1 2 /* 3 * Copyright 1998 Marshall Kirk McKusick. All Rights Reserved. 4 * 5 * The soft updates code is derived from the appendix of a University 6 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 7 * "Soft Updates: A Solution to the Metadata Update Problem in File 8 * Systems", CSE-TR-254-95, August 1995). 9 * 10 * The following are the copyrights and redistribution conditions that 11 * apply to this copy of the soft update software. For a license 12 * to use, redistribute or sell the soft update software under 13 * conditions other than those described here, please contact the 14 * author at one of the following addresses: 15 * 16 * Marshall Kirk McKusick mckusick@mckusick.com 17 * 1614 Oxford Street +1-510-843-9542 18 * Berkeley, CA 94709-1608 19 * USA 20 * 21 * Redistribution and use in source and binary forms, with or without 22 * modification, are permitted provided that the following conditions 23 * are met: 24 * 25 * 1. Redistributions of source code must retain the above copyright 26 * notice, this list of conditions and the following disclaimer. 27 * 2. Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in the 29 * documentation and/or other materials provided with the distribution. 30 * 3. None of the names of McKusick, Ganger, Patt, or the University of 31 * Michigan may be used to endorse or promote products derived from 32 * this software without specific prior written permission. 33 * 4. Redistributions in any form must be accompanied by information on 34 * how to obtain complete source code for any accompanying software 35 * that uses this software. This source code must either be included 36 * in the distribution or be available for no more than the cost of 37 * distribution plus a nominal fee, and must be freely redistributable 38 * under reasonable conditions. For an executable file, complete 39 * source code means the source code for all modules it contains. 40 * It does not mean source code for modules or files that typically 41 * accompany the operating system on which the executable file runs, 42 * e.g., standard library modules or system header files. 43 * 44 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 45 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 46 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 47 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 48 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 54 * SUCH DAMAGE. 55 * 56 * from: @(#)ffs_softdep.c 9.28 (McKusick) 8/8/98 57 * $Id: ffs_softdep.c,v 1.16 1998/10/28 10:37:54 jkh Exp $ 58 */ 59 60 /* 61 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 62 */ 63 #ifndef DIAGNOSTIC 64 #define DIAGNOSTIC 65 #endif 66 #ifndef DEBUG 67 #define DEBUG 68 #endif 69 70 #include <sys/param.h> 71 #include <sys/buf.h> 72 #include <sys/kernel.h> 73 #include <sys/malloc.h> 74 #include <sys/mount.h> 75 #include <sys/proc.h> 76 #include <sys/syslog.h> 77 #include <sys/systm.h> 78 #include <sys/vnode.h> 79 #include <miscfs/specfs/specdev.h> 80 #include <ufs/ufs/dir.h> 81 #include <ufs/ufs/quota.h> 82 #include <ufs/ufs/inode.h> 83 #include <ufs/ufs/ufsmount.h> 84 #include <ufs/ffs/fs.h> 85 #include <ufs/ffs/softdep.h> 86 #include <ufs/ffs/ffs_extern.h> 87 #include <ufs/ufs/ufs_extern.h> 88 89 /* 90 * These definitions need to be adapted to the system to which 91 * this file is being ported. 92 */ 93 /* 94 * malloc types defined for the softdep system. 95 */ 96 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 97 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 98 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 99 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 100 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 101 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 102 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 103 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 104 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 105 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 106 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 107 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 108 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 109 110 #define D_PAGEDEP 0 111 #define D_INODEDEP 1 112 #define D_NEWBLK 2 113 #define D_BMSAFEMAP 3 114 #define D_ALLOCDIRECT 4 115 #define D_INDIRDEP 5 116 #define D_ALLOCINDIR 6 117 #define D_FREEFRAG 7 118 #define D_FREEBLKS 8 119 #define D_FREEFILE 9 120 #define D_DIRADD 10 121 #define D_MKDIR 11 122 #define D_DIRREM 12 123 #define D_LAST D_DIRREM 124 125 /* 126 * translate from workitem type to memory type 127 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 128 */ 129 static struct malloc_type *memtype[] = { 130 M_PAGEDEP, 131 M_INODEDEP, 132 M_NEWBLK, 133 M_BMSAFEMAP, 134 M_ALLOCDIRECT, 135 M_INDIRDEP, 136 M_ALLOCINDIR, 137 M_FREEFRAG, 138 M_FREEBLKS, 139 M_FREEFILE, 140 M_DIRADD, 141 M_MKDIR, 142 M_DIRREM 143 }; 144 145 #define DtoM(type) (memtype[type]) 146 147 /* 148 * Names of malloc types. 149 */ 150 #define TYPENAME(type) \ 151 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 152 #define CURPROC curproc 153 /* 154 * End system adaptaion definitions. 155 */ 156 157 /* 158 * Internal function prototypes. 159 */ 160 static void softdep_error __P((char *, int)); 161 static int getdirtybuf __P((struct buf **, int)); 162 static int flush_pagedep_deps __P((struct vnode *, struct mount *, 163 struct diraddhd *)); 164 static int flush_inodedep_deps __P((struct fs *, ino_t)); 165 static int handle_written_filepage __P((struct pagedep *, struct buf *)); 166 static void diradd_inode_written __P((struct diradd *, struct inodedep *)); 167 static int handle_written_inodeblock __P((struct inodedep *, struct buf *)); 168 static void handle_allocdirect_partdone __P((struct allocdirect *)); 169 static void handle_allocindir_partdone __P((struct allocindir *)); 170 static void initiate_write_filepage __P((struct pagedep *, struct buf *)); 171 static void handle_written_mkdir __P((struct mkdir *, int)); 172 static void initiate_write_inodeblock __P((struct inodedep *, struct buf *)); 173 static void handle_workitem_freefile __P((struct freefile *)); 174 static void handle_workitem_remove __P((struct dirrem *)); 175 static struct dirrem *newdirrem __P((struct buf *, struct inode *, 176 struct inode *, int)); 177 static void free_diradd __P((struct diradd *)); 178 static void free_allocindir __P((struct allocindir *, struct inodedep *)); 179 static int indir_trunc __P((struct inode *, ufs_daddr_t, int, ufs_lbn_t, 180 long *)); 181 static void deallocate_dependencies __P((struct buf *, struct inodedep *)); 182 static void free_allocdirect __P((struct allocdirectlst *, 183 struct allocdirect *, int)); 184 static int free_inodedep __P((struct inodedep *)); 185 static void handle_workitem_freeblocks __P((struct freeblks *)); 186 static void merge_inode_lists __P((struct inodedep *)); 187 static void setup_allocindir_phase2 __P((struct buf *, struct inode *, 188 struct allocindir *)); 189 static struct allocindir *newallocindir __P((struct inode *, int, ufs_daddr_t, 190 ufs_daddr_t)); 191 static void handle_workitem_freefrag __P((struct freefrag *)); 192 static struct freefrag *newfreefrag __P((struct inode *, ufs_daddr_t, long)); 193 static void allocdirect_merge __P((struct allocdirectlst *, 194 struct allocdirect *, struct allocdirect *)); 195 static struct bmsafemap *bmsafemap_lookup __P((struct buf *)); 196 static int newblk_lookup __P((struct fs *, ufs_daddr_t, int, 197 struct newblk **)); 198 static int inodedep_lookup __P((struct fs *, ino_t, int, struct inodedep **)); 199 static int pagedep_lookup __P((struct inode *, ufs_lbn_t, int, 200 struct pagedep **)); 201 static void pause_timer __P((void *)); 202 static int checklimit __P((long *, int)); 203 static void add_to_worklist __P((struct worklist *)); 204 205 /* 206 * Exported softdep operations. 207 */ 208 struct bio_ops bioops = { 209 softdep_disk_io_initiation, /* io_start */ 210 softdep_disk_write_complete, /* io_complete */ 211 softdep_deallocate_dependencies, /* io_deallocate */ 212 softdep_fsync, /* io_fsync */ 213 softdep_process_worklist, /* io_sync */ 214 }; 215 216 /* 217 * Locking primitives. 218 * 219 * For a uniprocessor, all we need to do is protect against disk 220 * interrupts. For a multiprocessor, this lock would have to be 221 * a mutex. A single mutex is used throughout this file, though 222 * finer grain locking could be used if contention warranted it. 223 * 224 * For a multiprocessor, the sleep call would accept a lock and 225 * release it after the sleep processing was complete. In a uniprocessor 226 * implementation there is no such interlock, so we simple mark 227 * the places where it needs to be done with the `interlocked' form 228 * of the lock calls. Since the uniprocessor sleep already interlocks 229 * the spl, there is nothing that really needs to be done. 230 */ 231 #ifndef /* NOT */ DEBUG 232 static struct lockit { 233 int lkt_spl; 234 } lk = { 0 }; 235 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 236 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 237 #define ACQUIRE_LOCK_INTERLOCKED(lk) 238 #define FREE_LOCK_INTERLOCKED(lk) 239 240 #else /* DEBUG */ 241 static struct lockit { 242 int lkt_spl; 243 pid_t lkt_held; 244 } lk = { 0, -1 }; 245 static int lockcnt; 246 247 static void acquire_lock __P((struct lockit *)); 248 static void free_lock __P((struct lockit *)); 249 static void acquire_lock_interlocked __P((struct lockit *)); 250 static void free_lock_interlocked __P((struct lockit *)); 251 252 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 253 #define FREE_LOCK(lk) free_lock(lk) 254 #define ACQUIRE_LOCK_INTERLOCKED(lk) acquire_lock_interlocked(lk) 255 #define FREE_LOCK_INTERLOCKED(lk) free_lock_interlocked(lk) 256 257 static void 258 acquire_lock(lk) 259 struct lockit *lk; 260 { 261 262 if (lk->lkt_held != -1) 263 if (lk->lkt_held == CURPROC->p_pid) 264 panic("softdep_lock: locking against myself"); 265 else 266 panic("softdep_lock: lock held by %d", lk->lkt_held); 267 lk->lkt_spl = splbio(); 268 lk->lkt_held = CURPROC->p_pid; 269 lockcnt++; 270 } 271 272 static void 273 free_lock(lk) 274 struct lockit *lk; 275 { 276 277 if (lk->lkt_held == -1) 278 panic("softdep_unlock: lock not held"); 279 lk->lkt_held = -1; 280 splx(lk->lkt_spl); 281 } 282 283 static void 284 acquire_lock_interlocked(lk) 285 struct lockit *lk; 286 { 287 288 if (lk->lkt_held != -1) 289 if (lk->lkt_held == CURPROC->p_pid) 290 panic("softdep_lock_interlocked: locking against self"); 291 else 292 panic("softdep_lock_interlocked: lock held by %d", 293 lk->lkt_held); 294 lk->lkt_held = CURPROC->p_pid; 295 lockcnt++; 296 } 297 298 static void 299 free_lock_interlocked(lk) 300 struct lockit *lk; 301 { 302 303 if (lk->lkt_held == -1) 304 panic("softdep_unlock_interlocked: lock not held"); 305 lk->lkt_held = -1; 306 } 307 #endif /* DEBUG */ 308 309 /* 310 * Place holder for real semaphores. 311 */ 312 struct sema { 313 int value; 314 pid_t holder; 315 char *name; 316 int prio; 317 int timo; 318 }; 319 static void sema_init __P((struct sema *, char *, int, int)); 320 static int sema_get __P((struct sema *, struct lockit *)); 321 static void sema_release __P((struct sema *)); 322 323 static void 324 sema_init(semap, name, prio, timo) 325 struct sema *semap; 326 char *name; 327 int prio, timo; 328 { 329 330 semap->holder = -1; 331 semap->value = 0; 332 semap->name = name; 333 semap->prio = prio; 334 semap->timo = timo; 335 } 336 337 static int 338 sema_get(semap, interlock) 339 struct sema *semap; 340 struct lockit *interlock; 341 { 342 343 if (semap->value++ > 0) { 344 if (interlock != NULL) 345 FREE_LOCK_INTERLOCKED(interlock); 346 tsleep((caddr_t)semap, semap->prio, semap->name, semap->timo); 347 if (interlock != NULL) { 348 ACQUIRE_LOCK_INTERLOCKED(interlock); 349 FREE_LOCK(interlock); 350 } 351 return (0); 352 } 353 semap->holder = CURPROC->p_pid; 354 if (interlock != NULL) 355 FREE_LOCK(interlock); 356 return (1); 357 } 358 359 static void 360 sema_release(semap) 361 struct sema *semap; 362 { 363 364 if (semap->value <= 0 || semap->holder != CURPROC->p_pid) 365 panic("sema_release: not held"); 366 if (--semap->value > 0) { 367 semap->value = 0; 368 wakeup(semap); 369 } 370 semap->holder = -1; 371 } 372 373 /* 374 * Worklist queue management. 375 * These routines require that the lock be held. 376 */ 377 #ifndef /* NOT */ DEBUG 378 #define WORKLIST_INSERT(head, item) do { \ 379 (item)->wk_state |= ONWORKLIST; \ 380 LIST_INSERT_HEAD(head, item, wk_list); \ 381 } while (0) 382 #define WORKLIST_REMOVE(item) do { \ 383 (item)->wk_state &= ~ONWORKLIST; \ 384 LIST_REMOVE(item, wk_list); \ 385 } while (0) 386 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 387 388 #else /* DEBUG */ 389 static void worklist_insert __P((struct workhead *, struct worklist *)); 390 static void worklist_remove __P((struct worklist *)); 391 static void workitem_free __P((struct worklist *, int)); 392 393 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 394 #define WORKLIST_REMOVE(item) worklist_remove(item) 395 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 396 397 static void 398 worklist_insert(head, item) 399 struct workhead *head; 400 struct worklist *item; 401 { 402 403 if (lk.lkt_held == -1) 404 panic("worklist_insert: lock not held"); 405 if (item->wk_state & ONWORKLIST) 406 panic("worklist_insert: already on list"); 407 item->wk_state |= ONWORKLIST; 408 LIST_INSERT_HEAD(head, item, wk_list); 409 } 410 411 static void 412 worklist_remove(item) 413 struct worklist *item; 414 { 415 416 if (lk.lkt_held == -1) 417 panic("worklist_remove: lock not held"); 418 if ((item->wk_state & ONWORKLIST) == 0) 419 panic("worklist_remove: not on list"); 420 item->wk_state &= ~ONWORKLIST; 421 LIST_REMOVE(item, wk_list); 422 } 423 424 static void 425 workitem_free(item, type) 426 struct worklist *item; 427 int type; 428 { 429 430 if (item->wk_state & ONWORKLIST) 431 panic("workitem_free: still on list"); 432 if (item->wk_type != type) 433 panic("workitem_free: type mismatch"); 434 FREE(item, DtoM(type)); 435 } 436 #endif /* DEBUG */ 437 438 /* 439 * Workitem queue management 440 */ 441 static struct workhead softdep_workitem_pending; 442 static int softdep_worklist_busy; 443 static int max_softdeps; /* maximum number of structs before slowdown */ 444 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 445 static int max_limit_hit; /* number of times slowdown imposed */ 446 static int rush_requests; /* number of times I/O speeded up */ 447 static int proc_waiting; /* tracks whether we have a timeout posted */ 448 static pid_t filesys_syncer_pid;/* records pid of filesystem syncer process */ 449 #ifdef DEBUG 450 #include <vm/vm.h> 451 #include <sys/sysctl.h> 452 #if defined(__FreeBSD__) 453 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 454 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 455 SYSCTL_INT(_debug, OID_AUTO, max_limit_hit, CTLFLAG_RW, &max_limit_hit, 0, ""); 456 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &rush_requests, 0, ""); 457 #else /* !__FreeBSD__ */ 458 struct ctldebug debug8 = { "max_softdeps", &max_softdeps }; 459 struct ctldebug debug9 = { "tickdelay", &tickdelay }; 460 struct ctldebug debug10 = { "max_limit_hit", &max_limit_hit }; 461 struct ctldebug debug11 = { "rush_requests", &rush_requests }; 462 #endif /* !__FreeBSD__ */ 463 464 #endif /* DEBUG */ 465 466 /* 467 * Add an item to the end of the work queue. 468 * This routine requires that the lock be held. 469 * This is the only routine that adds items to the list. 470 * The following routine is the only one that removes items 471 * and does so in order from first to last. 472 */ 473 static void 474 add_to_worklist(wk) 475 struct worklist *wk; 476 { 477 static struct worklist *worklist_tail; 478 479 if (wk->wk_state & ONWORKLIST) 480 panic("add_to_worklist: already on list"); 481 wk->wk_state |= ONWORKLIST; 482 if (LIST_FIRST(&softdep_workitem_pending) == NULL) { 483 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 484 } else { 485 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 486 } 487 worklist_tail = wk; 488 } 489 490 /* 491 * Process that runs once per second to handle items in the background queue. 492 * 493 * Note that we ensure that everything is done in the order in which they 494 * appear in the queue. The code below depends on this property to ensure 495 * that blocks of a file are freed before the inode itself is freed. This 496 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 497 * until all the old ones have been purged from the dependency lists. 498 */ 499 int 500 softdep_process_worklist(matchmnt) 501 struct mount *matchmnt; 502 { 503 struct proc *p = CURPROC; 504 struct worklist *wk; 505 struct fs *matchfs; 506 int matchcnt; 507 508 /* 509 * Record the process identifier of our caller so that we can 510 * give this process preferential treatment in checklimit below. 511 */ 512 filesys_syncer_pid = p->p_pid; 513 matchcnt = 0; 514 matchfs = NULL; 515 if (matchmnt != NULL) 516 matchfs = VFSTOUFS(matchmnt)->um_fs; 517 /* 518 * There is no danger of having multiple processes run this 519 * code. It is single threaded solely so that softdep_flushfiles 520 * (below) can get an accurate count of the number of items 521 * related to its mount point that are in the list. 522 */ 523 if (softdep_worklist_busy && matchmnt == NULL) 524 return (-1); 525 ACQUIRE_LOCK(&lk); 526 while ((wk = LIST_FIRST(&softdep_workitem_pending)) != 0) { 527 WORKLIST_REMOVE(wk); 528 FREE_LOCK(&lk); 529 switch (wk->wk_type) { 530 531 case D_DIRREM: 532 /* removal of a directory entry */ 533 if (WK_DIRREM(wk)->dm_mnt == matchmnt) 534 matchcnt += 1; 535 handle_workitem_remove(WK_DIRREM(wk)); 536 break; 537 538 case D_FREEBLKS: 539 /* releasing blocks and/or fragments from a file */ 540 if (WK_FREEBLKS(wk)->fb_fs == matchfs) 541 matchcnt += 1; 542 handle_workitem_freeblocks(WK_FREEBLKS(wk)); 543 break; 544 545 case D_FREEFRAG: 546 /* releasing a fragment when replaced as a file grows */ 547 if (WK_FREEFRAG(wk)->ff_fs == matchfs) 548 matchcnt += 1; 549 handle_workitem_freefrag(WK_FREEFRAG(wk)); 550 break; 551 552 case D_FREEFILE: 553 /* releasing an inode when its link count drops to 0 */ 554 if (WK_FREEFILE(wk)->fx_fs == matchfs) 555 matchcnt += 1; 556 handle_workitem_freefile(WK_FREEFILE(wk)); 557 break; 558 559 default: 560 panic("%s_process_worklist: Unknown type %s", 561 "softdep", TYPENAME(wk->wk_type)); 562 /* NOTREACHED */ 563 } 564 if (softdep_worklist_busy && matchmnt == NULL) 565 return (-1); 566 ACQUIRE_LOCK(&lk); 567 } 568 FREE_LOCK(&lk); 569 return (matchcnt); 570 } 571 572 /* 573 * Purge the work list of all items associated with a particular mount point. 574 */ 575 int 576 softdep_flushfiles(oldmnt, flags, p) 577 struct mount *oldmnt; 578 int flags; 579 struct proc *p; 580 { 581 struct vnode *devvp; 582 int error, loopcnt; 583 584 /* 585 * Await our turn to clear out the queue. 586 */ 587 while (softdep_worklist_busy) 588 tsleep(&lbolt, PRIBIO, "softflush", 0); 589 softdep_worklist_busy = 1; 590 if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) { 591 softdep_worklist_busy = 0; 592 return (error); 593 } 594 /* 595 * Alternately flush the block device associated with the mount 596 * point and process any dependencies that the flushing 597 * creates. In theory, this loop can happen at most twice, 598 * but we give it a few extra just to be sure. 599 */ 600 devvp = VFSTOUFS(oldmnt)->um_devvp; 601 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 602 if (softdep_process_worklist(oldmnt) == 0) { 603 /* 604 * Do another flush in case any vnodes were brought in 605 * as part of the cleanup operations. 606 */ 607 if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) 608 break; 609 /* 610 * If we still found nothing to do, we are really done. 611 */ 612 if (softdep_process_worklist(oldmnt) == 0) 613 break; 614 } 615 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p); 616 error = VOP_FSYNC(devvp, p->p_ucred, MNT_WAIT, p); 617 VOP_UNLOCK(devvp, 0, p); 618 if (error) 619 break; 620 } 621 softdep_worklist_busy = 0; 622 /* 623 * If we are unmounting then it is an error to fail. If we 624 * are simply trying to downgrade to read-only, then filesystem 625 * activity can keep us busy forever, so we just fail with EBUSY. 626 */ 627 if (loopcnt == 0) { 628 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 629 panic("softdep_flushfiles: looping"); 630 error = EBUSY; 631 } 632 return (error); 633 } 634 635 /* 636 * A large burst of file addition or deletion activity can drive the 637 * memory load excessively high. Therefore we deliberately slow things 638 * down and speed up the I/O processing if we find ourselves with too 639 * many dependencies in progress. 640 */ 641 static int 642 checklimit(resource, islocked) 643 long *resource; 644 int islocked; 645 { 646 struct proc *p = CURPROC; 647 648 /* 649 * If we are under our limit, just proceed. 650 */ 651 if (*resource < max_softdeps) 652 return (0); 653 /* 654 * We never hold up the filesystem syncer process. 655 */ 656 if (p->p_pid == filesys_syncer_pid) 657 return (0); 658 /* 659 * Our first approach is to speed up the syncer process. 660 * We never push it to speed up more than half of its 661 * normal turn time, otherwise it could take over the cpu. 662 */ 663 if (rushjob < syncdelay / 2) { 664 rushjob += 1; 665 rush_requests += 1; 666 return (0); 667 } 668 /* 669 * Every trick has failed, so we pause momentarily to let 670 * the filesystem syncer process catch up. 671 */ 672 if (islocked == 0) 673 ACQUIRE_LOCK(&lk); 674 if (proc_waiting == 0) { 675 proc_waiting = 1; 676 timeout(pause_timer, NULL, tickdelay > 2 ? tickdelay : 2); 677 } 678 FREE_LOCK_INTERLOCKED(&lk); 679 (void) tsleep((caddr_t)&proc_waiting, PPAUSE | PCATCH, "softupdate", 0); 680 ACQUIRE_LOCK_INTERLOCKED(&lk); 681 if (islocked == 0) 682 FREE_LOCK(&lk); 683 max_limit_hit += 1; 684 return (1); 685 } 686 687 /* 688 * Awaken processes pausing in checklimit and clear proc_waiting 689 * to indicate that there is no longer a timer running. 690 */ 691 void 692 pause_timer(arg) 693 void *arg; 694 { 695 696 proc_waiting = 0; 697 wakeup(&proc_waiting); 698 } 699 700 /* 701 * Structure hashing. 702 * 703 * There are three types of structures that can be looked up: 704 * 1) pagedep structures identified by mount point, inode number, 705 * and logical block. 706 * 2) inodedep structures identified by mount point and inode number. 707 * 3) newblk structures identified by mount point and 708 * physical block number. 709 * 710 * The "pagedep" and "inodedep" dependency structures are hashed 711 * separately from the file blocks and inodes to which they correspond. 712 * This separation helps when the in-memory copy of an inode or 713 * file block must be replaced. It also obviates the need to access 714 * an inode or file page when simply updating (or de-allocating) 715 * dependency structures. Lookup of newblk structures is needed to 716 * find newly allocated blocks when trying to associate them with 717 * their allocdirect or allocindir structure. 718 * 719 * The lookup routines optionally create and hash a new instance when 720 * an existing entry is not found. 721 */ 722 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 723 724 /* 725 * Structures and routines associated with pagedep caching. 726 */ 727 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 728 u_long pagedep_hash; /* size of hash table - 1 */ 729 #define PAGEDEP_HASH(mp, inum, lbn) \ 730 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 731 pagedep_hash]) 732 static struct sema pagedep_in_progress; 733 734 /* 735 * Look up a pagedep. Return 1 if found, 0 if not found. 736 * If not found, allocate if DEPALLOC flag is passed. 737 * Found or allocated entry is returned in pagedeppp. 738 * This routine must be called with splbio interrupts blocked. 739 */ 740 static int 741 pagedep_lookup(ip, lbn, flags, pagedeppp) 742 struct inode *ip; 743 ufs_lbn_t lbn; 744 int flags; 745 struct pagedep **pagedeppp; 746 { 747 struct pagedep *pagedep; 748 struct pagedep_hashhead *pagedephd; 749 struct mount *mp; 750 int i; 751 752 #ifdef DEBUG 753 if (lk.lkt_held == -1) 754 panic("pagedep_lookup: lock not held"); 755 #endif 756 mp = ITOV(ip)->v_mount; 757 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 758 top: 759 for (pagedep = LIST_FIRST(pagedephd); pagedep; 760 pagedep = LIST_NEXT(pagedep, pd_hash)) 761 if (ip->i_number == pagedep->pd_ino && 762 lbn == pagedep->pd_lbn && 763 mp == pagedep->pd_mnt) 764 break; 765 if (pagedep) { 766 *pagedeppp = pagedep; 767 return (1); 768 } 769 if ((flags & DEPALLOC) == 0) { 770 *pagedeppp = NULL; 771 return (0); 772 } 773 if (sema_get(&pagedep_in_progress, &lk) == 0) { 774 ACQUIRE_LOCK(&lk); 775 goto top; 776 } 777 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 778 M_WAITOK); 779 bzero(pagedep, sizeof(struct pagedep)); 780 pagedep->pd_list.wk_type = D_PAGEDEP; 781 pagedep->pd_mnt = mp; 782 pagedep->pd_ino = ip->i_number; 783 pagedep->pd_lbn = lbn; 784 LIST_INIT(&pagedep->pd_dirremhd); 785 LIST_INIT(&pagedep->pd_pendinghd); 786 for (i = 0; i < DAHASHSZ; i++) 787 LIST_INIT(&pagedep->pd_diraddhd[i]); 788 ACQUIRE_LOCK(&lk); 789 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 790 sema_release(&pagedep_in_progress); 791 *pagedeppp = pagedep; 792 return (0); 793 } 794 795 /* 796 * Structures and routines associated with inodedep caching. 797 */ 798 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 799 static u_long inodedep_hash; /* size of hash table - 1 */ 800 static long num_inodedep; /* number of inodedep allocated */ 801 #define INODEDEP_HASH(fs, inum) \ 802 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 803 static struct sema inodedep_in_progress; 804 805 /* 806 * Look up a inodedep. Return 1 if found, 0 if not found. 807 * If not found, allocate if DEPALLOC flag is passed. 808 * Found or allocated entry is returned in inodedeppp. 809 * This routine must be called with splbio interrupts blocked. 810 */ 811 static int 812 inodedep_lookup(fs, inum, flags, inodedeppp) 813 struct fs *fs; 814 ino_t inum; 815 int flags; 816 struct inodedep **inodedeppp; 817 { 818 struct inodedep *inodedep; 819 struct inodedep_hashhead *inodedephd; 820 int firsttry; 821 822 #ifdef DEBUG 823 if (lk.lkt_held == -1) 824 panic("inodedep_lookup: lock not held"); 825 #endif 826 firsttry = 1; 827 inodedephd = INODEDEP_HASH(fs, inum); 828 top: 829 for (inodedep = LIST_FIRST(inodedephd); inodedep; 830 inodedep = LIST_NEXT(inodedep, id_hash)) 831 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 832 break; 833 if (inodedep) { 834 *inodedeppp = inodedep; 835 return (1); 836 } 837 if ((flags & DEPALLOC) == 0) { 838 *inodedeppp = NULL; 839 return (0); 840 } 841 if (firsttry && checklimit(&num_inodedep, 1) == 1) { 842 firsttry = 0; 843 goto top; 844 } 845 if (sema_get(&inodedep_in_progress, &lk) == 0) { 846 ACQUIRE_LOCK(&lk); 847 goto top; 848 } 849 num_inodedep += 1; 850 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 851 M_INODEDEP, M_WAITOK); 852 inodedep->id_list.wk_type = D_INODEDEP; 853 inodedep->id_fs = fs; 854 inodedep->id_ino = inum; 855 inodedep->id_state = ALLCOMPLETE; 856 inodedep->id_nlinkdelta = 0; 857 inodedep->id_savedino = NULL; 858 inodedep->id_savedsize = -1; 859 inodedep->id_buf = NULL; 860 LIST_INIT(&inodedep->id_pendinghd); 861 LIST_INIT(&inodedep->id_inowait); 862 LIST_INIT(&inodedep->id_bufwait); 863 TAILQ_INIT(&inodedep->id_inoupdt); 864 TAILQ_INIT(&inodedep->id_newinoupdt); 865 ACQUIRE_LOCK(&lk); 866 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 867 sema_release(&inodedep_in_progress); 868 *inodedeppp = inodedep; 869 return (0); 870 } 871 872 /* 873 * Structures and routines associated with newblk caching. 874 */ 875 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 876 u_long newblk_hash; /* size of hash table - 1 */ 877 #define NEWBLK_HASH(fs, inum) \ 878 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 879 static struct sema newblk_in_progress; 880 881 /* 882 * Look up a newblk. Return 1 if found, 0 if not found. 883 * If not found, allocate if DEPALLOC flag is passed. 884 * Found or allocated entry is returned in newblkpp. 885 */ 886 static int 887 newblk_lookup(fs, newblkno, flags, newblkpp) 888 struct fs *fs; 889 ufs_daddr_t newblkno; 890 int flags; 891 struct newblk **newblkpp; 892 { 893 struct newblk *newblk; 894 struct newblk_hashhead *newblkhd; 895 896 newblkhd = NEWBLK_HASH(fs, newblkno); 897 top: 898 for (newblk = LIST_FIRST(newblkhd); newblk; 899 newblk = LIST_NEXT(newblk, nb_hash)) 900 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 901 break; 902 if (newblk) { 903 *newblkpp = newblk; 904 return (1); 905 } 906 if ((flags & DEPALLOC) == 0) { 907 *newblkpp = NULL; 908 return (0); 909 } 910 if (sema_get(&newblk_in_progress, 0) == 0) 911 goto top; 912 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 913 M_NEWBLK, M_WAITOK); 914 newblk->nb_state = 0; 915 newblk->nb_fs = fs; 916 newblk->nb_newblkno = newblkno; 917 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 918 sema_release(&newblk_in_progress); 919 *newblkpp = newblk; 920 return (0); 921 } 922 923 /* 924 * Executed during filesystem system initialization before 925 * mounting any file systems. 926 */ 927 void 928 softdep_initialize() 929 { 930 931 LIST_INIT(&mkdirlisthd); 932 LIST_INIT(&softdep_workitem_pending); 933 max_softdeps = desiredvnodes * 8; 934 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 935 &pagedep_hash); 936 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 937 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 938 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 939 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 940 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 941 } 942 943 /* 944 * Called at mount time to notify the dependency code that a 945 * filesystem wishes to use it. 946 */ 947 int 948 softdep_mount(devvp, mp, fs, cred) 949 struct vnode *devvp; 950 struct mount *mp; 951 struct fs *fs; 952 struct ucred *cred; 953 { 954 struct csum cstotal; 955 struct cg *cgp; 956 struct buf *bp; 957 int error, cyl; 958 959 mp->mnt_flag &= ~MNT_ASYNC; 960 mp->mnt_flag |= MNT_SOFTDEP; 961 /* 962 * When doing soft updates, the counters in the 963 * superblock may have gotten out of sync, so we have 964 * to scan the cylinder groups and recalculate them. 965 */ 966 if (fs->fs_clean != 0) 967 return (0); 968 bzero(&cstotal, sizeof cstotal); 969 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 970 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 971 fs->fs_cgsize, cred, &bp)) != 0) { 972 brelse(bp); 973 return (error); 974 } 975 cgp = (struct cg *)bp->b_data; 976 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 977 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 978 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 979 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 980 fs->fs_cs(fs, cyl) = cgp->cg_cs; 981 brelse(bp); 982 } 983 #ifdef DEBUG 984 if (!bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 985 printf("ffs_mountfs: superblock updated for soft updates\n"); 986 #endif 987 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 988 return (0); 989 } 990 991 /* 992 * Protecting the freemaps (or bitmaps). 993 * 994 * To eliminate the need to execute fsck before mounting a file system 995 * after a power failure, one must (conservatively) guarantee that the 996 * on-disk copy of the bitmaps never indicate that a live inode or block is 997 * free. So, when a block or inode is allocated, the bitmap should be 998 * updated (on disk) before any new pointers. When a block or inode is 999 * freed, the bitmap should not be updated until all pointers have been 1000 * reset. The latter dependency is handled by the delayed de-allocation 1001 * approach described below for block and inode de-allocation. The former 1002 * dependency is handled by calling the following procedure when a block or 1003 * inode is allocated. When an inode is allocated an "inodedep" is created 1004 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1005 * Each "inodedep" is also inserted into the hash indexing structure so 1006 * that any additional link additions can be made dependent on the inode 1007 * allocation. 1008 * 1009 * The ufs file system maintains a number of free block counts (e.g., per 1010 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1011 * in addition to the bitmaps. These counts are used to improve efficiency 1012 * during allocation and therefore must be consistent with the bitmaps. 1013 * There is no convenient way to guarantee post-crash consistency of these 1014 * counts with simple update ordering, for two main reasons: (1) The counts 1015 * and bitmaps for a single cylinder group block are not in the same disk 1016 * sector. If a disk write is interrupted (e.g., by power failure), one may 1017 * be written and the other not. (2) Some of the counts are located in the 1018 * superblock rather than the cylinder group block. So, we focus our soft 1019 * updates implementation on protecting the bitmaps. When mounting a 1020 * filesystem, we recompute the auxiliary counts from the bitmaps. 1021 */ 1022 1023 /* 1024 * Called just after updating the cylinder group block to allocate an inode. 1025 */ 1026 void 1027 softdep_setup_inomapdep(bp, ip, newinum) 1028 struct buf *bp; /* buffer for cylgroup block with inode map */ 1029 struct inode *ip; /* inode related to allocation */ 1030 ino_t newinum; /* new inode number being allocated */ 1031 { 1032 struct inodedep *inodedep; 1033 struct bmsafemap *bmsafemap; 1034 1035 /* 1036 * Create a dependency for the newly allocated inode. 1037 * Panic if it already exists as something is seriously wrong. 1038 * Otherwise add it to the dependency list for the buffer holding 1039 * the cylinder group map from which it was allocated. 1040 */ 1041 ACQUIRE_LOCK(&lk); 1042 if (inodedep_lookup(ip->i_fs, newinum, DEPALLOC, &inodedep) != 0) 1043 panic("softdep_setup_inomapdep: found inode"); 1044 inodedep->id_buf = bp; 1045 inodedep->id_state &= ~DEPCOMPLETE; 1046 bmsafemap = bmsafemap_lookup(bp); 1047 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1048 FREE_LOCK(&lk); 1049 } 1050 1051 /* 1052 * Called just after updating the cylinder group block to 1053 * allocate block or fragment. 1054 */ 1055 void 1056 softdep_setup_blkmapdep(bp, fs, newblkno) 1057 struct buf *bp; /* buffer for cylgroup block with block map */ 1058 struct fs *fs; /* filesystem doing allocation */ 1059 ufs_daddr_t newblkno; /* number of newly allocated block */ 1060 { 1061 struct newblk *newblk; 1062 struct bmsafemap *bmsafemap; 1063 1064 /* 1065 * Create a dependency for the newly allocated block. 1066 * Add it to the dependency list for the buffer holding 1067 * the cylinder group map from which it was allocated. 1068 */ 1069 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1070 panic("softdep_setup_blkmapdep: found block"); 1071 ACQUIRE_LOCK(&lk); 1072 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1073 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1074 FREE_LOCK(&lk); 1075 } 1076 1077 /* 1078 * Find the bmsafemap associated with a cylinder group buffer. 1079 * If none exists, create one. The buffer must be locked when 1080 * this routine is called and this routine must be called with 1081 * splbio interrupts blocked. 1082 */ 1083 static struct bmsafemap * 1084 bmsafemap_lookup(bp) 1085 struct buf *bp; 1086 { 1087 struct bmsafemap *bmsafemap; 1088 struct worklist *wk; 1089 1090 #ifdef DEBUG 1091 if (lk.lkt_held == -1) 1092 panic("bmsafemap_lookup: lock not held"); 1093 #endif 1094 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list)) 1095 if (wk->wk_type == D_BMSAFEMAP) 1096 return (WK_BMSAFEMAP(wk)); 1097 FREE_LOCK(&lk); 1098 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1099 M_BMSAFEMAP, M_WAITOK); 1100 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1101 bmsafemap->sm_list.wk_state = 0; 1102 bmsafemap->sm_buf = bp; 1103 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1104 LIST_INIT(&bmsafemap->sm_allocindirhd); 1105 LIST_INIT(&bmsafemap->sm_inodedephd); 1106 LIST_INIT(&bmsafemap->sm_newblkhd); 1107 ACQUIRE_LOCK(&lk); 1108 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1109 return (bmsafemap); 1110 } 1111 1112 /* 1113 * Direct block allocation dependencies. 1114 * 1115 * When a new block is allocated, the corresponding disk locations must be 1116 * initialized (with zeros or new data) before the on-disk inode points to 1117 * them. Also, the freemap from which the block was allocated must be 1118 * updated (on disk) before the inode's pointer. These two dependencies are 1119 * independent of each other and are needed for all file blocks and indirect 1120 * blocks that are pointed to directly by the inode. Just before the 1121 * "in-core" version of the inode is updated with a newly allocated block 1122 * number, a procedure (below) is called to setup allocation dependency 1123 * structures. These structures are removed when the corresponding 1124 * dependencies are satisfied or when the block allocation becomes obsolete 1125 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1126 * fragment that gets upgraded). All of these cases are handled in 1127 * procedures described later. 1128 * 1129 * When a file extension causes a fragment to be upgraded, either to a larger 1130 * fragment or to a full block, the on-disk location may change (if the 1131 * previous fragment could not simply be extended). In this case, the old 1132 * fragment must be de-allocated, but not until after the inode's pointer has 1133 * been updated. In most cases, this is handled by later procedures, which 1134 * will construct a "freefrag" structure to be added to the workitem queue 1135 * when the inode update is complete (or obsolete). The main exception to 1136 * this is when an allocation occurs while a pending allocation dependency 1137 * (for the same block pointer) remains. This case is handled in the main 1138 * allocation dependency setup procedure by immediately freeing the 1139 * unreferenced fragments. 1140 */ 1141 void 1142 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1143 struct inode *ip; /* inode to which block is being added */ 1144 ufs_lbn_t lbn; /* block pointer within inode */ 1145 ufs_daddr_t newblkno; /* disk block number being added */ 1146 ufs_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1147 long newsize; /* size of new block */ 1148 long oldsize; /* size of new block */ 1149 struct buf *bp; /* bp for allocated block */ 1150 { 1151 struct allocdirect *adp, *oldadp; 1152 struct allocdirectlst *adphead; 1153 struct bmsafemap *bmsafemap; 1154 struct inodedep *inodedep; 1155 struct pagedep *pagedep; 1156 struct newblk *newblk; 1157 1158 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1159 M_ALLOCDIRECT, M_WAITOK); 1160 bzero(adp, sizeof(struct allocdirect)); 1161 adp->ad_list.wk_type = D_ALLOCDIRECT; 1162 adp->ad_lbn = lbn; 1163 adp->ad_newblkno = newblkno; 1164 adp->ad_oldblkno = oldblkno; 1165 adp->ad_newsize = newsize; 1166 adp->ad_oldsize = oldsize; 1167 adp->ad_state = ATTACHED; 1168 if (newblkno == oldblkno) 1169 adp->ad_freefrag = NULL; 1170 else 1171 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1172 1173 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1174 panic("softdep_setup_allocdirect: lost block"); 1175 1176 ACQUIRE_LOCK(&lk); 1177 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 1178 adp->ad_inodedep = inodedep; 1179 1180 if (newblk->nb_state == DEPCOMPLETE) { 1181 adp->ad_state |= DEPCOMPLETE; 1182 adp->ad_buf = NULL; 1183 } else { 1184 bmsafemap = newblk->nb_bmsafemap; 1185 adp->ad_buf = bmsafemap->sm_buf; 1186 LIST_REMOVE(newblk, nb_deps); 1187 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1188 } 1189 LIST_REMOVE(newblk, nb_hash); 1190 FREE(newblk, M_NEWBLK); 1191 1192 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1193 if (lbn >= NDADDR) { 1194 /* allocating an indirect block */ 1195 if (oldblkno != 0) 1196 panic("softdep_setup_allocdirect: non-zero indir"); 1197 } else { 1198 /* 1199 * Allocating a direct block. 1200 * 1201 * If we are allocating a directory block, then we must 1202 * allocate an associated pagedep to track additions and 1203 * deletions. 1204 */ 1205 if ((ip->i_mode & IFMT) == IFDIR && 1206 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1207 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1208 } 1209 /* 1210 * The list of allocdirects must be kept in sorted and ascending 1211 * order so that the rollback routines can quickly determine the 1212 * first uncommitted block (the size of the file stored on disk 1213 * ends at the end of the lowest committed fragment, or if there 1214 * are no fragments, at the end of the highest committed block). 1215 * Since files generally grow, the typical case is that the new 1216 * block is to be added at the end of the list. We speed this 1217 * special case by checking against the last allocdirect in the 1218 * list before laboriously traversing the list looking for the 1219 * insertion point. 1220 */ 1221 adphead = &inodedep->id_newinoupdt; 1222 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1223 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1224 /* insert at end of list */ 1225 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1226 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1227 allocdirect_merge(adphead, adp, oldadp); 1228 FREE_LOCK(&lk); 1229 return; 1230 } 1231 for (oldadp = TAILQ_FIRST(adphead); oldadp; 1232 oldadp = TAILQ_NEXT(oldadp, ad_next)) { 1233 if (oldadp->ad_lbn >= lbn) 1234 break; 1235 } 1236 if (oldadp == NULL) 1237 panic("softdep_setup_allocdirect: lost entry"); 1238 /* insert in middle of list */ 1239 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1240 if (oldadp->ad_lbn == lbn) 1241 allocdirect_merge(adphead, adp, oldadp); 1242 FREE_LOCK(&lk); 1243 } 1244 1245 /* 1246 * Replace an old allocdirect dependency with a newer one. 1247 * This routine must be called with splbio interrupts blocked. 1248 */ 1249 static void 1250 allocdirect_merge(adphead, newadp, oldadp) 1251 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1252 struct allocdirect *newadp; /* allocdirect being added */ 1253 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1254 { 1255 struct freefrag *freefrag; 1256 1257 #ifdef DEBUG 1258 if (lk.lkt_held == -1) 1259 panic("allocdirect_merge: lock not held"); 1260 #endif 1261 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1262 newadp->ad_oldsize != oldadp->ad_newsize || 1263 newadp->ad_lbn >= NDADDR) 1264 panic("allocdirect_check: old %d != new %d || lbn %d >= %d", 1265 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn, 1266 NDADDR); 1267 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1268 newadp->ad_oldsize = oldadp->ad_oldsize; 1269 /* 1270 * If the old dependency had a fragment to free or had never 1271 * previously had a block allocated, then the new dependency 1272 * can immediately post its freefrag and adopt the old freefrag. 1273 * This action is done by swapping the freefrag dependencies. 1274 * The new dependency gains the old one's freefrag, and the 1275 * old one gets the new one and then immediately puts it on 1276 * the worklist when it is freed by free_allocdirect. It is 1277 * not possible to do this swap when the old dependency had a 1278 * non-zero size but no previous fragment to free. This condition 1279 * arises when the new block is an extension of the old block. 1280 * Here, the first part of the fragment allocated to the new 1281 * dependency is part of the block currently claimed on disk by 1282 * the old dependency, so cannot legitimately be freed until the 1283 * conditions for the new dependency are fulfilled. 1284 */ 1285 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1286 freefrag = newadp->ad_freefrag; 1287 newadp->ad_freefrag = oldadp->ad_freefrag; 1288 oldadp->ad_freefrag = freefrag; 1289 } 1290 free_allocdirect(adphead, oldadp, 0); 1291 } 1292 1293 /* 1294 * Allocate a new freefrag structure if needed. 1295 */ 1296 static struct freefrag * 1297 newfreefrag(ip, blkno, size) 1298 struct inode *ip; 1299 ufs_daddr_t blkno; 1300 long size; 1301 { 1302 struct freefrag *freefrag; 1303 struct fs *fs; 1304 1305 if (blkno == 0) 1306 return (NULL); 1307 fs = ip->i_fs; 1308 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1309 panic("newfreefrag: frag size"); 1310 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1311 M_FREEFRAG, M_WAITOK); 1312 freefrag->ff_list.wk_type = D_FREEFRAG; 1313 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */ 1314 freefrag->ff_inum = ip->i_number; 1315 freefrag->ff_fs = fs; 1316 freefrag->ff_devvp = ip->i_devvp; 1317 freefrag->ff_blkno = blkno; 1318 freefrag->ff_fragsize = size; 1319 return (freefrag); 1320 } 1321 1322 /* 1323 * This workitem de-allocates fragments that were replaced during 1324 * file block allocation. 1325 */ 1326 static void 1327 handle_workitem_freefrag(freefrag) 1328 struct freefrag *freefrag; 1329 { 1330 struct inode tip; 1331 1332 tip.i_fs = freefrag->ff_fs; 1333 tip.i_devvp = freefrag->ff_devvp; 1334 tip.i_dev = freefrag->ff_devvp->v_rdev; 1335 tip.i_number = freefrag->ff_inum; 1336 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */ 1337 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize); 1338 FREE(freefrag, M_FREEFRAG); 1339 } 1340 1341 /* 1342 * Indirect block allocation dependencies. 1343 * 1344 * The same dependencies that exist for a direct block also exist when 1345 * a new block is allocated and pointed to by an entry in a block of 1346 * indirect pointers. The undo/redo states described above are also 1347 * used here. Because an indirect block contains many pointers that 1348 * may have dependencies, a second copy of the entire in-memory indirect 1349 * block is kept. The buffer cache copy is always completely up-to-date. 1350 * The second copy, which is used only as a source for disk writes, 1351 * contains only the safe pointers (i.e., those that have no remaining 1352 * update dependencies). The second copy is freed when all pointers 1353 * are safe. The cache is not allowed to replace indirect blocks with 1354 * pending update dependencies. If a buffer containing an indirect 1355 * block with dependencies is written, these routines will mark it 1356 * dirty again. It can only be successfully written once all the 1357 * dependencies are removed. The ffs_fsync routine in conjunction with 1358 * softdep_sync_metadata work together to get all the dependencies 1359 * removed so that a file can be successfully written to disk. Three 1360 * procedures are used when setting up indirect block pointer 1361 * dependencies. The division is necessary because of the organization 1362 * of the "balloc" routine and because of the distinction between file 1363 * pages and file metadata blocks. 1364 */ 1365 1366 /* 1367 * Allocate a new allocindir structure. 1368 */ 1369 static struct allocindir * 1370 newallocindir(ip, ptrno, newblkno, oldblkno) 1371 struct inode *ip; /* inode for file being extended */ 1372 int ptrno; /* offset of pointer in indirect block */ 1373 ufs_daddr_t newblkno; /* disk block number being added */ 1374 ufs_daddr_t oldblkno; /* previous block number, 0 if none */ 1375 { 1376 struct allocindir *aip; 1377 1378 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1379 M_ALLOCINDIR, M_WAITOK); 1380 bzero(aip, sizeof(struct allocindir)); 1381 aip->ai_list.wk_type = D_ALLOCINDIR; 1382 aip->ai_state = ATTACHED; 1383 aip->ai_offset = ptrno; 1384 aip->ai_newblkno = newblkno; 1385 aip->ai_oldblkno = oldblkno; 1386 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1387 return (aip); 1388 } 1389 1390 /* 1391 * Called just before setting an indirect block pointer 1392 * to a newly allocated file page. 1393 */ 1394 void 1395 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1396 struct inode *ip; /* inode for file being extended */ 1397 ufs_lbn_t lbn; /* allocated block number within file */ 1398 struct buf *bp; /* buffer with indirect blk referencing page */ 1399 int ptrno; /* offset of pointer in indirect block */ 1400 ufs_daddr_t newblkno; /* disk block number being added */ 1401 ufs_daddr_t oldblkno; /* previous block number, 0 if none */ 1402 struct buf *nbp; /* buffer holding allocated page */ 1403 { 1404 struct allocindir *aip; 1405 struct pagedep *pagedep; 1406 1407 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1408 ACQUIRE_LOCK(&lk); 1409 /* 1410 * If we are allocating a directory page, then we must 1411 * allocate an associated pagedep to track additions and 1412 * deletions. 1413 */ 1414 if ((ip->i_mode & IFMT) == IFDIR && 1415 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1416 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1417 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1418 FREE_LOCK(&lk); 1419 setup_allocindir_phase2(bp, ip, aip); 1420 } 1421 1422 /* 1423 * Called just before setting an indirect block pointer to a 1424 * newly allocated indirect block. 1425 */ 1426 void 1427 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1428 struct buf *nbp; /* newly allocated indirect block */ 1429 struct inode *ip; /* inode for file being extended */ 1430 struct buf *bp; /* indirect block referencing allocated block */ 1431 int ptrno; /* offset of pointer in indirect block */ 1432 ufs_daddr_t newblkno; /* disk block number being added */ 1433 { 1434 struct allocindir *aip; 1435 1436 aip = newallocindir(ip, ptrno, newblkno, 0); 1437 ACQUIRE_LOCK(&lk); 1438 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1439 FREE_LOCK(&lk); 1440 setup_allocindir_phase2(bp, ip, aip); 1441 } 1442 1443 /* 1444 * Called to finish the allocation of the "aip" allocated 1445 * by one of the two routines above. 1446 */ 1447 static void 1448 setup_allocindir_phase2(bp, ip, aip) 1449 struct buf *bp; /* in-memory copy of the indirect block */ 1450 struct inode *ip; /* inode for file being extended */ 1451 struct allocindir *aip; /* allocindir allocated by the above routines */ 1452 { 1453 struct worklist *wk; 1454 struct indirdep *indirdep, *newindirdep; 1455 struct bmsafemap *bmsafemap; 1456 struct allocindir *oldaip; 1457 struct freefrag *freefrag; 1458 struct newblk *newblk; 1459 1460 if (bp->b_lblkno >= 0) 1461 panic("setup_allocindir_phase2: not indir blk"); 1462 for (indirdep = NULL, newindirdep = NULL; ; ) { 1463 ACQUIRE_LOCK(&lk); 1464 for (wk = LIST_FIRST(&bp->b_dep); wk; 1465 wk = LIST_NEXT(wk, wk_list)) { 1466 if (wk->wk_type != D_INDIRDEP) 1467 continue; 1468 indirdep = WK_INDIRDEP(wk); 1469 break; 1470 } 1471 if (indirdep == NULL && newindirdep) { 1472 indirdep = newindirdep; 1473 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1474 newindirdep = NULL; 1475 } 1476 FREE_LOCK(&lk); 1477 if (indirdep) { 1478 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1479 &newblk) == 0) 1480 panic("setup_allocindir: lost block"); 1481 ACQUIRE_LOCK(&lk); 1482 if (newblk->nb_state == DEPCOMPLETE) { 1483 aip->ai_state |= DEPCOMPLETE; 1484 aip->ai_buf = NULL; 1485 } else { 1486 bmsafemap = newblk->nb_bmsafemap; 1487 aip->ai_buf = bmsafemap->sm_buf; 1488 LIST_REMOVE(newblk, nb_deps); 1489 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1490 aip, ai_deps); 1491 } 1492 LIST_REMOVE(newblk, nb_hash); 1493 FREE(newblk, M_NEWBLK); 1494 aip->ai_indirdep = indirdep; 1495 /* 1496 * Check to see if there is an existing dependency 1497 * for this block. If there is, merge the old 1498 * dependency into the new one. 1499 */ 1500 if (aip->ai_oldblkno == 0) 1501 oldaip = NULL; 1502 else 1503 for (oldaip=LIST_FIRST(&indirdep->ir_deplisthd); 1504 oldaip; oldaip = LIST_NEXT(oldaip, ai_next)) 1505 if (oldaip->ai_offset == aip->ai_offset) 1506 break; 1507 if (oldaip != NULL) { 1508 if (oldaip->ai_newblkno != aip->ai_oldblkno) 1509 panic("setup_allocindir_phase2: blkno"); 1510 aip->ai_oldblkno = oldaip->ai_oldblkno; 1511 freefrag = oldaip->ai_freefrag; 1512 oldaip->ai_freefrag = aip->ai_freefrag; 1513 aip->ai_freefrag = freefrag; 1514 free_allocindir(oldaip, NULL); 1515 } 1516 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1517 ((ufs_daddr_t *)indirdep->ir_savebp->b_data) 1518 [aip->ai_offset] = aip->ai_oldblkno; 1519 FREE_LOCK(&lk); 1520 } 1521 if (newindirdep) { 1522 if (indirdep->ir_savebp != NULL) 1523 brelse(newindirdep->ir_savebp); 1524 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1525 } 1526 if (indirdep) 1527 break; 1528 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1529 M_INDIRDEP, M_WAITOK); 1530 newindirdep->ir_list.wk_type = D_INDIRDEP; 1531 newindirdep->ir_state = ATTACHED; 1532 LIST_INIT(&newindirdep->ir_deplisthd); 1533 LIST_INIT(&newindirdep->ir_donehd); 1534 #ifdef __FreeBSD__ 1535 if (bp->b_blkno == bp->b_lblkno) { 1536 #if 0 /* we know this happens.. research suggested.. */ 1537 printf("setup_allocindir_phase2: need bmap, blk %d\n", 1538 bp->b_lblkno); 1539 #endif 1540 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, 1541 NULL, NULL); 1542 } 1543 #endif /* __FreeBSD__ */ 1544 newindirdep->ir_savebp = 1545 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); 1546 bp->b_flags |= B_XXX; 1547 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1548 } 1549 } 1550 1551 /* 1552 * Block de-allocation dependencies. 1553 * 1554 * When blocks are de-allocated, the on-disk pointers must be nullified before 1555 * the blocks are made available for use by other files. (The true 1556 * requirement is that old pointers must be nullified before new on-disk 1557 * pointers are set. We chose this slightly more stringent requirement to 1558 * reduce complexity.) Our implementation handles this dependency by updating 1559 * the inode (or indirect block) appropriately but delaying the actual block 1560 * de-allocation (i.e., freemap and free space count manipulation) until 1561 * after the updated versions reach stable storage. After the disk is 1562 * updated, the blocks can be safely de-allocated whenever it is convenient. 1563 * This implementation handles only the common case of reducing a file's 1564 * length to zero. Other cases are handled by the conventional synchronous 1565 * write approach. 1566 * 1567 * The ffs implementation with which we worked double-checks 1568 * the state of the block pointers and file size as it reduces 1569 * a file's length. Some of this code is replicated here in our 1570 * soft updates implementation. The freeblks->fb_chkcnt field is 1571 * used to transfer a part of this information to the procedure 1572 * that eventually de-allocates the blocks. 1573 * 1574 * This routine should be called from the routine that shortens 1575 * a file's length, before the inode's size or block pointers 1576 * are modified. It will save the block pointer information for 1577 * later release and zero the inode so that the calling routine 1578 * can release it. 1579 */ 1580 static long num_freeblks; /* number of freeblks allocated */ 1581 void 1582 softdep_setup_freeblocks(ip, length) 1583 struct inode *ip; /* The inode whose length is to be reduced */ 1584 off_t length; /* The new length for the file */ 1585 { 1586 struct freeblks *freeblks; 1587 struct inodedep *inodedep; 1588 struct allocdirect *adp; 1589 struct vnode *vp; 1590 struct buf *bp; 1591 struct fs *fs; 1592 int i, error; 1593 1594 fs = ip->i_fs; 1595 if (length != 0) 1596 panic("softde_setup_freeblocks: non-zero length"); 1597 (void) checklimit(&num_freeblks, 0); 1598 num_freeblks += 1; 1599 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1600 M_FREEBLKS, M_WAITOK); 1601 bzero(freeblks, sizeof(struct freeblks)); 1602 freeblks->fb_list.wk_type = D_FREEBLKS; 1603 freeblks->fb_uid = ip->i_uid; 1604 freeblks->fb_previousinum = ip->i_number; 1605 freeblks->fb_devvp = ip->i_devvp; 1606 freeblks->fb_fs = fs; 1607 freeblks->fb_oldsize = ip->i_size; 1608 freeblks->fb_newsize = length; 1609 freeblks->fb_chkcnt = ip->i_blocks; 1610 for (i = 0; i < NDADDR; i++) { 1611 freeblks->fb_dblks[i] = ip->i_db[i]; 1612 ip->i_db[i] = 0; 1613 } 1614 for (i = 0; i < NIADDR; i++) { 1615 freeblks->fb_iblks[i] = ip->i_ib[i]; 1616 ip->i_ib[i] = 0; 1617 } 1618 ip->i_blocks = 0; 1619 ip->i_size = 0; 1620 /* 1621 * Push the zero'ed inode to to its disk buffer so that we are free 1622 * to delete its dependencies below. Once the dependencies are gone 1623 * the buffer can be safely released. 1624 */ 1625 if ((error = bread(ip->i_devvp, 1626 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 1627 (int)fs->fs_bsize, NOCRED, &bp)) != 0) 1628 softdep_error("softdep_setup_freeblocks", error); 1629 *((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = 1630 ip->i_din; 1631 /* 1632 * Find and eliminate any inode dependencies. 1633 */ 1634 ACQUIRE_LOCK(&lk); 1635 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 1636 if ((inodedep->id_state & IOSTARTED) != 0) 1637 panic("softdep_setup_freeblocks: inode busy"); 1638 /* 1639 * Add the freeblks structure to the list of operations that 1640 * must await the zero'ed inode being written to disk. 1641 */ 1642 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 1643 /* 1644 * Because the file length has been truncated to zero, any 1645 * pending block allocation dependency structures associated 1646 * with this inode are obsolete and can simply be de-allocated. 1647 * We must first merge the two dependency lists to get rid of 1648 * any duplicate freefrag structures, then purge the merged list. 1649 */ 1650 merge_inode_lists(inodedep); 1651 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 1652 free_allocdirect(&inodedep->id_inoupdt, adp, 1); 1653 bdwrite(bp); 1654 /* 1655 * We must wait for any I/O in progress to finish so that 1656 * all potential buffers on the dirty list will be visible. 1657 * Once they are all there, walk the list and get rid of 1658 * any dependencies. 1659 */ 1660 vp = ITOV(ip); 1661 while (vp->v_numoutput) { 1662 vp->v_flag |= VBWAIT; 1663 FREE_LOCK_INTERLOCKED(&lk); 1664 tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "sdsetf", 0); 1665 ACQUIRE_LOCK_INTERLOCKED(&lk); 1666 } 1667 while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) { 1668 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 1669 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 1670 deallocate_dependencies(bp, inodedep); 1671 bp->b_flags |= B_INVAL | B_NOCACHE; 1672 brelse(bp); 1673 } 1674 /* 1675 * Try freeing the inodedep in case that was the last dependency. 1676 */ 1677 if ((inodedep_lookup(fs, ip->i_number, 0, &inodedep)) != 0) 1678 (void) free_inodedep(inodedep); 1679 FREE_LOCK(&lk); 1680 } 1681 1682 /* 1683 * Reclaim any dependency structures from a buffer that is about to 1684 * be reallocated to a new vnode. The buffer must be locked, thus, 1685 * no I/O completion operations can occur while we are manipulating 1686 * its associated dependencies. The mutex is held so that other I/O's 1687 * associated with related dependencies do not occur. 1688 */ 1689 static void 1690 deallocate_dependencies(bp, inodedep) 1691 struct buf *bp; 1692 struct inodedep *inodedep; 1693 { 1694 struct worklist *wk; 1695 struct indirdep *indirdep; 1696 struct allocindir *aip; 1697 struct pagedep *pagedep; 1698 struct dirrem *dirrem; 1699 struct diradd *dap; 1700 int i; 1701 1702 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 1703 switch (wk->wk_type) { 1704 1705 case D_INDIRDEP: 1706 indirdep = WK_INDIRDEP(wk); 1707 /* 1708 * None of the indirect pointers will ever be visible, 1709 * so they can simply be tossed. GOINGAWAY ensures 1710 * that allocated pointers will be saved in the buffer 1711 * cache until they are freed. Note that they will 1712 * only be able to be found by their physical address 1713 * since the inode mapping the logical address will 1714 * be gone. The save buffer used for the safe copy 1715 * was allocated in setup_allocindir_phase2 using 1716 * the physical address so it could be used for this 1717 * purpose. Hence we swap the safe copy with the real 1718 * copy, allowing the safe copy to be freed and holding 1719 * on to the real copy for later use in indir_trunc. 1720 */ 1721 if (indirdep->ir_state & GOINGAWAY) 1722 panic("deallocate_dependencies: already gone"); 1723 indirdep->ir_state |= GOINGAWAY; 1724 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 1725 free_allocindir(aip, inodedep); 1726 if (bp->b_lblkno >= 0 || 1727 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 1728 panic("deallocate_dependencies: not indir"); 1729 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 1730 bp->b_bcount); 1731 WORKLIST_REMOVE(wk); 1732 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 1733 continue; 1734 1735 case D_PAGEDEP: 1736 pagedep = WK_PAGEDEP(wk); 1737 /* 1738 * None of the directory additions will ever be 1739 * visible, so they can simply be tossed. 1740 */ 1741 for (i = 0; i < DAHASHSZ; i++) 1742 while (dap=LIST_FIRST(&pagedep->pd_diraddhd[i])) 1743 free_diradd(dap); 1744 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 1745 free_diradd(dap); 1746 /* 1747 * Copy any directory remove dependencies to the list 1748 * to be processed after the zero'ed inode is written. 1749 * If the inode has already been written, then they 1750 * can be dumped directly onto the work list. 1751 */ 1752 for (dirrem = LIST_FIRST(&pagedep->pd_dirremhd); dirrem; 1753 dirrem = LIST_NEXT(dirrem, dm_next)) { 1754 LIST_REMOVE(dirrem, dm_next); 1755 dirrem->dm_dirinum = pagedep->pd_ino; 1756 if (inodedep == NULL) 1757 add_to_worklist(&dirrem->dm_list); 1758 else 1759 WORKLIST_INSERT(&inodedep->id_bufwait, 1760 &dirrem->dm_list); 1761 } 1762 WORKLIST_REMOVE(&pagedep->pd_list); 1763 LIST_REMOVE(pagedep, pd_hash); 1764 WORKITEM_FREE(pagedep, D_PAGEDEP); 1765 continue; 1766 1767 case D_ALLOCINDIR: 1768 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 1769 continue; 1770 1771 case D_ALLOCDIRECT: 1772 case D_INODEDEP: 1773 panic("deallocate_dependencies: Unexpected type %s", 1774 TYPENAME(wk->wk_type)); 1775 /* NOTREACHED */ 1776 1777 default: 1778 panic("deallocate_dependencies: Unknown type %s", 1779 TYPENAME(wk->wk_type)); 1780 /* NOTREACHED */ 1781 } 1782 } 1783 } 1784 1785 /* 1786 * Free an allocdirect. Generate a new freefrag work request if appropriate. 1787 * This routine must be called with splbio interrupts blocked. 1788 */ 1789 static void 1790 free_allocdirect(adphead, adp, delay) 1791 struct allocdirectlst *adphead; 1792 struct allocdirect *adp; 1793 int delay; 1794 { 1795 1796 #ifdef DEBUG 1797 if (lk.lkt_held == -1) 1798 panic("free_allocdirect: lock not held"); 1799 #endif 1800 if ((adp->ad_state & DEPCOMPLETE) == 0) 1801 LIST_REMOVE(adp, ad_deps); 1802 TAILQ_REMOVE(adphead, adp, ad_next); 1803 if ((adp->ad_state & COMPLETE) == 0) 1804 WORKLIST_REMOVE(&adp->ad_list); 1805 if (adp->ad_freefrag != NULL) { 1806 if (delay) 1807 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 1808 &adp->ad_freefrag->ff_list); 1809 else 1810 add_to_worklist(&adp->ad_freefrag->ff_list); 1811 } 1812 WORKITEM_FREE(adp, D_ALLOCDIRECT); 1813 } 1814 1815 /* 1816 * Prepare an inode to be freed. The actual free operation is not 1817 * done until the zero'ed inode has been written to disk. 1818 */ 1819 static long num_freefile; /* number of freefile allocated */ 1820 void 1821 softdep_freefile(pvp, ino, mode) 1822 struct vnode *pvp; 1823 ino_t ino; 1824 int mode; 1825 { 1826 struct inode *ip = VTOI(pvp); 1827 struct inodedep *inodedep; 1828 struct freefile *freefile; 1829 1830 /* 1831 * This sets up the inode de-allocation dependency. 1832 */ 1833 (void) checklimit(&num_freefile, 0); 1834 num_freefile += 1; 1835 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 1836 M_FREEFILE, M_WAITOK); 1837 freefile->fx_list.wk_type = D_FREEFILE; 1838 freefile->fx_list.wk_state = 0; 1839 freefile->fx_mode = mode; 1840 freefile->fx_oldinum = ino; 1841 freefile->fx_devvp = ip->i_devvp; 1842 freefile->fx_fs = ip->i_fs; 1843 1844 /* 1845 * If the inodedep does not exist, then the zero'ed inode has 1846 * been written to disk and we can free the file immediately. 1847 */ 1848 ACQUIRE_LOCK(&lk); 1849 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0) { 1850 add_to_worklist(&freefile->fx_list); 1851 FREE_LOCK(&lk); 1852 return; 1853 } 1854 1855 /* 1856 * If we still have a bitmap dependency, then the inode has never 1857 * been written to disk. Drop the dependency as it is no longer 1858 * necessary since the inode is being deallocated. We could process 1859 * the freefile immediately, but then we would have to clear the 1860 * id_inowait dependencies here and it is easier just to let the 1861 * zero'ed inode be written and let them be cleaned up in the 1862 * normal followup actions that follow the inode write. 1863 */ 1864 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 1865 inodedep->id_state |= DEPCOMPLETE; 1866 LIST_REMOVE(inodedep, id_deps); 1867 inodedep->id_buf = NULL; 1868 } 1869 /* 1870 * If the inodedep has no dependencies associated with it, 1871 * then we must free it here and free the file immediately. 1872 * This case arises when an early allocation fails (for 1873 * example, the user is over their file quota). 1874 */ 1875 if (free_inodedep(inodedep) == 0) 1876 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 1877 else 1878 add_to_worklist(&freefile->fx_list); 1879 FREE_LOCK(&lk); 1880 } 1881 1882 /* 1883 * Try to free an inodedep structure. Return 1 if it could be freed. 1884 */ 1885 static int 1886 free_inodedep(inodedep) 1887 struct inodedep *inodedep; 1888 { 1889 1890 if ((inodedep->id_state & ONWORKLIST) != 0 || 1891 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 1892 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 1893 LIST_FIRST(&inodedep->id_bufwait) != NULL || 1894 LIST_FIRST(&inodedep->id_inowait) != NULL || 1895 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 1896 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 1897 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL) 1898 return (0); 1899 LIST_REMOVE(inodedep, id_hash); 1900 WORKITEM_FREE(inodedep, D_INODEDEP); 1901 num_inodedep -= 1; 1902 return (1); 1903 } 1904 1905 /* 1906 * This workitem routine performs the block de-allocation. 1907 * The workitem is added to the pending list after the updated 1908 * inode block has been written to disk. As mentioned above, 1909 * checks regarding the number of blocks de-allocated (compared 1910 * to the number of blocks allocated for the file) are also 1911 * performed in this function. 1912 */ 1913 static void 1914 handle_workitem_freeblocks(freeblks) 1915 struct freeblks *freeblks; 1916 { 1917 struct inode tip; 1918 ufs_daddr_t bn; 1919 struct fs *fs; 1920 int i, level, bsize; 1921 long nblocks, blocksreleased = 0; 1922 int error, allerror = 0; 1923 ufs_lbn_t baselbns[NIADDR], tmpval; 1924 1925 tip.i_number = freeblks->fb_previousinum; 1926 tip.i_devvp = freeblks->fb_devvp; 1927 tip.i_dev = freeblks->fb_devvp->v_rdev; 1928 tip.i_fs = freeblks->fb_fs; 1929 tip.i_size = freeblks->fb_oldsize; 1930 tip.i_uid = freeblks->fb_uid; 1931 fs = freeblks->fb_fs; 1932 tmpval = 1; 1933 baselbns[0] = NDADDR; 1934 for (i = 1; i < NIADDR; i++) { 1935 tmpval *= NINDIR(fs); 1936 baselbns[i] = baselbns[i - 1] + tmpval; 1937 } 1938 nblocks = btodb(fs->fs_bsize); 1939 blocksreleased = 0; 1940 /* 1941 * Indirect blocks first. 1942 */ 1943 for (level = (NIADDR - 1); level >= 0; level--) { 1944 if ((bn = freeblks->fb_iblks[level]) == 0) 1945 continue; 1946 if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level, 1947 baselbns[level], &blocksreleased)) == 0) 1948 allerror = error; 1949 ffs_blkfree(&tip, bn, fs->fs_bsize); 1950 blocksreleased += nblocks; 1951 } 1952 /* 1953 * All direct blocks or frags. 1954 */ 1955 for (i = (NDADDR - 1); i >= 0; i--) { 1956 if ((bn = freeblks->fb_dblks[i]) == 0) 1957 continue; 1958 bsize = blksize(fs, &tip, i); 1959 ffs_blkfree(&tip, bn, bsize); 1960 blocksreleased += btodb(bsize); 1961 } 1962 1963 #ifdef DIAGNOSTIC 1964 if (freeblks->fb_chkcnt != blocksreleased) 1965 panic("handle_workitem_freeblocks: block count"); 1966 if (allerror) 1967 softdep_error("handle_workitem_freeblks", allerror); 1968 #endif /* DIAGNOSTIC */ 1969 WORKITEM_FREE(freeblks, D_FREEBLKS); 1970 num_freeblks -= 1; 1971 } 1972 1973 /* 1974 * Release blocks associated with the inode ip and stored in the indirect 1975 * block dbn. If level is greater than SINGLE, the block is an indirect block 1976 * and recursive calls to indirtrunc must be used to cleanse other indirect 1977 * blocks. 1978 */ 1979 static int 1980 indir_trunc(ip, dbn, level, lbn, countp) 1981 struct inode *ip; 1982 ufs_daddr_t dbn; 1983 int level; 1984 ufs_lbn_t lbn; 1985 long *countp; 1986 { 1987 struct buf *bp; 1988 ufs_daddr_t *bap; 1989 ufs_daddr_t nb; 1990 struct fs *fs; 1991 struct worklist *wk; 1992 struct indirdep *indirdep; 1993 int i, lbnadd, nblocks; 1994 int error, allerror = 0; 1995 1996 fs = ip->i_fs; 1997 lbnadd = 1; 1998 for (i = level; i > 0; i--) 1999 lbnadd *= NINDIR(fs); 2000 /* 2001 * Get buffer of block pointers to be freed. This routine is not 2002 * called until the zero'ed inode has been written, so it is safe 2003 * to free blocks as they are encountered. Because the inode has 2004 * been zero'ed, calls to bmap on these blocks will fail. So, we 2005 * have to use the on-disk address and the block device for the 2006 * filesystem to look them up. If the file was deleted before its 2007 * indirect blocks were all written to disk, the routine that set 2008 * us up (deallocate_dependencies) will have arranged to leave 2009 * a complete copy of the indirect block in memory for our use. 2010 * Otherwise we have to read the blocks in from the disk. 2011 */ 2012 ACQUIRE_LOCK(&lk); 2013 if ((bp = incore(ip->i_devvp, dbn)) != NULL && 2014 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2015 if (wk->wk_type != D_INDIRDEP || 2016 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2017 (indirdep->ir_state & GOINGAWAY) == 0) 2018 panic("indir_trunc: lost indirdep"); 2019 WORKLIST_REMOVE(wk); 2020 WORKITEM_FREE(indirdep, D_INDIRDEP); 2021 if (LIST_FIRST(&bp->b_dep) != NULL) 2022 panic("indir_trunc: dangling dep"); 2023 FREE_LOCK(&lk); 2024 } else { 2025 FREE_LOCK(&lk); 2026 error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp); 2027 if (error) 2028 return (error); 2029 } 2030 /* 2031 * Recursively free indirect blocks. 2032 */ 2033 bap = (ufs_daddr_t *)bp->b_data; 2034 nblocks = btodb(fs->fs_bsize); 2035 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2036 if ((nb = bap[i]) == 0) 2037 continue; 2038 if (level != 0) { 2039 if ((error = indir_trunc(ip, fsbtodb(fs, nb), 2040 level - 1, lbn + (i * lbnadd), countp)) != 0) 2041 allerror = error; 2042 } 2043 ffs_blkfree(ip, nb, fs->fs_bsize); 2044 *countp += nblocks; 2045 } 2046 bp->b_flags |= B_INVAL | B_NOCACHE; 2047 bp->b_flags &= ~B_XXX; 2048 brelse(bp); 2049 return (allerror); 2050 } 2051 2052 /* 2053 * Free an allocindir. 2054 * This routine must be called with splbio interrupts blocked. 2055 */ 2056 static void 2057 free_allocindir(aip, inodedep) 2058 struct allocindir *aip; 2059 struct inodedep *inodedep; 2060 { 2061 struct freefrag *freefrag; 2062 2063 #ifdef DEBUG 2064 if (lk.lkt_held == -1) 2065 panic("free_allocindir: lock not held"); 2066 #endif 2067 if ((aip->ai_state & DEPCOMPLETE) == 0) 2068 LIST_REMOVE(aip, ai_deps); 2069 if (aip->ai_state & ONWORKLIST) 2070 WORKLIST_REMOVE(&aip->ai_list); 2071 LIST_REMOVE(aip, ai_next); 2072 if ((freefrag = aip->ai_freefrag) != NULL) { 2073 if (inodedep == NULL) 2074 add_to_worklist(&freefrag->ff_list); 2075 else 2076 WORKLIST_INSERT(&inodedep->id_bufwait, 2077 &freefrag->ff_list); 2078 } 2079 WORKITEM_FREE(aip, D_ALLOCINDIR); 2080 } 2081 2082 /* 2083 * Directory entry addition dependencies. 2084 * 2085 * When adding a new directory entry, the inode (with its incremented link 2086 * count) must be written to disk before the directory entry's pointer to it. 2087 * Also, if the inode is newly allocated, the corresponding freemap must be 2088 * updated (on disk) before the directory entry's pointer. These requirements 2089 * are met via undo/redo on the directory entry's pointer, which consists 2090 * simply of the inode number. 2091 * 2092 * As directory entries are added and deleted, the free space within a 2093 * directory block can become fragmented. The ufs file system will compact 2094 * a fragmented directory block to make space for a new entry. When this 2095 * occurs, the offsets of previously added entries change. Any "diradd" 2096 * dependency structures corresponding to these entries must be updated with 2097 * the new offsets. 2098 */ 2099 2100 /* 2101 * This routine is called after the in-memory inode's link 2102 * count has been incremented, but before the directory entry's 2103 * pointer to the inode has been set. 2104 */ 2105 void 2106 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp) 2107 struct buf *bp; /* buffer containing directory block */ 2108 struct inode *dp; /* inode for directory */ 2109 off_t diroffset; /* offset of new entry in directory */ 2110 long newinum; /* inode referenced by new directory entry */ 2111 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2112 { 2113 int offset; /* offset of new entry within directory block */ 2114 ufs_lbn_t lbn; /* block in directory containing new entry */ 2115 struct fs *fs; 2116 struct diradd *dap; 2117 struct pagedep *pagedep; 2118 struct inodedep *inodedep; 2119 struct mkdir *mkdir1, *mkdir2; 2120 2121 /* 2122 * Whiteouts have no dependencies. 2123 */ 2124 if (newinum == WINO) { 2125 if (newdirbp != NULL) 2126 bdwrite(newdirbp); 2127 return; 2128 } 2129 2130 fs = dp->i_fs; 2131 lbn = lblkno(fs, diroffset); 2132 offset = blkoff(fs, diroffset); 2133 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, M_WAITOK); 2134 bzero(dap, sizeof(struct diradd)); 2135 dap->da_list.wk_type = D_DIRADD; 2136 dap->da_offset = offset; 2137 dap->da_newinum = newinum; 2138 dap->da_state = ATTACHED; 2139 if (newdirbp == NULL) { 2140 dap->da_state |= DEPCOMPLETE; 2141 ACQUIRE_LOCK(&lk); 2142 } else { 2143 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2144 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2145 M_WAITOK); 2146 mkdir1->md_list.wk_type = D_MKDIR; 2147 mkdir1->md_state = MKDIR_BODY; 2148 mkdir1->md_diradd = dap; 2149 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2150 M_WAITOK); 2151 mkdir2->md_list.wk_type = D_MKDIR; 2152 mkdir2->md_state = MKDIR_PARENT; 2153 mkdir2->md_diradd = dap; 2154 ACQUIRE_LOCK(&lk); 2155 /* 2156 * Dependency on "." and ".." being written to disk. 2157 */ 2158 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2159 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2160 bdwrite(newdirbp); 2161 /* 2162 * Dependency on link count increase for parent directory 2163 */ 2164 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0 2165 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2166 dap->da_state &= ~MKDIR_PARENT; 2167 WORKITEM_FREE(mkdir2, D_MKDIR); 2168 } else { 2169 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2170 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2171 } 2172 } 2173 /* 2174 * Link into parent directory pagedep to await its being written. 2175 */ 2176 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2177 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2178 dap->da_pagedep = pagedep; 2179 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2180 da_pdlist); 2181 /* 2182 * Link into its inodedep. Put it on the id_bufwait list if the inode 2183 * is not yet written. If it is written, do the post-inode write 2184 * processing to put it on the id_pendinghd list. 2185 */ 2186 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2187 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2188 diradd_inode_written(dap, inodedep); 2189 else 2190 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2191 FREE_LOCK(&lk); 2192 } 2193 2194 /* 2195 * This procedure is called to change the offset of a directory 2196 * entry when compacting a directory block which must be owned 2197 * exclusively by the caller. Note that the actual entry movement 2198 * must be done in this procedure to ensure that no I/O completions 2199 * occur while the move is in progress. 2200 */ 2201 void 2202 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2203 struct inode *dp; /* inode for directory */ 2204 caddr_t base; /* address of dp->i_offset */ 2205 caddr_t oldloc; /* address of old directory location */ 2206 caddr_t newloc; /* address of new directory location */ 2207 int entrysize; /* size of directory entry */ 2208 { 2209 int offset, oldoffset, newoffset; 2210 struct pagedep *pagedep; 2211 struct diradd *dap; 2212 ufs_lbn_t lbn; 2213 2214 ACQUIRE_LOCK(&lk); 2215 lbn = lblkno(dp->i_fs, dp->i_offset); 2216 offset = blkoff(dp->i_fs, dp->i_offset); 2217 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2218 goto done; 2219 oldoffset = offset + (oldloc - base); 2220 newoffset = offset + (newloc - base); 2221 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(oldoffset)]); 2222 dap; dap = LIST_NEXT(dap, da_pdlist)) { 2223 if (dap->da_offset != oldoffset) 2224 continue; 2225 dap->da_offset = newoffset; 2226 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2227 break; 2228 LIST_REMOVE(dap, da_pdlist); 2229 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2230 dap, da_pdlist); 2231 break; 2232 } 2233 if (dap == NULL) { 2234 for (dap = LIST_FIRST(&pagedep->pd_pendinghd); 2235 dap; dap = LIST_NEXT(dap, da_pdlist)) { 2236 if (dap->da_offset == oldoffset) { 2237 dap->da_offset = newoffset; 2238 break; 2239 } 2240 } 2241 } 2242 done: 2243 bcopy(oldloc, newloc, entrysize); 2244 FREE_LOCK(&lk); 2245 } 2246 2247 /* 2248 * Free a diradd dependency structure. This routine must be called 2249 * with splbio interrupts blocked. 2250 */ 2251 static void 2252 free_diradd(dap) 2253 struct diradd *dap; 2254 { 2255 struct dirrem *dirrem; 2256 struct pagedep *pagedep; 2257 struct inodedep *inodedep; 2258 struct mkdir *mkdir, *nextmd; 2259 2260 #ifdef DEBUG 2261 if (lk.lkt_held == -1) 2262 panic("free_diradd: lock not held"); 2263 #endif 2264 WORKLIST_REMOVE(&dap->da_list); 2265 LIST_REMOVE(dap, da_pdlist); 2266 if ((dap->da_state & DIRCHG) == 0) { 2267 pagedep = dap->da_pagedep; 2268 } else { 2269 dirrem = dap->da_previous; 2270 pagedep = dirrem->dm_pagedep; 2271 dirrem->dm_dirinum = pagedep->pd_ino; 2272 add_to_worklist(&dirrem->dm_list); 2273 } 2274 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2275 0, &inodedep) != 0) 2276 (void) free_inodedep(inodedep); 2277 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2278 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2279 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2280 if (mkdir->md_diradd != dap) 2281 continue; 2282 dap->da_state &= ~mkdir->md_state; 2283 WORKLIST_REMOVE(&mkdir->md_list); 2284 LIST_REMOVE(mkdir, md_mkdirs); 2285 WORKITEM_FREE(mkdir, D_MKDIR); 2286 } 2287 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 2288 panic("free_diradd: unfound ref"); 2289 } 2290 WORKITEM_FREE(dap, D_DIRADD); 2291 } 2292 2293 /* 2294 * Directory entry removal dependencies. 2295 * 2296 * When removing a directory entry, the entry's inode pointer must be 2297 * zero'ed on disk before the corresponding inode's link count is decremented 2298 * (possibly freeing the inode for re-use). This dependency is handled by 2299 * updating the directory entry but delaying the inode count reduction until 2300 * after the directory block has been written to disk. After this point, the 2301 * inode count can be decremented whenever it is convenient. 2302 */ 2303 2304 /* 2305 * This routine should be called immediately after removing 2306 * a directory entry. The inode's link count should not be 2307 * decremented by the calling procedure -- the soft updates 2308 * code will do this task when it is safe. 2309 */ 2310 void 2311 softdep_setup_remove(bp, dp, ip, isrmdir) 2312 struct buf *bp; /* buffer containing directory block */ 2313 struct inode *dp; /* inode for the directory being modified */ 2314 struct inode *ip; /* inode for directory entry being removed */ 2315 int isrmdir; /* indicates if doing RMDIR */ 2316 { 2317 struct dirrem *dirrem; 2318 2319 /* 2320 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2321 */ 2322 dirrem = newdirrem(bp, dp, ip, isrmdir); 2323 if ((dirrem->dm_state & COMPLETE) == 0) { 2324 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2325 dm_next); 2326 } else { 2327 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2328 add_to_worklist(&dirrem->dm_list); 2329 } 2330 FREE_LOCK(&lk); 2331 } 2332 2333 /* 2334 * Allocate a new dirrem if appropriate and return it along with 2335 * its associated pagedep. Called without a lock, returns with lock. 2336 */ 2337 static struct dirrem * 2338 newdirrem(bp, dp, ip, isrmdir) 2339 struct buf *bp; /* buffer containing directory block */ 2340 struct inode *dp; /* inode for the directory being modified */ 2341 struct inode *ip; /* inode for directory entry being removed */ 2342 int isrmdir; /* indicates if doing RMDIR */ 2343 { 2344 int offset; 2345 ufs_lbn_t lbn; 2346 struct diradd *dap; 2347 struct dirrem *dirrem; 2348 struct pagedep *pagedep; 2349 2350 /* 2351 * Whiteouts have no deletion dependencies. 2352 */ 2353 if (ip == NULL) 2354 panic("newdirrem: whiteout"); 2355 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 2356 M_DIRREM, M_WAITOK); 2357 bzero(dirrem, sizeof(struct dirrem)); 2358 dirrem->dm_list.wk_type = D_DIRREM; 2359 dirrem->dm_state = isrmdir ? RMDIR : 0; 2360 dirrem->dm_mnt = ITOV(ip)->v_mount; 2361 dirrem->dm_oldinum = ip->i_number; 2362 2363 ACQUIRE_LOCK(&lk); 2364 lbn = lblkno(dp->i_fs, dp->i_offset); 2365 offset = blkoff(dp->i_fs, dp->i_offset); 2366 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2367 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2368 dirrem->dm_pagedep = pagedep; 2369 /* 2370 * Check for a diradd dependency for the same directory entry. 2371 * If present, then both dependencies become obsolete and can 2372 * be de-allocated. Check for an entry on both the pd_dirraddhd 2373 * list and the pd_pendinghd list. 2374 */ 2375 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(offset)]); 2376 dap; dap = LIST_NEXT(dap, da_pdlist)) 2377 if (dap->da_offset == offset) 2378 break; 2379 if (dap == NULL) { 2380 for (dap = LIST_FIRST(&pagedep->pd_pendinghd); 2381 dap; dap = LIST_NEXT(dap, da_pdlist)) 2382 if (dap->da_offset == offset) 2383 break; 2384 if (dap == NULL) 2385 return (dirrem); 2386 } 2387 /* 2388 * Must be ATTACHED at this point, so just delete it. 2389 */ 2390 if ((dap->da_state & ATTACHED) == 0) 2391 panic("newdirrem: not ATTACHED"); 2392 if (dap->da_newinum != ip->i_number) 2393 panic("newdirrem: inum %d should be %d", 2394 ip->i_number, dap->da_newinum); 2395 free_diradd(dap); 2396 dirrem->dm_state |= COMPLETE; 2397 return (dirrem); 2398 } 2399 2400 /* 2401 * Directory entry change dependencies. 2402 * 2403 * Changing an existing directory entry requires that an add operation 2404 * be completed first followed by a deletion. The semantics for the addition 2405 * are identical to the description of adding a new entry above except 2406 * that the rollback is to the old inode number rather than zero. Once 2407 * the addition dependency is completed, the removal is done as described 2408 * in the removal routine above. 2409 */ 2410 2411 /* 2412 * This routine should be called immediately after changing 2413 * a directory entry. The inode's link count should not be 2414 * decremented by the calling procedure -- the soft updates 2415 * code will perform this task when it is safe. 2416 */ 2417 void 2418 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 2419 struct buf *bp; /* buffer containing directory block */ 2420 struct inode *dp; /* inode for the directory being modified */ 2421 struct inode *ip; /* inode for directory entry being removed */ 2422 long newinum; /* new inode number for changed entry */ 2423 int isrmdir; /* indicates if doing RMDIR */ 2424 { 2425 int offset; 2426 struct diradd *dap = NULL; 2427 struct dirrem *dirrem; 2428 struct pagedep *pagedep; 2429 struct inodedep *inodedep; 2430 2431 offset = blkoff(dp->i_fs, dp->i_offset); 2432 2433 /* 2434 * Whiteouts do not need diradd dependencies. 2435 */ 2436 if (newinum != WINO) { 2437 MALLOC(dap, struct diradd *, sizeof(struct diradd), 2438 M_DIRADD, M_WAITOK); 2439 bzero(dap, sizeof(struct diradd)); 2440 dap->da_list.wk_type = D_DIRADD; 2441 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 2442 dap->da_offset = offset; 2443 dap->da_newinum = newinum; 2444 } 2445 2446 /* 2447 * Allocate a new dirrem and ACQUIRE_LOCK. 2448 */ 2449 dirrem = newdirrem(bp, dp, ip, isrmdir); 2450 pagedep = dirrem->dm_pagedep; 2451 /* 2452 * The possible values for isrmdir: 2453 * 0 - non-directory file rename 2454 * 1 - directory rename within same directory 2455 * inum - directory rename to new directory of given inode number 2456 * When renaming to a new directory, we are both deleting and 2457 * creating a new directory entry, so the link count on the new 2458 * directory should not change. Thus we do not need the followup 2459 * dirrem which is usually done in handle_workitem_remove. We set 2460 * the DIRCHG flag to tell handle_workitem_remove to skip the 2461 * followup dirrem. 2462 */ 2463 if (isrmdir > 1) 2464 dirrem->dm_state |= DIRCHG; 2465 2466 /* 2467 * Whiteouts have no additional dependencies, 2468 * so just put the dirrem on the correct list. 2469 */ 2470 if (newinum == WINO) { 2471 if ((dirrem->dm_state & COMPLETE) == 0) { 2472 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 2473 dm_next); 2474 } else { 2475 dirrem->dm_dirinum = pagedep->pd_ino; 2476 add_to_worklist(&dirrem->dm_list); 2477 } 2478 FREE_LOCK(&lk); 2479 return; 2480 } 2481 2482 /* 2483 * Link into its inodedep. Put it on the id_bufwait list if the inode 2484 * is not yet written. If it is written, do the post-inode write 2485 * processing to put it on the id_pendinghd list. 2486 */ 2487 dap->da_previous = dirrem; 2488 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 2489 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2490 dap->da_state |= COMPLETE; 2491 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 2492 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 2493 } else { 2494 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 2495 dap, da_pdlist); 2496 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2497 } 2498 /* 2499 * If the previous inode was never written or its previous directory 2500 * entry was never written, then we do not want to roll back to this 2501 * previous value. Instead we want to roll back to zero and immediately 2502 * free the unwritten or unreferenced inode. 2503 */ 2504 if (dirrem->dm_state & COMPLETE) { 2505 dap->da_state &= ~DIRCHG; 2506 dap->da_pagedep = pagedep; 2507 dirrem->dm_dirinum = pagedep->pd_ino; 2508 add_to_worklist(&dirrem->dm_list); 2509 } 2510 FREE_LOCK(&lk); 2511 } 2512 2513 /* 2514 * Called whenever the link count on an inode is increased. 2515 * It creates an inode dependency so that the new reference(s) 2516 * to the inode cannot be committed to disk until the updated 2517 * inode has been written. 2518 */ 2519 void 2520 softdep_increase_linkcnt(ip) 2521 struct inode *ip; /* the inode with the increased link count */ 2522 { 2523 struct inodedep *inodedep; 2524 2525 ACQUIRE_LOCK(&lk); 2526 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 2527 FREE_LOCK(&lk); 2528 } 2529 2530 /* 2531 * This workitem decrements the inode's link count. 2532 * If the link count reaches zero, the file is removed. 2533 */ 2534 static void 2535 handle_workitem_remove(dirrem) 2536 struct dirrem *dirrem; 2537 { 2538 struct proc *p = CURPROC; /* XXX */ 2539 struct inodedep *inodedep; 2540 struct vnode *vp; 2541 struct inode *ip; 2542 int error; 2543 2544 if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) { 2545 softdep_error("handle_workitem_remove: vget", error); 2546 return; 2547 } 2548 ip = VTOI(vp); 2549 /* 2550 * Normal file deletion. 2551 */ 2552 if ((dirrem->dm_state & RMDIR) == 0) { 2553 ip->i_nlink--; 2554 if (ip->i_nlink < ip->i_effnlink) 2555 panic("handle_workitem_remove: bad file delta"); 2556 ip->i_flag |= IN_CHANGE; 2557 vput(vp); 2558 WORKITEM_FREE(dirrem, D_DIRREM); 2559 return; 2560 } 2561 /* 2562 * Directory deletion. Decrement reference count for both the 2563 * just deleted parent directory entry and the reference for ".". 2564 * Next truncate the directory to length zero. When the 2565 * truncation completes, arrange to have the reference count on 2566 * the parent decremented to account for the loss of "..". 2567 */ 2568 ip->i_nlink -= 2; 2569 if (ip->i_nlink < ip->i_effnlink) 2570 panic("handle_workitem_remove: bad dir delta"); 2571 ip->i_flag |= IN_CHANGE; 2572 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, p->p_ucred, p)) != 0) 2573 softdep_error("handle_workitem_remove: truncate", error); 2574 /* 2575 * Rename a directory to a new parent. Since, we are both deleting 2576 * and creating a new directory entry, the link count on the new 2577 * directory should not change. Thus we skip the followup dirrem. 2578 */ 2579 if (dirrem->dm_state & DIRCHG) { 2580 vput(vp); 2581 WORKITEM_FREE(dirrem, D_DIRREM); 2582 return; 2583 } 2584 ACQUIRE_LOCK(&lk); 2585 (void) inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, DEPALLOC, 2586 &inodedep); 2587 dirrem->dm_state = 0; 2588 dirrem->dm_oldinum = dirrem->dm_dirinum; 2589 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 2590 FREE_LOCK(&lk); 2591 vput(vp); 2592 } 2593 2594 /* 2595 * Inode de-allocation dependencies. 2596 * 2597 * When an inode's link count is reduced to zero, it can be de-allocated. We 2598 * found it convenient to postpone de-allocation until after the inode is 2599 * written to disk with its new link count (zero). At this point, all of the 2600 * on-disk inode's block pointers are nullified and, with careful dependency 2601 * list ordering, all dependencies related to the inode will be satisfied and 2602 * the corresponding dependency structures de-allocated. So, if/when the 2603 * inode is reused, there will be no mixing of old dependencies with new 2604 * ones. This artificial dependency is set up by the block de-allocation 2605 * procedure above (softdep_setup_freeblocks) and completed by the 2606 * following procedure. 2607 */ 2608 static void 2609 handle_workitem_freefile(freefile) 2610 struct freefile *freefile; 2611 { 2612 struct vnode vp; 2613 struct inode tip; 2614 struct inodedep *idp; 2615 int error; 2616 2617 #ifdef DEBUG 2618 ACQUIRE_LOCK(&lk); 2619 if (inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp)) 2620 panic("handle_workitem_freefile: inodedep survived"); 2621 FREE_LOCK(&lk); 2622 #endif 2623 tip.i_devvp = freefile->fx_devvp; 2624 tip.i_dev = freefile->fx_devvp->v_rdev; 2625 tip.i_fs = freefile->fx_fs; 2626 vp.v_data = &tip; 2627 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0) 2628 softdep_error("handle_workitem_freefile", error); 2629 WORKITEM_FREE(freefile, D_FREEFILE); 2630 num_freefile -= 1; 2631 } 2632 2633 /* 2634 * Disk writes. 2635 * 2636 * The dependency structures constructed above are most actively used when file 2637 * system blocks are written to disk. No constraints are placed on when a 2638 * block can be written, but unsatisfied update dependencies are made safe by 2639 * modifying (or replacing) the source memory for the duration of the disk 2640 * write. When the disk write completes, the memory block is again brought 2641 * up-to-date. 2642 * 2643 * In-core inode structure reclamation. 2644 * 2645 * Because there are a finite number of "in-core" inode structures, they are 2646 * reused regularly. By transferring all inode-related dependencies to the 2647 * in-memory inode block and indexing them separately (via "inodedep"s), we 2648 * can allow "in-core" inode structures to be reused at any time and avoid 2649 * any increase in contention. 2650 * 2651 * Called just before entering the device driver to initiate a new disk I/O. 2652 * The buffer must be locked, thus, no I/O completion operations can occur 2653 * while we are manipulating its associated dependencies. 2654 */ 2655 void 2656 softdep_disk_io_initiation(bp) 2657 struct buf *bp; /* structure describing disk write to occur */ 2658 { 2659 struct worklist *wk, *nextwk; 2660 struct indirdep *indirdep; 2661 2662 /* 2663 * We only care about write operations. There should never 2664 * be dependencies for reads. 2665 */ 2666 if (bp->b_flags & B_READ) 2667 panic("softdep_disk_io_initiation: read"); 2668 /* 2669 * Do any necessary pre-I/O processing. 2670 */ 2671 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 2672 nextwk = LIST_NEXT(wk, wk_list); 2673 switch (wk->wk_type) { 2674 2675 case D_PAGEDEP: 2676 initiate_write_filepage(WK_PAGEDEP(wk), bp); 2677 continue; 2678 2679 case D_INODEDEP: 2680 initiate_write_inodeblock(WK_INODEDEP(wk), bp); 2681 continue; 2682 2683 case D_INDIRDEP: 2684 indirdep = WK_INDIRDEP(wk); 2685 if (indirdep->ir_state & GOINGAWAY) 2686 panic("disk_io_initiation: indirdep gone"); 2687 /* 2688 * If there are no remaining dependencies, this 2689 * will be writing the real pointers, so the 2690 * dependency can be freed. 2691 */ 2692 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 2693 indirdep->ir_savebp->b_flags &= ~B_XXX; 2694 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 2695 brelse(indirdep->ir_savebp); 2696 /* inline expand WORKLIST_REMOVE(wk); */ 2697 wk->wk_state &= ~ONWORKLIST; 2698 LIST_REMOVE(wk, wk_list); 2699 WORKITEM_FREE(indirdep, D_INDIRDEP); 2700 continue; 2701 } 2702 /* 2703 * Replace up-to-date version with safe version. 2704 */ 2705 ACQUIRE_LOCK(&lk); 2706 indirdep->ir_state &= ~ATTACHED; 2707 indirdep->ir_state |= UNDONE; 2708 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 2709 M_INDIRDEP, M_WAITOK); 2710 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 2711 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 2712 bp->b_bcount); 2713 FREE_LOCK(&lk); 2714 continue; 2715 2716 case D_MKDIR: 2717 case D_BMSAFEMAP: 2718 case D_ALLOCDIRECT: 2719 case D_ALLOCINDIR: 2720 continue; 2721 2722 default: 2723 panic("handle_disk_io_initiation: Unexpected type %s", 2724 TYPENAME(wk->wk_type)); 2725 /* NOTREACHED */ 2726 } 2727 } 2728 } 2729 2730 /* 2731 * Called from within the procedure above to deal with unsatisfied 2732 * allocation dependencies in a directory. The buffer must be locked, 2733 * thus, no I/O completion operations can occur while we are 2734 * manipulating its associated dependencies. 2735 */ 2736 static void 2737 initiate_write_filepage(pagedep, bp) 2738 struct pagedep *pagedep; 2739 struct buf *bp; 2740 { 2741 struct diradd *dap; 2742 struct direct *ep; 2743 int i; 2744 2745 if (pagedep->pd_state & IOSTARTED) { 2746 /* 2747 * This can only happen if there is a driver that does not 2748 * understand chaining. Here biodone will reissue the call 2749 * to strategy for the incomplete buffers. 2750 */ 2751 printf("initiate_write_filepage: already started\n"); 2752 return; 2753 } 2754 pagedep->pd_state |= IOSTARTED; 2755 ACQUIRE_LOCK(&lk); 2756 for (i = 0; i < DAHASHSZ; i++) { 2757 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 2758 dap = LIST_NEXT(dap, da_pdlist)) { 2759 ep = (struct direct *) 2760 ((char *)bp->b_data + dap->da_offset); 2761 if (ep->d_ino != dap->da_newinum) 2762 panic("%s: dir inum %d != new %d", 2763 "initiate_write_filepage", 2764 ep->d_ino, dap->da_newinum); 2765 if (dap->da_state & DIRCHG) 2766 ep->d_ino = dap->da_previous->dm_oldinum; 2767 else 2768 ep->d_ino = 0; 2769 dap->da_state &= ~ATTACHED; 2770 dap->da_state |= UNDONE; 2771 } 2772 } 2773 FREE_LOCK(&lk); 2774 } 2775 2776 /* 2777 * Called from within the procedure above to deal with unsatisfied 2778 * allocation dependencies in an inodeblock. The buffer must be 2779 * locked, thus, no I/O completion operations can occur while we 2780 * are manipulating its associated dependencies. 2781 */ 2782 static void 2783 initiate_write_inodeblock(inodedep, bp) 2784 struct inodedep *inodedep; 2785 struct buf *bp; /* The inode block */ 2786 { 2787 struct allocdirect *adp, *lastadp; 2788 struct dinode *dp; 2789 struct fs *fs; 2790 ufs_lbn_t prevlbn = 0; 2791 int i, deplist; 2792 2793 if (inodedep->id_state & IOSTARTED) 2794 panic("initiate_write_inodeblock: already started"); 2795 inodedep->id_state |= IOSTARTED; 2796 fs = inodedep->id_fs; 2797 dp = (struct dinode *)bp->b_data + 2798 ino_to_fsbo(fs, inodedep->id_ino); 2799 /* 2800 * If the bitmap is not yet written, then the allocated 2801 * inode cannot be written to disk. 2802 */ 2803 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 2804 if (inodedep->id_savedino != NULL) 2805 panic("initiate_write_inodeblock: already doing I/O"); 2806 MALLOC(inodedep->id_savedino, struct dinode *, 2807 sizeof(struct dinode), M_INODEDEP, M_WAITOK); 2808 *inodedep->id_savedino = *dp; 2809 bzero((caddr_t)dp, sizeof(struct dinode)); 2810 return; 2811 } 2812 /* 2813 * If no dependencies, then there is nothing to roll back. 2814 */ 2815 inodedep->id_savedsize = dp->di_size; 2816 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 2817 return; 2818 /* 2819 * Set the dependencies to busy. 2820 */ 2821 ACQUIRE_LOCK(&lk); 2822 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 2823 adp = TAILQ_NEXT(adp, ad_next)) { 2824 #ifdef DIAGNOSTIC 2825 if (deplist != 0 && prevlbn >= adp->ad_lbn) 2826 panic("softdep_write_inodeblock: lbn order"); 2827 prevlbn = adp->ad_lbn; 2828 if (adp->ad_lbn < NDADDR && 2829 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 2830 panic("%s: direct pointer #%d mismatch %d != %d", 2831 "softdep_write_inodeblock", adp->ad_lbn, 2832 dp->di_db[adp->ad_lbn], adp->ad_newblkno); 2833 if (adp->ad_lbn >= NDADDR && 2834 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 2835 panic("%s: indirect pointer #%d mismatch %d != %d", 2836 "softdep_write_inodeblock", adp->ad_lbn - NDADDR, 2837 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno); 2838 deplist |= 1 << adp->ad_lbn; 2839 if ((adp->ad_state & ATTACHED) == 0) 2840 panic("softdep_write_inodeblock: Unknown state 0x%x", 2841 adp->ad_state); 2842 #endif /* DIAGNOSTIC */ 2843 adp->ad_state &= ~ATTACHED; 2844 adp->ad_state |= UNDONE; 2845 } 2846 /* 2847 * The on-disk inode cannot claim to be any larger than the last 2848 * fragment that has been written. Otherwise, the on-disk inode 2849 * might have fragments that were not the last block in the file 2850 * which would corrupt the filesystem. 2851 */ 2852 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 2853 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 2854 if (adp->ad_lbn >= NDADDR) 2855 break; 2856 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 2857 /* keep going until hitting a rollback to a frag */ 2858 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 2859 continue; 2860 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 2861 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 2862 #ifdef DIAGNOSTIC 2863 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 2864 panic("softdep_write_inodeblock: lost dep1"); 2865 #endif /* DIAGNOSTIC */ 2866 dp->di_db[i] = 0; 2867 } 2868 for (i = 0; i < NIADDR; i++) { 2869 #ifdef DIAGNOSTIC 2870 if (dp->di_ib[i] != 0 && 2871 (deplist & ((1 << NDADDR) << i)) == 0) 2872 panic("softdep_write_inodeblock: lost dep2"); 2873 #endif /* DIAGNOSTIC */ 2874 dp->di_ib[i] = 0; 2875 } 2876 FREE_LOCK(&lk); 2877 return; 2878 } 2879 /* 2880 * If we have zero'ed out the last allocated block of the file, 2881 * roll back the size to the last currently allocated block. 2882 * We know that this last allocated block is a full-sized as 2883 * we already checked for fragments in the loop above. 2884 */ 2885 if (lastadp != NULL && 2886 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 2887 for (i = lastadp->ad_lbn; i >= 0; i--) 2888 if (dp->di_db[i] != 0) 2889 break; 2890 dp->di_size = (i + 1) * fs->fs_bsize; 2891 } 2892 /* 2893 * The only dependencies are for indirect blocks. 2894 * 2895 * The file size for indirect block additions is not guaranteed. 2896 * Such a guarantee would be non-trivial to achieve. The conventional 2897 * synchronous write implementation also does not make this guarantee. 2898 * Fsck should catch and fix discrepancies. Arguably, the file size 2899 * can be over-estimated without destroying integrity when the file 2900 * moves into the indirect blocks (i.e., is large). If we want to 2901 * postpone fsck, we are stuck with this argument. 2902 */ 2903 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 2904 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 2905 FREE_LOCK(&lk); 2906 } 2907 2908 /* 2909 * This routine is called during the completion interrupt 2910 * service routine for a disk write (from the procedure called 2911 * by the device driver to inform the file system caches of 2912 * a request completion). It should be called early in this 2913 * procedure, before the block is made available to other 2914 * processes or other routines are called. 2915 */ 2916 void 2917 softdep_disk_write_complete(bp) 2918 struct buf *bp; /* describes the completed disk write */ 2919 { 2920 struct worklist *wk; 2921 struct workhead reattach; 2922 struct newblk *newblk; 2923 struct allocindir *aip; 2924 struct allocdirect *adp; 2925 struct indirdep *indirdep; 2926 struct inodedep *inodedep; 2927 struct bmsafemap *bmsafemap; 2928 2929 #ifdef DEBUG 2930 if (lk.lkt_held != -1) 2931 panic("softdep_disk_write_complete: lock is held"); 2932 lk.lkt_held = -2; 2933 #endif 2934 LIST_INIT(&reattach); 2935 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2936 WORKLIST_REMOVE(wk); 2937 switch (wk->wk_type) { 2938 2939 case D_PAGEDEP: 2940 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 2941 WORKLIST_INSERT(&reattach, wk); 2942 continue; 2943 2944 case D_INODEDEP: 2945 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 2946 WORKLIST_INSERT(&reattach, wk); 2947 continue; 2948 2949 case D_BMSAFEMAP: 2950 bmsafemap = WK_BMSAFEMAP(wk); 2951 while (newblk = LIST_FIRST(&bmsafemap->sm_newblkhd)) { 2952 newblk->nb_state |= DEPCOMPLETE; 2953 newblk->nb_bmsafemap = NULL; 2954 LIST_REMOVE(newblk, nb_deps); 2955 } 2956 while (adp = LIST_FIRST(&bmsafemap->sm_allocdirecthd)) { 2957 adp->ad_state |= DEPCOMPLETE; 2958 adp->ad_buf = NULL; 2959 LIST_REMOVE(adp, ad_deps); 2960 handle_allocdirect_partdone(adp); 2961 } 2962 while (aip = LIST_FIRST(&bmsafemap->sm_allocindirhd)) { 2963 aip->ai_state |= DEPCOMPLETE; 2964 aip->ai_buf = NULL; 2965 LIST_REMOVE(aip, ai_deps); 2966 handle_allocindir_partdone(aip); 2967 } 2968 while ((inodedep = 2969 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 2970 inodedep->id_state |= DEPCOMPLETE; 2971 LIST_REMOVE(inodedep, id_deps); 2972 inodedep->id_buf = NULL; 2973 } 2974 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 2975 continue; 2976 2977 case D_MKDIR: 2978 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 2979 continue; 2980 2981 case D_ALLOCDIRECT: 2982 adp = WK_ALLOCDIRECT(wk); 2983 adp->ad_state |= COMPLETE; 2984 handle_allocdirect_partdone(adp); 2985 continue; 2986 2987 case D_ALLOCINDIR: 2988 aip = WK_ALLOCINDIR(wk); 2989 aip->ai_state |= COMPLETE; 2990 handle_allocindir_partdone(aip); 2991 continue; 2992 2993 case D_INDIRDEP: 2994 indirdep = WK_INDIRDEP(wk); 2995 if (indirdep->ir_state & GOINGAWAY) 2996 panic("disk_write_complete: indirdep gone"); 2997 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 2998 FREE(indirdep->ir_saveddata, M_INDIRDEP); 2999 indirdep->ir_saveddata = 0; 3000 indirdep->ir_state &= ~UNDONE; 3001 indirdep->ir_state |= ATTACHED; 3002 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 3003 LIST_REMOVE(aip, ai_next); 3004 handle_allocindir_partdone(aip); 3005 } 3006 WORKLIST_INSERT(&reattach, wk); 3007 bdirty(bp); 3008 continue; 3009 3010 default: 3011 panic("handle_disk_write_complete: Unknown type %s", 3012 TYPENAME(wk->wk_type)); 3013 /* NOTREACHED */ 3014 } 3015 } 3016 /* 3017 * Reattach any requests that must be redone. 3018 */ 3019 while ((wk = LIST_FIRST(&reattach)) != NULL) { 3020 WORKLIST_REMOVE(wk); 3021 WORKLIST_INSERT(&bp->b_dep, wk); 3022 } 3023 #ifdef DEBUG 3024 if (lk.lkt_held != -2) 3025 panic("softdep_disk_write_complete: lock lost"); 3026 lk.lkt_held = -1; 3027 #endif 3028 } 3029 3030 /* 3031 * Called from within softdep_disk_write_complete above. Note that 3032 * this routine is always called from interrupt level with further 3033 * splbio interrupts blocked. 3034 */ 3035 static void 3036 handle_allocdirect_partdone(adp) 3037 struct allocdirect *adp; /* the completed allocdirect */ 3038 { 3039 struct allocdirect *listadp; 3040 struct inodedep *inodedep; 3041 long bsize; 3042 3043 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3044 return; 3045 if (adp->ad_buf != NULL) 3046 panic("handle_allocdirect_partdone: dangling dep"); 3047 /* 3048 * The on-disk inode cannot claim to be any larger than the last 3049 * fragment that has been written. Otherwise, the on-disk inode 3050 * might have fragments that were not the last block in the file 3051 * which would corrupt the filesystem. Thus, we cannot free any 3052 * allocdirects after one whose ad_oldblkno claims a fragment as 3053 * these blocks must be rolled back to zero before writing the inode. 3054 * We check the currently active set of allocdirects in id_inoupdt. 3055 */ 3056 inodedep = adp->ad_inodedep; 3057 bsize = inodedep->id_fs->fs_bsize; 3058 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp; 3059 listadp = TAILQ_NEXT(listadp, ad_next)) { 3060 /* found our block */ 3061 if (listadp == adp) 3062 break; 3063 /* continue if ad_oldlbn is not a fragment */ 3064 if (listadp->ad_oldsize == 0 || 3065 listadp->ad_oldsize == bsize) 3066 continue; 3067 /* hit a fragment */ 3068 return; 3069 } 3070 /* 3071 * If we have reached the end of the current list without 3072 * finding the just finished dependency, then it must be 3073 * on the future dependency list. Future dependencies cannot 3074 * be freed until they are moved to the current list. 3075 */ 3076 if (listadp == NULL) { 3077 #ifdef DEBUG 3078 for (listadp = TAILQ_FIRST(&inodedep->id_newinoupdt); listadp; 3079 listadp = TAILQ_NEXT(listadp, ad_next)) 3080 /* found our block */ 3081 if (listadp == adp) 3082 break; 3083 if (listadp == NULL) 3084 panic("handle_allocdirect_partdone: lost dep"); 3085 #endif /* DEBUG */ 3086 return; 3087 } 3088 /* 3089 * If we have found the just finished dependency, then free 3090 * it along with anything that follows it that is complete. 3091 */ 3092 for (; adp; adp = listadp) { 3093 listadp = TAILQ_NEXT(adp, ad_next); 3094 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3095 return; 3096 free_allocdirect(&inodedep->id_inoupdt, adp, 1); 3097 } 3098 } 3099 3100 /* 3101 * Called from within softdep_disk_write_complete above. Note that 3102 * this routine is always called from interrupt level with further 3103 * splbio interrupts blocked. 3104 */ 3105 static void 3106 handle_allocindir_partdone(aip) 3107 struct allocindir *aip; /* the completed allocindir */ 3108 { 3109 struct indirdep *indirdep; 3110 3111 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 3112 return; 3113 if (aip->ai_buf != NULL) 3114 panic("handle_allocindir_partdone: dangling dependency"); 3115 indirdep = aip->ai_indirdep; 3116 if (indirdep->ir_state & UNDONE) { 3117 LIST_REMOVE(aip, ai_next); 3118 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 3119 return; 3120 } 3121 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3122 aip->ai_newblkno; 3123 LIST_REMOVE(aip, ai_next); 3124 if (aip->ai_freefrag != NULL) 3125 add_to_worklist(&aip->ai_freefrag->ff_list); 3126 WORKITEM_FREE(aip, D_ALLOCINDIR); 3127 } 3128 3129 /* 3130 * Called from within softdep_disk_write_complete above to restore 3131 * in-memory inode block contents to their most up-to-date state. Note 3132 * that this routine is always called from interrupt level with further 3133 * splbio interrupts blocked. 3134 */ 3135 static int 3136 handle_written_inodeblock(inodedep, bp) 3137 struct inodedep *inodedep; 3138 struct buf *bp; /* buffer containing the inode block */ 3139 { 3140 struct pagedep *pagedep; 3141 struct worklist *wk, *filefree; 3142 struct allocdirect *adp, *nextadp; 3143 struct dinode *dp; 3144 struct diradd *dap; 3145 int hadchanges; 3146 3147 if ((inodedep->id_state & IOSTARTED) == 0) 3148 panic("handle_written_inodeblock: not started"); 3149 inodedep->id_state &= ~IOSTARTED; 3150 inodedep->id_state |= COMPLETE; 3151 dp = (struct dinode *)bp->b_data + 3152 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 3153 /* 3154 * If we had to rollback the inode allocation because of 3155 * bitmaps being incomplete, then simply restore it. 3156 * Keep the block dirty so that it will not be reclaimed until 3157 * all associated dependencies have been cleared and the 3158 * corresponding updates written to disk. 3159 */ 3160 if (inodedep->id_savedino != NULL) { 3161 *dp = *inodedep->id_savedino; 3162 FREE(inodedep->id_savedino, M_INODEDEP); 3163 inodedep->id_savedino = NULL; 3164 bdirty(bp); 3165 return (1); 3166 } 3167 /* 3168 * Roll forward anything that had to be rolled back before 3169 * the inode could be updated. 3170 */ 3171 hadchanges = 0; 3172 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 3173 nextadp = TAILQ_NEXT(adp, ad_next); 3174 if (adp->ad_state & ATTACHED) 3175 panic("handle_written_inodeblock: new entry"); 3176 if (adp->ad_lbn < NDADDR) { 3177 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) 3178 panic("%s: %s #%d mismatch %d != %d", 3179 "handle_written_inodeblock", 3180 "direct pointer", adp->ad_lbn, 3181 dp->di_db[adp->ad_lbn], adp->ad_oldblkno); 3182 dp->di_db[adp->ad_lbn] = adp->ad_newblkno; 3183 } else { 3184 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) 3185 panic("%s: %s #%d allocated as %d", 3186 "handle_written_inodeblock", 3187 "indirect pointer", adp->ad_lbn - NDADDR, 3188 dp->di_ib[adp->ad_lbn - NDADDR]); 3189 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno; 3190 } 3191 adp->ad_state &= ~UNDONE; 3192 adp->ad_state |= ATTACHED; 3193 hadchanges = 1; 3194 } 3195 /* 3196 * Reset the file size to its most up-to-date value. 3197 */ 3198 if (inodedep->id_savedsize == -1) 3199 panic("handle_written_inodeblock: bad size"); 3200 if (dp->di_size != inodedep->id_savedsize) { 3201 dp->di_size = inodedep->id_savedsize; 3202 hadchanges = 1; 3203 } 3204 inodedep->id_savedsize = -1; 3205 /* 3206 * If there were any rollbacks in the inode block, then it must be 3207 * marked dirty so that its will eventually get written back in 3208 * its correct form. 3209 */ 3210 if (hadchanges) 3211 bdirty(bp); 3212 /* 3213 * Process any allocdirects that completed during the update. 3214 */ 3215 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 3216 handle_allocdirect_partdone(adp); 3217 /* 3218 * Process deallocations that were held pending until the 3219 * inode had been written to disk. Freeing of the inode 3220 * is delayed until after all blocks have been freed to 3221 * avoid creation of new <vfsid, inum, lbn> triples 3222 * before the old ones have been deleted. 3223 */ 3224 filefree = NULL; 3225 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 3226 WORKLIST_REMOVE(wk); 3227 switch (wk->wk_type) { 3228 3229 case D_FREEFILE: 3230 /* 3231 * We defer adding filefree to the worklist until 3232 * all other additions have been made to ensure 3233 * that it will be done after all the old blocks 3234 * have been freed. 3235 */ 3236 if (filefree != NULL) 3237 panic("handle_written_inodeblock: filefree"); 3238 filefree = wk; 3239 continue; 3240 3241 case D_MKDIR: 3242 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 3243 continue; 3244 3245 case D_DIRADD: 3246 diradd_inode_written(WK_DIRADD(wk), inodedep); 3247 continue; 3248 3249 case D_FREEBLKS: 3250 case D_FREEFRAG: 3251 case D_DIRREM: 3252 add_to_worklist(wk); 3253 continue; 3254 3255 default: 3256 panic("handle_written_inodeblock: Unknown type %s", 3257 TYPENAME(wk->wk_type)); 3258 /* NOTREACHED */ 3259 } 3260 } 3261 if (filefree != NULL) { 3262 if (free_inodedep(inodedep) == 0) 3263 panic("handle_written_inodeblock: live inodedep"); 3264 add_to_worklist(filefree); 3265 return (0); 3266 } 3267 3268 /* 3269 * If no outstanding dependencies, free it. 3270 */ 3271 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0) 3272 return (0); 3273 return (hadchanges); 3274 } 3275 3276 /* 3277 * Process a diradd entry after its dependent inode has been written. 3278 * This routine must be called with splbio interrupts blocked. 3279 */ 3280 static void 3281 diradd_inode_written(dap, inodedep) 3282 struct diradd *dap; 3283 struct inodedep *inodedep; 3284 { 3285 struct pagedep *pagedep; 3286 3287 dap->da_state |= COMPLETE; 3288 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3289 if (dap->da_state & DIRCHG) 3290 pagedep = dap->da_previous->dm_pagedep; 3291 else 3292 pagedep = dap->da_pagedep; 3293 LIST_REMOVE(dap, da_pdlist); 3294 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3295 } 3296 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3297 } 3298 3299 /* 3300 * Handle the completion of a mkdir dependency. 3301 */ 3302 static void 3303 handle_written_mkdir(mkdir, type) 3304 struct mkdir *mkdir; 3305 int type; 3306 { 3307 struct diradd *dap; 3308 struct pagedep *pagedep; 3309 3310 if (mkdir->md_state != type) 3311 panic("handle_written_mkdir: bad type"); 3312 dap = mkdir->md_diradd; 3313 dap->da_state &= ~type; 3314 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 3315 dap->da_state |= DEPCOMPLETE; 3316 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3317 if (dap->da_state & DIRCHG) 3318 pagedep = dap->da_previous->dm_pagedep; 3319 else 3320 pagedep = dap->da_pagedep; 3321 LIST_REMOVE(dap, da_pdlist); 3322 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3323 } 3324 LIST_REMOVE(mkdir, md_mkdirs); 3325 WORKITEM_FREE(mkdir, D_MKDIR); 3326 } 3327 3328 /* 3329 * Called from within softdep_disk_write_complete above. 3330 * A write operation was just completed. Removed inodes can 3331 * now be freed and associated block pointers may be committed. 3332 * Note that this routine is always called from interrupt level 3333 * with further splbio interrupts blocked. 3334 */ 3335 static int 3336 handle_written_filepage(pagedep, bp) 3337 struct pagedep *pagedep; 3338 struct buf *bp; /* buffer containing the written page */ 3339 { 3340 struct dirrem *dirrem; 3341 struct diradd *dap, *nextdap; 3342 struct direct *ep; 3343 int i, chgs; 3344 3345 if ((pagedep->pd_state & IOSTARTED) == 0) 3346 panic("handle_written_filepage: not started"); 3347 pagedep->pd_state &= ~IOSTARTED; 3348 /* 3349 * Process any directory removals that have been committed. 3350 */ 3351 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 3352 LIST_REMOVE(dirrem, dm_next); 3353 dirrem->dm_dirinum = pagedep->pd_ino; 3354 add_to_worklist(&dirrem->dm_list); 3355 } 3356 /* 3357 * Free any directory additions that have been committed. 3358 */ 3359 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 3360 free_diradd(dap); 3361 /* 3362 * Uncommitted directory entries must be restored. 3363 */ 3364 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 3365 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 3366 dap = nextdap) { 3367 nextdap = LIST_NEXT(dap, da_pdlist); 3368 if (dap->da_state & ATTACHED) 3369 panic("handle_written_filepage: attached"); 3370 ep = (struct direct *) 3371 ((char *)bp->b_data + dap->da_offset); 3372 ep->d_ino = dap->da_newinum; 3373 dap->da_state &= ~UNDONE; 3374 dap->da_state |= ATTACHED; 3375 chgs = 1; 3376 /* 3377 * If the inode referenced by the directory has 3378 * been written out, then the dependency can be 3379 * moved to the pending list. 3380 */ 3381 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3382 LIST_REMOVE(dap, da_pdlist); 3383 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 3384 da_pdlist); 3385 } 3386 } 3387 } 3388 /* 3389 * If there were any rollbacks in the directory, then it must be 3390 * marked dirty so that its will eventually get written back in 3391 * its correct form. 3392 */ 3393 if (chgs) 3394 bdirty(bp); 3395 /* 3396 * If no dependencies remain, the pagedep will be freed. 3397 * Otherwise it will remain to update the page before it 3398 * is written back to disk. 3399 */ 3400 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) { 3401 for (i = 0; i < DAHASHSZ; i++) 3402 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 3403 break; 3404 if (i == DAHASHSZ) { 3405 LIST_REMOVE(pagedep, pd_hash); 3406 WORKITEM_FREE(pagedep, D_PAGEDEP); 3407 return (0); 3408 } 3409 } 3410 return (1); 3411 } 3412 3413 /* 3414 * Writing back in-core inode structures. 3415 * 3416 * The file system only accesses an inode's contents when it occupies an 3417 * "in-core" inode structure. These "in-core" structures are separate from 3418 * the page frames used to cache inode blocks. Only the latter are 3419 * transferred to/from the disk. So, when the updated contents of the 3420 * "in-core" inode structure are copied to the corresponding in-memory inode 3421 * block, the dependencies are also transferred. The following procedure is 3422 * called when copying a dirty "in-core" inode to a cached inode block. 3423 */ 3424 3425 /* 3426 * Called when an inode is loaded from disk. If the effective link count 3427 * differed from the actual link count when it was last flushed, then we 3428 * need to ensure that the correct effective link count is put back. 3429 */ 3430 void 3431 softdep_load_inodeblock(ip) 3432 struct inode *ip; /* the "in_core" copy of the inode */ 3433 { 3434 struct inodedep *inodedep; 3435 int error, gotit; 3436 3437 /* 3438 * Check for alternate nlink count. 3439 */ 3440 ip->i_effnlink = ip->i_nlink; 3441 ACQUIRE_LOCK(&lk); 3442 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 3443 FREE_LOCK(&lk); 3444 return; 3445 } 3446 if (inodedep->id_nlinkdelta != 0) { 3447 ip->i_effnlink -= inodedep->id_nlinkdelta; 3448 ip->i_flag |= IN_MODIFIED; 3449 inodedep->id_nlinkdelta = 0; 3450 (void) free_inodedep(inodedep); 3451 } 3452 FREE_LOCK(&lk); 3453 } 3454 3455 /* 3456 * This routine is called just before the "in-core" inode 3457 * information is to be copied to the in-memory inode block. 3458 * Recall that an inode block contains several inodes. If 3459 * the force flag is set, then the dependencies will be 3460 * cleared so that the update can always be made. Note that 3461 * the buffer is locked when this routine is called, so we 3462 * will never be in the middle of writing the inode block 3463 * to disk. 3464 */ 3465 void 3466 softdep_update_inodeblock(ip, bp, waitfor) 3467 struct inode *ip; /* the "in_core" copy of the inode */ 3468 struct buf *bp; /* the buffer containing the inode block */ 3469 int waitfor; /* 1 => update must be allowed */ 3470 { 3471 struct inodedep *inodedep; 3472 struct worklist *wk; 3473 int error, gotit; 3474 3475 /* 3476 * If the effective link count is not equal to the actual link 3477 * count, then we must track the difference in an inodedep while 3478 * the inode is (potentially) tossed out of the cache. Otherwise, 3479 * if there is no existing inodedep, then there are no dependencies 3480 * to track. 3481 */ 3482 ACQUIRE_LOCK(&lk); 3483 if (ip->i_effnlink != ip->i_nlink) { 3484 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, 3485 &inodedep); 3486 } else if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 3487 FREE_LOCK(&lk); 3488 return; 3489 } 3490 if (ip->i_nlink < ip->i_effnlink) 3491 panic("softdep_update_inodeblock: bad delta"); 3492 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3493 /* 3494 * Changes have been initiated. Anything depending on these 3495 * changes cannot occur until this inode has been written. 3496 */ 3497 inodedep->id_state &= ~COMPLETE; 3498 if ((inodedep->id_state & ONWORKLIST) == 0) 3499 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 3500 /* 3501 * Any new dependencies associated with the incore inode must 3502 * now be moved to the list associated with the buffer holding 3503 * the in-memory copy of the inode. Once merged process any 3504 * allocdirects that are completed by the merger. 3505 */ 3506 merge_inode_lists(inodedep); 3507 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 3508 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 3509 /* 3510 * Now that the inode has been pushed into the buffer, the 3511 * operations dependent on the inode being written to disk 3512 * can be moved to the id_bufwait so that they will be 3513 * processed when the buffer I/O completes. 3514 */ 3515 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 3516 WORKLIST_REMOVE(wk); 3517 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 3518 } 3519 /* 3520 * Newly allocated inodes cannot be written until the bitmap 3521 * that allocates them have been written (indicated by 3522 * DEPCOMPLETE being set in id_state). If we are doing a 3523 * forced sync (e.g., an fsync on a file), we force the bitmap 3524 * to be written so that the update can be done. 3525 */ 3526 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 3527 FREE_LOCK(&lk); 3528 return; 3529 } 3530 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 3531 FREE_LOCK(&lk); 3532 if (gotit && (error = VOP_BWRITE(inodedep->id_buf)) != 0) 3533 softdep_error("softdep_update_inodeblock: bwrite", error); 3534 if ((inodedep->id_state & DEPCOMPLETE) == 0) 3535 panic("softdep_update_inodeblock: update failed"); 3536 } 3537 3538 /* 3539 * Merge the new inode dependency list (id_newinoupdt) into the old 3540 * inode dependency list (id_inoupdt). This routine must be called 3541 * with splbio interrupts blocked. 3542 */ 3543 static void 3544 merge_inode_lists(inodedep) 3545 struct inodedep *inodedep; 3546 { 3547 struct allocdirect *listadp, *newadp; 3548 3549 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 3550 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) { 3551 if (listadp->ad_lbn < newadp->ad_lbn) { 3552 listadp = TAILQ_NEXT(listadp, ad_next); 3553 continue; 3554 } 3555 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 3556 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 3557 if (listadp->ad_lbn == newadp->ad_lbn) { 3558 allocdirect_merge(&inodedep->id_inoupdt, newadp, 3559 listadp); 3560 listadp = newadp; 3561 } 3562 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 3563 } 3564 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) { 3565 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 3566 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next); 3567 } 3568 } 3569 3570 /* 3571 * If we are doing an fsync, then we must ensure that any directory 3572 * entries for the inode have been written after the inode gets to disk. 3573 */ 3574 int 3575 softdep_fsync(vp) 3576 struct vnode *vp; /* the "in_core" copy of the inode */ 3577 { 3578 struct diradd *dap, *olddap; 3579 struct inodedep *inodedep; 3580 struct pagedep *pagedep; 3581 struct worklist *wk; 3582 struct mount *mnt; 3583 struct vnode *pvp; 3584 struct inode *ip; 3585 struct buf *bp; 3586 struct fs *fs; 3587 struct proc *p = CURPROC; /* XXX */ 3588 int error, ret, flushparent; 3589 struct timeval tv; 3590 ino_t parentino; 3591 ufs_lbn_t lbn; 3592 3593 ip = VTOI(vp); 3594 fs = ip->i_fs; 3595 for (error = 0, flushparent = 0, olddap = NULL; ; ) { 3596 ACQUIRE_LOCK(&lk); 3597 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 3598 break; 3599 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 3600 LIST_FIRST(&inodedep->id_bufwait) != NULL || 3601 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 3602 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) 3603 panic("softdep_fsync: pending ops"); 3604 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 3605 break; 3606 if (wk->wk_type != D_DIRADD) 3607 panic("softdep_fsync: Unexpected type %s", 3608 TYPENAME(wk->wk_type)); 3609 dap = WK_DIRADD(wk); 3610 /* 3611 * If we have failed to get rid of all the dependencies 3612 * then something is seriously wrong. 3613 */ 3614 if (dap == olddap) 3615 panic("softdep_fsync: flush failed"); 3616 olddap = dap; 3617 /* 3618 * Flush our parent if this directory entry 3619 * has a MKDIR_PARENT dependency. 3620 */ 3621 if (dap->da_state & DIRCHG) 3622 pagedep = dap->da_previous->dm_pagedep; 3623 else 3624 pagedep = dap->da_pagedep; 3625 mnt = pagedep->pd_mnt; 3626 parentino = pagedep->pd_ino; 3627 lbn = pagedep->pd_lbn; 3628 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 3629 panic("softdep_fsync: dirty"); 3630 flushparent = dap->da_state & MKDIR_PARENT; 3631 /* 3632 * If we are being fsync'ed as part of vgone'ing this vnode, 3633 * then we will not be able to release and recover the 3634 * vnode below, so we just have to give up on writing its 3635 * directory entry out. It will eventually be written, just 3636 * not now, but then the user was not asking to have it 3637 * written, so we are not breaking any promises. 3638 */ 3639 if (vp->v_flag & VXLOCK) 3640 break; 3641 /* 3642 * We prevent deadlock by always fetching inodes from the 3643 * root, moving down the directory tree. Thus, when fetching 3644 * our parent directory, we must unlock ourselves before 3645 * requesting the lock on our parent. See the comment in 3646 * ufs_lookup for details on possible races. 3647 */ 3648 FREE_LOCK(&lk); 3649 VOP_UNLOCK(vp, 0, p); 3650 if ((error = VFS_VGET(mnt, parentino, &pvp)) != 0) { 3651 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); 3652 return (error); 3653 } 3654 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); 3655 if (flushparent) { 3656 #ifndef __FreeBSD__ 3657 tv = time; 3658 #else 3659 getmicrotime(&tv); 3660 #endif /* __FreeBSD__ */ 3661 if (error = UFS_UPDATE(pvp, &tv, &tv, MNT_WAIT)) { 3662 vput(pvp); 3663 return (error); 3664 } 3665 } 3666 /* 3667 * Flush directory page containing the inode's name. 3668 */ 3669 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), p->p_ucred, 3670 &bp); 3671 ret = VOP_BWRITE(bp); 3672 vput(pvp); 3673 if (error != 0) 3674 return (error); 3675 if (ret != 0) 3676 return (ret); 3677 } 3678 FREE_LOCK(&lk); 3679 return (0); 3680 } 3681 3682 /* 3683 * This routine is called when we are trying to synchronously flush a 3684 * file. This routine must eliminate any filesystem metadata dependencies 3685 * so that the syncing routine can succeed by pushing the dirty blocks 3686 * associated with the file. If any I/O errors occur, they are returned. 3687 */ 3688 int 3689 softdep_sync_metadata(ap) 3690 struct vop_fsync_args /* { 3691 struct vnode *a_vp; 3692 struct ucred *a_cred; 3693 int a_waitfor; 3694 struct proc *a_p; 3695 } */ *ap; 3696 { 3697 struct vnode *vp = ap->a_vp; 3698 struct pagedep *pagedep; 3699 struct allocdirect *adp; 3700 struct allocindir *aip; 3701 struct buf *bp, *nbp; 3702 struct worklist *wk; 3703 int i, error, waitfor; 3704 3705 /* 3706 * Check whether this vnode is involved in a filesystem 3707 * that is doing soft dependency processing. 3708 */ 3709 if (vp->v_type != VBLK) { 3710 if (!DOINGSOFTDEP(vp)) 3711 return (0); 3712 } else 3713 if (vp->v_specmountpoint == NULL || 3714 (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP) == 0) 3715 return (0); 3716 /* 3717 * Ensure that any direct block dependencies have been cleared. 3718 */ 3719 ACQUIRE_LOCK(&lk); 3720 if (error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number)) { 3721 FREE_LOCK(&lk); 3722 return (error); 3723 } 3724 /* 3725 * For most files, the only metadata dependencies are the 3726 * cylinder group maps that allocate their inode or blocks. 3727 * The block allocation dependencies can be found by traversing 3728 * the dependency lists for any buffers that remain on their 3729 * dirty buffer list. The inode allocation dependency will 3730 * be resolved when the inode is updated with MNT_WAIT. 3731 * This work is done in two passes. The first pass grabs most 3732 * of the buffers and begins asynchronously writing them. The 3733 * only way to wait for these asynchronous writes is to sleep 3734 * on the filesystem vnode which may stay busy for a long time 3735 * if the filesystem is active. So, instead, we make a second 3736 * pass over the dependencies blocking on each write. In the 3737 * usual case we will be blocking against a write that we 3738 * initiated, so when it is done the dependency will have been 3739 * resolved. Thus the second pass is expected to end quickly. 3740 */ 3741 waitfor = MNT_NOWAIT; 3742 top: 3743 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 3744 while (vp->v_numoutput) { 3745 vp->v_flag |= VBWAIT; 3746 FREE_LOCK_INTERLOCKED(&lk); 3747 tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, 3748 "sdsynm", 0); 3749 ACQUIRE_LOCK_INTERLOCKED(&lk); 3750 } 3751 FREE_LOCK(&lk); 3752 return (0); 3753 } 3754 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 3755 loop: 3756 /* 3757 * As we hold the buffer locked, none of its dependencies 3758 * will disappear. 3759 */ 3760 for (wk = LIST_FIRST(&bp->b_dep); wk; 3761 wk = LIST_NEXT(wk, wk_list)) { 3762 switch (wk->wk_type) { 3763 3764 case D_ALLOCDIRECT: 3765 adp = WK_ALLOCDIRECT(wk); 3766 if (adp->ad_state & DEPCOMPLETE) 3767 break; 3768 nbp = adp->ad_buf; 3769 if (getdirtybuf(&nbp, waitfor) == 0) 3770 break; 3771 FREE_LOCK(&lk); 3772 if (waitfor == MNT_NOWAIT) { 3773 bawrite(nbp); 3774 } else if ((error = VOP_BWRITE(nbp)) != 0) { 3775 bawrite(bp); 3776 return (error); 3777 } 3778 ACQUIRE_LOCK(&lk); 3779 break; 3780 3781 case D_ALLOCINDIR: 3782 aip = WK_ALLOCINDIR(wk); 3783 if (aip->ai_state & DEPCOMPLETE) 3784 break; 3785 nbp = aip->ai_buf; 3786 if (getdirtybuf(&nbp, waitfor) == 0) 3787 break; 3788 FREE_LOCK(&lk); 3789 if (waitfor == MNT_NOWAIT) { 3790 bawrite(nbp); 3791 } else if ((error = VOP_BWRITE(nbp)) != 0) { 3792 bawrite(bp); 3793 return (error); 3794 } 3795 ACQUIRE_LOCK(&lk); 3796 break; 3797 3798 case D_INDIRDEP: 3799 restart: 3800 for (aip = LIST_FIRST(&WK_INDIRDEP(wk)->ir_deplisthd); 3801 aip; aip = LIST_NEXT(aip, ai_next)) { 3802 if (aip->ai_state & DEPCOMPLETE) 3803 continue; 3804 nbp = aip->ai_buf; 3805 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 3806 goto restart; 3807 FREE_LOCK(&lk); 3808 if ((error = VOP_BWRITE(nbp)) != 0) { 3809 bawrite(bp); 3810 return (error); 3811 } 3812 ACQUIRE_LOCK(&lk); 3813 goto restart; 3814 } 3815 break; 3816 3817 case D_INODEDEP: 3818 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 3819 WK_INODEDEP(wk)->id_ino)) != 0) { 3820 FREE_LOCK(&lk); 3821 bawrite(bp); 3822 return (error); 3823 } 3824 break; 3825 3826 case D_PAGEDEP: 3827 /* 3828 * We are trying to sync a directory that may 3829 * have dependencies on both its own metadata 3830 * and/or dependencies on the inodes of any 3831 * recently allocated files. We walk its diradd 3832 * lists pushing out the associated inode. 3833 */ 3834 pagedep = WK_PAGEDEP(wk); 3835 for (i = 0; i < DAHASHSZ; i++) { 3836 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 3837 continue; 3838 if (error = flush_pagedep_deps(vp, 3839 pagedep->pd_mnt, &pagedep->pd_diraddhd[i])) { 3840 FREE_LOCK(&lk); 3841 bawrite(bp); 3842 return (error); 3843 } 3844 } 3845 break; 3846 3847 default: 3848 panic("softdep_sync_metadata: Unknown type %s", 3849 TYPENAME(wk->wk_type)); 3850 /* NOTREACHED */ 3851 } 3852 } 3853 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 3854 nbp = TAILQ_NEXT(bp, b_vnbufs); 3855 FREE_LOCK(&lk); 3856 bawrite(bp); 3857 ACQUIRE_LOCK(&lk); 3858 if (nbp != NULL) { 3859 bp = nbp; 3860 goto loop; 3861 } 3862 /* 3863 * We must wait for any I/O in progress to finish so that 3864 * all potential buffers on the dirty list will be visible. 3865 * Once they are all there, proceed with the second pass 3866 * which will wait for the I/O as per above. 3867 */ 3868 while (vp->v_numoutput) { 3869 vp->v_flag |= VBWAIT; 3870 FREE_LOCK_INTERLOCKED(&lk); 3871 tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "sdsynm", 0); 3872 ACQUIRE_LOCK_INTERLOCKED(&lk); 3873 } 3874 /* 3875 * The brief unlock is to allow any pent up dependency 3876 * processing to be done. 3877 */ 3878 if (waitfor == MNT_NOWAIT) { 3879 waitfor = MNT_WAIT; 3880 FREE_LOCK(&lk); 3881 ACQUIRE_LOCK(&lk); 3882 goto top; 3883 } 3884 3885 /* 3886 * If we have managed to get rid of all the dirty buffers, 3887 * then we are done. For certain directories and block 3888 * devices, we may need to do further work. 3889 */ 3890 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 3891 FREE_LOCK(&lk); 3892 return (0); 3893 } 3894 3895 FREE_LOCK(&lk); 3896 /* 3897 * If we are trying to sync a block device, some of its buffers may 3898 * contain metadata that cannot be written until the contents of some 3899 * partially written files have been written to disk. The only easy 3900 * way to accomplish this is to sync the entire filesystem (luckily 3901 * this happens rarely). 3902 */ 3903 if (vp->v_type == VBLK && vp->v_specmountpoint && !VOP_ISLOCKED(vp) && 3904 (error = VFS_SYNC(vp->v_specmountpoint, MNT_WAIT, ap->a_cred, 3905 ap->a_p)) != 0) 3906 return (error); 3907 return (0); 3908 } 3909 3910 /* 3911 * Flush the dependencies associated with an inodedep. 3912 * Called with splbio blocked. 3913 */ 3914 static int 3915 flush_inodedep_deps(fs, ino) 3916 struct fs *fs; 3917 ino_t ino; 3918 { 3919 struct inodedep *inodedep; 3920 struct allocdirect *adp; 3921 int error, waitfor; 3922 struct buf *bp; 3923 3924 /* 3925 * This work is done in two passes. The first pass grabs most 3926 * of the buffers and begins asynchronously writing them. The 3927 * only way to wait for these asynchronous writes is to sleep 3928 * on the filesystem vnode which may stay busy for a long time 3929 * if the filesystem is active. So, instead, we make a second 3930 * pass over the dependencies blocking on each write. In the 3931 * usual case we will be blocking against a write that we 3932 * initiated, so when it is done the dependency will have been 3933 * resolved. Thus the second pass is expected to end quickly. 3934 * We give a brief window at the top of the loop to allow 3935 * any pending I/O to complete. 3936 */ 3937 for (waitfor = MNT_NOWAIT; ; ) { 3938 FREE_LOCK(&lk); 3939 ACQUIRE_LOCK(&lk); 3940 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 3941 return (0); 3942 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3943 adp = TAILQ_NEXT(adp, ad_next)) { 3944 if (adp->ad_state & DEPCOMPLETE) 3945 continue; 3946 bp = adp->ad_buf; 3947 if (getdirtybuf(&bp, waitfor) == 0) { 3948 if (waitfor == MNT_NOWAIT) 3949 continue; 3950 break; 3951 } 3952 FREE_LOCK(&lk); 3953 if (waitfor == MNT_NOWAIT) { 3954 bawrite(bp); 3955 } else if ((error = VOP_BWRITE(bp)) != 0) { 3956 ACQUIRE_LOCK(&lk); 3957 return (error); 3958 } 3959 ACQUIRE_LOCK(&lk); 3960 break; 3961 } 3962 if (adp != NULL) 3963 continue; 3964 for (adp = TAILQ_FIRST(&inodedep->id_newinoupdt); adp; 3965 adp = TAILQ_NEXT(adp, ad_next)) { 3966 if (adp->ad_state & DEPCOMPLETE) 3967 continue; 3968 bp = adp->ad_buf; 3969 if (getdirtybuf(&bp, waitfor) == 0) { 3970 if (waitfor == MNT_NOWAIT) 3971 continue; 3972 break; 3973 } 3974 FREE_LOCK(&lk); 3975 if (waitfor == MNT_NOWAIT) { 3976 bawrite(bp); 3977 } else if ((error = VOP_BWRITE(bp)) != 0) { 3978 ACQUIRE_LOCK(&lk); 3979 return (error); 3980 } 3981 ACQUIRE_LOCK(&lk); 3982 break; 3983 } 3984 if (adp != NULL) 3985 continue; 3986 /* 3987 * If pass2, we are done, otherwise do pass 2. 3988 */ 3989 if (waitfor == MNT_WAIT) 3990 break; 3991 waitfor = MNT_WAIT; 3992 } 3993 /* 3994 * Try freeing inodedep in case all dependencies have been removed. 3995 */ 3996 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 3997 (void) free_inodedep(inodedep); 3998 return (0); 3999 } 4000 4001 /* 4002 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 4003 * Called with splbio blocked. 4004 */ 4005 static int 4006 flush_pagedep_deps(pvp, mp, diraddhdp) 4007 struct vnode *pvp; 4008 struct mount *mp; 4009 struct diraddhd *diraddhdp; 4010 { 4011 struct proc *p = CURPROC; /* XXX */ 4012 struct inodedep *inodedep; 4013 struct ufsmount *ump; 4014 struct diradd *dap; 4015 struct timeval tv; 4016 struct vnode *vp; 4017 int gotit, error = 0; 4018 struct buf *bp; 4019 ino_t inum; 4020 4021 ump = VFSTOUFS(mp); 4022 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 4023 /* 4024 * Flush ourselves if this directory entry 4025 * has a MKDIR_PARENT dependency. 4026 */ 4027 if (dap->da_state & MKDIR_PARENT) { 4028 #ifndef __FreeBSD__ 4029 tv = time; 4030 #else 4031 getmicrotime(&tv); 4032 #endif /* __FreeBSD__ */ 4033 FREE_LOCK(&lk); 4034 if (error = UFS_UPDATE(pvp, &tv, &tv, MNT_WAIT)) 4035 break; 4036 ACQUIRE_LOCK(&lk); 4037 /* 4038 * If that cleared dependencies, go on to next. 4039 */ 4040 if (dap != LIST_FIRST(diraddhdp)) 4041 continue; 4042 if (dap->da_state & MKDIR_PARENT) 4043 panic("flush_pagedep_deps: MKDIR"); 4044 } 4045 /* 4046 * Flush the file on which the directory entry depends. 4047 * If the inode has already been pushed out of the cache, 4048 * then all the block dependencies will have been flushed 4049 * leaving only inode dependencies (e.g., bitmaps). Thus, 4050 * we do a ufs_ihashget to check for the vnode in the cache. 4051 * If it is there, we do a full flush. If it is no longer 4052 * there we need only dispose of any remaining bitmap 4053 * dependencies and write the inode to disk. 4054 */ 4055 inum = dap->da_newinum; 4056 FREE_LOCK(&lk); 4057 if ((vp = ufs_ihashget(ump->um_dev, inum)) == NULL) { 4058 ACQUIRE_LOCK(&lk); 4059 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0 4060 && dap == LIST_FIRST(diraddhdp)) 4061 panic("flush_pagedep_deps: flush 1 failed"); 4062 /* 4063 * If the inode still has bitmap dependencies, 4064 * push them to disk. 4065 */ 4066 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4067 gotit = getdirtybuf(&inodedep->id_buf,MNT_WAIT); 4068 FREE_LOCK(&lk); 4069 if (gotit && 4070 (error = VOP_BWRITE(inodedep->id_buf)) != 0) 4071 break; 4072 ACQUIRE_LOCK(&lk); 4073 } 4074 if (dap != LIST_FIRST(diraddhdp)) 4075 continue; 4076 /* 4077 * If the inode is still sitting in a buffer waiting 4078 * to be written, push it to disk. 4079 */ 4080 FREE_LOCK(&lk); 4081 if ((error = bread(ump->um_devvp, 4082 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 4083 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) 4084 break; 4085 if ((error = VOP_BWRITE(bp)) != 0) 4086 break; 4087 ACQUIRE_LOCK(&lk); 4088 if (dap == LIST_FIRST(diraddhdp)) 4089 panic("flush_pagedep_deps: flush 2 failed"); 4090 continue; 4091 } 4092 if (vp->v_type == VDIR) { 4093 /* 4094 * A newly allocated directory must have its "." and 4095 * ".." entries written out before its name can be 4096 * committed in its parent. We do not want or need 4097 * the full semantics of a synchronous VOP_FSYNC as 4098 * that may end up here again, once for each directory 4099 * level in the filesystem. Instead, we push the blocks 4100 * and wait for them to clear. 4101 */ 4102 if (error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)) { 4103 vput(vp); 4104 break; 4105 } 4106 ACQUIRE_LOCK(&lk); 4107 while (vp->v_numoutput) { 4108 vp->v_flag |= VBWAIT; 4109 FREE_LOCK_INTERLOCKED(&lk); 4110 tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, 4111 "sdflpd", 0); 4112 ACQUIRE_LOCK_INTERLOCKED(&lk); 4113 } 4114 FREE_LOCK(&lk); 4115 } 4116 #ifndef __FreeBSD__ 4117 tv = time; 4118 #else 4119 getmicrotime(&tv); 4120 #endif /* __FreeBSD__ */ 4121 error = UFS_UPDATE(vp, &tv, &tv, MNT_WAIT); 4122 vput(vp); 4123 if (error) 4124 break; 4125 /* 4126 * If we have failed to get rid of all the dependencies 4127 * then something is seriously wrong. 4128 */ 4129 if (dap == LIST_FIRST(diraddhdp)) 4130 panic("flush_pagedep_deps: flush 3 failed"); 4131 ACQUIRE_LOCK(&lk); 4132 } 4133 if (error) 4134 ACQUIRE_LOCK(&lk); 4135 return (error); 4136 } 4137 4138 /* 4139 * Acquire exclusive access to a buffer. 4140 * Must be called with splbio blocked. 4141 * Return 1 if buffer was acquired. 4142 */ 4143 static int 4144 getdirtybuf(bpp, waitfor) 4145 struct buf **bpp; 4146 int waitfor; 4147 { 4148 struct buf *bp; 4149 4150 for (;;) { 4151 if ((bp = *bpp) == NULL) 4152 return (0); 4153 if ((bp->b_flags & B_BUSY) == 0) 4154 break; 4155 if (waitfor != MNT_WAIT) 4156 return (0); 4157 bp->b_flags |= B_WANTED; 4158 FREE_LOCK_INTERLOCKED(&lk); 4159 tsleep((caddr_t)bp, PRIBIO + 1, "sdsdty", 0); 4160 ACQUIRE_LOCK_INTERLOCKED(&lk); 4161 } 4162 if ((bp->b_flags & B_DELWRI) == 0) 4163 return (0); 4164 bremfree(bp); 4165 bp->b_flags |= B_BUSY; 4166 return (1); 4167 } 4168 4169 /* 4170 * Called whenever a buffer that is being invalidated or reallocated 4171 * contains dependencies. This should only happen if an I/O error has 4172 * occurred. The routine is called with the buffer locked. 4173 */ 4174 void 4175 softdep_deallocate_dependencies(bp) 4176 struct buf *bp; 4177 { 4178 struct worklist *wk; 4179 4180 if ((bp->b_flags & B_ERROR) == 0) 4181 panic("softdep_deallocate_dependencies: dangling deps"); 4182 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 4183 ACQUIRE_LOCK(&lk); 4184 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 4185 WORKLIST_REMOVE(wk); 4186 FREE_LOCK(&lk); 4187 switch (wk->wk_type) { 4188 /* 4189 * XXX - should really clean up, but for now we will 4190 * just leak memory and not worry about it. Also should 4191 * mark the filesystem permanently dirty so that it will 4192 * force fsck to be run (though this would best be done 4193 * in the mainline code). 4194 */ 4195 case D_PAGEDEP: 4196 case D_INODEDEP: 4197 case D_BMSAFEMAP: 4198 case D_ALLOCDIRECT: 4199 case D_INDIRDEP: 4200 case D_ALLOCINDIR: 4201 case D_MKDIR: 4202 #ifdef DEBUG 4203 printf("Lost type %s\n", TYPENAME(wk->wk_type)); 4204 #endif 4205 break; 4206 default: 4207 panic("%s: Unexpected type %s", 4208 "softdep_deallocate_dependencies", 4209 TYPENAME(wk->wk_type)); 4210 /* NOTREACHED */ 4211 } 4212 ACQUIRE_LOCK(&lk); 4213 } 4214 FREE_LOCK(&lk); 4215 } 4216 4217 /* 4218 * Function to handle asynchronous write errors in the filesystem. 4219 */ 4220 void 4221 softdep_error(func, error) 4222 char *func; 4223 int error; 4224 { 4225 4226 /* XXX should do something better! */ 4227 log(LOG_ERR, "%s: got error %d while accessing filesystem\n", 4228 func, error); 4229 } 4230 4231