259 			if (bp->b_lblkno >= 0 ||
7260 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7261 				panic("deallocate_dependencies: not indir");
7262 			cancel_indirdep(indirdep, bp, freeblks);
7263 			continue;
7264 
7265 		case D_PAGEDEP:
7266 			pagedep = WK_PAGEDEP(wk);
7267 			if (cancel_pagedep(pagedep, freeblks, off)) {
7268 				FREE_LOCK(ump);
7269 				return (ERESTART);
7270 			}
7271 			continue;
7272 
7273 		case D_ALLOCINDIR:
7274 			/*
7275 			 * Simply remove the allocindir, we'll find it via
7276 			 * the indirdep where we can clear pointers if
7277 			 * needed.
7278 			 */
7279 			WORKLIST_REMOVE(wk);
7280 			continue;
7281 
7282 		case D_FREEWORK:
7283 			/*
7284 			 * A truncation is waiting for the zero'd pointers
7285 			 * to be written.  It can be freed when the freeblks
7286 			 * is journaled.
7287 			 */
7288 			WORKLIST_REMOVE(wk);
7289 			wk->wk_state |= ONDEPLIST;
7290 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7291 			break;
7292 
7293 		case D_ALLOCDIRECT:
7294 			if (off != 0)
7295 				continue;
7296 			/* FALLTHROUGH */
7297 		default:
7298 			panic("deallocate_dependencies: Unexpected type %s",
7299 			    TYPENAME(wk->wk_type));
7300 			/* NOTREACHED */
7301 		}
7302 	}
7303 	FREE_LOCK(ump);
7304 done:
7305 	/*
7306 	 * Don't throw away this buf, we were partially truncating and
7307 	 * some deps may always remain.
7308 	 */
7309 	if (off) {
7310 		allocbuf(bp, off);
7311 		bp->b_vflags |= BV_SCANNED;
7312 		return (EBUSY);
7313 	}
7314 	bp->b_flags |= B_INVAL | B_NOCACHE;
7315 
7316 	return (0);
7317 }
7318 
7319 /*
7320  * An allocdirect is being canceled due to a truncate.  We must make sure
7321  * the journal entry is released in concert with the blkfree that releases
7322  * the storage.  Completed journal entries must not be released until the
7323  * space is no longer pointed to by the inode or in the bitmap.
7324  */
7325 static void
7326 cancel_allocdirect(adphead, adp, freeblks)
7327 	struct allocdirectlst *adphead;
7328 	struct allocdirect *adp;
7329 	struct freeblks *freeblks;
7330 {
7331 	struct freework *freework;
7332 	struct newblk *newblk;
7333 	struct worklist *wk;
7334 
7335 	TAILQ_REMOVE(adphead, adp, ad_next);
7336 	newblk = (struct newblk *)adp;
7337 	freework = NULL;
7338 	/*
7339 	 * Find the correct freework structure.
7340 	 */
7341 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7342 		if (wk->wk_type != D_FREEWORK)
7343 			continue;
7344 		freework = WK_FREEWORK(wk);
7345 		if (freework->fw_blkno == newblk->nb_newblkno)
7346 			break;
7347 	}
7348 	if (freework == NULL)
7349 		panic("cancel_allocdirect: Freework not found");
7350 	/*
7351 	 * If a newblk exists at all we still have the journal entry that
7352 	 * initiated the allocation so we do not need to journal the free.
7353 	 */
7354 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7355 	/*
7356 	 * If the journal hasn't been written the jnewblk must be passed
7357 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7358 	 * this by linking the journal dependency into the freework to be
7359 	 * freed when freework_freeblock() is called.  If the journal has
7360 	 * been written we can simply reclaim the journal space when the
7361 	 * freeblks work is complete.
7362 	 */
7363 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7364 	    &freeblks->fb_jwork);
7365 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7366 }
7367 
7368 
7369 /*
7370  * Cancel a new block allocation.  May be an indirect or direct block.  We
7371  * remove it from various lists and return any journal record that needs to
7372  * be resolved by the caller.
7373  *
7374  * A special consideration is made for indirects which were never pointed
7375  * at on disk and will never be found once this block is released.
7376  */
7377 static struct jnewblk *
7378 cancel_newblk(newblk, wk, wkhd)
7379 	struct newblk *newblk;
7380 	struct worklist *wk;
7381 	struct workhead *wkhd;
7382 {
7383 	struct jnewblk *jnewblk;
7384 
7385 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7386 
7387 	newblk->nb_state |= GOINGAWAY;
7388 	/*
7389 	 * Previously we traversed the completedhd on each indirdep
7390 	 * attached to this newblk to cancel them and gather journal
7391 	 * work.  Since we need only the oldest journal segment and
7392 	 * the lowest point on the tree will always have the oldest
7393 	 * journal segment we are free to release the segments
7394 	 * of any subordinates and may leave the indirdep list to
7395 	 * indirdep_complete() when this newblk is freed.
7396 	 */
7397 	if (newblk->nb_state & ONDEPLIST) {
7398 		newblk->nb_state &= ~ONDEPLIST;
7399 		LIST_REMOVE(newblk, nb_deps);
7400 	}
7401 	if (newblk->nb_state & ONWORKLIST)
7402 		WORKLIST_REMOVE(&newblk->nb_list);
7403 	/*
7404 	 * If the journal entry hasn't been written we save a pointer to
7405 	 * the dependency that frees it until it is written or the
7406 	 * superseding operation completes.
7407 	 */
7408 	jnewblk = newblk->nb_jnewblk;
7409 	if (jnewblk != NULL && wk != NULL) {
7410 		newblk->nb_jnewblk = NULL;
7411 		jnewblk->jn_dep = wk;
7412 	}
7413 	if (!LIST_EMPTY(&newblk->nb_jwork))
7414 		jwork_move(wkhd, &newblk->nb_jwork);
7415 	/*
7416 	 * When truncating we must free the newdirblk early to remove
7417 	 * the pagedep from the hash before returning.
7418 	 */
7419 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7420 		free_newdirblk(WK_NEWDIRBLK(wk));
7421 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7422 		panic("cancel_newblk: extra newdirblk");
7423 
7424 	return (jnewblk);
7425 }
7426 
7427 /*
7428  * Schedule the freefrag associated with a newblk to be released once
7429  * the pointers are written and the previous block is no longer needed.
7430  */
7431 static void
7432 newblk_freefrag(newblk)
7433 	struct newblk *newblk;
7434 {
7435 	struct freefrag *freefrag;
7436 
7437 	if (newblk->nb_freefrag == NULL)
7438 		return;
7439 	freefrag = newblk->nb_freefrag;
7440 	newblk->nb_freefrag = NULL;
7441 	freefrag->ff_state |= COMPLETE;
7442 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7443 		add_to_worklist(&freefrag->ff_list, 0);
7444 }
7445 
7446 /*
7447  * Free a newblk. Generate a new freefrag work request if appropriate.
7448  * This must be called after the inode pointer and any direct block pointers
7449  * are valid or fully removed via truncate or frag extension.
7450  */
7451 static void
7452 free_newblk(newblk)
7453 	struct newblk *newblk;
7454 {
7455 	struct indirdep *indirdep;
7456 	struct worklist *wk;
7457 
7458 	KASSERT(newblk->nb_jnewblk == NULL,
7459 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7460 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7461 	    ("free_newblk: unclaimed newblk"));
7462 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7463 	newblk_freefrag(newblk);
7464 	if (newblk->nb_state & ONDEPLIST)
7465 		LIST_REMOVE(newblk, nb_deps);
7466 	if (newblk->nb_state & ONWORKLIST)
7467 		WORKLIST_REMOVE(&newblk->nb_list);
7468 	LIST_REMOVE(newblk, nb_hash);
7469 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7470 		free_newdirblk(WK_NEWDIRBLK(wk));
7471 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7472 		panic("free_newblk: extra newdirblk");
7473 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7474 		indirdep_complete(indirdep);
7475 	handle_jwork(&newblk->nb_jwork);
7476 	WORKITEM_FREE(newblk, D_NEWBLK);
7477 }
7478 
7479 /*
7480  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7481  * This routine must be called with splbio interrupts blocked.
7482  */
7483 static void
7484 free_newdirblk(newdirblk)
7485 	struct newdirblk *newdirblk;
7486 {
7487 	struct pagedep *pagedep;
7488 	struct diradd *dap;
7489 	struct worklist *wk;
7490 
7491 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7492 	WORKLIST_REMOVE(&newdirblk->db_list);
7493 	/*
7494 	 * If the pagedep is still linked onto the directory buffer
7495 	 * dependency chain, then some of the entries on the
7496 	 * pd_pendinghd list may not be committed to disk yet. In
7497 	 * this case, we will simply clear the NEWBLOCK flag and
7498 	 * let the pd_pendinghd list be processed when the pagedep
7499 	 * is next written. If the pagedep is no longer on the buffer
7500 	 * dependency chain, then all the entries on the pd_pending
7501 	 * list are committed to disk and we can free them here.
7502 	 */
7503 	pagedep = newdirblk->db_pagedep;
7504 	pagedep->pd_state &= ~NEWBLOCK;
7505 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7506 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7507 			free_diradd(dap, NULL);
7508 		/*
7509 		 * If no dependencies remain, the pagedep will be freed.
7510 		 */
7511 		free_pagedep(pagedep);
7512 	}
7513 	/* Should only ever be one item in the list. */
7514 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7515 		WORKLIST_REMOVE(wk);
7516 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7517 	}
7518 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7519 }
7520 
7521 /*
7522  * Prepare an inode to be freed. The actual free operation is not
7523  * done until the zero'ed inode has been written to disk.
7524  */
7525 void
7526 softdep_freefile(pvp, ino, mode)
7527 	struct vnode *pvp;
7528 	ino_t ino;
7529 	int mode;
7530 {
7531 	struct inode *ip = VTOI(pvp);
7532 	struct inodedep *inodedep;
7533 	struct freefile *freefile;
7534 	struct freeblks *freeblks;
7535 	struct ufsmount *ump;
7536 
7537 	ump = ITOUMP(ip);
7538 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7539 	    ("softdep_freefile called on non-softdep filesystem"));
7540 	/*
7541 	 * This sets up the inode de-allocation dependency.
7542 	 */
7543 	freefile = malloc(sizeof(struct freefile),
7544 		M_FREEFILE, M_SOFTDEP_FLAGS);
7545 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7546 	freefile->fx_mode = mode;
7547 	freefile->fx_oldinum = ino;
7548 	freefile->fx_devvp = ump->um_devvp;
7549 	LIST_INIT(&freefile->fx_jwork);
7550 	UFS_LOCK(ump);
7551 	ump->um_fs->fs_pendinginodes += 1;
7552 	UFS_UNLOCK(ump);
7553 
7554 	/*
7555 	 * If the inodedep does not exist, then the zero'ed inode has
7556 	 * been written to disk. If the allocated inode has never been
7557 	 * written to disk, then the on-disk inode is zero'ed. In either
7558 	 * case we can free the file immediately.  If the journal was
7559 	 * canceled before being written the inode will never make it to
7560 	 * disk and we must send the canceled journal entrys to
7561 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7562 	 * Any blocks waiting on the inode to write can be safely freed
7563 	 * here as it will never been written.
7564 	 */
7565 	ACQUIRE_LOCK(ump);
7566 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7567 	if (inodedep) {
7568 		/*
7569 		 * Clear out freeblks that no longer need to reference
7570 		 * this inode.
7571 		 */
7572 		while ((freeblks =
7573 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7574 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7575 			    fb_next);
7576 			freeblks->fb_state &= ~ONDEPLIST;
7577 		}
7578 		/*
7579 		 * Remove this inode from the unlinked list.
7580 		 */
7581 		if (inodedep->id_state & UNLINKED) {
7582 			/*
7583 			 * Save the journal work to be freed with the bitmap
7584 			 * before we clear UNLINKED.  Otherwise it can be lost
7585 			 * if the inode block is written.
7586 			 */
7587 			handle_bufwait(inodedep, &freefile->fx_jwork);
7588 			clear_unlinked_inodedep(inodedep);
7589 			/*
7590 			 * Re-acquire inodedep as we've dropped the
7591 			 * per-filesystem lock in clear_unlinked_inodedep().
7592 			 */
7593 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7594 		}
7595 	}
7596 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7597 		FREE_LOCK(ump);
7598 		handle_workitem_freefile(freefile);
7599 		return;
7600 	}
7601 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7602 		inodedep->id_state |= GOINGAWAY;
7603 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7604 	FREE_LOCK(ump);
7605 	if (ip->i_number == ino)
7606 		ip->i_flag |= IN_MODIFIED;
7607 }
7608 
7609 /*
7610  * Check to see if an inode has never been written to disk. If
7611  * so free the inodedep and return success, otherwise return failure.
7612  * This routine must be called with splbio interrupts blocked.
7613  *
7614  * If we still have a bitmap dependency, then the inode has never
7615  * been written to disk. Drop the dependency as it is no longer
7616  * necessary since the inode is being deallocated. We set the
7617  * ALLCOMPLETE flags since the bitmap now properly shows that the
7618  * inode is not allocated. Even if the inode is actively being
7619  * written, it has been rolled back to its zero'ed state, so we
7620  * are ensured that a zero inode is what is on the disk. For short
7621  * lived files, this change will usually result in removing all the
7622  * dependencies from the inode so that it can be freed immediately.
7623  */
7624 static int
7625 check_inode_unwritten(inodedep)
7626 	struct inodedep *inodedep;
7627 {
7628 
7629 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7630 
7631 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7632 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7633 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7634 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7635 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7636 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7637 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7638 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7639 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7640 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7641 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7642 	    inodedep->id_mkdiradd != NULL ||
7643 	    inodedep->id_nlinkdelta != 0)
7644 		return (0);
7645 	/*
7646 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7647 	 * trying to allocate memory without holding "Softdep Lock".
7648 	 */
7649 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7650 	    inodedep->id_savedino1 == NULL)
7651 		return (0);
7652 
7653 	if (inodedep->id_state & ONDEPLIST)
7654 		LIST_REMOVE(inodedep, id_deps);
7655 	inodedep->id_state &= ~ONDEPLIST;
7656 	inodedep->id_state |= ALLCOMPLETE;
7657 	inodedep->id_bmsafemap = NULL;
7658 	if (inodedep->id_state & ONWORKLIST)
7659 		WORKLIST_REMOVE(&inodedep->id_list);
7660 	if (inodedep->id_savedino1 != NULL) {
7661 		free(inodedep->id_savedino1, M_SAVEDINO);
7662 		inodedep->id_savedino1 = NULL;
7663 	}
7664 	if (free_inodedep(inodedep) == 0)
7665 		panic("check_inode_unwritten: busy inode");
7666 	return (1);
7667 }
7668 
7669 static int
7670 check_inodedep_free(inodedep)
7671 	struct inodedep *inodedep;
7672 {
7673 
7674 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7675 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7676 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7677 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7678 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7679 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7680 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7681 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7682 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7683 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7684 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7685 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7686 	    inodedep->id_mkdiradd != NULL ||
7687 	    inodedep->id_nlinkdelta != 0 ||
7688 	    inodedep->id_savedino1 != NULL)
7689 		return (0);
7690 	return (1);
7691 }
7692 
7693 /*
7694  * Try to free an inodedep structure. Return 1 if it could be freed.
7695  */
7696 static int
7697 free_inodedep(inodedep)
7698 	struct inodedep *inodedep;
7699 {
7700 
7701 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7702 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7703 	    !check_inodedep_free(inodedep))
7704 		return (0);
7705 	if (inodedep->id_state & ONDEPLIST)
7706 		LIST_REMOVE(inodedep, id_deps);
7707 	LIST_REMOVE(inodedep, id_hash);
7708 	WORKITEM_FREE(inodedep, D_INODEDEP);
7709 	return (1);
7710 }
7711 
7712 /*
7713  * Free the block referenced by a freework structure.  The parent freeblks
7714  * structure is released and completed when the final cg bitmap reaches
7715  * the disk.  This routine may be freeing a jnewblk which never made it to
7716  * disk in which case we do not have to wait as the operation is undone
7717  * in memory immediately.
7718  */
7719 static void
7720 freework_freeblock(freework)
7721 	struct freework *freework;
7722 {
7723 	struct freeblks *freeblks;
7724 	struct jnewblk *jnewblk;
7725 	struct ufsmount *ump;
7726 	struct workhead wkhd;
7727 	struct fs *fs;
7728 	int bsize;
7729 	int needj;
7730 
7731 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7732 	LOCK_OWNED(ump);
7733 	/*
7734 	 * Handle partial truncate separately.
7735 	 */
7736 	if (freework->fw_indir) {
7737 		complete_trunc_indir(freework);
7738 		return;
7739 	}
7740 	freeblks = freework->fw_freeblks;
7741 	fs = ump->um_fs;
7742 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7743 	bsize = lfragtosize(fs, freework->fw_frags);
7744 	LIST_INIT(&wkhd);
7745 	/*
7746 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7747 	 * on the indirblk hashtable and prevents premature freeing.
7748 	 */
7749 	freework->fw_state |= DEPCOMPLETE;
7750 	/*
7751 	 * SUJ needs to wait for the segment referencing freed indirect
7752 	 * blocks to expire so that we know the checker will not confuse
7753 	 * a re-allocated indirect block with its old contents.
7754 	 */
7755 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7756 		indirblk_insert(freework);
7757 	/*
7758 	 * If we are canceling an existing jnewblk pass it to the free
7759 	 * routine, otherwise pass the freeblk which will ultimately
7760 	 * release the freeblks.  If we're not journaling, we can just
7761 	 * free the freeblks immediately.
7762 	 */
7763 	jnewblk = freework->fw_jnewblk;
7764 	if (jnewblk != NULL) {
7765 		cancel_jnewblk(jnewblk, &wkhd);
7766 		needj = 0;
7767 	} else if (needj) {
7768 		freework->fw_state |= DELAYEDFREE;
7769 		freeblks->fb_cgwait++;
7770 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7771 	}
7772 	FREE_LOCK(ump);
7773 	freeblks_free(ump, freeblks, btodb(bsize));
7774 	CTR4(KTR_SUJ,
7775 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7776 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7777 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7778 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7779 	ACQUIRE_LOCK(ump);
7780 	/*
7781 	 * The jnewblk will be discarded and the bits in the map never
7782 	 * made it to disk.  We can immediately free the freeblk.
7783 	 */
7784 	if (needj == 0)
7785 		handle_written_freework(freework);
7786 }
7787 
7788 /*
7789  * We enqueue freework items that need processing back on the freeblks and
7790  * add the freeblks to the worklist.  This makes it easier to find all work
7791  * required to flush a truncation in process_truncates().
7792  */
7793 static void
7794 freework_enqueue(freework)
7795 	struct freework *freework;
7796 {
7797 	struct freeblks *freeblks;
7798 
7799 	freeblks = freework->fw_freeblks;
7800 	if ((freework->fw_state & INPROGRESS) == 0)
7801 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7802 	if ((freeblks->fb_state &
7803 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7804 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7805 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7806 }
7807 
7808 /*
7809  * Start, continue, or finish the process of freeing an indirect block tree.
7810  * The free operation may be paused at any point with fw_off containing the
7811  * offset to restart from.  This enables us to implement some flow control
7812  * for large truncates which may fan out and generate a huge number of
7813  * dependencies.
7814  */
7815 static void
7816 handle_workitem_indirblk(freework)
7817 	struct freework *freework;
7818 {
7819 	struct freeblks *freeblks;
7820 	struct ufsmount *ump;
7821 	struct fs *fs;
7822 
7823 	freeblks = freework->fw_freeblks;
7824 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7825 	fs = ump->um_fs;
7826 	if (freework->fw_state & DEPCOMPLETE) {
7827 		handle_written_freework(freework);
7828 		return;
7829 	}
7830 	if (freework->fw_off == NINDIR(fs)) {
7831 		freework_freeblock(freework);
7832 		return;
7833 	}
7834 	freework->fw_state |= INPROGRESS;
7835 	FREE_LOCK(ump);
7836 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7837 	    freework->fw_lbn);
7838 	ACQUIRE_LOCK(ump);
7839 }
7840 
7841 /*
7842  * Called when a freework structure attached to a cg buf is written.  The
7843  * ref on either the parent or the freeblks structure is released and
7844  * the freeblks is added back to the worklist if there is more work to do.
7845  */
7846 static void
7847 handle_written_freework(freework)
7848 	struct freework *freework;
7849 {
7850 	struct freeblks *freeblks;
7851 	struct freework *parent;
7852 
7853 	freeblks = freework->fw_freeblks;
7854 	parent = freework->fw_parent;
7855 	if (freework->fw_state & DELAYEDFREE)
7856 		freeblks->fb_cgwait--;
7857 	freework->fw_state |= COMPLETE;
7858 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7859 		WORKITEM_FREE(freework, D_FREEWORK);
7860 	if (parent) {
7861 		if (--parent->fw_ref == 0)
7862 			freework_enqueue(parent);
7863 		return;
7864 	}
7865 	if (--freeblks->fb_ref != 0)
7866 		return;
7867 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7868 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7869 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7870 }
7871 
7872 /*
7873  * This workitem routine performs the block de-allocation.
7874  * The workitem is added to the pending list after the updated
7875  * inode block has been written to disk.  As mentioned above,
7876  * checks regarding the number of blocks de-allocated (compared
7877  * to the number of blocks allocated for the file) are also
7878  * performed in this function.
7879  */
7880 static int
7881 handle_workitem_freeblocks(freeblks, flags)
7882 	struct freeblks *freeblks;
7883 	int flags;
7884 {
7885 	struct freework *freework;
7886 	struct newblk *newblk;
7887 	struct allocindir *aip;
7888 	struct ufsmount *ump;
7889 	struct worklist *wk;
7890 
7891 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7892 	    ("handle_workitem_freeblocks: Journal entries not written."));
7893 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7894 	ACQUIRE_LOCK(ump);
7895 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7896 		WORKLIST_REMOVE(wk);
7897 		switch (wk->wk_type) {
7898 		case D_DIRREM:
7899 			wk->wk_state |= COMPLETE;
7900 			add_to_worklist(wk, 0);
7901 			continue;
7902 
7903 		case D_ALLOCDIRECT:
7904 			free_newblk(WK_NEWBLK(wk));
7905 			continue;
7906 
7907 		case D_ALLOCINDIR:
7908 			aip = WK_ALLOCINDIR(wk);
7909 			freework = NULL;
7910 			if (aip->ai_state & DELAYEDFREE) {
7911 				FREE_LOCK(ump);
7912 				freework = newfreework(ump, freeblks, NULL,
7913 				    aip->ai_lbn, aip->ai_newblkno,
7914 				    ump->um_fs->fs_frag, 0, 0);
7915 				ACQUIRE_LOCK(ump);
7916 			}
7917 			newblk = WK_NEWBLK(wk);
7918 			if (newblk->nb_jnewblk) {
7919 				freework->fw_jnewblk = newblk->nb_jnewblk;
7920 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7921 				newblk->nb_jnewblk = NULL;
7922 			}
7923 			free_newblk(newblk);
7924 			continue;
7925 
7926 		case D_FREEWORK:
7927 			freework = WK_FREEWORK(wk);
7928 			if (freework->fw_lbn <= -UFS_NDADDR)
7929 				handle_workitem_indirblk(freework);
7930 			else
7931 				freework_freeblock(freework);
7932 			continue;
7933 		default:
7934 			panic("handle_workitem_freeblocks: Unknown type %s",
7935 			    TYPENAME(wk->wk_type));
7936 		}
7937 	}
7938 	if (freeblks->fb_ref != 0) {
7939 		freeblks->fb_state &= ~INPROGRESS;
7940 		wake_worklist(&freeblks->fb_list);
7941 		freeblks = NULL;
7942 	}
7943 	FREE_LOCK(ump);
7944 	if (freeblks)
7945 		return handle_complete_freeblocks(freeblks, flags);
7946 	return (0);
7947 }
7948 
7949 /*
7950  * Handle completion of block free via truncate.  This allows fs_pending
7951  * to track the actual free block count more closely than if we only updated
7952  * it at the end.  We must be careful to handle cases where the block count
7953  * on free was incorrect.
7954  */
7955 static void
7956 freeblks_free(ump, freeblks, blocks)
7957 	struct ufsmount *ump;
7958 	struct freeblks *freeblks;
7959 	int blocks;
7960 {
7961 	struct fs *fs;
7962 	ufs2_daddr_t remain;
7963 
7964 	UFS_LOCK(ump);
7965 	remain = -freeblks->fb_chkcnt;
7966 	freeblks->fb_chkcnt += blocks;
7967 	if (remain > 0) {
7968 		if (remain < blocks)
7969 			blocks = remain;
7970 		fs = ump->um_fs;
7971 		fs->fs_pendingblocks -= blocks;
7972 	}
7973 	UFS_UNLOCK(ump);
7974 }
7975 
7976 /*
7977  * Once all of the freework workitems are complete we can retire the
7978  * freeblocks dependency and any journal work awaiting completion.  This
7979  * can not be called until all other dependencies are stable on disk.
7980  */
7981 static int
7982 handle_complete_freeblocks(freeblks, flags)
7983 	struct freeblks *freeblks;
7984 	int flags;
7985 {
7986 	struct inodedep *inodedep;
7987 	struct inode *ip;
7988 	struct vnode *vp;
7989 	struct fs *fs;
7990 	struct ufsmount *ump;
7991 	ufs2_daddr_t spare;
7992 
7993 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7994 	fs = ump->um_fs;
7995 	flags = LK_EXCLUSIVE | flags;
7996 	spare = freeblks->fb_chkcnt;
7997 
7998 	/*
7999 	 * If we did not release the expected number of blocks we may have
8000 	 * to adjust the inode block count here.  Only do so if it wasn't
8001 	 * a truncation to zero and the modrev still matches.
8002 	 */
8003 	if (spare && freeblks->fb_len != 0) {
8004 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8005 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8006 			return (EBUSY);
8007 		ip = VTOI(vp);
8008 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8009 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8010 			ip->i_flag |= IN_CHANGE;
8011 			/*
8012 			 * We must wait so this happens before the
8013 			 * journal is reclaimed.
8014 			 */
8015 			ffs_update(vp, 1);
8016 		}
8017 		vput(vp);
8018 	}
8019 	if (spare < 0) {
8020 		UFS_LOCK(ump);
8021 		fs->fs_pendingblocks += spare;
8022 		UFS_UNLOCK(ump);
8023 	}
8024 #ifdef QUOTA
8025 	/* Handle spare. */
8026 	if (spare)
8027 		quotaadj(freeblks->fb_quota, ump, -spare);
8028 	quotarele(freeblks->fb_quota);
8029 #endif
8030 	ACQUIRE_LOCK(ump);
8031 	if (freeblks->fb_state & ONDEPLIST) {
8032 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8033 		    0, &inodedep);
8034 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8035 		freeblks->fb_state &= ~ONDEPLIST;
8036 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8037 			free_inodedep(inodedep);
8038 	}
8039 	/*
8040 	 * All of the freeblock deps must be complete prior to this call
8041 	 * so it's now safe to complete earlier outstanding journal entries.
8042 	 */
8043 	handle_jwork(&freeblks->fb_jwork);
8044 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8045 	FREE_LOCK(ump);
8046 	return (0);
8047 }
8048 
8049 /*
8050  * Release blocks associated with the freeblks and stored in the indirect
8051  * block dbn. If level is greater than SINGLE, the block is an indirect block
8052  * and recursive calls to indirtrunc must be used to cleanse other indirect
8053  * blocks.
8054  *
8055  * This handles partial and complete truncation of blocks.  Partial is noted
8056  * with goingaway == 0.  In this case the freework is completed after the
8057  * zero'd indirects are written to disk.  For full truncation the freework
8058  * is completed after the block is freed.
8059  */
8060 static void
8061 indir_trunc(freework, dbn, lbn)
8062 	struct freework *freework;
8063 	ufs2_daddr_t dbn;
8064 	ufs_lbn_t lbn;
8065 {
8066 	struct freework *nfreework;
8067 	struct workhead wkhd;
8068 	struct freeblks *freeblks;
8069 	struct buf *bp;
8070 	struct fs *fs;
8071 	struct indirdep *indirdep;
8072 	struct ufsmount *ump;
8073 	ufs1_daddr_t *bap1;
8074 	ufs2_daddr_t nb, nnb, *bap2;
8075 	ufs_lbn_t lbnadd, nlbn;
8076 	int i, nblocks, ufs1fmt;
8077 	int freedblocks;
8078 	int goingaway;
8079 	int freedeps;
8080 	int needj;
8081 	int level;
8082 	int cnt;
8083 
8084 	freeblks = freework->fw_freeblks;
8085 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8086 	fs = ump->um_fs;
8087 	/*
8088 	 * Get buffer of block pointers to be freed.  There are three cases:
8089 	 *
8090 	 * 1) Partial truncate caches the indirdep pointer in the freework
8091 	 *    which provides us a back copy to the save bp which holds the
8092 	 *    pointers we want to clear.  When this completes the zero
8093 	 *    pointers are written to the real copy.
8094 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8095 	 *    eliminated the real copy and placed the indirdep on the saved
8096 	 *    copy.  The indirdep and buf are discarded when this completes.
8097 	 * 3) The indirect was not in memory, we read a copy off of the disk
8098 	 *    using the devvp and drop and invalidate the buffer when we're
8099 	 *    done.
8100 	 */
8101 	goingaway = 1;
8102 	indirdep = NULL;
8103 	if (freework->fw_indir != NULL) {
8104 		goingaway = 0;
8105 		indirdep = freework->fw_indir;
8106 		bp = indirdep->ir_savebp;
8107 		if (bp == NULL || bp->b_blkno != dbn)
8108 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8109 			    bp, (intmax_t)dbn);
8110 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8111 		/*
8112 		 * The lock prevents the buf dep list from changing and
8113 	 	 * indirects on devvp should only ever have one dependency.
8114 		 */
8115 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8116 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8117 			panic("indir_trunc: Bad indirdep %p from buf %p",
8118 			    indirdep, bp);
8119 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8120 	    NOCRED, &bp) != 0) {
8121 		brelse(bp);
8122 		return;
8123 	}
8124 	ACQUIRE_LOCK(ump);
8125 	/* Protects against a race with complete_trunc_indir(). */
8126 	freework->fw_state &= ~INPROGRESS;
8127 	/*
8128 	 * If we have an indirdep we need to enforce the truncation order
8129 	 * and discard it when it is complete.
8130 	 */
8131 	if (indirdep) {
8132 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8133 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8134 			/*
8135 			 * Add the complete truncate to the list on the
8136 			 * indirdep to enforce in-order processing.
8137 			 */
8138 			if (freework->fw_indir == NULL)
8139 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8140 				    freework, fw_next);
8141 			FREE_LOCK(ump);
8142 			return;
8143 		}
8144 		/*
8145 		 * If we're goingaway, free the indirdep.  Otherwise it will
8146 		 * linger until the write completes.
8147 		 */
8148 		if (goingaway)
8149 			free_indirdep(indirdep);
8150 	}
8151 	FREE_LOCK(ump);
8152 	/* Initialize pointers depending on block size. */
8153 	if (ump->um_fstype == UFS1) {
8154 		bap1 = (ufs1_daddr_t *)bp->b_data;
8155 		nb = bap1[freework->fw_off];
8156 		ufs1fmt = 1;
8157 		bap2 = NULL;
8158 	} else {
8159 		bap2 = (ufs2_daddr_t *)bp->b_data;
8160 		nb = bap2[freework->fw_off];
8161 		ufs1fmt = 0;
8162 		bap1 = NULL;
8163 	}
8164 	level = lbn_level(lbn);
8165 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8166 	lbnadd = lbn_offset(fs, level);
8167 	nblocks = btodb(fs->fs_bsize);
8168 	nfreework = freework;
8169 	freedeps = 0;
8170 	cnt = 0;
8171 	/*
8172 	 * Reclaim blocks.  Traverses into nested indirect levels and
8173 	 * arranges for the current level to be freed when subordinates
8174 	 * are free when journaling.
8175 	 */
8176 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8177 		if (i != NINDIR(fs) - 1) {
8178 			if (ufs1fmt)
8179 				nnb = bap1[i+1];
8180 			else
8181 				nnb = bap2[i+1];
8182 		} else
8183 			nnb = 0;
8184 		if (nb == 0)
8185 			continue;
8186 		cnt++;
8187 		if (level != 0) {
8188 			nlbn = (lbn + 1) - (i * lbnadd);
8189 			if (needj != 0) {
8190 				nfreework = newfreework(ump, freeblks, freework,
8191 				    nlbn, nb, fs->fs_frag, 0, 0);
8192 				freedeps++;
8193 			}
8194 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8195 		} else {
8196 			struct freedep *freedep;
8197 
8198 			/*
8199 			 * Attempt to aggregate freedep dependencies for
8200 			 * all blocks being released to the same CG.
8201 			 */
8202 			LIST_INIT(&wkhd);
8203 			if (needj != 0 &&
8204 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8205 				freedep = newfreedep(freework);
8206 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8207 				    &freedep->fd_list);
8208 				freedeps++;
8209 			}
8210 			CTR3(KTR_SUJ,
8211 			    "indir_trunc: ino %d blkno %jd size %ld",
8212 			    freeblks->fb_inum, nb, fs->fs_bsize);
8213 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8214 			    fs->fs_bsize, freeblks->fb_inum,
8215 			    freeblks->fb_vtype, &wkhd);
8216 		}
8217 	}
8218 	if (goingaway) {
8219 		bp->b_flags |= B_INVAL | B_NOCACHE;
8220 		brelse(bp);
8221 	}
8222 	freedblocks = 0;
8223 	if (level == 0)
8224 		freedblocks = (nblocks * cnt);
8225 	if (needj == 0)
8226 		freedblocks += nblocks;
8227 	freeblks_free(ump, freeblks, freedblocks);
8228 	/*
8229 	 * If we are journaling set up the ref counts and offset so this
8230 	 * indirect can be completed when its children are free.
8231 	 */
8232 	if (needj) {
8233 		ACQUIRE_LOCK(ump);
8234 		freework->fw_off = i;
8235 		freework->fw_ref += freedeps;
8236 		freework->fw_ref -= NINDIR(fs) + 1;
8237 		if (level == 0)
8238 			freeblks->fb_cgwait += freedeps;
8239 		if (freework->fw_ref == 0)
8240 			freework_freeblock(freework);
8241 		FREE_LOCK(ump);
8242 		return;
8243 	}
8244 	/*
8245 	 * If we're not journaling we can free the indirect now.
8246 	 */
8247 	dbn = dbtofsb(fs, dbn);
8248 	CTR3(KTR_SUJ,
8249 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8250 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8251 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8252 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8253 	/* Non SUJ softdep does single-threaded truncations. */
8254 	if (freework->fw_blkno == dbn) {
8255 		freework->fw_state |= ALLCOMPLETE;
8256 		ACQUIRE_LOCK(ump);
8257 		handle_written_freework(freework);
8258 		FREE_LOCK(ump);
8259 	}
8260 	return;
8261 }
8262 
8263 /*
8264  * Cancel an allocindir when it is removed via truncation.  When bp is not
8265  * NULL the indirect never appeared on disk and is scheduled to be freed
8266  * independently of the indir so we can more easily track journal work.
8267  */
8268 static void
8269 cancel_allocindir(aip, bp, freeblks, trunc)
8270 	struct allocindir *aip;
8271 	struct buf *bp;
8272 	struct freeblks *freeblks;
8273 	int trunc;
8274 {
8275 	struct indirdep *indirdep;
8276 	struct freefrag *freefrag;
8277 	struct newblk *newblk;
8278 
8279 	newblk = (struct newblk *)aip;
8280 	LIST_REMOVE(aip, ai_next);
8281 	/*
8282 	 * We must eliminate the pointer in bp if it must be freed on its
8283 	 * own due to partial truncate or pending journal work.
8284 	 */
8285 	if (bp && (trunc || newblk->nb_jnewblk)) {
8286 		/*
8287 		 * Clear the pointer and mark the aip to be freed
8288 		 * directly if it never existed on disk.
8289 		 */
8290 		aip->ai_state |= DELAYEDFREE;
8291 		indirdep = aip->ai_indirdep;
8292 		if (indirdep->ir_state & UFS1FMT)
8293 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8294 		else
8295 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8296 	}
8297 	/*
8298 	 * When truncating the previous pointer will be freed via
8299 	 * savedbp.  Eliminate the freefrag which would dup free.
8300 	 */
8301 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8302 		newblk->nb_freefrag = NULL;
8303 		if (freefrag->ff_jdep)
8304 			cancel_jfreefrag(
8305 			    WK_JFREEFRAG(freefrag->ff_jdep));
8306 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8307 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8308 	}
8309 	/*
8310 	 * If the journal hasn't been written the jnewblk must be passed
8311 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8312 	 * this by leaving the journal dependency on the newblk to be freed
8313 	 * when a freework is created in handle_workitem_freeblocks().
8314 	 */
8315 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8316 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8317 }
8318 
8319 /*
8320  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8321  * in to a newdirblk so any subsequent additions are tracked properly.  The
8322  * caller is responsible for adding the mkdir1 dependency to the journal
8323  * and updating id_mkdiradd.  This function returns with the per-filesystem
8324  * lock held.
8325  */
8326 static struct mkdir *
8327 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8328 	struct diradd *dap;
8329 	ino_t newinum;
8330 	ino_t dinum;
8331 	struct buf *newdirbp;
8332 	struct mkdir **mkdirp;
8333 {
8334 	struct newblk *newblk;
8335 	struct pagedep *pagedep;
8336 	struct inodedep *inodedep;
8337 	struct newdirblk *newdirblk;
8338 	struct mkdir *mkdir1, *mkdir2;
8339 	struct worklist *wk;
8340 	struct jaddref *jaddref;
8341 	struct ufsmount *ump;
8342 	struct mount *mp;
8343 
8344 	mp = dap->da_list.wk_mp;
8345 	ump = VFSTOUFS(mp);
8346 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8347 	    M_SOFTDEP_FLAGS);
8348 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8349 	LIST_INIT(&newdirblk->db_mkdir);
8350 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8351 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8352 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8353 	mkdir1->md_diradd = dap;
8354 	mkdir1->md_jaddref = NULL;
8355 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8356 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8357 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8358 	mkdir2->md_diradd = dap;
8359 	mkdir2->md_jaddref = NULL;
8360 	if (MOUNTEDSUJ(mp) == 0) {
8361 		mkdir1->md_state |= DEPCOMPLETE;
8362 		mkdir2->md_state |= DEPCOMPLETE;
8363 	}
8364 	/*
8365 	 * Dependency on "." and ".." being written to disk.
8366 	 */
8367 	mkdir1->md_buf = newdirbp;
8368 	ACQUIRE_LOCK(VFSTOUFS(mp));
8369 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8370 	/*
8371 	 * We must link the pagedep, allocdirect, and newdirblk for
8372 	 * the initial file page so the pointer to the new directory
8373 	 * is not written until the directory contents are live and
8374 	 * any subsequent additions are not marked live until the
8375 	 * block is reachable via the inode.
8376 	 */
8377 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8378 		panic("setup_newdir: lost pagedep");
8379 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8380 		if (wk->wk_type == D_ALLOCDIRECT)
8381 			break;
8382 	if (wk == NULL)
8383 		panic("setup_newdir: lost allocdirect");
8384 	if (pagedep->pd_state & NEWBLOCK)
8385 		panic("setup_newdir: NEWBLOCK already set");
8386 	newblk = WK_NEWBLK(wk);
8387 	pagedep->pd_state |= NEWBLOCK;
8388 	pagedep->pd_newdirblk = newdirblk;
8389 	newdirblk->db_pagedep = pagedep;
8390 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8391 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8392 	/*
8393 	 * Look up the inodedep for the parent directory so that we
8394 	 * can link mkdir2 into the pending dotdot jaddref or
8395 	 * the inode write if there is none.  If the inode is
8396 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8397 	 * been satisfied and mkdir2 can be freed.
8398 	 */
8399 	inodedep_lookup(mp, dinum, 0, &inodedep);
8400 	if (MOUNTEDSUJ(mp)) {
8401 		if (inodedep == NULL)
8402 			panic("setup_newdir: Lost parent.");
8403 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8404 		    inoreflst);
8405 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8406 		    (jaddref->ja_state & MKDIR_PARENT),
8407 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8408 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8409 		mkdir2->md_jaddref = jaddref;
8410 		jaddref->ja_mkdir = mkdir2;
8411 	} else if (inodedep == NULL ||
8412 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8413 		dap->da_state &= ~MKDIR_PARENT;
8414 		WORKITEM_FREE(mkdir2, D_MKDIR);
8415 		mkdir2 = NULL;
8416 	} else {
8417 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8418 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8419 	}
8420 	*mkdirp = mkdir2;
8421 
8422 	return (mkdir1);
8423 }
8424 
8425 /*
8426  * Directory entry addition dependencies.
8427  *
8428  * When adding a new directory entry, the inode (with its incremented link
8429  * count) must be written to disk before the directory entry's pointer to it.
8430  * Also, if the inode is newly allocated, the corresponding freemap must be
8431  * updated (on disk) before the directory entry's pointer. These requirements
8432  * are met via undo/redo on the directory entry's pointer, which consists
8433  * simply of the inode number.
8434  *
8435  * As directory entries are added and deleted, the free space within a
8436  * directory block can become fragmented.  The ufs filesystem will compact
8437  * a fragmented directory block to make space for a new entry. When this
8438  * occurs, the offsets of previously added entries change. Any "diradd"
8439  * dependency structures corresponding to these entries must be updated with
8440  * the new offsets.
8441  */
8442 
8443 /*
8444  * This routine is called after the in-memory inode's link
8445  * count has been incremented, but before the directory entry's
8446  * pointer to the inode has been set.
8447  */
8448 int
8449 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8450 	struct buf *bp;		/* buffer containing directory block */
8451 	struct inode *dp;	/* inode for directory */
8452 	off_t diroffset;	/* offset of new entry in directory */
8453 	ino_t newinum;		/* inode referenced by new directory entry */
8454 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8455 	int isnewblk;		/* entry is in a newly allocated block */
8456 {
8457 	int offset;		/* offset of new entry within directory block */
8458 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8459 	struct fs *fs;
8460 	struct diradd *dap;
8461 	struct newblk *newblk;
8462 	struct pagedep *pagedep;
8463 	struct inodedep *inodedep;
8464 	struct newdirblk *newdirblk;
8465 	struct mkdir *mkdir1, *mkdir2;
8466 	struct jaddref *jaddref;
8467 	struct ufsmount *ump;
8468 	struct mount *mp;
8469 	int isindir;
8470 
8471 	mp = ITOVFS(dp);
8472 	ump = VFSTOUFS(mp);
8473 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8474 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8475 	/*
8476 	 * Whiteouts have no dependencies.
8477 	 */
8478 	if (newinum == UFS_WINO) {
8479 		if (newdirbp != NULL)
8480 			bdwrite(newdirbp);
8481 		return (0);
8482 	}
8483 	jaddref = NULL;
8484 	mkdir1 = mkdir2 = NULL;
8485 	fs = ump->um_fs;
8486 	lbn = lblkno(fs, diroffset);
8487 	offset = blkoff(fs, diroffset);
8488 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8489 		M_SOFTDEP_FLAGS|M_ZERO);
8490 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8491 	dap->da_offset = offset;
8492 	dap->da_newinum = newinum;
8493 	dap->da_state = ATTACHED;
8494 	LIST_INIT(&dap->da_jwork);
8495 	isindir = bp->b_lblkno >= UFS_NDADDR;
8496 	newdirblk = NULL;
8497 	if (isnewblk &&
8498 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8499 		newdirblk = malloc(sizeof(struct newdirblk),
8500 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8501 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8502 		LIST_INIT(&newdirblk->db_mkdir);
8503 	}
8504 	/*
8505 	 * If we're creating a new directory setup the dependencies and set
8506 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8507 	 * we can move on.
8508 	 */
8509 	if (newdirbp == NULL) {
8510 		dap->da_state |= DEPCOMPLETE;
8511 		ACQUIRE_LOCK(ump);
8512 	} else {
8513 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8514 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8515 		    &mkdir2);
8516 	}
8517 	/*
8518 	 * Link into parent directory pagedep to await its being written.
8519 	 */
8520 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8521 #ifdef DEBUG
8522 	if (diradd_lookup(pagedep, offset) != NULL)
8523 		panic("softdep_setup_directory_add: %p already at off %d\n",
8524 		    diradd_lookup(pagedep, offset), offset);
8525 #endif
8526 	dap->da_pagedep = pagedep;
8527 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8528 	    da_pdlist);
8529 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8530 	/*
8531 	 * If we're journaling, link the diradd into the jaddref so it
8532 	 * may be completed after the journal entry is written.  Otherwise,
8533 	 * link the diradd into its inodedep.  If the inode is not yet
8534 	 * written place it on the bufwait list, otherwise do the post-inode
8535 	 * write processing to put it on the id_pendinghd list.
8536 	 */
8537 	if (MOUNTEDSUJ(mp)) {
8538 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8539 		    inoreflst);
8540 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8541 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8542 		jaddref->ja_diroff = diroffset;
8543 		jaddref->ja_diradd = dap;
8544 		add_to_journal(&jaddref->ja_list);
8545 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8546 		diradd_inode_written(dap, inodedep);
8547 	else
8548 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8549 	/*
8550 	 * Add the journal entries for . and .. links now that the primary
8551 	 * link is written.
8552 	 */
8553 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8554 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8555 		    inoreflst, if_deps);
8556 		KASSERT(jaddref != NULL &&
8557 		    jaddref->ja_ino == jaddref->ja_parent &&
8558 		    (jaddref->ja_state & MKDIR_BODY),
8559 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8560 		    jaddref));
8561 		mkdir1->md_jaddref = jaddref;
8562 		jaddref->ja_mkdir = mkdir1;
8563 		/*
8564 		 * It is important that the dotdot journal entry
8565 		 * is added prior to the dot entry since dot writes
8566 		 * both the dot and dotdot links.  These both must
8567 		 * be added after the primary link for the journal
8568 		 * to remain consistent.
8569 		 */
8570 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8571 		add_to_journal(&jaddref->ja_list);
8572 	}
8573 	/*
8574 	 * If we are adding a new directory remember this diradd so that if
8575 	 * we rename it we can keep the dot and dotdot dependencies.  If
8576 	 * we are adding a new name for an inode that has a mkdiradd we
8577 	 * must be in rename and we have to move the dot and dotdot
8578 	 * dependencies to this new name.  The old name is being orphaned
8579 	 * soon.
8580 	 */
8581 	if (mkdir1 != NULL) {
8582 		if (inodedep->id_mkdiradd != NULL)
8583 			panic("softdep_setup_directory_add: Existing mkdir");
8584 		inodedep->id_mkdiradd = dap;
8585 	} else if (inodedep->id_mkdiradd)
8586 		merge_diradd(inodedep, dap);
8587 	if (newdirblk != NULL) {
8588 		/*
8589 		 * There is nothing to do if we are already tracking
8590 		 * this block.
8591 		 */
8592 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8593 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8594 			FREE_LOCK(ump);
8595 			return (0);
8596 		}
8597 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8598 		    == 0)
8599 			panic("softdep_setup_directory_add: lost entry");
8600 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8601 		pagedep->pd_state |= NEWBLOCK;
8602 		pagedep->pd_newdirblk = newdirblk;
8603 		newdirblk->db_pagedep = pagedep;
8604 		FREE_LOCK(ump);
8605 		/*
8606 		 * If we extended into an indirect signal direnter to sync.
8607 		 */
8608 		if (isindir)
8609 			return (1);
8610 		return (0);
8611 	}
8612 	FREE_LOCK(ump);
8613 	return (0);
8614 }
8615 
8616 /*
8617  * This procedure is called to change the offset of a directory
8618  * entry when compacting a directory block which must be owned
8619  * exclusively by the caller. Note that the actual entry movement
8620  * must be done in this procedure to ensure that no I/O completions
8621  * occur while the move is in progress.
8622  */
8623 void
8624 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8625 	struct buf *bp;		/* Buffer holding directory block. */
8626 	struct inode *dp;	/* inode for directory */
8627 	caddr_t base;		/* address of dp->i_offset */
8628 	caddr_t oldloc;		/* address of old directory location */
8629 	caddr_t newloc;		/* address of new directory location */
8630 	int entrysize;		/* size of directory entry */
8631 {
8632 	int offset, oldoffset, newoffset;
8633 	struct pagedep *pagedep;
8634 	struct jmvref *jmvref;
8635 	struct diradd *dap;
8636 	struct direct *de;
8637 	struct mount *mp;
8638 	struct ufsmount *ump;
8639 	ufs_lbn_t lbn;
8640 	int flags;
8641 
8642 	mp = ITOVFS(dp);
8643 	ump = VFSTOUFS(mp);
8644 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8645 	    ("softdep_change_directoryentry_offset called on "
8646 	     "non-softdep filesystem"));
8647 	de = (struct direct *)oldloc;
8648 	jmvref = NULL;
8649 	flags = 0;
8650 	/*
8651 	 * Moves are always journaled as it would be too complex to
8652 	 * determine if any affected adds or removes are present in the
8653 	 * journal.
8654 	 */
8655 	if (MOUNTEDSUJ(mp)) {
8656 		flags = DEPALLOC;
8657 		jmvref = newjmvref(dp, de->d_ino,
8658 		    dp->i_offset + (oldloc - base),
8659 		    dp->i_offset + (newloc - base));
8660 	}
8661 	lbn = lblkno(ump->um_fs, dp->i_offset);
8662 	offset = blkoff(ump->um_fs, dp->i_offset);
8663 	oldoffset = offset + (oldloc - base);
8664 	newoffset = offset + (newloc - base);
8665 	ACQUIRE_LOCK(ump);
8666 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8667 		goto done;
8668 	dap = diradd_lookup(pagedep, oldoffset);
8669 	if (dap) {
8670 		dap->da_offset = newoffset;
8671 		newoffset = DIRADDHASH(newoffset);
8672 		oldoffset = DIRADDHASH(oldoffset);
8673 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8674 		    newoffset != oldoffset) {
8675 			LIST_REMOVE(dap, da_pdlist);
8676 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8677 			    dap, da_pdlist);
8678 		}
8679 	}
8680 done:
8681 	if (jmvref) {
8682 		jmvref->jm_pagedep = pagedep;
8683 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8684 		add_to_journal(&jmvref->jm_list);
8685 	}
8686 	bcopy(oldloc, newloc, entrysize);
8687 	FREE_LOCK(ump);
8688 }
8689 
8690 /*
8691  * Move the mkdir dependencies and journal work from one diradd to another
8692  * when renaming a directory.  The new name must depend on the mkdir deps
8693  * completing as the old name did.  Directories can only have one valid link
8694  * at a time so one must be canonical.
8695  */
8696 static void
8697 merge_diradd(inodedep, newdap)
8698 	struct inodedep *inodedep;
8699 	struct diradd *newdap;
8700 {
8701 	struct diradd *olddap;
8702 	struct mkdir *mkdir, *nextmd;
8703 	struct ufsmount *ump;
8704 	short state;
8705 
8706 	olddap = inodedep->id_mkdiradd;
8707 	inodedep->id_mkdiradd = newdap;
8708 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8709 		newdap->da_state &= ~DEPCOMPLETE;
8710 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8711 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8712 		     mkdir = nextmd) {
8713 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8714 			if (mkdir->md_diradd != olddap)
8715 				continue;
8716 			mkdir->md_diradd = newdap;
8717 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8718 			newdap->da_state |= state;
8719 			olddap->da_state &= ~state;
8720 			if ((olddap->da_state &
8721 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8722 				break;
8723 		}
8724 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8725 			panic("merge_diradd: unfound ref");
8726 	}
8727 	/*
8728 	 * Any mkdir related journal items are not safe to be freed until
8729 	 * the new name is stable.
8730 	 */
8731 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8732 	olddap->da_state |= DEPCOMPLETE;
8733 	complete_diradd(olddap);
8734 }
8735 
8736 /*
8737  * Move the diradd to the pending list when all diradd dependencies are
8738  * complete.
8739  */
8740 static void
8741 complete_diradd(dap)
8742 	struct diradd *dap;
8743 {
8744 	struct pagedep *pagedep;
8745 
8746 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8747 		if (dap->da_state & DIRCHG)
8748 			pagedep = dap->da_previous->dm_pagedep;
8749 		else
8750 			pagedep = dap->da_pagedep;
8751 		LIST_REMOVE(dap, da_pdlist);
8752 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8753 	}
8754 }
8755 
8756 /*
8757  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8758  * add entries and conditonally journal the remove.
8759  */
8760 static void
8761 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8762 	struct diradd *dap;
8763 	struct dirrem *dirrem;
8764 	struct jremref *jremref;
8765 	struct jremref *dotremref;
8766 	struct jremref *dotdotremref;
8767 {
8768 	struct inodedep *inodedep;
8769 	struct jaddref *jaddref;
8770 	struct inoref *inoref;
8771 	struct ufsmount *ump;
8772 	struct mkdir *mkdir;
8773 
8774 	/*
8775 	 * If no remove references were allocated we're on a non-journaled
8776 	 * filesystem and can skip the cancel step.
8777 	 */
8778 	if (jremref == NULL) {
8779 		free_diradd(dap, NULL);
8780 		return;
8781 	}
8782 	/*
8783 	 * Cancel the primary name an free it if it does not require
8784 	 * journaling.
8785 	 */
8786 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8787 	    0, &inodedep) != 0) {
8788 		/* Abort the addref that reference this diradd.  */
8789 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8790 			if (inoref->if_list.wk_type != D_JADDREF)
8791 				continue;
8792 			jaddref = (struct jaddref *)inoref;
8793 			if (jaddref->ja_diradd != dap)
8794 				continue;
8795 			if (cancel_jaddref(jaddref, inodedep,
8796 			    &dirrem->dm_jwork) == 0) {
8797 				free_jremref(jremref);
8798 				jremref = NULL;
8799 			}
8800 			break;
8801 		}
8802 	}
8803 	/*
8804 	 * Cancel subordinate names and free them if they do not require
8805 	 * journaling.
8806 	 */
8807 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8808 		ump = VFSTOUFS(dap->da_list.wk_mp);
8809 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8810 			if (mkdir->md_diradd != dap)
8811 				continue;
8812 			if ((jaddref = mkdir->md_jaddref) == NULL)
8813 				continue;
8814 			mkdir->md_jaddref = NULL;
8815 			if (mkdir->md_state & MKDIR_PARENT) {
8816 				if (cancel_jaddref(jaddref, NULL,
8817 				    &dirrem->dm_jwork) == 0) {
8818 					free_jremref(dotdotremref);
8819 					dotdotremref = NULL;
8820 				}
8821 			} else {
8822 				if (cancel_jaddref(jaddref, inodedep,
8823 				    &dirrem->dm_jwork) == 0) {
8824 					free_jremref(dotremref);
8825 					dotremref = NULL;
8826 				}
8827 			}
8828 		}
8829 	}
8830 
8831 	if (jremref)
8832 		journal_jremref(dirrem, jremref, inodedep);
8833 	if (dotremref)
8834 		journal_jremref(dirrem, dotremref, inodedep);
8835 	if (dotdotremref)
8836 		journal_jremref(dirrem, dotdotremref, NULL);
8837 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8838 	free_diradd(dap, &dirrem->dm_jwork);
8839 }
8840 
8841 /*
8842  * Free a diradd dependency structure. This routine must be called
8843  * with splbio interrupts blocked.
8844  */
8845 static void
8846 free_diradd(dap, wkhd)
8847 	struct diradd *dap;
8848 	struct workhead *wkhd;
8849 {
8850 	struct dirrem *dirrem;
8851 	struct pagedep *pagedep;
8852 	struct inodedep *inodedep;
8853 	struct mkdir *mkdir, *nextmd;
8854 	struct ufsmount *ump;
8855 
8856 	ump = VFSTOUFS(dap->da_list.wk_mp);
8857 	LOCK_OWNED(ump);
8858 	LIST_REMOVE(dap, da_pdlist);
8859 	if (dap->da_state & ONWORKLIST)
8860 		WORKLIST_REMOVE(&dap->da_list);
8861 	if ((dap->da_state & DIRCHG) == 0) {
8862 		pagedep = dap->da_pagedep;
8863 	} else {
8864 		dirrem = dap->da_previous;
8865 		pagedep = dirrem->dm_pagedep;
8866 		dirrem->dm_dirinum = pagedep->pd_ino;
8867 		dirrem->dm_state |= COMPLETE;
8868 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8869 			add_to_worklist(&dirrem->dm_list, 0);
8870 	}
8871 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8872 	    0, &inodedep) != 0)
8873 		if (inodedep->id_mkdiradd == dap)
8874 			inodedep->id_mkdiradd = NULL;
8875 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8876 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8877 		     mkdir = nextmd) {
8878 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8879 			if (mkdir->md_diradd != dap)
8880 				continue;
8881 			dap->da_state &=
8882 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8883 			LIST_REMOVE(mkdir, md_mkdirs);
8884 			if (mkdir->md_state & ONWORKLIST)
8885 				WORKLIST_REMOVE(&mkdir->md_list);
8886 			if (mkdir->md_jaddref != NULL)
8887 				panic("free_diradd: Unexpected jaddref");
8888 			WORKITEM_FREE(mkdir, D_MKDIR);
8889 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8890 				break;
8891 		}
8892 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8893 			panic("free_diradd: unfound ref");
8894 	}
8895 	if (inodedep)
8896 		free_inodedep(inodedep);
8897 	/*
8898 	 * Free any journal segments waiting for the directory write.
8899 	 */
8900 	handle_jwork(&dap->da_jwork);
8901 	WORKITEM_FREE(dap, D_DIRADD);
8902 }
8903 
8904 /*
8905  * Directory entry removal dependencies.
8906  *
8907  * When removing a directory entry, the entry's inode pointer must be
8908  * zero'ed on disk before the corresponding inode's link count is decremented
8909  * (possibly freeing the inode for re-use). This dependency is handled by
8910  * updating the directory entry but delaying the inode count reduction until
8911  * after the directory block has been written to disk. After this point, the
8912  * inode count can be decremented whenever it is convenient.
8913  */
8914 
8915 /*
8916  * This routine should be called immediately after removing
8917  * a directory entry.  The inode's link count should not be
8918  * decremented by the calling procedure -- the soft updates
8919  * code will do this task when it is safe.
8920  */
8921 void
8922 softdep_setup_remove(bp, dp, ip, isrmdir)
8923 	struct buf *bp;		/* buffer containing directory block */
8924 	struct inode *dp;	/* inode for the directory being modified */
8925 	struct inode *ip;	/* inode for directory entry being removed */
8926 	int isrmdir;		/* indicates if doing RMDIR */
8927 {
8928 	struct dirrem *dirrem, *prevdirrem;
8929 	struct inodedep *inodedep;
8930 	struct ufsmount *ump;
8931 	int direct;
8932 
8933 	ump = ITOUMP(ip);
8934 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
8935 	    ("softdep_setup_remove called on non-softdep filesystem"));
8936 	/*
8937 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8938 	 * newdirrem() to setup the full directory remove which requires
8939 	 * isrmdir > 1.
8940 	 */
8941 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8942 	/*
8943 	 * Add the dirrem to the inodedep's pending remove list for quick
8944 	 * discovery later.
8945 	 */
8946 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
8947 		panic("softdep_setup_remove: Lost inodedep.");
8948 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8949 	dirrem->dm_state |= ONDEPLIST;
8950 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8951 
8952 	/*
8953 	 * If the COMPLETE flag is clear, then there were no active
8954 	 * entries and we want to roll back to a zeroed entry until
8955 	 * the new inode is committed to disk. If the COMPLETE flag is
8956 	 * set then we have deleted an entry that never made it to
8957 	 * disk. If the entry we deleted resulted from a name change,
8958 	 * then the old name still resides on disk. We cannot delete
8959 	 * its inode (returned to us in prevdirrem) until the zeroed
8960 	 * directory entry gets to disk. The new inode has never been
8961 	 * referenced on the disk, so can be deleted immediately.
8962 	 */
8963 	if ((dirrem->dm_state & COMPLETE) == 0) {
8964 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8965 		    dm_next);
8966 		FREE_LOCK(ump);
8967 	} else {
8968 		if (prevdirrem != NULL)
8969 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8970 			    prevdirrem, dm_next);
8971 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8972 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8973 		FREE_LOCK(ump);
8974 		if (direct)
8975 			handle_workitem_remove(dirrem, 0);
8976 	}
8977 }
8978 
8979 /*
8980  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8981  * pd_pendinghd list of a pagedep.
8982  */
8983 static struct diradd *
8984 diradd_lookup(pagedep, offset)
8985 	struct pagedep *pagedep;
8986 	int offset;
8987 {
8988 	struct diradd *dap;
8989 
8990 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8991 		if (dap->da_offset == offset)
8992 			return (dap);
8993 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8994 		if (dap->da_offset == offset)
8995 			return (dap);
8996 	return (NULL);
8997 }
8998 
8999 /*
9000  * Search for a .. diradd dependency in a directory that is being removed.
9001  * If the directory was renamed to a new parent we have a diradd rather
9002  * than a mkdir for the .. entry.  We need to cancel it now before
9003  * it is found in truncate().
9004  */
9005 static struct jremref *
9006 cancel_diradd_dotdot(ip, dirrem, jremref)
9007 	struct inode *ip;
9008 	struct dirrem *dirrem;
9009 	struct jremref *jremref;
9010 {
9011 	struct pagedep *pagedep;
9012 	struct diradd *dap;
9013 	struct worklist *wk;
9014 
9015 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9016 		return (jremref);
9017 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9018 	if (dap == NULL)
9019 		return (jremref);
9020 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9021 	/*
9022 	 * Mark any journal work as belonging to the parent so it is freed
9023 	 * with the .. reference.
9024 	 */
9025 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9026 		wk->wk_state |= MKDIR_PARENT;
9027 	return (NULL);
9028 }
9029 
9030 /*
9031  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9032  * replace it with a dirrem/diradd pair as a result of re-parenting a
9033  * directory.  This ensures that we don't simultaneously have a mkdir and
9034  * a diradd for the same .. entry.
9035  */
9036 static struct jremref *
9037 cancel_mkdir_dotdot(ip, dirrem, jremref)
9038 	struct inode *ip;
9039 	struct dirrem *dirrem;
9040 	struct jremref *jremref;
9041 {
9042 	struct inodedep *inodedep;
9043 	struct jaddref *jaddref;
9044 	struct ufsmount *ump;
9045 	struct mkdir *mkdir;
9046 	struct diradd *dap;
9047 	struct mount *mp;
9048 
9049 	mp = ITOVFS(ip);
9050 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9051 		return (jremref);
9052 	dap = inodedep->id_mkdiradd;
9053 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9054 		return (jremref);
9055 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9056 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9057 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9058 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9059 			break;
9060 	if (mkdir == NULL)
9061 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9062 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9063 		mkdir->md_jaddref = NULL;
9064 		jaddref->ja_state &= ~MKDIR_PARENT;
9065 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9066 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9067 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9068 			journal_jremref(dirrem, jremref, inodedep);
9069 			jremref = NULL;
9070 		}
9071 	}
9072 	if (mkdir->md_state & ONWORKLIST)
9073 		WORKLIST_REMOVE(&mkdir->md_list);
9074 	mkdir->md_state |= ALLCOMPLETE;
9075 	complete_mkdir(mkdir);
9076 	return (jremref);
9077 }
9078 
9079 static void
9080 journal_jremref(dirrem, jremref, inodedep)
9081 	struct dirrem *dirrem;
9082 	struct jremref *jremref;
9083 	struct inodedep *inodedep;
9084 {
9085 
9086 	if (inodedep == NULL)
9087 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9088 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9089 			panic("journal_jremref: Lost inodedep");
9090 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9091 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9092 	add_to_journal(&jremref->jr_list);
9093 }
9094 
9095 static void
9096 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9097 	struct dirrem *dirrem;
9098 	struct jremref *jremref;
9099 	struct jremref *dotremref;
9100 	struct jremref *dotdotremref;
9101 {
9102 	struct inodedep *inodedep;
9103 
9104 
9105 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9106 	    &inodedep) == 0)
9107 		panic("dirrem_journal: Lost inodedep");
9108 	journal_jremref(dirrem, jremref, inodedep);
9109 	if (dotremref)
9110 		journal_jremref(dirrem, dotremref, inodedep);
9111 	if (dotdotremref)
9112 		journal_jremref(dirrem, dotdotremref, NULL);
9113 }
9114 
9115 /*
9116  * Allocate a new dirrem if appropriate and return it along with
9117  * its associated pagedep. Called without a lock, returns with lock.
9118  */
9119 static struct dirrem *
9120 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9121 	struct buf *bp;		/* buffer containing directory block */
9122 	struct inode *dp;	/* inode for the directory being modified */
9123 	struct inode *ip;	/* inode for directory entry being removed */
9124 	int isrmdir;		/* indicates if doing RMDIR */
9125 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9126 {
9127 	int offset;
9128 	ufs_lbn_t lbn;
9129 	struct diradd *dap;
9130 	struct dirrem *dirrem;
9131 	struct pagedep *pagedep;
9132 	struct jremref *jremref;
9133 	struct jremref *dotremref;
9134 	struct jremref *dotdotremref;
9135 	struct vnode *dvp;
9136 	struct ufsmount *ump;
9137 
9138 	/*
9139 	 * Whiteouts have no deletion dependencies.
9140 	 */
9141 	if (ip == NULL)
9142 		panic("newdirrem: whiteout");
9143 	dvp = ITOV(dp);
9144 	ump = ITOUMP(dp);
9145 
9146 	/*
9147 	 * If the system is over its limit and our filesystem is
9148 	 * responsible for more than our share of that usage and
9149 	 * we are not a snapshot, request some inodedep cleanup.
9150 	 * Limiting the number of dirrem structures will also limit
9151 	 * the number of freefile and freeblks structures.
9152 	 */
9153 	ACQUIRE_LOCK(ump);
9154 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9155 		schedule_cleanup(UFSTOVFS(ump));
9156 	else
9157 		FREE_LOCK(ump);
9158 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9159 	    M_ZERO);
9160 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9161 	LIST_INIT(&dirrem->dm_jremrefhd);
9162 	LIST_INIT(&dirrem->dm_jwork);
9163 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9164 	dirrem->dm_oldinum = ip->i_number;
9165 	*prevdirremp = NULL;
9166 	/*
9167 	 * Allocate remove reference structures to track journal write
9168 	 * dependencies.  We will always have one for the link and
9169 	 * when doing directories we will always have one more for dot.
9170 	 * When renaming a directory we skip the dotdot link change so
9171 	 * this is not needed.
9172 	 */
9173 	jremref = dotremref = dotdotremref = NULL;
9174 	if (DOINGSUJ(dvp)) {
9175 		if (isrmdir) {
9176 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9177 			    ip->i_effnlink + 2);
9178 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9179 			    ip->i_effnlink + 1);
9180 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9181 			    dp->i_effnlink + 1);
9182 			dotdotremref->jr_state |= MKDIR_PARENT;
9183 		} else
9184 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9185 			    ip->i_effnlink + 1);
9186 	}
9187 	ACQUIRE_LOCK(ump);
9188 	lbn = lblkno(ump->um_fs, dp->i_offset);
9189 	offset = blkoff(ump->um_fs, dp->i_offset);
9190 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9191 	    &pagedep);
9192 	dirrem->dm_pagedep = pagedep;
9193 	dirrem->dm_offset = offset;
9194 	/*
9195 	 * If we're renaming a .. link to a new directory, cancel any
9196 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9197 	 * the jremref is preserved for any potential diradd in this
9198 	 * location.  This can not coincide with a rmdir.
9199 	 */
9200 	if (dp->i_offset == DOTDOT_OFFSET) {
9201 		if (isrmdir)
9202 			panic("newdirrem: .. directory change during remove?");
9203 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9204 	}
9205 	/*
9206 	 * If we're removing a directory search for the .. dependency now and
9207 	 * cancel it.  Any pending journal work will be added to the dirrem
9208 	 * to be completed when the workitem remove completes.
9209 	 */
9210 	if (isrmdir)
9211 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9212 	/*
9213 	 * Check for a diradd dependency for the same directory entry.
9214 	 * If present, then both dependencies become obsolete and can
9215 	 * be de-allocated.
9216 	 */
9217 	dap = diradd_lookup(pagedep, offset);
9218 	if (dap == NULL) {
9219 		/*
9220 		 * Link the jremref structures into the dirrem so they are
9221 		 * written prior to the pagedep.
9222 		 */
9223 		if (jremref)
9224 			dirrem_journal(dirrem, jremref, dotremref,
9225 			    dotdotremref);
9226 		return (dirrem);
9227 	}
9228 	/*
9229 	 * Must be ATTACHED at this point.
9230 	 */
9231 	if ((dap->da_state & ATTACHED) == 0)
9232 		panic("newdirrem: not ATTACHED");
9233 	if (dap->da_newinum != ip->i_number)
9234 		panic("newdirrem: inum %ju should be %ju",
9235 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9236 	/*
9237 	 * If we are deleting a changed name that never made it to disk,
9238 	 * then return the dirrem describing the previous inode (which
9239 	 * represents the inode currently referenced from this entry on disk).
9240 	 */
9241 	if ((dap->da_state & DIRCHG) != 0) {
9242 		*prevdirremp = dap->da_previous;
9243 		dap->da_state &= ~DIRCHG;
9244 		dap->da_pagedep = pagedep;
9245 	}
9246 	/*
9247 	 * We are deleting an entry that never made it to disk.
9248 	 * Mark it COMPLETE so we can delete its inode immediately.
9249 	 */
9250 	dirrem->dm_state |= COMPLETE;
9251 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9252 #ifdef SUJ_DEBUG
9253 	if (isrmdir == 0) {
9254 		struct worklist *wk;
9255 
9256 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9257 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9258 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9259 	}
9260 #endif
9261 
9262 	return (dirrem);
9263 }
9264 
9265 /*
9266  * Directory entry change dependencies.
9267  *
9268  * Changing an existing directory entry requires that an add operation
9269  * be completed first followed by a deletion. The semantics for the addition
9270  * are identical to the description of adding a new entry above except
9271  * that the rollback is to the old inode number rather than zero. Once
9272  * the addition dependency is completed, the removal is done as described
9273  * in the removal routine above.
9274  */
9275 
9276 /*
9277  * This routine should be called immediately after changing
9278  * a directory entry.  The inode's link count should not be
9279  * decremented by the calling procedure -- the soft updates
9280  * code will perform this task when it is safe.
9281  */
9282 void
9283 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9284 	struct buf *bp;		/* buffer containing directory block */
9285 	struct inode *dp;	/* inode for the directory being modified */
9286 	struct inode *ip;	/* inode for directory entry being removed */
9287 	ino_t newinum;		/* new inode number for changed entry */
9288 	int isrmdir;		/* indicates if doing RMDIR */
9289 {
9290 	int offset;
9291 	struct diradd *dap = NULL;
9292 	struct dirrem *dirrem, *prevdirrem;
9293 	struct pagedep *pagedep;
9294 	struct inodedep *inodedep;
9295 	struct jaddref *jaddref;
9296 	struct mount *mp;
9297 	struct ufsmount *ump;
9298 
9299 	mp = ITOVFS(dp);
9300 	ump = VFSTOUFS(mp);
9301 	offset = blkoff(ump->um_fs, dp->i_offset);
9302 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9303 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9304 
9305 	/*
9306 	 * Whiteouts do not need diradd dependencies.
9307 	 */
9308 	if (newinum != UFS_WINO) {
9309 		dap = malloc(sizeof(struct diradd),
9310 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9311 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9312 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9313 		dap->da_offset = offset;
9314 		dap->da_newinum = newinum;
9315 		LIST_INIT(&dap->da_jwork);
9316 	}
9317 
9318 	/*
9319 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9320 	 */
9321 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9322 	pagedep = dirrem->dm_pagedep;
9323 	/*
9324 	 * The possible values for isrmdir:
9325 	 *	0 - non-directory file rename
9326 	 *	1 - directory rename within same directory
9327 	 *   inum - directory rename to new directory of given inode number
9328 	 * When renaming to a new directory, we are both deleting and
9329 	 * creating a new directory entry, so the link count on the new
9330 	 * directory should not change. Thus we do not need the followup
9331 	 * dirrem which is usually done in handle_workitem_remove. We set
9332 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9333 	 * followup dirrem.
9334 	 */
9335 	if (isrmdir > 1)
9336 		dirrem->dm_state |= DIRCHG;
9337 
9338 	/*
9339 	 * Whiteouts have no additional dependencies,
9340 	 * so just put the dirrem on the correct list.
9341 	 */
9342 	if (newinum == UFS_WINO) {
9343 		if ((dirrem->dm_state & COMPLETE) == 0) {
9344 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9345 			    dm_next);
9346 		} else {
9347 			dirrem->dm_dirinum = pagedep->pd_ino;
9348 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9349 				add_to_worklist(&dirrem->dm_list, 0);
9350 		}
9351 		FREE_LOCK(ump);
9352 		return;
9353 	}
9354 	/*
9355 	 * Add the dirrem to the inodedep's pending remove list for quick
9356 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9357 	 * will not fail.
9358 	 */
9359 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9360 		panic("softdep_setup_directory_change: Lost inodedep.");
9361 	dirrem->dm_state |= ONDEPLIST;
9362 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9363 
9364 	/*
9365 	 * If the COMPLETE flag is clear, then there were no active
9366 	 * entries and we want to roll back to the previous inode until
9367 	 * the new inode is committed to disk. If the COMPLETE flag is
9368 	 * set, then we have deleted an entry that never made it to disk.
9369 	 * If the entry we deleted resulted from a name change, then the old
9370 	 * inode reference still resides on disk. Any rollback that we do
9371 	 * needs to be to that old inode (returned to us in prevdirrem). If
9372 	 * the entry we deleted resulted from a create, then there is
9373 	 * no entry on the disk, so we want to roll back to zero rather
9374 	 * than the uncommitted inode. In either of the COMPLETE cases we
9375 	 * want to immediately free the unwritten and unreferenced inode.
9376 	 */
9377 	if ((dirrem->dm_state & COMPLETE) == 0) {
9378 		dap->da_previous = dirrem;
9379 	} else {
9380 		if (prevdirrem != NULL) {
9381 			dap->da_previous = prevdirrem;
9382 		} else {
9383 			dap->da_state &= ~DIRCHG;
9384 			dap->da_pagedep = pagedep;
9385 		}
9386 		dirrem->dm_dirinum = pagedep->pd_ino;
9387 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9388 			add_to_worklist(&dirrem->dm_list, 0);
9389 	}
9390 	/*
9391 	 * Lookup the jaddref for this journal entry.  We must finish
9392 	 * initializing it and make the diradd write dependent on it.
9393 	 * If we're not journaling, put it on the id_bufwait list if the
9394 	 * inode is not yet written. If it is written, do the post-inode
9395 	 * write processing to put it on the id_pendinghd list.
9396 	 */
9397 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9398 	if (MOUNTEDSUJ(mp)) {
9399 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9400 		    inoreflst);
9401 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9402 		    ("softdep_setup_directory_change: bad jaddref %p",
9403 		    jaddref));
9404 		jaddref->ja_diroff = dp->i_offset;
9405 		jaddref->ja_diradd = dap;
9406 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9407 		    dap, da_pdlist);
9408 		add_to_journal(&jaddref->ja_list);
9409 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9410 		dap->da_state |= COMPLETE;
9411 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9412 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9413 	} else {
9414 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9415 		    dap, da_pdlist);
9416 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9417 	}
9418 	/*
9419 	 * If we're making a new name for a directory that has not been
9420 	 * committed when need to move the dot and dotdot references to
9421 	 * this new name.
9422 	 */
9423 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9424 		merge_diradd(inodedep, dap);
9425 	FREE_LOCK(ump);
9426 }
9427 
9428 /*
9429  * Called whenever the link count on an inode is changed.
9430  * It creates an inode dependency so that the new reference(s)
9431  * to the inode cannot be committed to disk until the updated
9432  * inode has been written.
9433  */
9434 void
9435 softdep_change_linkcnt(ip)
9436 	struct inode *ip;	/* the inode with the increased link count */
9437 {
9438 	struct inodedep *inodedep;
9439 	struct ufsmount *ump;
9440 
9441 	ump = ITOUMP(ip);
9442 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9443 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9444 	ACQUIRE_LOCK(ump);
9445 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9446 	if (ip->i_nlink < ip->i_effnlink)
9447 		panic("softdep_change_linkcnt: bad delta");
9448 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9449 	FREE_LOCK(ump);
9450 }
9451 
9452 /*
9453  * Attach a sbdep dependency to the superblock buf so that we can keep
9454  * track of the head of the linked list of referenced but unlinked inodes.
9455  */
9456 void
9457 softdep_setup_sbupdate(ump, fs, bp)
9458 	struct ufsmount *ump;
9459 	struct fs *fs;
9460 	struct buf *bp;
9461 {
9462 	struct sbdep *sbdep;
9463 	struct worklist *wk;
9464 
9465 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9466 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9467 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9468 		if (wk->wk_type == D_SBDEP)
9469 			break;
9470 	if (wk != NULL)
9471 		return;
9472 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9473 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9474 	sbdep->sb_fs = fs;
9475 	sbdep->sb_ump = ump;
9476 	ACQUIRE_LOCK(ump);
9477 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9478 	FREE_LOCK(ump);
9479 }
9480 
9481 /*
9482  * Return the first unlinked inodedep which is ready to be the head of the
9483  * list.  The inodedep and all those after it must have valid next pointers.
9484  */
9485 static struct inodedep *
9486 first_unlinked_inodedep(ump)
9487 	struct ufsmount *ump;
9488 {
9489 	struct inodedep *inodedep;
9490 	struct inodedep *idp;
9491 
9492 	LOCK_OWNED(ump);
9493 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9494 	    inodedep; inodedep = idp) {
9495 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9496 			return (NULL);
9497 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9498 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9499 			break;
9500 		if ((inodedep->id_state & UNLINKPREV) == 0)
9501 			break;
9502 	}
9503 	return (inodedep);
9504 }
9505 
9506 /*
9507  * Set the sujfree unlinked head pointer prior to writing a superblock.
9508  */
9509 static void
9510 initiate_write_sbdep(sbdep)
9511 	struct sbdep *sbdep;
9512 {
9513 	struct inodedep *inodedep;
9514 	struct fs *bpfs;
9515 	struct fs *fs;
9516 
9517 	bpfs = sbdep->sb_fs;
9518 	fs = sbdep->sb_ump->um_fs;
9519 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9520 	if (inodedep) {
9521 		fs->fs_sujfree = inodedep->id_ino;
9522 		inodedep->id_state |= UNLINKPREV;
9523 	} else
9524 		fs->fs_sujfree = 0;
9525 	bpfs->fs_sujfree = fs->fs_sujfree;
9526 }
9527 
9528 /*
9529  * After a superblock is written determine whether it must be written again
9530  * due to a changing unlinked list head.
9531  */
9532 static int
9533 handle_written_sbdep(sbdep, bp)
9534 	struct sbdep *sbdep;
9535 	struct buf *bp;
9536 {
9537 	struct inodedep *inodedep;
9538 	struct fs *fs;
9539 
9540 	LOCK_OWNED(sbdep->sb_ump);
9541 	fs = sbdep->sb_fs;
9542 	/*
9543 	 * If the superblock doesn't match the in-memory list start over.
9544 	 */
9545 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9546 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9547 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9548 		bdirty(bp);
9549 		return (1);
9550 	}
9551 	WORKITEM_FREE(sbdep, D_SBDEP);
9552 	if (fs->fs_sujfree == 0)
9553 		return (0);
9554 	/*
9555 	 * Now that we have a record of this inode in stable store allow it
9556 	 * to be written to free up pending work.  Inodes may see a lot of
9557 	 * write activity after they are unlinked which we must not hold up.
9558 	 */
9559 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9560 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9561 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9562 			    inodedep, inodedep->id_state);
9563 		if (inodedep->id_state & UNLINKONLIST)
9564 			break;
9565 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9566 	}
9567 
9568 	return (0);
9569 }
9570 
9571 /*
9572  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9573  */
9574 static void
9575 unlinked_inodedep(mp, inodedep)
9576 	struct mount *mp;
9577 	struct inodedep *inodedep;
9578 {
9579 	struct ufsmount *ump;
9580 
9581 	ump = VFSTOUFS(mp);
9582 	LOCK_OWNED(ump);
9583 	if (MOUNTEDSUJ(mp) == 0)
9584 		return;
9585 	ump->um_fs->fs_fmod = 1;
9586 	if (inodedep->id_state & UNLINKED)
9587 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9588 	inodedep->id_state |= UNLINKED;
9589 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9590 }
9591 
9592 /*
9593  * Remove an inodedep from the unlinked inodedep list.  This may require
9594  * disk writes if the inode has made it that far.
9595  */
9596 static void
9597 clear_unlinked_inodedep(inodedep)
9598 	struct inodedep *inodedep;
9599 {
9600 	struct ufsmount *ump;
9601 	struct inodedep *idp;
9602 	struct inodedep *idn;
9603 	struct fs *fs;
9604 	struct buf *bp;
9605 	ino_t ino;
9606 	ino_t nino;
9607 	ino_t pino;
9608 	int error;
9609 
9610 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9611 	fs = ump->um_fs;
9612 	ino = inodedep->id_ino;
9613 	error = 0;
9614 	for (;;) {
9615 		LOCK_OWNED(ump);
9616 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9617 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9618 		    inodedep));
9619 		/*
9620 		 * If nothing has yet been written simply remove us from
9621 		 * the in memory list and return.  This is the most common
9622 		 * case where handle_workitem_remove() loses the final
9623 		 * reference.
9624 		 */
9625 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9626 			break;
9627 		/*
9628 		 * If we have a NEXT pointer and no PREV pointer we can simply
9629 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9630 		 * careful not to clear PREV if the superblock points at
9631 		 * next as well.
9632 		 */
9633 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9634 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9635 			if (idn && fs->fs_sujfree != idn->id_ino)
9636 				idn->id_state &= ~UNLINKPREV;
9637 			break;
9638 		}
9639 		/*
9640 		 * Here we have an inodedep which is actually linked into
9641 		 * the list.  We must remove it by forcing a write to the
9642 		 * link before us, whether it be the superblock or an inode.
9643 		 * Unfortunately the list may change while we're waiting
9644 		 * on the buf lock for either resource so we must loop until
9645 		 * we lock the right one.  If both the superblock and an
9646 		 * inode point to this inode we must clear the inode first
9647 		 * followed by the superblock.
9648 		 */
9649 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9650 		pino = 0;
9651 		if (idp && (idp->id_state & UNLINKNEXT))
9652 			pino = idp->id_ino;
9653 		FREE_LOCK(ump);
9654 		if (pino == 0) {
9655 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9656 			    (int)fs->fs_sbsize, 0, 0, 0);
9657 		} else {
9658 			error = bread(ump->um_devvp,
9659 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9660 			    (int)fs->fs_bsize, NOCRED, &bp);
9661 			if (error)
9662 				brelse(bp);
9663 		}
9664 		ACQUIRE_LOCK(ump);
9665 		if (error)
9666 			break;
9667 		/* If the list has changed restart the loop. */
9668 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9669 		nino = 0;
9670 		if (idp && (idp->id_state & UNLINKNEXT))
9671 			nino = idp->id_ino;
9672 		if (nino != pino ||
9673 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9674 			FREE_LOCK(ump);
9675 			brelse(bp);
9676 			ACQUIRE_LOCK(ump);
9677 			continue;
9678 		}
9679 		nino = 0;
9680 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9681 		if (idn)
9682 			nino = idn->id_ino;
9683 		/*
9684 		 * Remove us from the in memory list.  After this we cannot
9685 		 * access the inodedep.
9686 		 */
9687 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9688 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9689 		    inodedep));
9690 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9691 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9692 		FREE_LOCK(ump);
9693 		/*
9694 		 * The predecessor's next pointer is manually updated here
9695 		 * so that the NEXT flag is never cleared for an element
9696 		 * that is in the list.
9697 		 */
9698 		if (pino == 0) {
9699 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9700 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9701 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9702 			    bp);
9703 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9704 			((struct ufs1_dinode *)bp->b_data +
9705 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9706 		else
9707 			((struct ufs2_dinode *)bp->b_data +
9708 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9709 		/*
9710 		 * If the bwrite fails we have no recourse to recover.  The
9711 		 * filesystem is corrupted already.
9712 		 */
9713 		bwrite(bp);
9714 		ACQUIRE_LOCK(ump);
9715 		/*
9716 		 * If the superblock pointer still needs to be cleared force
9717 		 * a write here.
9718 		 */
9719 		if (fs->fs_sujfree == ino) {
9720 			FREE_LOCK(ump);
9721 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9722 			    (int)fs->fs_sbsize, 0, 0, 0);
9723 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9724 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9725 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9726 			    bp);
9727 			bwrite(bp);
9728 			ACQUIRE_LOCK(ump);
9729 		}
9730 
9731 		if (fs->fs_sujfree != ino)
9732 			return;
9733 		panic("clear_unlinked_inodedep: Failed to clear free head");
9734 	}
9735 	if (inodedep->id_ino == fs->fs_sujfree)
9736 		panic("clear_unlinked_inodedep: Freeing head of free list");
9737 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9738 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9739 	return;
9740 }
9741 
9742 /*
9743  * This workitem decrements the inode's link count.
9744  * If the link count reaches zero, the file is removed.
9745  */
9746 static int
9747 handle_workitem_remove(dirrem, flags)
9748 	struct dirrem *dirrem;
9749 	int flags;
9750 {
9751 	struct inodedep *inodedep;
9752 	struct workhead dotdotwk;
9753 	struct worklist *wk;
9754 	struct ufsmount *ump;
9755 	struct mount *mp;
9756 	struct vnode *vp;
9757 	struct inode *ip;
9758 	ino_t oldinum;
9759 
9760 	if (dirrem->dm_state & ONWORKLIST)
9761 		panic("handle_workitem_remove: dirrem %p still on worklist",
9762 		    dirrem);
9763 	oldinum = dirrem->dm_oldinum;
9764 	mp = dirrem->dm_list.wk_mp;
9765 	ump = VFSTOUFS(mp);
9766 	flags |= LK_EXCLUSIVE;
9767 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9768 		return (EBUSY);
9769 	ip = VTOI(vp);
9770 	ACQUIRE_LOCK(ump);
9771 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9772 		panic("handle_workitem_remove: lost inodedep");
9773 	if (dirrem->dm_state & ONDEPLIST)
9774 		LIST_REMOVE(dirrem, dm_inonext);
9775 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9776 	    ("handle_workitem_remove:  Journal entries not written."));
9777 
9778 	/*
9779 	 * Move all dependencies waiting on the remove to complete
9780 	 * from the dirrem to the inode inowait list to be completed
9781 	 * after the inode has been updated and written to disk.  Any
9782 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9783 	 * is removed.
9784 	 */
9785 	LIST_INIT(&dotdotwk);
9786 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9787 		WORKLIST_REMOVE(wk);
9788 		if (wk->wk_state & MKDIR_PARENT) {
9789 			wk->wk_state &= ~MKDIR_PARENT;
9790 			WORKLIST_INSERT(&dotdotwk, wk);
9791 			continue;
9792 		}
9793 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9794 	}
9795 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9796 	/*
9797 	 * Normal file deletion.
9798 	 */
9799 	if ((dirrem->dm_state & RMDIR) == 0) {
9800 		ip->i_nlink--;
9801 		DIP_SET(ip, i_nlink, ip->i_nlink);
9802 		ip->i_flag |= IN_CHANGE;
9803 		if (ip->i_nlink < ip->i_effnlink)
9804 			panic("handle_workitem_remove: bad file delta");
9805 		if (ip->i_nlink == 0)
9806 			unlinked_inodedep(mp, inodedep);
9807 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9808 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9809 		    ("handle_workitem_remove: worklist not empty. %s",
9810 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9811 		WORKITEM_FREE(dirrem, D_DIRREM);
9812 		FREE_LOCK(ump);
9813 		goto out;
9814 	}
9815 	/*
9816 	 * Directory deletion. Decrement reference count for both the
9817 	 * just deleted parent directory entry and the reference for ".".
9818 	 * Arrange to have the reference count on the parent decremented
9819 	 * to account for the loss of "..".
9820 	 */
9821 	ip->i_nlink -= 2;
9822 	DIP_SET(ip, i_nlink, ip->i_nlink);
9823 	ip->i_flag |= IN_CHANGE;
9824 	if (ip->i_nlink < ip->i_effnlink)
9825 		panic("handle_workitem_remove: bad dir delta");
9826 	if (ip->i_nlink == 0)
9827 		unlinked_inodedep(mp, inodedep);
9828 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9829 	/*
9830 	 * Rename a directory to a new parent. Since, we are both deleting
9831 	 * and creating a new directory entry, the link count on the new
9832 	 * directory should not change. Thus we skip the followup dirrem.
9833 	 */
9834 	if (dirrem->dm_state & DIRCHG) {
9835 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9836 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9837 		WORKITEM_FREE(dirrem, D_DIRREM);
9838 		FREE_LOCK(ump);
9839 		goto out;
9840 	}
9841 	dirrem->dm_state = ONDEPLIST;
9842 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9843 	/*
9844 	 * Place the dirrem on the parent's diremhd list.
9845 	 */
9846 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9847 		panic("handle_workitem_remove: lost dir inodedep");
9848 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9849 	/*
9850 	 * If the allocated inode has never been written to disk, then
9851 	 * the on-disk inode is zero'ed and we can remove the file
9852 	 * immediately.  When journaling if the inode has been marked
9853 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9854 	 */
9855 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9856 	if (inodedep == NULL ||
9857 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9858 	    check_inode_unwritten(inodedep)) {
9859 		FREE_LOCK(ump);
9860 		vput(vp);
9861 		return handle_workitem_remove(dirrem, flags);
9862 	}
9863 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9864 	FREE_LOCK(ump);
9865 	ip->i_flag |= IN_CHANGE;
9866 out:
9867 	ffs_update(vp, 0);
9868 	vput(vp);
9869 	return (0);
9870 }
9871 
9872 /*
9873  * Inode de-allocation dependencies.
9874  *
9875  * When an inode's link count is reduced to zero, it can be de-allocated. We
9876  * found it convenient to postpone de-allocation until after the inode is
9877  * written to disk with its new link count (zero).  At this point, all of the
9878  * on-disk inode's block pointers are nullified and, with careful dependency
9879  * list ordering, all dependencies related to the inode will be satisfied and
9880  * the corresponding dependency structures de-allocated.  So, if/when the
9881  * inode is reused, there will be no mixing of old dependencies with new
9882  * ones.  This artificial dependency is set up by the block de-allocation
9883  * procedure above (softdep_setup_freeblocks) and completed by the
9884  * following procedure.
9885  */
9886 static void
9887 handle_workitem_freefile(freefile)
9888 	struct freefile *freefile;
9889 {
9890 	struct workhead wkhd;
9891 	struct fs *fs;
9892 	struct inodedep *idp;
9893 	struct ufsmount *ump;
9894 	int error;
9895 
9896 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9897 	fs = ump->um_fs;
9898 #ifdef DEBUG
9899 	ACQUIRE_LOCK(ump);
9900 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9901 	FREE_LOCK(ump);
9902 	if (error)
9903 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9904 #endif
9905 	UFS_LOCK(ump);
9906 	fs->fs_pendinginodes -= 1;
9907 	UFS_UNLOCK(ump);
9908 	LIST_INIT(&wkhd);
9909 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9910 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9911 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9912 		softdep_error("handle_workitem_freefile", error);
9913 	ACQUIRE_LOCK(ump);
9914 	WORKITEM_FREE(freefile, D_FREEFILE);
9915 	FREE_LOCK(ump);
9916 }
9917 
9918 
9919 /*
9920  * Helper function which unlinks marker element from work list and returns
9921  * the next element on the list.
9922  */
9923 static __inline struct worklist *
9924 markernext(struct worklist *marker)
9925 {
9926 	struct worklist *next;
9927 
9928 	next = LIST_NEXT(marker, wk_list);
9929 	LIST_REMOVE(marker, wk_list);
9930 	return next;
9931 }
9932 
9933 /*
9934  * Disk writes.
9935  *
9936  * The dependency structures constructed above are most actively used when file
9937  * system blocks are written to disk.  No constraints are placed on when a
9938  * block can be written, but unsatisfied update dependencies are made safe by
9939  * modifying (or replacing) the source memory for the duration of the disk
9940  * write.  When the disk write completes, the memory block is again brought
9941  * up-to-date.
9942  *
9943  * In-core inode structure reclamation.
9944  *
9945  * Because there are a finite number of "in-core" inode structures, they are
9946  * reused regularly.  By transferring all inode-related dependencies to the
9947  * in-memory inode block and indexing them separately (via "inodedep"s), we
9948  * can allow "in-core" inode structures to be reused at any time and avoid
9949  * any increase in contention.
9950  *
9951  * Called just before entering the device driver to initiate a new disk I/O.
9952  * The buffer must be locked, thus, no I/O completion operations can occur
9953  * while we are manipulating its associated dependencies.
9954  */
9955 static void
9956 softdep_disk_io_initiation(bp)
9957 	struct buf *bp;		/* structure describing disk write to occur */
9958 {
9959 	struct worklist *wk;
9960 	struct worklist marker;
9961 	struct inodedep *inodedep;
9962 	struct freeblks *freeblks;
9963 	struct jblkdep *jblkdep;
9964 	struct newblk *newblk;
9965 	struct ufsmount *ump;
9966 
9967 	/*
9968 	 * We only care about write operations. There should never
9969 	 * be dependencies for reads.
9970 	 */
9971 	if (bp->b_iocmd != BIO_WRITE)
9972 		panic("softdep_disk_io_initiation: not write");
9973 
9974 	if (bp->b_vflags & BV_BKGRDINPROG)
9975 		panic("softdep_disk_io_initiation: Writing buffer with "
9976 		    "background write in progress: %p", bp);
9977 
9978 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9979 		return;
9980 	ump = VFSTOUFS(wk->wk_mp);
9981 
9982 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9983 	PHOLD(curproc);			/* Don't swap out kernel stack */
9984 	ACQUIRE_LOCK(ump);
9985 	/*
9986 	 * Do any necessary pre-I/O processing.
9987 	 */
9988 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9989 	     wk = markernext(&marker)) {
9990 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9991 		switch (wk->wk_type) {
9992 
9993 		case D_PAGEDEP:
9994 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9995 			continue;
9996 
9997 		case D_INODEDEP:
9998 			inodedep = WK_INODEDEP(wk);
9999 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10000 				initiate_write_inodeblock_ufs1(inodedep, bp);
10001 			else
10002 				initiate_write_inodeblock_ufs2(inodedep, bp);
10003 			continue;
10004 
10005 		case D_INDIRDEP:
10006 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10007 			continue;
10008 
10009 		case D_BMSAFEMAP:
10010 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10011 			continue;
10012 
10013 		case D_JSEG:
10014 			WK_JSEG(wk)->js_buf = NULL;
10015 			continue;
10016 
10017 		case D_FREEBLKS:
10018 			freeblks = WK_FREEBLKS(wk);
10019 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10020 			/*
10021 			 * We have to wait for the freeblks to be journaled
10022 			 * before we can write an inodeblock with updated
10023 			 * pointers.  Be careful to arrange the marker so
10024 			 * we revisit the freeblks if it's not removed by
10025 			 * the first jwait().
10026 			 */
10027 			if (jblkdep != NULL) {
10028 				LIST_REMOVE(&marker, wk_list);
10029 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10030 				jwait(&jblkdep->jb_list, MNT_WAIT);
10031 			}
10032 			continue;
10033 		case D_ALLOCDIRECT:
10034 		case D_ALLOCINDIR:
10035 			/*
10036 			 * We have to wait for the jnewblk to be journaled
10037 			 * before we can write to a block if the contents
10038 			 * may be confused with an earlier file's indirect
10039 			 * at recovery time.  Handle the marker as described
10040 			 * above.
10041 			 */
10042 			newblk = WK_NEWBLK(wk);
10043 			if (newblk->nb_jnewblk != NULL &&
10044 			    indirblk_lookup(newblk->nb_list.wk_mp,
10045 			    newblk->nb_newblkno)) {
10046 				LIST_REMOVE(&marker, wk_list);
10047 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10048 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10049 			}
10050 			continue;
10051 
10052 		case D_SBDEP:
10053 			initiate_write_sbdep(WK_SBDEP(wk));
10054 			continue;
10055 
10056 		case D_MKDIR:
10057 		case D_FREEWORK:
10058 		case D_FREEDEP:
10059 		case D_JSEGDEP:
10060 			continue;
10061 
10062 		default:
10063 			panic("handle_disk_io_initiation: Unexpected type %s",
10064 			    TYPENAME(wk->wk_type));
10065 			/* NOTREACHED */
10066 		}
10067 	}
10068 	FREE_LOCK(ump);
10069 	PRELE(curproc);			/* Allow swapout of kernel stack */
10070 }
10071 
10072 /*
10073  * Called from within the procedure above to deal with unsatisfied
10074  * allocation dependencies in a directory. The buffer must be locked,
10075  * thus, no I/O completion operations can occur while we are
10076  * manipulating its associated dependencies.
10077  */
10078 static void
10079 initiate_write_filepage(pagedep, bp)
10080 	struct pagedep *pagedep;
10081 	struct buf *bp;
10082 {
10083 	struct jremref *jremref;
10084 	struct jmvref *jmvref;
10085 	struct dirrem *dirrem;
10086 	struct diradd *dap;
10087 	struct direct *ep;
10088 	int i;
10089 
10090 	if (pagedep->pd_state & IOSTARTED) {
10091 		/*
10092 		 * This can only happen if there is a driver that does not
10093 		 * understand chaining. Here biodone will reissue the call
10094 		 * to strategy for the incomplete buffers.
10095 		 */
10096 		printf("initiate_write_filepage: already started\n");
10097 		return;
10098 	}
10099 	pagedep->pd_state |= IOSTARTED;
10100 	/*
10101 	 * Wait for all journal remove dependencies to hit the disk.
10102 	 * We can not allow any potentially conflicting directory adds
10103 	 * to be visible before removes and rollback is too difficult.
10104 	 * The per-filesystem lock may be dropped and re-acquired, however
10105 	 * we hold the buf locked so the dependency can not go away.
10106 	 */
10107 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10108 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10109 			jwait(&jremref->jr_list, MNT_WAIT);
10110 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10111 		jwait(&jmvref->jm_list, MNT_WAIT);
10112 	for (i = 0; i < DAHASHSZ; i++) {
10113 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10114 			ep = (struct direct *)
10115 			    ((char *)bp->b_data + dap->da_offset);
10116 			if (ep->d_ino != dap->da_newinum)
10117 				panic("%s: dir inum %ju != new %ju",
10118 				    "initiate_write_filepage",
10119 				    (uintmax_t)ep->d_ino,
10120 				    (uintmax_t)dap->da_newinum);
10121 			if (dap->da_state & DIRCHG)
10122 				ep->d_ino = dap->da_previous->dm_oldinum;
10123 			else
10124 				ep->d_ino = 0;
10125 			dap->da_state &= ~ATTACHED;
10126 			dap->da_state |= UNDONE;
10127 		}
10128 	}
10129 }
10130 
10131 /*
10132  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10133  * Note that any bug fixes made to this routine must be done in the
10134  * version found below.
10135  *
10136  * Called from within the procedure above to deal with unsatisfied
10137  * allocation dependencies in an inodeblock. The buffer must be
10138  * locked, thus, no I/O completion operations can occur while we
10139  * are manipulating its associated dependencies.
10140  */
10141 static void
10142 initiate_write_inodeblock_ufs1(inodedep, bp)
10143 	struct inodedep *inodedep;
10144 	struct buf *bp;			/* The inode block */
10145 {
10146 	struct allocdirect *adp, *lastadp;
10147 	struct ufs1_dinode *dp;
10148 	struct ufs1_dinode *sip;
10149 	struct inoref *inoref;
10150 	struct ufsmount *ump;
10151 	struct fs *fs;
10152 	ufs_lbn_t i;
10153 #ifdef INVARIANTS
10154 	ufs_lbn_t prevlbn = 0;
10155 #endif
10156 	int deplist;
10157 
10158 	if (inodedep->id_state & IOSTARTED)
10159 		panic("initiate_write_inodeblock_ufs1: already started");
10160 	inodedep->id_state |= IOSTARTED;
10161 	fs = inodedep->id_fs;
10162 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10163 	LOCK_OWNED(ump);
10164 	dp = (struct ufs1_dinode *)bp->b_data +
10165 	    ino_to_fsbo(fs, inodedep->id_ino);
10166 
10167 	/*
10168 	 * If we're on the unlinked list but have not yet written our
10169 	 * next pointer initialize it here.
10170 	 */
10171 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10172 		struct inodedep *inon;
10173 
10174 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10175 		dp->di_freelink = inon ? inon->id_ino : 0;
10176 	}
10177 	/*
10178 	 * If the bitmap is not yet written, then the allocated
10179 	 * inode cannot be written to disk.
10180 	 */
10181 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10182 		if (inodedep->id_savedino1 != NULL)
10183 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10184 		FREE_LOCK(ump);
10185 		sip = malloc(sizeof(struct ufs1_dinode),
10186 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10187 		ACQUIRE_LOCK(ump);
10188 		inodedep->id_savedino1 = sip;
10189 		*inodedep->id_savedino1 = *dp;
10190 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10191 		dp->di_gen = inodedep->id_savedino1->di_gen;
10192 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10193 		return;
10194 	}
10195 	/*
10196 	 * If no dependencies, then there is nothing to roll back.
10197 	 */
10198 	inodedep->id_savedsize = dp->di_size;
10199 	inodedep->id_savedextsize = 0;
10200 	inodedep->id_savednlink = dp->di_nlink;
10201 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10202 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10203 		return;
10204 	/*
10205 	 * Revert the link count to that of the first unwritten journal entry.
10206 	 */
10207 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10208 	if (inoref)
10209 		dp->di_nlink = inoref->if_nlink;
10210 	/*
10211 	 * Set the dependencies to busy.
10212 	 */
10213 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10214 	     adp = TAILQ_NEXT(adp, ad_next)) {
10215 #ifdef INVARIANTS
10216 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10217 			panic("softdep_write_inodeblock: lbn order");
10218 		prevlbn = adp->ad_offset;
10219 		if (adp->ad_offset < UFS_NDADDR &&
10220 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10221 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10222 			    "softdep_write_inodeblock",
10223 			    (intmax_t)adp->ad_offset,
10224 			    dp->di_db[adp->ad_offset],
10225 			    (intmax_t)adp->ad_newblkno);
10226 		if (adp->ad_offset >= UFS_NDADDR &&
10227 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10228 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10229 			    "softdep_write_inodeblock",
10230 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10231 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10232 			    (intmax_t)adp->ad_newblkno);
10233 		deplist |= 1 << adp->ad_offset;
10234 		if ((adp->ad_state & ATTACHED) == 0)
10235 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10236 			    adp->ad_state);
10237 #endif /* INVARIANTS */
10238 		adp->ad_state &= ~ATTACHED;
10239 		adp->ad_state |= UNDONE;
10240 	}
10241 	/*
10242 	 * The on-disk inode cannot claim to be any larger than the last
10243 	 * fragment that has been written. Otherwise, the on-disk inode
10244 	 * might have fragments that were not the last block in the file
10245 	 * which would corrupt the filesystem.
10246 	 */
10247 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10248 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10249 		if (adp->ad_offset >= UFS_NDADDR)
10250 			break;
10251 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10252 		/* keep going until hitting a rollback to a frag */
10253 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10254 			continue;
10255 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10256 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10257 #ifdef INVARIANTS
10258 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10259 				panic("softdep_write_inodeblock: lost dep1");
10260 #endif /* INVARIANTS */
10261 			dp->di_db[i] = 0;
10262 		}
10263 		for (i = 0; i < UFS_NIADDR; i++) {
10264 #ifdef INVARIANTS
10265 			if (dp->di_ib[i] != 0 &&
10266 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10267 				panic("softdep_write_inodeblock: lost dep2");
10268 #endif /* INVARIANTS */
10269 			dp->di_ib[i] = 0;
10270 		}
10271 		return;
10272 	}
10273 	/*
10274 	 * If we have zero'ed out the last allocated block of the file,
10275 	 * roll back the size to the last currently allocated block.
10276 	 * We know that this last allocated block is a full-sized as
10277 	 * we already checked for fragments in the loop above.
10278 	 */
10279 	if (lastadp != NULL &&
10280 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10281 		for (i = lastadp->ad_offset; i >= 0; i--)
10282 			if (dp->di_db[i] != 0)
10283 				break;
10284 		dp->di_size = (i + 1) * fs->fs_bsize;
10285 	}
10286 	/*
10287 	 * The only dependencies are for indirect blocks.
10288 	 *
10289 	 * The file size for indirect block additions is not guaranteed.
10290 	 * Such a guarantee would be non-trivial to achieve. The conventional
10291 	 * synchronous write implementation also does not make this guarantee.
10292 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10293 	 * can be over-estimated without destroying integrity when the file
10294 	 * moves into the indirect blocks (i.e., is large). If we want to
10295 	 * postpone fsck, we are stuck with this argument.
10296 	 */
10297 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10298 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10299 }
10300 
10301 /*
10302  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10303  * Note that any bug fixes made to this routine must be done in the
10304  * version found above.
10305  *
10306  * Called from within the procedure above to deal with unsatisfied
10307  * allocation dependencies in an inodeblock. The buffer must be
10308  * locked, thus, no I/O completion operations can occur while we
10309  * are manipulating its associated dependencies.
10310  */
10311 static void
10312 initiate_write_inodeblock_ufs2(inodedep, bp)
10313 	struct inodedep *inodedep;
10314 	struct buf *bp;			/* The inode block */
10315 {
10316 	struct allocdirect *adp, *lastadp;
10317 	struct ufs2_dinode *dp;
10318 	struct ufs2_dinode *sip;
10319 	struct inoref *inoref;
10320 	struct ufsmount *ump;
10321 	struct fs *fs;
10322 	ufs_lbn_t i;
10323 #ifdef INVARIANTS
10324 	ufs_lbn_t prevlbn = 0;
10325 #endif
10326 	int deplist;
10327 
10328 	if (inodedep->id_state & IOSTARTED)
10329 		panic("initiate_write_inodeblock_ufs2: already started");
10330 	inodedep->id_state |= IOSTARTED;
10331 	fs = inodedep->id_fs;
10332 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10333 	LOCK_OWNED(ump);
10334 	dp = (struct ufs2_dinode *)bp->b_data +
10335 	    ino_to_fsbo(fs, inodedep->id_ino);
10336 
10337 	/*
10338 	 * If we're on the unlinked list but have not yet written our
10339 	 * next pointer initialize it here.
10340 	 */
10341 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10342 		struct inodedep *inon;
10343 
10344 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10345 		dp->di_freelink = inon ? inon->id_ino : 0;
10346 	}
10347 	/*
10348 	 * If the bitmap is not yet written, then the allocated
10349 	 * inode cannot be written to disk.
10350 	 */
10351 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10352 		if (inodedep->id_savedino2 != NULL)
10353 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10354 		FREE_LOCK(ump);
10355 		sip = malloc(sizeof(struct ufs2_dinode),
10356 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10357 		ACQUIRE_LOCK(ump);
10358 		inodedep->id_savedino2 = sip;
10359 		*inodedep->id_savedino2 = *dp;
10360 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10361 		dp->di_gen = inodedep->id_savedino2->di_gen;
10362 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10363 		return;
10364 	}
10365 	/*
10366 	 * If no dependencies, then there is nothing to roll back.
10367 	 */
10368 	inodedep->id_savedsize = dp->di_size;
10369 	inodedep->id_savedextsize = dp->di_extsize;
10370 	inodedep->id_savednlink = dp->di_nlink;
10371 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10372 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10373 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10374 		return;
10375 	/*
10376 	 * Revert the link count to that of the first unwritten journal entry.
10377 	 */
10378 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10379 	if (inoref)
10380 		dp->di_nlink = inoref->if_nlink;
10381 
10382 	/*
10383 	 * Set the ext data dependencies to busy.
10384 	 */
10385 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10386 	     adp = TAILQ_NEXT(adp, ad_next)) {
10387 #ifdef INVARIANTS
10388 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10389 			panic("softdep_write_inodeblock: lbn order");
10390 		prevlbn = adp->ad_offset;
10391 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10392 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10393 			    "softdep_write_inodeblock",
10394 			    (intmax_t)adp->ad_offset,
10395 			    (intmax_t)dp->di_extb[adp->ad_offset],
10396 			    (intmax_t)adp->ad_newblkno);
10397 		deplist |= 1 << adp->ad_offset;
10398 		if ((adp->ad_state & ATTACHED) == 0)
10399 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10400 			    adp->ad_state);
10401 #endif /* INVARIANTS */
10402 		adp->ad_state &= ~ATTACHED;
10403 		adp->ad_state |= UNDONE;
10404 	}
10405 	/*
10406 	 * The on-disk inode cannot claim to be any larger than the last
10407 	 * fragment that has been written. Otherwise, the on-disk inode
10408 	 * might have fragments that were not the last block in the ext
10409 	 * data which would corrupt the filesystem.
10410 	 */
10411 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10412 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10413 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10414 		/* keep going until hitting a rollback to a frag */
10415 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10416 			continue;
10417 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10418 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10419 #ifdef INVARIANTS
10420 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10421 				panic("softdep_write_inodeblock: lost dep1");
10422 #endif /* INVARIANTS */
10423 			dp->di_extb[i] = 0;
10424 		}
10425 		lastadp = NULL;
10426 		break;
10427 	}
10428 	/*
10429 	 * If we have zero'ed out the last allocated block of the ext
10430 	 * data, roll back the size to the last currently allocated block.
10431 	 * We know that this last allocated block is a full-sized as
10432 	 * we already checked for fragments in the loop above.
10433 	 */
10434 	if (lastadp != NULL &&
10435 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10436 		for (i = lastadp->ad_offset; i >= 0; i--)
10437 			if (dp->di_extb[i] != 0)
10438 				break;
10439 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10440 	}
10441 	/*
10442 	 * Set the file data dependencies to busy.
10443 	 */
10444 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10445 	     adp = TAILQ_NEXT(adp, ad_next)) {
10446 #ifdef INVARIANTS
10447 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10448 			panic("softdep_write_inodeblock: lbn order");
10449 		if ((adp->ad_state & ATTACHED) == 0)
10450 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10451 		prevlbn = adp->ad_offset;
10452 		if (adp->ad_offset < UFS_NDADDR &&
10453 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10454 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10455 			    "softdep_write_inodeblock",
10456 			    (intmax_t)adp->ad_offset,
10457 			    (intmax_t)dp->di_db[adp->ad_offset],
10458 			    (intmax_t)adp->ad_newblkno);
10459 		if (adp->ad_offset >= UFS_NDADDR &&
10460 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10461 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10462 			    "softdep_write_inodeblock:",
10463 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10464 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10465 			    (intmax_t)adp->ad_newblkno);
10466 		deplist |= 1 << adp->ad_offset;
10467 		if ((adp->ad_state & ATTACHED) == 0)
10468 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10469 			    adp->ad_state);
10470 #endif /* INVARIANTS */
10471 		adp->ad_state &= ~ATTACHED;
10472 		adp->ad_state |= UNDONE;
10473 	}
10474 	/*
10475 	 * The on-disk inode cannot claim to be any larger than the last
10476 	 * fragment that has been written. Otherwise, the on-disk inode
10477 	 * might have fragments that were not the last block in the file
10478 	 * which would corrupt the filesystem.
10479 	 */
10480 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10481 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10482 		if (adp->ad_offset >= UFS_NDADDR)
10483 			break;
10484 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10485 		/* keep going until hitting a rollback to a frag */
10486 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10487 			continue;
10488 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10489 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10490 #ifdef INVARIANTS
10491 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10492 				panic("softdep_write_inodeblock: lost dep2");
10493 #endif /* INVARIANTS */
10494 			dp->di_db[i] = 0;
10495 		}
10496 		for (i = 0; i < UFS_NIADDR; i++) {
10497 #ifdef INVARIANTS
10498 			if (dp->di_ib[i] != 0 &&
10499 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10500 				panic("softdep_write_inodeblock: lost dep3");
10501 #endif /* INVARIANTS */
10502 			dp->di_ib[i] = 0;
10503 		}
10504 		return;
10505 	}
10506 	/*
10507 	 * If we have zero'ed out the last allocated block of the file,
10508 	 * roll back the size to the last currently allocated block.
10509 	 * We know that this last allocated block is a full-sized as
10510 	 * we already checked for fragments in the loop above.
10511 	 */
10512 	if (lastadp != NULL &&
10513 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10514 		for (i = lastadp->ad_offset; i >= 0; i--)
10515 			if (dp->di_db[i] != 0)
10516 				break;
10517 		dp->di_size = (i + 1) * fs->fs_bsize;
10518 	}
10519 	/*
10520 	 * The only dependencies are for indirect blocks.
10521 	 *
10522 	 * The file size for indirect block additions is not guaranteed.
10523 	 * Such a guarantee would be non-trivial to achieve. The conventional
10524 	 * synchronous write implementation also does not make this guarantee.
10525 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10526 	 * can be over-estimated without destroying integrity when the file
10527 	 * moves into the indirect blocks (i.e., is large). If we want to
10528 	 * postpone fsck, we are stuck with this argument.
10529 	 */
10530 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10531 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10532 }
10533 
10534 /*
10535  * Cancel an indirdep as a result of truncation.  Release all of the
10536  * children allocindirs and place their journal work on the appropriate
10537  * list.
10538  */
10539 static void
10540 cancel_indirdep(indirdep, bp, freeblks)
10541 	struct indirdep *indirdep;
10542 	struct buf *bp;
10543 	struct freeblks *freeblks;
10544 {
10545 	struct allocindir *aip;
10546 
10547 	/*
10548 	 * None of the indirect pointers will ever be visible,
10549 	 * so they can simply be tossed. GOINGAWAY ensures
10550 	 * that allocated pointers will be saved in the buffer
10551 	 * cache until they are freed. Note that they will
10552 	 * only be able to be found by their physical address
10553 	 * since the inode mapping the logical address will
10554 	 * be gone. The save buffer used for the safe copy
10555 	 * was allocated in setup_allocindir_phase2 using
10556 	 * the physical address so it could be used for this
10557 	 * purpose. Hence we swap the safe copy with the real
10558 	 * copy, allowing the safe copy to be freed and holding
10559 	 * on to the real copy for later use in indir_trunc.
10560 	 */
10561 	if (indirdep->ir_state & GOINGAWAY)
10562 		panic("cancel_indirdep: already gone");
10563 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10564 		indirdep->ir_state |= DEPCOMPLETE;
10565 		LIST_REMOVE(indirdep, ir_next);
10566 	}
10567 	indirdep->ir_state |= GOINGAWAY;
10568 	/*
10569 	 * Pass in bp for blocks still have journal writes
10570 	 * pending so we can cancel them on their own.
10571 	 */
10572 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10573 		cancel_allocindir(aip, bp, freeblks, 0);
10574 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10575 		cancel_allocindir(aip, NULL, freeblks, 0);
10576 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10577 		cancel_allocindir(aip, NULL, freeblks, 0);
10578 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10579 		cancel_allocindir(aip, NULL, freeblks, 0);
10580 	/*
10581 	 * If there are pending partial truncations we need to keep the
10582 	 * old block copy around until they complete.  This is because
10583 	 * the current b_data is not a perfect superset of the available
10584 	 * blocks.
10585 	 */
10586 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10587 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10588 	else
10589 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10590 	WORKLIST_REMOVE(&indirdep->ir_list);
10591 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10592 	indirdep->ir_bp = NULL;
10593 	indirdep->ir_freeblks = freeblks;
10594 }
10595 
10596 /*
10597  * Free an indirdep once it no longer has new pointers to track.
10598  */
10599 static void
10600 free_indirdep(indirdep)
10601 	struct indirdep *indirdep;
10602 {
10603 
10604 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10605 	    ("free_indirdep: Indir trunc list not empty."));
10606 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10607 	    ("free_indirdep: Complete head not empty."));
10608 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10609 	    ("free_indirdep: write head not empty."));
10610 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10611 	    ("free_indirdep: done head not empty."));
10612 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10613 	    ("free_indirdep: deplist head not empty."));
10614 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10615 	    ("free_indirdep: %p still on newblk list.", indirdep));
10616 	KASSERT(indirdep->ir_saveddata == NULL,
10617 	    ("free_indirdep: %p still has saved data.", indirdep));
10618 	if (indirdep->ir_state & ONWORKLIST)
10619 		WORKLIST_REMOVE(&indirdep->ir_list);
10620 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10621 }
10622 
10623 /*
10624  * Called before a write to an indirdep.  This routine is responsible for
10625  * rolling back pointers to a safe state which includes only those
10626  * allocindirs which have been completed.
10627  */
10628 static void
10629 initiate_write_indirdep(indirdep, bp)
10630 	struct indirdep *indirdep;
10631 	struct buf *bp;
10632 {
10633 	struct ufsmount *ump;
10634 
10635 	indirdep->ir_state |= IOSTARTED;
10636 	if (indirdep->ir_state & GOINGAWAY)
10637 		panic("disk_io_initiation: indirdep gone");
10638 	/*
10639 	 * If there are no remaining dependencies, this will be writing
10640 	 * the real pointers.
10641 	 */
10642 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10643 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10644 		return;
10645 	/*
10646 	 * Replace up-to-date version with safe version.
10647 	 */
10648 	if (indirdep->ir_saveddata == NULL) {
10649 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10650 		LOCK_OWNED(ump);
10651 		FREE_LOCK(ump);
10652 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10653 		    M_SOFTDEP_FLAGS);
10654 		ACQUIRE_LOCK(ump);
10655 	}
10656 	indirdep->ir_state &= ~ATTACHED;
10657 	indirdep->ir_state |= UNDONE;
10658 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10659 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10660 	    bp->b_bcount);
10661 }
10662 
10663 /*
10664  * Called when an inode has been cleared in a cg bitmap.  This finally
10665  * eliminates any canceled jaddrefs
10666  */
10667 void
10668 softdep_setup_inofree(mp, bp, ino, wkhd)
10669 	struct mount *mp;
10670 	struct buf *bp;
10671 	ino_t ino;
10672 	struct workhead *wkhd;
10673 {
10674 	struct worklist *wk, *wkn;
10675 	struct inodedep *inodedep;
10676 	struct ufsmount *ump;
10677 	uint8_t *inosused;
10678 	struct cg *cgp;
10679 	struct fs *fs;
10680 
10681 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10682 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10683 	ump = VFSTOUFS(mp);
10684 	ACQUIRE_LOCK(ump);
10685 	fs = ump->um_fs;
10686 	cgp = (struct cg *)bp->b_data;
10687 	inosused = cg_inosused(cgp);
10688 	if (isset(inosused, ino % fs->fs_ipg))
10689 		panic("softdep_setup_inofree: inode %ju not freed.",
10690 		    (uintmax_t)ino);
10691 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10692 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10693 		    (uintmax_t)ino, inodedep);
10694 	if (wkhd) {
10695 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10696 			if (wk->wk_type != D_JADDREF)
10697 				continue;
10698 			WORKLIST_REMOVE(wk);
10699 			/*
10700 			 * We can free immediately even if the jaddref
10701 			 * isn't attached in a background write as now
10702 			 * the bitmaps are reconciled.
10703 			 */
10704 			wk->wk_state |= COMPLETE | ATTACHED;
10705 			free_jaddref(WK_JADDREF(wk));
10706 		}
10707 		jwork_move(&bp->b_dep, wkhd);
10708 	}
10709 	FREE_LOCK(ump);
10710 }
10711 
10712 
10713 /*
10714  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10715  * map.  Any dependencies waiting for the write to clear are added to the
10716  * buf's list and any jnewblks that are being canceled are discarded
10717  * immediately.
10718  */
10719 void
10720 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10721 	struct mount *mp;
10722 	struct buf *bp;
10723 	ufs2_daddr_t blkno;
10724 	int frags;
10725 	struct workhead *wkhd;
10726 {
10727 	struct bmsafemap *bmsafemap;
10728 	struct jnewblk *jnewblk;
10729 	struct ufsmount *ump;
10730 	struct worklist *wk;
10731 	struct fs *fs;
10732 #ifdef SUJ_DEBUG
10733 	uint8_t *blksfree;
10734 	struct cg *cgp;
10735 	ufs2_daddr_t jstart;
10736 	ufs2_daddr_t jend;
10737 	ufs2_daddr_t end;
10738 	long bno;
10739 	int i;
10740 #endif
10741 
10742 	CTR3(KTR_SUJ,
10743 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10744 	    blkno, frags, wkhd);
10745 
10746 	ump = VFSTOUFS(mp);
10747 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10748 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10749 	ACQUIRE_LOCK(ump);
10750 	/* Lookup the bmsafemap so we track when it is dirty. */
10751 	fs = ump->um_fs;
10752 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10753 	/*
10754 	 * Detach any jnewblks which have been canceled.  They must linger
10755 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10756 	 * an unjournaled allocation from hitting the disk.
10757 	 */
10758 	if (wkhd) {
10759 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10760 			CTR2(KTR_SUJ,
10761 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10762 			    blkno, wk->wk_type);
10763 			WORKLIST_REMOVE(wk);
10764 			if (wk->wk_type != D_JNEWBLK) {
10765 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10766 				continue;
10767 			}
10768 			jnewblk = WK_JNEWBLK(wk);
10769 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10770 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10771 #ifdef SUJ_DEBUG
10772 			/*
10773 			 * Assert that this block is free in the bitmap
10774 			 * before we discard the jnewblk.
10775 			 */
10776 			cgp = (struct cg *)bp->b_data;
10777 			blksfree = cg_blksfree(cgp);
10778 			bno = dtogd(fs, jnewblk->jn_blkno);
10779 			for (i = jnewblk->jn_oldfrags;
10780 			    i < jnewblk->jn_frags; i++) {
10781 				if (isset(blksfree, bno + i))
10782 					continue;
10783 				panic("softdep_setup_blkfree: not free");
10784 			}
10785 #endif
10786 			/*
10787 			 * Even if it's not attached we can free immediately
10788 			 * as the new bitmap is correct.
10789 			 */
10790 			wk->wk_state |= COMPLETE | ATTACHED;
10791 			free_jnewblk(jnewblk);
10792 		}
10793 	}
10794 
10795 #ifdef SUJ_DEBUG
10796 	/*
10797 	 * Assert that we are not freeing a block which has an outstanding
10798 	 * allocation dependency.
10799 	 */
10800 	fs = VFSTOUFS(mp)->um_fs;
10801 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10802 	end = blkno + frags;
10803 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10804 		/*
10805 		 * Don't match against blocks that will be freed when the
10806 		 * background write is done.
10807 		 */
10808 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10809 		    (COMPLETE | DEPCOMPLETE))
10810 			continue;
10811 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10812 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10813 		if ((blkno >= jstart && blkno < jend) ||
10814 		    (end > jstart && end <= jend)) {
10815 			printf("state 0x%X %jd - %d %d dep %p\n",
10816 			    jnewblk->jn_state, jnewblk->jn_blkno,
10817 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10818 			    jnewblk->jn_dep);
10819 			panic("softdep_setup_blkfree: "
10820 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10821 			    blkno, end, frags, jstart, jend);
10822 		}
10823 	}
10824 #endif
10825 	FREE_LOCK(ump);
10826 }
10827 
10828 /*
10829  * Revert a block allocation when the journal record that describes it
10830  * is not yet written.
10831  */
10832 static int
10833 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10834 	struct jnewblk *jnewblk;
10835 	struct fs *fs;
10836 	struct cg *cgp;
10837 	uint8_t *blksfree;
10838 {
10839 	ufs1_daddr_t fragno;
10840 	long cgbno, bbase;
10841 	int frags, blk;
10842 	int i;
10843 
10844 	frags = 0;
10845 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10846 	/*
10847 	 * We have to test which frags need to be rolled back.  We may
10848 	 * be operating on a stale copy when doing background writes.
10849 	 */
10850 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10851 		if (isclr(blksfree, cgbno + i))
10852 			frags++;
10853 	if (frags == 0)
10854 		return (0);
10855 	/*
10856 	 * This is mostly ffs_blkfree() sans some validation and
10857 	 * superblock updates.
10858 	 */
10859 	if (frags == fs->fs_frag) {
10860 		fragno = fragstoblks(fs, cgbno);
10861 		ffs_setblock(fs, blksfree, fragno);
10862 		ffs_clusteracct(fs, cgp, fragno, 1);
10863 		cgp->cg_cs.cs_nbfree++;
10864 	} else {
10865 		cgbno += jnewblk->jn_oldfrags;
10866 		bbase = cgbno - fragnum(fs, cgbno);
10867 		/* Decrement the old frags.  */
10868 		blk = blkmap(fs, blksfree, bbase);
10869 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10870 		/* Deallocate the fragment */
10871 		for (i = 0; i < frags; i++)
10872 			setbit(blksfree, cgbno + i);
10873 		cgp->cg_cs.cs_nffree += frags;
10874 		/* Add back in counts associated with the new frags */
10875 		blk = blkmap(fs, blksfree, bbase);
10876 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10877 		/* If a complete block has been reassembled, account for it. */
10878 		fragno = fragstoblks(fs, bbase);
10879 		if (ffs_isblock(fs, blksfree, fragno)) {
10880 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10881 			ffs_clusteracct(fs, cgp, fragno, 1);
10882 			cgp->cg_cs.cs_nbfree++;
10883 		}
10884 	}
10885 	stat_jnewblk++;
10886 	jnewblk->jn_state &= ~ATTACHED;
10887 	jnewblk->jn_state |= UNDONE;
10888 
10889 	return (frags);
10890 }
10891 
10892 static void
10893 initiate_write_bmsafemap(bmsafemap, bp)
10894 	struct bmsafemap *bmsafemap;
10895 	struct buf *bp;			/* The cg block. */
10896 {
10897 	struct jaddref *jaddref;
10898 	struct jnewblk *jnewblk;
10899 	uint8_t *inosused;
10900 	uint8_t *blksfree;
10901 	struct cg *cgp;
10902 	struct fs *fs;
10903 	ino_t ino;
10904 
10905 	/*
10906 	 * If this is a background write, we did this at the time that
10907 	 * the copy was made, so do not need to do it again.
10908 	 */
10909 	if (bmsafemap->sm_state & IOSTARTED)
10910 		return;
10911 	bmsafemap->sm_state |= IOSTARTED;
10912 	/*
10913 	 * Clear any inode allocations which are pending journal writes.
10914 	 */
10915 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10916 		cgp = (struct cg *)bp->b_data;
10917 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10918 		inosused = cg_inosused(cgp);
10919 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10920 			ino = jaddref->ja_ino % fs->fs_ipg;
10921 			if (isset(inosused, ino)) {
10922 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10923 					cgp->cg_cs.cs_ndir--;
10924 				cgp->cg_cs.cs_nifree++;
10925 				clrbit(inosused, ino);
10926 				jaddref->ja_state &= ~ATTACHED;
10927 				jaddref->ja_state |= UNDONE;
10928 				stat_jaddref++;
10929 			} else
10930 				panic("initiate_write_bmsafemap: inode %ju "
10931 				    "marked free", (uintmax_t)jaddref->ja_ino);
10932 		}
10933 	}
10934 	/*
10935 	 * Clear any block allocations which are pending journal writes.
10936 	 */
10937 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10938 		cgp = (struct cg *)bp->b_data;
10939 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10940 		blksfree = cg_blksfree(cgp);
10941 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10942 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10943 				continue;
10944 			panic("initiate_write_bmsafemap: block %jd "
10945 			    "marked free", jnewblk->jn_blkno);
10946 		}
10947 	}
10948 	/*
10949 	 * Move allocation lists to the written lists so they can be
10950 	 * cleared once the block write is complete.
10951 	 */
10952 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10953 	    inodedep, id_deps);
10954 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10955 	    newblk, nb_deps);
10956 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10957 	    wk_list);
10958 }
10959 
10960 /*
10961  * This routine is called during the completion interrupt
10962  * service routine for a disk write (from the procedure called
10963  * by the device driver to inform the filesystem caches of
10964  * a request completion).  It should be called early in this
10965  * procedure, before the block is made available to other
10966  * processes or other routines are called.
10967  *
10968  */
10969 static void
10970 softdep_disk_write_complete(bp)
10971 	struct buf *bp;		/* describes the completed disk write */
10972 {
10973 	struct worklist *wk;
10974 	struct worklist *owk;
10975 	struct ufsmount *ump;
10976 	struct workhead reattach;
10977 	struct freeblks *freeblks;
10978 	struct buf *sbp;
10979 
10980 	/*
10981 	 * If an error occurred while doing the write, then the data
10982 	 * has not hit the disk and the dependencies cannot be processed.
10983 	 * But we do have to go through and roll forward any dependencies
10984 	 * that were rolled back before the disk write.
10985 	 */
10986 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
10987 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
10988 			switch (wk->wk_type) {
10989 
10990 			case D_PAGEDEP:
10991 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
10992 				continue;
10993 
10994 			case D_INODEDEP:
10995 				handle_written_inodeblock(WK_INODEDEP(wk),
10996 				    bp, 0);
10997 				continue;
10998 
10999 			case D_BMSAFEMAP:
11000 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11001 				    bp, 0);
11002 				continue;
11003 
11004 			case D_INDIRDEP:
11005 				handle_written_indirdep(WK_INDIRDEP(wk),
11006 				    bp, &sbp, 0);
11007 				continue;
11008 			default:
11009 				/* nothing to roll forward */
11010 				continue;
11011 			}
11012 		}
11013 		return;
11014 	}
11015 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
11016 		return;
11017 	ump = VFSTOUFS(wk->wk_mp);
11018 	LIST_INIT(&reattach);
11019 	/*
11020 	 * This lock must not be released anywhere in this code segment.
11021 	 */
11022 	sbp = NULL;
11023 	owk = NULL;
11024 	ACQUIRE_LOCK(ump);
11025 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11026 		WORKLIST_REMOVE(wk);
11027 		atomic_add_long(&dep_write[wk->wk_type], 1);
11028 		if (wk == owk)
11029 			panic("duplicate worklist: %p\n", wk);
11030 		owk = wk;
11031 		switch (wk->wk_type) {
11032 
11033 		case D_PAGEDEP:
11034 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11035 			    WRITESUCCEEDED))
11036 				WORKLIST_INSERT(&reattach, wk);
11037 			continue;
11038 
11039 		case D_INODEDEP:
11040 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11041 			    WRITESUCCEEDED))
11042 				WORKLIST_INSERT(&reattach, wk);
11043 			continue;
11044 
11045 		case D_BMSAFEMAP:
11046 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11047 			    WRITESUCCEEDED))
11048 				WORKLIST_INSERT(&reattach, wk);
11049 			continue;
11050 
11051 		case D_MKDIR:
11052 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11053 			continue;
11054 
11055 		case D_ALLOCDIRECT:
11056 			wk->wk_state |= COMPLETE;
11057 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11058 			continue;
11059 
11060 		case D_ALLOCINDIR:
11061 			wk->wk_state |= COMPLETE;
11062 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11063 			continue;
11064 
11065 		case D_INDIRDEP:
11066 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11067 			    WRITESUCCEEDED))
11068 				WORKLIST_INSERT(&reattach, wk);
11069 			continue;
11070 
11071 		case D_FREEBLKS:
11072 			wk->wk_state |= COMPLETE;
11073 			freeblks = WK_FREEBLKS(wk);
11074 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11075 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11076 				add_to_worklist(wk, WK_NODELAY);
11077 			continue;
11078 
11079 		case D_FREEWORK:
11080 			handle_written_freework(WK_FREEWORK(wk));
11081 			break;
11082 
11083 		case D_JSEGDEP:
11084 			free_jsegdep(WK_JSEGDEP(wk));
11085 			continue;
11086 
11087 		case D_JSEG:
11088 			handle_written_jseg(WK_JSEG(wk), bp);
11089 			continue;
11090 
11091 		case D_SBDEP:
11092 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11093 				WORKLIST_INSERT(&reattach, wk);
11094 			continue;
11095 
11096 		case D_FREEDEP:
11097 			free_freedep(WK_FREEDEP(wk));
11098 			continue;
11099 
11100 		default:
11101 			panic("handle_disk_write_complete: Unknown type %s",
11102 			    TYPENAME(wk->wk_type));
11103 			/* NOTREACHED */
11104 		}
11105 	}
11106 	/*
11107 	 * Reattach any requests that must be redone.
11108 	 */
11109 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11110 		WORKLIST_REMOVE(wk);
11111 		WORKLIST_INSERT(&bp->b_dep, wk);
11112 	}
11113 	FREE_LOCK(ump);
11114 	if (sbp)
11115 		brelse(sbp);
11116 }
11117 
11118 /*
11119  * Called from within softdep_disk_write_complete above. Note that
11120  * this routine is always called from interrupt level with further
11121  * splbio interrupts blocked.
11122  */
11123 static void
11124 handle_allocdirect_partdone(adp, wkhd)
11125 	struct allocdirect *adp;	/* the completed allocdirect */
11126 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11127 {
11128 	struct allocdirectlst *listhead;
11129 	struct allocdirect *listadp;
11130 	struct inodedep *inodedep;
11131 	long bsize;
11132 
11133 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11134 		return;
11135 	/*
11136 	 * The on-disk inode cannot claim to be any larger than the last
11137 	 * fragment that has been written. Otherwise, the on-disk inode
11138 	 * might have fragments that were not the last block in the file
11139 	 * which would corrupt the filesystem. Thus, we cannot free any
11140 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11141 	 * these blocks must be rolled back to zero before writing the inode.
11142 	 * We check the currently active set of allocdirects in id_inoupdt
11143 	 * or id_extupdt as appropriate.
11144 	 */
11145 	inodedep = adp->ad_inodedep;
11146 	bsize = inodedep->id_fs->fs_bsize;
11147 	if (adp->ad_state & EXTDATA)
11148 		listhead = &inodedep->id_extupdt;
11149 	else
11150 		listhead = &inodedep->id_inoupdt;
11151 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11152 		/* found our block */
11153 		if (listadp == adp)
11154 			break;
11155 		/* continue if ad_oldlbn is not a fragment */
11156 		if (listadp->ad_oldsize == 0 ||
11157 		    listadp->ad_oldsize == bsize)
11158 			continue;
11159 		/* hit a fragment */
11160 		return;
11161 	}
11162 	/*
11163 	 * If we have reached the end of the current list without
11164 	 * finding the just finished dependency, then it must be
11165 	 * on the future dependency list. Future dependencies cannot
11166 	 * be freed until they are moved to the current list.
11167 	 */
11168 	if (listadp == NULL) {
11169 #ifdef DEBUG
11170 		if (adp->ad_state & EXTDATA)
11171 			listhead = &inodedep->id_newextupdt;
11172 		else
11173 			listhead = &inodedep->id_newinoupdt;
11174 		TAILQ_FOREACH(listadp, listhead, ad_next)
11175 			/* found our block */
11176 			if (listadp == adp)
11177 				break;
11178 		if (listadp == NULL)
11179 			panic("handle_allocdirect_partdone: lost dep");
11180 #endif /* DEBUG */
11181 		return;
11182 	}
11183 	/*
11184 	 * If we have found the just finished dependency, then queue
11185 	 * it along with anything that follows it that is complete.
11186 	 * Since the pointer has not yet been written in the inode
11187 	 * as the dependency prevents it, place the allocdirect on the
11188 	 * bufwait list where it will be freed once the pointer is
11189 	 * valid.
11190 	 */
11191 	if (wkhd == NULL)
11192 		wkhd = &inodedep->id_bufwait;
11193 	for (; adp; adp = listadp) {
11194 		listadp = TAILQ_NEXT(adp, ad_next);
11195 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11196 			return;
11197 		TAILQ_REMOVE(listhead, adp, ad_next);
11198 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11199 	}
11200 }
11201 
11202 /*
11203  * Called from within softdep_disk_write_complete above.  This routine
11204  * completes successfully written allocindirs.
11205  */
11206 static void
11207 handle_allocindir_partdone(aip)
11208 	struct allocindir *aip;		/* the completed allocindir */
11209 {
11210 	struct indirdep *indirdep;
11211 
11212 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11213 		return;
11214 	indirdep = aip->ai_indirdep;
11215 	LIST_REMOVE(aip, ai_next);
11216 	/*
11217 	 * Don't set a pointer while the buffer is undergoing IO or while
11218 	 * we have active truncations.
11219 	 */
11220 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11221 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11222 		return;
11223 	}
11224 	if (indirdep->ir_state & UFS1FMT)
11225 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11226 		    aip->ai_newblkno;
11227 	else
11228 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11229 		    aip->ai_newblkno;
11230 	/*
11231 	 * Await the pointer write before freeing the allocindir.
11232 	 */
11233 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11234 }
11235 
11236 /*
11237  * Release segments held on a jwork list.
11238  */
11239 static void
11240 handle_jwork(wkhd)
11241 	struct workhead *wkhd;
11242 {
11243 	struct worklist *wk;
11244 
11245 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11246 		WORKLIST_REMOVE(wk);
11247 		switch (wk->wk_type) {
11248 		case D_JSEGDEP:
11249 			free_jsegdep(WK_JSEGDEP(wk));
11250 			continue;
11251 		case D_FREEDEP:
11252 			free_freedep(WK_FREEDEP(wk));
11253 			continue;
11254 		case D_FREEFRAG:
11255 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11256 			WORKITEM_FREE(wk, D_FREEFRAG);
11257 			continue;
11258 		case D_FREEWORK:
11259 			handle_written_freework(WK_FREEWORK(wk));
11260 			continue;
11261 		default:
11262 			panic("handle_jwork: Unknown type %s\n",
11263 			    TYPENAME(wk->wk_type));
11264 		}
11265 	}
11266 }
11267 
11268 /*
11269  * Handle the bufwait list on an inode when it is safe to release items
11270  * held there.  This normally happens after an inode block is written but
11271  * may be delayed and handled later if there are pending journal items that
11272  * are not yet safe to be released.
11273  */
11274 static struct freefile *
11275 handle_bufwait(inodedep, refhd)
11276 	struct inodedep *inodedep;
11277 	struct workhead *refhd;
11278 {
11279 	struct jaddref *jaddref;
11280 	struct freefile *freefile;
11281 	struct worklist *wk;
11282 
11283 	freefile = NULL;
11284 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11285 		WORKLIST_REMOVE(wk);
11286 		switch (wk->wk_type) {
11287 		case D_FREEFILE:
11288 			/*
11289 			 * We defer adding freefile to the worklist
11290 			 * until all other additions have been made to
11291 			 * ensure that it will be done after all the
11292 			 * old blocks have been freed.
11293 			 */
11294 			if (freefile != NULL)
11295 				panic("handle_bufwait: freefile");
11296 			freefile = WK_FREEFILE(wk);
11297 			continue;
11298 
11299 		case D_MKDIR:
11300 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11301 			continue;
11302 
11303 		case D_DIRADD:
11304 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11305 			continue;
11306 
11307 		case D_FREEFRAG:
11308 			wk->wk_state |= COMPLETE;
11309 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11310 				add_to_worklist(wk, 0);
11311 			continue;
11312 
11313 		case D_DIRREM:
11314 			wk->wk_state |= COMPLETE;
11315 			add_to_worklist(wk, 0);
11316 			continue;
11317 
11318 		case D_ALLOCDIRECT:
11319 		case D_ALLOCINDIR:
11320 			free_newblk(WK_NEWBLK(wk));
11321 			continue;
11322 
11323 		case D_JNEWBLK:
11324 			wk->wk_state |= COMPLETE;
11325 			free_jnewblk(WK_JNEWBLK(wk));
11326 			continue;
11327 
11328 		/*
11329 		 * Save freed journal segments and add references on
11330 		 * the supplied list which will delay their release
11331 		 * until the cg bitmap is cleared on disk.
11332 		 */
11333 		case D_JSEGDEP:
11334 			if (refhd == NULL)
11335 				free_jsegdep(WK_JSEGDEP(wk));
11336 			else
11337 				WORKLIST_INSERT(refhd, wk);
11338 			continue;
11339 
11340 		case D_JADDREF:
11341 			jaddref = WK_JADDREF(wk);
11342 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11343 			    if_deps);
11344 			/*
11345 			 * Transfer any jaddrefs to the list to be freed with
11346 			 * the bitmap if we're handling a removed file.
11347 			 */
11348 			if (refhd == NULL) {
11349 				wk->wk_state |= COMPLETE;
11350 				free_jaddref(jaddref);
11351 			} else
11352 				WORKLIST_INSERT(refhd, wk);
11353 			continue;
11354 
11355 		default:
11356 			panic("handle_bufwait: Unknown type %p(%s)",
11357 			    wk, TYPENAME(wk->wk_type));
11358 			/* NOTREACHED */
11359 		}
11360 	}
11361 	return (freefile);
11362 }
11363 /*
11364  * Called from within softdep_disk_write_complete above to restore
11365  * in-memory inode block contents to their most up-to-date state. Note
11366  * that this routine is always called from interrupt level with further
11367  * interrupts from this device blocked.
11368  *
11369  * If the write did not succeed, we will do all the roll-forward
11370  * operations, but we will not take the actions that will allow its
11371  * dependencies to be processed.
11372  */
11373 static int
11374 handle_written_inodeblock(inodedep, bp, flags)
11375 	struct inodedep *inodedep;
11376 	struct buf *bp;		/* buffer containing the inode block */
11377 	int flags;
11378 {
11379 	struct freefile *freefile;
11380 	struct allocdirect *adp, *nextadp;
11381 	struct ufs1_dinode *dp1 = NULL;
11382 	struct ufs2_dinode *dp2 = NULL;
11383 	struct workhead wkhd;
11384 	int hadchanges, fstype;
11385 	ino_t freelink;
11386 
11387 	LIST_INIT(&wkhd);
11388 	hadchanges = 0;
11389 	freefile = NULL;
11390 	if ((inodedep->id_state & IOSTARTED) == 0)
11391 		panic("handle_written_inodeblock: not started");
11392 	inodedep->id_state &= ~IOSTARTED;
11393 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11394 		fstype = UFS1;
11395 		dp1 = (struct ufs1_dinode *)bp->b_data +
11396 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11397 		freelink = dp1->di_freelink;
11398 	} else {
11399 		fstype = UFS2;
11400 		dp2 = (struct ufs2_dinode *)bp->b_data +
11401 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11402 		freelink = dp2->di_freelink;
11403 	}
11404 	/*
11405 	 * Leave this inodeblock dirty until it's in the list.
11406 	 */
11407 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11408 	    (flags & WRITESUCCEEDED)) {
11409 		struct inodedep *inon;
11410 
11411 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11412 		if ((inon == NULL && freelink == 0) ||
11413 		    (inon && inon->id_ino == freelink)) {
11414 			if (inon)
11415 				inon->id_state |= UNLINKPREV;
11416 			inodedep->id_state |= UNLINKNEXT;
11417 		}
11418 		hadchanges = 1;
11419 	}
11420 	/*
11421 	 * If we had to rollback the inode allocation because of
11422 	 * bitmaps being incomplete, then simply restore it.
11423 	 * Keep the block dirty so that it will not be reclaimed until
11424 	 * all associated dependencies have been cleared and the
11425 	 * corresponding updates written to disk.
11426 	 */
11427 	if (inodedep->id_savedino1 != NULL) {
11428 		hadchanges = 1;
11429 		if (fstype == UFS1)
11430 			*dp1 = *inodedep->id_savedino1;
11431 		else
11432 			*dp2 = *inodedep->id_savedino2;
11433 		free(inodedep->id_savedino1, M_SAVEDINO);
11434 		inodedep->id_savedino1 = NULL;
11435 		if ((bp->b_flags & B_DELWRI) == 0)
11436 			stat_inode_bitmap++;
11437 		bdirty(bp);
11438 		/*
11439 		 * If the inode is clear here and GOINGAWAY it will never
11440 		 * be written.  Process the bufwait and clear any pending
11441 		 * work which may include the freefile.
11442 		 */
11443 		if (inodedep->id_state & GOINGAWAY)
11444 			goto bufwait;
11445 		return (1);
11446 	}
11447 	if (flags & WRITESUCCEEDED)
11448 		inodedep->id_state |= COMPLETE;
11449 	/*
11450 	 * Roll forward anything that had to be rolled back before
11451 	 * the inode could be updated.
11452 	 */
11453 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11454 		nextadp = TAILQ_NEXT(adp, ad_next);
11455 		if (adp->ad_state & ATTACHED)
11456 			panic("handle_written_inodeblock: new entry");
11457 		if (fstype == UFS1) {
11458 			if (adp->ad_offset < UFS_NDADDR) {
11459 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11460 					panic("%s %s #%jd mismatch %d != %jd",
11461 					    "handle_written_inodeblock:",
11462 					    "direct pointer",
11463 					    (intmax_t)adp->ad_offset,
11464 					    dp1->di_db[adp->ad_offset],
11465 					    (intmax_t)adp->ad_oldblkno);
11466 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11467 			} else {
11468 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11469 				    0)
11470 					panic("%s: %s #%jd allocated as %d",
11471 					    "handle_written_inodeblock",
11472 					    "indirect pointer",
11473 					    (intmax_t)adp->ad_offset -
11474 					    UFS_NDADDR,
11475 					    dp1->di_ib[adp->ad_offset -
11476 					    UFS_NDADDR]);
11477 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11478 				    adp->ad_newblkno;
11479 			}
11480 		} else {
11481 			if (adp->ad_offset < UFS_NDADDR) {
11482 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11483 					panic("%s: %s #%jd %s %jd != %jd",
11484 					    "handle_written_inodeblock",
11485 					    "direct pointer",
11486 					    (intmax_t)adp->ad_offset, "mismatch",
11487 					    (intmax_t)dp2->di_db[adp->ad_offset],
11488 					    (intmax_t)adp->ad_oldblkno);
11489 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11490 			} else {
11491 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11492 				    0)
11493 					panic("%s: %s #%jd allocated as %jd",
11494 					    "handle_written_inodeblock",
11495 					    "indirect pointer",
11496 					    (intmax_t)adp->ad_offset -
11497 					    UFS_NDADDR,
11498 					    (intmax_t)
11499 					    dp2->di_ib[adp->ad_offset -
11500 					    UFS_NDADDR]);
11501 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11502 				    adp->ad_newblkno;
11503 			}
11504 		}
11505 		adp->ad_state &= ~UNDONE;
11506 		adp->ad_state |= ATTACHED;
11507 		hadchanges = 1;
11508 	}
11509 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11510 		nextadp = TAILQ_NEXT(adp, ad_next);
11511 		if (adp->ad_state & ATTACHED)
11512 			panic("handle_written_inodeblock: new entry");
11513 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11514 			panic("%s: direct pointers #%jd %s %jd != %jd",
11515 			    "handle_written_inodeblock",
11516 			    (intmax_t)adp->ad_offset, "mismatch",
11517 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11518 			    (intmax_t)adp->ad_oldblkno);
11519 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11520 		adp->ad_state &= ~UNDONE;
11521 		adp->ad_state |= ATTACHED;
11522 		hadchanges = 1;
11523 	}
11524 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11525 		stat_direct_blk_ptrs++;
11526 	/*
11527 	 * Reset the file size to its most up-to-date value.
11528 	 */
11529 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11530 		panic("handle_written_inodeblock: bad size");
11531 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11532 		panic("handle_written_inodeblock: Invalid link count "
11533 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11534 		    inodedep);
11535 	if (fstype == UFS1) {
11536 		if (dp1->di_nlink != inodedep->id_savednlink) {
11537 			dp1->di_nlink = inodedep->id_savednlink;
11538 			hadchanges = 1;
11539 		}
11540 		if (dp1->di_size != inodedep->id_savedsize) {
11541 			dp1->di_size = inodedep->id_savedsize;
11542 			hadchanges = 1;
11543 		}
11544 	} else {
11545 		if (dp2->di_nlink != inodedep->id_savednlink) {
11546 			dp2->di_nlink = inodedep->id_savednlink;
11547 			hadchanges = 1;
11548 		}
11549 		if (dp2->di_size != inodedep->id_savedsize) {
11550 			dp2->di_size = inodedep->id_savedsize;
11551 			hadchanges = 1;
11552 		}
11553 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11554 			dp2->di_extsize = inodedep->id_savedextsize;
11555 			hadchanges = 1;
11556 		}
11557 	}
11558 	inodedep->id_savedsize = -1;
11559 	inodedep->id_savedextsize = -1;
11560 	inodedep->id_savednlink = -1;
11561 	/*
11562 	 * If there were any rollbacks in the inode block, then it must be
11563 	 * marked dirty so that its will eventually get written back in
11564 	 * its correct form.
11565 	 */
11566 	if (hadchanges)
11567 		bdirty(bp);
11568 bufwait:
11569 	/*
11570 	 * If the write did not succeed, we have done all the roll-forward
11571 	 * operations, but we cannot take the actions that will allow its
11572 	 * dependencies to be processed.
11573 	 */
11574 	if ((flags & WRITESUCCEEDED) == 0)
11575 		return (hadchanges);
11576 	/*
11577 	 * Process any allocdirects that completed during the update.
11578 	 */
11579 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11580 		handle_allocdirect_partdone(adp, &wkhd);
11581 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11582 		handle_allocdirect_partdone(adp, &wkhd);
11583 	/*
11584 	 * Process deallocations that were held pending until the
11585 	 * inode had been written to disk. Freeing of the inode
11586 	 * is delayed until after all blocks have been freed to
11587 	 * avoid creation of new <vfsid, inum, lbn> triples
11588 	 * before the old ones have been deleted.  Completely
11589 	 * unlinked inodes are not processed until the unlinked
11590 	 * inode list is written or the last reference is removed.
11591 	 */
11592 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11593 		freefile = handle_bufwait(inodedep, NULL);
11594 		if (freefile && !LIST_EMPTY(&wkhd)) {
11595 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11596 			freefile = NULL;
11597 		}
11598 	}
11599 	/*
11600 	 * Move rolled forward dependency completions to the bufwait list
11601 	 * now that those that were already written have been processed.
11602 	 */
11603 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11604 		panic("handle_written_inodeblock: bufwait but no changes");
11605 	jwork_move(&inodedep->id_bufwait, &wkhd);
11606 
11607 	if (freefile != NULL) {
11608 		/*
11609 		 * If the inode is goingaway it was never written.  Fake up
11610 		 * the state here so free_inodedep() can succeed.
11611 		 */
11612 		if (inodedep->id_state & GOINGAWAY)
11613 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11614 		if (free_inodedep(inodedep) == 0)
11615 			panic("handle_written_inodeblock: live inodedep %p",
11616 			    inodedep);
11617 		add_to_worklist(&freefile->fx_list, 0);
11618 		return (0);
11619 	}
11620 
11621 	/*
11622 	 * If no outstanding dependencies, free it.
11623 	 */
11624 	if (free_inodedep(inodedep) ||
11625 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11626 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11627 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11628 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11629 		return (0);
11630 	return (hadchanges);
11631 }
11632 
11633 /*
11634  * Perform needed roll-forwards and kick off any dependencies that
11635  * can now be processed.
11636  *
11637  * If the write did not succeed, we will do all the roll-forward
11638  * operations, but we will not take the actions that will allow its
11639  * dependencies to be processed.
11640  */
11641 static int
11642 handle_written_indirdep(indirdep, bp, bpp, flags)
11643 	struct indirdep *indirdep;
11644 	struct buf *bp;
11645 	struct buf **bpp;
11646 	int flags;
11647 {
11648 	struct allocindir *aip;
11649 	struct buf *sbp;
11650 	int chgs;
11651 
11652 	if (indirdep->ir_state & GOINGAWAY)
11653 		panic("handle_written_indirdep: indirdep gone");
11654 	if ((indirdep->ir_state & IOSTARTED) == 0)
11655 		panic("handle_written_indirdep: IO not started");
11656 	chgs = 0;
11657 	/*
11658 	 * If there were rollbacks revert them here.
11659 	 */
11660 	if (indirdep->ir_saveddata) {
11661 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11662 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11663 			free(indirdep->ir_saveddata, M_INDIRDEP);
11664 			indirdep->ir_saveddata = NULL;
11665 		}
11666 		chgs = 1;
11667 	}
11668 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11669 	indirdep->ir_state |= ATTACHED;
11670 	/*
11671 	 * If the write did not succeed, we have done all the roll-forward
11672 	 * operations, but we cannot take the actions that will allow its
11673 	 * dependencies to be processed.
11674 	 */
11675 	if ((flags & WRITESUCCEEDED) == 0) {
11676 		stat_indir_blk_ptrs++;
11677 		bdirty(bp);
11678 		return (1);
11679 	}
11680 	/*
11681 	 * Move allocindirs with written pointers to the completehd if
11682 	 * the indirdep's pointer is not yet written.  Otherwise
11683 	 * free them here.
11684 	 */
11685 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11686 		LIST_REMOVE(aip, ai_next);
11687 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11688 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11689 			    ai_next);
11690 			newblk_freefrag(&aip->ai_block);
11691 			continue;
11692 		}
11693 		free_newblk(&aip->ai_block);
11694 	}
11695 	/*
11696 	 * Move allocindirs that have finished dependency processing from
11697 	 * the done list to the write list after updating the pointers.
11698 	 */
11699 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11700 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11701 			handle_allocindir_partdone(aip);
11702 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11703 				panic("disk_write_complete: not gone");
11704 			chgs = 1;
11705 		}
11706 	}
11707 	/*
11708 	 * Preserve the indirdep if there were any changes or if it is not
11709 	 * yet valid on disk.
11710 	 */
11711 	if (chgs) {
11712 		stat_indir_blk_ptrs++;
11713 		bdirty(bp);
11714 		return (1);
11715 	}
11716 	/*
11717 	 * If there were no changes we can discard the savedbp and detach
11718 	 * ourselves from the buf.  We are only carrying completed pointers
11719 	 * in this case.
11720 	 */
11721 	sbp = indirdep->ir_savebp;
11722 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11723 	indirdep->ir_savebp = NULL;
11724 	indirdep->ir_bp = NULL;
11725 	if (*bpp != NULL)
11726 		panic("handle_written_indirdep: bp already exists.");
11727 	*bpp = sbp;
11728 	/*
11729 	 * The indirdep may not be freed until its parent points at it.
11730 	 */
11731 	if (indirdep->ir_state & DEPCOMPLETE)
11732 		free_indirdep(indirdep);
11733 
11734 	return (0);
11735 }
11736 
11737 /*
11738  * Process a diradd entry after its dependent inode has been written.
11739  * This routine must be called with splbio interrupts blocked.
11740  */
11741 static void
11742 diradd_inode_written(dap, inodedep)
11743 	struct diradd *dap;
11744 	struct inodedep *inodedep;
11745 {
11746 
11747 	dap->da_state |= COMPLETE;
11748 	complete_diradd(dap);
11749 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11750 }
11751 
11752 /*
11753  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11754  * be called with the per-filesystem lock and the buf lock on the cg held.
11755  */
11756 static int
11757 bmsafemap_backgroundwrite(bmsafemap, bp)
11758 	struct bmsafemap *bmsafemap;
11759 	struct buf *bp;
11760 {
11761 	int dirty;
11762 
11763 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11764 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11765 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11766 	/*
11767 	 * If we're initiating a background write we need to process the
11768 	 * rollbacks as they exist now, not as they exist when IO starts.
11769 	 * No other consumers will look at the contents of the shadowed
11770 	 * buf so this is safe to do here.
11771 	 */
11772 	if (bp->b_xflags & BX_BKGRDMARKER)
11773 		initiate_write_bmsafemap(bmsafemap, bp);
11774 
11775 	return (dirty);
11776 }
11777 
11778 /*
11779  * Re-apply an allocation when a cg write is complete.
11780  */
11781 static int
11782 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11783 	struct jnewblk *jnewblk;
11784 	struct fs *fs;
11785 	struct cg *cgp;
11786 	uint8_t *blksfree;
11787 {
11788 	ufs1_daddr_t fragno;
11789 	ufs2_daddr_t blkno;
11790 	long cgbno, bbase;
11791 	int frags, blk;
11792 	int i;
11793 
11794 	frags = 0;
11795 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11796 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11797 		if (isclr(blksfree, cgbno + i))
11798 			panic("jnewblk_rollforward: re-allocated fragment");
11799 		frags++;
11800 	}
11801 	if (frags == fs->fs_frag) {
11802 		blkno = fragstoblks(fs, cgbno);
11803 		ffs_clrblock(fs, blksfree, (long)blkno);
11804 		ffs_clusteracct(fs, cgp, blkno, -1);
11805 		cgp->cg_cs.cs_nbfree--;
11806 	} else {
11807 		bbase = cgbno - fragnum(fs, cgbno);
11808 		cgbno += jnewblk->jn_oldfrags;
11809                 /* If a complete block had been reassembled, account for it. */
11810 		fragno = fragstoblks(fs, bbase);
11811 		if (ffs_isblock(fs, blksfree, fragno)) {
11812 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11813 			ffs_clusteracct(fs, cgp, fragno, -1);
11814 			cgp->cg_cs.cs_nbfree--;
11815 		}
11816 		/* Decrement the old frags.  */
11817 		blk = blkmap(fs, blksfree, bbase);
11818 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11819 		/* Allocate the fragment */
11820 		for (i = 0; i < frags; i++)
11821 			clrbit(blksfree, cgbno + i);
11822 		cgp->cg_cs.cs_nffree -= frags;
11823 		/* Add back in counts associated with the new frags */
11824 		blk = blkmap(fs, blksfree, bbase);
11825 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11826 	}
11827 	return (frags);
11828 }
11829 
11830 /*
11831  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11832  * changes if it's not a background write.  Set all written dependencies
11833  * to DEPCOMPLETE and free the structure if possible.
11834  *
11835  * If the write did not succeed, we will do all the roll-forward
11836  * operations, but we will not take the actions that will allow its
11837  * dependencies to be processed.
11838  */
11839 static int
11840 handle_written_bmsafemap(bmsafemap, bp, flags)
11841 	struct bmsafemap *bmsafemap;
11842 	struct buf *bp;
11843 	int flags;
11844 {
11845 	struct newblk *newblk;
11846 	struct inodedep *inodedep;
11847 	struct jaddref *jaddref, *jatmp;
11848 	struct jnewblk *jnewblk, *jntmp;
11849 	struct ufsmount *ump;
11850 	uint8_t *inosused;
11851 	uint8_t *blksfree;
11852 	struct cg *cgp;
11853 	struct fs *fs;
11854 	ino_t ino;
11855 	int foreground;
11856 	int chgs;
11857 
11858 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11859 		panic("handle_written_bmsafemap: Not started\n");
11860 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11861 	chgs = 0;
11862 	bmsafemap->sm_state &= ~IOSTARTED;
11863 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11864 	/*
11865 	 * If write was successful, release journal work that was waiting
11866 	 * on the write. Otherwise move the work back.
11867 	 */
11868 	if (flags & WRITESUCCEEDED)
11869 		handle_jwork(&bmsafemap->sm_freewr);
11870 	else
11871 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11872 		    worklist, wk_list);
11873 
11874 	/*
11875 	 * Restore unwritten inode allocation pending jaddref writes.
11876 	 */
11877 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11878 		cgp = (struct cg *)bp->b_data;
11879 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11880 		inosused = cg_inosused(cgp);
11881 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11882 		    ja_bmdeps, jatmp) {
11883 			if ((jaddref->ja_state & UNDONE) == 0)
11884 				continue;
11885 			ino = jaddref->ja_ino % fs->fs_ipg;
11886 			if (isset(inosused, ino))
11887 				panic("handle_written_bmsafemap: "
11888 				    "re-allocated inode");
11889 			/* Do the roll-forward only if it's a real copy. */
11890 			if (foreground) {
11891 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11892 					cgp->cg_cs.cs_ndir++;
11893 				cgp->cg_cs.cs_nifree--;
11894 				setbit(inosused, ino);
11895 				chgs = 1;
11896 			}
11897 			jaddref->ja_state &= ~UNDONE;
11898 			jaddref->ja_state |= ATTACHED;
11899 			free_jaddref(jaddref);
11900 		}
11901 	}
11902 	/*
11903 	 * Restore any block allocations which are pending journal writes.
11904 	 */
11905 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11906 		cgp = (struct cg *)bp->b_data;
11907 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11908 		blksfree = cg_blksfree(cgp);
11909 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11910 		    jntmp) {
11911 			if ((jnewblk->jn_state & UNDONE) == 0)
11912 				continue;
11913 			/* Do the roll-forward only if it's a real copy. */
11914 			if (foreground &&
11915 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11916 				chgs = 1;
11917 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11918 			jnewblk->jn_state |= ATTACHED;
11919 			free_jnewblk(jnewblk);
11920 		}
11921 	}
11922 	/*
11923 	 * If the write did not succeed, we have done all the roll-forward
11924 	 * operations, but we cannot take the actions that will allow its
11925 	 * dependencies to be processed.
11926 	 */
11927 	if ((flags & WRITESUCCEEDED) == 0) {
11928 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11929 		    newblk, nb_deps);
11930 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11931 		    worklist, wk_list);
11932 		if (foreground)
11933 			bdirty(bp);
11934 		return (1);
11935 	}
11936 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11937 		newblk->nb_state |= DEPCOMPLETE;
11938 		newblk->nb_state &= ~ONDEPLIST;
11939 		newblk->nb_bmsafemap = NULL;
11940 		LIST_REMOVE(newblk, nb_deps);
11941 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11942 			handle_allocdirect_partdone(
11943 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11944 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11945 			handle_allocindir_partdone(
11946 			    WK_ALLOCINDIR(&newblk->nb_list));
11947 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11948 			panic("handle_written_bmsafemap: Unexpected type: %s",
11949 			    TYPENAME(newblk->nb_list.wk_type));
11950 	}
11951 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11952 		inodedep->id_state |= DEPCOMPLETE;
11953 		inodedep->id_state &= ~ONDEPLIST;
11954 		LIST_REMOVE(inodedep, id_deps);
11955 		inodedep->id_bmsafemap = NULL;
11956 	}
11957 	LIST_REMOVE(bmsafemap, sm_next);
11958 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11959 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11960 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11961 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11962 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11963 		LIST_REMOVE(bmsafemap, sm_hash);
11964 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11965 		return (0);
11966 	}
11967 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11968 	if (foreground)
11969 		bdirty(bp);
11970 	return (1);
11971 }
11972 
11973 /*
11974  * Try to free a mkdir dependency.
11975  */
11976 static void
11977 complete_mkdir(mkdir)
11978 	struct mkdir *mkdir;
11979 {
11980 	struct diradd *dap;
11981 
11982 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11983 		return;
11984 	LIST_REMOVE(mkdir, md_mkdirs);
11985 	dap = mkdir->md_diradd;
11986 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11987 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11988 		dap->da_state |= DEPCOMPLETE;
11989 		complete_diradd(dap);
11990 	}
11991 	WORKITEM_FREE(mkdir, D_MKDIR);
11992 }
11993 
11994 /*
11995  * Handle the completion of a mkdir dependency.
11996  */
11997 static void
11998 handle_written_mkdir(mkdir, type)
11999 	struct mkdir *mkdir;
12000 	int type;
12001 {
12002 
12003 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12004 		panic("handle_written_mkdir: bad type");
12005 	mkdir->md_state |= COMPLETE;
12006 	complete_mkdir(mkdir);
12007 }
12008 
12009 static int
12010 free_pagedep(pagedep)
12011 	struct pagedep *pagedep;
12012 {
12013 	int i;
12014 
12015 	if (pagedep->pd_state & NEWBLOCK)
12016 		return (0);
12017 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12018 		return (0);
12019 	for (i = 0; i < DAHASHSZ; i++)
12020 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12021 			return (0);
12022 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12023 		return (0);
12024 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12025 		return (0);
12026 	if (pagedep->pd_state & ONWORKLIST)
12027 		WORKLIST_REMOVE(&pagedep->pd_list);
12028 	LIST_REMOVE(pagedep, pd_hash);
12029 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12030 
12031 	return (1);
12032 }
12033 
12034 /*
12035  * Called from within softdep_disk_write_complete above.
12036  * A write operation was just completed. Removed inodes can
12037  * now be freed and associated block pointers may be committed.
12038  * Note that this routine is always called from interrupt level
12039  * with further interrupts from this device blocked.
12040  *
12041  * If the write did not succeed, we will do all the roll-forward
12042  * operations, but we will not take the actions that will allow its
12043  * dependencies to be processed.
12044  */
12045 static int
12046 handle_written_filepage(pagedep, bp, flags)
12047 	struct pagedep *pagedep;
12048 	struct buf *bp;		/* buffer containing the written page */
12049 	int flags;
12050 {
12051 	struct dirrem *dirrem;
12052 	struct diradd *dap, *nextdap;
12053 	struct direct *ep;
12054 	int i, chgs;
12055 
12056 	if ((pagedep->pd_state & IOSTARTED) == 0)
12057 		panic("handle_written_filepage: not started");
12058 	pagedep->pd_state &= ~IOSTARTED;
12059 	if ((flags & WRITESUCCEEDED) == 0)
12060 		goto rollforward;
12061 	/*
12062 	 * Process any directory removals that have been committed.
12063 	 */
12064 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12065 		LIST_REMOVE(dirrem, dm_next);
12066 		dirrem->dm_state |= COMPLETE;
12067 		dirrem->dm_dirinum = pagedep->pd_ino;
12068 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12069 		    ("handle_written_filepage: Journal entries not written."));
12070 		add_to_worklist(&dirrem->dm_list, 0);
12071 	}
12072 	/*
12073 	 * Free any directory additions that have been committed.
12074 	 * If it is a newly allocated block, we have to wait until
12075 	 * the on-disk directory inode claims the new block.
12076 	 */
12077 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12078 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12079 			free_diradd(dap, NULL);
12080 rollforward:
12081 	/*
12082 	 * Uncommitted directory entries must be restored.
12083 	 */
12084 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12085 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12086 		     dap = nextdap) {
12087 			nextdap = LIST_NEXT(dap, da_pdlist);
12088 			if (dap->da_state & ATTACHED)
12089 				panic("handle_written_filepage: attached");
12090 			ep = (struct direct *)
12091 			    ((char *)bp->b_data + dap->da_offset);
12092 			ep->d_ino = dap->da_newinum;
12093 			dap->da_state &= ~UNDONE;
12094 			dap->da_state |= ATTACHED;
12095 			chgs = 1;
12096 			/*
12097 			 * If the inode referenced by the directory has
12098 			 * been written out, then the dependency can be
12099 			 * moved to the pending list.
12100 			 */
12101 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12102 				LIST_REMOVE(dap, da_pdlist);
12103 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12104 				    da_pdlist);
12105 			}
12106 		}
12107 	}
12108 	/*
12109 	 * If there were any rollbacks in the directory, then it must be
12110 	 * marked dirty so that its will eventually get written back in
12111 	 * its correct form.
12112 	 */
12113 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12114 		if ((bp->b_flags & B_DELWRI) == 0)
12115 			stat_dir_entry++;
12116 		bdirty(bp);
12117 		return (1);
12118 	}
12119 	/*
12120 	 * If we are not waiting for a new directory block to be
12121 	 * claimed by its inode, then the pagedep will be freed.
12122 	 * Otherwise it will remain to track any new entries on
12123 	 * the page in case they are fsync'ed.
12124 	 */
12125 	free_pagedep(pagedep);
12126 	return (0);
12127 }
12128 
12129 /*
12130  * Writing back in-core inode structures.
12131  *
12132  * The filesystem only accesses an inode's contents when it occupies an
12133  * "in-core" inode structure.  These "in-core" structures are separate from
12134  * the page frames used to cache inode blocks.  Only the latter are
12135  * transferred to/from the disk.  So, when the updated contents of the
12136  * "in-core" inode structure are copied to the corresponding in-memory inode
12137  * block, the dependencies are also transferred.  The following procedure is
12138  * called when copying a dirty "in-core" inode to a cached inode block.
12139  */
12140 
12141 /*
12142  * Called when an inode is loaded from disk. If the effective link count
12143  * differed from the actual link count when it was last flushed, then we
12144  * need to ensure that the correct effective link count is put back.
12145  */
12146 void
12147 softdep_load_inodeblock(ip)
12148 	struct inode *ip;	/* the "in_core" copy of the inode */
12149 {
12150 	struct inodedep *inodedep;
12151 	struct ufsmount *ump;
12152 
12153 	ump = ITOUMP(ip);
12154 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12155 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12156 	/*
12157 	 * Check for alternate nlink count.
12158 	 */
12159 	ip->i_effnlink = ip->i_nlink;
12160 	ACQUIRE_LOCK(ump);
12161 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12162 		FREE_LOCK(ump);
12163 		return;
12164 	}
12165 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12166 	FREE_LOCK(ump);
12167 }
12168 
12169 /*
12170  * This routine is called just before the "in-core" inode
12171  * information is to be copied to the in-memory inode block.
12172  * Recall that an inode block contains several inodes. If
12173  * the force flag is set, then the dependencies will be
12174  * cleared so that the update can always be made. Note that
12175  * the buffer is locked when this routine is called, so we
12176  * will never be in the middle of writing the inode block
12177  * to disk.
12178  */
12179 void
12180 softdep_update_inodeblock(ip, bp, waitfor)
12181 	struct inode *ip;	/* the "in_core" copy of the inode */
12182 	struct buf *bp;		/* the buffer containing the inode block */
12183 	int waitfor;		/* nonzero => update must be allowed */
12184 {
12185 	struct inodedep *inodedep;
12186 	struct inoref *inoref;
12187 	struct ufsmount *ump;
12188 	struct worklist *wk;
12189 	struct mount *mp;
12190 	struct buf *ibp;
12191 	struct fs *fs;
12192 	int error;
12193 
12194 	ump = ITOUMP(ip);
12195 	mp = UFSTOVFS(ump);
12196 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12197 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12198 	fs = ump->um_fs;
12199 	/*
12200 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12201 	 * does not have access to the in-core ip so must write directly into
12202 	 * the inode block buffer when setting freelink.
12203 	 */
12204 	if (fs->fs_magic == FS_UFS1_MAGIC)
12205 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12206 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12207 	else
12208 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12209 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12210 	/*
12211 	 * If the effective link count is not equal to the actual link
12212 	 * count, then we must track the difference in an inodedep while
12213 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12214 	 * if there is no existing inodedep, then there are no dependencies
12215 	 * to track.
12216 	 */
12217 	ACQUIRE_LOCK(ump);
12218 again:
12219 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12220 		FREE_LOCK(ump);
12221 		if (ip->i_effnlink != ip->i_nlink)
12222 			panic("softdep_update_inodeblock: bad link count");
12223 		return;
12224 	}
12225 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12226 		panic("softdep_update_inodeblock: bad delta");
12227 	/*
12228 	 * If we're flushing all dependencies we must also move any waiting
12229 	 * for journal writes onto the bufwait list prior to I/O.
12230 	 */
12231 	if (waitfor) {
12232 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12233 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12234 			    == DEPCOMPLETE) {
12235 				jwait(&inoref->if_list, MNT_WAIT);
12236 				goto again;
12237 			}
12238 		}
12239 	}
12240 	/*
12241 	 * Changes have been initiated. Anything depending on these
12242 	 * changes cannot occur until this inode has been written.
12243 	 */
12244 	inodedep->id_state &= ~COMPLETE;
12245 	if ((inodedep->id_state & ONWORKLIST) == 0)
12246 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12247 	/*
12248 	 * Any new dependencies associated with the incore inode must
12249 	 * now be moved to the list associated with the buffer holding
12250 	 * the in-memory copy of the inode. Once merged process any
12251 	 * allocdirects that are completed by the merger.
12252 	 */
12253 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12254 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12255 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12256 		    NULL);
12257 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12258 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12259 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12260 		    NULL);
12261 	/*
12262 	 * Now that the inode has been pushed into the buffer, the
12263 	 * operations dependent on the inode being written to disk
12264 	 * can be moved to the id_bufwait so that they will be
12265 	 * processed when the buffer I/O completes.
12266 	 */
12267 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12268 		WORKLIST_REMOVE(wk);
12269 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12270 	}
12271 	/*
12272 	 * Newly allocated inodes cannot be written until the bitmap
12273 	 * that allocates them have been written (indicated by
12274 	 * DEPCOMPLETE being set in id_state). If we are doing a
12275 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12276 	 * to be written so that the update can be done.
12277 	 */
12278 	if (waitfor == 0) {
12279 		FREE_LOCK(ump);
12280 		return;
12281 	}
12282 retry:
12283 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12284 		FREE_LOCK(ump);
12285 		return;
12286 	}
12287 	ibp = inodedep->id_bmsafemap->sm_buf;
12288 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12289 	if (ibp == NULL) {
12290 		/*
12291 		 * If ibp came back as NULL, the dependency could have been
12292 		 * freed while we slept.  Look it up again, and check to see
12293 		 * that it has completed.
12294 		 */
12295 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12296 			goto retry;
12297 		FREE_LOCK(ump);
12298 		return;
12299 	}
12300 	FREE_LOCK(ump);
12301 	if ((error = bwrite(ibp)) != 0)
12302 		softdep_error("softdep_update_inodeblock: bwrite", error);
12303 }
12304 
12305 /*
12306  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12307  * old inode dependency list (such as id_inoupdt). This routine must be
12308  * called with splbio interrupts blocked.
12309  */
12310 static void
12311 merge_inode_lists(newlisthead, oldlisthead)
12312 	struct allocdirectlst *newlisthead;
12313 	struct allocdirectlst *oldlisthead;
12314 {
12315 	struct allocdirect *listadp, *newadp;
12316 
12317 	newadp = TAILQ_FIRST(newlisthead);
12318 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12319 		if (listadp->ad_offset < newadp->ad_offset) {
12320 			listadp = TAILQ_NEXT(listadp, ad_next);
12321 			continue;
12322 		}
12323 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12324 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12325 		if (listadp->ad_offset == newadp->ad_offset) {
12326 			allocdirect_merge(oldlisthead, newadp,
12327 			    listadp);
12328 			listadp = newadp;
12329 		}
12330 		newadp = TAILQ_FIRST(newlisthead);
12331 	}
12332 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12333 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12334 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12335 	}
12336 }
12337 
12338 /*
12339  * If we are doing an fsync, then we must ensure that any directory
12340  * entries for the inode have been written after the inode gets to disk.
12341  */
12342 int
12343 softdep_fsync(vp)
12344 	struct vnode *vp;	/* the "in_core" copy of the inode */
12345 {
12346 	struct inodedep *inodedep;
12347 	struct pagedep *pagedep;
12348 	struct inoref *inoref;
12349 	struct ufsmount *ump;
12350 	struct worklist *wk;
12351 	struct diradd *dap;
12352 	struct mount *mp;
12353 	struct vnode *pvp;
12354 	struct inode *ip;
12355 	struct buf *bp;
12356 	struct fs *fs;
12357 	struct thread *td = curthread;
12358 	int error, flushparent, pagedep_new_block;
12359 	ino_t parentino;
12360 	ufs_lbn_t lbn;
12361 
12362 	ip = VTOI(vp);
12363 	mp = vp->v_mount;
12364 	ump = VFSTOUFS(mp);
12365 	fs = ump->um_fs;
12366 	if (MOUNTEDSOFTDEP(mp) == 0)
12367 		return (0);
12368 	ACQUIRE_LOCK(ump);
12369 restart:
12370 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12371 		FREE_LOCK(ump);
12372 		return (0);
12373 	}
12374 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12375 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12376 		    == DEPCOMPLETE) {
12377 			jwait(&inoref->if_list, MNT_WAIT);
12378 			goto restart;
12379 		}
12380 	}
12381 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12382 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12383 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12384 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12385 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12386 		panic("softdep_fsync: pending ops %p", inodedep);
12387 	for (error = 0, flushparent = 0; ; ) {
12388 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12389 			break;
12390 		if (wk->wk_type != D_DIRADD)
12391 			panic("softdep_fsync: Unexpected type %s",
12392 			    TYPENAME(wk->wk_type));
12393 		dap = WK_DIRADD(wk);
12394 		/*
12395 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12396 		 * dependency or is contained in a newly allocated block.
12397 		 */
12398 		if (dap->da_state & DIRCHG)
12399 			pagedep = dap->da_previous->dm_pagedep;
12400 		else
12401 			pagedep = dap->da_pagedep;
12402 		parentino = pagedep->pd_ino;
12403 		lbn = pagedep->pd_lbn;
12404 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12405 			panic("softdep_fsync: dirty");
12406 		if ((dap->da_state & MKDIR_PARENT) ||
12407 		    (pagedep->pd_state & NEWBLOCK))
12408 			flushparent = 1;
12409 		else
12410 			flushparent = 0;
12411 		/*
12412 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12413 		 * then we will not be able to release and recover the
12414 		 * vnode below, so we just have to give up on writing its
12415 		 * directory entry out. It will eventually be written, just
12416 		 * not now, but then the user was not asking to have it
12417 		 * written, so we are not breaking any promises.
12418 		 */
12419 		if (vp->v_iflag & VI_DOOMED)
12420 			break;
12421 		/*
12422 		 * We prevent deadlock by always fetching inodes from the
12423 		 * root, moving down the directory tree. Thus, when fetching
12424 		 * our parent directory, we first try to get the lock. If
12425 		 * that fails, we must unlock ourselves before requesting
12426 		 * the lock on our parent. See the comment in ufs_lookup
12427 		 * for details on possible races.
12428 		 */
12429 		FREE_LOCK(ump);
12430 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12431 		    FFSV_FORCEINSMQ)) {
12432 			error = vfs_busy(mp, MBF_NOWAIT);
12433 			if (error != 0) {
12434 				vfs_ref(mp);
12435 				VOP_UNLOCK(vp, 0);
12436 				error = vfs_busy(mp, 0);
12437 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12438 				vfs_rel(mp);
12439 				if (error != 0)
12440 					return (ENOENT);
12441 				if (vp->v_iflag & VI_DOOMED) {
12442 					vfs_unbusy(mp);
12443 					return (ENOENT);
12444 				}
12445 			}
12446 			VOP_UNLOCK(vp, 0);
12447 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12448 			    &pvp, FFSV_FORCEINSMQ);
12449 			vfs_unbusy(mp);
12450 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12451 			if (vp->v_iflag & VI_DOOMED) {
12452 				if (error == 0)
12453 					vput(pvp);
12454 				error = ENOENT;
12455 			}
12456 			if (error != 0)
12457 				return (error);
12458 		}
12459 		/*
12460 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12461 		 * that are contained in direct blocks will be resolved by
12462 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12463 		 * may require a complete sync'ing of the directory. So, we
12464 		 * try the cheap and fast ffs_update first, and if that fails,
12465 		 * then we do the slower ffs_syncvnode of the directory.
12466 		 */
12467 		if (flushparent) {
12468 			int locked;
12469 
12470 			if ((error = ffs_update(pvp, 1)) != 0) {
12471 				vput(pvp);
12472 				return (error);
12473 			}
12474 			ACQUIRE_LOCK(ump);
12475 			locked = 1;
12476 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12477 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12478 					if (wk->wk_type != D_DIRADD)
12479 						panic("softdep_fsync: Unexpected type %s",
12480 						      TYPENAME(wk->wk_type));
12481 					dap = WK_DIRADD(wk);
12482 					if (dap->da_state & DIRCHG)
12483 						pagedep = dap->da_previous->dm_pagedep;
12484 					else
12485 						pagedep = dap->da_pagedep;
12486 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12487 					FREE_LOCK(ump);
12488 					locked = 0;
12489 					if (pagedep_new_block && (error =
12490 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12491 						vput(pvp);
12492 						return (error);
12493 					}
12494 				}
12495 			}
12496 			if (locked)
12497 				FREE_LOCK(ump);
12498 		}
12499 		/*
12500 		 * Flush directory page containing the inode's name.
12501 		 */
12502 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12503 		    &bp);
12504 		if (error == 0)
12505 			error = bwrite(bp);
12506 		else
12507 			brelse(bp);
12508 		vput(pvp);
12509 		if (error != 0)
12510 			return (error);
12511 		ACQUIRE_LOCK(ump);
12512 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12513 			break;
12514 	}
12515 	FREE_LOCK(ump);
12516 	return (0);
12517 }
12518 
12519 /*
12520  * Flush all the dirty bitmaps associated with the block device
12521  * before flushing the rest of the dirty blocks so as to reduce
12522  * the number of dependencies that will have to be rolled back.
12523  *
12524  * XXX Unused?
12525  */
12526 void
12527 softdep_fsync_mountdev(vp)
12528 	struct vnode *vp;
12529 {
12530 	struct buf *bp, *nbp;
12531 	struct worklist *wk;
12532 	struct bufobj *bo;
12533 
12534 	if (!vn_isdisk(vp, NULL))
12535 		panic("softdep_fsync_mountdev: vnode not a disk");
12536 	bo = &vp->v_bufobj;
12537 restart:
12538 	BO_LOCK(bo);
12539 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12540 		/*
12541 		 * If it is already scheduled, skip to the next buffer.
12542 		 */
12543 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12544 			continue;
12545 
12546 		if ((bp->b_flags & B_DELWRI) == 0)
12547 			panic("softdep_fsync_mountdev: not dirty");
12548 		/*
12549 		 * We are only interested in bitmaps with outstanding
12550 		 * dependencies.
12551 		 */
12552 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12553 		    wk->wk_type != D_BMSAFEMAP ||
12554 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12555 			BUF_UNLOCK(bp);
12556 			continue;
12557 		}
12558 		BO_UNLOCK(bo);
12559 		bremfree(bp);
12560 		(void) bawrite(bp);
12561 		goto restart;
12562 	}
12563 	drain_output(vp);
12564 	BO_UNLOCK(bo);
12565 }
12566 
12567 /*
12568  * Sync all cylinder groups that were dirty at the time this function is
12569  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12570  * is used to flush freedep activity that may be holding up writes to a
12571  * indirect block.
12572  */
12573 static int
12574 sync_cgs(mp, waitfor)
12575 	struct mount *mp;
12576 	int waitfor;
12577 {
12578 	struct bmsafemap *bmsafemap;
12579 	struct bmsafemap *sentinel;
12580 	struct ufsmount *ump;
12581 	struct buf *bp;
12582 	int error;
12583 
12584 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12585 	sentinel->sm_cg = -1;
12586 	ump = VFSTOUFS(mp);
12587 	error = 0;
12588 	ACQUIRE_LOCK(ump);
12589 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12590 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12591 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12592 		/* Skip sentinels and cgs with no work to release. */
12593 		if (bmsafemap->sm_cg == -1 ||
12594 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12595 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12596 			LIST_REMOVE(sentinel, sm_next);
12597 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12598 			continue;
12599 		}
12600 		/*
12601 		 * If we don't get the lock and we're waiting try again, if
12602 		 * not move on to the next buf and try to sync it.
12603 		 */
12604 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12605 		if (bp == NULL && waitfor == MNT_WAIT)
12606 			continue;
12607 		LIST_REMOVE(sentinel, sm_next);
12608 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12609 		if (bp == NULL)
12610 			continue;
12611 		FREE_LOCK(ump);
12612 		if (waitfor == MNT_NOWAIT)
12613 			bawrite(bp);
12614 		else
12615 			error = bwrite(bp);
12616 		ACQUIRE_LOCK(ump);
12617 		if (error)
12618 			break;
12619 	}
12620 	LIST_REMOVE(sentinel, sm_next);
12621 	FREE_LOCK(ump);
12622 	free(sentinel, M_BMSAFEMAP);
12623 	return (error);
12624 }
12625 
12626 /*
12627  * This routine is called when we are trying to synchronously flush a
12628  * file. This routine must eliminate any filesystem metadata dependencies
12629  * so that the syncing routine can succeed.
12630  */
12631 int
12632 softdep_sync_metadata(struct vnode *vp)
12633 {
12634 	struct inode *ip;
12635 	int error;
12636 
12637 	ip = VTOI(vp);
12638 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12639 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12640 	/*
12641 	 * Ensure that any direct block dependencies have been cleared,
12642 	 * truncations are started, and inode references are journaled.
12643 	 */
12644 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12645 	/*
12646 	 * Write all journal records to prevent rollbacks on devvp.
12647 	 */
12648 	if (vp->v_type == VCHR)
12649 		softdep_flushjournal(vp->v_mount);
12650 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12651 	/*
12652 	 * Ensure that all truncates are written so we won't find deps on
12653 	 * indirect blocks.
12654 	 */
12655 	process_truncates(vp);
12656 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12657 
12658 	return (error);
12659 }
12660 
12661 /*
12662  * This routine is called when we are attempting to sync a buf with
12663  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12664  * other IO it can but returns EBUSY if the buffer is not yet able to
12665  * be written.  Dependencies which will not cause rollbacks will always
12666  * return 0.
12667  */
12668 int
12669 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12670 {
12671 	struct indirdep *indirdep;
12672 	struct pagedep *pagedep;
12673 	struct allocindir *aip;
12674 	struct newblk *newblk;
12675 	struct ufsmount *ump;
12676 	struct buf *nbp;
12677 	struct worklist *wk;
12678 	int i, error;
12679 
12680 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12681 	    ("softdep_sync_buf called on non-softdep filesystem"));
12682 	/*
12683 	 * For VCHR we just don't want to force flush any dependencies that
12684 	 * will cause rollbacks.
12685 	 */
12686 	if (vp->v_type == VCHR) {
12687 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12688 			return (EBUSY);
12689 		return (0);
12690 	}
12691 	ump = VFSTOUFS(vp->v_mount);
12692 	ACQUIRE_LOCK(ump);
12693 	/*
12694 	 * As we hold the buffer locked, none of its dependencies
12695 	 * will disappear.
12696 	 */
12697 	error = 0;
12698 top:
12699 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12700 		switch (wk->wk_type) {
12701 
12702 		case D_ALLOCDIRECT:
12703 		case D_ALLOCINDIR:
12704 			newblk = WK_NEWBLK(wk);
12705 			if (newblk->nb_jnewblk != NULL) {
12706 				if (waitfor == MNT_NOWAIT) {
12707 					error = EBUSY;
12708 					goto out_unlock;
12709 				}
12710 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12711 				goto top;
12712 			}
12713 			if (newblk->nb_state & DEPCOMPLETE ||
12714 			    waitfor == MNT_NOWAIT)
12715 				continue;
12716 			nbp = newblk->nb_bmsafemap->sm_buf;
12717 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12718 			if (nbp == NULL)
12719 				goto top;
12720 			FREE_LOCK(ump);
12721 			if ((error = bwrite(nbp)) != 0)
12722 				goto out;
12723 			ACQUIRE_LOCK(ump);
12724 			continue;
12725 
12726 		case D_INDIRDEP:
12727 			indirdep = WK_INDIRDEP(wk);
12728 			if (waitfor == MNT_NOWAIT) {
12729 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12730 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12731 					error = EBUSY;
12732 					goto out_unlock;
12733 				}
12734 			}
12735 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12736 				panic("softdep_sync_buf: truncation pending.");
12737 		restart:
12738 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12739 				newblk = (struct newblk *)aip;
12740 				if (newblk->nb_jnewblk != NULL) {
12741 					jwait(&newblk->nb_jnewblk->jn_list,
12742 					    waitfor);
12743 					goto restart;
12744 				}
12745 				if (newblk->nb_state & DEPCOMPLETE)
12746 					continue;
12747 				nbp = newblk->nb_bmsafemap->sm_buf;
12748 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12749 				if (nbp == NULL)
12750 					goto restart;
12751 				FREE_LOCK(ump);
12752 				if ((error = bwrite(nbp)) != 0)
12753 					goto out;
12754 				ACQUIRE_LOCK(ump);
12755 				goto restart;
12756 			}
12757 			continue;
12758 
12759 		case D_PAGEDEP:
12760 			/*
12761 			 * Only flush directory entries in synchronous passes.
12762 			 */
12763 			if (waitfor != MNT_WAIT) {
12764 				error = EBUSY;
12765 				goto out_unlock;
12766 			}
12767 			/*
12768 			 * While syncing snapshots, we must allow recursive
12769 			 * lookups.
12770 			 */
12771 			BUF_AREC(bp);
12772 			/*
12773 			 * We are trying to sync a directory that may
12774 			 * have dependencies on both its own metadata
12775 			 * and/or dependencies on the inodes of any
12776 			 * recently allocated files. We walk its diradd
12777 			 * lists pushing out the associated inode.
12778 			 */
12779 			pagedep = WK_PAGEDEP(wk);
12780 			for (i = 0; i < DAHASHSZ; i++) {
12781 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12782 					continue;
12783 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12784 				    &pagedep->pd_diraddhd[i]))) {
12785 					BUF_NOREC(bp);
12786 					goto out_unlock;
12787 				}
12788 			}
12789 			BUF_NOREC(bp);
12790 			continue;
12791 
12792 		case D_FREEWORK:
12793 		case D_FREEDEP:
12794 		case D_JSEGDEP:
12795 		case D_JNEWBLK:
12796 			continue;
12797 
12798 		default:
12799 			panic("softdep_sync_buf: Unknown type %s",
12800 			    TYPENAME(wk->wk_type));
12801 			/* NOTREACHED */
12802 		}
12803 	}
12804 out_unlock:
12805 	FREE_LOCK(ump);
12806 out:
12807 	return (error);
12808 }
12809 
12810 /*
12811  * Flush the dependencies associated with an inodedep.
12812  * Called with splbio blocked.
12813  */
12814 static int
12815 flush_inodedep_deps(vp, mp, ino)
12816 	struct vnode *vp;
12817 	struct mount *mp;
12818 	ino_t ino;
12819 {
12820 	struct inodedep *inodedep;
12821 	struct inoref *inoref;
12822 	struct ufsmount *ump;
12823 	int error, waitfor;
12824 
12825 	/*
12826 	 * This work is done in two passes. The first pass grabs most
12827 	 * of the buffers and begins asynchronously writing them. The
12828 	 * only way to wait for these asynchronous writes is to sleep
12829 	 * on the filesystem vnode which may stay busy for a long time
12830 	 * if the filesystem is active. So, instead, we make a second
12831 	 * pass over the dependencies blocking on each write. In the
12832 	 * usual case we will be blocking against a write that we
12833 	 * initiated, so when it is done the dependency will have been
12834 	 * resolved. Thus the second pass is expected to end quickly.
12835 	 * We give a brief window at the top of the loop to allow
12836 	 * any pending I/O to complete.
12837 	 */
12838 	ump = VFSTOUFS(mp);
12839 	LOCK_OWNED(ump);
12840 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12841 		if (error)
12842 			return (error);
12843 		FREE_LOCK(ump);
12844 		ACQUIRE_LOCK(ump);
12845 restart:
12846 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12847 			return (0);
12848 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12849 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12850 			    == DEPCOMPLETE) {
12851 				jwait(&inoref->if_list, MNT_WAIT);
12852 				goto restart;
12853 			}
12854 		}
12855 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12856 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12857 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12858 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12859 			continue;
12860 		/*
12861 		 * If pass2, we are done, otherwise do pass 2.
12862 		 */
12863 		if (waitfor == MNT_WAIT)
12864 			break;
12865 		waitfor = MNT_WAIT;
12866 	}
12867 	/*
12868 	 * Try freeing inodedep in case all dependencies have been removed.
12869 	 */
12870 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12871 		(void) free_inodedep(inodedep);
12872 	return (0);
12873 }
12874 
12875 /*
12876  * Flush an inode dependency list.
12877  * Called with splbio blocked.
12878  */
12879 static int
12880 flush_deplist(listhead, waitfor, errorp)
12881 	struct allocdirectlst *listhead;
12882 	int waitfor;
12883 	int *errorp;
12884 {
12885 	struct allocdirect *adp;
12886 	struct newblk *newblk;
12887 	struct ufsmount *ump;
12888 	struct buf *bp;
12889 
12890 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12891 		return (0);
12892 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12893 	LOCK_OWNED(ump);
12894 	TAILQ_FOREACH(adp, listhead, ad_next) {
12895 		newblk = (struct newblk *)adp;
12896 		if (newblk->nb_jnewblk != NULL) {
12897 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12898 			return (1);
12899 		}
12900 		if (newblk->nb_state & DEPCOMPLETE)
12901 			continue;
12902 		bp = newblk->nb_bmsafemap->sm_buf;
12903 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12904 		if (bp == NULL) {
12905 			if (waitfor == MNT_NOWAIT)
12906 				continue;
12907 			return (1);
12908 		}
12909 		FREE_LOCK(ump);
12910 		if (waitfor == MNT_NOWAIT)
12911 			bawrite(bp);
12912 		else
12913 			*errorp = bwrite(bp);
12914 		ACQUIRE_LOCK(ump);
12915 		return (1);
12916 	}
12917 	return (0);
12918 }
12919 
12920 /*
12921  * Flush dependencies associated with an allocdirect block.
12922  */
12923 static int
12924 flush_newblk_dep(vp, mp, lbn)
12925 	struct vnode *vp;
12926 	struct mount *mp;
12927 	ufs_lbn_t lbn;
12928 {
12929 	struct newblk *newblk;
12930 	struct ufsmount *ump;
12931 	struct bufobj *bo;
12932 	struct inode *ip;
12933 	struct buf *bp;
12934 	ufs2_daddr_t blkno;
12935 	int error;
12936 
12937 	error = 0;
12938 	bo = &vp->v_bufobj;
12939 	ip = VTOI(vp);
12940 	blkno = DIP(ip, i_db[lbn]);
12941 	if (blkno == 0)
12942 		panic("flush_newblk_dep: Missing block");
12943 	ump = VFSTOUFS(mp);
12944 	ACQUIRE_LOCK(ump);
12945 	/*
12946 	 * Loop until all dependencies related to this block are satisfied.
12947 	 * We must be careful to restart after each sleep in case a write
12948 	 * completes some part of this process for us.
12949 	 */
12950 	for (;;) {
12951 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12952 			FREE_LOCK(ump);
12953 			break;
12954 		}
12955 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12956 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12957 		/*
12958 		 * Flush the journal.
12959 		 */
12960 		if (newblk->nb_jnewblk != NULL) {
12961 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12962 			continue;
12963 		}
12964 		/*
12965 		 * Write the bitmap dependency.
12966 		 */
12967 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12968 			bp = newblk->nb_bmsafemap->sm_buf;
12969 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12970 			if (bp == NULL)
12971 				continue;
12972 			FREE_LOCK(ump);
12973 			error = bwrite(bp);
12974 			if (error)
12975 				break;
12976 			ACQUIRE_LOCK(ump);
12977 			continue;
12978 		}
12979 		/*
12980 		 * Write the buffer.
12981 		 */
12982 		FREE_LOCK(ump);
12983 		BO_LOCK(bo);
12984 		bp = gbincore(bo, lbn);
12985 		if (bp != NULL) {
12986 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12987 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12988 			if (error == ENOLCK) {
12989 				ACQUIRE_LOCK(ump);
12990 				error = 0;
12991 				continue; /* Slept, retry */
12992 			}
12993 			if (error != 0)
12994 				break;	/* Failed */
12995 			if (bp->b_flags & B_DELWRI) {
12996 				bremfree(bp);
12997 				error = bwrite(bp);
12998 				if (error)
12999 					break;
13000 			} else
13001 				BUF_UNLOCK(bp);
13002 		} else
13003 			BO_UNLOCK(bo);
13004 		/*
13005 		 * We have to wait for the direct pointers to
13006 		 * point at the newdirblk before the dependency
13007 		 * will go away.
13008 		 */
13009 		error = ffs_update(vp, 1);
13010 		if (error)
13011 			break;
13012 		ACQUIRE_LOCK(ump);
13013 	}
13014 	return (error);
13015 }
13016 
13017 /*
13018  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13019  * Called with splbio blocked.
13020  */
13021 static int
13022 flush_pagedep_deps(pvp, mp, diraddhdp)
13023 	struct vnode *pvp;
13024 	struct mount *mp;
13025 	struct diraddhd *diraddhdp;
13026 {
13027 	struct inodedep *inodedep;
13028 	struct inoref *inoref;
13029 	struct ufsmount *ump;
13030 	struct diradd *dap;
13031 	struct vnode *vp;
13032 	int error = 0;
13033 	struct buf *bp;
13034 	ino_t inum;
13035 	struct diraddhd unfinished;
13036 
13037 	LIST_INIT(&unfinished);
13038 	ump = VFSTOUFS(mp);
13039 	LOCK_OWNED(ump);
13040 restart:
13041 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13042 		/*
13043 		 * Flush ourselves if this directory entry
13044 		 * has a MKDIR_PARENT dependency.
13045 		 */
13046 		if (dap->da_state & MKDIR_PARENT) {
13047 			FREE_LOCK(ump);
13048 			if ((error = ffs_update(pvp, 1)) != 0)
13049 				break;
13050 			ACQUIRE_LOCK(ump);
13051 			/*
13052 			 * If that cleared dependencies, go on to next.
13053 			 */
13054 			if (dap != LIST_FIRST(diraddhdp))
13055 				continue;
13056 			/*
13057 			 * All MKDIR_PARENT dependencies and all the
13058 			 * NEWBLOCK pagedeps that are contained in direct
13059 			 * blocks were resolved by doing above ffs_update.
13060 			 * Pagedeps contained in indirect blocks may
13061 			 * require a complete sync'ing of the directory.
13062 			 * We are in the midst of doing a complete sync,
13063 			 * so if they are not resolved in this pass we
13064 			 * defer them for now as they will be sync'ed by
13065 			 * our caller shortly.
13066 			 */
13067 			LIST_REMOVE(dap, da_pdlist);
13068 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13069 			continue;
13070 		}
13071 		/*
13072 		 * A newly allocated directory must have its "." and
13073 		 * ".." entries written out before its name can be
13074 		 * committed in its parent.
13075 		 */
13076 		inum = dap->da_newinum;
13077 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13078 			panic("flush_pagedep_deps: lost inode1");
13079 		/*
13080 		 * Wait for any pending journal adds to complete so we don't
13081 		 * cause rollbacks while syncing.
13082 		 */
13083 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13084 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13085 			    == DEPCOMPLETE) {
13086 				jwait(&inoref->if_list, MNT_WAIT);
13087 				goto restart;
13088 			}
13089 		}
13090 		if (dap->da_state & MKDIR_BODY) {
13091 			FREE_LOCK(ump);
13092 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13093 			    FFSV_FORCEINSMQ)))
13094 				break;
13095 			error = flush_newblk_dep(vp, mp, 0);
13096 			/*
13097 			 * If we still have the dependency we might need to
13098 			 * update the vnode to sync the new link count to
13099 			 * disk.
13100 			 */
13101 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13102 				error = ffs_update(vp, 1);
13103 			vput(vp);
13104 			if (error != 0)
13105 				break;
13106 			ACQUIRE_LOCK(ump);
13107 			/*
13108 			 * If that cleared dependencies, go on to next.
13109 			 */
13110 			if (dap != LIST_FIRST(diraddhdp))
13111 				continue;
13112 			if (dap->da_state & MKDIR_BODY) {
13113 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13114 				    &inodedep);
13115 				panic("flush_pagedep_deps: MKDIR_BODY "
13116 				    "inodedep %p dap %p vp %p",
13117 				    inodedep, dap, vp);
13118 			}
13119 		}
13120 		/*
13121 		 * Flush the inode on which the directory entry depends.
13122 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13123 		 * the only remaining dependency is that the updated inode
13124 		 * count must get pushed to disk. The inode has already
13125 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13126 		 * the time of the reference count change. So we need only
13127 		 * locate that buffer, ensure that there will be no rollback
13128 		 * caused by a bitmap dependency, then write the inode buffer.
13129 		 */
13130 retry:
13131 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13132 			panic("flush_pagedep_deps: lost inode");
13133 		/*
13134 		 * If the inode still has bitmap dependencies,
13135 		 * push them to disk.
13136 		 */
13137 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13138 			bp = inodedep->id_bmsafemap->sm_buf;
13139 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13140 			if (bp == NULL)
13141 				goto retry;
13142 			FREE_LOCK(ump);
13143 			if ((error = bwrite(bp)) != 0)
13144 				break;
13145 			ACQUIRE_LOCK(ump);
13146 			if (dap != LIST_FIRST(diraddhdp))
13147 				continue;
13148 		}
13149 		/*
13150 		 * If the inode is still sitting in a buffer waiting
13151 		 * to be written or waiting for the link count to be
13152 		 * adjusted update it here to flush it to disk.
13153 		 */
13154 		if (dap == LIST_FIRST(diraddhdp)) {
13155 			FREE_LOCK(ump);
13156 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13157 			    FFSV_FORCEINSMQ)))
13158 				break;
13159 			error = ffs_update(vp, 1);
13160 			vput(vp);
13161 			if (error)
13162 				break;
13163 			ACQUIRE_LOCK(ump);
13164 		}
13165 		/*
13166 		 * If we have failed to get rid of all the dependencies
13167 		 * then something is seriously wrong.
13168 		 */
13169 		if (dap == LIST_FIRST(diraddhdp)) {
13170 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13171 			panic("flush_pagedep_deps: failed to flush "
13172 			    "inodedep %p ino %ju dap %p",
13173 			    inodedep, (uintmax_t)inum, dap);
13174 		}
13175 	}
13176 	if (error)
13177 		ACQUIRE_LOCK(ump);
13178 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13179 		LIST_REMOVE(dap, da_pdlist);
13180 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13181 	}
13182 	return (error);
13183 }
13184 
13185 /*
13186  * A large burst of file addition or deletion activity can drive the
13187  * memory load excessively high. First attempt to slow things down
13188  * using the techniques below. If that fails, this routine requests
13189  * the offending operations to fall back to running synchronously
13190  * until the memory load returns to a reasonable level.
13191  */
13192 int
13193 softdep_slowdown(vp)
13194 	struct vnode *vp;
13195 {
13196 	struct ufsmount *ump;
13197 	int jlow;
13198 	int max_softdeps_hard;
13199 
13200 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13201 	    ("softdep_slowdown called on non-softdep filesystem"));
13202 	ump = VFSTOUFS(vp->v_mount);
13203 	ACQUIRE_LOCK(ump);
13204 	jlow = 0;
13205 	/*
13206 	 * Check for journal space if needed.
13207 	 */
13208 	if (DOINGSUJ(vp)) {
13209 		if (journal_space(ump, 0) == 0)
13210 			jlow = 1;
13211 	}
13212 	/*
13213 	 * If the system is under its limits and our filesystem is
13214 	 * not responsible for more than our share of the usage and
13215 	 * we are not low on journal space, then no need to slow down.
13216 	 */
13217 	max_softdeps_hard = max_softdeps * 11 / 10;
13218 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13219 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13220 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13221 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13222 	    ump->softdep_curdeps[D_DIRREM] <
13223 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13224 	    ump->softdep_curdeps[D_INODEDEP] <
13225 	    max_softdeps_hard / stat_flush_threads &&
13226 	    ump->softdep_curdeps[D_INDIRDEP] <
13227 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13228 	    ump->softdep_curdeps[D_FREEBLKS] <
13229 	    max_softdeps_hard / stat_flush_threads) {
13230 		FREE_LOCK(ump);
13231   		return (0);
13232 	}
13233 	/*
13234 	 * If the journal is low or our filesystem is over its limit
13235 	 * then speedup the cleanup.
13236 	 */
13237 	if (ump->softdep_curdeps[D_INDIRDEP] <
13238 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13239 		softdep_speedup(ump);
13240 	stat_sync_limit_hit += 1;
13241 	FREE_LOCK(ump);
13242 	/*
13243 	 * We only slow down the rate at which new dependencies are
13244 	 * generated if we are not using journaling. With journaling,
13245 	 * the cleanup should always be sufficient to keep things
13246 	 * under control.
13247 	 */
13248 	if (DOINGSUJ(vp))
13249 		return (0);
13250 	return (1);
13251 }
13252 
13253 /*
13254  * Called by the allocation routines when they are about to fail
13255  * in the hope that we can free up the requested resource (inodes
13256  * or disk space).
13257  *
13258  * First check to see if the work list has anything on it. If it has,
13259  * clean up entries until we successfully free the requested resource.
13260  * Because this process holds inodes locked, we cannot handle any remove
13261  * requests that might block on a locked inode as that could lead to
13262  * deadlock. If the worklist yields none of the requested resource,
13263  * start syncing out vnodes to free up the needed space.
13264  */
13265 int
13266 softdep_request_cleanup(fs, vp, cred, resource)
13267 	struct fs *fs;
13268 	struct vnode *vp;
13269 	struct ucred *cred;
13270 	int resource;
13271 {
13272 	struct ufsmount *ump;
13273 	struct mount *mp;
13274 	long starttime;
13275 	ufs2_daddr_t needed;
13276 	int error, failed_vnode;
13277 
13278 	/*
13279 	 * If we are being called because of a process doing a
13280 	 * copy-on-write, then it is not safe to process any
13281 	 * worklist items as we will recurse into the copyonwrite
13282 	 * routine.  This will result in an incoherent snapshot.
13283 	 * If the vnode that we hold is a snapshot, we must avoid
13284 	 * handling other resources that could cause deadlock.
13285 	 */
13286 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13287 		return (0);
13288 
13289 	if (resource == FLUSH_BLOCKS_WAIT)
13290 		stat_cleanup_blkrequests += 1;
13291 	else
13292 		stat_cleanup_inorequests += 1;
13293 
13294 	mp = vp->v_mount;
13295 	ump = VFSTOUFS(mp);
13296 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13297 	UFS_UNLOCK(ump);
13298 	error = ffs_update(vp, 1);
13299 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13300 		UFS_LOCK(ump);
13301 		return (0);
13302 	}
13303 	/*
13304 	 * If we are in need of resources, start by cleaning up
13305 	 * any block removals associated with our inode.
13306 	 */
13307 	ACQUIRE_LOCK(ump);
13308 	process_removes(vp);
13309 	process_truncates(vp);
13310 	FREE_LOCK(ump);
13311 	/*
13312 	 * Now clean up at least as many resources as we will need.
13313 	 *
13314 	 * When requested to clean up inodes, the number that are needed
13315 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13316 	 * plus a bit of slop (2) in case some more writers show up while
13317 	 * we are cleaning.
13318 	 *
13319 	 * When requested to free up space, the amount of space that
13320 	 * we need is enough blocks to allocate a full-sized segment
13321 	 * (fs_contigsumsize). The number of such segments that will
13322 	 * be needed is set by the number of simultaneous writers
13323 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13324 	 * writers show up while we are cleaning.
13325 	 *
13326 	 * Additionally, if we are unpriviledged and allocating space,
13327 	 * we need to ensure that we clean up enough blocks to get the
13328 	 * needed number of blocks over the threshold of the minimum
13329 	 * number of blocks required to be kept free by the filesystem
13330 	 * (fs_minfree).
13331 	 */
13332 	if (resource == FLUSH_INODES_WAIT) {
13333 		needed = vp->v_mount->mnt_writeopcount + 2;
13334 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13335 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13336 		    fs->fs_contigsumsize;
13337 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13338 			needed += fragstoblks(fs,
13339 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13340 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13341 	} else {
13342 		UFS_LOCK(ump);
13343 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13344 		    resource);
13345 		return (0);
13346 	}
13347 	starttime = time_second;
13348 retry:
13349 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13350 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13351 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13352 	    fs->fs_cstotal.cs_nifree <= needed)) {
13353 		ACQUIRE_LOCK(ump);
13354 		if (ump->softdep_on_worklist > 0 &&
13355 		    process_worklist_item(UFSTOVFS(ump),
13356 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13357 			stat_worklist_push += 1;
13358 		FREE_LOCK(ump);
13359 	}
13360 	/*
13361 	 * If we still need resources and there are no more worklist
13362 	 * entries to process to obtain them, we have to start flushing
13363 	 * the dirty vnodes to force the release of additional requests
13364 	 * to the worklist that we can then process to reap addition
13365 	 * resources. We walk the vnodes associated with the mount point
13366 	 * until we get the needed worklist requests that we can reap.
13367 	 *
13368 	 * If there are several threads all needing to clean the same
13369 	 * mount point, only one is allowed to walk the mount list.
13370 	 * When several threads all try to walk the same mount list,
13371 	 * they end up competing with each other and often end up in
13372 	 * livelock. This approach ensures that forward progress is
13373 	 * made at the cost of occational ENOSPC errors being returned
13374 	 * that might otherwise have been avoided.
13375 	 */
13376 	error = 1;
13377 	if ((resource == FLUSH_BLOCKS_WAIT &&
13378 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13379 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13380 	     fs->fs_cstotal.cs_nifree <= needed)) {
13381 		ACQUIRE_LOCK(ump);
13382 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13383 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13384 			FREE_LOCK(ump);
13385 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13386 			ACQUIRE_LOCK(ump);
13387 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13388 			FREE_LOCK(ump);
13389 			if (ump->softdep_on_worklist > 0) {
13390 				stat_cleanup_retries += 1;
13391 				if (!failed_vnode)
13392 					goto retry;
13393 			}
13394 		} else {
13395 			FREE_LOCK(ump);
13396 			error = 0;
13397 		}
13398 		stat_cleanup_failures += 1;
13399 	}
13400 	if (time_second - starttime > stat_cleanup_high_delay)
13401 		stat_cleanup_high_delay = time_second - starttime;
13402 	UFS_LOCK(ump);
13403 	return (error);
13404 }
13405 
13406 /*
13407  * Scan the vnodes for the specified mount point flushing out any
13408  * vnodes that can be locked without waiting. Finally, try to flush
13409  * the device associated with the mount point if it can be locked
13410  * without waiting.
13411  *
13412  * We return 0 if we were able to lock every vnode in our scan.
13413  * If we had to skip one or more vnodes, we return 1.
13414  */
13415 static int
13416 softdep_request_cleanup_flush(mp, ump)
13417 	struct mount *mp;
13418 	struct ufsmount *ump;
13419 {
13420 	struct thread *td;
13421 	struct vnode *lvp, *mvp;
13422 	int failed_vnode;
13423 
13424 	failed_vnode = 0;
13425 	td = curthread;
13426 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13427 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13428 			VI_UNLOCK(lvp);
13429 			continue;
13430 		}
13431 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13432 		    td) != 0) {
13433 			failed_vnode = 1;
13434 			continue;
13435 		}
13436 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13437 			vput(lvp);
13438 			continue;
13439 		}
13440 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13441 		vput(lvp);
13442 	}
13443 	lvp = ump->um_devvp;
13444 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13445 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13446 		VOP_UNLOCK(lvp, 0);
13447 	}
13448 	return (failed_vnode);
13449 }
13450 
13451 static bool
13452 softdep_excess_items(struct ufsmount *ump, int item)
13453 {
13454 
13455 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13456 	return (dep_current[item] > max_softdeps &&
13457 	    ump->softdep_curdeps[item] > max_softdeps /
13458 	    stat_flush_threads);
13459 }
13460 
13461 static void
13462 schedule_cleanup(struct mount *mp)
13463 {
13464 	struct ufsmount *ump;
13465 	struct thread *td;
13466 
13467 	ump = VFSTOUFS(mp);
13468 	LOCK_OWNED(ump);
13469 	FREE_LOCK(ump);
13470 	td = curthread;
13471 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13472 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13473 		/*
13474 		 * No ast is delivered to kernel threads, so nobody
13475 		 * would deref the mp.  Some kernel threads
13476 		 * explicitely check for AST, e.g. NFS daemon does
13477 		 * this in the serving loop.
13478 		 */
13479 		return;
13480 	}
13481 	if (td->td_su != NULL)
13482 		vfs_rel(td->td_su);
13483 	vfs_ref(mp);
13484 	td->td_su = mp;
13485 	thread_lock(td);
13486 	td->td_flags |= TDF_ASTPENDING;
13487 	thread_unlock(td);
13488 }
13489 
13490 static void
13491 softdep_ast_cleanup_proc(struct thread *td)
13492 {
13493 	struct mount *mp;
13494 	struct ufsmount *ump;
13495 	int error;
13496 	bool req;
13497 
13498 	while ((mp = td->td_su) != NULL) {
13499 		td->td_su = NULL;
13500 		error = vfs_busy(mp, MBF_NOWAIT);
13501 		vfs_rel(mp);
13502 		if (error != 0)
13503 			return;
13504 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13505 			ump = VFSTOUFS(mp);
13506 			for (;;) {
13507 				req = false;
13508 				ACQUIRE_LOCK(ump);
13509 				if (softdep_excess_items(ump, D_INODEDEP)) {
13510 					req = true;
13511 					request_cleanup(mp, FLUSH_INODES);
13512 				}
13513 				if (softdep_excess_items(ump, D_DIRREM)) {
13514 					req = true;
13515 					request_cleanup(mp, FLUSH_BLOCKS);
13516 				}
13517 				FREE_LOCK(ump);
13518 				if (softdep_excess_items(ump, D_NEWBLK) ||
13519 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13520 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13521 					error = vn_start_write(NULL, &mp,
13522 					    V_WAIT);
13523 					if (error == 0) {
13524 						req = true;
13525 						VFS_SYNC(mp, MNT_WAIT);
13526 						vn_finished_write(mp);
13527 					}
13528 				}
13529 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13530 					break;
13531 			}
13532 		}
13533 		vfs_unbusy(mp);
13534 	}
13535 	if ((mp = td->td_su) != NULL) {
13536 		td->td_su = NULL;
13537 		vfs_rel(mp);
13538 	}
13539 }
13540 
13541 /*
13542  * If memory utilization has gotten too high, deliberately slow things
13543  * down and speed up the I/O processing.
13544  */
13545 static int
13546 request_cleanup(mp, resource)
13547 	struct mount *mp;
13548 	int resource;
13549 {
13550 	struct thread *td = curthread;
13551 	struct ufsmount *ump;
13552 
13553 	ump = VFSTOUFS(mp);
13554 	LOCK_OWNED(ump);
13555 	/*
13556 	 * We never hold up the filesystem syncer or buf daemon.
13557 	 */
13558 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13559 		return (0);
13560 	/*
13561 	 * First check to see if the work list has gotten backlogged.
13562 	 * If it has, co-opt this process to help clean up two entries.
13563 	 * Because this process may hold inodes locked, we cannot
13564 	 * handle any remove requests that might block on a locked
13565 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13566 	 * to avoid recursively processing the worklist.
13567 	 */
13568 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13569 		td->td_pflags |= TDP_SOFTDEP;
13570 		process_worklist_item(mp, 2, LK_NOWAIT);
13571 		td->td_pflags &= ~TDP_SOFTDEP;
13572 		stat_worklist_push += 2;
13573 		return(1);
13574 	}
13575 	/*
13576 	 * Next, we attempt to speed up the syncer process. If that
13577 	 * is successful, then we allow the process to continue.
13578 	 */
13579 	if (softdep_speedup(ump) &&
13580 	    resource != FLUSH_BLOCKS_WAIT &&
13581 	    resource != FLUSH_INODES_WAIT)
13582 		return(0);
13583 	/*
13584 	 * If we are resource constrained on inode dependencies, try
13585 	 * flushing some dirty inodes. Otherwise, we are constrained
13586 	 * by file deletions, so try accelerating flushes of directories
13587 	 * with removal dependencies. We would like to do the cleanup
13588 	 * here, but we probably hold an inode locked at this point and
13589 	 * that might deadlock against one that we try to clean. So,
13590 	 * the best that we can do is request the syncer daemon to do
13591 	 * the cleanup for us.
13592 	 */
13593 	switch (resource) {
13594 
13595 	case FLUSH_INODES:
13596 	case FLUSH_INODES_WAIT:
13597 		ACQUIRE_GBLLOCK(&lk);
13598 		stat_ino_limit_push += 1;
13599 		req_clear_inodedeps += 1;
13600 		FREE_GBLLOCK(&lk);
13601 		stat_countp = &stat_ino_limit_hit;
13602 		break;
13603 
13604 	case FLUSH_BLOCKS:
13605 	case FLUSH_BLOCKS_WAIT:
13606 		ACQUIRE_GBLLOCK(&lk);
13607 		stat_blk_limit_push += 1;
13608 		req_clear_remove += 1;
13609 		FREE_GBLLOCK(&lk);
13610 		stat_countp = &stat_blk_limit_hit;
13611 		break;
13612 
13613 	default:
13614 		panic("request_cleanup: unknown type");
13615 	}
13616 	/*
13617 	 * Hopefully the syncer daemon will catch up and awaken us.
13618 	 * We wait at most tickdelay before proceeding in any case.
13619 	 */
13620 	ACQUIRE_GBLLOCK(&lk);
13621 	FREE_LOCK(ump);
13622 	proc_waiting += 1;
13623 	if (callout_pending(&softdep_callout) == FALSE)
13624 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13625 		    pause_timer, 0);
13626 
13627 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13628 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13629 	proc_waiting -= 1;
13630 	FREE_GBLLOCK(&lk);
13631 	ACQUIRE_LOCK(ump);
13632 	return (1);
13633 }
13634 
13635 /*
13636  * Awaken processes pausing in request_cleanup and clear proc_waiting
13637  * to indicate that there is no longer a timer running. Pause_timer
13638  * will be called with the global softdep mutex (&lk) locked.
13639  */
13640 static void
13641 pause_timer(arg)
13642 	void *arg;
13643 {
13644 
13645 	GBLLOCK_OWNED(&lk);
13646 	/*
13647 	 * The callout_ API has acquired mtx and will hold it around this
13648 	 * function call.
13649 	 */
13650 	*stat_countp += proc_waiting;
13651 	wakeup(&proc_waiting);
13652 }
13653 
13654 /*
13655  * If requested, try removing inode or removal dependencies.
13656  */
13657 static void
13658 check_clear_deps(mp)
13659 	struct mount *mp;
13660 {
13661 
13662 	/*
13663 	 * If we are suspended, it may be because of our using
13664 	 * too many inodedeps, so help clear them out.
13665 	 */
13666 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13667 		clear_inodedeps(mp);
13668 	/*
13669 	 * General requests for cleanup of backed up dependencies
13670 	 */
13671 	ACQUIRE_GBLLOCK(&lk);
13672 	if (req_clear_inodedeps) {
13673 		req_clear_inodedeps -= 1;
13674 		FREE_GBLLOCK(&lk);
13675 		clear_inodedeps(mp);
13676 		ACQUIRE_GBLLOCK(&lk);
13677 		wakeup(&proc_waiting);
13678 	}
13679 	if (req_clear_remove) {
13680 		req_clear_remove -= 1;
13681 		FREE_GBLLOCK(&lk);
13682 		clear_remove(mp);
13683 		ACQUIRE_GBLLOCK(&lk);
13684 		wakeup(&proc_waiting);
13685 	}
13686 	FREE_GBLLOCK(&lk);
13687 }
13688 
13689 /*
13690  * Flush out a directory with at least one removal dependency in an effort to
13691  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13692  */
13693 static void
13694 clear_remove(mp)
13695 	struct mount *mp;
13696 {
13697 	struct pagedep_hashhead *pagedephd;
13698 	struct pagedep *pagedep;
13699 	struct ufsmount *ump;
13700 	struct vnode *vp;
13701 	struct bufobj *bo;
13702 	int error, cnt;
13703 	ino_t ino;
13704 
13705 	ump = VFSTOUFS(mp);
13706 	LOCK_OWNED(ump);
13707 
13708 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13709 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13710 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13711 			ump->pagedep_nextclean = 0;
13712 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13713 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13714 				continue;
13715 			ino = pagedep->pd_ino;
13716 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13717 				continue;
13718 			FREE_LOCK(ump);
13719 
13720 			/*
13721 			 * Let unmount clear deps
13722 			 */
13723 			error = vfs_busy(mp, MBF_NOWAIT);
13724 			if (error != 0)
13725 				goto finish_write;
13726 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13727 			     FFSV_FORCEINSMQ);
13728 			vfs_unbusy(mp);
13729 			if (error != 0) {
13730 				softdep_error("clear_remove: vget", error);
13731 				goto finish_write;
13732 			}
13733 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13734 				softdep_error("clear_remove: fsync", error);
13735 			bo = &vp->v_bufobj;
13736 			BO_LOCK(bo);
13737 			drain_output(vp);
13738 			BO_UNLOCK(bo);
13739 			vput(vp);
13740 		finish_write:
13741 			vn_finished_write(mp);
13742 			ACQUIRE_LOCK(ump);
13743 			return;
13744 		}
13745 	}
13746 }
13747 
13748 /*
13749  * Clear out a block of dirty inodes in an effort to reduce
13750  * the number of inodedep dependency structures.
13751  */
13752 static void
13753 clear_inodedeps(mp)
13754 	struct mount *mp;
13755 {
13756 	struct inodedep_hashhead *inodedephd;
13757 	struct inodedep *inodedep;
13758 	struct ufsmount *ump;
13759 	struct vnode *vp;
13760 	struct fs *fs;
13761 	int error, cnt;
13762 	ino_t firstino, lastino, ino;
13763 
13764 	ump = VFSTOUFS(mp);
13765 	fs = ump->um_fs;
13766 	LOCK_OWNED(ump);
13767 	/*
13768 	 * Pick a random inode dependency to be cleared.
13769 	 * We will then gather up all the inodes in its block
13770 	 * that have dependencies and flush them out.
13771 	 */
13772 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13773 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13774 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13775 			ump->inodedep_nextclean = 0;
13776 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13777 			break;
13778 	}
13779 	if (inodedep == NULL)
13780 		return;
13781 	/*
13782 	 * Find the last inode in the block with dependencies.
13783 	 */
13784 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13785 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13786 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13787 			break;
13788 	/*
13789 	 * Asynchronously push all but the last inode with dependencies.
13790 	 * Synchronously push the last inode with dependencies to ensure
13791 	 * that the inode block gets written to free up the inodedeps.
13792 	 */
13793 	for (ino = firstino; ino <= lastino; ino++) {
13794 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13795 			continue;
13796 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13797 			continue;
13798 		FREE_LOCK(ump);
13799 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13800 		if (error != 0) {
13801 			vn_finished_write(mp);
13802 			ACQUIRE_LOCK(ump);
13803 			return;
13804 		}
13805 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13806 		    FFSV_FORCEINSMQ)) != 0) {
13807 			softdep_error("clear_inodedeps: vget", error);
13808 			vfs_unbusy(mp);
13809 			vn_finished_write(mp);
13810 			ACQUIRE_LOCK(ump);
13811 			return;
13812 		}
13813 		vfs_unbusy(mp);
13814 		if (ino == lastino) {
13815 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13816 				softdep_error("clear_inodedeps: fsync1", error);
13817 		} else {
13818 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13819 				softdep_error("clear_inodedeps: fsync2", error);
13820 			BO_LOCK(&vp->v_bufobj);
13821 			drain_output(vp);
13822 			BO_UNLOCK(&vp->v_bufobj);
13823 		}
13824 		vput(vp);
13825 		vn_finished_write(mp);
13826 		ACQUIRE_LOCK(ump);
13827 	}
13828 }
13829 
13830 void
13831 softdep_buf_append(bp, wkhd)
13832 	struct buf *bp;
13833 	struct workhead *wkhd;
13834 {
13835 	struct worklist *wk;
13836 	struct ufsmount *ump;
13837 
13838 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13839 		return;
13840 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13841 	    ("softdep_buf_append called on non-softdep filesystem"));
13842 	ump = VFSTOUFS(wk->wk_mp);
13843 	ACQUIRE_LOCK(ump);
13844 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13845 		WORKLIST_REMOVE(wk);
13846 		WORKLIST_INSERT(&bp->b_dep, wk);
13847 	}
13848 	FREE_LOCK(ump);
13849 
13850 }
13851 
13852 void
13853 softdep_inode_append(ip, cred, wkhd)
13854 	struct inode *ip;
13855 	struct ucred *cred;
13856 	struct workhead *wkhd;
13857 {
13858 	struct buf *bp;
13859 	struct fs *fs;
13860 	struct ufsmount *ump;
13861 	int error;
13862 
13863 	ump = ITOUMP(ip);
13864 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
13865 	    ("softdep_inode_append called on non-softdep filesystem"));
13866 	fs = ump->um_fs;
13867 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13868 	    (int)fs->fs_bsize, cred, &bp);
13869 	if (error) {
13870 		bqrelse(bp);
13871 		softdep_freework(wkhd);
13872 		return;
13873 	}
13874 	softdep_buf_append(bp, wkhd);
13875 	bqrelse(bp);
13876 }
13877 
13878 void
13879 softdep_freework(wkhd)
13880 	struct workhead *wkhd;
13881 {
13882 	struct worklist *wk;
13883 	struct ufsmount *ump;
13884 
13885 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13886 		return;
13887 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13888 	    ("softdep_freework called on non-softdep filesystem"));
13889 	ump = VFSTOUFS(wk->wk_mp);
13890 	ACQUIRE_LOCK(ump);
13891 	handle_jwork(wkhd);
13892 	FREE_LOCK(ump);
13893 }
13894 
13895 /*
13896  * Function to determine if the buffer has outstanding dependencies
13897  * that will cause a roll-back if the buffer is written. If wantcount
13898  * is set, return number of dependencies, otherwise just yes or no.
13899  */
13900 static int
13901 softdep_count_dependencies(bp, wantcount)
13902 	struct buf *bp;
13903 	int wantcount;
13904 {
13905 	struct worklist *wk;
13906 	struct ufsmount *ump;
13907 	struct bmsafemap *bmsafemap;
13908 	struct freework *freework;
13909 	struct inodedep *inodedep;
13910 	struct indirdep *indirdep;
13911 	struct freeblks *freeblks;
13912 	struct allocindir *aip;
13913 	struct pagedep *pagedep;
13914 	struct dirrem *dirrem;
13915 	struct newblk *newblk;
13916 	struct mkdir *mkdir;
13917 	struct diradd *dap;
13918 	struct vnode *vp;
13919 	struct mount *mp;
13920 	int i, retval;
13921 
13922 	retval = 0;
13923 	if (LIST_EMPTY(&bp->b_dep))
13924 		return (0);
13925 	vp = bp->b_vp;
13926 
13927 	/*
13928 	 * The ump mount point is stable after we get a correct
13929 	 * pointer, since bp is locked and this prevents unmount from
13930 	 * proceed.  But to get to it, we cannot dereference bp->b_dep
13931 	 * head wk_mp, because we do not yet own SU ump lock and
13932 	 * workitem might be freed while dereferenced.
13933 	 */
13934 retry:
13935 	if (vp->v_type == VCHR) {
13936 		VI_LOCK(vp);
13937 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
13938 		VI_UNLOCK(vp);
13939 		if (mp == NULL)
13940 			goto retry;
13941 	} else if (vp->v_type == VREG) {
13942 		mp = vp->v_mount;
13943 	} else {
13944 		return (0);
13945 	}
13946 	ump = VFSTOUFS(mp);
13947 
13948 	ACQUIRE_LOCK(ump);
13949 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13950 		switch (wk->wk_type) {
13951 
13952 		case D_INODEDEP:
13953 			inodedep = WK_INODEDEP(wk);
13954 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13955 				/* bitmap allocation dependency */
13956 				retval += 1;
13957 				if (!wantcount)
13958 					goto out;
13959 			}
13960 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13961 				/* direct block pointer dependency */
13962 				retval += 1;
13963 				if (!wantcount)
13964 					goto out;
13965 			}
13966 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13967 				/* direct block pointer dependency */
13968 				retval += 1;
13969 				if (!wantcount)
13970 					goto out;
13971 			}
13972 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13973 				/* Add reference dependency. */
13974 				retval += 1;
13975 				if (!wantcount)
13976 					goto out;
13977 			}
13978 			continue;
13979 
13980 		case D_INDIRDEP:
13981 			indirdep = WK_INDIRDEP(wk);
13982 
13983 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13984 				/* indirect truncation dependency */
13985 				retval += 1;
13986 				if (!wantcount)
13987 					goto out;
13988 			}
13989 
13990 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13991 				/* indirect block pointer dependency */
13992 				retval += 1;
13993 				if (!wantcount)
13994 					goto out;
13995 			}
13996 			continue;
13997 
13998 		case D_PAGEDEP:
13999 			pagedep = WK_PAGEDEP(wk);
14000 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14001 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14002 					/* Journal remove ref dependency. */
14003 					retval += 1;
14004 					if (!wantcount)
14005 						goto out;
14006 				}
14007 			}
14008 			for (i = 0; i < DAHASHSZ; i++) {
14009 
14010 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14011 					/* directory entry dependency */
14012 					retval += 1;
14013 					if (!wantcount)
14014 						goto out;
14015 				}
14016 			}
14017 			continue;
14018 
14019 		case D_BMSAFEMAP:
14020 			bmsafemap = WK_BMSAFEMAP(wk);
14021 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14022 				/* Add reference dependency. */
14023 				retval += 1;
14024 				if (!wantcount)
14025 					goto out;
14026 			}
14027 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14028 				/* Allocate block dependency. */
14029 				retval += 1;
14030 				if (!wantcount)
14031 					goto out;
14032 			}
14033 			continue;
14034 
14035 		case D_FREEBLKS:
14036 			freeblks = WK_FREEBLKS(wk);
14037 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14038 				/* Freeblk journal dependency. */
14039 				retval += 1;
14040 				if (!wantcount)
14041 					goto out;
14042 			}
14043 			continue;
14044 
14045 		case D_ALLOCDIRECT:
14046 		case D_ALLOCINDIR:
14047 			newblk = WK_NEWBLK(wk);
14048 			if (newblk->nb_jnewblk) {
14049 				/* Journal allocate dependency. */
14050 				retval += 1;
14051 				if (!wantcount)
14052 					goto out;
14053 			}
14054 			continue;
14055 
14056 		case D_MKDIR:
14057 			mkdir = WK_MKDIR(wk);
14058 			if (mkdir->md_jaddref) {
14059 				/* Journal reference dependency. */
14060 				retval += 1;
14061 				if (!wantcount)
14062 					goto out;
14063 			}
14064 			continue;
14065 
14066 		case D_FREEWORK:
14067 		case D_FREEDEP:
14068 		case D_JSEGDEP:
14069 		case D_JSEG:
14070 		case D_SBDEP:
14071 			/* never a dependency on these blocks */
14072 			continue;
14073 
14074 		default:
14075 			panic("softdep_count_dependencies: Unexpected type %s",
14076 			    TYPENAME(wk->wk_type));
14077 			/* NOTREACHED */
14078 		}
14079 	}
14080 out:
14081 	FREE_LOCK(ump);
14082 	return (retval);
14083 }
14084 
14085 /*
14086  * Acquire exclusive access to a buffer.
14087  * Must be called with a locked mtx parameter.
14088  * Return acquired buffer or NULL on failure.
14089  */
14090 static struct buf *
14091 getdirtybuf(bp, lock, waitfor)
14092 	struct buf *bp;
14093 	struct rwlock *lock;
14094 	int waitfor;
14095 {
14096 	int error;
14097 
14098 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14099 		if (waitfor != MNT_WAIT)
14100 			return (NULL);
14101 		error = BUF_LOCK(bp,
14102 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14103 		/*
14104 		 * Even if we successfully acquire bp here, we have dropped
14105 		 * lock, which may violates our guarantee.
14106 		 */
14107 		if (error == 0)
14108 			BUF_UNLOCK(bp);
14109 		else if (error != ENOLCK)
14110 			panic("getdirtybuf: inconsistent lock: %d", error);
14111 		rw_wlock(lock);
14112 		return (NULL);
14113 	}
14114 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14115 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14116 			rw_wunlock(lock);
14117 			BO_LOCK(bp->b_bufobj);
14118 			BUF_UNLOCK(bp);
14119 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14120 				bp->b_vflags |= BV_BKGRDWAIT;
14121 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14122 				       PRIBIO | PDROP, "getbuf", 0);
14123 			} else
14124 				BO_UNLOCK(bp->b_bufobj);
14125 			rw_wlock(lock);
14126 			return (NULL);
14127 		}
14128 		BUF_UNLOCK(bp);
14129 		if (waitfor != MNT_WAIT)
14130 			return (NULL);
14131 		/*
14132 		 * The lock argument must be bp->b_vp's mutex in
14133 		 * this case.
14134 		 */
14135 #ifdef	DEBUG_VFS_LOCKS
14136 		if (bp->b_vp->v_type != VCHR)
14137 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14138 #endif
14139 		bp->b_vflags |= BV_BKGRDWAIT;
14140 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14141 		return (NULL);
14142 	}
14143 	if ((bp->b_flags & B_DELWRI) == 0) {
14144 		BUF_UNLOCK(bp);
14145 		return (NULL);
14146 	}
14147 	bremfree(bp);
14148 	return (bp);
14149 }
14150 
14151 
14152 /*
14153  * Check if it is safe to suspend the file system now.  On entry,
14154  * the vnode interlock for devvp should be held.  Return 0 with
14155  * the mount interlock held if the file system can be suspended now,
14156  * otherwise return EAGAIN with the mount interlock held.
14157  */
14158 int
14159 softdep_check_suspend(struct mount *mp,
14160 		      struct vnode *devvp,
14161 		      int softdep_depcnt,
14162 		      int softdep_accdepcnt,
14163 		      int secondary_writes,
14164 		      int secondary_accwrites)
14165 {
14166 	struct bufobj *bo;
14167 	struct ufsmount *ump;
14168 	struct inodedep *inodedep;
14169 	int error, unlinked;
14170 
14171 	bo = &devvp->v_bufobj;
14172 	ASSERT_BO_WLOCKED(bo);
14173 
14174 	/*
14175 	 * If we are not running with soft updates, then we need only
14176 	 * deal with secondary writes as we try to suspend.
14177 	 */
14178 	if (MOUNTEDSOFTDEP(mp) == 0) {
14179 		MNT_ILOCK(mp);
14180 		while (mp->mnt_secondary_writes != 0) {
14181 			BO_UNLOCK(bo);
14182 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14183 			    (PUSER - 1) | PDROP, "secwr", 0);
14184 			BO_LOCK(bo);
14185 			MNT_ILOCK(mp);
14186 		}
14187 
14188 		/*
14189 		 * Reasons for needing more work before suspend:
14190 		 * - Dirty buffers on devvp.
14191 		 * - Secondary writes occurred after start of vnode sync loop
14192 		 */
14193 		error = 0;
14194 		if (bo->bo_numoutput > 0 ||
14195 		    bo->bo_dirty.bv_cnt > 0 ||
14196 		    secondary_writes != 0 ||
14197 		    mp->mnt_secondary_writes != 0 ||
14198 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14199 			error = EAGAIN;
14200 		BO_UNLOCK(bo);
14201 		return (error);
14202 	}
14203 
14204 	/*
14205 	 * If we are running with soft updates, then we need to coordinate
14206 	 * with them as we try to suspend.
14207 	 */
14208 	ump = VFSTOUFS(mp);
14209 	for (;;) {
14210 		if (!TRY_ACQUIRE_LOCK(ump)) {
14211 			BO_UNLOCK(bo);
14212 			ACQUIRE_LOCK(ump);
14213 			FREE_LOCK(ump);
14214 			BO_LOCK(bo);
14215 			continue;
14216 		}
14217 		MNT_ILOCK(mp);
14218 		if (mp->mnt_secondary_writes != 0) {
14219 			FREE_LOCK(ump);
14220 			BO_UNLOCK(bo);
14221 			msleep(&mp->mnt_secondary_writes,
14222 			       MNT_MTX(mp),
14223 			       (PUSER - 1) | PDROP, "secwr", 0);
14224 			BO_LOCK(bo);
14225 			continue;
14226 		}
14227 		break;
14228 	}
14229 
14230 	unlinked = 0;
14231 	if (MOUNTEDSUJ(mp)) {
14232 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14233 		    inodedep != NULL;
14234 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14235 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14236 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14237 			    UNLINKONLIST) ||
14238 			    !check_inodedep_free(inodedep))
14239 				continue;
14240 			unlinked++;
14241 		}
14242 	}
14243 
14244 	/*
14245 	 * Reasons for needing more work before suspend:
14246 	 * - Dirty buffers on devvp.
14247 	 * - Softdep activity occurred after start of vnode sync loop
14248 	 * - Secondary writes occurred after start of vnode sync loop
14249 	 */
14250 	error = 0;
14251 	if (bo->bo_numoutput > 0 ||
14252 	    bo->bo_dirty.bv_cnt > 0 ||
14253 	    softdep_depcnt != unlinked ||
14254 	    ump->softdep_deps != unlinked ||
14255 	    softdep_accdepcnt != ump->softdep_accdeps ||
14256 	    secondary_writes != 0 ||
14257 	    mp->mnt_secondary_writes != 0 ||
14258 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14259 		error = EAGAIN;
14260 	FREE_LOCK(ump);
14261 	BO_UNLOCK(bo);
14262 	return (error);
14263 }
14264 
14265 
14266 /*
14267  * Get the number of dependency structures for the file system, both
14268  * the current number and the total number allocated.  These will
14269  * later be used to detect that softdep processing has occurred.
14270  */
14271 void
14272 softdep_get_depcounts(struct mount *mp,
14273 		      int *softdep_depsp,
14274 		      int *softdep_accdepsp)
14275 {
14276 	struct ufsmount *ump;
14277 
14278 	if (MOUNTEDSOFTDEP(mp) == 0) {
14279 		*softdep_depsp = 0;
14280 		*softdep_accdepsp = 0;
14281 		return;
14282 	}
14283 	ump = VFSTOUFS(mp);
14284 	ACQUIRE_LOCK(ump);
14285 	*softdep_depsp = ump->softdep_deps;
14286 	*softdep_accdepsp = ump->softdep_accdeps;
14287 	FREE_LOCK(ump);
14288 }
14289 
14290 /*
14291  * Wait for pending output on a vnode to complete.
14292  * Must be called with vnode lock and interlock locked.
14293  *
14294  * XXX: Should just be a call to bufobj_wwait().
14295  */
14296 static void
14297 drain_output(vp)
14298 	struct vnode *vp;
14299 {
14300 	struct bufobj *bo;
14301 
14302 	bo = &vp->v_bufobj;
14303 	ASSERT_VOP_LOCKED(vp, "drain_output");
14304 	ASSERT_BO_WLOCKED(bo);
14305 
14306 	while (bo->bo_numoutput) {
14307 		bo->bo_flag |= BO_WWAIT;
14308 		msleep((caddr_t)&bo->bo_numoutput,
14309 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
14310 	}
14311 }
14312 
14313 /*
14314  * Called whenever a buffer that is being invalidated or reallocated
14315  * contains dependencies. This should only happen if an I/O error has
14316  * occurred. The routine is called with the buffer locked.
14317  */
14318 static void
14319 softdep_deallocate_dependencies(bp)
14320 	struct buf *bp;
14321 {
14322 
14323 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14324 		panic("softdep_deallocate_dependencies: dangling deps");
14325 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14326 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14327 	else
14328 		printf("softdep_deallocate_dependencies: "
14329 		    "got error %d while accessing filesystem\n", bp->b_error);
14330 	if (bp->b_error != ENXIO)
14331 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14332 }
14333 
14334 /*
14335  * Function to handle asynchronous write errors in the filesystem.
14336  */
14337 static void
14338 softdep_error(func, error)
14339 	char *func;
14340 	int error;
14341 {
14342 
14343 	/* XXX should do something better! */
14344 	printf("%s: got error %d while accessing filesystem\n", func, error);
14345 }
14346 
14347 #ifdef DDB
14348 
14349 static void
14350 inodedep_print(struct inodedep *inodedep, int verbose)
14351 {
14352 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %jd nlink %jd"
14353 	    " saveino %p\n",
14354 	    inodedep, inodedep->id_fs, inodedep->id_state,
14355 	    (intmax_t)inodedep->id_ino,
14356 	    (intmax_t)fsbtodb(inodedep->id_fs,
14357 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14358 	    (intmax_t)inodedep->id_nlinkdelta,
14359 	    (intmax_t)inodedep->id_savednlink,
14360 	    inodedep->id_savedino1);
14361 
14362 	if (verbose == 0)
14363 		return;
14364 
14365 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14366 	    "mkdiradd %p\n",
14367 	    LIST_FIRST(&inodedep->id_pendinghd),
14368 	    LIST_FIRST(&inodedep->id_bufwait),
14369 	    LIST_FIRST(&inodedep->id_inowait),
14370 	    TAILQ_FIRST(&inodedep->id_inoreflst),
14371 	    inodedep->id_mkdiradd);
14372 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14373 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14374 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14375 	    TAILQ_FIRST(&inodedep->id_extupdt),
14376 	    TAILQ_FIRST(&inodedep->id_newextupdt));
14377 }
14378 
14379 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14380 {
14381 
14382 	if (have_addr == 0) {
14383 		db_printf("Address required\n");
14384 		return;
14385 	}
14386 	inodedep_print((struct inodedep*)addr, 1);
14387 }
14388 
14389 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14390 {
14391 	struct inodedep_hashhead *inodedephd;
14392 	struct inodedep *inodedep;
14393 	struct ufsmount *ump;
14394 	int cnt;
14395 
14396 	if (have_addr == 0) {
14397 		db_printf("Address required\n");
14398 		return;
14399 	}
14400 	ump = (struct ufsmount *)addr;
14401 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14402 		inodedephd = &ump->inodedep_hashtbl[cnt];
14403 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14404 			inodedep_print(inodedep, 0);
14405 		}
14406 	}
14407 }
14408 
14409 DB_SHOW_COMMAND(worklist, db_show_worklist)
14410 {
14411 	struct worklist *wk;
14412 
14413 	if (have_addr == 0) {
14414 		db_printf("Address required\n");
14415 		return;
14416 	}
14417 	wk = (struct worklist *)addr;
14418 	printf("worklist: %p type %s state 0x%X\n",
14419 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14420 }
14421 
14422 DB_SHOW_COMMAND(workhead, db_show_workhead)
14423 {
14424 	struct workhead *wkhd;
14425 	struct worklist *wk;
14426 	int i;
14427 
14428 	if (have_addr == 0) {
14429 		db_printf("Address required\n");
14430 		return;
14431 	}
14432 	wkhd = (struct workhead *)addr;
14433 	wk = LIST_FIRST(wkhd);
14434 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14435 		db_printf("worklist: %p type %s state 0x%X",
14436 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14437 	if (i == 100)
14438 		db_printf("workhead overflow");
14439 	printf("\n");
14440 }
14441 
14442 
14443 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14444 {
14445 	struct mkdirlist *mkdirlisthd;
14446 	struct jaddref *jaddref;
14447 	struct diradd *diradd;
14448 	struct mkdir *mkdir;
14449 
14450 	if (have_addr == 0) {
14451 		db_printf("Address required\n");
14452 		return;
14453 	}
14454 	mkdirlisthd = (struct mkdirlist *)addr;
14455 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14456 		diradd = mkdir->md_diradd;
14457 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14458 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14459 		if ((jaddref = mkdir->md_jaddref) != NULL)
14460 			db_printf(" jaddref %p jaddref state 0x%X",
14461 			    jaddref, jaddref->ja_state);
14462 		db_printf("\n");
14463 	}
14464 }
14465 
14466 /* exported to ffs_vfsops.c */
14467 extern void db_print_ffs(struct ufsmount *ump);
14468 void
14469 db_print_ffs(struct ufsmount *ump)
14470 {
14471 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14472 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14473 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14474 	    ump->softdep_deps, ump->softdep_req);
14475 }
14476 
14477 #endif /* DDB */
14478 
14479 #endif /* SOFTUPDATES */
14480