xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 0572ccaa4543b0abef8ef81e384c1d04de9f3da1)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/rwlock.h>
73 #include <sys/stat.h>
74 #include <sys/sysctl.h>
75 #include <sys/syslog.h>
76 #include <sys/vnode.h>
77 #include <sys/conf.h>
78 
79 #include <ufs/ufs/dir.h>
80 #include <ufs/ufs/extattr.h>
81 #include <ufs/ufs/quota.h>
82 #include <ufs/ufs/inode.h>
83 #include <ufs/ufs/ufsmount.h>
84 #include <ufs/ffs/fs.h>
85 #include <ufs/ffs/softdep.h>
86 #include <ufs/ffs/ffs_extern.h>
87 #include <ufs/ufs/ufs_extern.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_object.h>
92 
93 #include <geom/geom.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98 
99 #ifndef SOFTUPDATES
100 
101 int
102 softdep_flushfiles(oldmnt, flags, td)
103 	struct mount *oldmnt;
104 	int flags;
105 	struct thread *td;
106 {
107 
108 	panic("softdep_flushfiles called");
109 }
110 
111 int
112 softdep_mount(devvp, mp, fs, cred)
113 	struct vnode *devvp;
114 	struct mount *mp;
115 	struct fs *fs;
116 	struct ucred *cred;
117 {
118 
119 	return (0);
120 }
121 
122 void
123 softdep_initialize()
124 {
125 
126 	return;
127 }
128 
129 void
130 softdep_uninitialize()
131 {
132 
133 	return;
134 }
135 
136 void
137 softdep_unmount(mp)
138 	struct mount *mp;
139 {
140 
141 	panic("softdep_unmount called");
142 }
143 
144 void
145 softdep_setup_sbupdate(ump, fs, bp)
146 	struct ufsmount *ump;
147 	struct fs *fs;
148 	struct buf *bp;
149 {
150 
151 	panic("softdep_setup_sbupdate called");
152 }
153 
154 void
155 softdep_setup_inomapdep(bp, ip, newinum, mode)
156 	struct buf *bp;
157 	struct inode *ip;
158 	ino_t newinum;
159 	int mode;
160 {
161 
162 	panic("softdep_setup_inomapdep called");
163 }
164 
165 void
166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167 	struct buf *bp;
168 	struct mount *mp;
169 	ufs2_daddr_t newblkno;
170 	int frags;
171 	int oldfrags;
172 {
173 
174 	panic("softdep_setup_blkmapdep called");
175 }
176 
177 void
178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179 	struct inode *ip;
180 	ufs_lbn_t lbn;
181 	ufs2_daddr_t newblkno;
182 	ufs2_daddr_t oldblkno;
183 	long newsize;
184 	long oldsize;
185 	struct buf *bp;
186 {
187 
188 	panic("softdep_setup_allocdirect called");
189 }
190 
191 void
192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193 	struct inode *ip;
194 	ufs_lbn_t lbn;
195 	ufs2_daddr_t newblkno;
196 	ufs2_daddr_t oldblkno;
197 	long newsize;
198 	long oldsize;
199 	struct buf *bp;
200 {
201 
202 	panic("softdep_setup_allocext called");
203 }
204 
205 void
206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207 	struct inode *ip;
208 	ufs_lbn_t lbn;
209 	struct buf *bp;
210 	int ptrno;
211 	ufs2_daddr_t newblkno;
212 	ufs2_daddr_t oldblkno;
213 	struct buf *nbp;
214 {
215 
216 	panic("softdep_setup_allocindir_page called");
217 }
218 
219 void
220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221 	struct buf *nbp;
222 	struct inode *ip;
223 	struct buf *bp;
224 	int ptrno;
225 	ufs2_daddr_t newblkno;
226 {
227 
228 	panic("softdep_setup_allocindir_meta called");
229 }
230 
231 void
232 softdep_journal_freeblocks(ip, cred, length, flags)
233 	struct inode *ip;
234 	struct ucred *cred;
235 	off_t length;
236 	int flags;
237 {
238 
239 	panic("softdep_journal_freeblocks called");
240 }
241 
242 void
243 softdep_journal_fsync(ip)
244 	struct inode *ip;
245 {
246 
247 	panic("softdep_journal_fsync called");
248 }
249 
250 void
251 softdep_setup_freeblocks(ip, length, flags)
252 	struct inode *ip;
253 	off_t length;
254 	int flags;
255 {
256 
257 	panic("softdep_setup_freeblocks called");
258 }
259 
260 void
261 softdep_freefile(pvp, ino, mode)
262 		struct vnode *pvp;
263 		ino_t ino;
264 		int mode;
265 {
266 
267 	panic("softdep_freefile called");
268 }
269 
270 int
271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272 	struct buf *bp;
273 	struct inode *dp;
274 	off_t diroffset;
275 	ino_t newinum;
276 	struct buf *newdirbp;
277 	int isnewblk;
278 {
279 
280 	panic("softdep_setup_directory_add called");
281 }
282 
283 void
284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285 	struct buf *bp;
286 	struct inode *dp;
287 	caddr_t base;
288 	caddr_t oldloc;
289 	caddr_t newloc;
290 	int entrysize;
291 {
292 
293 	panic("softdep_change_directoryentry_offset called");
294 }
295 
296 void
297 softdep_setup_remove(bp, dp, ip, isrmdir)
298 	struct buf *bp;
299 	struct inode *dp;
300 	struct inode *ip;
301 	int isrmdir;
302 {
303 
304 	panic("softdep_setup_remove called");
305 }
306 
307 void
308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309 	struct buf *bp;
310 	struct inode *dp;
311 	struct inode *ip;
312 	ino_t newinum;
313 	int isrmdir;
314 {
315 
316 	panic("softdep_setup_directory_change called");
317 }
318 
319 void
320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321 	struct mount *mp;
322 	struct buf *bp;
323 	ufs2_daddr_t blkno;
324 	int frags;
325 	struct workhead *wkhd;
326 {
327 
328 	panic("%s called", __FUNCTION__);
329 }
330 
331 void
332 softdep_setup_inofree(mp, bp, ino, wkhd)
333 	struct mount *mp;
334 	struct buf *bp;
335 	ino_t ino;
336 	struct workhead *wkhd;
337 {
338 
339 	panic("%s called", __FUNCTION__);
340 }
341 
342 void
343 softdep_setup_unlink(dp, ip)
344 	struct inode *dp;
345 	struct inode *ip;
346 {
347 
348 	panic("%s called", __FUNCTION__);
349 }
350 
351 void
352 softdep_setup_link(dp, ip)
353 	struct inode *dp;
354 	struct inode *ip;
355 {
356 
357 	panic("%s called", __FUNCTION__);
358 }
359 
360 void
361 softdep_revert_link(dp, ip)
362 	struct inode *dp;
363 	struct inode *ip;
364 {
365 
366 	panic("%s called", __FUNCTION__);
367 }
368 
369 void
370 softdep_setup_rmdir(dp, ip)
371 	struct inode *dp;
372 	struct inode *ip;
373 {
374 
375 	panic("%s called", __FUNCTION__);
376 }
377 
378 void
379 softdep_revert_rmdir(dp, ip)
380 	struct inode *dp;
381 	struct inode *ip;
382 {
383 
384 	panic("%s called", __FUNCTION__);
385 }
386 
387 void
388 softdep_setup_create(dp, ip)
389 	struct inode *dp;
390 	struct inode *ip;
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 void
397 softdep_revert_create(dp, ip)
398 	struct inode *dp;
399 	struct inode *ip;
400 {
401 
402 	panic("%s called", __FUNCTION__);
403 }
404 
405 void
406 softdep_setup_mkdir(dp, ip)
407 	struct inode *dp;
408 	struct inode *ip;
409 {
410 
411 	panic("%s called", __FUNCTION__);
412 }
413 
414 void
415 softdep_revert_mkdir(dp, ip)
416 	struct inode *dp;
417 	struct inode *ip;
418 {
419 
420 	panic("%s called", __FUNCTION__);
421 }
422 
423 void
424 softdep_setup_dotdot_link(dp, ip)
425 	struct inode *dp;
426 	struct inode *ip;
427 {
428 
429 	panic("%s called", __FUNCTION__);
430 }
431 
432 int
433 softdep_prealloc(vp, waitok)
434 	struct vnode *vp;
435 	int waitok;
436 {
437 
438 	panic("%s called", __FUNCTION__);
439 }
440 
441 int
442 softdep_journal_lookup(mp, vpp)
443 	struct mount *mp;
444 	struct vnode **vpp;
445 {
446 
447 	return (ENOENT);
448 }
449 
450 void
451 softdep_change_linkcnt(ip)
452 	struct inode *ip;
453 {
454 
455 	panic("softdep_change_linkcnt called");
456 }
457 
458 void
459 softdep_load_inodeblock(ip)
460 	struct inode *ip;
461 {
462 
463 	panic("softdep_load_inodeblock called");
464 }
465 
466 void
467 softdep_update_inodeblock(ip, bp, waitfor)
468 	struct inode *ip;
469 	struct buf *bp;
470 	int waitfor;
471 {
472 
473 	panic("softdep_update_inodeblock called");
474 }
475 
476 int
477 softdep_fsync(vp)
478 	struct vnode *vp;	/* the "in_core" copy of the inode */
479 {
480 
481 	return (0);
482 }
483 
484 void
485 softdep_fsync_mountdev(vp)
486 	struct vnode *vp;
487 {
488 
489 	return;
490 }
491 
492 int
493 softdep_flushworklist(oldmnt, countp, td)
494 	struct mount *oldmnt;
495 	int *countp;
496 	struct thread *td;
497 {
498 
499 	*countp = 0;
500 	return (0);
501 }
502 
503 int
504 softdep_sync_metadata(struct vnode *vp)
505 {
506 
507 	panic("softdep_sync_metadata called");
508 }
509 
510 int
511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512 {
513 
514 	panic("softdep_sync_buf called");
515 }
516 
517 int
518 softdep_slowdown(vp)
519 	struct vnode *vp;
520 {
521 
522 	panic("softdep_slowdown called");
523 }
524 
525 int
526 softdep_request_cleanup(fs, vp, cred, resource)
527 	struct fs *fs;
528 	struct vnode *vp;
529 	struct ucred *cred;
530 	int resource;
531 {
532 
533 	return (0);
534 }
535 
536 int
537 softdep_check_suspend(struct mount *mp,
538 		      struct vnode *devvp,
539 		      int softdep_depcnt,
540 		      int softdep_accdepcnt,
541 		      int secondary_writes,
542 		      int secondary_accwrites)
543 {
544 	struct bufobj *bo;
545 	int error;
546 
547 	(void) softdep_depcnt,
548 	(void) softdep_accdepcnt;
549 
550 	bo = &devvp->v_bufobj;
551 	ASSERT_BO_WLOCKED(bo);
552 
553 	MNT_ILOCK(mp);
554 	while (mp->mnt_secondary_writes != 0) {
555 		BO_UNLOCK(bo);
556 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557 		    (PUSER - 1) | PDROP, "secwr", 0);
558 		BO_LOCK(bo);
559 		MNT_ILOCK(mp);
560 	}
561 
562 	/*
563 	 * Reasons for needing more work before suspend:
564 	 * - Dirty buffers on devvp.
565 	 * - Secondary writes occurred after start of vnode sync loop
566 	 */
567 	error = 0;
568 	if (bo->bo_numoutput > 0 ||
569 	    bo->bo_dirty.bv_cnt > 0 ||
570 	    secondary_writes != 0 ||
571 	    mp->mnt_secondary_writes != 0 ||
572 	    secondary_accwrites != mp->mnt_secondary_accwrites)
573 		error = EAGAIN;
574 	BO_UNLOCK(bo);
575 	return (error);
576 }
577 
578 void
579 softdep_get_depcounts(struct mount *mp,
580 		      int *softdepactivep,
581 		      int *softdepactiveaccp)
582 {
583 	(void) mp;
584 	*softdepactivep = 0;
585 	*softdepactiveaccp = 0;
586 }
587 
588 void
589 softdep_buf_append(bp, wkhd)
590 	struct buf *bp;
591 	struct workhead *wkhd;
592 {
593 
594 	panic("softdep_buf_appendwork called");
595 }
596 
597 void
598 softdep_inode_append(ip, cred, wkhd)
599 	struct inode *ip;
600 	struct ucred *cred;
601 	struct workhead *wkhd;
602 {
603 
604 	panic("softdep_inode_appendwork called");
605 }
606 
607 void
608 softdep_freework(wkhd)
609 	struct workhead *wkhd;
610 {
611 
612 	panic("softdep_freework called");
613 }
614 
615 #else
616 
617 FEATURE(softupdates, "FFS soft-updates support");
618 
619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620     "soft updates stats");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622     "total dependencies allocated");
623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624     "high use dependencies allocated");
625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626     "current dependencies allocated");
627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628     "current dependencies written");
629 
630 unsigned long dep_current[D_LAST + 1];
631 unsigned long dep_highuse[D_LAST + 1];
632 unsigned long dep_total[D_LAST + 1];
633 unsigned long dep_write[D_LAST + 1];
634 
635 #define	SOFTDEP_TYPE(type, str, long)					\
636     static MALLOC_DEFINE(M_ ## type, #str, long);			\
637     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638 	&dep_total[D_ ## type], 0, "");					\
639     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640 	&dep_current[D_ ## type], 0, "");				\
641     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642 	&dep_highuse[D_ ## type], 0, "");				\
643     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644 	&dep_write[D_ ## type], 0, "");
645 
646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649     "Block or frag allocated from cyl group map");
650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674 
675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676 
677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680 
681 #define M_SOFTDEP_FLAGS	(M_WAITOK)
682 
683 /*
684  * translate from workitem type to memory type
685  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686  */
687 static struct malloc_type *memtype[] = {
688 	M_PAGEDEP,
689 	M_INODEDEP,
690 	M_BMSAFEMAP,
691 	M_NEWBLK,
692 	M_ALLOCDIRECT,
693 	M_INDIRDEP,
694 	M_ALLOCINDIR,
695 	M_FREEFRAG,
696 	M_FREEBLKS,
697 	M_FREEFILE,
698 	M_DIRADD,
699 	M_MKDIR,
700 	M_DIRREM,
701 	M_NEWDIRBLK,
702 	M_FREEWORK,
703 	M_FREEDEP,
704 	M_JADDREF,
705 	M_JREMREF,
706 	M_JMVREF,
707 	M_JNEWBLK,
708 	M_JFREEBLK,
709 	M_JFREEFRAG,
710 	M_JSEG,
711 	M_JSEGDEP,
712 	M_SBDEP,
713 	M_JTRUNC,
714 	M_JFSYNC,
715 	M_SENTINEL
716 };
717 
718 #define DtoM(type) (memtype[type])
719 
720 /*
721  * Names of malloc types.
722  */
723 #define TYPENAME(type)  \
724 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725 /*
726  * End system adaptation definitions.
727  */
728 
729 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731 
732 /*
733  * Internal function prototypes.
734  */
735 static	void check_clear_deps(struct mount *);
736 static	void softdep_error(char *, int);
737 static	int softdep_process_worklist(struct mount *, int);
738 static	int softdep_waitidle(struct mount *);
739 static	void drain_output(struct vnode *);
740 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741 static	void clear_remove(struct mount *);
742 static	void clear_inodedeps(struct mount *);
743 static	void unlinked_inodedep(struct mount *, struct inodedep *);
744 static	void clear_unlinked_inodedep(struct inodedep *);
745 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
746 static	int flush_pagedep_deps(struct vnode *, struct mount *,
747 	    struct diraddhd *);
748 static	int free_pagedep(struct pagedep *);
749 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
750 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
751 static	int flush_deplist(struct allocdirectlst *, int, int *);
752 static	int sync_cgs(struct mount *, int);
753 static	int handle_written_filepage(struct pagedep *, struct buf *);
754 static	int handle_written_sbdep(struct sbdep *, struct buf *);
755 static	void initiate_write_sbdep(struct sbdep *);
756 static	void diradd_inode_written(struct diradd *, struct inodedep *);
757 static	int handle_written_indirdep(struct indirdep *, struct buf *,
758 	    struct buf**);
759 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
760 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
761 	    uint8_t *);
762 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
763 static	void handle_written_jaddref(struct jaddref *);
764 static	void handle_written_jremref(struct jremref *);
765 static	void handle_written_jseg(struct jseg *, struct buf *);
766 static	void handle_written_jnewblk(struct jnewblk *);
767 static	void handle_written_jblkdep(struct jblkdep *);
768 static	void handle_written_jfreefrag(struct jfreefrag *);
769 static	void complete_jseg(struct jseg *);
770 static	void complete_jsegs(struct jseg *);
771 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
772 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
773 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
774 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
775 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
776 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
777 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
778 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
779 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
780 static	inline void inoref_write(struct inoref *, struct jseg *,
781 	    struct jrefrec *);
782 static	void handle_allocdirect_partdone(struct allocdirect *,
783 	    struct workhead *);
784 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
785 	    struct workhead *);
786 static	void indirdep_complete(struct indirdep *);
787 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
788 static	void indirblk_insert(struct freework *);
789 static	void indirblk_remove(struct freework *);
790 static	void handle_allocindir_partdone(struct allocindir *);
791 static	void initiate_write_filepage(struct pagedep *, struct buf *);
792 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
793 static	void handle_written_mkdir(struct mkdir *, int);
794 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
795 	    uint8_t *);
796 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
797 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
798 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
799 static	void handle_workitem_freefile(struct freefile *);
800 static	int handle_workitem_remove(struct dirrem *, int);
801 static	struct dirrem *newdirrem(struct buf *, struct inode *,
802 	    struct inode *, int, struct dirrem **);
803 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
804 	    struct buf *);
805 static	void cancel_indirdep(struct indirdep *, struct buf *,
806 	    struct freeblks *);
807 static	void free_indirdep(struct indirdep *);
808 static	void free_diradd(struct diradd *, struct workhead *);
809 static	void merge_diradd(struct inodedep *, struct diradd *);
810 static	void complete_diradd(struct diradd *);
811 static	struct diradd *diradd_lookup(struct pagedep *, int);
812 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
813 	    struct jremref *);
814 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
815 	    struct jremref *);
816 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
817 	    struct jremref *, struct jremref *);
818 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
819 	    struct jremref *);
820 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
821 	    struct freeblks *, int);
822 static	int setup_trunc_indir(struct freeblks *, struct inode *,
823 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
824 static	void complete_trunc_indir(struct freework *);
825 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
826 	    int);
827 static	void complete_mkdir(struct mkdir *);
828 static	void free_newdirblk(struct newdirblk *);
829 static	void free_jremref(struct jremref *);
830 static	void free_jaddref(struct jaddref *);
831 static	void free_jsegdep(struct jsegdep *);
832 static	void free_jsegs(struct jblocks *);
833 static	void rele_jseg(struct jseg *);
834 static	void free_jseg(struct jseg *, struct jblocks *);
835 static	void free_jnewblk(struct jnewblk *);
836 static	void free_jblkdep(struct jblkdep *);
837 static	void free_jfreefrag(struct jfreefrag *);
838 static	void free_freedep(struct freedep *);
839 static	void journal_jremref(struct dirrem *, struct jremref *,
840 	    struct inodedep *);
841 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
842 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
843 	    struct workhead *);
844 static	void cancel_jfreefrag(struct jfreefrag *);
845 static	inline void setup_freedirect(struct freeblks *, struct inode *,
846 	    int, int);
847 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
848 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
849 	    ufs_lbn_t, int);
850 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
851 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
852 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
853 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
854 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
855 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
856 	    int, int);
857 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
858 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
859 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
860 static	void newblk_freefrag(struct newblk*);
861 static	void free_newblk(struct newblk *);
862 static	void cancel_allocdirect(struct allocdirectlst *,
863 	    struct allocdirect *, struct freeblks *);
864 static	int check_inode_unwritten(struct inodedep *);
865 static	int free_inodedep(struct inodedep *);
866 static	void freework_freeblock(struct freework *);
867 static	void freework_enqueue(struct freework *);
868 static	int handle_workitem_freeblocks(struct freeblks *, int);
869 static	int handle_complete_freeblocks(struct freeblks *, int);
870 static	void handle_workitem_indirblk(struct freework *);
871 static	void handle_written_freework(struct freework *);
872 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
873 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
874 	    struct workhead *);
875 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
876 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
877 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
878 	    ufs2_daddr_t, ufs_lbn_t);
879 static	void handle_workitem_freefrag(struct freefrag *);
880 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
881 	    ufs_lbn_t);
882 static	void allocdirect_merge(struct allocdirectlst *,
883 	    struct allocdirect *, struct allocdirect *);
884 static	struct freefrag *allocindir_merge(struct allocindir *,
885 	    struct allocindir *);
886 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
887 	    struct bmsafemap **);
888 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
889 	    int cg, struct bmsafemap *);
890 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
891 	    struct newblk **);
892 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
893 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
894 	    struct inodedep **);
895 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
896 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
897 	    int, struct pagedep **);
898 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
899 	    struct pagedep **);
900 static	void pause_timer(void *);
901 static	int request_cleanup(struct mount *, int);
902 static	int process_worklist_item(struct mount *, int, int);
903 static	void process_removes(struct vnode *);
904 static	void process_truncates(struct vnode *);
905 static	void jwork_move(struct workhead *, struct workhead *);
906 static	void jwork_insert(struct workhead *, struct jsegdep *);
907 static	void add_to_worklist(struct worklist *, int);
908 static	void wake_worklist(struct worklist *);
909 static	void wait_worklist(struct worklist *, char *);
910 static	void remove_from_worklist(struct worklist *);
911 static	void softdep_flush(void);
912 static	void softdep_flushjournal(struct mount *);
913 static	int softdep_speedup(void);
914 static	void worklist_speedup(struct mount *);
915 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
916 static	void journal_unmount(struct ufsmount *);
917 static	int journal_space(struct ufsmount *, int);
918 static	void journal_suspend(struct ufsmount *);
919 static	int journal_unsuspend(struct ufsmount *ump);
920 static	void softdep_prelink(struct vnode *, struct vnode *);
921 static	void add_to_journal(struct worklist *);
922 static	void remove_from_journal(struct worklist *);
923 static	void softdep_process_journal(struct mount *, struct worklist *, int);
924 static	struct jremref *newjremref(struct dirrem *, struct inode *,
925 	    struct inode *ip, off_t, nlink_t);
926 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
927 	    uint16_t);
928 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
929 	    uint16_t);
930 static	inline struct jsegdep *inoref_jseg(struct inoref *);
931 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
932 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
933 	    ufs2_daddr_t, int);
934 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
935 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
936 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
937 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
938 	    ufs2_daddr_t, long, ufs_lbn_t);
939 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
940 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
941 static	int jwait(struct worklist *, int);
942 static	struct inodedep *inodedep_lookup_ip(struct inode *);
943 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
944 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
945 static	void handle_jwork(struct workhead *);
946 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
947 	    struct mkdir **);
948 static	struct jblocks *jblocks_create(void);
949 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
950 static	void jblocks_free(struct jblocks *, struct mount *, int);
951 static	void jblocks_destroy(struct jblocks *);
952 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
953 
954 /*
955  * Exported softdep operations.
956  */
957 static	void softdep_disk_io_initiation(struct buf *);
958 static	void softdep_disk_write_complete(struct buf *);
959 static	void softdep_deallocate_dependencies(struct buf *);
960 static	int softdep_count_dependencies(struct buf *bp, int);
961 
962 /*
963  * Global lock over all of soft updates.
964  */
965 static struct rwlock lk;
966 RW_SYSINIT(softdep_lock, &lk, "Softdep Lock");
967 
968 /*
969  * Allow per-filesystem soft-updates locking.
970  * For now all use the same global lock defined above.
971  */
972 #define LOCK_PTR(ump)		((ump)->um_softdep->sd_fslock)
973 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock((ump)->um_softdep->sd_fslock)
974 #define ACQUIRE_LOCK(ump)	rw_wlock((ump)->um_softdep->sd_fslock)
975 #define FREE_LOCK(ump)		rw_wunlock((ump)->um_softdep->sd_fslock)
976 #define LOCK_OWNED(ump)		rw_assert((ump)->um_softdep->sd_fslock, \
977 				    RA_WLOCKED)
978 
979 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
980 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
981 
982 /*
983  * Worklist queue management.
984  * These routines require that the lock be held.
985  */
986 #ifndef /* NOT */ DEBUG
987 #define WORKLIST_INSERT(head, item) do {	\
988 	(item)->wk_state |= ONWORKLIST;		\
989 	LIST_INSERT_HEAD(head, item, wk_list);	\
990 } while (0)
991 #define WORKLIST_REMOVE(item) do {		\
992 	(item)->wk_state &= ~ONWORKLIST;	\
993 	LIST_REMOVE(item, wk_list);		\
994 } while (0)
995 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
996 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
997 
998 #else /* DEBUG */
999 static	void worklist_insert(struct workhead *, struct worklist *, int);
1000 static	void worklist_remove(struct worklist *, int);
1001 
1002 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1003 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1004 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1005 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1006 
1007 static void
1008 worklist_insert(head, item, locked)
1009 	struct workhead *head;
1010 	struct worklist *item;
1011 	int locked;
1012 {
1013 
1014 	if (locked)
1015 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1016 	if (item->wk_state & ONWORKLIST)
1017 		panic("worklist_insert: %p %s(0x%X) already on list",
1018 		    item, TYPENAME(item->wk_type), item->wk_state);
1019 	item->wk_state |= ONWORKLIST;
1020 	LIST_INSERT_HEAD(head, item, wk_list);
1021 }
1022 
1023 static void
1024 worklist_remove(item, locked)
1025 	struct worklist *item;
1026 	int locked;
1027 {
1028 
1029 	if (locked)
1030 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1031 	if ((item->wk_state & ONWORKLIST) == 0)
1032 		panic("worklist_remove: %p %s(0x%X) not on list",
1033 		    item, TYPENAME(item->wk_type), item->wk_state);
1034 	item->wk_state &= ~ONWORKLIST;
1035 	LIST_REMOVE(item, wk_list);
1036 }
1037 #endif /* DEBUG */
1038 
1039 /*
1040  * Merge two jsegdeps keeping only the oldest one as newer references
1041  * can't be discarded until after older references.
1042  */
1043 static inline struct jsegdep *
1044 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1045 {
1046 	struct jsegdep *swp;
1047 
1048 	if (two == NULL)
1049 		return (one);
1050 
1051 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1052 		swp = one;
1053 		one = two;
1054 		two = swp;
1055 	}
1056 	WORKLIST_REMOVE(&two->jd_list);
1057 	free_jsegdep(two);
1058 
1059 	return (one);
1060 }
1061 
1062 /*
1063  * If two freedeps are compatible free one to reduce list size.
1064  */
1065 static inline struct freedep *
1066 freedep_merge(struct freedep *one, struct freedep *two)
1067 {
1068 	if (two == NULL)
1069 		return (one);
1070 
1071 	if (one->fd_freework == two->fd_freework) {
1072 		WORKLIST_REMOVE(&two->fd_list);
1073 		free_freedep(two);
1074 	}
1075 	return (one);
1076 }
1077 
1078 /*
1079  * Move journal work from one list to another.  Duplicate freedeps and
1080  * jsegdeps are coalesced to keep the lists as small as possible.
1081  */
1082 static void
1083 jwork_move(dst, src)
1084 	struct workhead *dst;
1085 	struct workhead *src;
1086 {
1087 	struct freedep *freedep;
1088 	struct jsegdep *jsegdep;
1089 	struct worklist *wkn;
1090 	struct worklist *wk;
1091 
1092 	KASSERT(dst != src,
1093 	    ("jwork_move: dst == src"));
1094 	freedep = NULL;
1095 	jsegdep = NULL;
1096 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1097 		if (wk->wk_type == D_JSEGDEP)
1098 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1099 		else if (wk->wk_type == D_FREEDEP)
1100 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1101 	}
1102 
1103 	while ((wk = LIST_FIRST(src)) != NULL) {
1104 		WORKLIST_REMOVE(wk);
1105 		WORKLIST_INSERT(dst, wk);
1106 		if (wk->wk_type == D_JSEGDEP) {
1107 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1108 			continue;
1109 		}
1110 		if (wk->wk_type == D_FREEDEP)
1111 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1112 	}
1113 }
1114 
1115 static void
1116 jwork_insert(dst, jsegdep)
1117 	struct workhead *dst;
1118 	struct jsegdep *jsegdep;
1119 {
1120 	struct jsegdep *jsegdepn;
1121 	struct worklist *wk;
1122 
1123 	LIST_FOREACH(wk, dst, wk_list)
1124 		if (wk->wk_type == D_JSEGDEP)
1125 			break;
1126 	if (wk == NULL) {
1127 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1128 		return;
1129 	}
1130 	jsegdepn = WK_JSEGDEP(wk);
1131 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1132 		WORKLIST_REMOVE(wk);
1133 		free_jsegdep(jsegdepn);
1134 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1135 	} else
1136 		free_jsegdep(jsegdep);
1137 }
1138 
1139 /*
1140  * Routines for tracking and managing workitems.
1141  */
1142 static	void workitem_free(struct worklist *, int);
1143 static	void workitem_alloc(struct worklist *, int, struct mount *);
1144 static	void workitem_reassign(struct worklist *, int);
1145 
1146 #define	WORKITEM_FREE(item, type) \
1147 	workitem_free((struct worklist *)(item), (type))
1148 #define	WORKITEM_REASSIGN(item, type) \
1149 	workitem_reassign((struct worklist *)(item), (type))
1150 
1151 static void
1152 workitem_free(item, type)
1153 	struct worklist *item;
1154 	int type;
1155 {
1156 	struct ufsmount *ump;
1157 
1158 #ifdef DEBUG
1159 	if (item->wk_state & ONWORKLIST)
1160 		panic("workitem_free: %s(0x%X) still on list",
1161 		    TYPENAME(item->wk_type), item->wk_state);
1162 	if (item->wk_type != type && type != D_NEWBLK)
1163 		panic("workitem_free: type mismatch %s != %s",
1164 		    TYPENAME(item->wk_type), TYPENAME(type));
1165 #endif
1166 	if (item->wk_state & IOWAITING)
1167 		wakeup(item);
1168 	ump = VFSTOUFS(item->wk_mp);
1169 	LOCK_OWNED(ump);
1170 	KASSERT(ump->softdep_deps > 0,
1171 	    ("workitem_free: %s: softdep_deps going negative",
1172 	    ump->um_fs->fs_fsmnt));
1173 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1174 		wakeup(&ump->softdep_deps);
1175 	KASSERT(dep_current[item->wk_type] > 0,
1176 	    ("workitem_free: %s: dep_current[%s] going negative",
1177 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1178 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1179 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1180 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1181 	dep_current[item->wk_type]--;
1182 	ump->softdep_curdeps[item->wk_type] -= 1;
1183 	free(item, DtoM(type));
1184 }
1185 
1186 static void
1187 workitem_alloc(item, type, mp)
1188 	struct worklist *item;
1189 	int type;
1190 	struct mount *mp;
1191 {
1192 	struct ufsmount *ump;
1193 
1194 	item->wk_type = type;
1195 	item->wk_mp = mp;
1196 	item->wk_state = 0;
1197 
1198 	ump = VFSTOUFS(mp);
1199 	ACQUIRE_LOCK(ump);
1200 	dep_current[type]++;
1201 	if (dep_current[type] > dep_highuse[type])
1202 		dep_highuse[type] = dep_current[type];
1203 	dep_total[type]++;
1204 	ump->softdep_curdeps[type] += 1;
1205 	ump->softdep_deps++;
1206 	ump->softdep_accdeps++;
1207 	FREE_LOCK(ump);
1208 }
1209 
1210 static void
1211 workitem_reassign(item, newtype)
1212 	struct worklist *item;
1213 	int newtype;
1214 {
1215 	struct ufsmount *ump;
1216 
1217 	ump = VFSTOUFS(item->wk_mp);
1218 	LOCK_OWNED(ump);
1219 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1220 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1221 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1222 	ump->softdep_curdeps[item->wk_type] -= 1;
1223 	ump->softdep_curdeps[newtype] += 1;
1224 	KASSERT(dep_current[item->wk_type] > 0,
1225 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1226 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1227 	dep_current[item->wk_type]--;
1228 	dep_current[newtype]++;
1229 	if (dep_current[newtype] > dep_highuse[newtype])
1230 		dep_highuse[newtype] = dep_current[newtype];
1231 	dep_total[newtype]++;
1232 	item->wk_type = newtype;
1233 }
1234 
1235 /*
1236  * Workitem queue management
1237  */
1238 static int max_softdeps;	/* maximum number of structs before slowdown */
1239 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1240 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1241 static int proc_waiting;	/* tracks whether we have a timeout posted */
1242 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1243 static struct callout softdep_callout;
1244 static struct mount *req_pending;
1245 #define ALLCLEAN ((struct mount *)-1)
1246 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1247 static int req_clear_remove;	/* syncer process flush some freeblks */
1248 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1249 
1250 /*
1251  * runtime statistics
1252  */
1253 static int stat_softdep_mounts;	/* number of softdep mounted filesystems */
1254 static int stat_worklist_push;	/* number of worklist cleanups */
1255 static int stat_blk_limit_push;	/* number of times block limit neared */
1256 static int stat_ino_limit_push;	/* number of times inode limit neared */
1257 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1258 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1259 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1260 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1261 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1262 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1263 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1264 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1265 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1266 static int stat_journal_min;	/* Times hit journal min threshold */
1267 static int stat_journal_low;	/* Times hit journal low threshold */
1268 static int stat_journal_wait;	/* Times blocked in jwait(). */
1269 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1270 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1271 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1272 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1273 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1274 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1275 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1276 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1277 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1278 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1279 
1280 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1281     &max_softdeps, 0, "");
1282 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1283     &tickdelay, 0, "");
1284 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1285     &maxindirdeps, 0, "");
1286 SYSCTL_INT(_debug_softdep, OID_AUTO, softdep_mounts, CTLFLAG_RD,
1287     &stat_softdep_mounts, 0, "");
1288 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1289     &stat_worklist_push, 0,"");
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1291     &stat_blk_limit_push, 0,"");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1293     &stat_ino_limit_push, 0,"");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1295     &stat_blk_limit_hit, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1297     &stat_ino_limit_hit, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1299     &stat_sync_limit_hit, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1301     &stat_indir_blk_ptrs, 0, "");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1303     &stat_inode_bitmap, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1305     &stat_direct_blk_ptrs, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1307     &stat_dir_entry, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1309     &stat_jaddref, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1311     &stat_jnewblk, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1313     &stat_journal_low, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1315     &stat_journal_min, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1317     &stat_journal_wait, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1319     &stat_jwait_filepage, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1321     &stat_jwait_freeblks, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1323     &stat_jwait_inode, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1325     &stat_jwait_newblk, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1327     &stat_cleanup_blkrequests, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1329     &stat_cleanup_inorequests, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1331     &stat_cleanup_high_delay, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1333     &stat_cleanup_retries, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1335     &stat_cleanup_failures, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1337     &softdep_flushcache, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1339     &stat_emptyjblocks, 0, "");
1340 
1341 SYSCTL_DECL(_vfs_ffs);
1342 
1343 /* Whether to recompute the summary at mount time */
1344 static int compute_summary_at_mount = 0;
1345 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1346 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1347 static struct proc *softdepproc;
1348 static struct kproc_desc softdep_kp = {
1349 	"softdepflush",
1350 	softdep_flush,
1351 	&softdepproc
1352 };
1353 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1354     &softdep_kp);
1355 
1356 static void
1357 softdep_flush(void)
1358 {
1359 	struct mount *nmp;
1360 	struct mount *mp;
1361 	struct ufsmount *ump;
1362 	struct thread *td;
1363 	int remaining;
1364 	int progress;
1365 
1366 	td = curthread;
1367 	td->td_pflags |= TDP_NORUNNINGBUF;
1368 
1369 	for (;;) {
1370 		kproc_suspend_check(softdepproc);
1371 		remaining = progress = 0;
1372 		mtx_lock(&mountlist_mtx);
1373 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1374 			nmp = TAILQ_NEXT(mp, mnt_list);
1375 			if (MOUNTEDSOFTDEP(mp) == 0)
1376 				continue;
1377 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1378 				continue;
1379 			ump = VFSTOUFS(mp);
1380 			progress += softdep_process_worklist(mp, 0);
1381 			remaining += ump->softdep_on_worklist;
1382 			mtx_lock(&mountlist_mtx);
1383 			nmp = TAILQ_NEXT(mp, mnt_list);
1384 			vfs_unbusy(mp);
1385 		}
1386 		mtx_unlock(&mountlist_mtx);
1387 		if (remaining && progress)
1388 			continue;
1389 		rw_wlock(&lk);
1390 		if (req_pending == NULL)
1391 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1392 		req_pending = NULL;
1393 		rw_wunlock(&lk);
1394 	}
1395 }
1396 
1397 static void
1398 worklist_speedup(mp)
1399 	struct mount *mp;
1400 {
1401 	rw_assert(&lk, RA_WLOCKED);
1402 	if (req_pending == 0) {
1403 		req_pending = mp;
1404 		wakeup(&req_pending);
1405 	}
1406 }
1407 
1408 static int
1409 softdep_speedup(void)
1410 {
1411 
1412 	worklist_speedup(ALLCLEAN);
1413 	bd_speedup();
1414 	return (speedup_syncer());
1415 }
1416 
1417 /*
1418  * Add an item to the end of the work queue.
1419  * This routine requires that the lock be held.
1420  * This is the only routine that adds items to the list.
1421  * The following routine is the only one that removes items
1422  * and does so in order from first to last.
1423  */
1424 
1425 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1426 #define	WK_NODELAY	0x0002	/* Process immediately. */
1427 
1428 static void
1429 add_to_worklist(wk, flags)
1430 	struct worklist *wk;
1431 	int flags;
1432 {
1433 	struct ufsmount *ump;
1434 
1435 	ump = VFSTOUFS(wk->wk_mp);
1436 	LOCK_OWNED(ump);
1437 	if (wk->wk_state & ONWORKLIST)
1438 		panic("add_to_worklist: %s(0x%X) already on list",
1439 		    TYPENAME(wk->wk_type), wk->wk_state);
1440 	wk->wk_state |= ONWORKLIST;
1441 	if (ump->softdep_on_worklist == 0) {
1442 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1443 		ump->softdep_worklist_tail = wk;
1444 	} else if (flags & WK_HEAD) {
1445 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1446 	} else {
1447 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1448 		ump->softdep_worklist_tail = wk;
1449 	}
1450 	ump->softdep_on_worklist += 1;
1451 	if (flags & WK_NODELAY)
1452 		worklist_speedup(wk->wk_mp);
1453 }
1454 
1455 /*
1456  * Remove the item to be processed. If we are removing the last
1457  * item on the list, we need to recalculate the tail pointer.
1458  */
1459 static void
1460 remove_from_worklist(wk)
1461 	struct worklist *wk;
1462 {
1463 	struct ufsmount *ump;
1464 
1465 	ump = VFSTOUFS(wk->wk_mp);
1466 	WORKLIST_REMOVE(wk);
1467 	if (ump->softdep_worklist_tail == wk)
1468 		ump->softdep_worklist_tail =
1469 		    (struct worklist *)wk->wk_list.le_prev;
1470 	ump->softdep_on_worklist -= 1;
1471 }
1472 
1473 static void
1474 wake_worklist(wk)
1475 	struct worklist *wk;
1476 {
1477 	if (wk->wk_state & IOWAITING) {
1478 		wk->wk_state &= ~IOWAITING;
1479 		wakeup(wk);
1480 	}
1481 }
1482 
1483 static void
1484 wait_worklist(wk, wmesg)
1485 	struct worklist *wk;
1486 	char *wmesg;
1487 {
1488 	struct ufsmount *ump;
1489 
1490 	ump = VFSTOUFS(wk->wk_mp);
1491 	wk->wk_state |= IOWAITING;
1492 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1493 }
1494 
1495 /*
1496  * Process that runs once per second to handle items in the background queue.
1497  *
1498  * Note that we ensure that everything is done in the order in which they
1499  * appear in the queue. The code below depends on this property to ensure
1500  * that blocks of a file are freed before the inode itself is freed. This
1501  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1502  * until all the old ones have been purged from the dependency lists.
1503  */
1504 static int
1505 softdep_process_worklist(mp, full)
1506 	struct mount *mp;
1507 	int full;
1508 {
1509 	int cnt, matchcnt;
1510 	struct ufsmount *ump;
1511 	long starttime;
1512 
1513 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1514 	if (MOUNTEDSOFTDEP(mp) == 0)
1515 		return (0);
1516 	matchcnt = 0;
1517 	ump = VFSTOUFS(mp);
1518 	ACQUIRE_LOCK(ump);
1519 	starttime = time_second;
1520 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1521 	check_clear_deps(mp);
1522 	while (ump->softdep_on_worklist > 0) {
1523 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1524 			break;
1525 		else
1526 			matchcnt += cnt;
1527 		check_clear_deps(mp);
1528 		/*
1529 		 * We do not generally want to stop for buffer space, but if
1530 		 * we are really being a buffer hog, we will stop and wait.
1531 		 */
1532 		if (should_yield()) {
1533 			FREE_LOCK(ump);
1534 			kern_yield(PRI_USER);
1535 			bwillwrite();
1536 			ACQUIRE_LOCK(ump);
1537 		}
1538 		/*
1539 		 * Never allow processing to run for more than one
1540 		 * second. This gives the syncer thread the opportunity
1541 		 * to pause if appropriate.
1542 		 */
1543 		if (!full && starttime != time_second)
1544 			break;
1545 	}
1546 	if (full == 0)
1547 		journal_unsuspend(ump);
1548 	FREE_LOCK(ump);
1549 	return (matchcnt);
1550 }
1551 
1552 /*
1553  * Process all removes associated with a vnode if we are running out of
1554  * journal space.  Any other process which attempts to flush these will
1555  * be unable as we have the vnodes locked.
1556  */
1557 static void
1558 process_removes(vp)
1559 	struct vnode *vp;
1560 {
1561 	struct inodedep *inodedep;
1562 	struct dirrem *dirrem;
1563 	struct ufsmount *ump;
1564 	struct mount *mp;
1565 	ino_t inum;
1566 
1567 	mp = vp->v_mount;
1568 	ump = VFSTOUFS(mp);
1569 	LOCK_OWNED(ump);
1570 	inum = VTOI(vp)->i_number;
1571 	for (;;) {
1572 top:
1573 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1574 			return;
1575 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1576 			/*
1577 			 * If another thread is trying to lock this vnode
1578 			 * it will fail but we must wait for it to do so
1579 			 * before we can proceed.
1580 			 */
1581 			if (dirrem->dm_state & INPROGRESS) {
1582 				wait_worklist(&dirrem->dm_list, "pwrwait");
1583 				goto top;
1584 			}
1585 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1586 			    (COMPLETE | ONWORKLIST))
1587 				break;
1588 		}
1589 		if (dirrem == NULL)
1590 			return;
1591 		remove_from_worklist(&dirrem->dm_list);
1592 		FREE_LOCK(ump);
1593 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1594 			panic("process_removes: suspended filesystem");
1595 		handle_workitem_remove(dirrem, 0);
1596 		vn_finished_secondary_write(mp);
1597 		ACQUIRE_LOCK(ump);
1598 	}
1599 }
1600 
1601 /*
1602  * Process all truncations associated with a vnode if we are running out
1603  * of journal space.  This is called when the vnode lock is already held
1604  * and no other process can clear the truncation.  This function returns
1605  * a value greater than zero if it did any work.
1606  */
1607 static void
1608 process_truncates(vp)
1609 	struct vnode *vp;
1610 {
1611 	struct inodedep *inodedep;
1612 	struct freeblks *freeblks;
1613 	struct ufsmount *ump;
1614 	struct mount *mp;
1615 	ino_t inum;
1616 	int cgwait;
1617 
1618 	mp = vp->v_mount;
1619 	ump = VFSTOUFS(mp);
1620 	LOCK_OWNED(ump);
1621 	inum = VTOI(vp)->i_number;
1622 	for (;;) {
1623 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1624 			return;
1625 		cgwait = 0;
1626 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1627 			/* Journal entries not yet written.  */
1628 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1629 				jwait(&LIST_FIRST(
1630 				    &freeblks->fb_jblkdephd)->jb_list,
1631 				    MNT_WAIT);
1632 				break;
1633 			}
1634 			/* Another thread is executing this item. */
1635 			if (freeblks->fb_state & INPROGRESS) {
1636 				wait_worklist(&freeblks->fb_list, "ptrwait");
1637 				break;
1638 			}
1639 			/* Freeblks is waiting on a inode write. */
1640 			if ((freeblks->fb_state & COMPLETE) == 0) {
1641 				FREE_LOCK(ump);
1642 				ffs_update(vp, 1);
1643 				ACQUIRE_LOCK(ump);
1644 				break;
1645 			}
1646 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1647 			    (ALLCOMPLETE | ONWORKLIST)) {
1648 				remove_from_worklist(&freeblks->fb_list);
1649 				freeblks->fb_state |= INPROGRESS;
1650 				FREE_LOCK(ump);
1651 				if (vn_start_secondary_write(NULL, &mp,
1652 				    V_NOWAIT))
1653 					panic("process_truncates: "
1654 					    "suspended filesystem");
1655 				handle_workitem_freeblocks(freeblks, 0);
1656 				vn_finished_secondary_write(mp);
1657 				ACQUIRE_LOCK(ump);
1658 				break;
1659 			}
1660 			if (freeblks->fb_cgwait)
1661 				cgwait++;
1662 		}
1663 		if (cgwait) {
1664 			FREE_LOCK(ump);
1665 			sync_cgs(mp, MNT_WAIT);
1666 			ffs_sync_snap(mp, MNT_WAIT);
1667 			ACQUIRE_LOCK(ump);
1668 			continue;
1669 		}
1670 		if (freeblks == NULL)
1671 			break;
1672 	}
1673 	return;
1674 }
1675 
1676 /*
1677  * Process one item on the worklist.
1678  */
1679 static int
1680 process_worklist_item(mp, target, flags)
1681 	struct mount *mp;
1682 	int target;
1683 	int flags;
1684 {
1685 	struct worklist sentinel;
1686 	struct worklist *wk;
1687 	struct ufsmount *ump;
1688 	int matchcnt;
1689 	int error;
1690 
1691 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1692 	/*
1693 	 * If we are being called because of a process doing a
1694 	 * copy-on-write, then it is not safe to write as we may
1695 	 * recurse into the copy-on-write routine.
1696 	 */
1697 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1698 		return (-1);
1699 	PHOLD(curproc);	/* Don't let the stack go away. */
1700 	ump = VFSTOUFS(mp);
1701 	LOCK_OWNED(ump);
1702 	matchcnt = 0;
1703 	sentinel.wk_mp = NULL;
1704 	sentinel.wk_type = D_SENTINEL;
1705 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1706 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1707 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1708 		if (wk->wk_type == D_SENTINEL) {
1709 			LIST_REMOVE(&sentinel, wk_list);
1710 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1711 			continue;
1712 		}
1713 		if (wk->wk_state & INPROGRESS)
1714 			panic("process_worklist_item: %p already in progress.",
1715 			    wk);
1716 		wk->wk_state |= INPROGRESS;
1717 		remove_from_worklist(wk);
1718 		FREE_LOCK(ump);
1719 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1720 			panic("process_worklist_item: suspended filesystem");
1721 		switch (wk->wk_type) {
1722 		case D_DIRREM:
1723 			/* removal of a directory entry */
1724 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1725 			break;
1726 
1727 		case D_FREEBLKS:
1728 			/* releasing blocks and/or fragments from a file */
1729 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1730 			    flags);
1731 			break;
1732 
1733 		case D_FREEFRAG:
1734 			/* releasing a fragment when replaced as a file grows */
1735 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1736 			error = 0;
1737 			break;
1738 
1739 		case D_FREEFILE:
1740 			/* releasing an inode when its link count drops to 0 */
1741 			handle_workitem_freefile(WK_FREEFILE(wk));
1742 			error = 0;
1743 			break;
1744 
1745 		default:
1746 			panic("%s_process_worklist: Unknown type %s",
1747 			    "softdep", TYPENAME(wk->wk_type));
1748 			/* NOTREACHED */
1749 		}
1750 		vn_finished_secondary_write(mp);
1751 		ACQUIRE_LOCK(ump);
1752 		if (error == 0) {
1753 			if (++matchcnt == target)
1754 				break;
1755 			continue;
1756 		}
1757 		/*
1758 		 * We have to retry the worklist item later.  Wake up any
1759 		 * waiters who may be able to complete it immediately and
1760 		 * add the item back to the head so we don't try to execute
1761 		 * it again.
1762 		 */
1763 		wk->wk_state &= ~INPROGRESS;
1764 		wake_worklist(wk);
1765 		add_to_worklist(wk, WK_HEAD);
1766 	}
1767 	LIST_REMOVE(&sentinel, wk_list);
1768 	/* Sentinal could've become the tail from remove_from_worklist. */
1769 	if (ump->softdep_worklist_tail == &sentinel)
1770 		ump->softdep_worklist_tail =
1771 		    (struct worklist *)sentinel.wk_list.le_prev;
1772 	PRELE(curproc);
1773 	return (matchcnt);
1774 }
1775 
1776 /*
1777  * Move dependencies from one buffer to another.
1778  */
1779 int
1780 softdep_move_dependencies(oldbp, newbp)
1781 	struct buf *oldbp;
1782 	struct buf *newbp;
1783 {
1784 	struct worklist *wk, *wktail;
1785 	struct ufsmount *ump;
1786 	int dirty;
1787 
1788 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1789 		return (0);
1790 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1791 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1792 	dirty = 0;
1793 	wktail = NULL;
1794 	ump = VFSTOUFS(wk->wk_mp);
1795 	ACQUIRE_LOCK(ump);
1796 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1797 		LIST_REMOVE(wk, wk_list);
1798 		if (wk->wk_type == D_BMSAFEMAP &&
1799 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1800 			dirty = 1;
1801 		if (wktail == 0)
1802 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1803 		else
1804 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1805 		wktail = wk;
1806 	}
1807 	FREE_LOCK(ump);
1808 
1809 	return (dirty);
1810 }
1811 
1812 /*
1813  * Purge the work list of all items associated with a particular mount point.
1814  */
1815 int
1816 softdep_flushworklist(oldmnt, countp, td)
1817 	struct mount *oldmnt;
1818 	int *countp;
1819 	struct thread *td;
1820 {
1821 	struct vnode *devvp;
1822 	int count, error = 0;
1823 	struct ufsmount *ump;
1824 
1825 	/*
1826 	 * Alternately flush the block device associated with the mount
1827 	 * point and process any dependencies that the flushing
1828 	 * creates. We continue until no more worklist dependencies
1829 	 * are found.
1830 	 */
1831 	*countp = 0;
1832 	ump = VFSTOUFS(oldmnt);
1833 	devvp = ump->um_devvp;
1834 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1835 		*countp += count;
1836 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1837 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1838 		VOP_UNLOCK(devvp, 0);
1839 		if (error)
1840 			break;
1841 	}
1842 	return (error);
1843 }
1844 
1845 static int
1846 softdep_waitidle(struct mount *mp)
1847 {
1848 	struct ufsmount *ump;
1849 	int error;
1850 	int i;
1851 
1852 	ump = VFSTOUFS(mp);
1853 	ACQUIRE_LOCK(ump);
1854 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1855 		ump->softdep_req = 1;
1856 		if (ump->softdep_on_worklist)
1857 			panic("softdep_waitidle: work added after flush.");
1858 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1);
1859 	}
1860 	ump->softdep_req = 0;
1861 	FREE_LOCK(ump);
1862 	error = 0;
1863 	if (i == 10) {
1864 		error = EBUSY;
1865 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1866 		    mp);
1867 	}
1868 
1869 	return (error);
1870 }
1871 
1872 /*
1873  * Flush all vnodes and worklist items associated with a specified mount point.
1874  */
1875 int
1876 softdep_flushfiles(oldmnt, flags, td)
1877 	struct mount *oldmnt;
1878 	int flags;
1879 	struct thread *td;
1880 {
1881 #ifdef QUOTA
1882 	struct ufsmount *ump;
1883 	int i;
1884 #endif
1885 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1886 	int morework;
1887 
1888 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1889 	    ("softdep_flushfiles called on non-softdep filesystem"));
1890 	loopcnt = 10;
1891 	retry_flush_count = 3;
1892 retry_flush:
1893 	error = 0;
1894 
1895 	/*
1896 	 * Alternately flush the vnodes associated with the mount
1897 	 * point and process any dependencies that the flushing
1898 	 * creates. In theory, this loop can happen at most twice,
1899 	 * but we give it a few extra just to be sure.
1900 	 */
1901 	for (; loopcnt > 0; loopcnt--) {
1902 		/*
1903 		 * Do another flush in case any vnodes were brought in
1904 		 * as part of the cleanup operations.
1905 		 */
1906 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1907 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1908 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1909 			break;
1910 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1911 		    depcount == 0)
1912 			break;
1913 	}
1914 	/*
1915 	 * If we are unmounting then it is an error to fail. If we
1916 	 * are simply trying to downgrade to read-only, then filesystem
1917 	 * activity can keep us busy forever, so we just fail with EBUSY.
1918 	 */
1919 	if (loopcnt == 0) {
1920 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1921 			panic("softdep_flushfiles: looping");
1922 		error = EBUSY;
1923 	}
1924 	if (!error)
1925 		error = softdep_waitidle(oldmnt);
1926 	if (!error) {
1927 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1928 			retry = 0;
1929 			MNT_ILOCK(oldmnt);
1930 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1931 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1932 			morework = oldmnt->mnt_nvnodelistsize > 0;
1933 #ifdef QUOTA
1934 			ump = VFSTOUFS(oldmnt);
1935 			UFS_LOCK(ump);
1936 			for (i = 0; i < MAXQUOTAS; i++) {
1937 				if (ump->um_quotas[i] != NULLVP)
1938 					morework = 1;
1939 			}
1940 			UFS_UNLOCK(ump);
1941 #endif
1942 			if (morework) {
1943 				if (--retry_flush_count > 0) {
1944 					retry = 1;
1945 					loopcnt = 3;
1946 				} else
1947 					error = EBUSY;
1948 			}
1949 			MNT_IUNLOCK(oldmnt);
1950 			if (retry)
1951 				goto retry_flush;
1952 		}
1953 	}
1954 	return (error);
1955 }
1956 
1957 /*
1958  * Structure hashing.
1959  *
1960  * There are four types of structures that can be looked up:
1961  *	1) pagedep structures identified by mount point, inode number,
1962  *	   and logical block.
1963  *	2) inodedep structures identified by mount point and inode number.
1964  *	3) newblk structures identified by mount point and
1965  *	   physical block number.
1966  *	4) bmsafemap structures identified by mount point and
1967  *	   cylinder group number.
1968  *
1969  * The "pagedep" and "inodedep" dependency structures are hashed
1970  * separately from the file blocks and inodes to which they correspond.
1971  * This separation helps when the in-memory copy of an inode or
1972  * file block must be replaced. It also obviates the need to access
1973  * an inode or file page when simply updating (or de-allocating)
1974  * dependency structures. Lookup of newblk structures is needed to
1975  * find newly allocated blocks when trying to associate them with
1976  * their allocdirect or allocindir structure.
1977  *
1978  * The lookup routines optionally create and hash a new instance when
1979  * an existing entry is not found. The bmsafemap lookup routine always
1980  * allocates a new structure if an existing one is not found.
1981  */
1982 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1983 #define NODELAY		0x0002	/* cannot do background work */
1984 
1985 /*
1986  * Structures and routines associated with pagedep caching.
1987  */
1988 #define	PAGEDEP_HASH(ump, inum, lbn) \
1989 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
1990 
1991 static int
1992 pagedep_find(pagedephd, ino, lbn, pagedeppp)
1993 	struct pagedep_hashhead *pagedephd;
1994 	ino_t ino;
1995 	ufs_lbn_t lbn;
1996 	struct pagedep **pagedeppp;
1997 {
1998 	struct pagedep *pagedep;
1999 
2000 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2001 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2002 			*pagedeppp = pagedep;
2003 			return (1);
2004 		}
2005 	}
2006 	*pagedeppp = NULL;
2007 	return (0);
2008 }
2009 /*
2010  * Look up a pagedep. Return 1 if found, 0 otherwise.
2011  * If not found, allocate if DEPALLOC flag is passed.
2012  * Found or allocated entry is returned in pagedeppp.
2013  * This routine must be called with splbio interrupts blocked.
2014  */
2015 static int
2016 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2017 	struct mount *mp;
2018 	struct buf *bp;
2019 	ino_t ino;
2020 	ufs_lbn_t lbn;
2021 	int flags;
2022 	struct pagedep **pagedeppp;
2023 {
2024 	struct pagedep *pagedep;
2025 	struct pagedep_hashhead *pagedephd;
2026 	struct worklist *wk;
2027 	struct ufsmount *ump;
2028 	int ret;
2029 	int i;
2030 
2031 	ump = VFSTOUFS(mp);
2032 	LOCK_OWNED(ump);
2033 	if (bp) {
2034 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2035 			if (wk->wk_type == D_PAGEDEP) {
2036 				*pagedeppp = WK_PAGEDEP(wk);
2037 				return (1);
2038 			}
2039 		}
2040 	}
2041 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2042 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2043 	if (ret) {
2044 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2045 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2046 		return (1);
2047 	}
2048 	if ((flags & DEPALLOC) == 0)
2049 		return (0);
2050 	FREE_LOCK(ump);
2051 	pagedep = malloc(sizeof(struct pagedep),
2052 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2053 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2054 	ACQUIRE_LOCK(ump);
2055 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2056 	if (*pagedeppp) {
2057 		/*
2058 		 * This should never happen since we only create pagedeps
2059 		 * with the vnode lock held.  Could be an assert.
2060 		 */
2061 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2062 		return (ret);
2063 	}
2064 	pagedep->pd_ino = ino;
2065 	pagedep->pd_lbn = lbn;
2066 	LIST_INIT(&pagedep->pd_dirremhd);
2067 	LIST_INIT(&pagedep->pd_pendinghd);
2068 	for (i = 0; i < DAHASHSZ; i++)
2069 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2070 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2071 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2072 	*pagedeppp = pagedep;
2073 	return (0);
2074 }
2075 
2076 /*
2077  * Structures and routines associated with inodedep caching.
2078  */
2079 #define	INODEDEP_HASH(ump, inum) \
2080       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2081 
2082 static int
2083 inodedep_find(inodedephd, inum, inodedeppp)
2084 	struct inodedep_hashhead *inodedephd;
2085 	ino_t inum;
2086 	struct inodedep **inodedeppp;
2087 {
2088 	struct inodedep *inodedep;
2089 
2090 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2091 		if (inum == inodedep->id_ino)
2092 			break;
2093 	if (inodedep) {
2094 		*inodedeppp = inodedep;
2095 		return (1);
2096 	}
2097 	*inodedeppp = NULL;
2098 
2099 	return (0);
2100 }
2101 /*
2102  * Look up an inodedep. Return 1 if found, 0 if not found.
2103  * If not found, allocate if DEPALLOC flag is passed.
2104  * Found or allocated entry is returned in inodedeppp.
2105  * This routine must be called with splbio interrupts blocked.
2106  */
2107 static int
2108 inodedep_lookup(mp, inum, flags, inodedeppp)
2109 	struct mount *mp;
2110 	ino_t inum;
2111 	int flags;
2112 	struct inodedep **inodedeppp;
2113 {
2114 	struct inodedep *inodedep;
2115 	struct inodedep_hashhead *inodedephd;
2116 	struct ufsmount *ump;
2117 	struct fs *fs;
2118 
2119 	ump = VFSTOUFS(mp);
2120 	LOCK_OWNED(ump);
2121 	fs = ump->um_fs;
2122 	inodedephd = INODEDEP_HASH(ump, inum);
2123 
2124 	if (inodedep_find(inodedephd, inum, inodedeppp))
2125 		return (1);
2126 	if ((flags & DEPALLOC) == 0)
2127 		return (0);
2128 	/*
2129 	 * If we are over our limit, try to improve the situation.
2130 	 */
2131 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2132 		request_cleanup(mp, FLUSH_INODES);
2133 	FREE_LOCK(ump);
2134 	inodedep = malloc(sizeof(struct inodedep),
2135 		M_INODEDEP, M_SOFTDEP_FLAGS);
2136 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2137 	ACQUIRE_LOCK(ump);
2138 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2139 		WORKITEM_FREE(inodedep, D_INODEDEP);
2140 		return (1);
2141 	}
2142 	inodedep->id_fs = fs;
2143 	inodedep->id_ino = inum;
2144 	inodedep->id_state = ALLCOMPLETE;
2145 	inodedep->id_nlinkdelta = 0;
2146 	inodedep->id_savedino1 = NULL;
2147 	inodedep->id_savedsize = -1;
2148 	inodedep->id_savedextsize = -1;
2149 	inodedep->id_savednlink = -1;
2150 	inodedep->id_bmsafemap = NULL;
2151 	inodedep->id_mkdiradd = NULL;
2152 	LIST_INIT(&inodedep->id_dirremhd);
2153 	LIST_INIT(&inodedep->id_pendinghd);
2154 	LIST_INIT(&inodedep->id_inowait);
2155 	LIST_INIT(&inodedep->id_bufwait);
2156 	TAILQ_INIT(&inodedep->id_inoreflst);
2157 	TAILQ_INIT(&inodedep->id_inoupdt);
2158 	TAILQ_INIT(&inodedep->id_newinoupdt);
2159 	TAILQ_INIT(&inodedep->id_extupdt);
2160 	TAILQ_INIT(&inodedep->id_newextupdt);
2161 	TAILQ_INIT(&inodedep->id_freeblklst);
2162 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2163 	*inodedeppp = inodedep;
2164 	return (0);
2165 }
2166 
2167 /*
2168  * Structures and routines associated with newblk caching.
2169  */
2170 #define	NEWBLK_HASH(ump, inum) \
2171 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2172 
2173 static int
2174 newblk_find(newblkhd, newblkno, flags, newblkpp)
2175 	struct newblk_hashhead *newblkhd;
2176 	ufs2_daddr_t newblkno;
2177 	int flags;
2178 	struct newblk **newblkpp;
2179 {
2180 	struct newblk *newblk;
2181 
2182 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2183 		if (newblkno != newblk->nb_newblkno)
2184 			continue;
2185 		/*
2186 		 * If we're creating a new dependency don't match those that
2187 		 * have already been converted to allocdirects.  This is for
2188 		 * a frag extend.
2189 		 */
2190 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2191 			continue;
2192 		break;
2193 	}
2194 	if (newblk) {
2195 		*newblkpp = newblk;
2196 		return (1);
2197 	}
2198 	*newblkpp = NULL;
2199 	return (0);
2200 }
2201 
2202 /*
2203  * Look up a newblk. Return 1 if found, 0 if not found.
2204  * If not found, allocate if DEPALLOC flag is passed.
2205  * Found or allocated entry is returned in newblkpp.
2206  */
2207 static int
2208 newblk_lookup(mp, newblkno, flags, newblkpp)
2209 	struct mount *mp;
2210 	ufs2_daddr_t newblkno;
2211 	int flags;
2212 	struct newblk **newblkpp;
2213 {
2214 	struct newblk *newblk;
2215 	struct newblk_hashhead *newblkhd;
2216 	struct ufsmount *ump;
2217 
2218 	ump = VFSTOUFS(mp);
2219 	LOCK_OWNED(ump);
2220 	newblkhd = NEWBLK_HASH(ump, newblkno);
2221 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2222 		return (1);
2223 	if ((flags & DEPALLOC) == 0)
2224 		return (0);
2225 	FREE_LOCK(ump);
2226 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2227 	    M_SOFTDEP_FLAGS | M_ZERO);
2228 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2229 	ACQUIRE_LOCK(ump);
2230 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2231 		WORKITEM_FREE(newblk, D_NEWBLK);
2232 		return (1);
2233 	}
2234 	newblk->nb_freefrag = NULL;
2235 	LIST_INIT(&newblk->nb_indirdeps);
2236 	LIST_INIT(&newblk->nb_newdirblk);
2237 	LIST_INIT(&newblk->nb_jwork);
2238 	newblk->nb_state = ATTACHED;
2239 	newblk->nb_newblkno = newblkno;
2240 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2241 	*newblkpp = newblk;
2242 	return (0);
2243 }
2244 
2245 /*
2246  * Structures and routines associated with freed indirect block caching.
2247  */
2248 #define	INDIR_HASH(ump, blkno) \
2249 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2250 
2251 /*
2252  * Lookup an indirect block in the indir hash table.  The freework is
2253  * removed and potentially freed.  The caller must do a blocking journal
2254  * write before writing to the blkno.
2255  */
2256 static int
2257 indirblk_lookup(mp, blkno)
2258 	struct mount *mp;
2259 	ufs2_daddr_t blkno;
2260 {
2261 	struct freework *freework;
2262 	struct indir_hashhead *wkhd;
2263 	struct ufsmount *ump;
2264 
2265 	ump = VFSTOUFS(mp);
2266 	wkhd = INDIR_HASH(ump, blkno);
2267 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2268 		if (freework->fw_blkno != blkno)
2269 			continue;
2270 		indirblk_remove(freework);
2271 		return (1);
2272 	}
2273 	return (0);
2274 }
2275 
2276 /*
2277  * Insert an indirect block represented by freework into the indirblk
2278  * hash table so that it may prevent the block from being re-used prior
2279  * to the journal being written.
2280  */
2281 static void
2282 indirblk_insert(freework)
2283 	struct freework *freework;
2284 {
2285 	struct jblocks *jblocks;
2286 	struct jseg *jseg;
2287 	struct ufsmount *ump;
2288 
2289 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2290 	jblocks = ump->softdep_jblocks;
2291 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2292 	if (jseg == NULL)
2293 		return;
2294 
2295 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2296 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2297 	    fw_next);
2298 	freework->fw_state &= ~DEPCOMPLETE;
2299 }
2300 
2301 static void
2302 indirblk_remove(freework)
2303 	struct freework *freework;
2304 {
2305 	struct ufsmount *ump;
2306 
2307 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2308 	LIST_REMOVE(freework, fw_segs);
2309 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2310 	freework->fw_state |= DEPCOMPLETE;
2311 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2312 		WORKITEM_FREE(freework, D_FREEWORK);
2313 }
2314 
2315 /*
2316  * Executed during filesystem system initialization before
2317  * mounting any filesystems.
2318  */
2319 void
2320 softdep_initialize()
2321 {
2322 
2323 	max_softdeps = desiredvnodes * 4;
2324 
2325 	/* initialise bioops hack */
2326 	bioops.io_start = softdep_disk_io_initiation;
2327 	bioops.io_complete = softdep_disk_write_complete;
2328 	bioops.io_deallocate = softdep_deallocate_dependencies;
2329 	bioops.io_countdeps = softdep_count_dependencies;
2330 
2331 	/* Initialize the callout with an mtx. */
2332 	callout_init_mtx(&softdep_callout, &lk, 0);
2333 }
2334 
2335 /*
2336  * Executed after all filesystems have been unmounted during
2337  * filesystem module unload.
2338  */
2339 void
2340 softdep_uninitialize()
2341 {
2342 
2343 	/* clear bioops hack */
2344 	bioops.io_start = NULL;
2345 	bioops.io_complete = NULL;
2346 	bioops.io_deallocate = NULL;
2347 	bioops.io_countdeps = NULL;
2348 
2349 	callout_drain(&softdep_callout);
2350 }
2351 
2352 /*
2353  * Called at mount time to notify the dependency code that a
2354  * filesystem wishes to use it.
2355  */
2356 int
2357 softdep_mount(devvp, mp, fs, cred)
2358 	struct vnode *devvp;
2359 	struct mount *mp;
2360 	struct fs *fs;
2361 	struct ucred *cred;
2362 {
2363 	struct csum_total cstotal;
2364 	struct mount_softdeps *sdp;
2365 	struct ufsmount *ump;
2366 	struct cg *cgp;
2367 	struct buf *bp;
2368 	int i, error, cyl;
2369 
2370 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2371 	    M_WAITOK | M_ZERO);
2372 	MNT_ILOCK(mp);
2373 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2374 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2375 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2376 			MNTK_SOFTDEP | MNTK_NOASYNC;
2377 	}
2378 	ump = VFSTOUFS(mp);
2379 	ump->um_softdep = sdp;
2380 	MNT_IUNLOCK(mp);
2381 	LOCK_PTR(ump) = &lk;
2382 	LIST_INIT(&ump->softdep_workitem_pending);
2383 	LIST_INIT(&ump->softdep_journal_pending);
2384 	TAILQ_INIT(&ump->softdep_unlinked);
2385 	LIST_INIT(&ump->softdep_dirtycg);
2386 	ump->softdep_worklist_tail = NULL;
2387 	ump->softdep_on_worklist = 0;
2388 	ump->softdep_deps = 0;
2389 	LIST_INIT(&ump->softdep_mkdirlisthd);
2390 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2391 	    &ump->pagedep_hash_size);
2392 	ump->pagedep_nextclean = 0;
2393 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2394 	    &ump->inodedep_hash_size);
2395 	ump->inodedep_nextclean = 0;
2396 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2397 	    &ump->newblk_hash_size);
2398 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2399 	    &ump->bmsafemap_hash_size);
2400 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2401 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2402 	    M_FREEWORK, M_WAITOK);
2403 	ump->indir_hash_size = i - 1;
2404 	for (i = 0; i <= ump->indir_hash_size; i++)
2405 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2406 	if ((fs->fs_flags & FS_SUJ) &&
2407 	    (error = journal_mount(mp, fs, cred)) != 0) {
2408 		printf("Failed to start journal: %d\n", error);
2409 		softdep_unmount(mp);
2410 		return (error);
2411 	}
2412 	atomic_add_int(&stat_softdep_mounts, 1);
2413 	/*
2414 	 * When doing soft updates, the counters in the
2415 	 * superblock may have gotten out of sync. Recomputation
2416 	 * can take a long time and can be deferred for background
2417 	 * fsck.  However, the old behavior of scanning the cylinder
2418 	 * groups and recalculating them at mount time is available
2419 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2420 	 */
2421 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2422 		return (0);
2423 	bzero(&cstotal, sizeof cstotal);
2424 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2425 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2426 		    fs->fs_cgsize, cred, &bp)) != 0) {
2427 			brelse(bp);
2428 			softdep_unmount(mp);
2429 			return (error);
2430 		}
2431 		cgp = (struct cg *)bp->b_data;
2432 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2433 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2434 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2435 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2436 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2437 		brelse(bp);
2438 	}
2439 #ifdef DEBUG
2440 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2441 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2442 #endif
2443 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2444 	return (0);
2445 }
2446 
2447 void
2448 softdep_unmount(mp)
2449 	struct mount *mp;
2450 {
2451 	struct ufsmount *ump;
2452 #ifdef INVARIANTS
2453 	int i;
2454 #endif
2455 
2456 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2457 	    ("softdep_unmount called on non-softdep filesystem"));
2458 	ump = VFSTOUFS(mp);
2459 	MNT_ILOCK(mp);
2460 	mp->mnt_flag &= ~MNT_SOFTDEP;
2461 	if (MOUNTEDSUJ(mp) == 0) {
2462 		MNT_IUNLOCK(mp);
2463 	} else {
2464 		mp->mnt_flag &= ~MNT_SUJ;
2465 		MNT_IUNLOCK(mp);
2466 		journal_unmount(ump);
2467 	}
2468 	atomic_subtract_int(&stat_softdep_mounts, 1);
2469 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2470 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2471 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2472 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2473 	    ump->bmsafemap_hash_size);
2474 	free(ump->indir_hashtbl, M_FREEWORK);
2475 #ifdef INVARIANTS
2476 	for (i = 0; i <= D_LAST; i++)
2477 		KASSERT(ump->softdep_curdeps[i] == 0,
2478 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2479 		    TYPENAME(i), ump->softdep_curdeps[i]));
2480 #endif
2481 	free(ump->um_softdep, M_MOUNTDATA);
2482 }
2483 
2484 static struct jblocks *
2485 jblocks_create(void)
2486 {
2487 	struct jblocks *jblocks;
2488 
2489 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2490 	TAILQ_INIT(&jblocks->jb_segs);
2491 	jblocks->jb_avail = 10;
2492 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2493 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2494 
2495 	return (jblocks);
2496 }
2497 
2498 static ufs2_daddr_t
2499 jblocks_alloc(jblocks, bytes, actual)
2500 	struct jblocks *jblocks;
2501 	int bytes;
2502 	int *actual;
2503 {
2504 	ufs2_daddr_t daddr;
2505 	struct jextent *jext;
2506 	int freecnt;
2507 	int blocks;
2508 
2509 	blocks = bytes / DEV_BSIZE;
2510 	jext = &jblocks->jb_extent[jblocks->jb_head];
2511 	freecnt = jext->je_blocks - jblocks->jb_off;
2512 	if (freecnt == 0) {
2513 		jblocks->jb_off = 0;
2514 		if (++jblocks->jb_head > jblocks->jb_used)
2515 			jblocks->jb_head = 0;
2516 		jext = &jblocks->jb_extent[jblocks->jb_head];
2517 		freecnt = jext->je_blocks;
2518 	}
2519 	if (freecnt > blocks)
2520 		freecnt = blocks;
2521 	*actual = freecnt * DEV_BSIZE;
2522 	daddr = jext->je_daddr + jblocks->jb_off;
2523 	jblocks->jb_off += freecnt;
2524 	jblocks->jb_free -= freecnt;
2525 
2526 	return (daddr);
2527 }
2528 
2529 static void
2530 jblocks_free(jblocks, mp, bytes)
2531 	struct jblocks *jblocks;
2532 	struct mount *mp;
2533 	int bytes;
2534 {
2535 
2536 	LOCK_OWNED(VFSTOUFS(mp));
2537 	jblocks->jb_free += bytes / DEV_BSIZE;
2538 	if (jblocks->jb_suspended)
2539 		worklist_speedup(mp);
2540 	wakeup(jblocks);
2541 }
2542 
2543 static void
2544 jblocks_destroy(jblocks)
2545 	struct jblocks *jblocks;
2546 {
2547 
2548 	if (jblocks->jb_extent)
2549 		free(jblocks->jb_extent, M_JBLOCKS);
2550 	free(jblocks, M_JBLOCKS);
2551 }
2552 
2553 static void
2554 jblocks_add(jblocks, daddr, blocks)
2555 	struct jblocks *jblocks;
2556 	ufs2_daddr_t daddr;
2557 	int blocks;
2558 {
2559 	struct jextent *jext;
2560 
2561 	jblocks->jb_blocks += blocks;
2562 	jblocks->jb_free += blocks;
2563 	jext = &jblocks->jb_extent[jblocks->jb_used];
2564 	/* Adding the first block. */
2565 	if (jext->je_daddr == 0) {
2566 		jext->je_daddr = daddr;
2567 		jext->je_blocks = blocks;
2568 		return;
2569 	}
2570 	/* Extending the last extent. */
2571 	if (jext->je_daddr + jext->je_blocks == daddr) {
2572 		jext->je_blocks += blocks;
2573 		return;
2574 	}
2575 	/* Adding a new extent. */
2576 	if (++jblocks->jb_used == jblocks->jb_avail) {
2577 		jblocks->jb_avail *= 2;
2578 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2579 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2580 		memcpy(jext, jblocks->jb_extent,
2581 		    sizeof(struct jextent) * jblocks->jb_used);
2582 		free(jblocks->jb_extent, M_JBLOCKS);
2583 		jblocks->jb_extent = jext;
2584 	}
2585 	jext = &jblocks->jb_extent[jblocks->jb_used];
2586 	jext->je_daddr = daddr;
2587 	jext->je_blocks = blocks;
2588 	return;
2589 }
2590 
2591 int
2592 softdep_journal_lookup(mp, vpp)
2593 	struct mount *mp;
2594 	struct vnode **vpp;
2595 {
2596 	struct componentname cnp;
2597 	struct vnode *dvp;
2598 	ino_t sujournal;
2599 	int error;
2600 
2601 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2602 	if (error)
2603 		return (error);
2604 	bzero(&cnp, sizeof(cnp));
2605 	cnp.cn_nameiop = LOOKUP;
2606 	cnp.cn_flags = ISLASTCN;
2607 	cnp.cn_thread = curthread;
2608 	cnp.cn_cred = curthread->td_ucred;
2609 	cnp.cn_pnbuf = SUJ_FILE;
2610 	cnp.cn_nameptr = SUJ_FILE;
2611 	cnp.cn_namelen = strlen(SUJ_FILE);
2612 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2613 	vput(dvp);
2614 	if (error != 0)
2615 		return (error);
2616 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2617 	return (error);
2618 }
2619 
2620 /*
2621  * Open and verify the journal file.
2622  */
2623 static int
2624 journal_mount(mp, fs, cred)
2625 	struct mount *mp;
2626 	struct fs *fs;
2627 	struct ucred *cred;
2628 {
2629 	struct jblocks *jblocks;
2630 	struct ufsmount *ump;
2631 	struct vnode *vp;
2632 	struct inode *ip;
2633 	ufs2_daddr_t blkno;
2634 	int bcount;
2635 	int error;
2636 	int i;
2637 
2638 	ump = VFSTOUFS(mp);
2639 	ump->softdep_journal_tail = NULL;
2640 	ump->softdep_on_journal = 0;
2641 	ump->softdep_accdeps = 0;
2642 	ump->softdep_req = 0;
2643 	ump->softdep_jblocks = NULL;
2644 	error = softdep_journal_lookup(mp, &vp);
2645 	if (error != 0) {
2646 		printf("Failed to find journal.  Use tunefs to create one\n");
2647 		return (error);
2648 	}
2649 	ip = VTOI(vp);
2650 	if (ip->i_size < SUJ_MIN) {
2651 		error = ENOSPC;
2652 		goto out;
2653 	}
2654 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2655 	jblocks = jblocks_create();
2656 	for (i = 0; i < bcount; i++) {
2657 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2658 		if (error)
2659 			break;
2660 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2661 	}
2662 	if (error) {
2663 		jblocks_destroy(jblocks);
2664 		goto out;
2665 	}
2666 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2667 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2668 	ump->softdep_jblocks = jblocks;
2669 out:
2670 	if (error == 0) {
2671 		MNT_ILOCK(mp);
2672 		mp->mnt_flag |= MNT_SUJ;
2673 		mp->mnt_flag &= ~MNT_SOFTDEP;
2674 		MNT_IUNLOCK(mp);
2675 		/*
2676 		 * Only validate the journal contents if the
2677 		 * filesystem is clean, otherwise we write the logs
2678 		 * but they'll never be used.  If the filesystem was
2679 		 * still dirty when we mounted it the journal is
2680 		 * invalid and a new journal can only be valid if it
2681 		 * starts from a clean mount.
2682 		 */
2683 		if (fs->fs_clean) {
2684 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2685 			ip->i_flags |= IN_MODIFIED;
2686 			ffs_update(vp, 1);
2687 		}
2688 	}
2689 	vput(vp);
2690 	return (error);
2691 }
2692 
2693 static void
2694 journal_unmount(ump)
2695 	struct ufsmount *ump;
2696 {
2697 
2698 	if (ump->softdep_jblocks)
2699 		jblocks_destroy(ump->softdep_jblocks);
2700 	ump->softdep_jblocks = NULL;
2701 }
2702 
2703 /*
2704  * Called when a journal record is ready to be written.  Space is allocated
2705  * and the journal entry is created when the journal is flushed to stable
2706  * store.
2707  */
2708 static void
2709 add_to_journal(wk)
2710 	struct worklist *wk;
2711 {
2712 	struct ufsmount *ump;
2713 
2714 	ump = VFSTOUFS(wk->wk_mp);
2715 	LOCK_OWNED(ump);
2716 	if (wk->wk_state & ONWORKLIST)
2717 		panic("add_to_journal: %s(0x%X) already on list",
2718 		    TYPENAME(wk->wk_type), wk->wk_state);
2719 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2720 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2721 		ump->softdep_jblocks->jb_age = ticks;
2722 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2723 	} else
2724 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2725 	ump->softdep_journal_tail = wk;
2726 	ump->softdep_on_journal += 1;
2727 }
2728 
2729 /*
2730  * Remove an arbitrary item for the journal worklist maintain the tail
2731  * pointer.  This happens when a new operation obviates the need to
2732  * journal an old operation.
2733  */
2734 static void
2735 remove_from_journal(wk)
2736 	struct worklist *wk;
2737 {
2738 	struct ufsmount *ump;
2739 
2740 	ump = VFSTOUFS(wk->wk_mp);
2741 	LOCK_OWNED(ump);
2742 #ifdef SUJ_DEBUG
2743 	{
2744 		struct worklist *wkn;
2745 
2746 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2747 			if (wkn == wk)
2748 				break;
2749 		if (wkn == NULL)
2750 			panic("remove_from_journal: %p is not in journal", wk);
2751 	}
2752 #endif
2753 	/*
2754 	 * We emulate a TAILQ to save space in most structures which do not
2755 	 * require TAILQ semantics.  Here we must update the tail position
2756 	 * when removing the tail which is not the final entry. This works
2757 	 * only if the worklist linkage are at the beginning of the structure.
2758 	 */
2759 	if (ump->softdep_journal_tail == wk)
2760 		ump->softdep_journal_tail =
2761 		    (struct worklist *)wk->wk_list.le_prev;
2762 
2763 	WORKLIST_REMOVE(wk);
2764 	ump->softdep_on_journal -= 1;
2765 }
2766 
2767 /*
2768  * Check for journal space as well as dependency limits so the prelink
2769  * code can throttle both journaled and non-journaled filesystems.
2770  * Threshold is 0 for low and 1 for min.
2771  */
2772 static int
2773 journal_space(ump, thresh)
2774 	struct ufsmount *ump;
2775 	int thresh;
2776 {
2777 	struct jblocks *jblocks;
2778 	int limit, avail;
2779 
2780 	jblocks = ump->softdep_jblocks;
2781 	if (jblocks == NULL)
2782 		return (1);
2783 	/*
2784 	 * We use a tighter restriction here to prevent request_cleanup()
2785 	 * running in threads from running into locks we currently hold.
2786 	 * We have to be over the limit and our filesystem has to be
2787 	 * responsible for more than our share of that usage.
2788 	 */
2789 	limit = (max_softdeps / 10) * 9;
2790 	if (dep_current[D_INODEDEP] > limit &&
2791 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_softdep_mounts)
2792 		return (0);
2793 	if (thresh)
2794 		thresh = jblocks->jb_min;
2795 	else
2796 		thresh = jblocks->jb_low;
2797 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2798 	avail = jblocks->jb_free - avail;
2799 
2800 	return (avail > thresh);
2801 }
2802 
2803 static void
2804 journal_suspend(ump)
2805 	struct ufsmount *ump;
2806 {
2807 	struct jblocks *jblocks;
2808 	struct mount *mp;
2809 
2810 	mp = UFSTOVFS(ump);
2811 	jblocks = ump->softdep_jblocks;
2812 	MNT_ILOCK(mp);
2813 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2814 		stat_journal_min++;
2815 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2816 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2817 	}
2818 	jblocks->jb_suspended = 1;
2819 	MNT_IUNLOCK(mp);
2820 }
2821 
2822 static int
2823 journal_unsuspend(struct ufsmount *ump)
2824 {
2825 	struct jblocks *jblocks;
2826 	struct mount *mp;
2827 
2828 	mp = UFSTOVFS(ump);
2829 	jblocks = ump->softdep_jblocks;
2830 
2831 	if (jblocks != NULL && jblocks->jb_suspended &&
2832 	    journal_space(ump, jblocks->jb_min)) {
2833 		jblocks->jb_suspended = 0;
2834 		FREE_LOCK(ump);
2835 		mp->mnt_susp_owner = curthread;
2836 		vfs_write_resume(mp, 0);
2837 		ACQUIRE_LOCK(ump);
2838 		return (1);
2839 	}
2840 	return (0);
2841 }
2842 
2843 /*
2844  * Called before any allocation function to be certain that there is
2845  * sufficient space in the journal prior to creating any new records.
2846  * Since in the case of block allocation we may have multiple locked
2847  * buffers at the time of the actual allocation we can not block
2848  * when the journal records are created.  Doing so would create a deadlock
2849  * if any of these buffers needed to be flushed to reclaim space.  Instead
2850  * we require a sufficiently large amount of available space such that
2851  * each thread in the system could have passed this allocation check and
2852  * still have sufficient free space.  With 20% of a minimum journal size
2853  * of 1MB we have 6553 records available.
2854  */
2855 int
2856 softdep_prealloc(vp, waitok)
2857 	struct vnode *vp;
2858 	int waitok;
2859 {
2860 	struct ufsmount *ump;
2861 
2862 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2863 	    ("softdep_prealloc called on non-softdep filesystem"));
2864 	/*
2865 	 * Nothing to do if we are not running journaled soft updates.
2866 	 * If we currently hold the snapshot lock, we must avoid handling
2867 	 * other resources that could cause deadlock.
2868 	 */
2869 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2870 		return (0);
2871 	ump = VFSTOUFS(vp->v_mount);
2872 	ACQUIRE_LOCK(ump);
2873 	if (journal_space(ump, 0)) {
2874 		FREE_LOCK(ump);
2875 		return (0);
2876 	}
2877 	stat_journal_low++;
2878 	FREE_LOCK(ump);
2879 	if (waitok == MNT_NOWAIT)
2880 		return (ENOSPC);
2881 	/*
2882 	 * Attempt to sync this vnode once to flush any journal
2883 	 * work attached to it.
2884 	 */
2885 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2886 		ffs_syncvnode(vp, waitok, 0);
2887 	ACQUIRE_LOCK(ump);
2888 	process_removes(vp);
2889 	process_truncates(vp);
2890 	if (journal_space(ump, 0) == 0) {
2891 		softdep_speedup();
2892 		if (journal_space(ump, 1) == 0)
2893 			journal_suspend(ump);
2894 	}
2895 	FREE_LOCK(ump);
2896 
2897 	return (0);
2898 }
2899 
2900 /*
2901  * Before adjusting a link count on a vnode verify that we have sufficient
2902  * journal space.  If not, process operations that depend on the currently
2903  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2904  * and softdep flush threads can not acquire these locks to reclaim space.
2905  */
2906 static void
2907 softdep_prelink(dvp, vp)
2908 	struct vnode *dvp;
2909 	struct vnode *vp;
2910 {
2911 	struct ufsmount *ump;
2912 
2913 	ump = VFSTOUFS(dvp->v_mount);
2914 	LOCK_OWNED(ump);
2915 	/*
2916 	 * Nothing to do if we have sufficient journal space.
2917 	 * If we currently hold the snapshot lock, we must avoid
2918 	 * handling other resources that could cause deadlock.
2919 	 */
2920 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2921 		return;
2922 	stat_journal_low++;
2923 	FREE_LOCK(ump);
2924 	if (vp)
2925 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2926 	ffs_syncvnode(dvp, MNT_WAIT, 0);
2927 	ACQUIRE_LOCK(ump);
2928 	/* Process vp before dvp as it may create .. removes. */
2929 	if (vp) {
2930 		process_removes(vp);
2931 		process_truncates(vp);
2932 	}
2933 	process_removes(dvp);
2934 	process_truncates(dvp);
2935 	softdep_speedup();
2936 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2937 	if (journal_space(ump, 0) == 0) {
2938 		softdep_speedup();
2939 		if (journal_space(ump, 1) == 0)
2940 			journal_suspend(ump);
2941 	}
2942 }
2943 
2944 static void
2945 jseg_write(ump, jseg, data)
2946 	struct ufsmount *ump;
2947 	struct jseg *jseg;
2948 	uint8_t *data;
2949 {
2950 	struct jsegrec *rec;
2951 
2952 	rec = (struct jsegrec *)data;
2953 	rec->jsr_seq = jseg->js_seq;
2954 	rec->jsr_oldest = jseg->js_oldseq;
2955 	rec->jsr_cnt = jseg->js_cnt;
2956 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2957 	rec->jsr_crc = 0;
2958 	rec->jsr_time = ump->um_fs->fs_mtime;
2959 }
2960 
2961 static inline void
2962 inoref_write(inoref, jseg, rec)
2963 	struct inoref *inoref;
2964 	struct jseg *jseg;
2965 	struct jrefrec *rec;
2966 {
2967 
2968 	inoref->if_jsegdep->jd_seg = jseg;
2969 	rec->jr_ino = inoref->if_ino;
2970 	rec->jr_parent = inoref->if_parent;
2971 	rec->jr_nlink = inoref->if_nlink;
2972 	rec->jr_mode = inoref->if_mode;
2973 	rec->jr_diroff = inoref->if_diroff;
2974 }
2975 
2976 static void
2977 jaddref_write(jaddref, jseg, data)
2978 	struct jaddref *jaddref;
2979 	struct jseg *jseg;
2980 	uint8_t *data;
2981 {
2982 	struct jrefrec *rec;
2983 
2984 	rec = (struct jrefrec *)data;
2985 	rec->jr_op = JOP_ADDREF;
2986 	inoref_write(&jaddref->ja_ref, jseg, rec);
2987 }
2988 
2989 static void
2990 jremref_write(jremref, jseg, data)
2991 	struct jremref *jremref;
2992 	struct jseg *jseg;
2993 	uint8_t *data;
2994 {
2995 	struct jrefrec *rec;
2996 
2997 	rec = (struct jrefrec *)data;
2998 	rec->jr_op = JOP_REMREF;
2999 	inoref_write(&jremref->jr_ref, jseg, rec);
3000 }
3001 
3002 static void
3003 jmvref_write(jmvref, jseg, data)
3004 	struct jmvref *jmvref;
3005 	struct jseg *jseg;
3006 	uint8_t *data;
3007 {
3008 	struct jmvrec *rec;
3009 
3010 	rec = (struct jmvrec *)data;
3011 	rec->jm_op = JOP_MVREF;
3012 	rec->jm_ino = jmvref->jm_ino;
3013 	rec->jm_parent = jmvref->jm_parent;
3014 	rec->jm_oldoff = jmvref->jm_oldoff;
3015 	rec->jm_newoff = jmvref->jm_newoff;
3016 }
3017 
3018 static void
3019 jnewblk_write(jnewblk, jseg, data)
3020 	struct jnewblk *jnewblk;
3021 	struct jseg *jseg;
3022 	uint8_t *data;
3023 {
3024 	struct jblkrec *rec;
3025 
3026 	jnewblk->jn_jsegdep->jd_seg = jseg;
3027 	rec = (struct jblkrec *)data;
3028 	rec->jb_op = JOP_NEWBLK;
3029 	rec->jb_ino = jnewblk->jn_ino;
3030 	rec->jb_blkno = jnewblk->jn_blkno;
3031 	rec->jb_lbn = jnewblk->jn_lbn;
3032 	rec->jb_frags = jnewblk->jn_frags;
3033 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3034 }
3035 
3036 static void
3037 jfreeblk_write(jfreeblk, jseg, data)
3038 	struct jfreeblk *jfreeblk;
3039 	struct jseg *jseg;
3040 	uint8_t *data;
3041 {
3042 	struct jblkrec *rec;
3043 
3044 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3045 	rec = (struct jblkrec *)data;
3046 	rec->jb_op = JOP_FREEBLK;
3047 	rec->jb_ino = jfreeblk->jf_ino;
3048 	rec->jb_blkno = jfreeblk->jf_blkno;
3049 	rec->jb_lbn = jfreeblk->jf_lbn;
3050 	rec->jb_frags = jfreeblk->jf_frags;
3051 	rec->jb_oldfrags = 0;
3052 }
3053 
3054 static void
3055 jfreefrag_write(jfreefrag, jseg, data)
3056 	struct jfreefrag *jfreefrag;
3057 	struct jseg *jseg;
3058 	uint8_t *data;
3059 {
3060 	struct jblkrec *rec;
3061 
3062 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3063 	rec = (struct jblkrec *)data;
3064 	rec->jb_op = JOP_FREEBLK;
3065 	rec->jb_ino = jfreefrag->fr_ino;
3066 	rec->jb_blkno = jfreefrag->fr_blkno;
3067 	rec->jb_lbn = jfreefrag->fr_lbn;
3068 	rec->jb_frags = jfreefrag->fr_frags;
3069 	rec->jb_oldfrags = 0;
3070 }
3071 
3072 static void
3073 jtrunc_write(jtrunc, jseg, data)
3074 	struct jtrunc *jtrunc;
3075 	struct jseg *jseg;
3076 	uint8_t *data;
3077 {
3078 	struct jtrncrec *rec;
3079 
3080 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3081 	rec = (struct jtrncrec *)data;
3082 	rec->jt_op = JOP_TRUNC;
3083 	rec->jt_ino = jtrunc->jt_ino;
3084 	rec->jt_size = jtrunc->jt_size;
3085 	rec->jt_extsize = jtrunc->jt_extsize;
3086 }
3087 
3088 static void
3089 jfsync_write(jfsync, jseg, data)
3090 	struct jfsync *jfsync;
3091 	struct jseg *jseg;
3092 	uint8_t *data;
3093 {
3094 	struct jtrncrec *rec;
3095 
3096 	rec = (struct jtrncrec *)data;
3097 	rec->jt_op = JOP_SYNC;
3098 	rec->jt_ino = jfsync->jfs_ino;
3099 	rec->jt_size = jfsync->jfs_size;
3100 	rec->jt_extsize = jfsync->jfs_extsize;
3101 }
3102 
3103 static void
3104 softdep_flushjournal(mp)
3105 	struct mount *mp;
3106 {
3107 	struct jblocks *jblocks;
3108 	struct ufsmount *ump;
3109 
3110 	if (MOUNTEDSUJ(mp) == 0)
3111 		return;
3112 	ump = VFSTOUFS(mp);
3113 	jblocks = ump->softdep_jblocks;
3114 	ACQUIRE_LOCK(ump);
3115 	while (ump->softdep_on_journal) {
3116 		jblocks->jb_needseg = 1;
3117 		softdep_process_journal(mp, NULL, MNT_WAIT);
3118 	}
3119 	FREE_LOCK(ump);
3120 }
3121 
3122 static void softdep_synchronize_completed(struct bio *);
3123 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3124 
3125 static void
3126 softdep_synchronize_completed(bp)
3127         struct bio *bp;
3128 {
3129 	struct jseg *oldest;
3130 	struct jseg *jseg;
3131 	struct ufsmount *ump;
3132 
3133 	/*
3134 	 * caller1 marks the last segment written before we issued the
3135 	 * synchronize cache.
3136 	 */
3137 	jseg = bp->bio_caller1;
3138 	if (jseg == NULL) {
3139 		g_destroy_bio(bp);
3140 		return;
3141 	}
3142 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3143 	ACQUIRE_LOCK(ump);
3144 	oldest = NULL;
3145 	/*
3146 	 * Mark all the journal entries waiting on the synchronize cache
3147 	 * as completed so they may continue on.
3148 	 */
3149 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3150 		jseg->js_state |= COMPLETE;
3151 		oldest = jseg;
3152 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3153 	}
3154 	/*
3155 	 * Restart deferred journal entry processing from the oldest
3156 	 * completed jseg.
3157 	 */
3158 	if (oldest)
3159 		complete_jsegs(oldest);
3160 
3161 	FREE_LOCK(ump);
3162 	g_destroy_bio(bp);
3163 }
3164 
3165 /*
3166  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3167  * barriers.  The journal must be written prior to any blocks that depend
3168  * on it and the journal can not be released until the blocks have be
3169  * written.  This code handles both barriers simultaneously.
3170  */
3171 static void
3172 softdep_synchronize(bp, ump, caller1)
3173 	struct bio *bp;
3174 	struct ufsmount *ump;
3175 	void *caller1;
3176 {
3177 
3178 	bp->bio_cmd = BIO_FLUSH;
3179 	bp->bio_flags |= BIO_ORDERED;
3180 	bp->bio_data = NULL;
3181 	bp->bio_offset = ump->um_cp->provider->mediasize;
3182 	bp->bio_length = 0;
3183 	bp->bio_done = softdep_synchronize_completed;
3184 	bp->bio_caller1 = caller1;
3185 	g_io_request(bp,
3186 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3187 }
3188 
3189 /*
3190  * Flush some journal records to disk.
3191  */
3192 static void
3193 softdep_process_journal(mp, needwk, flags)
3194 	struct mount *mp;
3195 	struct worklist *needwk;
3196 	int flags;
3197 {
3198 	struct jblocks *jblocks;
3199 	struct ufsmount *ump;
3200 	struct worklist *wk;
3201 	struct jseg *jseg;
3202 	struct buf *bp;
3203 	struct bio *bio;
3204 	uint8_t *data;
3205 	struct fs *fs;
3206 	int shouldflush;
3207 	int segwritten;
3208 	int jrecmin;	/* Minimum records per block. */
3209 	int jrecmax;	/* Maximum records per block. */
3210 	int size;
3211 	int cnt;
3212 	int off;
3213 	int devbsize;
3214 
3215 	if (MOUNTEDSUJ(mp) == 0)
3216 		return;
3217 	shouldflush = softdep_flushcache;
3218 	bio = NULL;
3219 	jseg = NULL;
3220 	ump = VFSTOUFS(mp);
3221 	LOCK_OWNED(ump);
3222 	fs = ump->um_fs;
3223 	jblocks = ump->softdep_jblocks;
3224 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3225 	/*
3226 	 * We write anywhere between a disk block and fs block.  The upper
3227 	 * bound is picked to prevent buffer cache fragmentation and limit
3228 	 * processing time per I/O.
3229 	 */
3230 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3231 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3232 	segwritten = 0;
3233 	for (;;) {
3234 		cnt = ump->softdep_on_journal;
3235 		/*
3236 		 * Criteria for writing a segment:
3237 		 * 1) We have a full block.
3238 		 * 2) We're called from jwait() and haven't found the
3239 		 *    journal item yet.
3240 		 * 3) Always write if needseg is set.
3241 		 * 4) If we are called from process_worklist and have
3242 		 *    not yet written anything we write a partial block
3243 		 *    to enforce a 1 second maximum latency on journal
3244 		 *    entries.
3245 		 */
3246 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3247 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3248 			break;
3249 		cnt++;
3250 		/*
3251 		 * Verify some free journal space.  softdep_prealloc() should
3252 		 * guarantee that we don't run out so this is indicative of
3253 		 * a problem with the flow control.  Try to recover
3254 		 * gracefully in any event.
3255 		 */
3256 		while (jblocks->jb_free == 0) {
3257 			if (flags != MNT_WAIT)
3258 				break;
3259 			printf("softdep: Out of journal space!\n");
3260 			softdep_speedup();
3261 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3262 		}
3263 		FREE_LOCK(ump);
3264 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3265 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3266 		LIST_INIT(&jseg->js_entries);
3267 		LIST_INIT(&jseg->js_indirs);
3268 		jseg->js_state = ATTACHED;
3269 		if (shouldflush == 0)
3270 			jseg->js_state |= COMPLETE;
3271 		else if (bio == NULL)
3272 			bio = g_alloc_bio();
3273 		jseg->js_jblocks = jblocks;
3274 		bp = geteblk(fs->fs_bsize, 0);
3275 		ACQUIRE_LOCK(ump);
3276 		/*
3277 		 * If there was a race while we were allocating the block
3278 		 * and jseg the entry we care about was likely written.
3279 		 * We bail out in both the WAIT and NOWAIT case and assume
3280 		 * the caller will loop if the entry it cares about is
3281 		 * not written.
3282 		 */
3283 		cnt = ump->softdep_on_journal;
3284 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3285 			bp->b_flags |= B_INVAL | B_NOCACHE;
3286 			WORKITEM_FREE(jseg, D_JSEG);
3287 			FREE_LOCK(ump);
3288 			brelse(bp);
3289 			ACQUIRE_LOCK(ump);
3290 			break;
3291 		}
3292 		/*
3293 		 * Calculate the disk block size required for the available
3294 		 * records rounded to the min size.
3295 		 */
3296 		if (cnt == 0)
3297 			size = devbsize;
3298 		else if (cnt < jrecmax)
3299 			size = howmany(cnt, jrecmin) * devbsize;
3300 		else
3301 			size = fs->fs_bsize;
3302 		/*
3303 		 * Allocate a disk block for this journal data and account
3304 		 * for truncation of the requested size if enough contiguous
3305 		 * space was not available.
3306 		 */
3307 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3308 		bp->b_lblkno = bp->b_blkno;
3309 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3310 		bp->b_bcount = size;
3311 		bp->b_flags &= ~B_INVAL;
3312 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3313 		/*
3314 		 * Initialize our jseg with cnt records.  Assign the next
3315 		 * sequence number to it and link it in-order.
3316 		 */
3317 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3318 		jseg->js_buf = bp;
3319 		jseg->js_cnt = cnt;
3320 		jseg->js_refs = cnt + 1;	/* Self ref. */
3321 		jseg->js_size = size;
3322 		jseg->js_seq = jblocks->jb_nextseq++;
3323 		if (jblocks->jb_oldestseg == NULL)
3324 			jblocks->jb_oldestseg = jseg;
3325 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3326 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3327 		if (jblocks->jb_writeseg == NULL)
3328 			jblocks->jb_writeseg = jseg;
3329 		/*
3330 		 * Start filling in records from the pending list.
3331 		 */
3332 		data = bp->b_data;
3333 		off = 0;
3334 
3335 		/*
3336 		 * Always put a header on the first block.
3337 		 * XXX As with below, there might not be a chance to get
3338 		 * into the loop.  Ensure that something valid is written.
3339 		 */
3340 		jseg_write(ump, jseg, data);
3341 		off += JREC_SIZE;
3342 		data = bp->b_data + off;
3343 
3344 		/*
3345 		 * XXX Something is wrong here.  There's no work to do,
3346 		 * but we need to perform and I/O and allow it to complete
3347 		 * anyways.
3348 		 */
3349 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3350 			stat_emptyjblocks++;
3351 
3352 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3353 		    != NULL) {
3354 			if (cnt == 0)
3355 				break;
3356 			/* Place a segment header on every device block. */
3357 			if ((off % devbsize) == 0) {
3358 				jseg_write(ump, jseg, data);
3359 				off += JREC_SIZE;
3360 				data = bp->b_data + off;
3361 			}
3362 			if (wk == needwk)
3363 				needwk = NULL;
3364 			remove_from_journal(wk);
3365 			wk->wk_state |= INPROGRESS;
3366 			WORKLIST_INSERT(&jseg->js_entries, wk);
3367 			switch (wk->wk_type) {
3368 			case D_JADDREF:
3369 				jaddref_write(WK_JADDREF(wk), jseg, data);
3370 				break;
3371 			case D_JREMREF:
3372 				jremref_write(WK_JREMREF(wk), jseg, data);
3373 				break;
3374 			case D_JMVREF:
3375 				jmvref_write(WK_JMVREF(wk), jseg, data);
3376 				break;
3377 			case D_JNEWBLK:
3378 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3379 				break;
3380 			case D_JFREEBLK:
3381 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3382 				break;
3383 			case D_JFREEFRAG:
3384 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3385 				break;
3386 			case D_JTRUNC:
3387 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3388 				break;
3389 			case D_JFSYNC:
3390 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3391 				break;
3392 			default:
3393 				panic("process_journal: Unknown type %s",
3394 				    TYPENAME(wk->wk_type));
3395 				/* NOTREACHED */
3396 			}
3397 			off += JREC_SIZE;
3398 			data = bp->b_data + off;
3399 			cnt--;
3400 		}
3401 
3402 		/* Clear any remaining space so we don't leak kernel data */
3403 		if (size > off)
3404 			bzero(data, size - off);
3405 
3406 		/*
3407 		 * Write this one buffer and continue.
3408 		 */
3409 		segwritten = 1;
3410 		jblocks->jb_needseg = 0;
3411 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3412 		FREE_LOCK(ump);
3413 		pbgetvp(ump->um_devvp, bp);
3414 		/*
3415 		 * We only do the blocking wait once we find the journal
3416 		 * entry we're looking for.
3417 		 */
3418 		if (needwk == NULL && flags == MNT_WAIT)
3419 			bwrite(bp);
3420 		else
3421 			bawrite(bp);
3422 		ACQUIRE_LOCK(ump);
3423 	}
3424 	/*
3425 	 * If we wrote a segment issue a synchronize cache so the journal
3426 	 * is reflected on disk before the data is written.  Since reclaiming
3427 	 * journal space also requires writing a journal record this
3428 	 * process also enforces a barrier before reclamation.
3429 	 */
3430 	if (segwritten && shouldflush) {
3431 		softdep_synchronize(bio, ump,
3432 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3433 	} else if (bio)
3434 		g_destroy_bio(bio);
3435 	/*
3436 	 * If we've suspended the filesystem because we ran out of journal
3437 	 * space either try to sync it here to make some progress or
3438 	 * unsuspend it if we already have.
3439 	 */
3440 	if (flags == 0 && jblocks->jb_suspended) {
3441 		if (journal_unsuspend(ump))
3442 			return;
3443 		FREE_LOCK(ump);
3444 		VFS_SYNC(mp, MNT_NOWAIT);
3445 		ffs_sbupdate(ump, MNT_WAIT, 0);
3446 		ACQUIRE_LOCK(ump);
3447 	}
3448 }
3449 
3450 /*
3451  * Complete a jseg, allowing all dependencies awaiting journal writes
3452  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3453  * structures so that the journal segment can be freed to reclaim space.
3454  */
3455 static void
3456 complete_jseg(jseg)
3457 	struct jseg *jseg;
3458 {
3459 	struct worklist *wk;
3460 	struct jmvref *jmvref;
3461 	int waiting;
3462 #ifdef INVARIANTS
3463 	int i = 0;
3464 #endif
3465 
3466 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3467 		WORKLIST_REMOVE(wk);
3468 		waiting = wk->wk_state & IOWAITING;
3469 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3470 		wk->wk_state |= COMPLETE;
3471 		KASSERT(i++ < jseg->js_cnt,
3472 		    ("handle_written_jseg: overflow %d >= %d",
3473 		    i - 1, jseg->js_cnt));
3474 		switch (wk->wk_type) {
3475 		case D_JADDREF:
3476 			handle_written_jaddref(WK_JADDREF(wk));
3477 			break;
3478 		case D_JREMREF:
3479 			handle_written_jremref(WK_JREMREF(wk));
3480 			break;
3481 		case D_JMVREF:
3482 			rele_jseg(jseg);	/* No jsegdep. */
3483 			jmvref = WK_JMVREF(wk);
3484 			LIST_REMOVE(jmvref, jm_deps);
3485 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3486 				free_pagedep(jmvref->jm_pagedep);
3487 			WORKITEM_FREE(jmvref, D_JMVREF);
3488 			break;
3489 		case D_JNEWBLK:
3490 			handle_written_jnewblk(WK_JNEWBLK(wk));
3491 			break;
3492 		case D_JFREEBLK:
3493 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3494 			break;
3495 		case D_JTRUNC:
3496 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3497 			break;
3498 		case D_JFSYNC:
3499 			rele_jseg(jseg);	/* No jsegdep. */
3500 			WORKITEM_FREE(wk, D_JFSYNC);
3501 			break;
3502 		case D_JFREEFRAG:
3503 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3504 			break;
3505 		default:
3506 			panic("handle_written_jseg: Unknown type %s",
3507 			    TYPENAME(wk->wk_type));
3508 			/* NOTREACHED */
3509 		}
3510 		if (waiting)
3511 			wakeup(wk);
3512 	}
3513 	/* Release the self reference so the structure may be freed. */
3514 	rele_jseg(jseg);
3515 }
3516 
3517 /*
3518  * Determine which jsegs are ready for completion processing.  Waits for
3519  * synchronize cache to complete as well as forcing in-order completion
3520  * of journal entries.
3521  */
3522 static void
3523 complete_jsegs(jseg)
3524 	struct jseg *jseg;
3525 {
3526 	struct jblocks *jblocks;
3527 	struct jseg *jsegn;
3528 
3529 	jblocks = jseg->js_jblocks;
3530 	/*
3531 	 * Don't allow out of order completions.  If this isn't the first
3532 	 * block wait for it to write before we're done.
3533 	 */
3534 	if (jseg != jblocks->jb_writeseg)
3535 		return;
3536 	/* Iterate through available jsegs processing their entries. */
3537 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3538 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3539 		jsegn = TAILQ_NEXT(jseg, js_next);
3540 		complete_jseg(jseg);
3541 		jseg = jsegn;
3542 	}
3543 	jblocks->jb_writeseg = jseg;
3544 	/*
3545 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3546 	 */
3547 	free_jsegs(jblocks);
3548 }
3549 
3550 /*
3551  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3552  * the final completions.
3553  */
3554 static void
3555 handle_written_jseg(jseg, bp)
3556 	struct jseg *jseg;
3557 	struct buf *bp;
3558 {
3559 
3560 	if (jseg->js_refs == 0)
3561 		panic("handle_written_jseg: No self-reference on %p", jseg);
3562 	jseg->js_state |= DEPCOMPLETE;
3563 	/*
3564 	 * We'll never need this buffer again, set flags so it will be
3565 	 * discarded.
3566 	 */
3567 	bp->b_flags |= B_INVAL | B_NOCACHE;
3568 	pbrelvp(bp);
3569 	complete_jsegs(jseg);
3570 }
3571 
3572 static inline struct jsegdep *
3573 inoref_jseg(inoref)
3574 	struct inoref *inoref;
3575 {
3576 	struct jsegdep *jsegdep;
3577 
3578 	jsegdep = inoref->if_jsegdep;
3579 	inoref->if_jsegdep = NULL;
3580 
3581 	return (jsegdep);
3582 }
3583 
3584 /*
3585  * Called once a jremref has made it to stable store.  The jremref is marked
3586  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3587  * for the jremref to complete will be awoken by free_jremref.
3588  */
3589 static void
3590 handle_written_jremref(jremref)
3591 	struct jremref *jremref;
3592 {
3593 	struct inodedep *inodedep;
3594 	struct jsegdep *jsegdep;
3595 	struct dirrem *dirrem;
3596 
3597 	/* Grab the jsegdep. */
3598 	jsegdep = inoref_jseg(&jremref->jr_ref);
3599 	/*
3600 	 * Remove us from the inoref list.
3601 	 */
3602 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3603 	    0, &inodedep) == 0)
3604 		panic("handle_written_jremref: Lost inodedep");
3605 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3606 	/*
3607 	 * Complete the dirrem.
3608 	 */
3609 	dirrem = jremref->jr_dirrem;
3610 	jremref->jr_dirrem = NULL;
3611 	LIST_REMOVE(jremref, jr_deps);
3612 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3613 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3614 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3615 	    (dirrem->dm_state & COMPLETE) != 0)
3616 		add_to_worklist(&dirrem->dm_list, 0);
3617 	free_jremref(jremref);
3618 }
3619 
3620 /*
3621  * Called once a jaddref has made it to stable store.  The dependency is
3622  * marked complete and any dependent structures are added to the inode
3623  * bufwait list to be completed as soon as it is written.  If a bitmap write
3624  * depends on this entry we move the inode into the inodedephd of the
3625  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3626  */
3627 static void
3628 handle_written_jaddref(jaddref)
3629 	struct jaddref *jaddref;
3630 {
3631 	struct jsegdep *jsegdep;
3632 	struct inodedep *inodedep;
3633 	struct diradd *diradd;
3634 	struct mkdir *mkdir;
3635 
3636 	/* Grab the jsegdep. */
3637 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3638 	mkdir = NULL;
3639 	diradd = NULL;
3640 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3641 	    0, &inodedep) == 0)
3642 		panic("handle_written_jaddref: Lost inodedep.");
3643 	if (jaddref->ja_diradd == NULL)
3644 		panic("handle_written_jaddref: No dependency");
3645 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3646 		diradd = jaddref->ja_diradd;
3647 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3648 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3649 		mkdir = jaddref->ja_mkdir;
3650 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3651 	} else if (jaddref->ja_state & MKDIR_BODY)
3652 		mkdir = jaddref->ja_mkdir;
3653 	else
3654 		panic("handle_written_jaddref: Unknown dependency %p",
3655 		    jaddref->ja_diradd);
3656 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3657 	/*
3658 	 * Remove us from the inode list.
3659 	 */
3660 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3661 	/*
3662 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3663 	 */
3664 	if (mkdir) {
3665 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3666 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3667 		    TYPENAME(mkdir->md_list.wk_type)));
3668 		mkdir->md_jaddref = NULL;
3669 		diradd = mkdir->md_diradd;
3670 		mkdir->md_state |= DEPCOMPLETE;
3671 		complete_mkdir(mkdir);
3672 	}
3673 	jwork_insert(&diradd->da_jwork, jsegdep);
3674 	if (jaddref->ja_state & NEWBLOCK) {
3675 		inodedep->id_state |= ONDEPLIST;
3676 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3677 		    inodedep, id_deps);
3678 	}
3679 	free_jaddref(jaddref);
3680 }
3681 
3682 /*
3683  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3684  * is placed in the bmsafemap to await notification of a written bitmap.  If
3685  * the operation was canceled we add the segdep to the appropriate
3686  * dependency to free the journal space once the canceling operation
3687  * completes.
3688  */
3689 static void
3690 handle_written_jnewblk(jnewblk)
3691 	struct jnewblk *jnewblk;
3692 {
3693 	struct bmsafemap *bmsafemap;
3694 	struct freefrag *freefrag;
3695 	struct freework *freework;
3696 	struct jsegdep *jsegdep;
3697 	struct newblk *newblk;
3698 
3699 	/* Grab the jsegdep. */
3700 	jsegdep = jnewblk->jn_jsegdep;
3701 	jnewblk->jn_jsegdep = NULL;
3702 	if (jnewblk->jn_dep == NULL)
3703 		panic("handle_written_jnewblk: No dependency for the segdep.");
3704 	switch (jnewblk->jn_dep->wk_type) {
3705 	case D_NEWBLK:
3706 	case D_ALLOCDIRECT:
3707 	case D_ALLOCINDIR:
3708 		/*
3709 		 * Add the written block to the bmsafemap so it can
3710 		 * be notified when the bitmap is on disk.
3711 		 */
3712 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3713 		newblk->nb_jnewblk = NULL;
3714 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3715 			bmsafemap = newblk->nb_bmsafemap;
3716 			newblk->nb_state |= ONDEPLIST;
3717 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3718 			    nb_deps);
3719 		}
3720 		jwork_insert(&newblk->nb_jwork, jsegdep);
3721 		break;
3722 	case D_FREEFRAG:
3723 		/*
3724 		 * A newblock being removed by a freefrag when replaced by
3725 		 * frag extension.
3726 		 */
3727 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3728 		freefrag->ff_jdep = NULL;
3729 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3730 		break;
3731 	case D_FREEWORK:
3732 		/*
3733 		 * A direct block was removed by truncate.
3734 		 */
3735 		freework = WK_FREEWORK(jnewblk->jn_dep);
3736 		freework->fw_jnewblk = NULL;
3737 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3738 		break;
3739 	default:
3740 		panic("handle_written_jnewblk: Unknown type %d.",
3741 		    jnewblk->jn_dep->wk_type);
3742 	}
3743 	jnewblk->jn_dep = NULL;
3744 	free_jnewblk(jnewblk);
3745 }
3746 
3747 /*
3748  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3749  * an in-flight allocation that has not yet been committed.  Divorce us
3750  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3751  * to the worklist.
3752  */
3753 static void
3754 cancel_jfreefrag(jfreefrag)
3755 	struct jfreefrag *jfreefrag;
3756 {
3757 	struct freefrag *freefrag;
3758 
3759 	if (jfreefrag->fr_jsegdep) {
3760 		free_jsegdep(jfreefrag->fr_jsegdep);
3761 		jfreefrag->fr_jsegdep = NULL;
3762 	}
3763 	freefrag = jfreefrag->fr_freefrag;
3764 	jfreefrag->fr_freefrag = NULL;
3765 	free_jfreefrag(jfreefrag);
3766 	freefrag->ff_state |= DEPCOMPLETE;
3767 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3768 }
3769 
3770 /*
3771  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3772  */
3773 static void
3774 free_jfreefrag(jfreefrag)
3775 	struct jfreefrag *jfreefrag;
3776 {
3777 
3778 	if (jfreefrag->fr_state & INPROGRESS)
3779 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3780 	else if (jfreefrag->fr_state & ONWORKLIST)
3781 		remove_from_journal(&jfreefrag->fr_list);
3782 	if (jfreefrag->fr_freefrag != NULL)
3783 		panic("free_jfreefrag:  Still attached to a freefrag.");
3784 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3785 }
3786 
3787 /*
3788  * Called when the journal write for a jfreefrag completes.  The parent
3789  * freefrag is added to the worklist if this completes its dependencies.
3790  */
3791 static void
3792 handle_written_jfreefrag(jfreefrag)
3793 	struct jfreefrag *jfreefrag;
3794 {
3795 	struct jsegdep *jsegdep;
3796 	struct freefrag *freefrag;
3797 
3798 	/* Grab the jsegdep. */
3799 	jsegdep = jfreefrag->fr_jsegdep;
3800 	jfreefrag->fr_jsegdep = NULL;
3801 	freefrag = jfreefrag->fr_freefrag;
3802 	if (freefrag == NULL)
3803 		panic("handle_written_jfreefrag: No freefrag.");
3804 	freefrag->ff_state |= DEPCOMPLETE;
3805 	freefrag->ff_jdep = NULL;
3806 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3807 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3808 		add_to_worklist(&freefrag->ff_list, 0);
3809 	jfreefrag->fr_freefrag = NULL;
3810 	free_jfreefrag(jfreefrag);
3811 }
3812 
3813 /*
3814  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3815  * is removed from the freeblks list of pending journal writes and the
3816  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3817  * have been reclaimed.
3818  */
3819 static void
3820 handle_written_jblkdep(jblkdep)
3821 	struct jblkdep *jblkdep;
3822 {
3823 	struct freeblks *freeblks;
3824 	struct jsegdep *jsegdep;
3825 
3826 	/* Grab the jsegdep. */
3827 	jsegdep = jblkdep->jb_jsegdep;
3828 	jblkdep->jb_jsegdep = NULL;
3829 	freeblks = jblkdep->jb_freeblks;
3830 	LIST_REMOVE(jblkdep, jb_deps);
3831 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3832 	/*
3833 	 * If the freeblks is all journaled, we can add it to the worklist.
3834 	 */
3835 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3836 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3837 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3838 
3839 	free_jblkdep(jblkdep);
3840 }
3841 
3842 static struct jsegdep *
3843 newjsegdep(struct worklist *wk)
3844 {
3845 	struct jsegdep *jsegdep;
3846 
3847 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3848 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3849 	jsegdep->jd_seg = NULL;
3850 
3851 	return (jsegdep);
3852 }
3853 
3854 static struct jmvref *
3855 newjmvref(dp, ino, oldoff, newoff)
3856 	struct inode *dp;
3857 	ino_t ino;
3858 	off_t oldoff;
3859 	off_t newoff;
3860 {
3861 	struct jmvref *jmvref;
3862 
3863 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3864 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3865 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3866 	jmvref->jm_parent = dp->i_number;
3867 	jmvref->jm_ino = ino;
3868 	jmvref->jm_oldoff = oldoff;
3869 	jmvref->jm_newoff = newoff;
3870 
3871 	return (jmvref);
3872 }
3873 
3874 /*
3875  * Allocate a new jremref that tracks the removal of ip from dp with the
3876  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3877  * DEPCOMPLETE as we have all the information required for the journal write
3878  * and the directory has already been removed from the buffer.  The caller
3879  * is responsible for linking the jremref into the pagedep and adding it
3880  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3881  * a DOTDOT addition so handle_workitem_remove() can properly assign
3882  * the jsegdep when we're done.
3883  */
3884 static struct jremref *
3885 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3886     off_t diroff, nlink_t nlink)
3887 {
3888 	struct jremref *jremref;
3889 
3890 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3891 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3892 	jremref->jr_state = ATTACHED;
3893 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3894 	   nlink, ip->i_mode);
3895 	jremref->jr_dirrem = dirrem;
3896 
3897 	return (jremref);
3898 }
3899 
3900 static inline void
3901 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3902     nlink_t nlink, uint16_t mode)
3903 {
3904 
3905 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3906 	inoref->if_diroff = diroff;
3907 	inoref->if_ino = ino;
3908 	inoref->if_parent = parent;
3909 	inoref->if_nlink = nlink;
3910 	inoref->if_mode = mode;
3911 }
3912 
3913 /*
3914  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3915  * directory offset may not be known until later.  The caller is responsible
3916  * adding the entry to the journal when this information is available.  nlink
3917  * should be the link count prior to the addition and mode is only required
3918  * to have the correct FMT.
3919  */
3920 static struct jaddref *
3921 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3922     uint16_t mode)
3923 {
3924 	struct jaddref *jaddref;
3925 
3926 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3927 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3928 	jaddref->ja_state = ATTACHED;
3929 	jaddref->ja_mkdir = NULL;
3930 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3931 
3932 	return (jaddref);
3933 }
3934 
3935 /*
3936  * Create a new free dependency for a freework.  The caller is responsible
3937  * for adjusting the reference count when it has the lock held.  The freedep
3938  * will track an outstanding bitmap write that will ultimately clear the
3939  * freework to continue.
3940  */
3941 static struct freedep *
3942 newfreedep(struct freework *freework)
3943 {
3944 	struct freedep *freedep;
3945 
3946 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3947 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3948 	freedep->fd_freework = freework;
3949 
3950 	return (freedep);
3951 }
3952 
3953 /*
3954  * Free a freedep structure once the buffer it is linked to is written.  If
3955  * this is the last reference to the freework schedule it for completion.
3956  */
3957 static void
3958 free_freedep(freedep)
3959 	struct freedep *freedep;
3960 {
3961 	struct freework *freework;
3962 
3963 	freework = freedep->fd_freework;
3964 	freework->fw_freeblks->fb_cgwait--;
3965 	if (--freework->fw_ref == 0)
3966 		freework_enqueue(freework);
3967 	WORKITEM_FREE(freedep, D_FREEDEP);
3968 }
3969 
3970 /*
3971  * Allocate a new freework structure that may be a level in an indirect
3972  * when parent is not NULL or a top level block when it is.  The top level
3973  * freework structures are allocated without the soft updates lock held
3974  * and before the freeblks is visible outside of softdep_setup_freeblocks().
3975  */
3976 static struct freework *
3977 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3978 	struct ufsmount *ump;
3979 	struct freeblks *freeblks;
3980 	struct freework *parent;
3981 	ufs_lbn_t lbn;
3982 	ufs2_daddr_t nb;
3983 	int frags;
3984 	int off;
3985 	int journal;
3986 {
3987 	struct freework *freework;
3988 
3989 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3990 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3991 	freework->fw_state = ATTACHED;
3992 	freework->fw_jnewblk = NULL;
3993 	freework->fw_freeblks = freeblks;
3994 	freework->fw_parent = parent;
3995 	freework->fw_lbn = lbn;
3996 	freework->fw_blkno = nb;
3997 	freework->fw_frags = frags;
3998 	freework->fw_indir = NULL;
3999 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4000 		? 0 : NINDIR(ump->um_fs) + 1;
4001 	freework->fw_start = freework->fw_off = off;
4002 	if (journal)
4003 		newjfreeblk(freeblks, lbn, nb, frags);
4004 	if (parent == NULL) {
4005 		ACQUIRE_LOCK(ump);
4006 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4007 		freeblks->fb_ref++;
4008 		FREE_LOCK(ump);
4009 	}
4010 
4011 	return (freework);
4012 }
4013 
4014 /*
4015  * Eliminate a jfreeblk for a block that does not need journaling.
4016  */
4017 static void
4018 cancel_jfreeblk(freeblks, blkno)
4019 	struct freeblks *freeblks;
4020 	ufs2_daddr_t blkno;
4021 {
4022 	struct jfreeblk *jfreeblk;
4023 	struct jblkdep *jblkdep;
4024 
4025 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4026 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4027 			continue;
4028 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4029 		if (jfreeblk->jf_blkno == blkno)
4030 			break;
4031 	}
4032 	if (jblkdep == NULL)
4033 		return;
4034 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4035 	free_jsegdep(jblkdep->jb_jsegdep);
4036 	LIST_REMOVE(jblkdep, jb_deps);
4037 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4038 }
4039 
4040 /*
4041  * Allocate a new jfreeblk to journal top level block pointer when truncating
4042  * a file.  The caller must add this to the worklist when the soft updates
4043  * lock is held.
4044  */
4045 static struct jfreeblk *
4046 newjfreeblk(freeblks, lbn, blkno, frags)
4047 	struct freeblks *freeblks;
4048 	ufs_lbn_t lbn;
4049 	ufs2_daddr_t blkno;
4050 	int frags;
4051 {
4052 	struct jfreeblk *jfreeblk;
4053 
4054 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4055 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4056 	    freeblks->fb_list.wk_mp);
4057 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4058 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4059 	jfreeblk->jf_ino = freeblks->fb_inum;
4060 	jfreeblk->jf_lbn = lbn;
4061 	jfreeblk->jf_blkno = blkno;
4062 	jfreeblk->jf_frags = frags;
4063 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4064 
4065 	return (jfreeblk);
4066 }
4067 
4068 /*
4069  * Allocate a new jtrunc to track a partial truncation.
4070  */
4071 static struct jtrunc *
4072 newjtrunc(freeblks, size, extsize)
4073 	struct freeblks *freeblks;
4074 	off_t size;
4075 	int extsize;
4076 {
4077 	struct jtrunc *jtrunc;
4078 
4079 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4080 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4081 	    freeblks->fb_list.wk_mp);
4082 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4083 	jtrunc->jt_dep.jb_freeblks = freeblks;
4084 	jtrunc->jt_ino = freeblks->fb_inum;
4085 	jtrunc->jt_size = size;
4086 	jtrunc->jt_extsize = extsize;
4087 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4088 
4089 	return (jtrunc);
4090 }
4091 
4092 /*
4093  * If we're canceling a new bitmap we have to search for another ref
4094  * to move into the bmsafemap dep.  This might be better expressed
4095  * with another structure.
4096  */
4097 static void
4098 move_newblock_dep(jaddref, inodedep)
4099 	struct jaddref *jaddref;
4100 	struct inodedep *inodedep;
4101 {
4102 	struct inoref *inoref;
4103 	struct jaddref *jaddrefn;
4104 
4105 	jaddrefn = NULL;
4106 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4107 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4108 		if ((jaddref->ja_state & NEWBLOCK) &&
4109 		    inoref->if_list.wk_type == D_JADDREF) {
4110 			jaddrefn = (struct jaddref *)inoref;
4111 			break;
4112 		}
4113 	}
4114 	if (jaddrefn == NULL)
4115 		return;
4116 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4117 	jaddrefn->ja_state |= jaddref->ja_state &
4118 	    (ATTACHED | UNDONE | NEWBLOCK);
4119 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4120 	jaddref->ja_state |= ATTACHED;
4121 	LIST_REMOVE(jaddref, ja_bmdeps);
4122 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4123 	    ja_bmdeps);
4124 }
4125 
4126 /*
4127  * Cancel a jaddref either before it has been written or while it is being
4128  * written.  This happens when a link is removed before the add reaches
4129  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4130  * and inode to prevent the link count or bitmap from reaching the disk
4131  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4132  * required.
4133  *
4134  * Returns 1 if the canceled addref requires journaling of the remove and
4135  * 0 otherwise.
4136  */
4137 static int
4138 cancel_jaddref(jaddref, inodedep, wkhd)
4139 	struct jaddref *jaddref;
4140 	struct inodedep *inodedep;
4141 	struct workhead *wkhd;
4142 {
4143 	struct inoref *inoref;
4144 	struct jsegdep *jsegdep;
4145 	int needsj;
4146 
4147 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4148 	    ("cancel_jaddref: Canceling complete jaddref"));
4149 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4150 		needsj = 1;
4151 	else
4152 		needsj = 0;
4153 	if (inodedep == NULL)
4154 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4155 		    0, &inodedep) == 0)
4156 			panic("cancel_jaddref: Lost inodedep");
4157 	/*
4158 	 * We must adjust the nlink of any reference operation that follows
4159 	 * us so that it is consistent with the in-memory reference.  This
4160 	 * ensures that inode nlink rollbacks always have the correct link.
4161 	 */
4162 	if (needsj == 0) {
4163 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4164 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4165 			if (inoref->if_state & GOINGAWAY)
4166 				break;
4167 			inoref->if_nlink--;
4168 		}
4169 	}
4170 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4171 	if (jaddref->ja_state & NEWBLOCK)
4172 		move_newblock_dep(jaddref, inodedep);
4173 	wake_worklist(&jaddref->ja_list);
4174 	jaddref->ja_mkdir = NULL;
4175 	if (jaddref->ja_state & INPROGRESS) {
4176 		jaddref->ja_state &= ~INPROGRESS;
4177 		WORKLIST_REMOVE(&jaddref->ja_list);
4178 		jwork_insert(wkhd, jsegdep);
4179 	} else {
4180 		free_jsegdep(jsegdep);
4181 		if (jaddref->ja_state & DEPCOMPLETE)
4182 			remove_from_journal(&jaddref->ja_list);
4183 	}
4184 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4185 	/*
4186 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4187 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4188 	 * no longer need this addref attached to the inoreflst and it
4189 	 * will incorrectly adjust nlink if we leave it.
4190 	 */
4191 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4192 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4193 		    if_deps);
4194 		jaddref->ja_state |= COMPLETE;
4195 		free_jaddref(jaddref);
4196 		return (needsj);
4197 	}
4198 	/*
4199 	 * Leave the head of the list for jsegdeps for fast merging.
4200 	 */
4201 	if (LIST_FIRST(wkhd) != NULL) {
4202 		jaddref->ja_state |= ONWORKLIST;
4203 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4204 	} else
4205 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4206 
4207 	return (needsj);
4208 }
4209 
4210 /*
4211  * Attempt to free a jaddref structure when some work completes.  This
4212  * should only succeed once the entry is written and all dependencies have
4213  * been notified.
4214  */
4215 static void
4216 free_jaddref(jaddref)
4217 	struct jaddref *jaddref;
4218 {
4219 
4220 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4221 		return;
4222 	if (jaddref->ja_ref.if_jsegdep)
4223 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4224 		    jaddref, jaddref->ja_state);
4225 	if (jaddref->ja_state & NEWBLOCK)
4226 		LIST_REMOVE(jaddref, ja_bmdeps);
4227 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4228 		panic("free_jaddref: Bad state %p(0x%X)",
4229 		    jaddref, jaddref->ja_state);
4230 	if (jaddref->ja_mkdir != NULL)
4231 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4232 	WORKITEM_FREE(jaddref, D_JADDREF);
4233 }
4234 
4235 /*
4236  * Free a jremref structure once it has been written or discarded.
4237  */
4238 static void
4239 free_jremref(jremref)
4240 	struct jremref *jremref;
4241 {
4242 
4243 	if (jremref->jr_ref.if_jsegdep)
4244 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4245 	if (jremref->jr_state & INPROGRESS)
4246 		panic("free_jremref: IO still pending");
4247 	WORKITEM_FREE(jremref, D_JREMREF);
4248 }
4249 
4250 /*
4251  * Free a jnewblk structure.
4252  */
4253 static void
4254 free_jnewblk(jnewblk)
4255 	struct jnewblk *jnewblk;
4256 {
4257 
4258 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4259 		return;
4260 	LIST_REMOVE(jnewblk, jn_deps);
4261 	if (jnewblk->jn_dep != NULL)
4262 		panic("free_jnewblk: Dependency still attached.");
4263 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4264 }
4265 
4266 /*
4267  * Cancel a jnewblk which has been been made redundant by frag extension.
4268  */
4269 static void
4270 cancel_jnewblk(jnewblk, wkhd)
4271 	struct jnewblk *jnewblk;
4272 	struct workhead *wkhd;
4273 {
4274 	struct jsegdep *jsegdep;
4275 
4276 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4277 	jsegdep = jnewblk->jn_jsegdep;
4278 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4279 		panic("cancel_jnewblk: Invalid state");
4280 	jnewblk->jn_jsegdep  = NULL;
4281 	jnewblk->jn_dep = NULL;
4282 	jnewblk->jn_state |= GOINGAWAY;
4283 	if (jnewblk->jn_state & INPROGRESS) {
4284 		jnewblk->jn_state &= ~INPROGRESS;
4285 		WORKLIST_REMOVE(&jnewblk->jn_list);
4286 		jwork_insert(wkhd, jsegdep);
4287 	} else {
4288 		free_jsegdep(jsegdep);
4289 		remove_from_journal(&jnewblk->jn_list);
4290 	}
4291 	wake_worklist(&jnewblk->jn_list);
4292 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4293 }
4294 
4295 static void
4296 free_jblkdep(jblkdep)
4297 	struct jblkdep *jblkdep;
4298 {
4299 
4300 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4301 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4302 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4303 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4304 	else
4305 		panic("free_jblkdep: Unexpected type %s",
4306 		    TYPENAME(jblkdep->jb_list.wk_type));
4307 }
4308 
4309 /*
4310  * Free a single jseg once it is no longer referenced in memory or on
4311  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4312  * to disappear.
4313  */
4314 static void
4315 free_jseg(jseg, jblocks)
4316 	struct jseg *jseg;
4317 	struct jblocks *jblocks;
4318 {
4319 	struct freework *freework;
4320 
4321 	/*
4322 	 * Free freework structures that were lingering to indicate freed
4323 	 * indirect blocks that forced journal write ordering on reallocate.
4324 	 */
4325 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4326 		indirblk_remove(freework);
4327 	if (jblocks->jb_oldestseg == jseg)
4328 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4329 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4330 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4331 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4332 	    ("free_jseg: Freed jseg has valid entries."));
4333 	WORKITEM_FREE(jseg, D_JSEG);
4334 }
4335 
4336 /*
4337  * Free all jsegs that meet the criteria for being reclaimed and update
4338  * oldestseg.
4339  */
4340 static void
4341 free_jsegs(jblocks)
4342 	struct jblocks *jblocks;
4343 {
4344 	struct jseg *jseg;
4345 
4346 	/*
4347 	 * Free only those jsegs which have none allocated before them to
4348 	 * preserve the journal space ordering.
4349 	 */
4350 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4351 		/*
4352 		 * Only reclaim space when nothing depends on this journal
4353 		 * set and another set has written that it is no longer
4354 		 * valid.
4355 		 */
4356 		if (jseg->js_refs != 0) {
4357 			jblocks->jb_oldestseg = jseg;
4358 			return;
4359 		}
4360 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4361 			break;
4362 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4363 			break;
4364 		/*
4365 		 * We can free jsegs that didn't write entries when
4366 		 * oldestwrseq == js_seq.
4367 		 */
4368 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4369 		    jseg->js_cnt != 0)
4370 			break;
4371 		free_jseg(jseg, jblocks);
4372 	}
4373 	/*
4374 	 * If we exited the loop above we still must discover the
4375 	 * oldest valid segment.
4376 	 */
4377 	if (jseg)
4378 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4379 		     jseg = TAILQ_NEXT(jseg, js_next))
4380 			if (jseg->js_refs != 0)
4381 				break;
4382 	jblocks->jb_oldestseg = jseg;
4383 	/*
4384 	 * The journal has no valid records but some jsegs may still be
4385 	 * waiting on oldestwrseq to advance.  We force a small record
4386 	 * out to permit these lingering records to be reclaimed.
4387 	 */
4388 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4389 		jblocks->jb_needseg = 1;
4390 }
4391 
4392 /*
4393  * Release one reference to a jseg and free it if the count reaches 0.  This
4394  * should eventually reclaim journal space as well.
4395  */
4396 static void
4397 rele_jseg(jseg)
4398 	struct jseg *jseg;
4399 {
4400 
4401 	KASSERT(jseg->js_refs > 0,
4402 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4403 	if (--jseg->js_refs != 0)
4404 		return;
4405 	free_jsegs(jseg->js_jblocks);
4406 }
4407 
4408 /*
4409  * Release a jsegdep and decrement the jseg count.
4410  */
4411 static void
4412 free_jsegdep(jsegdep)
4413 	struct jsegdep *jsegdep;
4414 {
4415 
4416 	if (jsegdep->jd_seg)
4417 		rele_jseg(jsegdep->jd_seg);
4418 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4419 }
4420 
4421 /*
4422  * Wait for a journal item to make it to disk.  Initiate journal processing
4423  * if required.
4424  */
4425 static int
4426 jwait(wk, waitfor)
4427 	struct worklist *wk;
4428 	int waitfor;
4429 {
4430 
4431 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4432 	/*
4433 	 * Blocking journal waits cause slow synchronous behavior.  Record
4434 	 * stats on the frequency of these blocking operations.
4435 	 */
4436 	if (waitfor == MNT_WAIT) {
4437 		stat_journal_wait++;
4438 		switch (wk->wk_type) {
4439 		case D_JREMREF:
4440 		case D_JMVREF:
4441 			stat_jwait_filepage++;
4442 			break;
4443 		case D_JTRUNC:
4444 		case D_JFREEBLK:
4445 			stat_jwait_freeblks++;
4446 			break;
4447 		case D_JNEWBLK:
4448 			stat_jwait_newblk++;
4449 			break;
4450 		case D_JADDREF:
4451 			stat_jwait_inode++;
4452 			break;
4453 		default:
4454 			break;
4455 		}
4456 	}
4457 	/*
4458 	 * If IO has not started we process the journal.  We can't mark the
4459 	 * worklist item as IOWAITING because we drop the lock while
4460 	 * processing the journal and the worklist entry may be freed after
4461 	 * this point.  The caller may call back in and re-issue the request.
4462 	 */
4463 	if ((wk->wk_state & INPROGRESS) == 0) {
4464 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4465 		if (waitfor != MNT_WAIT)
4466 			return (EBUSY);
4467 		return (0);
4468 	}
4469 	if (waitfor != MNT_WAIT)
4470 		return (EBUSY);
4471 	wait_worklist(wk, "jwait");
4472 	return (0);
4473 }
4474 
4475 /*
4476  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4477  * appropriate.  This is a convenience function to reduce duplicate code
4478  * for the setup and revert functions below.
4479  */
4480 static struct inodedep *
4481 inodedep_lookup_ip(ip)
4482 	struct inode *ip;
4483 {
4484 	struct inodedep *inodedep;
4485 	int dflags;
4486 
4487 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4488 	    ("inodedep_lookup_ip: bad delta"));
4489 	dflags = DEPALLOC;
4490 	if (IS_SNAPSHOT(ip))
4491 		dflags |= NODELAY;
4492 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4493 	    &inodedep);
4494 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4495 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4496 
4497 	return (inodedep);
4498 }
4499 
4500 /*
4501  * Called prior to creating a new inode and linking it to a directory.  The
4502  * jaddref structure must already be allocated by softdep_setup_inomapdep
4503  * and it is discovered here so we can initialize the mode and update
4504  * nlinkdelta.
4505  */
4506 void
4507 softdep_setup_create(dp, ip)
4508 	struct inode *dp;
4509 	struct inode *ip;
4510 {
4511 	struct inodedep *inodedep;
4512 	struct jaddref *jaddref;
4513 	struct vnode *dvp;
4514 
4515 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4516 	    ("softdep_setup_create called on non-softdep filesystem"));
4517 	KASSERT(ip->i_nlink == 1,
4518 	    ("softdep_setup_create: Invalid link count."));
4519 	dvp = ITOV(dp);
4520 	ACQUIRE_LOCK(dp->i_ump);
4521 	inodedep = inodedep_lookup_ip(ip);
4522 	if (DOINGSUJ(dvp)) {
4523 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4524 		    inoreflst);
4525 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4526 		    ("softdep_setup_create: No addref structure present."));
4527 	}
4528 	softdep_prelink(dvp, NULL);
4529 	FREE_LOCK(dp->i_ump);
4530 }
4531 
4532 /*
4533  * Create a jaddref structure to track the addition of a DOTDOT link when
4534  * we are reparenting an inode as part of a rename.  This jaddref will be
4535  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4536  * non-journaling softdep.
4537  */
4538 void
4539 softdep_setup_dotdot_link(dp, ip)
4540 	struct inode *dp;
4541 	struct inode *ip;
4542 {
4543 	struct inodedep *inodedep;
4544 	struct jaddref *jaddref;
4545 	struct vnode *dvp;
4546 	struct vnode *vp;
4547 
4548 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4549 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4550 	dvp = ITOV(dp);
4551 	vp = ITOV(ip);
4552 	jaddref = NULL;
4553 	/*
4554 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4555 	 * is used as a normal link would be.
4556 	 */
4557 	if (DOINGSUJ(dvp))
4558 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4559 		    dp->i_effnlink - 1, dp->i_mode);
4560 	ACQUIRE_LOCK(dp->i_ump);
4561 	inodedep = inodedep_lookup_ip(dp);
4562 	if (jaddref)
4563 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4564 		    if_deps);
4565 	softdep_prelink(dvp, ITOV(ip));
4566 	FREE_LOCK(dp->i_ump);
4567 }
4568 
4569 /*
4570  * Create a jaddref structure to track a new link to an inode.  The directory
4571  * offset is not known until softdep_setup_directory_add or
4572  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4573  * softdep.
4574  */
4575 void
4576 softdep_setup_link(dp, ip)
4577 	struct inode *dp;
4578 	struct inode *ip;
4579 {
4580 	struct inodedep *inodedep;
4581 	struct jaddref *jaddref;
4582 	struct vnode *dvp;
4583 
4584 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4585 	    ("softdep_setup_link called on non-softdep filesystem"));
4586 	dvp = ITOV(dp);
4587 	jaddref = NULL;
4588 	if (DOINGSUJ(dvp))
4589 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4590 		    ip->i_mode);
4591 	ACQUIRE_LOCK(dp->i_ump);
4592 	inodedep = inodedep_lookup_ip(ip);
4593 	if (jaddref)
4594 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4595 		    if_deps);
4596 	softdep_prelink(dvp, ITOV(ip));
4597 	FREE_LOCK(dp->i_ump);
4598 }
4599 
4600 /*
4601  * Called to create the jaddref structures to track . and .. references as
4602  * well as lookup and further initialize the incomplete jaddref created
4603  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4604  * nlinkdelta for non-journaling softdep.
4605  */
4606 void
4607 softdep_setup_mkdir(dp, ip)
4608 	struct inode *dp;
4609 	struct inode *ip;
4610 {
4611 	struct inodedep *inodedep;
4612 	struct jaddref *dotdotaddref;
4613 	struct jaddref *dotaddref;
4614 	struct jaddref *jaddref;
4615 	struct vnode *dvp;
4616 
4617 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4618 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4619 	dvp = ITOV(dp);
4620 	dotaddref = dotdotaddref = NULL;
4621 	if (DOINGSUJ(dvp)) {
4622 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4623 		    ip->i_mode);
4624 		dotaddref->ja_state |= MKDIR_BODY;
4625 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4626 		    dp->i_effnlink - 1, dp->i_mode);
4627 		dotdotaddref->ja_state |= MKDIR_PARENT;
4628 	}
4629 	ACQUIRE_LOCK(dp->i_ump);
4630 	inodedep = inodedep_lookup_ip(ip);
4631 	if (DOINGSUJ(dvp)) {
4632 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4633 		    inoreflst);
4634 		KASSERT(jaddref != NULL,
4635 		    ("softdep_setup_mkdir: No addref structure present."));
4636 		KASSERT(jaddref->ja_parent == dp->i_number,
4637 		    ("softdep_setup_mkdir: bad parent %ju",
4638 		    (uintmax_t)jaddref->ja_parent));
4639 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4640 		    if_deps);
4641 	}
4642 	inodedep = inodedep_lookup_ip(dp);
4643 	if (DOINGSUJ(dvp))
4644 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4645 		    &dotdotaddref->ja_ref, if_deps);
4646 	softdep_prelink(ITOV(dp), NULL);
4647 	FREE_LOCK(dp->i_ump);
4648 }
4649 
4650 /*
4651  * Called to track nlinkdelta of the inode and parent directories prior to
4652  * unlinking a directory.
4653  */
4654 void
4655 softdep_setup_rmdir(dp, ip)
4656 	struct inode *dp;
4657 	struct inode *ip;
4658 {
4659 	struct vnode *dvp;
4660 
4661 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4662 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4663 	dvp = ITOV(dp);
4664 	ACQUIRE_LOCK(dp->i_ump);
4665 	(void) inodedep_lookup_ip(ip);
4666 	(void) inodedep_lookup_ip(dp);
4667 	softdep_prelink(dvp, ITOV(ip));
4668 	FREE_LOCK(dp->i_ump);
4669 }
4670 
4671 /*
4672  * Called to track nlinkdelta of the inode and parent directories prior to
4673  * unlink.
4674  */
4675 void
4676 softdep_setup_unlink(dp, ip)
4677 	struct inode *dp;
4678 	struct inode *ip;
4679 {
4680 	struct vnode *dvp;
4681 
4682 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4683 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4684 	dvp = ITOV(dp);
4685 	ACQUIRE_LOCK(dp->i_ump);
4686 	(void) inodedep_lookup_ip(ip);
4687 	(void) inodedep_lookup_ip(dp);
4688 	softdep_prelink(dvp, ITOV(ip));
4689 	FREE_LOCK(dp->i_ump);
4690 }
4691 
4692 /*
4693  * Called to release the journal structures created by a failed non-directory
4694  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4695  */
4696 void
4697 softdep_revert_create(dp, ip)
4698 	struct inode *dp;
4699 	struct inode *ip;
4700 {
4701 	struct inodedep *inodedep;
4702 	struct jaddref *jaddref;
4703 	struct vnode *dvp;
4704 
4705 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4706 	    ("softdep_revert_create called on non-softdep filesystem"));
4707 	dvp = ITOV(dp);
4708 	ACQUIRE_LOCK(dp->i_ump);
4709 	inodedep = inodedep_lookup_ip(ip);
4710 	if (DOINGSUJ(dvp)) {
4711 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4712 		    inoreflst);
4713 		KASSERT(jaddref->ja_parent == dp->i_number,
4714 		    ("softdep_revert_create: addref parent mismatch"));
4715 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4716 	}
4717 	FREE_LOCK(dp->i_ump);
4718 }
4719 
4720 /*
4721  * Called to release the journal structures created by a failed link
4722  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4723  */
4724 void
4725 softdep_revert_link(dp, ip)
4726 	struct inode *dp;
4727 	struct inode *ip;
4728 {
4729 	struct inodedep *inodedep;
4730 	struct jaddref *jaddref;
4731 	struct vnode *dvp;
4732 
4733 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4734 	    ("softdep_revert_link called on non-softdep filesystem"));
4735 	dvp = ITOV(dp);
4736 	ACQUIRE_LOCK(dp->i_ump);
4737 	inodedep = inodedep_lookup_ip(ip);
4738 	if (DOINGSUJ(dvp)) {
4739 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4740 		    inoreflst);
4741 		KASSERT(jaddref->ja_parent == dp->i_number,
4742 		    ("softdep_revert_link: addref parent mismatch"));
4743 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4744 	}
4745 	FREE_LOCK(dp->i_ump);
4746 }
4747 
4748 /*
4749  * Called to release the journal structures created by a failed mkdir
4750  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4751  */
4752 void
4753 softdep_revert_mkdir(dp, ip)
4754 	struct inode *dp;
4755 	struct inode *ip;
4756 {
4757 	struct inodedep *inodedep;
4758 	struct jaddref *jaddref;
4759 	struct jaddref *dotaddref;
4760 	struct vnode *dvp;
4761 
4762 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4763 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4764 	dvp = ITOV(dp);
4765 
4766 	ACQUIRE_LOCK(dp->i_ump);
4767 	inodedep = inodedep_lookup_ip(dp);
4768 	if (DOINGSUJ(dvp)) {
4769 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4770 		    inoreflst);
4771 		KASSERT(jaddref->ja_parent == ip->i_number,
4772 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4773 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4774 	}
4775 	inodedep = inodedep_lookup_ip(ip);
4776 	if (DOINGSUJ(dvp)) {
4777 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4778 		    inoreflst);
4779 		KASSERT(jaddref->ja_parent == dp->i_number,
4780 		    ("softdep_revert_mkdir: addref parent mismatch"));
4781 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4782 		    inoreflst, if_deps);
4783 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4784 		KASSERT(dotaddref->ja_parent == ip->i_number,
4785 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4786 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4787 	}
4788 	FREE_LOCK(dp->i_ump);
4789 }
4790 
4791 /*
4792  * Called to correct nlinkdelta after a failed rmdir.
4793  */
4794 void
4795 softdep_revert_rmdir(dp, ip)
4796 	struct inode *dp;
4797 	struct inode *ip;
4798 {
4799 
4800 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4801 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4802 	ACQUIRE_LOCK(dp->i_ump);
4803 	(void) inodedep_lookup_ip(ip);
4804 	(void) inodedep_lookup_ip(dp);
4805 	FREE_LOCK(dp->i_ump);
4806 }
4807 
4808 /*
4809  * Protecting the freemaps (or bitmaps).
4810  *
4811  * To eliminate the need to execute fsck before mounting a filesystem
4812  * after a power failure, one must (conservatively) guarantee that the
4813  * on-disk copy of the bitmaps never indicate that a live inode or block is
4814  * free.  So, when a block or inode is allocated, the bitmap should be
4815  * updated (on disk) before any new pointers.  When a block or inode is
4816  * freed, the bitmap should not be updated until all pointers have been
4817  * reset.  The latter dependency is handled by the delayed de-allocation
4818  * approach described below for block and inode de-allocation.  The former
4819  * dependency is handled by calling the following procedure when a block or
4820  * inode is allocated. When an inode is allocated an "inodedep" is created
4821  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4822  * Each "inodedep" is also inserted into the hash indexing structure so
4823  * that any additional link additions can be made dependent on the inode
4824  * allocation.
4825  *
4826  * The ufs filesystem maintains a number of free block counts (e.g., per
4827  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4828  * in addition to the bitmaps.  These counts are used to improve efficiency
4829  * during allocation and therefore must be consistent with the bitmaps.
4830  * There is no convenient way to guarantee post-crash consistency of these
4831  * counts with simple update ordering, for two main reasons: (1) The counts
4832  * and bitmaps for a single cylinder group block are not in the same disk
4833  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4834  * be written and the other not.  (2) Some of the counts are located in the
4835  * superblock rather than the cylinder group block. So, we focus our soft
4836  * updates implementation on protecting the bitmaps. When mounting a
4837  * filesystem, we recompute the auxiliary counts from the bitmaps.
4838  */
4839 
4840 /*
4841  * Called just after updating the cylinder group block to allocate an inode.
4842  */
4843 void
4844 softdep_setup_inomapdep(bp, ip, newinum, mode)
4845 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4846 	struct inode *ip;	/* inode related to allocation */
4847 	ino_t newinum;		/* new inode number being allocated */
4848 	int mode;
4849 {
4850 	struct inodedep *inodedep;
4851 	struct bmsafemap *bmsafemap;
4852 	struct jaddref *jaddref;
4853 	struct mount *mp;
4854 	struct fs *fs;
4855 
4856 	mp = UFSTOVFS(ip->i_ump);
4857 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4858 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
4859 	fs = ip->i_ump->um_fs;
4860 	jaddref = NULL;
4861 
4862 	/*
4863 	 * Allocate the journal reference add structure so that the bitmap
4864 	 * can be dependent on it.
4865 	 */
4866 	if (MOUNTEDSUJ(mp)) {
4867 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4868 		jaddref->ja_state |= NEWBLOCK;
4869 	}
4870 
4871 	/*
4872 	 * Create a dependency for the newly allocated inode.
4873 	 * Panic if it already exists as something is seriously wrong.
4874 	 * Otherwise add it to the dependency list for the buffer holding
4875 	 * the cylinder group map from which it was allocated.
4876 	 *
4877 	 * We have to preallocate a bmsafemap entry in case it is needed
4878 	 * in bmsafemap_lookup since once we allocate the inodedep, we
4879 	 * have to finish initializing it before we can FREE_LOCK().
4880 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4881 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4882 	 * creating the inodedep as it can be freed during the time
4883 	 * that we FREE_LOCK() while allocating the inodedep. We must
4884 	 * call workitem_alloc() before entering the locked section as
4885 	 * it also acquires the lock and we must avoid trying doing so
4886 	 * recursively.
4887 	 */
4888 	bmsafemap = malloc(sizeof(struct bmsafemap),
4889 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4890 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4891 	ACQUIRE_LOCK(ip->i_ump);
4892 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4893 		panic("softdep_setup_inomapdep: dependency %p for new"
4894 		    "inode already exists", inodedep);
4895 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4896 	if (jaddref) {
4897 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4898 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4899 		    if_deps);
4900 	} else {
4901 		inodedep->id_state |= ONDEPLIST;
4902 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4903 	}
4904 	inodedep->id_bmsafemap = bmsafemap;
4905 	inodedep->id_state &= ~DEPCOMPLETE;
4906 	FREE_LOCK(ip->i_ump);
4907 }
4908 
4909 /*
4910  * Called just after updating the cylinder group block to
4911  * allocate block or fragment.
4912  */
4913 void
4914 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4915 	struct buf *bp;		/* buffer for cylgroup block with block map */
4916 	struct mount *mp;	/* filesystem doing allocation */
4917 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4918 	int frags;		/* Number of fragments. */
4919 	int oldfrags;		/* Previous number of fragments for extend. */
4920 {
4921 	struct newblk *newblk;
4922 	struct bmsafemap *bmsafemap;
4923 	struct jnewblk *jnewblk;
4924 	struct ufsmount *ump;
4925 	struct fs *fs;
4926 
4927 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4928 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
4929 	ump = VFSTOUFS(mp);
4930 	fs = ump->um_fs;
4931 	jnewblk = NULL;
4932 	/*
4933 	 * Create a dependency for the newly allocated block.
4934 	 * Add it to the dependency list for the buffer holding
4935 	 * the cylinder group map from which it was allocated.
4936 	 */
4937 	if (MOUNTEDSUJ(mp)) {
4938 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4939 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4940 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4941 		jnewblk->jn_state = ATTACHED;
4942 		jnewblk->jn_blkno = newblkno;
4943 		jnewblk->jn_frags = frags;
4944 		jnewblk->jn_oldfrags = oldfrags;
4945 #ifdef SUJ_DEBUG
4946 		{
4947 			struct cg *cgp;
4948 			uint8_t *blksfree;
4949 			long bno;
4950 			int i;
4951 
4952 			cgp = (struct cg *)bp->b_data;
4953 			blksfree = cg_blksfree(cgp);
4954 			bno = dtogd(fs, jnewblk->jn_blkno);
4955 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4956 			    i++) {
4957 				if (isset(blksfree, bno + i))
4958 					panic("softdep_setup_blkmapdep: "
4959 					    "free fragment %d from %d-%d "
4960 					    "state 0x%X dep %p", i,
4961 					    jnewblk->jn_oldfrags,
4962 					    jnewblk->jn_frags,
4963 					    jnewblk->jn_state,
4964 					    jnewblk->jn_dep);
4965 			}
4966 		}
4967 #endif
4968 	}
4969 
4970 	CTR3(KTR_SUJ,
4971 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
4972 	    newblkno, frags, oldfrags);
4973 	ACQUIRE_LOCK(ump);
4974 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4975 		panic("softdep_setup_blkmapdep: found block");
4976 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4977 	    dtog(fs, newblkno), NULL);
4978 	if (jnewblk) {
4979 		jnewblk->jn_dep = (struct worklist *)newblk;
4980 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4981 	} else {
4982 		newblk->nb_state |= ONDEPLIST;
4983 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4984 	}
4985 	newblk->nb_bmsafemap = bmsafemap;
4986 	newblk->nb_jnewblk = jnewblk;
4987 	FREE_LOCK(ump);
4988 }
4989 
4990 #define	BMSAFEMAP_HASH(ump, cg) \
4991       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
4992 
4993 static int
4994 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
4995 	struct bmsafemap_hashhead *bmsafemaphd;
4996 	int cg;
4997 	struct bmsafemap **bmsafemapp;
4998 {
4999 	struct bmsafemap *bmsafemap;
5000 
5001 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5002 		if (bmsafemap->sm_cg == cg)
5003 			break;
5004 	if (bmsafemap) {
5005 		*bmsafemapp = bmsafemap;
5006 		return (1);
5007 	}
5008 	*bmsafemapp = NULL;
5009 
5010 	return (0);
5011 }
5012 
5013 /*
5014  * Find the bmsafemap associated with a cylinder group buffer.
5015  * If none exists, create one. The buffer must be locked when
5016  * this routine is called and this routine must be called with
5017  * the softdep lock held. To avoid giving up the lock while
5018  * allocating a new bmsafemap, a preallocated bmsafemap may be
5019  * provided. If it is provided but not needed, it is freed.
5020  */
5021 static struct bmsafemap *
5022 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5023 	struct mount *mp;
5024 	struct buf *bp;
5025 	int cg;
5026 	struct bmsafemap *newbmsafemap;
5027 {
5028 	struct bmsafemap_hashhead *bmsafemaphd;
5029 	struct bmsafemap *bmsafemap, *collision;
5030 	struct worklist *wk;
5031 	struct ufsmount *ump;
5032 
5033 	ump = VFSTOUFS(mp);
5034 	LOCK_OWNED(ump);
5035 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5036 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5037 		if (wk->wk_type == D_BMSAFEMAP) {
5038 			if (newbmsafemap)
5039 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5040 			return (WK_BMSAFEMAP(wk));
5041 		}
5042 	}
5043 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5044 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5045 		if (newbmsafemap)
5046 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5047 		return (bmsafemap);
5048 	}
5049 	if (newbmsafemap) {
5050 		bmsafemap = newbmsafemap;
5051 	} else {
5052 		FREE_LOCK(ump);
5053 		bmsafemap = malloc(sizeof(struct bmsafemap),
5054 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5055 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5056 		ACQUIRE_LOCK(ump);
5057 	}
5058 	bmsafemap->sm_buf = bp;
5059 	LIST_INIT(&bmsafemap->sm_inodedephd);
5060 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5061 	LIST_INIT(&bmsafemap->sm_newblkhd);
5062 	LIST_INIT(&bmsafemap->sm_newblkwr);
5063 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5064 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5065 	LIST_INIT(&bmsafemap->sm_freehd);
5066 	LIST_INIT(&bmsafemap->sm_freewr);
5067 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5068 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5069 		return (collision);
5070 	}
5071 	bmsafemap->sm_cg = cg;
5072 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5073 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5074 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5075 	return (bmsafemap);
5076 }
5077 
5078 /*
5079  * Direct block allocation dependencies.
5080  *
5081  * When a new block is allocated, the corresponding disk locations must be
5082  * initialized (with zeros or new data) before the on-disk inode points to
5083  * them.  Also, the freemap from which the block was allocated must be
5084  * updated (on disk) before the inode's pointer. These two dependencies are
5085  * independent of each other and are needed for all file blocks and indirect
5086  * blocks that are pointed to directly by the inode.  Just before the
5087  * "in-core" version of the inode is updated with a newly allocated block
5088  * number, a procedure (below) is called to setup allocation dependency
5089  * structures.  These structures are removed when the corresponding
5090  * dependencies are satisfied or when the block allocation becomes obsolete
5091  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5092  * fragment that gets upgraded).  All of these cases are handled in
5093  * procedures described later.
5094  *
5095  * When a file extension causes a fragment to be upgraded, either to a larger
5096  * fragment or to a full block, the on-disk location may change (if the
5097  * previous fragment could not simply be extended). In this case, the old
5098  * fragment must be de-allocated, but not until after the inode's pointer has
5099  * been updated. In most cases, this is handled by later procedures, which
5100  * will construct a "freefrag" structure to be added to the workitem queue
5101  * when the inode update is complete (or obsolete).  The main exception to
5102  * this is when an allocation occurs while a pending allocation dependency
5103  * (for the same block pointer) remains.  This case is handled in the main
5104  * allocation dependency setup procedure by immediately freeing the
5105  * unreferenced fragments.
5106  */
5107 void
5108 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5109 	struct inode *ip;	/* inode to which block is being added */
5110 	ufs_lbn_t off;		/* block pointer within inode */
5111 	ufs2_daddr_t newblkno;	/* disk block number being added */
5112 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5113 	long newsize;		/* size of new block */
5114 	long oldsize;		/* size of new block */
5115 	struct buf *bp;		/* bp for allocated block */
5116 {
5117 	struct allocdirect *adp, *oldadp;
5118 	struct allocdirectlst *adphead;
5119 	struct freefrag *freefrag;
5120 	struct inodedep *inodedep;
5121 	struct pagedep *pagedep;
5122 	struct jnewblk *jnewblk;
5123 	struct newblk *newblk;
5124 	struct mount *mp;
5125 	ufs_lbn_t lbn;
5126 
5127 	lbn = bp->b_lblkno;
5128 	mp = UFSTOVFS(ip->i_ump);
5129 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5130 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5131 	if (oldblkno && oldblkno != newblkno)
5132 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5133 	else
5134 		freefrag = NULL;
5135 
5136 	CTR6(KTR_SUJ,
5137 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5138 	    "off %jd newsize %ld oldsize %d",
5139 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5140 	ACQUIRE_LOCK(ip->i_ump);
5141 	if (off >= NDADDR) {
5142 		if (lbn > 0)
5143 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5144 			    lbn, off);
5145 		/* allocating an indirect block */
5146 		if (oldblkno != 0)
5147 			panic("softdep_setup_allocdirect: non-zero indir");
5148 	} else {
5149 		if (off != lbn)
5150 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5151 			    lbn, off);
5152 		/*
5153 		 * Allocating a direct block.
5154 		 *
5155 		 * If we are allocating a directory block, then we must
5156 		 * allocate an associated pagedep to track additions and
5157 		 * deletions.
5158 		 */
5159 		if ((ip->i_mode & IFMT) == IFDIR)
5160 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5161 			    &pagedep);
5162 	}
5163 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5164 		panic("softdep_setup_allocdirect: lost block");
5165 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5166 	    ("softdep_setup_allocdirect: newblk already initialized"));
5167 	/*
5168 	 * Convert the newblk to an allocdirect.
5169 	 */
5170 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5171 	adp = (struct allocdirect *)newblk;
5172 	newblk->nb_freefrag = freefrag;
5173 	adp->ad_offset = off;
5174 	adp->ad_oldblkno = oldblkno;
5175 	adp->ad_newsize = newsize;
5176 	adp->ad_oldsize = oldsize;
5177 
5178 	/*
5179 	 * Finish initializing the journal.
5180 	 */
5181 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5182 		jnewblk->jn_ino = ip->i_number;
5183 		jnewblk->jn_lbn = lbn;
5184 		add_to_journal(&jnewblk->jn_list);
5185 	}
5186 	if (freefrag && freefrag->ff_jdep != NULL &&
5187 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5188 		add_to_journal(freefrag->ff_jdep);
5189 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5190 	adp->ad_inodedep = inodedep;
5191 
5192 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5193 	/*
5194 	 * The list of allocdirects must be kept in sorted and ascending
5195 	 * order so that the rollback routines can quickly determine the
5196 	 * first uncommitted block (the size of the file stored on disk
5197 	 * ends at the end of the lowest committed fragment, or if there
5198 	 * are no fragments, at the end of the highest committed block).
5199 	 * Since files generally grow, the typical case is that the new
5200 	 * block is to be added at the end of the list. We speed this
5201 	 * special case by checking against the last allocdirect in the
5202 	 * list before laboriously traversing the list looking for the
5203 	 * insertion point.
5204 	 */
5205 	adphead = &inodedep->id_newinoupdt;
5206 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5207 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5208 		/* insert at end of list */
5209 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5210 		if (oldadp != NULL && oldadp->ad_offset == off)
5211 			allocdirect_merge(adphead, adp, oldadp);
5212 		FREE_LOCK(ip->i_ump);
5213 		return;
5214 	}
5215 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5216 		if (oldadp->ad_offset >= off)
5217 			break;
5218 	}
5219 	if (oldadp == NULL)
5220 		panic("softdep_setup_allocdirect: lost entry");
5221 	/* insert in middle of list */
5222 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5223 	if (oldadp->ad_offset == off)
5224 		allocdirect_merge(adphead, adp, oldadp);
5225 
5226 	FREE_LOCK(ip->i_ump);
5227 }
5228 
5229 /*
5230  * Merge a newer and older journal record to be stored either in a
5231  * newblock or freefrag.  This handles aggregating journal records for
5232  * fragment allocation into a second record as well as replacing a
5233  * journal free with an aborted journal allocation.  A segment for the
5234  * oldest record will be placed on wkhd if it has been written.  If not
5235  * the segment for the newer record will suffice.
5236  */
5237 static struct worklist *
5238 jnewblk_merge(new, old, wkhd)
5239 	struct worklist *new;
5240 	struct worklist *old;
5241 	struct workhead *wkhd;
5242 {
5243 	struct jnewblk *njnewblk;
5244 	struct jnewblk *jnewblk;
5245 
5246 	/* Handle NULLs to simplify callers. */
5247 	if (new == NULL)
5248 		return (old);
5249 	if (old == NULL)
5250 		return (new);
5251 	/* Replace a jfreefrag with a jnewblk. */
5252 	if (new->wk_type == D_JFREEFRAG) {
5253 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5254 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5255 			    old, new);
5256 		cancel_jfreefrag(WK_JFREEFRAG(new));
5257 		return (old);
5258 	}
5259 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5260 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5261 		    old->wk_type, new->wk_type);
5262 	/*
5263 	 * Handle merging of two jnewblk records that describe
5264 	 * different sets of fragments in the same block.
5265 	 */
5266 	jnewblk = WK_JNEWBLK(old);
5267 	njnewblk = WK_JNEWBLK(new);
5268 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5269 		panic("jnewblk_merge: Merging disparate blocks.");
5270 	/*
5271 	 * The record may be rolled back in the cg.
5272 	 */
5273 	if (jnewblk->jn_state & UNDONE) {
5274 		jnewblk->jn_state &= ~UNDONE;
5275 		njnewblk->jn_state |= UNDONE;
5276 		njnewblk->jn_state &= ~ATTACHED;
5277 	}
5278 	/*
5279 	 * We modify the newer addref and free the older so that if neither
5280 	 * has been written the most up-to-date copy will be on disk.  If
5281 	 * both have been written but rolled back we only temporarily need
5282 	 * one of them to fix the bits when the cg write completes.
5283 	 */
5284 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5285 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5286 	cancel_jnewblk(jnewblk, wkhd);
5287 	WORKLIST_REMOVE(&jnewblk->jn_list);
5288 	free_jnewblk(jnewblk);
5289 	return (new);
5290 }
5291 
5292 /*
5293  * Replace an old allocdirect dependency with a newer one.
5294  * This routine must be called with splbio interrupts blocked.
5295  */
5296 static void
5297 allocdirect_merge(adphead, newadp, oldadp)
5298 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5299 	struct allocdirect *newadp;	/* allocdirect being added */
5300 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5301 {
5302 	struct worklist *wk;
5303 	struct freefrag *freefrag;
5304 
5305 	freefrag = NULL;
5306 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5307 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5308 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5309 	    newadp->ad_offset >= NDADDR)
5310 		panic("%s %jd != new %jd || old size %ld != new %ld",
5311 		    "allocdirect_merge: old blkno",
5312 		    (intmax_t)newadp->ad_oldblkno,
5313 		    (intmax_t)oldadp->ad_newblkno,
5314 		    newadp->ad_oldsize, oldadp->ad_newsize);
5315 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5316 	newadp->ad_oldsize = oldadp->ad_oldsize;
5317 	/*
5318 	 * If the old dependency had a fragment to free or had never
5319 	 * previously had a block allocated, then the new dependency
5320 	 * can immediately post its freefrag and adopt the old freefrag.
5321 	 * This action is done by swapping the freefrag dependencies.
5322 	 * The new dependency gains the old one's freefrag, and the
5323 	 * old one gets the new one and then immediately puts it on
5324 	 * the worklist when it is freed by free_newblk. It is
5325 	 * not possible to do this swap when the old dependency had a
5326 	 * non-zero size but no previous fragment to free. This condition
5327 	 * arises when the new block is an extension of the old block.
5328 	 * Here, the first part of the fragment allocated to the new
5329 	 * dependency is part of the block currently claimed on disk by
5330 	 * the old dependency, so cannot legitimately be freed until the
5331 	 * conditions for the new dependency are fulfilled.
5332 	 */
5333 	freefrag = newadp->ad_freefrag;
5334 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5335 		newadp->ad_freefrag = oldadp->ad_freefrag;
5336 		oldadp->ad_freefrag = freefrag;
5337 	}
5338 	/*
5339 	 * If we are tracking a new directory-block allocation,
5340 	 * move it from the old allocdirect to the new allocdirect.
5341 	 */
5342 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5343 		WORKLIST_REMOVE(wk);
5344 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5345 			panic("allocdirect_merge: extra newdirblk");
5346 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5347 	}
5348 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5349 	/*
5350 	 * We need to move any journal dependencies over to the freefrag
5351 	 * that releases this block if it exists.  Otherwise we are
5352 	 * extending an existing block and we'll wait until that is
5353 	 * complete to release the journal space and extend the
5354 	 * new journal to cover this old space as well.
5355 	 */
5356 	if (freefrag == NULL) {
5357 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5358 			panic("allocdirect_merge: %jd != %jd",
5359 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5360 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5361 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5362 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5363 		    &newadp->ad_block.nb_jwork);
5364 		oldadp->ad_block.nb_jnewblk = NULL;
5365 		cancel_newblk(&oldadp->ad_block, NULL,
5366 		    &newadp->ad_block.nb_jwork);
5367 	} else {
5368 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5369 		    &freefrag->ff_list, &freefrag->ff_jwork);
5370 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5371 		    &freefrag->ff_jwork);
5372 	}
5373 	free_newblk(&oldadp->ad_block);
5374 }
5375 
5376 /*
5377  * Allocate a jfreefrag structure to journal a single block free.
5378  */
5379 static struct jfreefrag *
5380 newjfreefrag(freefrag, ip, blkno, size, lbn)
5381 	struct freefrag *freefrag;
5382 	struct inode *ip;
5383 	ufs2_daddr_t blkno;
5384 	long size;
5385 	ufs_lbn_t lbn;
5386 {
5387 	struct jfreefrag *jfreefrag;
5388 	struct fs *fs;
5389 
5390 	fs = ip->i_fs;
5391 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5392 	    M_SOFTDEP_FLAGS);
5393 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5394 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5395 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5396 	jfreefrag->fr_ino = ip->i_number;
5397 	jfreefrag->fr_lbn = lbn;
5398 	jfreefrag->fr_blkno = blkno;
5399 	jfreefrag->fr_frags = numfrags(fs, size);
5400 	jfreefrag->fr_freefrag = freefrag;
5401 
5402 	return (jfreefrag);
5403 }
5404 
5405 /*
5406  * Allocate a new freefrag structure.
5407  */
5408 static struct freefrag *
5409 newfreefrag(ip, blkno, size, lbn)
5410 	struct inode *ip;
5411 	ufs2_daddr_t blkno;
5412 	long size;
5413 	ufs_lbn_t lbn;
5414 {
5415 	struct freefrag *freefrag;
5416 	struct fs *fs;
5417 
5418 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5419 	    ip->i_number, blkno, size, lbn);
5420 	fs = ip->i_fs;
5421 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5422 		panic("newfreefrag: frag size");
5423 	freefrag = malloc(sizeof(struct freefrag),
5424 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5425 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5426 	freefrag->ff_state = ATTACHED;
5427 	LIST_INIT(&freefrag->ff_jwork);
5428 	freefrag->ff_inum = ip->i_number;
5429 	freefrag->ff_vtype = ITOV(ip)->v_type;
5430 	freefrag->ff_blkno = blkno;
5431 	freefrag->ff_fragsize = size;
5432 
5433 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5434 		freefrag->ff_jdep = (struct worklist *)
5435 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5436 	} else {
5437 		freefrag->ff_state |= DEPCOMPLETE;
5438 		freefrag->ff_jdep = NULL;
5439 	}
5440 
5441 	return (freefrag);
5442 }
5443 
5444 /*
5445  * This workitem de-allocates fragments that were replaced during
5446  * file block allocation.
5447  */
5448 static void
5449 handle_workitem_freefrag(freefrag)
5450 	struct freefrag *freefrag;
5451 {
5452 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5453 	struct workhead wkhd;
5454 
5455 	CTR3(KTR_SUJ,
5456 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5457 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5458 	/*
5459 	 * It would be illegal to add new completion items to the
5460 	 * freefrag after it was schedule to be done so it must be
5461 	 * safe to modify the list head here.
5462 	 */
5463 	LIST_INIT(&wkhd);
5464 	ACQUIRE_LOCK(ump);
5465 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5466 	/*
5467 	 * If the journal has not been written we must cancel it here.
5468 	 */
5469 	if (freefrag->ff_jdep) {
5470 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5471 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5472 			    freefrag->ff_jdep->wk_type);
5473 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5474 	}
5475 	FREE_LOCK(ump);
5476 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5477 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5478 	ACQUIRE_LOCK(ump);
5479 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5480 	FREE_LOCK(ump);
5481 }
5482 
5483 /*
5484  * Set up a dependency structure for an external attributes data block.
5485  * This routine follows much of the structure of softdep_setup_allocdirect.
5486  * See the description of softdep_setup_allocdirect above for details.
5487  */
5488 void
5489 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5490 	struct inode *ip;
5491 	ufs_lbn_t off;
5492 	ufs2_daddr_t newblkno;
5493 	ufs2_daddr_t oldblkno;
5494 	long newsize;
5495 	long oldsize;
5496 	struct buf *bp;
5497 {
5498 	struct allocdirect *adp, *oldadp;
5499 	struct allocdirectlst *adphead;
5500 	struct freefrag *freefrag;
5501 	struct inodedep *inodedep;
5502 	struct jnewblk *jnewblk;
5503 	struct newblk *newblk;
5504 	struct mount *mp;
5505 	ufs_lbn_t lbn;
5506 
5507 	mp = UFSTOVFS(ip->i_ump);
5508 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5509 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5510 	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5511 		    (long long)off));
5512 
5513 	lbn = bp->b_lblkno;
5514 	if (oldblkno && oldblkno != newblkno)
5515 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5516 	else
5517 		freefrag = NULL;
5518 
5519 	ACQUIRE_LOCK(ip->i_ump);
5520 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5521 		panic("softdep_setup_allocext: lost block");
5522 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5523 	    ("softdep_setup_allocext: newblk already initialized"));
5524 	/*
5525 	 * Convert the newblk to an allocdirect.
5526 	 */
5527 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5528 	adp = (struct allocdirect *)newblk;
5529 	newblk->nb_freefrag = freefrag;
5530 	adp->ad_offset = off;
5531 	adp->ad_oldblkno = oldblkno;
5532 	adp->ad_newsize = newsize;
5533 	adp->ad_oldsize = oldsize;
5534 	adp->ad_state |=  EXTDATA;
5535 
5536 	/*
5537 	 * Finish initializing the journal.
5538 	 */
5539 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5540 		jnewblk->jn_ino = ip->i_number;
5541 		jnewblk->jn_lbn = lbn;
5542 		add_to_journal(&jnewblk->jn_list);
5543 	}
5544 	if (freefrag && freefrag->ff_jdep != NULL &&
5545 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5546 		add_to_journal(freefrag->ff_jdep);
5547 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5548 	adp->ad_inodedep = inodedep;
5549 
5550 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5551 	/*
5552 	 * The list of allocdirects must be kept in sorted and ascending
5553 	 * order so that the rollback routines can quickly determine the
5554 	 * first uncommitted block (the size of the file stored on disk
5555 	 * ends at the end of the lowest committed fragment, or if there
5556 	 * are no fragments, at the end of the highest committed block).
5557 	 * Since files generally grow, the typical case is that the new
5558 	 * block is to be added at the end of the list. We speed this
5559 	 * special case by checking against the last allocdirect in the
5560 	 * list before laboriously traversing the list looking for the
5561 	 * insertion point.
5562 	 */
5563 	adphead = &inodedep->id_newextupdt;
5564 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5565 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5566 		/* insert at end of list */
5567 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5568 		if (oldadp != NULL && oldadp->ad_offset == off)
5569 			allocdirect_merge(adphead, adp, oldadp);
5570 		FREE_LOCK(ip->i_ump);
5571 		return;
5572 	}
5573 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5574 		if (oldadp->ad_offset >= off)
5575 			break;
5576 	}
5577 	if (oldadp == NULL)
5578 		panic("softdep_setup_allocext: lost entry");
5579 	/* insert in middle of list */
5580 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5581 	if (oldadp->ad_offset == off)
5582 		allocdirect_merge(adphead, adp, oldadp);
5583 	FREE_LOCK(ip->i_ump);
5584 }
5585 
5586 /*
5587  * Indirect block allocation dependencies.
5588  *
5589  * The same dependencies that exist for a direct block also exist when
5590  * a new block is allocated and pointed to by an entry in a block of
5591  * indirect pointers. The undo/redo states described above are also
5592  * used here. Because an indirect block contains many pointers that
5593  * may have dependencies, a second copy of the entire in-memory indirect
5594  * block is kept. The buffer cache copy is always completely up-to-date.
5595  * The second copy, which is used only as a source for disk writes,
5596  * contains only the safe pointers (i.e., those that have no remaining
5597  * update dependencies). The second copy is freed when all pointers
5598  * are safe. The cache is not allowed to replace indirect blocks with
5599  * pending update dependencies. If a buffer containing an indirect
5600  * block with dependencies is written, these routines will mark it
5601  * dirty again. It can only be successfully written once all the
5602  * dependencies are removed. The ffs_fsync routine in conjunction with
5603  * softdep_sync_metadata work together to get all the dependencies
5604  * removed so that a file can be successfully written to disk. Three
5605  * procedures are used when setting up indirect block pointer
5606  * dependencies. The division is necessary because of the organization
5607  * of the "balloc" routine and because of the distinction between file
5608  * pages and file metadata blocks.
5609  */
5610 
5611 /*
5612  * Allocate a new allocindir structure.
5613  */
5614 static struct allocindir *
5615 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5616 	struct inode *ip;	/* inode for file being extended */
5617 	int ptrno;		/* offset of pointer in indirect block */
5618 	ufs2_daddr_t newblkno;	/* disk block number being added */
5619 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5620 	ufs_lbn_t lbn;
5621 {
5622 	struct newblk *newblk;
5623 	struct allocindir *aip;
5624 	struct freefrag *freefrag;
5625 	struct jnewblk *jnewblk;
5626 
5627 	if (oldblkno)
5628 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5629 	else
5630 		freefrag = NULL;
5631 	ACQUIRE_LOCK(ip->i_ump);
5632 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5633 		panic("new_allocindir: lost block");
5634 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5635 	    ("newallocindir: newblk already initialized"));
5636 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5637 	newblk->nb_freefrag = freefrag;
5638 	aip = (struct allocindir *)newblk;
5639 	aip->ai_offset = ptrno;
5640 	aip->ai_oldblkno = oldblkno;
5641 	aip->ai_lbn = lbn;
5642 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5643 		jnewblk->jn_ino = ip->i_number;
5644 		jnewblk->jn_lbn = lbn;
5645 		add_to_journal(&jnewblk->jn_list);
5646 	}
5647 	if (freefrag && freefrag->ff_jdep != NULL &&
5648 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5649 		add_to_journal(freefrag->ff_jdep);
5650 	return (aip);
5651 }
5652 
5653 /*
5654  * Called just before setting an indirect block pointer
5655  * to a newly allocated file page.
5656  */
5657 void
5658 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5659 	struct inode *ip;	/* inode for file being extended */
5660 	ufs_lbn_t lbn;		/* allocated block number within file */
5661 	struct buf *bp;		/* buffer with indirect blk referencing page */
5662 	int ptrno;		/* offset of pointer in indirect block */
5663 	ufs2_daddr_t newblkno;	/* disk block number being added */
5664 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5665 	struct buf *nbp;	/* buffer holding allocated page */
5666 {
5667 	struct inodedep *inodedep;
5668 	struct freefrag *freefrag;
5669 	struct allocindir *aip;
5670 	struct pagedep *pagedep;
5671 	struct mount *mp;
5672 	int dflags;
5673 
5674 	mp = UFSTOVFS(ip->i_ump);
5675 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5676 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5677 	KASSERT(lbn == nbp->b_lblkno,
5678 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5679 	    lbn, bp->b_lblkno));
5680 	CTR4(KTR_SUJ,
5681 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5682 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5683 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5684 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5685 	dflags = DEPALLOC;
5686 	if (IS_SNAPSHOT(ip))
5687 		dflags |= NODELAY;
5688 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5689 	/*
5690 	 * If we are allocating a directory page, then we must
5691 	 * allocate an associated pagedep to track additions and
5692 	 * deletions.
5693 	 */
5694 	if ((ip->i_mode & IFMT) == IFDIR)
5695 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5696 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5697 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5698 	FREE_LOCK(ip->i_ump);
5699 	if (freefrag)
5700 		handle_workitem_freefrag(freefrag);
5701 }
5702 
5703 /*
5704  * Called just before setting an indirect block pointer to a
5705  * newly allocated indirect block.
5706  */
5707 void
5708 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5709 	struct buf *nbp;	/* newly allocated indirect block */
5710 	struct inode *ip;	/* inode for file being extended */
5711 	struct buf *bp;		/* indirect block referencing allocated block */
5712 	int ptrno;		/* offset of pointer in indirect block */
5713 	ufs2_daddr_t newblkno;	/* disk block number being added */
5714 {
5715 	struct inodedep *inodedep;
5716 	struct allocindir *aip;
5717 	ufs_lbn_t lbn;
5718 	int dflags;
5719 
5720 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5721 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5722 	CTR3(KTR_SUJ,
5723 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5724 	    ip->i_number, newblkno, ptrno);
5725 	lbn = nbp->b_lblkno;
5726 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5727 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5728 	dflags = DEPALLOC;
5729 	if (IS_SNAPSHOT(ip))
5730 		dflags |= NODELAY;
5731 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5732 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5733 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5734 		panic("softdep_setup_allocindir_meta: Block already existed");
5735 	FREE_LOCK(ip->i_ump);
5736 }
5737 
5738 static void
5739 indirdep_complete(indirdep)
5740 	struct indirdep *indirdep;
5741 {
5742 	struct allocindir *aip;
5743 
5744 	LIST_REMOVE(indirdep, ir_next);
5745 	indirdep->ir_state |= DEPCOMPLETE;
5746 
5747 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5748 		LIST_REMOVE(aip, ai_next);
5749 		free_newblk(&aip->ai_block);
5750 	}
5751 	/*
5752 	 * If this indirdep is not attached to a buf it was simply waiting
5753 	 * on completion to clear completehd.  free_indirdep() asserts
5754 	 * that nothing is dangling.
5755 	 */
5756 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5757 		free_indirdep(indirdep);
5758 }
5759 
5760 static struct indirdep *
5761 indirdep_lookup(mp, ip, bp)
5762 	struct mount *mp;
5763 	struct inode *ip;
5764 	struct buf *bp;
5765 {
5766 	struct indirdep *indirdep, *newindirdep;
5767 	struct newblk *newblk;
5768 	struct ufsmount *ump;
5769 	struct worklist *wk;
5770 	struct fs *fs;
5771 	ufs2_daddr_t blkno;
5772 
5773 	ump = VFSTOUFS(mp);
5774 	LOCK_OWNED(ump);
5775 	indirdep = NULL;
5776 	newindirdep = NULL;
5777 	fs = ip->i_fs;
5778 	for (;;) {
5779 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5780 			if (wk->wk_type != D_INDIRDEP)
5781 				continue;
5782 			indirdep = WK_INDIRDEP(wk);
5783 			break;
5784 		}
5785 		/* Found on the buffer worklist, no new structure to free. */
5786 		if (indirdep != NULL && newindirdep == NULL)
5787 			return (indirdep);
5788 		if (indirdep != NULL && newindirdep != NULL)
5789 			panic("indirdep_lookup: simultaneous create");
5790 		/* None found on the buffer and a new structure is ready. */
5791 		if (indirdep == NULL && newindirdep != NULL)
5792 			break;
5793 		/* None found and no new structure available. */
5794 		FREE_LOCK(ump);
5795 		newindirdep = malloc(sizeof(struct indirdep),
5796 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5797 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5798 		newindirdep->ir_state = ATTACHED;
5799 		if (ip->i_ump->um_fstype == UFS1)
5800 			newindirdep->ir_state |= UFS1FMT;
5801 		TAILQ_INIT(&newindirdep->ir_trunc);
5802 		newindirdep->ir_saveddata = NULL;
5803 		LIST_INIT(&newindirdep->ir_deplisthd);
5804 		LIST_INIT(&newindirdep->ir_donehd);
5805 		LIST_INIT(&newindirdep->ir_writehd);
5806 		LIST_INIT(&newindirdep->ir_completehd);
5807 		if (bp->b_blkno == bp->b_lblkno) {
5808 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5809 			    NULL, NULL);
5810 			bp->b_blkno = blkno;
5811 		}
5812 		newindirdep->ir_freeblks = NULL;
5813 		newindirdep->ir_savebp =
5814 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5815 		newindirdep->ir_bp = bp;
5816 		BUF_KERNPROC(newindirdep->ir_savebp);
5817 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5818 		ACQUIRE_LOCK(ump);
5819 	}
5820 	indirdep = newindirdep;
5821 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5822 	/*
5823 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5824 	 * that we don't free dependencies until the pointers are valid.
5825 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5826 	 * than using the hash.
5827 	 */
5828 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5829 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5830 	else
5831 		indirdep->ir_state |= DEPCOMPLETE;
5832 	return (indirdep);
5833 }
5834 
5835 /*
5836  * Called to finish the allocation of the "aip" allocated
5837  * by one of the two routines above.
5838  */
5839 static struct freefrag *
5840 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5841 	struct buf *bp;		/* in-memory copy of the indirect block */
5842 	struct inode *ip;	/* inode for file being extended */
5843 	struct inodedep *inodedep; /* Inodedep for ip */
5844 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5845 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5846 {
5847 	struct fs *fs;
5848 	struct indirdep *indirdep;
5849 	struct allocindir *oldaip;
5850 	struct freefrag *freefrag;
5851 	struct mount *mp;
5852 
5853 	LOCK_OWNED(ip->i_ump);
5854 	mp = UFSTOVFS(ip->i_ump);
5855 	fs = ip->i_fs;
5856 	if (bp->b_lblkno >= 0)
5857 		panic("setup_allocindir_phase2: not indir blk");
5858 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5859 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5860 	indirdep = indirdep_lookup(mp, ip, bp);
5861 	KASSERT(indirdep->ir_savebp != NULL,
5862 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5863 	aip->ai_indirdep = indirdep;
5864 	/*
5865 	 * Check for an unwritten dependency for this indirect offset.  If
5866 	 * there is, merge the old dependency into the new one.  This happens
5867 	 * as a result of reallocblk only.
5868 	 */
5869 	freefrag = NULL;
5870 	if (aip->ai_oldblkno != 0) {
5871 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5872 			if (oldaip->ai_offset == aip->ai_offset) {
5873 				freefrag = allocindir_merge(aip, oldaip);
5874 				goto done;
5875 			}
5876 		}
5877 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5878 			if (oldaip->ai_offset == aip->ai_offset) {
5879 				freefrag = allocindir_merge(aip, oldaip);
5880 				goto done;
5881 			}
5882 		}
5883 	}
5884 done:
5885 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5886 	return (freefrag);
5887 }
5888 
5889 /*
5890  * Merge two allocindirs which refer to the same block.  Move newblock
5891  * dependencies and setup the freefrags appropriately.
5892  */
5893 static struct freefrag *
5894 allocindir_merge(aip, oldaip)
5895 	struct allocindir *aip;
5896 	struct allocindir *oldaip;
5897 {
5898 	struct freefrag *freefrag;
5899 	struct worklist *wk;
5900 
5901 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5902 		panic("allocindir_merge: blkno");
5903 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5904 	freefrag = aip->ai_freefrag;
5905 	aip->ai_freefrag = oldaip->ai_freefrag;
5906 	oldaip->ai_freefrag = NULL;
5907 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5908 	/*
5909 	 * If we are tracking a new directory-block allocation,
5910 	 * move it from the old allocindir to the new allocindir.
5911 	 */
5912 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5913 		WORKLIST_REMOVE(wk);
5914 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5915 			panic("allocindir_merge: extra newdirblk");
5916 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5917 	}
5918 	/*
5919 	 * We can skip journaling for this freefrag and just complete
5920 	 * any pending journal work for the allocindir that is being
5921 	 * removed after the freefrag completes.
5922 	 */
5923 	if (freefrag->ff_jdep)
5924 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5925 	LIST_REMOVE(oldaip, ai_next);
5926 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5927 	    &freefrag->ff_list, &freefrag->ff_jwork);
5928 	free_newblk(&oldaip->ai_block);
5929 
5930 	return (freefrag);
5931 }
5932 
5933 static inline void
5934 setup_freedirect(freeblks, ip, i, needj)
5935 	struct freeblks *freeblks;
5936 	struct inode *ip;
5937 	int i;
5938 	int needj;
5939 {
5940 	ufs2_daddr_t blkno;
5941 	int frags;
5942 
5943 	blkno = DIP(ip, i_db[i]);
5944 	if (blkno == 0)
5945 		return;
5946 	DIP_SET(ip, i_db[i], 0);
5947 	frags = sblksize(ip->i_fs, ip->i_size, i);
5948 	frags = numfrags(ip->i_fs, frags);
5949 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5950 }
5951 
5952 static inline void
5953 setup_freeext(freeblks, ip, i, needj)
5954 	struct freeblks *freeblks;
5955 	struct inode *ip;
5956 	int i;
5957 	int needj;
5958 {
5959 	ufs2_daddr_t blkno;
5960 	int frags;
5961 
5962 	blkno = ip->i_din2->di_extb[i];
5963 	if (blkno == 0)
5964 		return;
5965 	ip->i_din2->di_extb[i] = 0;
5966 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5967 	frags = numfrags(ip->i_fs, frags);
5968 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5969 }
5970 
5971 static inline void
5972 setup_freeindir(freeblks, ip, i, lbn, needj)
5973 	struct freeblks *freeblks;
5974 	struct inode *ip;
5975 	int i;
5976 	ufs_lbn_t lbn;
5977 	int needj;
5978 {
5979 	ufs2_daddr_t blkno;
5980 
5981 	blkno = DIP(ip, i_ib[i]);
5982 	if (blkno == 0)
5983 		return;
5984 	DIP_SET(ip, i_ib[i], 0);
5985 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5986 	    0, needj);
5987 }
5988 
5989 static inline struct freeblks *
5990 newfreeblks(mp, ip)
5991 	struct mount *mp;
5992 	struct inode *ip;
5993 {
5994 	struct freeblks *freeblks;
5995 
5996 	freeblks = malloc(sizeof(struct freeblks),
5997 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5998 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5999 	LIST_INIT(&freeblks->fb_jblkdephd);
6000 	LIST_INIT(&freeblks->fb_jwork);
6001 	freeblks->fb_ref = 0;
6002 	freeblks->fb_cgwait = 0;
6003 	freeblks->fb_state = ATTACHED;
6004 	freeblks->fb_uid = ip->i_uid;
6005 	freeblks->fb_inum = ip->i_number;
6006 	freeblks->fb_vtype = ITOV(ip)->v_type;
6007 	freeblks->fb_modrev = DIP(ip, i_modrev);
6008 	freeblks->fb_devvp = ip->i_devvp;
6009 	freeblks->fb_chkcnt = 0;
6010 	freeblks->fb_len = 0;
6011 
6012 	return (freeblks);
6013 }
6014 
6015 static void
6016 trunc_indirdep(indirdep, freeblks, bp, off)
6017 	struct indirdep *indirdep;
6018 	struct freeblks *freeblks;
6019 	struct buf *bp;
6020 	int off;
6021 {
6022 	struct allocindir *aip, *aipn;
6023 
6024 	/*
6025 	 * The first set of allocindirs won't be in savedbp.
6026 	 */
6027 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6028 		if (aip->ai_offset > off)
6029 			cancel_allocindir(aip, bp, freeblks, 1);
6030 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6031 		if (aip->ai_offset > off)
6032 			cancel_allocindir(aip, bp, freeblks, 1);
6033 	/*
6034 	 * These will exist in savedbp.
6035 	 */
6036 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6037 		if (aip->ai_offset > off)
6038 			cancel_allocindir(aip, NULL, freeblks, 0);
6039 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6040 		if (aip->ai_offset > off)
6041 			cancel_allocindir(aip, NULL, freeblks, 0);
6042 }
6043 
6044 /*
6045  * Follow the chain of indirects down to lastlbn creating a freework
6046  * structure for each.  This will be used to start indir_trunc() at
6047  * the right offset and create the journal records for the parrtial
6048  * truncation.  A second step will handle the truncated dependencies.
6049  */
6050 static int
6051 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6052 	struct freeblks *freeblks;
6053 	struct inode *ip;
6054 	ufs_lbn_t lbn;
6055 	ufs_lbn_t lastlbn;
6056 	ufs2_daddr_t blkno;
6057 {
6058 	struct indirdep *indirdep;
6059 	struct indirdep *indirn;
6060 	struct freework *freework;
6061 	struct newblk *newblk;
6062 	struct mount *mp;
6063 	struct buf *bp;
6064 	uint8_t *start;
6065 	uint8_t *end;
6066 	ufs_lbn_t lbnadd;
6067 	int level;
6068 	int error;
6069 	int off;
6070 
6071 
6072 	freework = NULL;
6073 	if (blkno == 0)
6074 		return (0);
6075 	mp = freeblks->fb_list.wk_mp;
6076 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6077 	if ((bp->b_flags & B_CACHE) == 0) {
6078 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6079 		bp->b_iocmd = BIO_READ;
6080 		bp->b_flags &= ~B_INVAL;
6081 		bp->b_ioflags &= ~BIO_ERROR;
6082 		vfs_busy_pages(bp, 0);
6083 		bp->b_iooffset = dbtob(bp->b_blkno);
6084 		bstrategy(bp);
6085 		curthread->td_ru.ru_inblock++;
6086 		error = bufwait(bp);
6087 		if (error) {
6088 			brelse(bp);
6089 			return (error);
6090 		}
6091 	}
6092 	level = lbn_level(lbn);
6093 	lbnadd = lbn_offset(ip->i_fs, level);
6094 	/*
6095 	 * Compute the offset of the last block we want to keep.  Store
6096 	 * in the freework the first block we want to completely free.
6097 	 */
6098 	off = (lastlbn - -(lbn + level)) / lbnadd;
6099 	if (off + 1 == NINDIR(ip->i_fs))
6100 		goto nowork;
6101 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6102 	    0);
6103 	/*
6104 	 * Link the freework into the indirdep.  This will prevent any new
6105 	 * allocations from proceeding until we are finished with the
6106 	 * truncate and the block is written.
6107 	 */
6108 	ACQUIRE_LOCK(ip->i_ump);
6109 	indirdep = indirdep_lookup(mp, ip, bp);
6110 	if (indirdep->ir_freeblks)
6111 		panic("setup_trunc_indir: indirdep already truncated.");
6112 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6113 	freework->fw_indir = indirdep;
6114 	/*
6115 	 * Cancel any allocindirs that will not make it to disk.
6116 	 * We have to do this for all copies of the indirdep that
6117 	 * live on this newblk.
6118 	 */
6119 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6120 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6121 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6122 			trunc_indirdep(indirn, freeblks, bp, off);
6123 	} else
6124 		trunc_indirdep(indirdep, freeblks, bp, off);
6125 	FREE_LOCK(ip->i_ump);
6126 	/*
6127 	 * Creation is protected by the buf lock. The saveddata is only
6128 	 * needed if a full truncation follows a partial truncation but it
6129 	 * is difficult to allocate in that case so we fetch it anyway.
6130 	 */
6131 	if (indirdep->ir_saveddata == NULL)
6132 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6133 		    M_SOFTDEP_FLAGS);
6134 nowork:
6135 	/* Fetch the blkno of the child and the zero start offset. */
6136 	if (ip->i_ump->um_fstype == UFS1) {
6137 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6138 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6139 	} else {
6140 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6141 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6142 	}
6143 	if (freework) {
6144 		/* Zero the truncated pointers. */
6145 		end = bp->b_data + bp->b_bcount;
6146 		bzero(start, end - start);
6147 		bdwrite(bp);
6148 	} else
6149 		bqrelse(bp);
6150 	if (level == 0)
6151 		return (0);
6152 	lbn++; /* adjust level */
6153 	lbn -= (off * lbnadd);
6154 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6155 }
6156 
6157 /*
6158  * Complete the partial truncation of an indirect block setup by
6159  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6160  * copy and writes them to disk before the freeblks is allowed to complete.
6161  */
6162 static void
6163 complete_trunc_indir(freework)
6164 	struct freework *freework;
6165 {
6166 	struct freework *fwn;
6167 	struct indirdep *indirdep;
6168 	struct ufsmount *ump;
6169 	struct buf *bp;
6170 	uintptr_t start;
6171 	int count;
6172 
6173 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6174 	LOCK_OWNED(ump);
6175 	indirdep = freework->fw_indir;
6176 	for (;;) {
6177 		bp = indirdep->ir_bp;
6178 		/* See if the block was discarded. */
6179 		if (bp == NULL)
6180 			break;
6181 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6182 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6183 			break;
6184 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6185 		    LOCK_PTR(ump)) == 0)
6186 			BUF_UNLOCK(bp);
6187 		ACQUIRE_LOCK(ump);
6188 	}
6189 	freework->fw_state |= DEPCOMPLETE;
6190 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6191 	/*
6192 	 * Zero the pointers in the saved copy.
6193 	 */
6194 	if (indirdep->ir_state & UFS1FMT)
6195 		start = sizeof(ufs1_daddr_t);
6196 	else
6197 		start = sizeof(ufs2_daddr_t);
6198 	start *= freework->fw_start;
6199 	count = indirdep->ir_savebp->b_bcount - start;
6200 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6201 	bzero((char *)start, count);
6202 	/*
6203 	 * We need to start the next truncation in the list if it has not
6204 	 * been started yet.
6205 	 */
6206 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6207 	if (fwn != NULL) {
6208 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6209 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6210 		if ((fwn->fw_state & ONWORKLIST) == 0)
6211 			freework_enqueue(fwn);
6212 	}
6213 	/*
6214 	 * If bp is NULL the block was fully truncated, restore
6215 	 * the saved block list otherwise free it if it is no
6216 	 * longer needed.
6217 	 */
6218 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6219 		if (bp == NULL)
6220 			bcopy(indirdep->ir_saveddata,
6221 			    indirdep->ir_savebp->b_data,
6222 			    indirdep->ir_savebp->b_bcount);
6223 		free(indirdep->ir_saveddata, M_INDIRDEP);
6224 		indirdep->ir_saveddata = NULL;
6225 	}
6226 	/*
6227 	 * When bp is NULL there is a full truncation pending.  We
6228 	 * must wait for this full truncation to be journaled before
6229 	 * we can release this freework because the disk pointers will
6230 	 * never be written as zero.
6231 	 */
6232 	if (bp == NULL)  {
6233 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6234 			handle_written_freework(freework);
6235 		else
6236 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6237 			   &freework->fw_list);
6238 	} else {
6239 		/* Complete when the real copy is written. */
6240 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6241 		BUF_UNLOCK(bp);
6242 	}
6243 }
6244 
6245 /*
6246  * Calculate the number of blocks we are going to release where datablocks
6247  * is the current total and length is the new file size.
6248  */
6249 static ufs2_daddr_t
6250 blkcount(fs, datablocks, length)
6251 	struct fs *fs;
6252 	ufs2_daddr_t datablocks;
6253 	off_t length;
6254 {
6255 	off_t totblks, numblks;
6256 
6257 	totblks = 0;
6258 	numblks = howmany(length, fs->fs_bsize);
6259 	if (numblks <= NDADDR) {
6260 		totblks = howmany(length, fs->fs_fsize);
6261 		goto out;
6262 	}
6263         totblks = blkstofrags(fs, numblks);
6264 	numblks -= NDADDR;
6265 	/*
6266 	 * Count all single, then double, then triple indirects required.
6267 	 * Subtracting one indirects worth of blocks for each pass
6268 	 * acknowledges one of each pointed to by the inode.
6269 	 */
6270 	for (;;) {
6271 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6272 		numblks -= NINDIR(fs);
6273 		if (numblks <= 0)
6274 			break;
6275 		numblks = howmany(numblks, NINDIR(fs));
6276 	}
6277 out:
6278 	totblks = fsbtodb(fs, totblks);
6279 	/*
6280 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6281 	 * references.  We will correct it later in handle_complete_freeblks()
6282 	 * when we know the real count.
6283 	 */
6284 	if (totblks > datablocks)
6285 		return (0);
6286 	return (datablocks - totblks);
6287 }
6288 
6289 /*
6290  * Handle freeblocks for journaled softupdate filesystems.
6291  *
6292  * Contrary to normal softupdates, we must preserve the block pointers in
6293  * indirects until their subordinates are free.  This is to avoid journaling
6294  * every block that is freed which may consume more space than the journal
6295  * itself.  The recovery program will see the free block journals at the
6296  * base of the truncated area and traverse them to reclaim space.  The
6297  * pointers in the inode may be cleared immediately after the journal
6298  * records are written because each direct and indirect pointer in the
6299  * inode is recorded in a journal.  This permits full truncation to proceed
6300  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6301  *
6302  * The algorithm is as follows:
6303  * 1) Traverse the in-memory state and create journal entries to release
6304  *    the relevant blocks and full indirect trees.
6305  * 2) Traverse the indirect block chain adding partial truncation freework
6306  *    records to indirects in the path to lastlbn.  The freework will
6307  *    prevent new allocation dependencies from being satisfied in this
6308  *    indirect until the truncation completes.
6309  * 3) Read and lock the inode block, performing an update with the new size
6310  *    and pointers.  This prevents truncated data from becoming valid on
6311  *    disk through step 4.
6312  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6313  *    eliminate journal work for those records that do not require it.
6314  * 5) Schedule the journal records to be written followed by the inode block.
6315  * 6) Allocate any necessary frags for the end of file.
6316  * 7) Zero any partially truncated blocks.
6317  *
6318  * From this truncation proceeds asynchronously using the freework and
6319  * indir_trunc machinery.  The file will not be extended again into a
6320  * partially truncated indirect block until all work is completed but
6321  * the normal dependency mechanism ensures that it is rolled back/forward
6322  * as appropriate.  Further truncation may occur without delay and is
6323  * serialized in indir_trunc().
6324  */
6325 void
6326 softdep_journal_freeblocks(ip, cred, length, flags)
6327 	struct inode *ip;	/* The inode whose length is to be reduced */
6328 	struct ucred *cred;
6329 	off_t length;		/* The new length for the file */
6330 	int flags;		/* IO_EXT and/or IO_NORMAL */
6331 {
6332 	struct freeblks *freeblks, *fbn;
6333 	struct worklist *wk, *wkn;
6334 	struct inodedep *inodedep;
6335 	struct jblkdep *jblkdep;
6336 	struct allocdirect *adp, *adpn;
6337 	struct ufsmount *ump;
6338 	struct fs *fs;
6339 	struct buf *bp;
6340 	struct vnode *vp;
6341 	struct mount *mp;
6342 	ufs2_daddr_t extblocks, datablocks;
6343 	ufs_lbn_t tmpval, lbn, lastlbn;
6344 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6345 
6346 	fs = ip->i_fs;
6347 	ump = ip->i_ump;
6348 	mp = UFSTOVFS(ump);
6349 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6350 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6351 	vp = ITOV(ip);
6352 	needj = 1;
6353 	iboff = -1;
6354 	allocblock = 0;
6355 	extblocks = 0;
6356 	datablocks = 0;
6357 	frags = 0;
6358 	freeblks = newfreeblks(mp, ip);
6359 	ACQUIRE_LOCK(ump);
6360 	/*
6361 	 * If we're truncating a removed file that will never be written
6362 	 * we don't need to journal the block frees.  The canceled journals
6363 	 * for the allocations will suffice.
6364 	 */
6365 	dflags = DEPALLOC;
6366 	if (IS_SNAPSHOT(ip))
6367 		dflags |= NODELAY;
6368 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6369 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6370 	    length == 0)
6371 		needj = 0;
6372 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6373 	    ip->i_number, length, needj);
6374 	FREE_LOCK(ump);
6375 	/*
6376 	 * Calculate the lbn that we are truncating to.  This results in -1
6377 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6378 	 * to keep, not the first lbn we want to truncate.
6379 	 */
6380 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6381 	lastoff = blkoff(fs, length);
6382 	/*
6383 	 * Compute frags we are keeping in lastlbn.  0 means all.
6384 	 */
6385 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6386 		frags = fragroundup(fs, lastoff);
6387 		/* adp offset of last valid allocdirect. */
6388 		iboff = lastlbn;
6389 	} else if (lastlbn > 0)
6390 		iboff = NDADDR;
6391 	if (fs->fs_magic == FS_UFS2_MAGIC)
6392 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6393 	/*
6394 	 * Handle normal data blocks and indirects.  This section saves
6395 	 * values used after the inode update to complete frag and indirect
6396 	 * truncation.
6397 	 */
6398 	if ((flags & IO_NORMAL) != 0) {
6399 		/*
6400 		 * Handle truncation of whole direct and indirect blocks.
6401 		 */
6402 		for (i = iboff + 1; i < NDADDR; i++)
6403 			setup_freedirect(freeblks, ip, i, needj);
6404 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6405 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6406 			/* Release a whole indirect tree. */
6407 			if (lbn > lastlbn) {
6408 				setup_freeindir(freeblks, ip, i, -lbn -i,
6409 				    needj);
6410 				continue;
6411 			}
6412 			iboff = i + NDADDR;
6413 			/*
6414 			 * Traverse partially truncated indirect tree.
6415 			 */
6416 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6417 				setup_trunc_indir(freeblks, ip, -lbn - i,
6418 				    lastlbn, DIP(ip, i_ib[i]));
6419 		}
6420 		/*
6421 		 * Handle partial truncation to a frag boundary.
6422 		 */
6423 		if (frags) {
6424 			ufs2_daddr_t blkno;
6425 			long oldfrags;
6426 
6427 			oldfrags = blksize(fs, ip, lastlbn);
6428 			blkno = DIP(ip, i_db[lastlbn]);
6429 			if (blkno && oldfrags != frags) {
6430 				oldfrags -= frags;
6431 				oldfrags = numfrags(ip->i_fs, oldfrags);
6432 				blkno += numfrags(ip->i_fs, frags);
6433 				newfreework(ump, freeblks, NULL, lastlbn,
6434 				    blkno, oldfrags, 0, needj);
6435 			} else if (blkno == 0)
6436 				allocblock = 1;
6437 		}
6438 		/*
6439 		 * Add a journal record for partial truncate if we are
6440 		 * handling indirect blocks.  Non-indirects need no extra
6441 		 * journaling.
6442 		 */
6443 		if (length != 0 && lastlbn >= NDADDR) {
6444 			ip->i_flag |= IN_TRUNCATED;
6445 			newjtrunc(freeblks, length, 0);
6446 		}
6447 		ip->i_size = length;
6448 		DIP_SET(ip, i_size, ip->i_size);
6449 		datablocks = DIP(ip, i_blocks) - extblocks;
6450 		if (length != 0)
6451 			datablocks = blkcount(ip->i_fs, datablocks, length);
6452 		freeblks->fb_len = length;
6453 	}
6454 	if ((flags & IO_EXT) != 0) {
6455 		for (i = 0; i < NXADDR; i++)
6456 			setup_freeext(freeblks, ip, i, needj);
6457 		ip->i_din2->di_extsize = 0;
6458 		datablocks += extblocks;
6459 	}
6460 #ifdef QUOTA
6461 	/* Reference the quotas in case the block count is wrong in the end. */
6462 	quotaref(vp, freeblks->fb_quota);
6463 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6464 #endif
6465 	freeblks->fb_chkcnt = -datablocks;
6466 	UFS_LOCK(ump);
6467 	fs->fs_pendingblocks += datablocks;
6468 	UFS_UNLOCK(ump);
6469 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6470 	/*
6471 	 * Handle truncation of incomplete alloc direct dependencies.  We
6472 	 * hold the inode block locked to prevent incomplete dependencies
6473 	 * from reaching the disk while we are eliminating those that
6474 	 * have been truncated.  This is a partially inlined ffs_update().
6475 	 */
6476 	ufs_itimes(vp);
6477 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6478 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6479 	    (int)fs->fs_bsize, cred, &bp);
6480 	if (error) {
6481 		brelse(bp);
6482 		softdep_error("softdep_journal_freeblocks", error);
6483 		return;
6484 	}
6485 	if (bp->b_bufsize == fs->fs_bsize)
6486 		bp->b_flags |= B_CLUSTEROK;
6487 	softdep_update_inodeblock(ip, bp, 0);
6488 	if (ump->um_fstype == UFS1)
6489 		*((struct ufs1_dinode *)bp->b_data +
6490 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6491 	else
6492 		*((struct ufs2_dinode *)bp->b_data +
6493 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6494 	ACQUIRE_LOCK(ump);
6495 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6496 	if ((inodedep->id_state & IOSTARTED) != 0)
6497 		panic("softdep_setup_freeblocks: inode busy");
6498 	/*
6499 	 * Add the freeblks structure to the list of operations that
6500 	 * must await the zero'ed inode being written to disk. If we
6501 	 * still have a bitmap dependency (needj), then the inode
6502 	 * has never been written to disk, so we can process the
6503 	 * freeblks below once we have deleted the dependencies.
6504 	 */
6505 	if (needj)
6506 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6507 	else
6508 		freeblks->fb_state |= COMPLETE;
6509 	if ((flags & IO_NORMAL) != 0) {
6510 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6511 			if (adp->ad_offset > iboff)
6512 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6513 				    freeblks);
6514 			/*
6515 			 * Truncate the allocdirect.  We could eliminate
6516 			 * or modify journal records as well.
6517 			 */
6518 			else if (adp->ad_offset == iboff && frags)
6519 				adp->ad_newsize = frags;
6520 		}
6521 	}
6522 	if ((flags & IO_EXT) != 0)
6523 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6524 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6525 			    freeblks);
6526 	/*
6527 	 * Scan the bufwait list for newblock dependencies that will never
6528 	 * make it to disk.
6529 	 */
6530 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6531 		if (wk->wk_type != D_ALLOCDIRECT)
6532 			continue;
6533 		adp = WK_ALLOCDIRECT(wk);
6534 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6535 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6536 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6537 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6538 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6539 		}
6540 	}
6541 	/*
6542 	 * Add journal work.
6543 	 */
6544 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6545 		add_to_journal(&jblkdep->jb_list);
6546 	FREE_LOCK(ump);
6547 	bdwrite(bp);
6548 	/*
6549 	 * Truncate dependency structures beyond length.
6550 	 */
6551 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6552 	/*
6553 	 * This is only set when we need to allocate a fragment because
6554 	 * none existed at the end of a frag-sized file.  It handles only
6555 	 * allocating a new, zero filled block.
6556 	 */
6557 	if (allocblock) {
6558 		ip->i_size = length - lastoff;
6559 		DIP_SET(ip, i_size, ip->i_size);
6560 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6561 		if (error != 0) {
6562 			softdep_error("softdep_journal_freeblks", error);
6563 			return;
6564 		}
6565 		ip->i_size = length;
6566 		DIP_SET(ip, i_size, length);
6567 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6568 		allocbuf(bp, frags);
6569 		ffs_update(vp, 0);
6570 		bawrite(bp);
6571 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6572 		int size;
6573 
6574 		/*
6575 		 * Zero the end of a truncated frag or block.
6576 		 */
6577 		size = sblksize(fs, length, lastlbn);
6578 		error = bread(vp, lastlbn, size, cred, &bp);
6579 		if (error) {
6580 			softdep_error("softdep_journal_freeblks", error);
6581 			return;
6582 		}
6583 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6584 		bawrite(bp);
6585 
6586 	}
6587 	ACQUIRE_LOCK(ump);
6588 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6589 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6590 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6591 	/*
6592 	 * We zero earlier truncations so they don't erroneously
6593 	 * update i_blocks.
6594 	 */
6595 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6596 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6597 			fbn->fb_len = 0;
6598 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6599 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6600 		freeblks->fb_state |= INPROGRESS;
6601 	else
6602 		freeblks = NULL;
6603 	FREE_LOCK(ump);
6604 	if (freeblks)
6605 		handle_workitem_freeblocks(freeblks, 0);
6606 	trunc_pages(ip, length, extblocks, flags);
6607 
6608 }
6609 
6610 /*
6611  * Flush a JOP_SYNC to the journal.
6612  */
6613 void
6614 softdep_journal_fsync(ip)
6615 	struct inode *ip;
6616 {
6617 	struct jfsync *jfsync;
6618 
6619 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6620 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6621 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6622 		return;
6623 	ip->i_flag &= ~IN_TRUNCATED;
6624 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6625 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6626 	jfsync->jfs_size = ip->i_size;
6627 	jfsync->jfs_ino = ip->i_number;
6628 	ACQUIRE_LOCK(ip->i_ump);
6629 	add_to_journal(&jfsync->jfs_list);
6630 	jwait(&jfsync->jfs_list, MNT_WAIT);
6631 	FREE_LOCK(ip->i_ump);
6632 }
6633 
6634 /*
6635  * Block de-allocation dependencies.
6636  *
6637  * When blocks are de-allocated, the on-disk pointers must be nullified before
6638  * the blocks are made available for use by other files.  (The true
6639  * requirement is that old pointers must be nullified before new on-disk
6640  * pointers are set.  We chose this slightly more stringent requirement to
6641  * reduce complexity.) Our implementation handles this dependency by updating
6642  * the inode (or indirect block) appropriately but delaying the actual block
6643  * de-allocation (i.e., freemap and free space count manipulation) until
6644  * after the updated versions reach stable storage.  After the disk is
6645  * updated, the blocks can be safely de-allocated whenever it is convenient.
6646  * This implementation handles only the common case of reducing a file's
6647  * length to zero. Other cases are handled by the conventional synchronous
6648  * write approach.
6649  *
6650  * The ffs implementation with which we worked double-checks
6651  * the state of the block pointers and file size as it reduces
6652  * a file's length.  Some of this code is replicated here in our
6653  * soft updates implementation.  The freeblks->fb_chkcnt field is
6654  * used to transfer a part of this information to the procedure
6655  * that eventually de-allocates the blocks.
6656  *
6657  * This routine should be called from the routine that shortens
6658  * a file's length, before the inode's size or block pointers
6659  * are modified. It will save the block pointer information for
6660  * later release and zero the inode so that the calling routine
6661  * can release it.
6662  */
6663 void
6664 softdep_setup_freeblocks(ip, length, flags)
6665 	struct inode *ip;	/* The inode whose length is to be reduced */
6666 	off_t length;		/* The new length for the file */
6667 	int flags;		/* IO_EXT and/or IO_NORMAL */
6668 {
6669 	struct ufs1_dinode *dp1;
6670 	struct ufs2_dinode *dp2;
6671 	struct freeblks *freeblks;
6672 	struct inodedep *inodedep;
6673 	struct allocdirect *adp;
6674 	struct ufsmount *ump;
6675 	struct buf *bp;
6676 	struct fs *fs;
6677 	ufs2_daddr_t extblocks, datablocks;
6678 	struct mount *mp;
6679 	int i, delay, error, dflags;
6680 	ufs_lbn_t tmpval;
6681 	ufs_lbn_t lbn;
6682 
6683 	ump = ip->i_ump;
6684 	mp = UFSTOVFS(ump);
6685 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6686 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6687 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6688 	    ip->i_number, length);
6689 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6690 	fs = ip->i_fs;
6691 	freeblks = newfreeblks(mp, ip);
6692 	extblocks = 0;
6693 	datablocks = 0;
6694 	if (fs->fs_magic == FS_UFS2_MAGIC)
6695 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6696 	if ((flags & IO_NORMAL) != 0) {
6697 		for (i = 0; i < NDADDR; i++)
6698 			setup_freedirect(freeblks, ip, i, 0);
6699 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6700 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6701 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6702 		ip->i_size = 0;
6703 		DIP_SET(ip, i_size, 0);
6704 		datablocks = DIP(ip, i_blocks) - extblocks;
6705 	}
6706 	if ((flags & IO_EXT) != 0) {
6707 		for (i = 0; i < NXADDR; i++)
6708 			setup_freeext(freeblks, ip, i, 0);
6709 		ip->i_din2->di_extsize = 0;
6710 		datablocks += extblocks;
6711 	}
6712 #ifdef QUOTA
6713 	/* Reference the quotas in case the block count is wrong in the end. */
6714 	quotaref(ITOV(ip), freeblks->fb_quota);
6715 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6716 #endif
6717 	freeblks->fb_chkcnt = -datablocks;
6718 	UFS_LOCK(ump);
6719 	fs->fs_pendingblocks += datablocks;
6720 	UFS_UNLOCK(ump);
6721 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6722 	/*
6723 	 * Push the zero'ed inode to to its disk buffer so that we are free
6724 	 * to delete its dependencies below. Once the dependencies are gone
6725 	 * the buffer can be safely released.
6726 	 */
6727 	if ((error = bread(ip->i_devvp,
6728 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6729 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6730 		brelse(bp);
6731 		softdep_error("softdep_setup_freeblocks", error);
6732 	}
6733 	if (ump->um_fstype == UFS1) {
6734 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6735 		    ino_to_fsbo(fs, ip->i_number));
6736 		ip->i_din1->di_freelink = dp1->di_freelink;
6737 		*dp1 = *ip->i_din1;
6738 	} else {
6739 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6740 		    ino_to_fsbo(fs, ip->i_number));
6741 		ip->i_din2->di_freelink = dp2->di_freelink;
6742 		*dp2 = *ip->i_din2;
6743 	}
6744 	/*
6745 	 * Find and eliminate any inode dependencies.
6746 	 */
6747 	ACQUIRE_LOCK(ump);
6748 	dflags = DEPALLOC;
6749 	if (IS_SNAPSHOT(ip))
6750 		dflags |= NODELAY;
6751 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6752 	if ((inodedep->id_state & IOSTARTED) != 0)
6753 		panic("softdep_setup_freeblocks: inode busy");
6754 	/*
6755 	 * Add the freeblks structure to the list of operations that
6756 	 * must await the zero'ed inode being written to disk. If we
6757 	 * still have a bitmap dependency (delay == 0), then the inode
6758 	 * has never been written to disk, so we can process the
6759 	 * freeblks below once we have deleted the dependencies.
6760 	 */
6761 	delay = (inodedep->id_state & DEPCOMPLETE);
6762 	if (delay)
6763 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6764 	else
6765 		freeblks->fb_state |= COMPLETE;
6766 	/*
6767 	 * Because the file length has been truncated to zero, any
6768 	 * pending block allocation dependency structures associated
6769 	 * with this inode are obsolete and can simply be de-allocated.
6770 	 * We must first merge the two dependency lists to get rid of
6771 	 * any duplicate freefrag structures, then purge the merged list.
6772 	 * If we still have a bitmap dependency, then the inode has never
6773 	 * been written to disk, so we can free any fragments without delay.
6774 	 */
6775 	if (flags & IO_NORMAL) {
6776 		merge_inode_lists(&inodedep->id_newinoupdt,
6777 		    &inodedep->id_inoupdt);
6778 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6779 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6780 			    freeblks);
6781 	}
6782 	if (flags & IO_EXT) {
6783 		merge_inode_lists(&inodedep->id_newextupdt,
6784 		    &inodedep->id_extupdt);
6785 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6786 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6787 			    freeblks);
6788 	}
6789 	FREE_LOCK(ump);
6790 	bdwrite(bp);
6791 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6792 	ACQUIRE_LOCK(ump);
6793 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6794 		(void) free_inodedep(inodedep);
6795 	freeblks->fb_state |= DEPCOMPLETE;
6796 	/*
6797 	 * If the inode with zeroed block pointers is now on disk
6798 	 * we can start freeing blocks.
6799 	 */
6800 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6801 		freeblks->fb_state |= INPROGRESS;
6802 	else
6803 		freeblks = NULL;
6804 	FREE_LOCK(ump);
6805 	if (freeblks)
6806 		handle_workitem_freeblocks(freeblks, 0);
6807 	trunc_pages(ip, length, extblocks, flags);
6808 }
6809 
6810 /*
6811  * Eliminate pages from the page cache that back parts of this inode and
6812  * adjust the vnode pager's idea of our size.  This prevents stale data
6813  * from hanging around in the page cache.
6814  */
6815 static void
6816 trunc_pages(ip, length, extblocks, flags)
6817 	struct inode *ip;
6818 	off_t length;
6819 	ufs2_daddr_t extblocks;
6820 	int flags;
6821 {
6822 	struct vnode *vp;
6823 	struct fs *fs;
6824 	ufs_lbn_t lbn;
6825 	off_t end, extend;
6826 
6827 	vp = ITOV(ip);
6828 	fs = ip->i_fs;
6829 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6830 	if ((flags & IO_EXT) != 0)
6831 		vn_pages_remove(vp, extend, 0);
6832 	if ((flags & IO_NORMAL) == 0)
6833 		return;
6834 	BO_LOCK(&vp->v_bufobj);
6835 	drain_output(vp);
6836 	BO_UNLOCK(&vp->v_bufobj);
6837 	/*
6838 	 * The vnode pager eliminates file pages we eliminate indirects
6839 	 * below.
6840 	 */
6841 	vnode_pager_setsize(vp, length);
6842 	/*
6843 	 * Calculate the end based on the last indirect we want to keep.  If
6844 	 * the block extends into indirects we can just use the negative of
6845 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6846 	 * be careful not to remove those, if they exist.  double and triple
6847 	 * indirect lbns do not overlap with others so it is not important
6848 	 * to verify how many levels are required.
6849 	 */
6850 	lbn = lblkno(fs, length);
6851 	if (lbn >= NDADDR) {
6852 		/* Calculate the virtual lbn of the triple indirect. */
6853 		lbn = -lbn - (NIADDR - 1);
6854 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6855 	} else
6856 		end = extend;
6857 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6858 }
6859 
6860 /*
6861  * See if the buf bp is in the range eliminated by truncation.
6862  */
6863 static int
6864 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6865 	struct buf *bp;
6866 	int *blkoffp;
6867 	ufs_lbn_t lastlbn;
6868 	int lastoff;
6869 	int flags;
6870 {
6871 	ufs_lbn_t lbn;
6872 
6873 	*blkoffp = 0;
6874 	/* Only match ext/normal blocks as appropriate. */
6875 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6876 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6877 		return (0);
6878 	/* ALTDATA is always a full truncation. */
6879 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6880 		return (1);
6881 	/* -1 is full truncation. */
6882 	if (lastlbn == -1)
6883 		return (1);
6884 	/*
6885 	 * If this is a partial truncate we only want those
6886 	 * blocks and indirect blocks that cover the range
6887 	 * we're after.
6888 	 */
6889 	lbn = bp->b_lblkno;
6890 	if (lbn < 0)
6891 		lbn = -(lbn + lbn_level(lbn));
6892 	if (lbn < lastlbn)
6893 		return (0);
6894 	/* Here we only truncate lblkno if it's partial. */
6895 	if (lbn == lastlbn) {
6896 		if (lastoff == 0)
6897 			return (0);
6898 		*blkoffp = lastoff;
6899 	}
6900 	return (1);
6901 }
6902 
6903 /*
6904  * Eliminate any dependencies that exist in memory beyond lblkno:off
6905  */
6906 static void
6907 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6908 	struct inode *ip;
6909 	struct freeblks *freeblks;
6910 	ufs_lbn_t lastlbn;
6911 	int lastoff;
6912 	int flags;
6913 {
6914 	struct bufobj *bo;
6915 	struct vnode *vp;
6916 	struct buf *bp;
6917 	struct fs *fs;
6918 	int blkoff;
6919 
6920 	/*
6921 	 * We must wait for any I/O in progress to finish so that
6922 	 * all potential buffers on the dirty list will be visible.
6923 	 * Once they are all there, walk the list and get rid of
6924 	 * any dependencies.
6925 	 */
6926 	fs = ip->i_fs;
6927 	vp = ITOV(ip);
6928 	bo = &vp->v_bufobj;
6929 	BO_LOCK(bo);
6930 	drain_output(vp);
6931 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6932 		bp->b_vflags &= ~BV_SCANNED;
6933 restart:
6934 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6935 		if (bp->b_vflags & BV_SCANNED)
6936 			continue;
6937 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6938 			bp->b_vflags |= BV_SCANNED;
6939 			continue;
6940 		}
6941 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
6942 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
6943 			goto restart;
6944 		BO_UNLOCK(bo);
6945 		if (deallocate_dependencies(bp, freeblks, blkoff))
6946 			bqrelse(bp);
6947 		else
6948 			brelse(bp);
6949 		BO_LOCK(bo);
6950 		goto restart;
6951 	}
6952 	/*
6953 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6954 	 */
6955 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6956 		bp->b_vflags &= ~BV_SCANNED;
6957 cleanrestart:
6958 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6959 		if (bp->b_vflags & BV_SCANNED)
6960 			continue;
6961 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6962 			bp->b_vflags |= BV_SCANNED;
6963 			continue;
6964 		}
6965 		if (BUF_LOCK(bp,
6966 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6967 		    BO_LOCKPTR(bo)) == ENOLCK) {
6968 			BO_LOCK(bo);
6969 			goto cleanrestart;
6970 		}
6971 		bp->b_vflags |= BV_SCANNED;
6972 		bremfree(bp);
6973 		if (blkoff != 0) {
6974 			allocbuf(bp, blkoff);
6975 			bqrelse(bp);
6976 		} else {
6977 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6978 			brelse(bp);
6979 		}
6980 		BO_LOCK(bo);
6981 		goto cleanrestart;
6982 	}
6983 	drain_output(vp);
6984 	BO_UNLOCK(bo);
6985 }
6986 
6987 static int
6988 cancel_pagedep(pagedep, freeblks, blkoff)
6989 	struct pagedep *pagedep;
6990 	struct freeblks *freeblks;
6991 	int blkoff;
6992 {
6993 	struct jremref *jremref;
6994 	struct jmvref *jmvref;
6995 	struct dirrem *dirrem, *tmp;
6996 	int i;
6997 
6998 	/*
6999 	 * Copy any directory remove dependencies to the list
7000 	 * to be processed after the freeblks proceeds.  If
7001 	 * directory entry never made it to disk they
7002 	 * can be dumped directly onto the work list.
7003 	 */
7004 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7005 		/* Skip this directory removal if it is intended to remain. */
7006 		if (dirrem->dm_offset < blkoff)
7007 			continue;
7008 		/*
7009 		 * If there are any dirrems we wait for the journal write
7010 		 * to complete and then restart the buf scan as the lock
7011 		 * has been dropped.
7012 		 */
7013 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7014 			jwait(&jremref->jr_list, MNT_WAIT);
7015 			return (ERESTART);
7016 		}
7017 		LIST_REMOVE(dirrem, dm_next);
7018 		dirrem->dm_dirinum = pagedep->pd_ino;
7019 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7020 	}
7021 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7022 		jwait(&jmvref->jm_list, MNT_WAIT);
7023 		return (ERESTART);
7024 	}
7025 	/*
7026 	 * When we're partially truncating a pagedep we just want to flush
7027 	 * journal entries and return.  There can not be any adds in the
7028 	 * truncated portion of the directory and newblk must remain if
7029 	 * part of the block remains.
7030 	 */
7031 	if (blkoff != 0) {
7032 		struct diradd *dap;
7033 
7034 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7035 			if (dap->da_offset > blkoff)
7036 				panic("cancel_pagedep: diradd %p off %d > %d",
7037 				    dap, dap->da_offset, blkoff);
7038 		for (i = 0; i < DAHASHSZ; i++)
7039 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7040 				if (dap->da_offset > blkoff)
7041 					panic("cancel_pagedep: diradd %p off %d > %d",
7042 					    dap, dap->da_offset, blkoff);
7043 		return (0);
7044 	}
7045 	/*
7046 	 * There should be no directory add dependencies present
7047 	 * as the directory could not be truncated until all
7048 	 * children were removed.
7049 	 */
7050 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7051 	    ("deallocate_dependencies: pendinghd != NULL"));
7052 	for (i = 0; i < DAHASHSZ; i++)
7053 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7054 		    ("deallocate_dependencies: diraddhd != NULL"));
7055 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7056 		free_newdirblk(pagedep->pd_newdirblk);
7057 	if (free_pagedep(pagedep) == 0)
7058 		panic("Failed to free pagedep %p", pagedep);
7059 	return (0);
7060 }
7061 
7062 /*
7063  * Reclaim any dependency structures from a buffer that is about to
7064  * be reallocated to a new vnode. The buffer must be locked, thus,
7065  * no I/O completion operations can occur while we are manipulating
7066  * its associated dependencies. The mutex is held so that other I/O's
7067  * associated with related dependencies do not occur.
7068  */
7069 static int
7070 deallocate_dependencies(bp, freeblks, off)
7071 	struct buf *bp;
7072 	struct freeblks *freeblks;
7073 	int off;
7074 {
7075 	struct indirdep *indirdep;
7076 	struct pagedep *pagedep;
7077 	struct allocdirect *adp;
7078 	struct worklist *wk, *wkn;
7079 	struct ufsmount *ump;
7080 
7081 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7082 		goto done;
7083 	ump = VFSTOUFS(wk->wk_mp);
7084 	ACQUIRE_LOCK(ump);
7085 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7086 		switch (wk->wk_type) {
7087 		case D_INDIRDEP:
7088 			indirdep = WK_INDIRDEP(wk);
7089 			if (bp->b_lblkno >= 0 ||
7090 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7091 				panic("deallocate_dependencies: not indir");
7092 			cancel_indirdep(indirdep, bp, freeblks);
7093 			continue;
7094 
7095 		case D_PAGEDEP:
7096 			pagedep = WK_PAGEDEP(wk);
7097 			if (cancel_pagedep(pagedep, freeblks, off)) {
7098 				FREE_LOCK(ump);
7099 				return (ERESTART);
7100 			}
7101 			continue;
7102 
7103 		case D_ALLOCINDIR:
7104 			/*
7105 			 * Simply remove the allocindir, we'll find it via
7106 			 * the indirdep where we can clear pointers if
7107 			 * needed.
7108 			 */
7109 			WORKLIST_REMOVE(wk);
7110 			continue;
7111 
7112 		case D_FREEWORK:
7113 			/*
7114 			 * A truncation is waiting for the zero'd pointers
7115 			 * to be written.  It can be freed when the freeblks
7116 			 * is journaled.
7117 			 */
7118 			WORKLIST_REMOVE(wk);
7119 			wk->wk_state |= ONDEPLIST;
7120 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7121 			break;
7122 
7123 		case D_ALLOCDIRECT:
7124 			adp = WK_ALLOCDIRECT(wk);
7125 			if (off != 0)
7126 				continue;
7127 			/* FALLTHROUGH */
7128 		default:
7129 			panic("deallocate_dependencies: Unexpected type %s",
7130 			    TYPENAME(wk->wk_type));
7131 			/* NOTREACHED */
7132 		}
7133 	}
7134 	FREE_LOCK(ump);
7135 done:
7136 	/*
7137 	 * Don't throw away this buf, we were partially truncating and
7138 	 * some deps may always remain.
7139 	 */
7140 	if (off) {
7141 		allocbuf(bp, off);
7142 		bp->b_vflags |= BV_SCANNED;
7143 		return (EBUSY);
7144 	}
7145 	bp->b_flags |= B_INVAL | B_NOCACHE;
7146 
7147 	return (0);
7148 }
7149 
7150 /*
7151  * An allocdirect is being canceled due to a truncate.  We must make sure
7152  * the journal entry is released in concert with the blkfree that releases
7153  * the storage.  Completed journal entries must not be released until the
7154  * space is no longer pointed to by the inode or in the bitmap.
7155  */
7156 static void
7157 cancel_allocdirect(adphead, adp, freeblks)
7158 	struct allocdirectlst *adphead;
7159 	struct allocdirect *adp;
7160 	struct freeblks *freeblks;
7161 {
7162 	struct freework *freework;
7163 	struct newblk *newblk;
7164 	struct worklist *wk;
7165 
7166 	TAILQ_REMOVE(adphead, adp, ad_next);
7167 	newblk = (struct newblk *)adp;
7168 	freework = NULL;
7169 	/*
7170 	 * Find the correct freework structure.
7171 	 */
7172 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7173 		if (wk->wk_type != D_FREEWORK)
7174 			continue;
7175 		freework = WK_FREEWORK(wk);
7176 		if (freework->fw_blkno == newblk->nb_newblkno)
7177 			break;
7178 	}
7179 	if (freework == NULL)
7180 		panic("cancel_allocdirect: Freework not found");
7181 	/*
7182 	 * If a newblk exists at all we still have the journal entry that
7183 	 * initiated the allocation so we do not need to journal the free.
7184 	 */
7185 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7186 	/*
7187 	 * If the journal hasn't been written the jnewblk must be passed
7188 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7189 	 * this by linking the journal dependency into the freework to be
7190 	 * freed when freework_freeblock() is called.  If the journal has
7191 	 * been written we can simply reclaim the journal space when the
7192 	 * freeblks work is complete.
7193 	 */
7194 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7195 	    &freeblks->fb_jwork);
7196 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7197 }
7198 
7199 
7200 /*
7201  * Cancel a new block allocation.  May be an indirect or direct block.  We
7202  * remove it from various lists and return any journal record that needs to
7203  * be resolved by the caller.
7204  *
7205  * A special consideration is made for indirects which were never pointed
7206  * at on disk and will never be found once this block is released.
7207  */
7208 static struct jnewblk *
7209 cancel_newblk(newblk, wk, wkhd)
7210 	struct newblk *newblk;
7211 	struct worklist *wk;
7212 	struct workhead *wkhd;
7213 {
7214 	struct jnewblk *jnewblk;
7215 
7216 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7217 
7218 	newblk->nb_state |= GOINGAWAY;
7219 	/*
7220 	 * Previously we traversed the completedhd on each indirdep
7221 	 * attached to this newblk to cancel them and gather journal
7222 	 * work.  Since we need only the oldest journal segment and
7223 	 * the lowest point on the tree will always have the oldest
7224 	 * journal segment we are free to release the segments
7225 	 * of any subordinates and may leave the indirdep list to
7226 	 * indirdep_complete() when this newblk is freed.
7227 	 */
7228 	if (newblk->nb_state & ONDEPLIST) {
7229 		newblk->nb_state &= ~ONDEPLIST;
7230 		LIST_REMOVE(newblk, nb_deps);
7231 	}
7232 	if (newblk->nb_state & ONWORKLIST)
7233 		WORKLIST_REMOVE(&newblk->nb_list);
7234 	/*
7235 	 * If the journal entry hasn't been written we save a pointer to
7236 	 * the dependency that frees it until it is written or the
7237 	 * superseding operation completes.
7238 	 */
7239 	jnewblk = newblk->nb_jnewblk;
7240 	if (jnewblk != NULL && wk != NULL) {
7241 		newblk->nb_jnewblk = NULL;
7242 		jnewblk->jn_dep = wk;
7243 	}
7244 	if (!LIST_EMPTY(&newblk->nb_jwork))
7245 		jwork_move(wkhd, &newblk->nb_jwork);
7246 	/*
7247 	 * When truncating we must free the newdirblk early to remove
7248 	 * the pagedep from the hash before returning.
7249 	 */
7250 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7251 		free_newdirblk(WK_NEWDIRBLK(wk));
7252 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7253 		panic("cancel_newblk: extra newdirblk");
7254 
7255 	return (jnewblk);
7256 }
7257 
7258 /*
7259  * Schedule the freefrag associated with a newblk to be released once
7260  * the pointers are written and the previous block is no longer needed.
7261  */
7262 static void
7263 newblk_freefrag(newblk)
7264 	struct newblk *newblk;
7265 {
7266 	struct freefrag *freefrag;
7267 
7268 	if (newblk->nb_freefrag == NULL)
7269 		return;
7270 	freefrag = newblk->nb_freefrag;
7271 	newblk->nb_freefrag = NULL;
7272 	freefrag->ff_state |= COMPLETE;
7273 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7274 		add_to_worklist(&freefrag->ff_list, 0);
7275 }
7276 
7277 /*
7278  * Free a newblk. Generate a new freefrag work request if appropriate.
7279  * This must be called after the inode pointer and any direct block pointers
7280  * are valid or fully removed via truncate or frag extension.
7281  */
7282 static void
7283 free_newblk(newblk)
7284 	struct newblk *newblk;
7285 {
7286 	struct indirdep *indirdep;
7287 	struct worklist *wk;
7288 
7289 	KASSERT(newblk->nb_jnewblk == NULL,
7290 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7291 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7292 	    ("free_newblk: unclaimed newblk"));
7293 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7294 	newblk_freefrag(newblk);
7295 	if (newblk->nb_state & ONDEPLIST)
7296 		LIST_REMOVE(newblk, nb_deps);
7297 	if (newblk->nb_state & ONWORKLIST)
7298 		WORKLIST_REMOVE(&newblk->nb_list);
7299 	LIST_REMOVE(newblk, nb_hash);
7300 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7301 		free_newdirblk(WK_NEWDIRBLK(wk));
7302 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7303 		panic("free_newblk: extra newdirblk");
7304 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7305 		indirdep_complete(indirdep);
7306 	handle_jwork(&newblk->nb_jwork);
7307 	WORKITEM_FREE(newblk, D_NEWBLK);
7308 }
7309 
7310 /*
7311  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7312  * This routine must be called with splbio interrupts blocked.
7313  */
7314 static void
7315 free_newdirblk(newdirblk)
7316 	struct newdirblk *newdirblk;
7317 {
7318 	struct pagedep *pagedep;
7319 	struct diradd *dap;
7320 	struct worklist *wk;
7321 
7322 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7323 	WORKLIST_REMOVE(&newdirblk->db_list);
7324 	/*
7325 	 * If the pagedep is still linked onto the directory buffer
7326 	 * dependency chain, then some of the entries on the
7327 	 * pd_pendinghd list may not be committed to disk yet. In
7328 	 * this case, we will simply clear the NEWBLOCK flag and
7329 	 * let the pd_pendinghd list be processed when the pagedep
7330 	 * is next written. If the pagedep is no longer on the buffer
7331 	 * dependency chain, then all the entries on the pd_pending
7332 	 * list are committed to disk and we can free them here.
7333 	 */
7334 	pagedep = newdirblk->db_pagedep;
7335 	pagedep->pd_state &= ~NEWBLOCK;
7336 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7337 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7338 			free_diradd(dap, NULL);
7339 		/*
7340 		 * If no dependencies remain, the pagedep will be freed.
7341 		 */
7342 		free_pagedep(pagedep);
7343 	}
7344 	/* Should only ever be one item in the list. */
7345 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7346 		WORKLIST_REMOVE(wk);
7347 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7348 	}
7349 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7350 }
7351 
7352 /*
7353  * Prepare an inode to be freed. The actual free operation is not
7354  * done until the zero'ed inode has been written to disk.
7355  */
7356 void
7357 softdep_freefile(pvp, ino, mode)
7358 	struct vnode *pvp;
7359 	ino_t ino;
7360 	int mode;
7361 {
7362 	struct inode *ip = VTOI(pvp);
7363 	struct inodedep *inodedep;
7364 	struct freefile *freefile;
7365 	struct freeblks *freeblks;
7366 	struct ufsmount *ump;
7367 
7368 	ump = ip->i_ump;
7369 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7370 	    ("softdep_freefile called on non-softdep filesystem"));
7371 	/*
7372 	 * This sets up the inode de-allocation dependency.
7373 	 */
7374 	freefile = malloc(sizeof(struct freefile),
7375 		M_FREEFILE, M_SOFTDEP_FLAGS);
7376 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7377 	freefile->fx_mode = mode;
7378 	freefile->fx_oldinum = ino;
7379 	freefile->fx_devvp = ip->i_devvp;
7380 	LIST_INIT(&freefile->fx_jwork);
7381 	UFS_LOCK(ump);
7382 	ip->i_fs->fs_pendinginodes += 1;
7383 	UFS_UNLOCK(ump);
7384 
7385 	/*
7386 	 * If the inodedep does not exist, then the zero'ed inode has
7387 	 * been written to disk. If the allocated inode has never been
7388 	 * written to disk, then the on-disk inode is zero'ed. In either
7389 	 * case we can free the file immediately.  If the journal was
7390 	 * canceled before being written the inode will never make it to
7391 	 * disk and we must send the canceled journal entrys to
7392 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7393 	 * Any blocks waiting on the inode to write can be safely freed
7394 	 * here as it will never been written.
7395 	 */
7396 	ACQUIRE_LOCK(ump);
7397 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7398 	if (inodedep) {
7399 		/*
7400 		 * Clear out freeblks that no longer need to reference
7401 		 * this inode.
7402 		 */
7403 		while ((freeblks =
7404 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7405 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7406 			    fb_next);
7407 			freeblks->fb_state &= ~ONDEPLIST;
7408 		}
7409 		/*
7410 		 * Remove this inode from the unlinked list.
7411 		 */
7412 		if (inodedep->id_state & UNLINKED) {
7413 			/*
7414 			 * Save the journal work to be freed with the bitmap
7415 			 * before we clear UNLINKED.  Otherwise it can be lost
7416 			 * if the inode block is written.
7417 			 */
7418 			handle_bufwait(inodedep, &freefile->fx_jwork);
7419 			clear_unlinked_inodedep(inodedep);
7420 			/*
7421 			 * Re-acquire inodedep as we've dropped the
7422 			 * soft updates lock in clear_unlinked_inodedep().
7423 			 */
7424 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7425 		}
7426 	}
7427 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7428 		FREE_LOCK(ump);
7429 		handle_workitem_freefile(freefile);
7430 		return;
7431 	}
7432 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7433 		inodedep->id_state |= GOINGAWAY;
7434 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7435 	FREE_LOCK(ump);
7436 	if (ip->i_number == ino)
7437 		ip->i_flag |= IN_MODIFIED;
7438 }
7439 
7440 /*
7441  * Check to see if an inode has never been written to disk. If
7442  * so free the inodedep and return success, otherwise return failure.
7443  * This routine must be called with splbio interrupts blocked.
7444  *
7445  * If we still have a bitmap dependency, then the inode has never
7446  * been written to disk. Drop the dependency as it is no longer
7447  * necessary since the inode is being deallocated. We set the
7448  * ALLCOMPLETE flags since the bitmap now properly shows that the
7449  * inode is not allocated. Even if the inode is actively being
7450  * written, it has been rolled back to its zero'ed state, so we
7451  * are ensured that a zero inode is what is on the disk. For short
7452  * lived files, this change will usually result in removing all the
7453  * dependencies from the inode so that it can be freed immediately.
7454  */
7455 static int
7456 check_inode_unwritten(inodedep)
7457 	struct inodedep *inodedep;
7458 {
7459 
7460 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7461 
7462 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7463 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7464 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7465 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7466 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7467 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7468 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7469 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7470 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7471 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7472 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7473 	    inodedep->id_mkdiradd != NULL ||
7474 	    inodedep->id_nlinkdelta != 0)
7475 		return (0);
7476 	/*
7477 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7478 	 * trying to allocate memory without holding "Softdep Lock".
7479 	 */
7480 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7481 	    inodedep->id_savedino1 == NULL)
7482 		return (0);
7483 
7484 	if (inodedep->id_state & ONDEPLIST)
7485 		LIST_REMOVE(inodedep, id_deps);
7486 	inodedep->id_state &= ~ONDEPLIST;
7487 	inodedep->id_state |= ALLCOMPLETE;
7488 	inodedep->id_bmsafemap = NULL;
7489 	if (inodedep->id_state & ONWORKLIST)
7490 		WORKLIST_REMOVE(&inodedep->id_list);
7491 	if (inodedep->id_savedino1 != NULL) {
7492 		free(inodedep->id_savedino1, M_SAVEDINO);
7493 		inodedep->id_savedino1 = NULL;
7494 	}
7495 	if (free_inodedep(inodedep) == 0)
7496 		panic("check_inode_unwritten: busy inode");
7497 	return (1);
7498 }
7499 
7500 /*
7501  * Try to free an inodedep structure. Return 1 if it could be freed.
7502  */
7503 static int
7504 free_inodedep(inodedep)
7505 	struct inodedep *inodedep;
7506 {
7507 
7508 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7509 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7510 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7511 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7512 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7513 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7514 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7515 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7516 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7517 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7518 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7519 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7520 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7521 	    inodedep->id_mkdiradd != NULL ||
7522 	    inodedep->id_nlinkdelta != 0 ||
7523 	    inodedep->id_savedino1 != NULL)
7524 		return (0);
7525 	if (inodedep->id_state & ONDEPLIST)
7526 		LIST_REMOVE(inodedep, id_deps);
7527 	LIST_REMOVE(inodedep, id_hash);
7528 	WORKITEM_FREE(inodedep, D_INODEDEP);
7529 	return (1);
7530 }
7531 
7532 /*
7533  * Free the block referenced by a freework structure.  The parent freeblks
7534  * structure is released and completed when the final cg bitmap reaches
7535  * the disk.  This routine may be freeing a jnewblk which never made it to
7536  * disk in which case we do not have to wait as the operation is undone
7537  * in memory immediately.
7538  */
7539 static void
7540 freework_freeblock(freework)
7541 	struct freework *freework;
7542 {
7543 	struct freeblks *freeblks;
7544 	struct jnewblk *jnewblk;
7545 	struct ufsmount *ump;
7546 	struct workhead wkhd;
7547 	struct fs *fs;
7548 	int bsize;
7549 	int needj;
7550 
7551 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7552 	LOCK_OWNED(ump);
7553 	/*
7554 	 * Handle partial truncate separately.
7555 	 */
7556 	if (freework->fw_indir) {
7557 		complete_trunc_indir(freework);
7558 		return;
7559 	}
7560 	freeblks = freework->fw_freeblks;
7561 	fs = ump->um_fs;
7562 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7563 	bsize = lfragtosize(fs, freework->fw_frags);
7564 	LIST_INIT(&wkhd);
7565 	/*
7566 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7567 	 * on the indirblk hashtable and prevents premature freeing.
7568 	 */
7569 	freework->fw_state |= DEPCOMPLETE;
7570 	/*
7571 	 * SUJ needs to wait for the segment referencing freed indirect
7572 	 * blocks to expire so that we know the checker will not confuse
7573 	 * a re-allocated indirect block with its old contents.
7574 	 */
7575 	if (needj && freework->fw_lbn <= -NDADDR)
7576 		indirblk_insert(freework);
7577 	/*
7578 	 * If we are canceling an existing jnewblk pass it to the free
7579 	 * routine, otherwise pass the freeblk which will ultimately
7580 	 * release the freeblks.  If we're not journaling, we can just
7581 	 * free the freeblks immediately.
7582 	 */
7583 	jnewblk = freework->fw_jnewblk;
7584 	if (jnewblk != NULL) {
7585 		cancel_jnewblk(jnewblk, &wkhd);
7586 		needj = 0;
7587 	} else if (needj) {
7588 		freework->fw_state |= DELAYEDFREE;
7589 		freeblks->fb_cgwait++;
7590 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7591 	}
7592 	FREE_LOCK(ump);
7593 	freeblks_free(ump, freeblks, btodb(bsize));
7594 	CTR4(KTR_SUJ,
7595 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7596 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7597 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7598 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7599 	ACQUIRE_LOCK(ump);
7600 	/*
7601 	 * The jnewblk will be discarded and the bits in the map never
7602 	 * made it to disk.  We can immediately free the freeblk.
7603 	 */
7604 	if (needj == 0)
7605 		handle_written_freework(freework);
7606 }
7607 
7608 /*
7609  * We enqueue freework items that need processing back on the freeblks and
7610  * add the freeblks to the worklist.  This makes it easier to find all work
7611  * required to flush a truncation in process_truncates().
7612  */
7613 static void
7614 freework_enqueue(freework)
7615 	struct freework *freework;
7616 {
7617 	struct freeblks *freeblks;
7618 
7619 	freeblks = freework->fw_freeblks;
7620 	if ((freework->fw_state & INPROGRESS) == 0)
7621 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7622 	if ((freeblks->fb_state &
7623 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7624 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7625 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7626 }
7627 
7628 /*
7629  * Start, continue, or finish the process of freeing an indirect block tree.
7630  * The free operation may be paused at any point with fw_off containing the
7631  * offset to restart from.  This enables us to implement some flow control
7632  * for large truncates which may fan out and generate a huge number of
7633  * dependencies.
7634  */
7635 static void
7636 handle_workitem_indirblk(freework)
7637 	struct freework *freework;
7638 {
7639 	struct freeblks *freeblks;
7640 	struct ufsmount *ump;
7641 	struct fs *fs;
7642 
7643 	freeblks = freework->fw_freeblks;
7644 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7645 	fs = ump->um_fs;
7646 	if (freework->fw_state & DEPCOMPLETE) {
7647 		handle_written_freework(freework);
7648 		return;
7649 	}
7650 	if (freework->fw_off == NINDIR(fs)) {
7651 		freework_freeblock(freework);
7652 		return;
7653 	}
7654 	freework->fw_state |= INPROGRESS;
7655 	FREE_LOCK(ump);
7656 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7657 	    freework->fw_lbn);
7658 	ACQUIRE_LOCK(ump);
7659 }
7660 
7661 /*
7662  * Called when a freework structure attached to a cg buf is written.  The
7663  * ref on either the parent or the freeblks structure is released and
7664  * the freeblks is added back to the worklist if there is more work to do.
7665  */
7666 static void
7667 handle_written_freework(freework)
7668 	struct freework *freework;
7669 {
7670 	struct freeblks *freeblks;
7671 	struct freework *parent;
7672 
7673 	freeblks = freework->fw_freeblks;
7674 	parent = freework->fw_parent;
7675 	if (freework->fw_state & DELAYEDFREE)
7676 		freeblks->fb_cgwait--;
7677 	freework->fw_state |= COMPLETE;
7678 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7679 		WORKITEM_FREE(freework, D_FREEWORK);
7680 	if (parent) {
7681 		if (--parent->fw_ref == 0)
7682 			freework_enqueue(parent);
7683 		return;
7684 	}
7685 	if (--freeblks->fb_ref != 0)
7686 		return;
7687 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7688 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7689 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7690 }
7691 
7692 /*
7693  * This workitem routine performs the block de-allocation.
7694  * The workitem is added to the pending list after the updated
7695  * inode block has been written to disk.  As mentioned above,
7696  * checks regarding the number of blocks de-allocated (compared
7697  * to the number of blocks allocated for the file) are also
7698  * performed in this function.
7699  */
7700 static int
7701 handle_workitem_freeblocks(freeblks, flags)
7702 	struct freeblks *freeblks;
7703 	int flags;
7704 {
7705 	struct freework *freework;
7706 	struct newblk *newblk;
7707 	struct allocindir *aip;
7708 	struct ufsmount *ump;
7709 	struct worklist *wk;
7710 
7711 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7712 	    ("handle_workitem_freeblocks: Journal entries not written."));
7713 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7714 	ACQUIRE_LOCK(ump);
7715 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7716 		WORKLIST_REMOVE(wk);
7717 		switch (wk->wk_type) {
7718 		case D_DIRREM:
7719 			wk->wk_state |= COMPLETE;
7720 			add_to_worklist(wk, 0);
7721 			continue;
7722 
7723 		case D_ALLOCDIRECT:
7724 			free_newblk(WK_NEWBLK(wk));
7725 			continue;
7726 
7727 		case D_ALLOCINDIR:
7728 			aip = WK_ALLOCINDIR(wk);
7729 			freework = NULL;
7730 			if (aip->ai_state & DELAYEDFREE) {
7731 				FREE_LOCK(ump);
7732 				freework = newfreework(ump, freeblks, NULL,
7733 				    aip->ai_lbn, aip->ai_newblkno,
7734 				    ump->um_fs->fs_frag, 0, 0);
7735 				ACQUIRE_LOCK(ump);
7736 			}
7737 			newblk = WK_NEWBLK(wk);
7738 			if (newblk->nb_jnewblk) {
7739 				freework->fw_jnewblk = newblk->nb_jnewblk;
7740 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7741 				newblk->nb_jnewblk = NULL;
7742 			}
7743 			free_newblk(newblk);
7744 			continue;
7745 
7746 		case D_FREEWORK:
7747 			freework = WK_FREEWORK(wk);
7748 			if (freework->fw_lbn <= -NDADDR)
7749 				handle_workitem_indirblk(freework);
7750 			else
7751 				freework_freeblock(freework);
7752 			continue;
7753 		default:
7754 			panic("handle_workitem_freeblocks: Unknown type %s",
7755 			    TYPENAME(wk->wk_type));
7756 		}
7757 	}
7758 	if (freeblks->fb_ref != 0) {
7759 		freeblks->fb_state &= ~INPROGRESS;
7760 		wake_worklist(&freeblks->fb_list);
7761 		freeblks = NULL;
7762 	}
7763 	FREE_LOCK(ump);
7764 	if (freeblks)
7765 		return handle_complete_freeblocks(freeblks, flags);
7766 	return (0);
7767 }
7768 
7769 /*
7770  * Handle completion of block free via truncate.  This allows fs_pending
7771  * to track the actual free block count more closely than if we only updated
7772  * it at the end.  We must be careful to handle cases where the block count
7773  * on free was incorrect.
7774  */
7775 static void
7776 freeblks_free(ump, freeblks, blocks)
7777 	struct ufsmount *ump;
7778 	struct freeblks *freeblks;
7779 	int blocks;
7780 {
7781 	struct fs *fs;
7782 	ufs2_daddr_t remain;
7783 
7784 	UFS_LOCK(ump);
7785 	remain = -freeblks->fb_chkcnt;
7786 	freeblks->fb_chkcnt += blocks;
7787 	if (remain > 0) {
7788 		if (remain < blocks)
7789 			blocks = remain;
7790 		fs = ump->um_fs;
7791 		fs->fs_pendingblocks -= blocks;
7792 	}
7793 	UFS_UNLOCK(ump);
7794 }
7795 
7796 /*
7797  * Once all of the freework workitems are complete we can retire the
7798  * freeblocks dependency and any journal work awaiting completion.  This
7799  * can not be called until all other dependencies are stable on disk.
7800  */
7801 static int
7802 handle_complete_freeblocks(freeblks, flags)
7803 	struct freeblks *freeblks;
7804 	int flags;
7805 {
7806 	struct inodedep *inodedep;
7807 	struct inode *ip;
7808 	struct vnode *vp;
7809 	struct fs *fs;
7810 	struct ufsmount *ump;
7811 	ufs2_daddr_t spare;
7812 
7813 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7814 	fs = ump->um_fs;
7815 	flags = LK_EXCLUSIVE | flags;
7816 	spare = freeblks->fb_chkcnt;
7817 
7818 	/*
7819 	 * If we did not release the expected number of blocks we may have
7820 	 * to adjust the inode block count here.  Only do so if it wasn't
7821 	 * a truncation to zero and the modrev still matches.
7822 	 */
7823 	if (spare && freeblks->fb_len != 0) {
7824 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7825 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7826 			return (EBUSY);
7827 		ip = VTOI(vp);
7828 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7829 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7830 			ip->i_flag |= IN_CHANGE;
7831 			/*
7832 			 * We must wait so this happens before the
7833 			 * journal is reclaimed.
7834 			 */
7835 			ffs_update(vp, 1);
7836 		}
7837 		vput(vp);
7838 	}
7839 	if (spare < 0) {
7840 		UFS_LOCK(ump);
7841 		fs->fs_pendingblocks += spare;
7842 		UFS_UNLOCK(ump);
7843 	}
7844 #ifdef QUOTA
7845 	/* Handle spare. */
7846 	if (spare)
7847 		quotaadj(freeblks->fb_quota, ump, -spare);
7848 	quotarele(freeblks->fb_quota);
7849 #endif
7850 	ACQUIRE_LOCK(ump);
7851 	if (freeblks->fb_state & ONDEPLIST) {
7852 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7853 		    0, &inodedep);
7854 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7855 		freeblks->fb_state &= ~ONDEPLIST;
7856 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7857 			free_inodedep(inodedep);
7858 	}
7859 	/*
7860 	 * All of the freeblock deps must be complete prior to this call
7861 	 * so it's now safe to complete earlier outstanding journal entries.
7862 	 */
7863 	handle_jwork(&freeblks->fb_jwork);
7864 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7865 	FREE_LOCK(ump);
7866 	return (0);
7867 }
7868 
7869 /*
7870  * Release blocks associated with the freeblks and stored in the indirect
7871  * block dbn. If level is greater than SINGLE, the block is an indirect block
7872  * and recursive calls to indirtrunc must be used to cleanse other indirect
7873  * blocks.
7874  *
7875  * This handles partial and complete truncation of blocks.  Partial is noted
7876  * with goingaway == 0.  In this case the freework is completed after the
7877  * zero'd indirects are written to disk.  For full truncation the freework
7878  * is completed after the block is freed.
7879  */
7880 static void
7881 indir_trunc(freework, dbn, lbn)
7882 	struct freework *freework;
7883 	ufs2_daddr_t dbn;
7884 	ufs_lbn_t lbn;
7885 {
7886 	struct freework *nfreework;
7887 	struct workhead wkhd;
7888 	struct freeblks *freeblks;
7889 	struct buf *bp;
7890 	struct fs *fs;
7891 	struct indirdep *indirdep;
7892 	struct ufsmount *ump;
7893 	ufs1_daddr_t *bap1 = 0;
7894 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7895 	ufs_lbn_t lbnadd, nlbn;
7896 	int i, nblocks, ufs1fmt;
7897 	int freedblocks;
7898 	int goingaway;
7899 	int freedeps;
7900 	int needj;
7901 	int level;
7902 	int cnt;
7903 
7904 	freeblks = freework->fw_freeblks;
7905 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7906 	fs = ump->um_fs;
7907 	/*
7908 	 * Get buffer of block pointers to be freed.  There are three cases:
7909 	 *
7910 	 * 1) Partial truncate caches the indirdep pointer in the freework
7911 	 *    which provides us a back copy to the save bp which holds the
7912 	 *    pointers we want to clear.  When this completes the zero
7913 	 *    pointers are written to the real copy.
7914 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7915 	 *    eliminated the real copy and placed the indirdep on the saved
7916 	 *    copy.  The indirdep and buf are discarded when this completes.
7917 	 * 3) The indirect was not in memory, we read a copy off of the disk
7918 	 *    using the devvp and drop and invalidate the buffer when we're
7919 	 *    done.
7920 	 */
7921 	goingaway = 1;
7922 	indirdep = NULL;
7923 	if (freework->fw_indir != NULL) {
7924 		goingaway = 0;
7925 		indirdep = freework->fw_indir;
7926 		bp = indirdep->ir_savebp;
7927 		if (bp == NULL || bp->b_blkno != dbn)
7928 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7929 			    bp, (intmax_t)dbn);
7930 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7931 		/*
7932 		 * The lock prevents the buf dep list from changing and
7933 	 	 * indirects on devvp should only ever have one dependency.
7934 		 */
7935 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7936 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7937 			panic("indir_trunc: Bad indirdep %p from buf %p",
7938 			    indirdep, bp);
7939 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7940 	    NOCRED, &bp) != 0) {
7941 		brelse(bp);
7942 		return;
7943 	}
7944 	ACQUIRE_LOCK(ump);
7945 	/* Protects against a race with complete_trunc_indir(). */
7946 	freework->fw_state &= ~INPROGRESS;
7947 	/*
7948 	 * If we have an indirdep we need to enforce the truncation order
7949 	 * and discard it when it is complete.
7950 	 */
7951 	if (indirdep) {
7952 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7953 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7954 			/*
7955 			 * Add the complete truncate to the list on the
7956 			 * indirdep to enforce in-order processing.
7957 			 */
7958 			if (freework->fw_indir == NULL)
7959 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7960 				    freework, fw_next);
7961 			FREE_LOCK(ump);
7962 			return;
7963 		}
7964 		/*
7965 		 * If we're goingaway, free the indirdep.  Otherwise it will
7966 		 * linger until the write completes.
7967 		 */
7968 		if (goingaway) {
7969 			free_indirdep(indirdep);
7970 			ump->softdep_numindirdeps -= 1;
7971 		}
7972 	}
7973 	FREE_LOCK(ump);
7974 	/* Initialize pointers depending on block size. */
7975 	if (ump->um_fstype == UFS1) {
7976 		bap1 = (ufs1_daddr_t *)bp->b_data;
7977 		nb = bap1[freework->fw_off];
7978 		ufs1fmt = 1;
7979 	} else {
7980 		bap2 = (ufs2_daddr_t *)bp->b_data;
7981 		nb = bap2[freework->fw_off];
7982 		ufs1fmt = 0;
7983 	}
7984 	level = lbn_level(lbn);
7985 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7986 	lbnadd = lbn_offset(fs, level);
7987 	nblocks = btodb(fs->fs_bsize);
7988 	nfreework = freework;
7989 	freedeps = 0;
7990 	cnt = 0;
7991 	/*
7992 	 * Reclaim blocks.  Traverses into nested indirect levels and
7993 	 * arranges for the current level to be freed when subordinates
7994 	 * are free when journaling.
7995 	 */
7996 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7997 		if (i != NINDIR(fs) - 1) {
7998 			if (ufs1fmt)
7999 				nnb = bap1[i+1];
8000 			else
8001 				nnb = bap2[i+1];
8002 		} else
8003 			nnb = 0;
8004 		if (nb == 0)
8005 			continue;
8006 		cnt++;
8007 		if (level != 0) {
8008 			nlbn = (lbn + 1) - (i * lbnadd);
8009 			if (needj != 0) {
8010 				nfreework = newfreework(ump, freeblks, freework,
8011 				    nlbn, nb, fs->fs_frag, 0, 0);
8012 				freedeps++;
8013 			}
8014 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8015 		} else {
8016 			struct freedep *freedep;
8017 
8018 			/*
8019 			 * Attempt to aggregate freedep dependencies for
8020 			 * all blocks being released to the same CG.
8021 			 */
8022 			LIST_INIT(&wkhd);
8023 			if (needj != 0 &&
8024 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8025 				freedep = newfreedep(freework);
8026 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8027 				    &freedep->fd_list);
8028 				freedeps++;
8029 			}
8030 			CTR3(KTR_SUJ,
8031 			    "indir_trunc: ino %d blkno %jd size %ld",
8032 			    freeblks->fb_inum, nb, fs->fs_bsize);
8033 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8034 			    fs->fs_bsize, freeblks->fb_inum,
8035 			    freeblks->fb_vtype, &wkhd);
8036 		}
8037 	}
8038 	if (goingaway) {
8039 		bp->b_flags |= B_INVAL | B_NOCACHE;
8040 		brelse(bp);
8041 	}
8042 	freedblocks = 0;
8043 	if (level == 0)
8044 		freedblocks = (nblocks * cnt);
8045 	if (needj == 0)
8046 		freedblocks += nblocks;
8047 	freeblks_free(ump, freeblks, freedblocks);
8048 	/*
8049 	 * If we are journaling set up the ref counts and offset so this
8050 	 * indirect can be completed when its children are free.
8051 	 */
8052 	if (needj) {
8053 		ACQUIRE_LOCK(ump);
8054 		freework->fw_off = i;
8055 		freework->fw_ref += freedeps;
8056 		freework->fw_ref -= NINDIR(fs) + 1;
8057 		if (level == 0)
8058 			freeblks->fb_cgwait += freedeps;
8059 		if (freework->fw_ref == 0)
8060 			freework_freeblock(freework);
8061 		FREE_LOCK(ump);
8062 		return;
8063 	}
8064 	/*
8065 	 * If we're not journaling we can free the indirect now.
8066 	 */
8067 	dbn = dbtofsb(fs, dbn);
8068 	CTR3(KTR_SUJ,
8069 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8070 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8071 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8072 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8073 	/* Non SUJ softdep does single-threaded truncations. */
8074 	if (freework->fw_blkno == dbn) {
8075 		freework->fw_state |= ALLCOMPLETE;
8076 		ACQUIRE_LOCK(ump);
8077 		handle_written_freework(freework);
8078 		FREE_LOCK(ump);
8079 	}
8080 	return;
8081 }
8082 
8083 /*
8084  * Cancel an allocindir when it is removed via truncation.  When bp is not
8085  * NULL the indirect never appeared on disk and is scheduled to be freed
8086  * independently of the indir so we can more easily track journal work.
8087  */
8088 static void
8089 cancel_allocindir(aip, bp, freeblks, trunc)
8090 	struct allocindir *aip;
8091 	struct buf *bp;
8092 	struct freeblks *freeblks;
8093 	int trunc;
8094 {
8095 	struct indirdep *indirdep;
8096 	struct freefrag *freefrag;
8097 	struct newblk *newblk;
8098 
8099 	newblk = (struct newblk *)aip;
8100 	LIST_REMOVE(aip, ai_next);
8101 	/*
8102 	 * We must eliminate the pointer in bp if it must be freed on its
8103 	 * own due to partial truncate or pending journal work.
8104 	 */
8105 	if (bp && (trunc || newblk->nb_jnewblk)) {
8106 		/*
8107 		 * Clear the pointer and mark the aip to be freed
8108 		 * directly if it never existed on disk.
8109 		 */
8110 		aip->ai_state |= DELAYEDFREE;
8111 		indirdep = aip->ai_indirdep;
8112 		if (indirdep->ir_state & UFS1FMT)
8113 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8114 		else
8115 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8116 	}
8117 	/*
8118 	 * When truncating the previous pointer will be freed via
8119 	 * savedbp.  Eliminate the freefrag which would dup free.
8120 	 */
8121 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8122 		newblk->nb_freefrag = NULL;
8123 		if (freefrag->ff_jdep)
8124 			cancel_jfreefrag(
8125 			    WK_JFREEFRAG(freefrag->ff_jdep));
8126 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8127 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8128 	}
8129 	/*
8130 	 * If the journal hasn't been written the jnewblk must be passed
8131 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8132 	 * this by leaving the journal dependency on the newblk to be freed
8133 	 * when a freework is created in handle_workitem_freeblocks().
8134 	 */
8135 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8136 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8137 }
8138 
8139 /*
8140  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8141  * in to a newdirblk so any subsequent additions are tracked properly.  The
8142  * caller is responsible for adding the mkdir1 dependency to the journal
8143  * and updating id_mkdiradd.  This function returns with the soft updates
8144  * lock held.
8145  */
8146 static struct mkdir *
8147 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8148 	struct diradd *dap;
8149 	ino_t newinum;
8150 	ino_t dinum;
8151 	struct buf *newdirbp;
8152 	struct mkdir **mkdirp;
8153 {
8154 	struct newblk *newblk;
8155 	struct pagedep *pagedep;
8156 	struct inodedep *inodedep;
8157 	struct newdirblk *newdirblk = 0;
8158 	struct mkdir *mkdir1, *mkdir2;
8159 	struct worklist *wk;
8160 	struct jaddref *jaddref;
8161 	struct ufsmount *ump;
8162 	struct mount *mp;
8163 
8164 	mp = dap->da_list.wk_mp;
8165 	ump = VFSTOUFS(mp);
8166 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8167 	    M_SOFTDEP_FLAGS);
8168 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8169 	LIST_INIT(&newdirblk->db_mkdir);
8170 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8171 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8172 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8173 	mkdir1->md_diradd = dap;
8174 	mkdir1->md_jaddref = NULL;
8175 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8176 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8177 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8178 	mkdir2->md_diradd = dap;
8179 	mkdir2->md_jaddref = NULL;
8180 	if (MOUNTEDSUJ(mp) == 0) {
8181 		mkdir1->md_state |= DEPCOMPLETE;
8182 		mkdir2->md_state |= DEPCOMPLETE;
8183 	}
8184 	/*
8185 	 * Dependency on "." and ".." being written to disk.
8186 	 */
8187 	mkdir1->md_buf = newdirbp;
8188 	ACQUIRE_LOCK(VFSTOUFS(mp));
8189 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8190 	/*
8191 	 * We must link the pagedep, allocdirect, and newdirblk for
8192 	 * the initial file page so the pointer to the new directory
8193 	 * is not written until the directory contents are live and
8194 	 * any subsequent additions are not marked live until the
8195 	 * block is reachable via the inode.
8196 	 */
8197 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8198 		panic("setup_newdir: lost pagedep");
8199 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8200 		if (wk->wk_type == D_ALLOCDIRECT)
8201 			break;
8202 	if (wk == NULL)
8203 		panic("setup_newdir: lost allocdirect");
8204 	if (pagedep->pd_state & NEWBLOCK)
8205 		panic("setup_newdir: NEWBLOCK already set");
8206 	newblk = WK_NEWBLK(wk);
8207 	pagedep->pd_state |= NEWBLOCK;
8208 	pagedep->pd_newdirblk = newdirblk;
8209 	newdirblk->db_pagedep = pagedep;
8210 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8211 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8212 	/*
8213 	 * Look up the inodedep for the parent directory so that we
8214 	 * can link mkdir2 into the pending dotdot jaddref or
8215 	 * the inode write if there is none.  If the inode is
8216 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8217 	 * been satisfied and mkdir2 can be freed.
8218 	 */
8219 	inodedep_lookup(mp, dinum, 0, &inodedep);
8220 	if (MOUNTEDSUJ(mp)) {
8221 		if (inodedep == NULL)
8222 			panic("setup_newdir: Lost parent.");
8223 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8224 		    inoreflst);
8225 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8226 		    (jaddref->ja_state & MKDIR_PARENT),
8227 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8228 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8229 		mkdir2->md_jaddref = jaddref;
8230 		jaddref->ja_mkdir = mkdir2;
8231 	} else if (inodedep == NULL ||
8232 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8233 		dap->da_state &= ~MKDIR_PARENT;
8234 		WORKITEM_FREE(mkdir2, D_MKDIR);
8235 		mkdir2 = NULL;
8236 	} else {
8237 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8238 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8239 	}
8240 	*mkdirp = mkdir2;
8241 
8242 	return (mkdir1);
8243 }
8244 
8245 /*
8246  * Directory entry addition dependencies.
8247  *
8248  * When adding a new directory entry, the inode (with its incremented link
8249  * count) must be written to disk before the directory entry's pointer to it.
8250  * Also, if the inode is newly allocated, the corresponding freemap must be
8251  * updated (on disk) before the directory entry's pointer. These requirements
8252  * are met via undo/redo on the directory entry's pointer, which consists
8253  * simply of the inode number.
8254  *
8255  * As directory entries are added and deleted, the free space within a
8256  * directory block can become fragmented.  The ufs filesystem will compact
8257  * a fragmented directory block to make space for a new entry. When this
8258  * occurs, the offsets of previously added entries change. Any "diradd"
8259  * dependency structures corresponding to these entries must be updated with
8260  * the new offsets.
8261  */
8262 
8263 /*
8264  * This routine is called after the in-memory inode's link
8265  * count has been incremented, but before the directory entry's
8266  * pointer to the inode has been set.
8267  */
8268 int
8269 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8270 	struct buf *bp;		/* buffer containing directory block */
8271 	struct inode *dp;	/* inode for directory */
8272 	off_t diroffset;	/* offset of new entry in directory */
8273 	ino_t newinum;		/* inode referenced by new directory entry */
8274 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8275 	int isnewblk;		/* entry is in a newly allocated block */
8276 {
8277 	int offset;		/* offset of new entry within directory block */
8278 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8279 	struct fs *fs;
8280 	struct diradd *dap;
8281 	struct newblk *newblk;
8282 	struct pagedep *pagedep;
8283 	struct inodedep *inodedep;
8284 	struct newdirblk *newdirblk = 0;
8285 	struct mkdir *mkdir1, *mkdir2;
8286 	struct jaddref *jaddref;
8287 	struct ufsmount *ump;
8288 	struct mount *mp;
8289 	int isindir;
8290 
8291 	ump = dp->i_ump;
8292 	mp = UFSTOVFS(ump);
8293 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8294 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8295 	/*
8296 	 * Whiteouts have no dependencies.
8297 	 */
8298 	if (newinum == WINO) {
8299 		if (newdirbp != NULL)
8300 			bdwrite(newdirbp);
8301 		return (0);
8302 	}
8303 	jaddref = NULL;
8304 	mkdir1 = mkdir2 = NULL;
8305 	fs = dp->i_fs;
8306 	lbn = lblkno(fs, diroffset);
8307 	offset = blkoff(fs, diroffset);
8308 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8309 		M_SOFTDEP_FLAGS|M_ZERO);
8310 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8311 	dap->da_offset = offset;
8312 	dap->da_newinum = newinum;
8313 	dap->da_state = ATTACHED;
8314 	LIST_INIT(&dap->da_jwork);
8315 	isindir = bp->b_lblkno >= NDADDR;
8316 	if (isnewblk &&
8317 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8318 		newdirblk = malloc(sizeof(struct newdirblk),
8319 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8320 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8321 		LIST_INIT(&newdirblk->db_mkdir);
8322 	}
8323 	/*
8324 	 * If we're creating a new directory setup the dependencies and set
8325 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8326 	 * we can move on.
8327 	 */
8328 	if (newdirbp == NULL) {
8329 		dap->da_state |= DEPCOMPLETE;
8330 		ACQUIRE_LOCK(ump);
8331 	} else {
8332 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8333 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8334 		    &mkdir2);
8335 	}
8336 	/*
8337 	 * Link into parent directory pagedep to await its being written.
8338 	 */
8339 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8340 #ifdef DEBUG
8341 	if (diradd_lookup(pagedep, offset) != NULL)
8342 		panic("softdep_setup_directory_add: %p already at off %d\n",
8343 		    diradd_lookup(pagedep, offset), offset);
8344 #endif
8345 	dap->da_pagedep = pagedep;
8346 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8347 	    da_pdlist);
8348 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8349 	/*
8350 	 * If we're journaling, link the diradd into the jaddref so it
8351 	 * may be completed after the journal entry is written.  Otherwise,
8352 	 * link the diradd into its inodedep.  If the inode is not yet
8353 	 * written place it on the bufwait list, otherwise do the post-inode
8354 	 * write processing to put it on the id_pendinghd list.
8355 	 */
8356 	if (MOUNTEDSUJ(mp)) {
8357 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8358 		    inoreflst);
8359 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8360 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8361 		jaddref->ja_diroff = diroffset;
8362 		jaddref->ja_diradd = dap;
8363 		add_to_journal(&jaddref->ja_list);
8364 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8365 		diradd_inode_written(dap, inodedep);
8366 	else
8367 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8368 	/*
8369 	 * Add the journal entries for . and .. links now that the primary
8370 	 * link is written.
8371 	 */
8372 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8373 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8374 		    inoreflst, if_deps);
8375 		KASSERT(jaddref != NULL &&
8376 		    jaddref->ja_ino == jaddref->ja_parent &&
8377 		    (jaddref->ja_state & MKDIR_BODY),
8378 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8379 		    jaddref));
8380 		mkdir1->md_jaddref = jaddref;
8381 		jaddref->ja_mkdir = mkdir1;
8382 		/*
8383 		 * It is important that the dotdot journal entry
8384 		 * is added prior to the dot entry since dot writes
8385 		 * both the dot and dotdot links.  These both must
8386 		 * be added after the primary link for the journal
8387 		 * to remain consistent.
8388 		 */
8389 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8390 		add_to_journal(&jaddref->ja_list);
8391 	}
8392 	/*
8393 	 * If we are adding a new directory remember this diradd so that if
8394 	 * we rename it we can keep the dot and dotdot dependencies.  If
8395 	 * we are adding a new name for an inode that has a mkdiradd we
8396 	 * must be in rename and we have to move the dot and dotdot
8397 	 * dependencies to this new name.  The old name is being orphaned
8398 	 * soon.
8399 	 */
8400 	if (mkdir1 != NULL) {
8401 		if (inodedep->id_mkdiradd != NULL)
8402 			panic("softdep_setup_directory_add: Existing mkdir");
8403 		inodedep->id_mkdiradd = dap;
8404 	} else if (inodedep->id_mkdiradd)
8405 		merge_diradd(inodedep, dap);
8406 	if (newdirblk) {
8407 		/*
8408 		 * There is nothing to do if we are already tracking
8409 		 * this block.
8410 		 */
8411 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8412 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8413 			FREE_LOCK(ump);
8414 			return (0);
8415 		}
8416 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8417 		    == 0)
8418 			panic("softdep_setup_directory_add: lost entry");
8419 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8420 		pagedep->pd_state |= NEWBLOCK;
8421 		pagedep->pd_newdirblk = newdirblk;
8422 		newdirblk->db_pagedep = pagedep;
8423 		FREE_LOCK(ump);
8424 		/*
8425 		 * If we extended into an indirect signal direnter to sync.
8426 		 */
8427 		if (isindir)
8428 			return (1);
8429 		return (0);
8430 	}
8431 	FREE_LOCK(ump);
8432 	return (0);
8433 }
8434 
8435 /*
8436  * This procedure is called to change the offset of a directory
8437  * entry when compacting a directory block which must be owned
8438  * exclusively by the caller. Note that the actual entry movement
8439  * must be done in this procedure to ensure that no I/O completions
8440  * occur while the move is in progress.
8441  */
8442 void
8443 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8444 	struct buf *bp;		/* Buffer holding directory block. */
8445 	struct inode *dp;	/* inode for directory */
8446 	caddr_t base;		/* address of dp->i_offset */
8447 	caddr_t oldloc;		/* address of old directory location */
8448 	caddr_t newloc;		/* address of new directory location */
8449 	int entrysize;		/* size of directory entry */
8450 {
8451 	int offset, oldoffset, newoffset;
8452 	struct pagedep *pagedep;
8453 	struct jmvref *jmvref;
8454 	struct diradd *dap;
8455 	struct direct *de;
8456 	struct mount *mp;
8457 	ufs_lbn_t lbn;
8458 	int flags;
8459 
8460 	mp = UFSTOVFS(dp->i_ump);
8461 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8462 	    ("softdep_change_directoryentry_offset called on "
8463 	     "non-softdep filesystem"));
8464 	de = (struct direct *)oldloc;
8465 	jmvref = NULL;
8466 	flags = 0;
8467 	/*
8468 	 * Moves are always journaled as it would be too complex to
8469 	 * determine if any affected adds or removes are present in the
8470 	 * journal.
8471 	 */
8472 	if (MOUNTEDSUJ(mp)) {
8473 		flags = DEPALLOC;
8474 		jmvref = newjmvref(dp, de->d_ino,
8475 		    dp->i_offset + (oldloc - base),
8476 		    dp->i_offset + (newloc - base));
8477 	}
8478 	lbn = lblkno(dp->i_fs, dp->i_offset);
8479 	offset = blkoff(dp->i_fs, dp->i_offset);
8480 	oldoffset = offset + (oldloc - base);
8481 	newoffset = offset + (newloc - base);
8482 	ACQUIRE_LOCK(dp->i_ump);
8483 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8484 		goto done;
8485 	dap = diradd_lookup(pagedep, oldoffset);
8486 	if (dap) {
8487 		dap->da_offset = newoffset;
8488 		newoffset = DIRADDHASH(newoffset);
8489 		oldoffset = DIRADDHASH(oldoffset);
8490 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8491 		    newoffset != oldoffset) {
8492 			LIST_REMOVE(dap, da_pdlist);
8493 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8494 			    dap, da_pdlist);
8495 		}
8496 	}
8497 done:
8498 	if (jmvref) {
8499 		jmvref->jm_pagedep = pagedep;
8500 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8501 		add_to_journal(&jmvref->jm_list);
8502 	}
8503 	bcopy(oldloc, newloc, entrysize);
8504 	FREE_LOCK(dp->i_ump);
8505 }
8506 
8507 /*
8508  * Move the mkdir dependencies and journal work from one diradd to another
8509  * when renaming a directory.  The new name must depend on the mkdir deps
8510  * completing as the old name did.  Directories can only have one valid link
8511  * at a time so one must be canonical.
8512  */
8513 static void
8514 merge_diradd(inodedep, newdap)
8515 	struct inodedep *inodedep;
8516 	struct diradd *newdap;
8517 {
8518 	struct diradd *olddap;
8519 	struct mkdir *mkdir, *nextmd;
8520 	struct ufsmount *ump;
8521 	short state;
8522 
8523 	olddap = inodedep->id_mkdiradd;
8524 	inodedep->id_mkdiradd = newdap;
8525 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8526 		newdap->da_state &= ~DEPCOMPLETE;
8527 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8528 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8529 		     mkdir = nextmd) {
8530 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8531 			if (mkdir->md_diradd != olddap)
8532 				continue;
8533 			mkdir->md_diradd = newdap;
8534 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8535 			newdap->da_state |= state;
8536 			olddap->da_state &= ~state;
8537 			if ((olddap->da_state &
8538 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8539 				break;
8540 		}
8541 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8542 			panic("merge_diradd: unfound ref");
8543 	}
8544 	/*
8545 	 * Any mkdir related journal items are not safe to be freed until
8546 	 * the new name is stable.
8547 	 */
8548 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8549 	olddap->da_state |= DEPCOMPLETE;
8550 	complete_diradd(olddap);
8551 }
8552 
8553 /*
8554  * Move the diradd to the pending list when all diradd dependencies are
8555  * complete.
8556  */
8557 static void
8558 complete_diradd(dap)
8559 	struct diradd *dap;
8560 {
8561 	struct pagedep *pagedep;
8562 
8563 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8564 		if (dap->da_state & DIRCHG)
8565 			pagedep = dap->da_previous->dm_pagedep;
8566 		else
8567 			pagedep = dap->da_pagedep;
8568 		LIST_REMOVE(dap, da_pdlist);
8569 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8570 	}
8571 }
8572 
8573 /*
8574  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8575  * add entries and conditonally journal the remove.
8576  */
8577 static void
8578 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8579 	struct diradd *dap;
8580 	struct dirrem *dirrem;
8581 	struct jremref *jremref;
8582 	struct jremref *dotremref;
8583 	struct jremref *dotdotremref;
8584 {
8585 	struct inodedep *inodedep;
8586 	struct jaddref *jaddref;
8587 	struct inoref *inoref;
8588 	struct ufsmount *ump;
8589 	struct mkdir *mkdir;
8590 
8591 	/*
8592 	 * If no remove references were allocated we're on a non-journaled
8593 	 * filesystem and can skip the cancel step.
8594 	 */
8595 	if (jremref == NULL) {
8596 		free_diradd(dap, NULL);
8597 		return;
8598 	}
8599 	/*
8600 	 * Cancel the primary name an free it if it does not require
8601 	 * journaling.
8602 	 */
8603 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8604 	    0, &inodedep) != 0) {
8605 		/* Abort the addref that reference this diradd.  */
8606 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8607 			if (inoref->if_list.wk_type != D_JADDREF)
8608 				continue;
8609 			jaddref = (struct jaddref *)inoref;
8610 			if (jaddref->ja_diradd != dap)
8611 				continue;
8612 			if (cancel_jaddref(jaddref, inodedep,
8613 			    &dirrem->dm_jwork) == 0) {
8614 				free_jremref(jremref);
8615 				jremref = NULL;
8616 			}
8617 			break;
8618 		}
8619 	}
8620 	/*
8621 	 * Cancel subordinate names and free them if they do not require
8622 	 * journaling.
8623 	 */
8624 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8625 		ump = VFSTOUFS(dap->da_list.wk_mp);
8626 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8627 			if (mkdir->md_diradd != dap)
8628 				continue;
8629 			if ((jaddref = mkdir->md_jaddref) == NULL)
8630 				continue;
8631 			mkdir->md_jaddref = NULL;
8632 			if (mkdir->md_state & MKDIR_PARENT) {
8633 				if (cancel_jaddref(jaddref, NULL,
8634 				    &dirrem->dm_jwork) == 0) {
8635 					free_jremref(dotdotremref);
8636 					dotdotremref = NULL;
8637 				}
8638 			} else {
8639 				if (cancel_jaddref(jaddref, inodedep,
8640 				    &dirrem->dm_jwork) == 0) {
8641 					free_jremref(dotremref);
8642 					dotremref = NULL;
8643 				}
8644 			}
8645 		}
8646 	}
8647 
8648 	if (jremref)
8649 		journal_jremref(dirrem, jremref, inodedep);
8650 	if (dotremref)
8651 		journal_jremref(dirrem, dotremref, inodedep);
8652 	if (dotdotremref)
8653 		journal_jremref(dirrem, dotdotremref, NULL);
8654 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8655 	free_diradd(dap, &dirrem->dm_jwork);
8656 }
8657 
8658 /*
8659  * Free a diradd dependency structure. This routine must be called
8660  * with splbio interrupts blocked.
8661  */
8662 static void
8663 free_diradd(dap, wkhd)
8664 	struct diradd *dap;
8665 	struct workhead *wkhd;
8666 {
8667 	struct dirrem *dirrem;
8668 	struct pagedep *pagedep;
8669 	struct inodedep *inodedep;
8670 	struct mkdir *mkdir, *nextmd;
8671 	struct ufsmount *ump;
8672 
8673 	ump = VFSTOUFS(dap->da_list.wk_mp);
8674 	LOCK_OWNED(ump);
8675 	LIST_REMOVE(dap, da_pdlist);
8676 	if (dap->da_state & ONWORKLIST)
8677 		WORKLIST_REMOVE(&dap->da_list);
8678 	if ((dap->da_state & DIRCHG) == 0) {
8679 		pagedep = dap->da_pagedep;
8680 	} else {
8681 		dirrem = dap->da_previous;
8682 		pagedep = dirrem->dm_pagedep;
8683 		dirrem->dm_dirinum = pagedep->pd_ino;
8684 		dirrem->dm_state |= COMPLETE;
8685 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8686 			add_to_worklist(&dirrem->dm_list, 0);
8687 	}
8688 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8689 	    0, &inodedep) != 0)
8690 		if (inodedep->id_mkdiradd == dap)
8691 			inodedep->id_mkdiradd = NULL;
8692 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8693 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8694 		     mkdir = nextmd) {
8695 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8696 			if (mkdir->md_diradd != dap)
8697 				continue;
8698 			dap->da_state &=
8699 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8700 			LIST_REMOVE(mkdir, md_mkdirs);
8701 			if (mkdir->md_state & ONWORKLIST)
8702 				WORKLIST_REMOVE(&mkdir->md_list);
8703 			if (mkdir->md_jaddref != NULL)
8704 				panic("free_diradd: Unexpected jaddref");
8705 			WORKITEM_FREE(mkdir, D_MKDIR);
8706 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8707 				break;
8708 		}
8709 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8710 			panic("free_diradd: unfound ref");
8711 	}
8712 	if (inodedep)
8713 		free_inodedep(inodedep);
8714 	/*
8715 	 * Free any journal segments waiting for the directory write.
8716 	 */
8717 	handle_jwork(&dap->da_jwork);
8718 	WORKITEM_FREE(dap, D_DIRADD);
8719 }
8720 
8721 /*
8722  * Directory entry removal dependencies.
8723  *
8724  * When removing a directory entry, the entry's inode pointer must be
8725  * zero'ed on disk before the corresponding inode's link count is decremented
8726  * (possibly freeing the inode for re-use). This dependency is handled by
8727  * updating the directory entry but delaying the inode count reduction until
8728  * after the directory block has been written to disk. After this point, the
8729  * inode count can be decremented whenever it is convenient.
8730  */
8731 
8732 /*
8733  * This routine should be called immediately after removing
8734  * a directory entry.  The inode's link count should not be
8735  * decremented by the calling procedure -- the soft updates
8736  * code will do this task when it is safe.
8737  */
8738 void
8739 softdep_setup_remove(bp, dp, ip, isrmdir)
8740 	struct buf *bp;		/* buffer containing directory block */
8741 	struct inode *dp;	/* inode for the directory being modified */
8742 	struct inode *ip;	/* inode for directory entry being removed */
8743 	int isrmdir;		/* indicates if doing RMDIR */
8744 {
8745 	struct dirrem *dirrem, *prevdirrem;
8746 	struct inodedep *inodedep;
8747 	int direct;
8748 
8749 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8750 	    ("softdep_setup_remove called on non-softdep filesystem"));
8751 	/*
8752 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8753 	 * newdirrem() to setup the full directory remove which requires
8754 	 * isrmdir > 1.
8755 	 */
8756 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8757 	/*
8758 	 * Add the dirrem to the inodedep's pending remove list for quick
8759 	 * discovery later.
8760 	 */
8761 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8762 	    &inodedep) == 0)
8763 		panic("softdep_setup_remove: Lost inodedep.");
8764 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8765 	dirrem->dm_state |= ONDEPLIST;
8766 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8767 
8768 	/*
8769 	 * If the COMPLETE flag is clear, then there were no active
8770 	 * entries and we want to roll back to a zeroed entry until
8771 	 * the new inode is committed to disk. If the COMPLETE flag is
8772 	 * set then we have deleted an entry that never made it to
8773 	 * disk. If the entry we deleted resulted from a name change,
8774 	 * then the old name still resides on disk. We cannot delete
8775 	 * its inode (returned to us in prevdirrem) until the zeroed
8776 	 * directory entry gets to disk. The new inode has never been
8777 	 * referenced on the disk, so can be deleted immediately.
8778 	 */
8779 	if ((dirrem->dm_state & COMPLETE) == 0) {
8780 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8781 		    dm_next);
8782 		FREE_LOCK(ip->i_ump);
8783 	} else {
8784 		if (prevdirrem != NULL)
8785 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8786 			    prevdirrem, dm_next);
8787 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8788 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8789 		FREE_LOCK(ip->i_ump);
8790 		if (direct)
8791 			handle_workitem_remove(dirrem, 0);
8792 	}
8793 }
8794 
8795 /*
8796  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8797  * pd_pendinghd list of a pagedep.
8798  */
8799 static struct diradd *
8800 diradd_lookup(pagedep, offset)
8801 	struct pagedep *pagedep;
8802 	int offset;
8803 {
8804 	struct diradd *dap;
8805 
8806 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8807 		if (dap->da_offset == offset)
8808 			return (dap);
8809 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8810 		if (dap->da_offset == offset)
8811 			return (dap);
8812 	return (NULL);
8813 }
8814 
8815 /*
8816  * Search for a .. diradd dependency in a directory that is being removed.
8817  * If the directory was renamed to a new parent we have a diradd rather
8818  * than a mkdir for the .. entry.  We need to cancel it now before
8819  * it is found in truncate().
8820  */
8821 static struct jremref *
8822 cancel_diradd_dotdot(ip, dirrem, jremref)
8823 	struct inode *ip;
8824 	struct dirrem *dirrem;
8825 	struct jremref *jremref;
8826 {
8827 	struct pagedep *pagedep;
8828 	struct diradd *dap;
8829 	struct worklist *wk;
8830 
8831 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8832 	    &pagedep) == 0)
8833 		return (jremref);
8834 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8835 	if (dap == NULL)
8836 		return (jremref);
8837 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8838 	/*
8839 	 * Mark any journal work as belonging to the parent so it is freed
8840 	 * with the .. reference.
8841 	 */
8842 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8843 		wk->wk_state |= MKDIR_PARENT;
8844 	return (NULL);
8845 }
8846 
8847 /*
8848  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8849  * replace it with a dirrem/diradd pair as a result of re-parenting a
8850  * directory.  This ensures that we don't simultaneously have a mkdir and
8851  * a diradd for the same .. entry.
8852  */
8853 static struct jremref *
8854 cancel_mkdir_dotdot(ip, dirrem, jremref)
8855 	struct inode *ip;
8856 	struct dirrem *dirrem;
8857 	struct jremref *jremref;
8858 {
8859 	struct inodedep *inodedep;
8860 	struct jaddref *jaddref;
8861 	struct ufsmount *ump;
8862 	struct mkdir *mkdir;
8863 	struct diradd *dap;
8864 
8865 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8866 	    &inodedep) == 0)
8867 		return (jremref);
8868 	dap = inodedep->id_mkdiradd;
8869 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8870 		return (jremref);
8871 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
8872 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8873 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8874 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8875 			break;
8876 	if (mkdir == NULL)
8877 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8878 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8879 		mkdir->md_jaddref = NULL;
8880 		jaddref->ja_state &= ~MKDIR_PARENT;
8881 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8882 		    &inodedep) == 0)
8883 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8884 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8885 			journal_jremref(dirrem, jremref, inodedep);
8886 			jremref = NULL;
8887 		}
8888 	}
8889 	if (mkdir->md_state & ONWORKLIST)
8890 		WORKLIST_REMOVE(&mkdir->md_list);
8891 	mkdir->md_state |= ALLCOMPLETE;
8892 	complete_mkdir(mkdir);
8893 	return (jremref);
8894 }
8895 
8896 static void
8897 journal_jremref(dirrem, jremref, inodedep)
8898 	struct dirrem *dirrem;
8899 	struct jremref *jremref;
8900 	struct inodedep *inodedep;
8901 {
8902 
8903 	if (inodedep == NULL)
8904 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8905 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8906 			panic("journal_jremref: Lost inodedep");
8907 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8908 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8909 	add_to_journal(&jremref->jr_list);
8910 }
8911 
8912 static void
8913 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8914 	struct dirrem *dirrem;
8915 	struct jremref *jremref;
8916 	struct jremref *dotremref;
8917 	struct jremref *dotdotremref;
8918 {
8919 	struct inodedep *inodedep;
8920 
8921 
8922 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8923 	    &inodedep) == 0)
8924 		panic("dirrem_journal: Lost inodedep");
8925 	journal_jremref(dirrem, jremref, inodedep);
8926 	if (dotremref)
8927 		journal_jremref(dirrem, dotremref, inodedep);
8928 	if (dotdotremref)
8929 		journal_jremref(dirrem, dotdotremref, NULL);
8930 }
8931 
8932 /*
8933  * Allocate a new dirrem if appropriate and return it along with
8934  * its associated pagedep. Called without a lock, returns with lock.
8935  */
8936 static struct dirrem *
8937 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8938 	struct buf *bp;		/* buffer containing directory block */
8939 	struct inode *dp;	/* inode for the directory being modified */
8940 	struct inode *ip;	/* inode for directory entry being removed */
8941 	int isrmdir;		/* indicates if doing RMDIR */
8942 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8943 {
8944 	int offset;
8945 	ufs_lbn_t lbn;
8946 	struct diradd *dap;
8947 	struct dirrem *dirrem;
8948 	struct pagedep *pagedep;
8949 	struct jremref *jremref;
8950 	struct jremref *dotremref;
8951 	struct jremref *dotdotremref;
8952 	struct vnode *dvp;
8953 
8954 	/*
8955 	 * Whiteouts have no deletion dependencies.
8956 	 */
8957 	if (ip == NULL)
8958 		panic("newdirrem: whiteout");
8959 	dvp = ITOV(dp);
8960 	/*
8961 	 * If we are over our limit, try to improve the situation.
8962 	 * Limiting the number of dirrem structures will also limit
8963 	 * the number of freefile and freeblks structures.
8964 	 */
8965 	ACQUIRE_LOCK(ip->i_ump);
8966 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8967 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8968 	FREE_LOCK(ip->i_ump);
8969 	dirrem = malloc(sizeof(struct dirrem),
8970 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8971 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8972 	LIST_INIT(&dirrem->dm_jremrefhd);
8973 	LIST_INIT(&dirrem->dm_jwork);
8974 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8975 	dirrem->dm_oldinum = ip->i_number;
8976 	*prevdirremp = NULL;
8977 	/*
8978 	 * Allocate remove reference structures to track journal write
8979 	 * dependencies.  We will always have one for the link and
8980 	 * when doing directories we will always have one more for dot.
8981 	 * When renaming a directory we skip the dotdot link change so
8982 	 * this is not needed.
8983 	 */
8984 	jremref = dotremref = dotdotremref = NULL;
8985 	if (DOINGSUJ(dvp)) {
8986 		if (isrmdir) {
8987 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8988 			    ip->i_effnlink + 2);
8989 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8990 			    ip->i_effnlink + 1);
8991 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8992 			    dp->i_effnlink + 1);
8993 			dotdotremref->jr_state |= MKDIR_PARENT;
8994 		} else
8995 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8996 			    ip->i_effnlink + 1);
8997 	}
8998 	ACQUIRE_LOCK(ip->i_ump);
8999 	lbn = lblkno(dp->i_fs, dp->i_offset);
9000 	offset = blkoff(dp->i_fs, dp->i_offset);
9001 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9002 	    &pagedep);
9003 	dirrem->dm_pagedep = pagedep;
9004 	dirrem->dm_offset = offset;
9005 	/*
9006 	 * If we're renaming a .. link to a new directory, cancel any
9007 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9008 	 * the jremref is preserved for any potential diradd in this
9009 	 * location.  This can not coincide with a rmdir.
9010 	 */
9011 	if (dp->i_offset == DOTDOT_OFFSET) {
9012 		if (isrmdir)
9013 			panic("newdirrem: .. directory change during remove?");
9014 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9015 	}
9016 	/*
9017 	 * If we're removing a directory search for the .. dependency now and
9018 	 * cancel it.  Any pending journal work will be added to the dirrem
9019 	 * to be completed when the workitem remove completes.
9020 	 */
9021 	if (isrmdir)
9022 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9023 	/*
9024 	 * Check for a diradd dependency for the same directory entry.
9025 	 * If present, then both dependencies become obsolete and can
9026 	 * be de-allocated.
9027 	 */
9028 	dap = diradd_lookup(pagedep, offset);
9029 	if (dap == NULL) {
9030 		/*
9031 		 * Link the jremref structures into the dirrem so they are
9032 		 * written prior to the pagedep.
9033 		 */
9034 		if (jremref)
9035 			dirrem_journal(dirrem, jremref, dotremref,
9036 			    dotdotremref);
9037 		return (dirrem);
9038 	}
9039 	/*
9040 	 * Must be ATTACHED at this point.
9041 	 */
9042 	if ((dap->da_state & ATTACHED) == 0)
9043 		panic("newdirrem: not ATTACHED");
9044 	if (dap->da_newinum != ip->i_number)
9045 		panic("newdirrem: inum %ju should be %ju",
9046 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9047 	/*
9048 	 * If we are deleting a changed name that never made it to disk,
9049 	 * then return the dirrem describing the previous inode (which
9050 	 * represents the inode currently referenced from this entry on disk).
9051 	 */
9052 	if ((dap->da_state & DIRCHG) != 0) {
9053 		*prevdirremp = dap->da_previous;
9054 		dap->da_state &= ~DIRCHG;
9055 		dap->da_pagedep = pagedep;
9056 	}
9057 	/*
9058 	 * We are deleting an entry that never made it to disk.
9059 	 * Mark it COMPLETE so we can delete its inode immediately.
9060 	 */
9061 	dirrem->dm_state |= COMPLETE;
9062 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9063 #ifdef SUJ_DEBUG
9064 	if (isrmdir == 0) {
9065 		struct worklist *wk;
9066 
9067 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9068 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9069 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9070 	}
9071 #endif
9072 
9073 	return (dirrem);
9074 }
9075 
9076 /*
9077  * Directory entry change dependencies.
9078  *
9079  * Changing an existing directory entry requires that an add operation
9080  * be completed first followed by a deletion. The semantics for the addition
9081  * are identical to the description of adding a new entry above except
9082  * that the rollback is to the old inode number rather than zero. Once
9083  * the addition dependency is completed, the removal is done as described
9084  * in the removal routine above.
9085  */
9086 
9087 /*
9088  * This routine should be called immediately after changing
9089  * a directory entry.  The inode's link count should not be
9090  * decremented by the calling procedure -- the soft updates
9091  * code will perform this task when it is safe.
9092  */
9093 void
9094 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9095 	struct buf *bp;		/* buffer containing directory block */
9096 	struct inode *dp;	/* inode for the directory being modified */
9097 	struct inode *ip;	/* inode for directory entry being removed */
9098 	ino_t newinum;		/* new inode number for changed entry */
9099 	int isrmdir;		/* indicates if doing RMDIR */
9100 {
9101 	int offset;
9102 	struct diradd *dap = NULL;
9103 	struct dirrem *dirrem, *prevdirrem;
9104 	struct pagedep *pagedep;
9105 	struct inodedep *inodedep;
9106 	struct jaddref *jaddref;
9107 	struct mount *mp;
9108 
9109 	offset = blkoff(dp->i_fs, dp->i_offset);
9110 	mp = UFSTOVFS(dp->i_ump);
9111 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9112 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9113 
9114 	/*
9115 	 * Whiteouts do not need diradd dependencies.
9116 	 */
9117 	if (newinum != WINO) {
9118 		dap = malloc(sizeof(struct diradd),
9119 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9120 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9121 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9122 		dap->da_offset = offset;
9123 		dap->da_newinum = newinum;
9124 		LIST_INIT(&dap->da_jwork);
9125 	}
9126 
9127 	/*
9128 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9129 	 */
9130 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9131 	pagedep = dirrem->dm_pagedep;
9132 	/*
9133 	 * The possible values for isrmdir:
9134 	 *	0 - non-directory file rename
9135 	 *	1 - directory rename within same directory
9136 	 *   inum - directory rename to new directory of given inode number
9137 	 * When renaming to a new directory, we are both deleting and
9138 	 * creating a new directory entry, so the link count on the new
9139 	 * directory should not change. Thus we do not need the followup
9140 	 * dirrem which is usually done in handle_workitem_remove. We set
9141 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9142 	 * followup dirrem.
9143 	 */
9144 	if (isrmdir > 1)
9145 		dirrem->dm_state |= DIRCHG;
9146 
9147 	/*
9148 	 * Whiteouts have no additional dependencies,
9149 	 * so just put the dirrem on the correct list.
9150 	 */
9151 	if (newinum == WINO) {
9152 		if ((dirrem->dm_state & COMPLETE) == 0) {
9153 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9154 			    dm_next);
9155 		} else {
9156 			dirrem->dm_dirinum = pagedep->pd_ino;
9157 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9158 				add_to_worklist(&dirrem->dm_list, 0);
9159 		}
9160 		FREE_LOCK(dp->i_ump);
9161 		return;
9162 	}
9163 	/*
9164 	 * Add the dirrem to the inodedep's pending remove list for quick
9165 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9166 	 * will not fail.
9167 	 */
9168 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9169 		panic("softdep_setup_directory_change: Lost inodedep.");
9170 	dirrem->dm_state |= ONDEPLIST;
9171 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9172 
9173 	/*
9174 	 * If the COMPLETE flag is clear, then there were no active
9175 	 * entries and we want to roll back to the previous inode until
9176 	 * the new inode is committed to disk. If the COMPLETE flag is
9177 	 * set, then we have deleted an entry that never made it to disk.
9178 	 * If the entry we deleted resulted from a name change, then the old
9179 	 * inode reference still resides on disk. Any rollback that we do
9180 	 * needs to be to that old inode (returned to us in prevdirrem). If
9181 	 * the entry we deleted resulted from a create, then there is
9182 	 * no entry on the disk, so we want to roll back to zero rather
9183 	 * than the uncommitted inode. In either of the COMPLETE cases we
9184 	 * want to immediately free the unwritten and unreferenced inode.
9185 	 */
9186 	if ((dirrem->dm_state & COMPLETE) == 0) {
9187 		dap->da_previous = dirrem;
9188 	} else {
9189 		if (prevdirrem != NULL) {
9190 			dap->da_previous = prevdirrem;
9191 		} else {
9192 			dap->da_state &= ~DIRCHG;
9193 			dap->da_pagedep = pagedep;
9194 		}
9195 		dirrem->dm_dirinum = pagedep->pd_ino;
9196 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9197 			add_to_worklist(&dirrem->dm_list, 0);
9198 	}
9199 	/*
9200 	 * Lookup the jaddref for this journal entry.  We must finish
9201 	 * initializing it and make the diradd write dependent on it.
9202 	 * If we're not journaling, put it on the id_bufwait list if the
9203 	 * inode is not yet written. If it is written, do the post-inode
9204 	 * write processing to put it on the id_pendinghd list.
9205 	 */
9206 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9207 	if (MOUNTEDSUJ(mp)) {
9208 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9209 		    inoreflst);
9210 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9211 		    ("softdep_setup_directory_change: bad jaddref %p",
9212 		    jaddref));
9213 		jaddref->ja_diroff = dp->i_offset;
9214 		jaddref->ja_diradd = dap;
9215 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9216 		    dap, da_pdlist);
9217 		add_to_journal(&jaddref->ja_list);
9218 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9219 		dap->da_state |= COMPLETE;
9220 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9221 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9222 	} else {
9223 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9224 		    dap, da_pdlist);
9225 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9226 	}
9227 	/*
9228 	 * If we're making a new name for a directory that has not been
9229 	 * committed when need to move the dot and dotdot references to
9230 	 * this new name.
9231 	 */
9232 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9233 		merge_diradd(inodedep, dap);
9234 	FREE_LOCK(dp->i_ump);
9235 }
9236 
9237 /*
9238  * Called whenever the link count on an inode is changed.
9239  * It creates an inode dependency so that the new reference(s)
9240  * to the inode cannot be committed to disk until the updated
9241  * inode has been written.
9242  */
9243 void
9244 softdep_change_linkcnt(ip)
9245 	struct inode *ip;	/* the inode with the increased link count */
9246 {
9247 	struct inodedep *inodedep;
9248 	int dflags;
9249 
9250 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9251 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9252 	ACQUIRE_LOCK(ip->i_ump);
9253 	dflags = DEPALLOC;
9254 	if (IS_SNAPSHOT(ip))
9255 		dflags |= NODELAY;
9256 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9257 	if (ip->i_nlink < ip->i_effnlink)
9258 		panic("softdep_change_linkcnt: bad delta");
9259 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9260 	FREE_LOCK(ip->i_ump);
9261 }
9262 
9263 /*
9264  * Attach a sbdep dependency to the superblock buf so that we can keep
9265  * track of the head of the linked list of referenced but unlinked inodes.
9266  */
9267 void
9268 softdep_setup_sbupdate(ump, fs, bp)
9269 	struct ufsmount *ump;
9270 	struct fs *fs;
9271 	struct buf *bp;
9272 {
9273 	struct sbdep *sbdep;
9274 	struct worklist *wk;
9275 
9276 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9277 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9278 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9279 		if (wk->wk_type == D_SBDEP)
9280 			break;
9281 	if (wk != NULL)
9282 		return;
9283 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9284 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9285 	sbdep->sb_fs = fs;
9286 	sbdep->sb_ump = ump;
9287 	ACQUIRE_LOCK(ump);
9288 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9289 	FREE_LOCK(ump);
9290 }
9291 
9292 /*
9293  * Return the first unlinked inodedep which is ready to be the head of the
9294  * list.  The inodedep and all those after it must have valid next pointers.
9295  */
9296 static struct inodedep *
9297 first_unlinked_inodedep(ump)
9298 	struct ufsmount *ump;
9299 {
9300 	struct inodedep *inodedep;
9301 	struct inodedep *idp;
9302 
9303 	LOCK_OWNED(ump);
9304 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9305 	    inodedep; inodedep = idp) {
9306 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9307 			return (NULL);
9308 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9309 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9310 			break;
9311 		if ((inodedep->id_state & UNLINKPREV) == 0)
9312 			break;
9313 	}
9314 	return (inodedep);
9315 }
9316 
9317 /*
9318  * Set the sujfree unlinked head pointer prior to writing a superblock.
9319  */
9320 static void
9321 initiate_write_sbdep(sbdep)
9322 	struct sbdep *sbdep;
9323 {
9324 	struct inodedep *inodedep;
9325 	struct fs *bpfs;
9326 	struct fs *fs;
9327 
9328 	bpfs = sbdep->sb_fs;
9329 	fs = sbdep->sb_ump->um_fs;
9330 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9331 	if (inodedep) {
9332 		fs->fs_sujfree = inodedep->id_ino;
9333 		inodedep->id_state |= UNLINKPREV;
9334 	} else
9335 		fs->fs_sujfree = 0;
9336 	bpfs->fs_sujfree = fs->fs_sujfree;
9337 }
9338 
9339 /*
9340  * After a superblock is written determine whether it must be written again
9341  * due to a changing unlinked list head.
9342  */
9343 static int
9344 handle_written_sbdep(sbdep, bp)
9345 	struct sbdep *sbdep;
9346 	struct buf *bp;
9347 {
9348 	struct inodedep *inodedep;
9349 	struct mount *mp;
9350 	struct fs *fs;
9351 
9352 	LOCK_OWNED(sbdep->sb_ump);
9353 	fs = sbdep->sb_fs;
9354 	mp = UFSTOVFS(sbdep->sb_ump);
9355 	/*
9356 	 * If the superblock doesn't match the in-memory list start over.
9357 	 */
9358 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9359 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9360 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9361 		bdirty(bp);
9362 		return (1);
9363 	}
9364 	WORKITEM_FREE(sbdep, D_SBDEP);
9365 	if (fs->fs_sujfree == 0)
9366 		return (0);
9367 	/*
9368 	 * Now that we have a record of this inode in stable store allow it
9369 	 * to be written to free up pending work.  Inodes may see a lot of
9370 	 * write activity after they are unlinked which we must not hold up.
9371 	 */
9372 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9373 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9374 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9375 			    inodedep, inodedep->id_state);
9376 		if (inodedep->id_state & UNLINKONLIST)
9377 			break;
9378 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9379 	}
9380 
9381 	return (0);
9382 }
9383 
9384 /*
9385  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9386  */
9387 static void
9388 unlinked_inodedep(mp, inodedep)
9389 	struct mount *mp;
9390 	struct inodedep *inodedep;
9391 {
9392 	struct ufsmount *ump;
9393 
9394 	ump = VFSTOUFS(mp);
9395 	LOCK_OWNED(ump);
9396 	if (MOUNTEDSUJ(mp) == 0)
9397 		return;
9398 	ump->um_fs->fs_fmod = 1;
9399 	if (inodedep->id_state & UNLINKED)
9400 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9401 	inodedep->id_state |= UNLINKED;
9402 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9403 }
9404 
9405 /*
9406  * Remove an inodedep from the unlinked inodedep list.  This may require
9407  * disk writes if the inode has made it that far.
9408  */
9409 static void
9410 clear_unlinked_inodedep(inodedep)
9411 	struct inodedep *inodedep;
9412 {
9413 	struct ufsmount *ump;
9414 	struct inodedep *idp;
9415 	struct inodedep *idn;
9416 	struct fs *fs;
9417 	struct buf *bp;
9418 	ino_t ino;
9419 	ino_t nino;
9420 	ino_t pino;
9421 	int error;
9422 
9423 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9424 	fs = ump->um_fs;
9425 	ino = inodedep->id_ino;
9426 	error = 0;
9427 	for (;;) {
9428 		LOCK_OWNED(ump);
9429 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9430 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9431 		    inodedep));
9432 		/*
9433 		 * If nothing has yet been written simply remove us from
9434 		 * the in memory list and return.  This is the most common
9435 		 * case where handle_workitem_remove() loses the final
9436 		 * reference.
9437 		 */
9438 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9439 			break;
9440 		/*
9441 		 * If we have a NEXT pointer and no PREV pointer we can simply
9442 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9443 		 * careful not to clear PREV if the superblock points at
9444 		 * next as well.
9445 		 */
9446 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9447 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9448 			if (idn && fs->fs_sujfree != idn->id_ino)
9449 				idn->id_state &= ~UNLINKPREV;
9450 			break;
9451 		}
9452 		/*
9453 		 * Here we have an inodedep which is actually linked into
9454 		 * the list.  We must remove it by forcing a write to the
9455 		 * link before us, whether it be the superblock or an inode.
9456 		 * Unfortunately the list may change while we're waiting
9457 		 * on the buf lock for either resource so we must loop until
9458 		 * we lock the right one.  If both the superblock and an
9459 		 * inode point to this inode we must clear the inode first
9460 		 * followed by the superblock.
9461 		 */
9462 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9463 		pino = 0;
9464 		if (idp && (idp->id_state & UNLINKNEXT))
9465 			pino = idp->id_ino;
9466 		FREE_LOCK(ump);
9467 		if (pino == 0) {
9468 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9469 			    (int)fs->fs_sbsize, 0, 0, 0);
9470 		} else {
9471 			error = bread(ump->um_devvp,
9472 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9473 			    (int)fs->fs_bsize, NOCRED, &bp);
9474 			if (error)
9475 				brelse(bp);
9476 		}
9477 		ACQUIRE_LOCK(ump);
9478 		if (error)
9479 			break;
9480 		/* If the list has changed restart the loop. */
9481 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9482 		nino = 0;
9483 		if (idp && (idp->id_state & UNLINKNEXT))
9484 			nino = idp->id_ino;
9485 		if (nino != pino ||
9486 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9487 			FREE_LOCK(ump);
9488 			brelse(bp);
9489 			ACQUIRE_LOCK(ump);
9490 			continue;
9491 		}
9492 		nino = 0;
9493 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9494 		if (idn)
9495 			nino = idn->id_ino;
9496 		/*
9497 		 * Remove us from the in memory list.  After this we cannot
9498 		 * access the inodedep.
9499 		 */
9500 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9501 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9502 		    inodedep));
9503 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9504 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9505 		FREE_LOCK(ump);
9506 		/*
9507 		 * The predecessor's next pointer is manually updated here
9508 		 * so that the NEXT flag is never cleared for an element
9509 		 * that is in the list.
9510 		 */
9511 		if (pino == 0) {
9512 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9513 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9514 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9515 			    bp);
9516 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9517 			((struct ufs1_dinode *)bp->b_data +
9518 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9519 		else
9520 			((struct ufs2_dinode *)bp->b_data +
9521 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9522 		/*
9523 		 * If the bwrite fails we have no recourse to recover.  The
9524 		 * filesystem is corrupted already.
9525 		 */
9526 		bwrite(bp);
9527 		ACQUIRE_LOCK(ump);
9528 		/*
9529 		 * If the superblock pointer still needs to be cleared force
9530 		 * a write here.
9531 		 */
9532 		if (fs->fs_sujfree == ino) {
9533 			FREE_LOCK(ump);
9534 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9535 			    (int)fs->fs_sbsize, 0, 0, 0);
9536 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9537 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9538 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9539 			    bp);
9540 			bwrite(bp);
9541 			ACQUIRE_LOCK(ump);
9542 		}
9543 
9544 		if (fs->fs_sujfree != ino)
9545 			return;
9546 		panic("clear_unlinked_inodedep: Failed to clear free head");
9547 	}
9548 	if (inodedep->id_ino == fs->fs_sujfree)
9549 		panic("clear_unlinked_inodedep: Freeing head of free list");
9550 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9551 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9552 	return;
9553 }
9554 
9555 /*
9556  * This workitem decrements the inode's link count.
9557  * If the link count reaches zero, the file is removed.
9558  */
9559 static int
9560 handle_workitem_remove(dirrem, flags)
9561 	struct dirrem *dirrem;
9562 	int flags;
9563 {
9564 	struct inodedep *inodedep;
9565 	struct workhead dotdotwk;
9566 	struct worklist *wk;
9567 	struct ufsmount *ump;
9568 	struct mount *mp;
9569 	struct vnode *vp;
9570 	struct inode *ip;
9571 	ino_t oldinum;
9572 
9573 	if (dirrem->dm_state & ONWORKLIST)
9574 		panic("handle_workitem_remove: dirrem %p still on worklist",
9575 		    dirrem);
9576 	oldinum = dirrem->dm_oldinum;
9577 	mp = dirrem->dm_list.wk_mp;
9578 	ump = VFSTOUFS(mp);
9579 	flags |= LK_EXCLUSIVE;
9580 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9581 		return (EBUSY);
9582 	ip = VTOI(vp);
9583 	ACQUIRE_LOCK(ump);
9584 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9585 		panic("handle_workitem_remove: lost inodedep");
9586 	if (dirrem->dm_state & ONDEPLIST)
9587 		LIST_REMOVE(dirrem, dm_inonext);
9588 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9589 	    ("handle_workitem_remove:  Journal entries not written."));
9590 
9591 	/*
9592 	 * Move all dependencies waiting on the remove to complete
9593 	 * from the dirrem to the inode inowait list to be completed
9594 	 * after the inode has been updated and written to disk.  Any
9595 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9596 	 * is removed.
9597 	 */
9598 	LIST_INIT(&dotdotwk);
9599 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9600 		WORKLIST_REMOVE(wk);
9601 		if (wk->wk_state & MKDIR_PARENT) {
9602 			wk->wk_state &= ~MKDIR_PARENT;
9603 			WORKLIST_INSERT(&dotdotwk, wk);
9604 			continue;
9605 		}
9606 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9607 	}
9608 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9609 	/*
9610 	 * Normal file deletion.
9611 	 */
9612 	if ((dirrem->dm_state & RMDIR) == 0) {
9613 		ip->i_nlink--;
9614 		DIP_SET(ip, i_nlink, ip->i_nlink);
9615 		ip->i_flag |= IN_CHANGE;
9616 		if (ip->i_nlink < ip->i_effnlink)
9617 			panic("handle_workitem_remove: bad file delta");
9618 		if (ip->i_nlink == 0)
9619 			unlinked_inodedep(mp, inodedep);
9620 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9621 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9622 		    ("handle_workitem_remove: worklist not empty. %s",
9623 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9624 		WORKITEM_FREE(dirrem, D_DIRREM);
9625 		FREE_LOCK(ump);
9626 		goto out;
9627 	}
9628 	/*
9629 	 * Directory deletion. Decrement reference count for both the
9630 	 * just deleted parent directory entry and the reference for ".".
9631 	 * Arrange to have the reference count on the parent decremented
9632 	 * to account for the loss of "..".
9633 	 */
9634 	ip->i_nlink -= 2;
9635 	DIP_SET(ip, i_nlink, ip->i_nlink);
9636 	ip->i_flag |= IN_CHANGE;
9637 	if (ip->i_nlink < ip->i_effnlink)
9638 		panic("handle_workitem_remove: bad dir delta");
9639 	if (ip->i_nlink == 0)
9640 		unlinked_inodedep(mp, inodedep);
9641 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9642 	/*
9643 	 * Rename a directory to a new parent. Since, we are both deleting
9644 	 * and creating a new directory entry, the link count on the new
9645 	 * directory should not change. Thus we skip the followup dirrem.
9646 	 */
9647 	if (dirrem->dm_state & DIRCHG) {
9648 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9649 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9650 		WORKITEM_FREE(dirrem, D_DIRREM);
9651 		FREE_LOCK(ump);
9652 		goto out;
9653 	}
9654 	dirrem->dm_state = ONDEPLIST;
9655 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9656 	/*
9657 	 * Place the dirrem on the parent's diremhd list.
9658 	 */
9659 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9660 		panic("handle_workitem_remove: lost dir inodedep");
9661 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9662 	/*
9663 	 * If the allocated inode has never been written to disk, then
9664 	 * the on-disk inode is zero'ed and we can remove the file
9665 	 * immediately.  When journaling if the inode has been marked
9666 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9667 	 */
9668 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9669 	if (inodedep == NULL ||
9670 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9671 	    check_inode_unwritten(inodedep)) {
9672 		FREE_LOCK(ump);
9673 		vput(vp);
9674 		return handle_workitem_remove(dirrem, flags);
9675 	}
9676 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9677 	FREE_LOCK(ump);
9678 	ip->i_flag |= IN_CHANGE;
9679 out:
9680 	ffs_update(vp, 0);
9681 	vput(vp);
9682 	return (0);
9683 }
9684 
9685 /*
9686  * Inode de-allocation dependencies.
9687  *
9688  * When an inode's link count is reduced to zero, it can be de-allocated. We
9689  * found it convenient to postpone de-allocation until after the inode is
9690  * written to disk with its new link count (zero).  At this point, all of the
9691  * on-disk inode's block pointers are nullified and, with careful dependency
9692  * list ordering, all dependencies related to the inode will be satisfied and
9693  * the corresponding dependency structures de-allocated.  So, if/when the
9694  * inode is reused, there will be no mixing of old dependencies with new
9695  * ones.  This artificial dependency is set up by the block de-allocation
9696  * procedure above (softdep_setup_freeblocks) and completed by the
9697  * following procedure.
9698  */
9699 static void
9700 handle_workitem_freefile(freefile)
9701 	struct freefile *freefile;
9702 {
9703 	struct workhead wkhd;
9704 	struct fs *fs;
9705 	struct inodedep *idp;
9706 	struct ufsmount *ump;
9707 	int error;
9708 
9709 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9710 	fs = ump->um_fs;
9711 #ifdef DEBUG
9712 	ACQUIRE_LOCK(ump);
9713 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9714 	FREE_LOCK(ump);
9715 	if (error)
9716 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9717 #endif
9718 	UFS_LOCK(ump);
9719 	fs->fs_pendinginodes -= 1;
9720 	UFS_UNLOCK(ump);
9721 	LIST_INIT(&wkhd);
9722 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9723 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9724 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9725 		softdep_error("handle_workitem_freefile", error);
9726 	ACQUIRE_LOCK(ump);
9727 	WORKITEM_FREE(freefile, D_FREEFILE);
9728 	FREE_LOCK(ump);
9729 }
9730 
9731 
9732 /*
9733  * Helper function which unlinks marker element from work list and returns
9734  * the next element on the list.
9735  */
9736 static __inline struct worklist *
9737 markernext(struct worklist *marker)
9738 {
9739 	struct worklist *next;
9740 
9741 	next = LIST_NEXT(marker, wk_list);
9742 	LIST_REMOVE(marker, wk_list);
9743 	return next;
9744 }
9745 
9746 /*
9747  * Disk writes.
9748  *
9749  * The dependency structures constructed above are most actively used when file
9750  * system blocks are written to disk.  No constraints are placed on when a
9751  * block can be written, but unsatisfied update dependencies are made safe by
9752  * modifying (or replacing) the source memory for the duration of the disk
9753  * write.  When the disk write completes, the memory block is again brought
9754  * up-to-date.
9755  *
9756  * In-core inode structure reclamation.
9757  *
9758  * Because there are a finite number of "in-core" inode structures, they are
9759  * reused regularly.  By transferring all inode-related dependencies to the
9760  * in-memory inode block and indexing them separately (via "inodedep"s), we
9761  * can allow "in-core" inode structures to be reused at any time and avoid
9762  * any increase in contention.
9763  *
9764  * Called just before entering the device driver to initiate a new disk I/O.
9765  * The buffer must be locked, thus, no I/O completion operations can occur
9766  * while we are manipulating its associated dependencies.
9767  */
9768 static void
9769 softdep_disk_io_initiation(bp)
9770 	struct buf *bp;		/* structure describing disk write to occur */
9771 {
9772 	struct worklist *wk;
9773 	struct worklist marker;
9774 	struct inodedep *inodedep;
9775 	struct freeblks *freeblks;
9776 	struct jblkdep *jblkdep;
9777 	struct newblk *newblk;
9778 	struct ufsmount *ump;
9779 
9780 	/*
9781 	 * We only care about write operations. There should never
9782 	 * be dependencies for reads.
9783 	 */
9784 	if (bp->b_iocmd != BIO_WRITE)
9785 		panic("softdep_disk_io_initiation: not write");
9786 
9787 	if (bp->b_vflags & BV_BKGRDINPROG)
9788 		panic("softdep_disk_io_initiation: Writing buffer with "
9789 		    "background write in progress: %p", bp);
9790 
9791 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9792 		return;
9793 	ump = VFSTOUFS(wk->wk_mp);
9794 
9795 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9796 	PHOLD(curproc);			/* Don't swap out kernel stack */
9797 	ACQUIRE_LOCK(ump);
9798 	/*
9799 	 * Do any necessary pre-I/O processing.
9800 	 */
9801 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9802 	     wk = markernext(&marker)) {
9803 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9804 		switch (wk->wk_type) {
9805 
9806 		case D_PAGEDEP:
9807 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9808 			continue;
9809 
9810 		case D_INODEDEP:
9811 			inodedep = WK_INODEDEP(wk);
9812 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9813 				initiate_write_inodeblock_ufs1(inodedep, bp);
9814 			else
9815 				initiate_write_inodeblock_ufs2(inodedep, bp);
9816 			continue;
9817 
9818 		case D_INDIRDEP:
9819 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9820 			continue;
9821 
9822 		case D_BMSAFEMAP:
9823 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9824 			continue;
9825 
9826 		case D_JSEG:
9827 			WK_JSEG(wk)->js_buf = NULL;
9828 			continue;
9829 
9830 		case D_FREEBLKS:
9831 			freeblks = WK_FREEBLKS(wk);
9832 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9833 			/*
9834 			 * We have to wait for the freeblks to be journaled
9835 			 * before we can write an inodeblock with updated
9836 			 * pointers.  Be careful to arrange the marker so
9837 			 * we revisit the freeblks if it's not removed by
9838 			 * the first jwait().
9839 			 */
9840 			if (jblkdep != NULL) {
9841 				LIST_REMOVE(&marker, wk_list);
9842 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9843 				jwait(&jblkdep->jb_list, MNT_WAIT);
9844 			}
9845 			continue;
9846 		case D_ALLOCDIRECT:
9847 		case D_ALLOCINDIR:
9848 			/*
9849 			 * We have to wait for the jnewblk to be journaled
9850 			 * before we can write to a block if the contents
9851 			 * may be confused with an earlier file's indirect
9852 			 * at recovery time.  Handle the marker as described
9853 			 * above.
9854 			 */
9855 			newblk = WK_NEWBLK(wk);
9856 			if (newblk->nb_jnewblk != NULL &&
9857 			    indirblk_lookup(newblk->nb_list.wk_mp,
9858 			    newblk->nb_newblkno)) {
9859 				LIST_REMOVE(&marker, wk_list);
9860 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9861 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9862 			}
9863 			continue;
9864 
9865 		case D_SBDEP:
9866 			initiate_write_sbdep(WK_SBDEP(wk));
9867 			continue;
9868 
9869 		case D_MKDIR:
9870 		case D_FREEWORK:
9871 		case D_FREEDEP:
9872 		case D_JSEGDEP:
9873 			continue;
9874 
9875 		default:
9876 			panic("handle_disk_io_initiation: Unexpected type %s",
9877 			    TYPENAME(wk->wk_type));
9878 			/* NOTREACHED */
9879 		}
9880 	}
9881 	FREE_LOCK(ump);
9882 	PRELE(curproc);			/* Allow swapout of kernel stack */
9883 }
9884 
9885 /*
9886  * Called from within the procedure above to deal with unsatisfied
9887  * allocation dependencies in a directory. The buffer must be locked,
9888  * thus, no I/O completion operations can occur while we are
9889  * manipulating its associated dependencies.
9890  */
9891 static void
9892 initiate_write_filepage(pagedep, bp)
9893 	struct pagedep *pagedep;
9894 	struct buf *bp;
9895 {
9896 	struct jremref *jremref;
9897 	struct jmvref *jmvref;
9898 	struct dirrem *dirrem;
9899 	struct diradd *dap;
9900 	struct direct *ep;
9901 	int i;
9902 
9903 	if (pagedep->pd_state & IOSTARTED) {
9904 		/*
9905 		 * This can only happen if there is a driver that does not
9906 		 * understand chaining. Here biodone will reissue the call
9907 		 * to strategy for the incomplete buffers.
9908 		 */
9909 		printf("initiate_write_filepage: already started\n");
9910 		return;
9911 	}
9912 	pagedep->pd_state |= IOSTARTED;
9913 	/*
9914 	 * Wait for all journal remove dependencies to hit the disk.
9915 	 * We can not allow any potentially conflicting directory adds
9916 	 * to be visible before removes and rollback is too difficult.
9917 	 * The soft updates lock may be dropped and re-acquired, however
9918 	 * we hold the buf locked so the dependency can not go away.
9919 	 */
9920 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9921 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9922 			jwait(&jremref->jr_list, MNT_WAIT);
9923 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9924 		jwait(&jmvref->jm_list, MNT_WAIT);
9925 	for (i = 0; i < DAHASHSZ; i++) {
9926 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9927 			ep = (struct direct *)
9928 			    ((char *)bp->b_data + dap->da_offset);
9929 			if (ep->d_ino != dap->da_newinum)
9930 				panic("%s: dir inum %ju != new %ju",
9931 				    "initiate_write_filepage",
9932 				    (uintmax_t)ep->d_ino,
9933 				    (uintmax_t)dap->da_newinum);
9934 			if (dap->da_state & DIRCHG)
9935 				ep->d_ino = dap->da_previous->dm_oldinum;
9936 			else
9937 				ep->d_ino = 0;
9938 			dap->da_state &= ~ATTACHED;
9939 			dap->da_state |= UNDONE;
9940 		}
9941 	}
9942 }
9943 
9944 /*
9945  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9946  * Note that any bug fixes made to this routine must be done in the
9947  * version found below.
9948  *
9949  * Called from within the procedure above to deal with unsatisfied
9950  * allocation dependencies in an inodeblock. The buffer must be
9951  * locked, thus, no I/O completion operations can occur while we
9952  * are manipulating its associated dependencies.
9953  */
9954 static void
9955 initiate_write_inodeblock_ufs1(inodedep, bp)
9956 	struct inodedep *inodedep;
9957 	struct buf *bp;			/* The inode block */
9958 {
9959 	struct allocdirect *adp, *lastadp;
9960 	struct ufs1_dinode *dp;
9961 	struct ufs1_dinode *sip;
9962 	struct inoref *inoref;
9963 	struct ufsmount *ump;
9964 	struct fs *fs;
9965 	ufs_lbn_t i;
9966 #ifdef INVARIANTS
9967 	ufs_lbn_t prevlbn = 0;
9968 #endif
9969 	int deplist;
9970 
9971 	if (inodedep->id_state & IOSTARTED)
9972 		panic("initiate_write_inodeblock_ufs1: already started");
9973 	inodedep->id_state |= IOSTARTED;
9974 	fs = inodedep->id_fs;
9975 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9976 	LOCK_OWNED(ump);
9977 	dp = (struct ufs1_dinode *)bp->b_data +
9978 	    ino_to_fsbo(fs, inodedep->id_ino);
9979 
9980 	/*
9981 	 * If we're on the unlinked list but have not yet written our
9982 	 * next pointer initialize it here.
9983 	 */
9984 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9985 		struct inodedep *inon;
9986 
9987 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9988 		dp->di_freelink = inon ? inon->id_ino : 0;
9989 	}
9990 	/*
9991 	 * If the bitmap is not yet written, then the allocated
9992 	 * inode cannot be written to disk.
9993 	 */
9994 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9995 		if (inodedep->id_savedino1 != NULL)
9996 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9997 		FREE_LOCK(ump);
9998 		sip = malloc(sizeof(struct ufs1_dinode),
9999 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10000 		ACQUIRE_LOCK(ump);
10001 		inodedep->id_savedino1 = sip;
10002 		*inodedep->id_savedino1 = *dp;
10003 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10004 		dp->di_gen = inodedep->id_savedino1->di_gen;
10005 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10006 		return;
10007 	}
10008 	/*
10009 	 * If no dependencies, then there is nothing to roll back.
10010 	 */
10011 	inodedep->id_savedsize = dp->di_size;
10012 	inodedep->id_savedextsize = 0;
10013 	inodedep->id_savednlink = dp->di_nlink;
10014 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10015 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10016 		return;
10017 	/*
10018 	 * Revert the link count to that of the first unwritten journal entry.
10019 	 */
10020 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10021 	if (inoref)
10022 		dp->di_nlink = inoref->if_nlink;
10023 	/*
10024 	 * Set the dependencies to busy.
10025 	 */
10026 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10027 	     adp = TAILQ_NEXT(adp, ad_next)) {
10028 #ifdef INVARIANTS
10029 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10030 			panic("softdep_write_inodeblock: lbn order");
10031 		prevlbn = adp->ad_offset;
10032 		if (adp->ad_offset < NDADDR &&
10033 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10034 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10035 			    "softdep_write_inodeblock",
10036 			    (intmax_t)adp->ad_offset,
10037 			    dp->di_db[adp->ad_offset],
10038 			    (intmax_t)adp->ad_newblkno);
10039 		if (adp->ad_offset >= NDADDR &&
10040 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10041 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10042 			    "softdep_write_inodeblock",
10043 			    (intmax_t)adp->ad_offset - NDADDR,
10044 			    dp->di_ib[adp->ad_offset - NDADDR],
10045 			    (intmax_t)adp->ad_newblkno);
10046 		deplist |= 1 << adp->ad_offset;
10047 		if ((adp->ad_state & ATTACHED) == 0)
10048 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10049 			    adp->ad_state);
10050 #endif /* INVARIANTS */
10051 		adp->ad_state &= ~ATTACHED;
10052 		adp->ad_state |= UNDONE;
10053 	}
10054 	/*
10055 	 * The on-disk inode cannot claim to be any larger than the last
10056 	 * fragment that has been written. Otherwise, the on-disk inode
10057 	 * might have fragments that were not the last block in the file
10058 	 * which would corrupt the filesystem.
10059 	 */
10060 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10061 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10062 		if (adp->ad_offset >= NDADDR)
10063 			break;
10064 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10065 		/* keep going until hitting a rollback to a frag */
10066 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10067 			continue;
10068 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10069 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10070 #ifdef INVARIANTS
10071 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10072 				panic("softdep_write_inodeblock: lost dep1");
10073 #endif /* INVARIANTS */
10074 			dp->di_db[i] = 0;
10075 		}
10076 		for (i = 0; i < NIADDR; i++) {
10077 #ifdef INVARIANTS
10078 			if (dp->di_ib[i] != 0 &&
10079 			    (deplist & ((1 << NDADDR) << i)) == 0)
10080 				panic("softdep_write_inodeblock: lost dep2");
10081 #endif /* INVARIANTS */
10082 			dp->di_ib[i] = 0;
10083 		}
10084 		return;
10085 	}
10086 	/*
10087 	 * If we have zero'ed out the last allocated block of the file,
10088 	 * roll back the size to the last currently allocated block.
10089 	 * We know that this last allocated block is a full-sized as
10090 	 * we already checked for fragments in the loop above.
10091 	 */
10092 	if (lastadp != NULL &&
10093 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10094 		for (i = lastadp->ad_offset; i >= 0; i--)
10095 			if (dp->di_db[i] != 0)
10096 				break;
10097 		dp->di_size = (i + 1) * fs->fs_bsize;
10098 	}
10099 	/*
10100 	 * The only dependencies are for indirect blocks.
10101 	 *
10102 	 * The file size for indirect block additions is not guaranteed.
10103 	 * Such a guarantee would be non-trivial to achieve. The conventional
10104 	 * synchronous write implementation also does not make this guarantee.
10105 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10106 	 * can be over-estimated without destroying integrity when the file
10107 	 * moves into the indirect blocks (i.e., is large). If we want to
10108 	 * postpone fsck, we are stuck with this argument.
10109 	 */
10110 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10111 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10112 }
10113 
10114 /*
10115  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10116  * Note that any bug fixes made to this routine must be done in the
10117  * version found above.
10118  *
10119  * Called from within the procedure above to deal with unsatisfied
10120  * allocation dependencies in an inodeblock. The buffer must be
10121  * locked, thus, no I/O completion operations can occur while we
10122  * are manipulating its associated dependencies.
10123  */
10124 static void
10125 initiate_write_inodeblock_ufs2(inodedep, bp)
10126 	struct inodedep *inodedep;
10127 	struct buf *bp;			/* The inode block */
10128 {
10129 	struct allocdirect *adp, *lastadp;
10130 	struct ufs2_dinode *dp;
10131 	struct ufs2_dinode *sip;
10132 	struct inoref *inoref;
10133 	struct ufsmount *ump;
10134 	struct fs *fs;
10135 	ufs_lbn_t i;
10136 #ifdef INVARIANTS
10137 	ufs_lbn_t prevlbn = 0;
10138 #endif
10139 	int deplist;
10140 
10141 	if (inodedep->id_state & IOSTARTED)
10142 		panic("initiate_write_inodeblock_ufs2: already started");
10143 	inodedep->id_state |= IOSTARTED;
10144 	fs = inodedep->id_fs;
10145 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10146 	LOCK_OWNED(ump);
10147 	dp = (struct ufs2_dinode *)bp->b_data +
10148 	    ino_to_fsbo(fs, inodedep->id_ino);
10149 
10150 	/*
10151 	 * If we're on the unlinked list but have not yet written our
10152 	 * next pointer initialize it here.
10153 	 */
10154 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10155 		struct inodedep *inon;
10156 
10157 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10158 		dp->di_freelink = inon ? inon->id_ino : 0;
10159 	}
10160 	/*
10161 	 * If the bitmap is not yet written, then the allocated
10162 	 * inode cannot be written to disk.
10163 	 */
10164 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10165 		if (inodedep->id_savedino2 != NULL)
10166 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10167 		FREE_LOCK(ump);
10168 		sip = malloc(sizeof(struct ufs2_dinode),
10169 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10170 		ACQUIRE_LOCK(ump);
10171 		inodedep->id_savedino2 = sip;
10172 		*inodedep->id_savedino2 = *dp;
10173 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10174 		dp->di_gen = inodedep->id_savedino2->di_gen;
10175 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10176 		return;
10177 	}
10178 	/*
10179 	 * If no dependencies, then there is nothing to roll back.
10180 	 */
10181 	inodedep->id_savedsize = dp->di_size;
10182 	inodedep->id_savedextsize = dp->di_extsize;
10183 	inodedep->id_savednlink = dp->di_nlink;
10184 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10185 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10186 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10187 		return;
10188 	/*
10189 	 * Revert the link count to that of the first unwritten journal entry.
10190 	 */
10191 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10192 	if (inoref)
10193 		dp->di_nlink = inoref->if_nlink;
10194 
10195 	/*
10196 	 * Set the ext data dependencies to busy.
10197 	 */
10198 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10199 	     adp = TAILQ_NEXT(adp, ad_next)) {
10200 #ifdef INVARIANTS
10201 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10202 			panic("softdep_write_inodeblock: lbn order");
10203 		prevlbn = adp->ad_offset;
10204 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10205 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10206 			    "softdep_write_inodeblock",
10207 			    (intmax_t)adp->ad_offset,
10208 			    (intmax_t)dp->di_extb[adp->ad_offset],
10209 			    (intmax_t)adp->ad_newblkno);
10210 		deplist |= 1 << adp->ad_offset;
10211 		if ((adp->ad_state & ATTACHED) == 0)
10212 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10213 			    adp->ad_state);
10214 #endif /* INVARIANTS */
10215 		adp->ad_state &= ~ATTACHED;
10216 		adp->ad_state |= UNDONE;
10217 	}
10218 	/*
10219 	 * The on-disk inode cannot claim to be any larger than the last
10220 	 * fragment that has been written. Otherwise, the on-disk inode
10221 	 * might have fragments that were not the last block in the ext
10222 	 * data which would corrupt the filesystem.
10223 	 */
10224 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10225 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10226 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10227 		/* keep going until hitting a rollback to a frag */
10228 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10229 			continue;
10230 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10231 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10232 #ifdef INVARIANTS
10233 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10234 				panic("softdep_write_inodeblock: lost dep1");
10235 #endif /* INVARIANTS */
10236 			dp->di_extb[i] = 0;
10237 		}
10238 		lastadp = NULL;
10239 		break;
10240 	}
10241 	/*
10242 	 * If we have zero'ed out the last allocated block of the ext
10243 	 * data, roll back the size to the last currently allocated block.
10244 	 * We know that this last allocated block is a full-sized as
10245 	 * we already checked for fragments in the loop above.
10246 	 */
10247 	if (lastadp != NULL &&
10248 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10249 		for (i = lastadp->ad_offset; i >= 0; i--)
10250 			if (dp->di_extb[i] != 0)
10251 				break;
10252 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10253 	}
10254 	/*
10255 	 * Set the file data dependencies to busy.
10256 	 */
10257 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10258 	     adp = TAILQ_NEXT(adp, ad_next)) {
10259 #ifdef INVARIANTS
10260 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10261 			panic("softdep_write_inodeblock: lbn order");
10262 		if ((adp->ad_state & ATTACHED) == 0)
10263 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10264 		prevlbn = adp->ad_offset;
10265 		if (adp->ad_offset < NDADDR &&
10266 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10267 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10268 			    "softdep_write_inodeblock",
10269 			    (intmax_t)adp->ad_offset,
10270 			    (intmax_t)dp->di_db[adp->ad_offset],
10271 			    (intmax_t)adp->ad_newblkno);
10272 		if (adp->ad_offset >= NDADDR &&
10273 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10274 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10275 			    "softdep_write_inodeblock:",
10276 			    (intmax_t)adp->ad_offset - NDADDR,
10277 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10278 			    (intmax_t)adp->ad_newblkno);
10279 		deplist |= 1 << adp->ad_offset;
10280 		if ((adp->ad_state & ATTACHED) == 0)
10281 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10282 			    adp->ad_state);
10283 #endif /* INVARIANTS */
10284 		adp->ad_state &= ~ATTACHED;
10285 		adp->ad_state |= UNDONE;
10286 	}
10287 	/*
10288 	 * The on-disk inode cannot claim to be any larger than the last
10289 	 * fragment that has been written. Otherwise, the on-disk inode
10290 	 * might have fragments that were not the last block in the file
10291 	 * which would corrupt the filesystem.
10292 	 */
10293 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10294 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10295 		if (adp->ad_offset >= NDADDR)
10296 			break;
10297 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10298 		/* keep going until hitting a rollback to a frag */
10299 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10300 			continue;
10301 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10302 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10303 #ifdef INVARIANTS
10304 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10305 				panic("softdep_write_inodeblock: lost dep2");
10306 #endif /* INVARIANTS */
10307 			dp->di_db[i] = 0;
10308 		}
10309 		for (i = 0; i < NIADDR; i++) {
10310 #ifdef INVARIANTS
10311 			if (dp->di_ib[i] != 0 &&
10312 			    (deplist & ((1 << NDADDR) << i)) == 0)
10313 				panic("softdep_write_inodeblock: lost dep3");
10314 #endif /* INVARIANTS */
10315 			dp->di_ib[i] = 0;
10316 		}
10317 		return;
10318 	}
10319 	/*
10320 	 * If we have zero'ed out the last allocated block of the file,
10321 	 * roll back the size to the last currently allocated block.
10322 	 * We know that this last allocated block is a full-sized as
10323 	 * we already checked for fragments in the loop above.
10324 	 */
10325 	if (lastadp != NULL &&
10326 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10327 		for (i = lastadp->ad_offset; i >= 0; i--)
10328 			if (dp->di_db[i] != 0)
10329 				break;
10330 		dp->di_size = (i + 1) * fs->fs_bsize;
10331 	}
10332 	/*
10333 	 * The only dependencies are for indirect blocks.
10334 	 *
10335 	 * The file size for indirect block additions is not guaranteed.
10336 	 * Such a guarantee would be non-trivial to achieve. The conventional
10337 	 * synchronous write implementation also does not make this guarantee.
10338 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10339 	 * can be over-estimated without destroying integrity when the file
10340 	 * moves into the indirect blocks (i.e., is large). If we want to
10341 	 * postpone fsck, we are stuck with this argument.
10342 	 */
10343 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10344 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10345 }
10346 
10347 /*
10348  * Cancel an indirdep as a result of truncation.  Release all of the
10349  * children allocindirs and place their journal work on the appropriate
10350  * list.
10351  */
10352 static void
10353 cancel_indirdep(indirdep, bp, freeblks)
10354 	struct indirdep *indirdep;
10355 	struct buf *bp;
10356 	struct freeblks *freeblks;
10357 {
10358 	struct allocindir *aip;
10359 
10360 	/*
10361 	 * None of the indirect pointers will ever be visible,
10362 	 * so they can simply be tossed. GOINGAWAY ensures
10363 	 * that allocated pointers will be saved in the buffer
10364 	 * cache until they are freed. Note that they will
10365 	 * only be able to be found by their physical address
10366 	 * since the inode mapping the logical address will
10367 	 * be gone. The save buffer used for the safe copy
10368 	 * was allocated in setup_allocindir_phase2 using
10369 	 * the physical address so it could be used for this
10370 	 * purpose. Hence we swap the safe copy with the real
10371 	 * copy, allowing the safe copy to be freed and holding
10372 	 * on to the real copy for later use in indir_trunc.
10373 	 */
10374 	if (indirdep->ir_state & GOINGAWAY)
10375 		panic("cancel_indirdep: already gone");
10376 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10377 		indirdep->ir_state |= DEPCOMPLETE;
10378 		LIST_REMOVE(indirdep, ir_next);
10379 	}
10380 	indirdep->ir_state |= GOINGAWAY;
10381 	VFSTOUFS(indirdep->ir_list.wk_mp)->softdep_numindirdeps += 1;
10382 	/*
10383 	 * Pass in bp for blocks still have journal writes
10384 	 * pending so we can cancel them on their own.
10385 	 */
10386 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10387 		cancel_allocindir(aip, bp, freeblks, 0);
10388 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10389 		cancel_allocindir(aip, NULL, freeblks, 0);
10390 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10391 		cancel_allocindir(aip, NULL, freeblks, 0);
10392 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10393 		cancel_allocindir(aip, NULL, freeblks, 0);
10394 	/*
10395 	 * If there are pending partial truncations we need to keep the
10396 	 * old block copy around until they complete.  This is because
10397 	 * the current b_data is not a perfect superset of the available
10398 	 * blocks.
10399 	 */
10400 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10401 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10402 	else
10403 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10404 	WORKLIST_REMOVE(&indirdep->ir_list);
10405 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10406 	indirdep->ir_bp = NULL;
10407 	indirdep->ir_freeblks = freeblks;
10408 }
10409 
10410 /*
10411  * Free an indirdep once it no longer has new pointers to track.
10412  */
10413 static void
10414 free_indirdep(indirdep)
10415 	struct indirdep *indirdep;
10416 {
10417 
10418 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10419 	    ("free_indirdep: Indir trunc list not empty."));
10420 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10421 	    ("free_indirdep: Complete head not empty."));
10422 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10423 	    ("free_indirdep: write head not empty."));
10424 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10425 	    ("free_indirdep: done head not empty."));
10426 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10427 	    ("free_indirdep: deplist head not empty."));
10428 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10429 	    ("free_indirdep: %p still on newblk list.", indirdep));
10430 	KASSERT(indirdep->ir_saveddata == NULL,
10431 	    ("free_indirdep: %p still has saved data.", indirdep));
10432 	if (indirdep->ir_state & ONWORKLIST)
10433 		WORKLIST_REMOVE(&indirdep->ir_list);
10434 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10435 }
10436 
10437 /*
10438  * Called before a write to an indirdep.  This routine is responsible for
10439  * rolling back pointers to a safe state which includes only those
10440  * allocindirs which have been completed.
10441  */
10442 static void
10443 initiate_write_indirdep(indirdep, bp)
10444 	struct indirdep *indirdep;
10445 	struct buf *bp;
10446 {
10447 	struct ufsmount *ump;
10448 
10449 	indirdep->ir_state |= IOSTARTED;
10450 	if (indirdep->ir_state & GOINGAWAY)
10451 		panic("disk_io_initiation: indirdep gone");
10452 	/*
10453 	 * If there are no remaining dependencies, this will be writing
10454 	 * the real pointers.
10455 	 */
10456 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10457 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10458 		return;
10459 	/*
10460 	 * Replace up-to-date version with safe version.
10461 	 */
10462 	if (indirdep->ir_saveddata == NULL) {
10463 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10464 		LOCK_OWNED(ump);
10465 		FREE_LOCK(ump);
10466 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10467 		    M_SOFTDEP_FLAGS);
10468 		ACQUIRE_LOCK(ump);
10469 	}
10470 	indirdep->ir_state &= ~ATTACHED;
10471 	indirdep->ir_state |= UNDONE;
10472 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10473 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10474 	    bp->b_bcount);
10475 }
10476 
10477 /*
10478  * Called when an inode has been cleared in a cg bitmap.  This finally
10479  * eliminates any canceled jaddrefs
10480  */
10481 void
10482 softdep_setup_inofree(mp, bp, ino, wkhd)
10483 	struct mount *mp;
10484 	struct buf *bp;
10485 	ino_t ino;
10486 	struct workhead *wkhd;
10487 {
10488 	struct worklist *wk, *wkn;
10489 	struct inodedep *inodedep;
10490 	struct ufsmount *ump;
10491 	uint8_t *inosused;
10492 	struct cg *cgp;
10493 	struct fs *fs;
10494 
10495 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10496 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10497 	ump = VFSTOUFS(mp);
10498 	ACQUIRE_LOCK(ump);
10499 	fs = ump->um_fs;
10500 	cgp = (struct cg *)bp->b_data;
10501 	inosused = cg_inosused(cgp);
10502 	if (isset(inosused, ino % fs->fs_ipg))
10503 		panic("softdep_setup_inofree: inode %ju not freed.",
10504 		    (uintmax_t)ino);
10505 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10506 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10507 		    (uintmax_t)ino, inodedep);
10508 	if (wkhd) {
10509 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10510 			if (wk->wk_type != D_JADDREF)
10511 				continue;
10512 			WORKLIST_REMOVE(wk);
10513 			/*
10514 			 * We can free immediately even if the jaddref
10515 			 * isn't attached in a background write as now
10516 			 * the bitmaps are reconciled.
10517 			 */
10518 			wk->wk_state |= COMPLETE | ATTACHED;
10519 			free_jaddref(WK_JADDREF(wk));
10520 		}
10521 		jwork_move(&bp->b_dep, wkhd);
10522 	}
10523 	FREE_LOCK(ump);
10524 }
10525 
10526 
10527 /*
10528  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10529  * map.  Any dependencies waiting for the write to clear are added to the
10530  * buf's list and any jnewblks that are being canceled are discarded
10531  * immediately.
10532  */
10533 void
10534 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10535 	struct mount *mp;
10536 	struct buf *bp;
10537 	ufs2_daddr_t blkno;
10538 	int frags;
10539 	struct workhead *wkhd;
10540 {
10541 	struct bmsafemap *bmsafemap;
10542 	struct jnewblk *jnewblk;
10543 	struct ufsmount *ump;
10544 	struct worklist *wk;
10545 	struct fs *fs;
10546 #ifdef SUJ_DEBUG
10547 	uint8_t *blksfree;
10548 	struct cg *cgp;
10549 	ufs2_daddr_t jstart;
10550 	ufs2_daddr_t jend;
10551 	ufs2_daddr_t end;
10552 	long bno;
10553 	int i;
10554 #endif
10555 
10556 	CTR3(KTR_SUJ,
10557 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10558 	    blkno, frags, wkhd);
10559 
10560 	ump = VFSTOUFS(mp);
10561 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10562 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10563 	ACQUIRE_LOCK(ump);
10564 	/* Lookup the bmsafemap so we track when it is dirty. */
10565 	fs = ump->um_fs;
10566 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10567 	/*
10568 	 * Detach any jnewblks which have been canceled.  They must linger
10569 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10570 	 * an unjournaled allocation from hitting the disk.
10571 	 */
10572 	if (wkhd) {
10573 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10574 			CTR2(KTR_SUJ,
10575 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10576 			    blkno, wk->wk_type);
10577 			WORKLIST_REMOVE(wk);
10578 			if (wk->wk_type != D_JNEWBLK) {
10579 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10580 				continue;
10581 			}
10582 			jnewblk = WK_JNEWBLK(wk);
10583 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10584 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10585 #ifdef SUJ_DEBUG
10586 			/*
10587 			 * Assert that this block is free in the bitmap
10588 			 * before we discard the jnewblk.
10589 			 */
10590 			cgp = (struct cg *)bp->b_data;
10591 			blksfree = cg_blksfree(cgp);
10592 			bno = dtogd(fs, jnewblk->jn_blkno);
10593 			for (i = jnewblk->jn_oldfrags;
10594 			    i < jnewblk->jn_frags; i++) {
10595 				if (isset(blksfree, bno + i))
10596 					continue;
10597 				panic("softdep_setup_blkfree: not free");
10598 			}
10599 #endif
10600 			/*
10601 			 * Even if it's not attached we can free immediately
10602 			 * as the new bitmap is correct.
10603 			 */
10604 			wk->wk_state |= COMPLETE | ATTACHED;
10605 			free_jnewblk(jnewblk);
10606 		}
10607 	}
10608 
10609 #ifdef SUJ_DEBUG
10610 	/*
10611 	 * Assert that we are not freeing a block which has an outstanding
10612 	 * allocation dependency.
10613 	 */
10614 	fs = VFSTOUFS(mp)->um_fs;
10615 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10616 	end = blkno + frags;
10617 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10618 		/*
10619 		 * Don't match against blocks that will be freed when the
10620 		 * background write is done.
10621 		 */
10622 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10623 		    (COMPLETE | DEPCOMPLETE))
10624 			continue;
10625 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10626 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10627 		if ((blkno >= jstart && blkno < jend) ||
10628 		    (end > jstart && end <= jend)) {
10629 			printf("state 0x%X %jd - %d %d dep %p\n",
10630 			    jnewblk->jn_state, jnewblk->jn_blkno,
10631 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10632 			    jnewblk->jn_dep);
10633 			panic("softdep_setup_blkfree: "
10634 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10635 			    blkno, end, frags, jstart, jend);
10636 		}
10637 	}
10638 #endif
10639 	FREE_LOCK(ump);
10640 }
10641 
10642 /*
10643  * Revert a block allocation when the journal record that describes it
10644  * is not yet written.
10645  */
10646 static int
10647 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10648 	struct jnewblk *jnewblk;
10649 	struct fs *fs;
10650 	struct cg *cgp;
10651 	uint8_t *blksfree;
10652 {
10653 	ufs1_daddr_t fragno;
10654 	long cgbno, bbase;
10655 	int frags, blk;
10656 	int i;
10657 
10658 	frags = 0;
10659 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10660 	/*
10661 	 * We have to test which frags need to be rolled back.  We may
10662 	 * be operating on a stale copy when doing background writes.
10663 	 */
10664 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10665 		if (isclr(blksfree, cgbno + i))
10666 			frags++;
10667 	if (frags == 0)
10668 		return (0);
10669 	/*
10670 	 * This is mostly ffs_blkfree() sans some validation and
10671 	 * superblock updates.
10672 	 */
10673 	if (frags == fs->fs_frag) {
10674 		fragno = fragstoblks(fs, cgbno);
10675 		ffs_setblock(fs, blksfree, fragno);
10676 		ffs_clusteracct(fs, cgp, fragno, 1);
10677 		cgp->cg_cs.cs_nbfree++;
10678 	} else {
10679 		cgbno += jnewblk->jn_oldfrags;
10680 		bbase = cgbno - fragnum(fs, cgbno);
10681 		/* Decrement the old frags.  */
10682 		blk = blkmap(fs, blksfree, bbase);
10683 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10684 		/* Deallocate the fragment */
10685 		for (i = 0; i < frags; i++)
10686 			setbit(blksfree, cgbno + i);
10687 		cgp->cg_cs.cs_nffree += frags;
10688 		/* Add back in counts associated with the new frags */
10689 		blk = blkmap(fs, blksfree, bbase);
10690 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10691 		/* If a complete block has been reassembled, account for it. */
10692 		fragno = fragstoblks(fs, bbase);
10693 		if (ffs_isblock(fs, blksfree, fragno)) {
10694 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10695 			ffs_clusteracct(fs, cgp, fragno, 1);
10696 			cgp->cg_cs.cs_nbfree++;
10697 		}
10698 	}
10699 	stat_jnewblk++;
10700 	jnewblk->jn_state &= ~ATTACHED;
10701 	jnewblk->jn_state |= UNDONE;
10702 
10703 	return (frags);
10704 }
10705 
10706 static void
10707 initiate_write_bmsafemap(bmsafemap, bp)
10708 	struct bmsafemap *bmsafemap;
10709 	struct buf *bp;			/* The cg block. */
10710 {
10711 	struct jaddref *jaddref;
10712 	struct jnewblk *jnewblk;
10713 	uint8_t *inosused;
10714 	uint8_t *blksfree;
10715 	struct cg *cgp;
10716 	struct fs *fs;
10717 	ino_t ino;
10718 
10719 	if (bmsafemap->sm_state & IOSTARTED)
10720 		return;
10721 	bmsafemap->sm_state |= IOSTARTED;
10722 	/*
10723 	 * Clear any inode allocations which are pending journal writes.
10724 	 */
10725 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10726 		cgp = (struct cg *)bp->b_data;
10727 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10728 		inosused = cg_inosused(cgp);
10729 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10730 			ino = jaddref->ja_ino % fs->fs_ipg;
10731 			if (isset(inosused, ino)) {
10732 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10733 					cgp->cg_cs.cs_ndir--;
10734 				cgp->cg_cs.cs_nifree++;
10735 				clrbit(inosused, ino);
10736 				jaddref->ja_state &= ~ATTACHED;
10737 				jaddref->ja_state |= UNDONE;
10738 				stat_jaddref++;
10739 			} else
10740 				panic("initiate_write_bmsafemap: inode %ju "
10741 				    "marked free", (uintmax_t)jaddref->ja_ino);
10742 		}
10743 	}
10744 	/*
10745 	 * Clear any block allocations which are pending journal writes.
10746 	 */
10747 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10748 		cgp = (struct cg *)bp->b_data;
10749 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10750 		blksfree = cg_blksfree(cgp);
10751 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10752 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10753 				continue;
10754 			panic("initiate_write_bmsafemap: block %jd "
10755 			    "marked free", jnewblk->jn_blkno);
10756 		}
10757 	}
10758 	/*
10759 	 * Move allocation lists to the written lists so they can be
10760 	 * cleared once the block write is complete.
10761 	 */
10762 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10763 	    inodedep, id_deps);
10764 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10765 	    newblk, nb_deps);
10766 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10767 	    wk_list);
10768 }
10769 
10770 /*
10771  * This routine is called during the completion interrupt
10772  * service routine for a disk write (from the procedure called
10773  * by the device driver to inform the filesystem caches of
10774  * a request completion).  It should be called early in this
10775  * procedure, before the block is made available to other
10776  * processes or other routines are called.
10777  *
10778  */
10779 static void
10780 softdep_disk_write_complete(bp)
10781 	struct buf *bp;		/* describes the completed disk write */
10782 {
10783 	struct worklist *wk;
10784 	struct worklist *owk;
10785 	struct ufsmount *ump;
10786 	struct workhead reattach;
10787 	struct freeblks *freeblks;
10788 	struct buf *sbp;
10789 
10790 	/*
10791 	 * If an error occurred while doing the write, then the data
10792 	 * has not hit the disk and the dependencies cannot be unrolled.
10793 	 */
10794 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10795 		return;
10796 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10797 		return;
10798 	ump = VFSTOUFS(wk->wk_mp);
10799 	LIST_INIT(&reattach);
10800 	/*
10801 	 * This lock must not be released anywhere in this code segment.
10802 	 */
10803 	sbp = NULL;
10804 	owk = NULL;
10805 	ACQUIRE_LOCK(ump);
10806 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10807 		WORKLIST_REMOVE(wk);
10808 		dep_write[wk->wk_type]++;
10809 		if (wk == owk)
10810 			panic("duplicate worklist: %p\n", wk);
10811 		owk = wk;
10812 		switch (wk->wk_type) {
10813 
10814 		case D_PAGEDEP:
10815 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10816 				WORKLIST_INSERT(&reattach, wk);
10817 			continue;
10818 
10819 		case D_INODEDEP:
10820 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10821 				WORKLIST_INSERT(&reattach, wk);
10822 			continue;
10823 
10824 		case D_BMSAFEMAP:
10825 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10826 				WORKLIST_INSERT(&reattach, wk);
10827 			continue;
10828 
10829 		case D_MKDIR:
10830 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10831 			continue;
10832 
10833 		case D_ALLOCDIRECT:
10834 			wk->wk_state |= COMPLETE;
10835 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10836 			continue;
10837 
10838 		case D_ALLOCINDIR:
10839 			wk->wk_state |= COMPLETE;
10840 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10841 			continue;
10842 
10843 		case D_INDIRDEP:
10844 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10845 				WORKLIST_INSERT(&reattach, wk);
10846 			continue;
10847 
10848 		case D_FREEBLKS:
10849 			wk->wk_state |= COMPLETE;
10850 			freeblks = WK_FREEBLKS(wk);
10851 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10852 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10853 				add_to_worklist(wk, WK_NODELAY);
10854 			continue;
10855 
10856 		case D_FREEWORK:
10857 			handle_written_freework(WK_FREEWORK(wk));
10858 			break;
10859 
10860 		case D_JSEGDEP:
10861 			free_jsegdep(WK_JSEGDEP(wk));
10862 			continue;
10863 
10864 		case D_JSEG:
10865 			handle_written_jseg(WK_JSEG(wk), bp);
10866 			continue;
10867 
10868 		case D_SBDEP:
10869 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10870 				WORKLIST_INSERT(&reattach, wk);
10871 			continue;
10872 
10873 		case D_FREEDEP:
10874 			free_freedep(WK_FREEDEP(wk));
10875 			continue;
10876 
10877 		default:
10878 			panic("handle_disk_write_complete: Unknown type %s",
10879 			    TYPENAME(wk->wk_type));
10880 			/* NOTREACHED */
10881 		}
10882 	}
10883 	/*
10884 	 * Reattach any requests that must be redone.
10885 	 */
10886 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10887 		WORKLIST_REMOVE(wk);
10888 		WORKLIST_INSERT(&bp->b_dep, wk);
10889 	}
10890 	FREE_LOCK(ump);
10891 	if (sbp)
10892 		brelse(sbp);
10893 }
10894 
10895 /*
10896  * Called from within softdep_disk_write_complete above. Note that
10897  * this routine is always called from interrupt level with further
10898  * splbio interrupts blocked.
10899  */
10900 static void
10901 handle_allocdirect_partdone(adp, wkhd)
10902 	struct allocdirect *adp;	/* the completed allocdirect */
10903 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10904 {
10905 	struct allocdirectlst *listhead;
10906 	struct allocdirect *listadp;
10907 	struct inodedep *inodedep;
10908 	long bsize;
10909 
10910 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10911 		return;
10912 	/*
10913 	 * The on-disk inode cannot claim to be any larger than the last
10914 	 * fragment that has been written. Otherwise, the on-disk inode
10915 	 * might have fragments that were not the last block in the file
10916 	 * which would corrupt the filesystem. Thus, we cannot free any
10917 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10918 	 * these blocks must be rolled back to zero before writing the inode.
10919 	 * We check the currently active set of allocdirects in id_inoupdt
10920 	 * or id_extupdt as appropriate.
10921 	 */
10922 	inodedep = adp->ad_inodedep;
10923 	bsize = inodedep->id_fs->fs_bsize;
10924 	if (adp->ad_state & EXTDATA)
10925 		listhead = &inodedep->id_extupdt;
10926 	else
10927 		listhead = &inodedep->id_inoupdt;
10928 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10929 		/* found our block */
10930 		if (listadp == adp)
10931 			break;
10932 		/* continue if ad_oldlbn is not a fragment */
10933 		if (listadp->ad_oldsize == 0 ||
10934 		    listadp->ad_oldsize == bsize)
10935 			continue;
10936 		/* hit a fragment */
10937 		return;
10938 	}
10939 	/*
10940 	 * If we have reached the end of the current list without
10941 	 * finding the just finished dependency, then it must be
10942 	 * on the future dependency list. Future dependencies cannot
10943 	 * be freed until they are moved to the current list.
10944 	 */
10945 	if (listadp == NULL) {
10946 #ifdef DEBUG
10947 		if (adp->ad_state & EXTDATA)
10948 			listhead = &inodedep->id_newextupdt;
10949 		else
10950 			listhead = &inodedep->id_newinoupdt;
10951 		TAILQ_FOREACH(listadp, listhead, ad_next)
10952 			/* found our block */
10953 			if (listadp == adp)
10954 				break;
10955 		if (listadp == NULL)
10956 			panic("handle_allocdirect_partdone: lost dep");
10957 #endif /* DEBUG */
10958 		return;
10959 	}
10960 	/*
10961 	 * If we have found the just finished dependency, then queue
10962 	 * it along with anything that follows it that is complete.
10963 	 * Since the pointer has not yet been written in the inode
10964 	 * as the dependency prevents it, place the allocdirect on the
10965 	 * bufwait list where it will be freed once the pointer is
10966 	 * valid.
10967 	 */
10968 	if (wkhd == NULL)
10969 		wkhd = &inodedep->id_bufwait;
10970 	for (; adp; adp = listadp) {
10971 		listadp = TAILQ_NEXT(adp, ad_next);
10972 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10973 			return;
10974 		TAILQ_REMOVE(listhead, adp, ad_next);
10975 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10976 	}
10977 }
10978 
10979 /*
10980  * Called from within softdep_disk_write_complete above.  This routine
10981  * completes successfully written allocindirs.
10982  */
10983 static void
10984 handle_allocindir_partdone(aip)
10985 	struct allocindir *aip;		/* the completed allocindir */
10986 {
10987 	struct indirdep *indirdep;
10988 
10989 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10990 		return;
10991 	indirdep = aip->ai_indirdep;
10992 	LIST_REMOVE(aip, ai_next);
10993 	/*
10994 	 * Don't set a pointer while the buffer is undergoing IO or while
10995 	 * we have active truncations.
10996 	 */
10997 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10998 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10999 		return;
11000 	}
11001 	if (indirdep->ir_state & UFS1FMT)
11002 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11003 		    aip->ai_newblkno;
11004 	else
11005 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11006 		    aip->ai_newblkno;
11007 	/*
11008 	 * Await the pointer write before freeing the allocindir.
11009 	 */
11010 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11011 }
11012 
11013 /*
11014  * Release segments held on a jwork list.
11015  */
11016 static void
11017 handle_jwork(wkhd)
11018 	struct workhead *wkhd;
11019 {
11020 	struct worklist *wk;
11021 
11022 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11023 		WORKLIST_REMOVE(wk);
11024 		switch (wk->wk_type) {
11025 		case D_JSEGDEP:
11026 			free_jsegdep(WK_JSEGDEP(wk));
11027 			continue;
11028 		case D_FREEDEP:
11029 			free_freedep(WK_FREEDEP(wk));
11030 			continue;
11031 		case D_FREEFRAG:
11032 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11033 			WORKITEM_FREE(wk, D_FREEFRAG);
11034 			continue;
11035 		case D_FREEWORK:
11036 			handle_written_freework(WK_FREEWORK(wk));
11037 			continue;
11038 		default:
11039 			panic("handle_jwork: Unknown type %s\n",
11040 			    TYPENAME(wk->wk_type));
11041 		}
11042 	}
11043 }
11044 
11045 /*
11046  * Handle the bufwait list on an inode when it is safe to release items
11047  * held there.  This normally happens after an inode block is written but
11048  * may be delayed and handled later if there are pending journal items that
11049  * are not yet safe to be released.
11050  */
11051 static struct freefile *
11052 handle_bufwait(inodedep, refhd)
11053 	struct inodedep *inodedep;
11054 	struct workhead *refhd;
11055 {
11056 	struct jaddref *jaddref;
11057 	struct freefile *freefile;
11058 	struct worklist *wk;
11059 
11060 	freefile = NULL;
11061 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11062 		WORKLIST_REMOVE(wk);
11063 		switch (wk->wk_type) {
11064 		case D_FREEFILE:
11065 			/*
11066 			 * We defer adding freefile to the worklist
11067 			 * until all other additions have been made to
11068 			 * ensure that it will be done after all the
11069 			 * old blocks have been freed.
11070 			 */
11071 			if (freefile != NULL)
11072 				panic("handle_bufwait: freefile");
11073 			freefile = WK_FREEFILE(wk);
11074 			continue;
11075 
11076 		case D_MKDIR:
11077 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11078 			continue;
11079 
11080 		case D_DIRADD:
11081 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11082 			continue;
11083 
11084 		case D_FREEFRAG:
11085 			wk->wk_state |= COMPLETE;
11086 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11087 				add_to_worklist(wk, 0);
11088 			continue;
11089 
11090 		case D_DIRREM:
11091 			wk->wk_state |= COMPLETE;
11092 			add_to_worklist(wk, 0);
11093 			continue;
11094 
11095 		case D_ALLOCDIRECT:
11096 		case D_ALLOCINDIR:
11097 			free_newblk(WK_NEWBLK(wk));
11098 			continue;
11099 
11100 		case D_JNEWBLK:
11101 			wk->wk_state |= COMPLETE;
11102 			free_jnewblk(WK_JNEWBLK(wk));
11103 			continue;
11104 
11105 		/*
11106 		 * Save freed journal segments and add references on
11107 		 * the supplied list which will delay their release
11108 		 * until the cg bitmap is cleared on disk.
11109 		 */
11110 		case D_JSEGDEP:
11111 			if (refhd == NULL)
11112 				free_jsegdep(WK_JSEGDEP(wk));
11113 			else
11114 				WORKLIST_INSERT(refhd, wk);
11115 			continue;
11116 
11117 		case D_JADDREF:
11118 			jaddref = WK_JADDREF(wk);
11119 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11120 			    if_deps);
11121 			/*
11122 			 * Transfer any jaddrefs to the list to be freed with
11123 			 * the bitmap if we're handling a removed file.
11124 			 */
11125 			if (refhd == NULL) {
11126 				wk->wk_state |= COMPLETE;
11127 				free_jaddref(jaddref);
11128 			} else
11129 				WORKLIST_INSERT(refhd, wk);
11130 			continue;
11131 
11132 		default:
11133 			panic("handle_bufwait: Unknown type %p(%s)",
11134 			    wk, TYPENAME(wk->wk_type));
11135 			/* NOTREACHED */
11136 		}
11137 	}
11138 	return (freefile);
11139 }
11140 /*
11141  * Called from within softdep_disk_write_complete above to restore
11142  * in-memory inode block contents to their most up-to-date state. Note
11143  * that this routine is always called from interrupt level with further
11144  * splbio interrupts blocked.
11145  */
11146 static int
11147 handle_written_inodeblock(inodedep, bp)
11148 	struct inodedep *inodedep;
11149 	struct buf *bp;		/* buffer containing the inode block */
11150 {
11151 	struct freefile *freefile;
11152 	struct allocdirect *adp, *nextadp;
11153 	struct ufs1_dinode *dp1 = NULL;
11154 	struct ufs2_dinode *dp2 = NULL;
11155 	struct workhead wkhd;
11156 	int hadchanges, fstype;
11157 	ino_t freelink;
11158 
11159 	LIST_INIT(&wkhd);
11160 	hadchanges = 0;
11161 	freefile = NULL;
11162 	if ((inodedep->id_state & IOSTARTED) == 0)
11163 		panic("handle_written_inodeblock: not started");
11164 	inodedep->id_state &= ~IOSTARTED;
11165 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11166 		fstype = UFS1;
11167 		dp1 = (struct ufs1_dinode *)bp->b_data +
11168 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11169 		freelink = dp1->di_freelink;
11170 	} else {
11171 		fstype = UFS2;
11172 		dp2 = (struct ufs2_dinode *)bp->b_data +
11173 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11174 		freelink = dp2->di_freelink;
11175 	}
11176 	/*
11177 	 * Leave this inodeblock dirty until it's in the list.
11178 	 */
11179 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11180 		struct inodedep *inon;
11181 
11182 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11183 		if ((inon == NULL && freelink == 0) ||
11184 		    (inon && inon->id_ino == freelink)) {
11185 			if (inon)
11186 				inon->id_state |= UNLINKPREV;
11187 			inodedep->id_state |= UNLINKNEXT;
11188 		}
11189 		hadchanges = 1;
11190 	}
11191 	/*
11192 	 * If we had to rollback the inode allocation because of
11193 	 * bitmaps being incomplete, then simply restore it.
11194 	 * Keep the block dirty so that it will not be reclaimed until
11195 	 * all associated dependencies have been cleared and the
11196 	 * corresponding updates written to disk.
11197 	 */
11198 	if (inodedep->id_savedino1 != NULL) {
11199 		hadchanges = 1;
11200 		if (fstype == UFS1)
11201 			*dp1 = *inodedep->id_savedino1;
11202 		else
11203 			*dp2 = *inodedep->id_savedino2;
11204 		free(inodedep->id_savedino1, M_SAVEDINO);
11205 		inodedep->id_savedino1 = NULL;
11206 		if ((bp->b_flags & B_DELWRI) == 0)
11207 			stat_inode_bitmap++;
11208 		bdirty(bp);
11209 		/*
11210 		 * If the inode is clear here and GOINGAWAY it will never
11211 		 * be written.  Process the bufwait and clear any pending
11212 		 * work which may include the freefile.
11213 		 */
11214 		if (inodedep->id_state & GOINGAWAY)
11215 			goto bufwait;
11216 		return (1);
11217 	}
11218 	inodedep->id_state |= COMPLETE;
11219 	/*
11220 	 * Roll forward anything that had to be rolled back before
11221 	 * the inode could be updated.
11222 	 */
11223 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11224 		nextadp = TAILQ_NEXT(adp, ad_next);
11225 		if (adp->ad_state & ATTACHED)
11226 			panic("handle_written_inodeblock: new entry");
11227 		if (fstype == UFS1) {
11228 			if (adp->ad_offset < NDADDR) {
11229 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11230 					panic("%s %s #%jd mismatch %d != %jd",
11231 					    "handle_written_inodeblock:",
11232 					    "direct pointer",
11233 					    (intmax_t)adp->ad_offset,
11234 					    dp1->di_db[adp->ad_offset],
11235 					    (intmax_t)adp->ad_oldblkno);
11236 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11237 			} else {
11238 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11239 					panic("%s: %s #%jd allocated as %d",
11240 					    "handle_written_inodeblock",
11241 					    "indirect pointer",
11242 					    (intmax_t)adp->ad_offset - NDADDR,
11243 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11244 				dp1->di_ib[adp->ad_offset - NDADDR] =
11245 				    adp->ad_newblkno;
11246 			}
11247 		} else {
11248 			if (adp->ad_offset < NDADDR) {
11249 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11250 					panic("%s: %s #%jd %s %jd != %jd",
11251 					    "handle_written_inodeblock",
11252 					    "direct pointer",
11253 					    (intmax_t)adp->ad_offset, "mismatch",
11254 					    (intmax_t)dp2->di_db[adp->ad_offset],
11255 					    (intmax_t)adp->ad_oldblkno);
11256 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11257 			} else {
11258 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11259 					panic("%s: %s #%jd allocated as %jd",
11260 					    "handle_written_inodeblock",
11261 					    "indirect pointer",
11262 					    (intmax_t)adp->ad_offset - NDADDR,
11263 					    (intmax_t)
11264 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11265 				dp2->di_ib[adp->ad_offset - NDADDR] =
11266 				    adp->ad_newblkno;
11267 			}
11268 		}
11269 		adp->ad_state &= ~UNDONE;
11270 		adp->ad_state |= ATTACHED;
11271 		hadchanges = 1;
11272 	}
11273 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11274 		nextadp = TAILQ_NEXT(adp, ad_next);
11275 		if (adp->ad_state & ATTACHED)
11276 			panic("handle_written_inodeblock: new entry");
11277 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11278 			panic("%s: direct pointers #%jd %s %jd != %jd",
11279 			    "handle_written_inodeblock",
11280 			    (intmax_t)adp->ad_offset, "mismatch",
11281 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11282 			    (intmax_t)adp->ad_oldblkno);
11283 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11284 		adp->ad_state &= ~UNDONE;
11285 		adp->ad_state |= ATTACHED;
11286 		hadchanges = 1;
11287 	}
11288 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11289 		stat_direct_blk_ptrs++;
11290 	/*
11291 	 * Reset the file size to its most up-to-date value.
11292 	 */
11293 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11294 		panic("handle_written_inodeblock: bad size");
11295 	if (inodedep->id_savednlink > LINK_MAX)
11296 		panic("handle_written_inodeblock: Invalid link count "
11297 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11298 	if (fstype == UFS1) {
11299 		if (dp1->di_nlink != inodedep->id_savednlink) {
11300 			dp1->di_nlink = inodedep->id_savednlink;
11301 			hadchanges = 1;
11302 		}
11303 		if (dp1->di_size != inodedep->id_savedsize) {
11304 			dp1->di_size = inodedep->id_savedsize;
11305 			hadchanges = 1;
11306 		}
11307 	} else {
11308 		if (dp2->di_nlink != inodedep->id_savednlink) {
11309 			dp2->di_nlink = inodedep->id_savednlink;
11310 			hadchanges = 1;
11311 		}
11312 		if (dp2->di_size != inodedep->id_savedsize) {
11313 			dp2->di_size = inodedep->id_savedsize;
11314 			hadchanges = 1;
11315 		}
11316 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11317 			dp2->di_extsize = inodedep->id_savedextsize;
11318 			hadchanges = 1;
11319 		}
11320 	}
11321 	inodedep->id_savedsize = -1;
11322 	inodedep->id_savedextsize = -1;
11323 	inodedep->id_savednlink = -1;
11324 	/*
11325 	 * If there were any rollbacks in the inode block, then it must be
11326 	 * marked dirty so that its will eventually get written back in
11327 	 * its correct form.
11328 	 */
11329 	if (hadchanges)
11330 		bdirty(bp);
11331 bufwait:
11332 	/*
11333 	 * Process any allocdirects that completed during the update.
11334 	 */
11335 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11336 		handle_allocdirect_partdone(adp, &wkhd);
11337 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11338 		handle_allocdirect_partdone(adp, &wkhd);
11339 	/*
11340 	 * Process deallocations that were held pending until the
11341 	 * inode had been written to disk. Freeing of the inode
11342 	 * is delayed until after all blocks have been freed to
11343 	 * avoid creation of new <vfsid, inum, lbn> triples
11344 	 * before the old ones have been deleted.  Completely
11345 	 * unlinked inodes are not processed until the unlinked
11346 	 * inode list is written or the last reference is removed.
11347 	 */
11348 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11349 		freefile = handle_bufwait(inodedep, NULL);
11350 		if (freefile && !LIST_EMPTY(&wkhd)) {
11351 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11352 			freefile = NULL;
11353 		}
11354 	}
11355 	/*
11356 	 * Move rolled forward dependency completions to the bufwait list
11357 	 * now that those that were already written have been processed.
11358 	 */
11359 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11360 		panic("handle_written_inodeblock: bufwait but no changes");
11361 	jwork_move(&inodedep->id_bufwait, &wkhd);
11362 
11363 	if (freefile != NULL) {
11364 		/*
11365 		 * If the inode is goingaway it was never written.  Fake up
11366 		 * the state here so free_inodedep() can succeed.
11367 		 */
11368 		if (inodedep->id_state & GOINGAWAY)
11369 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11370 		if (free_inodedep(inodedep) == 0)
11371 			panic("handle_written_inodeblock: live inodedep %p",
11372 			    inodedep);
11373 		add_to_worklist(&freefile->fx_list, 0);
11374 		return (0);
11375 	}
11376 
11377 	/*
11378 	 * If no outstanding dependencies, free it.
11379 	 */
11380 	if (free_inodedep(inodedep) ||
11381 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11382 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11383 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11384 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11385 		return (0);
11386 	return (hadchanges);
11387 }
11388 
11389 static int
11390 handle_written_indirdep(indirdep, bp, bpp)
11391 	struct indirdep *indirdep;
11392 	struct buf *bp;
11393 	struct buf **bpp;
11394 {
11395 	struct allocindir *aip;
11396 	struct buf *sbp;
11397 	int chgs;
11398 
11399 	if (indirdep->ir_state & GOINGAWAY)
11400 		panic("handle_written_indirdep: indirdep gone");
11401 	if ((indirdep->ir_state & IOSTARTED) == 0)
11402 		panic("handle_written_indirdep: IO not started");
11403 	chgs = 0;
11404 	/*
11405 	 * If there were rollbacks revert them here.
11406 	 */
11407 	if (indirdep->ir_saveddata) {
11408 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11409 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11410 			free(indirdep->ir_saveddata, M_INDIRDEP);
11411 			indirdep->ir_saveddata = NULL;
11412 		}
11413 		chgs = 1;
11414 	}
11415 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11416 	indirdep->ir_state |= ATTACHED;
11417 	/*
11418 	 * Move allocindirs with written pointers to the completehd if
11419 	 * the indirdep's pointer is not yet written.  Otherwise
11420 	 * free them here.
11421 	 */
11422 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11423 		LIST_REMOVE(aip, ai_next);
11424 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11425 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11426 			    ai_next);
11427 			newblk_freefrag(&aip->ai_block);
11428 			continue;
11429 		}
11430 		free_newblk(&aip->ai_block);
11431 	}
11432 	/*
11433 	 * Move allocindirs that have finished dependency processing from
11434 	 * the done list to the write list after updating the pointers.
11435 	 */
11436 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11437 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11438 			handle_allocindir_partdone(aip);
11439 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11440 				panic("disk_write_complete: not gone");
11441 			chgs = 1;
11442 		}
11443 	}
11444 	/*
11445 	 * Preserve the indirdep if there were any changes or if it is not
11446 	 * yet valid on disk.
11447 	 */
11448 	if (chgs) {
11449 		stat_indir_blk_ptrs++;
11450 		bdirty(bp);
11451 		return (1);
11452 	}
11453 	/*
11454 	 * If there were no changes we can discard the savedbp and detach
11455 	 * ourselves from the buf.  We are only carrying completed pointers
11456 	 * in this case.
11457 	 */
11458 	sbp = indirdep->ir_savebp;
11459 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11460 	indirdep->ir_savebp = NULL;
11461 	indirdep->ir_bp = NULL;
11462 	if (*bpp != NULL)
11463 		panic("handle_written_indirdep: bp already exists.");
11464 	*bpp = sbp;
11465 	/*
11466 	 * The indirdep may not be freed until its parent points at it.
11467 	 */
11468 	if (indirdep->ir_state & DEPCOMPLETE)
11469 		free_indirdep(indirdep);
11470 
11471 	return (0);
11472 }
11473 
11474 /*
11475  * Process a diradd entry after its dependent inode has been written.
11476  * This routine must be called with splbio interrupts blocked.
11477  */
11478 static void
11479 diradd_inode_written(dap, inodedep)
11480 	struct diradd *dap;
11481 	struct inodedep *inodedep;
11482 {
11483 
11484 	dap->da_state |= COMPLETE;
11485 	complete_diradd(dap);
11486 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11487 }
11488 
11489 /*
11490  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11491  * be called with the soft updates lock and the buf lock on the cg held.
11492  */
11493 static int
11494 bmsafemap_backgroundwrite(bmsafemap, bp)
11495 	struct bmsafemap *bmsafemap;
11496 	struct buf *bp;
11497 {
11498 	int dirty;
11499 
11500 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11501 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11502 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11503 	/*
11504 	 * If we're initiating a background write we need to process the
11505 	 * rollbacks as they exist now, not as they exist when IO starts.
11506 	 * No other consumers will look at the contents of the shadowed
11507 	 * buf so this is safe to do here.
11508 	 */
11509 	if (bp->b_xflags & BX_BKGRDMARKER)
11510 		initiate_write_bmsafemap(bmsafemap, bp);
11511 
11512 	return (dirty);
11513 }
11514 
11515 /*
11516  * Re-apply an allocation when a cg write is complete.
11517  */
11518 static int
11519 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11520 	struct jnewblk *jnewblk;
11521 	struct fs *fs;
11522 	struct cg *cgp;
11523 	uint8_t *blksfree;
11524 {
11525 	ufs1_daddr_t fragno;
11526 	ufs2_daddr_t blkno;
11527 	long cgbno, bbase;
11528 	int frags, blk;
11529 	int i;
11530 
11531 	frags = 0;
11532 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11533 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11534 		if (isclr(blksfree, cgbno + i))
11535 			panic("jnewblk_rollforward: re-allocated fragment");
11536 		frags++;
11537 	}
11538 	if (frags == fs->fs_frag) {
11539 		blkno = fragstoblks(fs, cgbno);
11540 		ffs_clrblock(fs, blksfree, (long)blkno);
11541 		ffs_clusteracct(fs, cgp, blkno, -1);
11542 		cgp->cg_cs.cs_nbfree--;
11543 	} else {
11544 		bbase = cgbno - fragnum(fs, cgbno);
11545 		cgbno += jnewblk->jn_oldfrags;
11546                 /* If a complete block had been reassembled, account for it. */
11547 		fragno = fragstoblks(fs, bbase);
11548 		if (ffs_isblock(fs, blksfree, fragno)) {
11549 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11550 			ffs_clusteracct(fs, cgp, fragno, -1);
11551 			cgp->cg_cs.cs_nbfree--;
11552 		}
11553 		/* Decrement the old frags.  */
11554 		blk = blkmap(fs, blksfree, bbase);
11555 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11556 		/* Allocate the fragment */
11557 		for (i = 0; i < frags; i++)
11558 			clrbit(blksfree, cgbno + i);
11559 		cgp->cg_cs.cs_nffree -= frags;
11560 		/* Add back in counts associated with the new frags */
11561 		blk = blkmap(fs, blksfree, bbase);
11562 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11563 	}
11564 	return (frags);
11565 }
11566 
11567 /*
11568  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11569  * changes if it's not a background write.  Set all written dependencies
11570  * to DEPCOMPLETE and free the structure if possible.
11571  */
11572 static int
11573 handle_written_bmsafemap(bmsafemap, bp)
11574 	struct bmsafemap *bmsafemap;
11575 	struct buf *bp;
11576 {
11577 	struct newblk *newblk;
11578 	struct inodedep *inodedep;
11579 	struct jaddref *jaddref, *jatmp;
11580 	struct jnewblk *jnewblk, *jntmp;
11581 	struct ufsmount *ump;
11582 	uint8_t *inosused;
11583 	uint8_t *blksfree;
11584 	struct cg *cgp;
11585 	struct fs *fs;
11586 	ino_t ino;
11587 	int foreground;
11588 	int chgs;
11589 
11590 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11591 		panic("initiate_write_bmsafemap: Not started\n");
11592 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11593 	chgs = 0;
11594 	bmsafemap->sm_state &= ~IOSTARTED;
11595 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11596 	/*
11597 	 * Release journal work that was waiting on the write.
11598 	 */
11599 	handle_jwork(&bmsafemap->sm_freewr);
11600 
11601 	/*
11602 	 * Restore unwritten inode allocation pending jaddref writes.
11603 	 */
11604 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11605 		cgp = (struct cg *)bp->b_data;
11606 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11607 		inosused = cg_inosused(cgp);
11608 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11609 		    ja_bmdeps, jatmp) {
11610 			if ((jaddref->ja_state & UNDONE) == 0)
11611 				continue;
11612 			ino = jaddref->ja_ino % fs->fs_ipg;
11613 			if (isset(inosused, ino))
11614 				panic("handle_written_bmsafemap: "
11615 				    "re-allocated inode");
11616 			/* Do the roll-forward only if it's a real copy. */
11617 			if (foreground) {
11618 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11619 					cgp->cg_cs.cs_ndir++;
11620 				cgp->cg_cs.cs_nifree--;
11621 				setbit(inosused, ino);
11622 				chgs = 1;
11623 			}
11624 			jaddref->ja_state &= ~UNDONE;
11625 			jaddref->ja_state |= ATTACHED;
11626 			free_jaddref(jaddref);
11627 		}
11628 	}
11629 	/*
11630 	 * Restore any block allocations which are pending journal writes.
11631 	 */
11632 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11633 		cgp = (struct cg *)bp->b_data;
11634 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11635 		blksfree = cg_blksfree(cgp);
11636 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11637 		    jntmp) {
11638 			if ((jnewblk->jn_state & UNDONE) == 0)
11639 				continue;
11640 			/* Do the roll-forward only if it's a real copy. */
11641 			if (foreground &&
11642 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11643 				chgs = 1;
11644 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11645 			jnewblk->jn_state |= ATTACHED;
11646 			free_jnewblk(jnewblk);
11647 		}
11648 	}
11649 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11650 		newblk->nb_state |= DEPCOMPLETE;
11651 		newblk->nb_state &= ~ONDEPLIST;
11652 		newblk->nb_bmsafemap = NULL;
11653 		LIST_REMOVE(newblk, nb_deps);
11654 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11655 			handle_allocdirect_partdone(
11656 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11657 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11658 			handle_allocindir_partdone(
11659 			    WK_ALLOCINDIR(&newblk->nb_list));
11660 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11661 			panic("handle_written_bmsafemap: Unexpected type: %s",
11662 			    TYPENAME(newblk->nb_list.wk_type));
11663 	}
11664 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11665 		inodedep->id_state |= DEPCOMPLETE;
11666 		inodedep->id_state &= ~ONDEPLIST;
11667 		LIST_REMOVE(inodedep, id_deps);
11668 		inodedep->id_bmsafemap = NULL;
11669 	}
11670 	LIST_REMOVE(bmsafemap, sm_next);
11671 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11672 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11673 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11674 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11675 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11676 		LIST_REMOVE(bmsafemap, sm_hash);
11677 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11678 		return (0);
11679 	}
11680 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11681 	if (foreground)
11682 		bdirty(bp);
11683 	return (1);
11684 }
11685 
11686 /*
11687  * Try to free a mkdir dependency.
11688  */
11689 static void
11690 complete_mkdir(mkdir)
11691 	struct mkdir *mkdir;
11692 {
11693 	struct diradd *dap;
11694 
11695 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11696 		return;
11697 	LIST_REMOVE(mkdir, md_mkdirs);
11698 	dap = mkdir->md_diradd;
11699 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11700 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11701 		dap->da_state |= DEPCOMPLETE;
11702 		complete_diradd(dap);
11703 	}
11704 	WORKITEM_FREE(mkdir, D_MKDIR);
11705 }
11706 
11707 /*
11708  * Handle the completion of a mkdir dependency.
11709  */
11710 static void
11711 handle_written_mkdir(mkdir, type)
11712 	struct mkdir *mkdir;
11713 	int type;
11714 {
11715 
11716 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11717 		panic("handle_written_mkdir: bad type");
11718 	mkdir->md_state |= COMPLETE;
11719 	complete_mkdir(mkdir);
11720 }
11721 
11722 static int
11723 free_pagedep(pagedep)
11724 	struct pagedep *pagedep;
11725 {
11726 	int i;
11727 
11728 	if (pagedep->pd_state & NEWBLOCK)
11729 		return (0);
11730 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11731 		return (0);
11732 	for (i = 0; i < DAHASHSZ; i++)
11733 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11734 			return (0);
11735 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11736 		return (0);
11737 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11738 		return (0);
11739 	if (pagedep->pd_state & ONWORKLIST)
11740 		WORKLIST_REMOVE(&pagedep->pd_list);
11741 	LIST_REMOVE(pagedep, pd_hash);
11742 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11743 
11744 	return (1);
11745 }
11746 
11747 /*
11748  * Called from within softdep_disk_write_complete above.
11749  * A write operation was just completed. Removed inodes can
11750  * now be freed and associated block pointers may be committed.
11751  * Note that this routine is always called from interrupt level
11752  * with further splbio interrupts blocked.
11753  */
11754 static int
11755 handle_written_filepage(pagedep, bp)
11756 	struct pagedep *pagedep;
11757 	struct buf *bp;		/* buffer containing the written page */
11758 {
11759 	struct dirrem *dirrem;
11760 	struct diradd *dap, *nextdap;
11761 	struct direct *ep;
11762 	int i, chgs;
11763 
11764 	if ((pagedep->pd_state & IOSTARTED) == 0)
11765 		panic("handle_written_filepage: not started");
11766 	pagedep->pd_state &= ~IOSTARTED;
11767 	/*
11768 	 * Process any directory removals that have been committed.
11769 	 */
11770 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11771 		LIST_REMOVE(dirrem, dm_next);
11772 		dirrem->dm_state |= COMPLETE;
11773 		dirrem->dm_dirinum = pagedep->pd_ino;
11774 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11775 		    ("handle_written_filepage: Journal entries not written."));
11776 		add_to_worklist(&dirrem->dm_list, 0);
11777 	}
11778 	/*
11779 	 * Free any directory additions that have been committed.
11780 	 * If it is a newly allocated block, we have to wait until
11781 	 * the on-disk directory inode claims the new block.
11782 	 */
11783 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11784 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11785 			free_diradd(dap, NULL);
11786 	/*
11787 	 * Uncommitted directory entries must be restored.
11788 	 */
11789 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11790 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11791 		     dap = nextdap) {
11792 			nextdap = LIST_NEXT(dap, da_pdlist);
11793 			if (dap->da_state & ATTACHED)
11794 				panic("handle_written_filepage: attached");
11795 			ep = (struct direct *)
11796 			    ((char *)bp->b_data + dap->da_offset);
11797 			ep->d_ino = dap->da_newinum;
11798 			dap->da_state &= ~UNDONE;
11799 			dap->da_state |= ATTACHED;
11800 			chgs = 1;
11801 			/*
11802 			 * If the inode referenced by the directory has
11803 			 * been written out, then the dependency can be
11804 			 * moved to the pending list.
11805 			 */
11806 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11807 				LIST_REMOVE(dap, da_pdlist);
11808 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11809 				    da_pdlist);
11810 			}
11811 		}
11812 	}
11813 	/*
11814 	 * If there were any rollbacks in the directory, then it must be
11815 	 * marked dirty so that its will eventually get written back in
11816 	 * its correct form.
11817 	 */
11818 	if (chgs) {
11819 		if ((bp->b_flags & B_DELWRI) == 0)
11820 			stat_dir_entry++;
11821 		bdirty(bp);
11822 		return (1);
11823 	}
11824 	/*
11825 	 * If we are not waiting for a new directory block to be
11826 	 * claimed by its inode, then the pagedep will be freed.
11827 	 * Otherwise it will remain to track any new entries on
11828 	 * the page in case they are fsync'ed.
11829 	 */
11830 	free_pagedep(pagedep);
11831 	return (0);
11832 }
11833 
11834 /*
11835  * Writing back in-core inode structures.
11836  *
11837  * The filesystem only accesses an inode's contents when it occupies an
11838  * "in-core" inode structure.  These "in-core" structures are separate from
11839  * the page frames used to cache inode blocks.  Only the latter are
11840  * transferred to/from the disk.  So, when the updated contents of the
11841  * "in-core" inode structure are copied to the corresponding in-memory inode
11842  * block, the dependencies are also transferred.  The following procedure is
11843  * called when copying a dirty "in-core" inode to a cached inode block.
11844  */
11845 
11846 /*
11847  * Called when an inode is loaded from disk. If the effective link count
11848  * differed from the actual link count when it was last flushed, then we
11849  * need to ensure that the correct effective link count is put back.
11850  */
11851 void
11852 softdep_load_inodeblock(ip)
11853 	struct inode *ip;	/* the "in_core" copy of the inode */
11854 {
11855 	struct inodedep *inodedep;
11856 
11857 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
11858 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
11859 	/*
11860 	 * Check for alternate nlink count.
11861 	 */
11862 	ip->i_effnlink = ip->i_nlink;
11863 	ACQUIRE_LOCK(ip->i_ump);
11864 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11865 	    &inodedep) == 0) {
11866 		FREE_LOCK(ip->i_ump);
11867 		return;
11868 	}
11869 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11870 	FREE_LOCK(ip->i_ump);
11871 }
11872 
11873 /*
11874  * This routine is called just before the "in-core" inode
11875  * information is to be copied to the in-memory inode block.
11876  * Recall that an inode block contains several inodes. If
11877  * the force flag is set, then the dependencies will be
11878  * cleared so that the update can always be made. Note that
11879  * the buffer is locked when this routine is called, so we
11880  * will never be in the middle of writing the inode block
11881  * to disk.
11882  */
11883 void
11884 softdep_update_inodeblock(ip, bp, waitfor)
11885 	struct inode *ip;	/* the "in_core" copy of the inode */
11886 	struct buf *bp;		/* the buffer containing the inode block */
11887 	int waitfor;		/* nonzero => update must be allowed */
11888 {
11889 	struct inodedep *inodedep;
11890 	struct inoref *inoref;
11891 	struct ufsmount *ump;
11892 	struct worklist *wk;
11893 	struct mount *mp;
11894 	struct buf *ibp;
11895 	struct fs *fs;
11896 	int error;
11897 
11898 	ump = ip->i_ump;
11899 	mp = UFSTOVFS(ump);
11900 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
11901 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
11902 	fs = ip->i_fs;
11903 	/*
11904 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11905 	 * does not have access to the in-core ip so must write directly into
11906 	 * the inode block buffer when setting freelink.
11907 	 */
11908 	if (fs->fs_magic == FS_UFS1_MAGIC)
11909 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11910 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11911 	else
11912 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11913 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11914 	/*
11915 	 * If the effective link count is not equal to the actual link
11916 	 * count, then we must track the difference in an inodedep while
11917 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11918 	 * if there is no existing inodedep, then there are no dependencies
11919 	 * to track.
11920 	 */
11921 	ACQUIRE_LOCK(ump);
11922 again:
11923 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11924 		FREE_LOCK(ump);
11925 		if (ip->i_effnlink != ip->i_nlink)
11926 			panic("softdep_update_inodeblock: bad link count");
11927 		return;
11928 	}
11929 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11930 		panic("softdep_update_inodeblock: bad delta");
11931 	/*
11932 	 * If we're flushing all dependencies we must also move any waiting
11933 	 * for journal writes onto the bufwait list prior to I/O.
11934 	 */
11935 	if (waitfor) {
11936 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11937 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11938 			    == DEPCOMPLETE) {
11939 				jwait(&inoref->if_list, MNT_WAIT);
11940 				goto again;
11941 			}
11942 		}
11943 	}
11944 	/*
11945 	 * Changes have been initiated. Anything depending on these
11946 	 * changes cannot occur until this inode has been written.
11947 	 */
11948 	inodedep->id_state &= ~COMPLETE;
11949 	if ((inodedep->id_state & ONWORKLIST) == 0)
11950 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11951 	/*
11952 	 * Any new dependencies associated with the incore inode must
11953 	 * now be moved to the list associated with the buffer holding
11954 	 * the in-memory copy of the inode. Once merged process any
11955 	 * allocdirects that are completed by the merger.
11956 	 */
11957 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11958 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11959 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11960 		    NULL);
11961 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11962 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11963 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11964 		    NULL);
11965 	/*
11966 	 * Now that the inode has been pushed into the buffer, the
11967 	 * operations dependent on the inode being written to disk
11968 	 * can be moved to the id_bufwait so that they will be
11969 	 * processed when the buffer I/O completes.
11970 	 */
11971 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11972 		WORKLIST_REMOVE(wk);
11973 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11974 	}
11975 	/*
11976 	 * Newly allocated inodes cannot be written until the bitmap
11977 	 * that allocates them have been written (indicated by
11978 	 * DEPCOMPLETE being set in id_state). If we are doing a
11979 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11980 	 * to be written so that the update can be done.
11981 	 */
11982 	if (waitfor == 0) {
11983 		FREE_LOCK(ump);
11984 		return;
11985 	}
11986 retry:
11987 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11988 		FREE_LOCK(ump);
11989 		return;
11990 	}
11991 	ibp = inodedep->id_bmsafemap->sm_buf;
11992 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
11993 	if (ibp == NULL) {
11994 		/*
11995 		 * If ibp came back as NULL, the dependency could have been
11996 		 * freed while we slept.  Look it up again, and check to see
11997 		 * that it has completed.
11998 		 */
11999 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12000 			goto retry;
12001 		FREE_LOCK(ump);
12002 		return;
12003 	}
12004 	FREE_LOCK(ump);
12005 	if ((error = bwrite(ibp)) != 0)
12006 		softdep_error("softdep_update_inodeblock: bwrite", error);
12007 }
12008 
12009 /*
12010  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12011  * old inode dependency list (such as id_inoupdt). This routine must be
12012  * called with splbio interrupts blocked.
12013  */
12014 static void
12015 merge_inode_lists(newlisthead, oldlisthead)
12016 	struct allocdirectlst *newlisthead;
12017 	struct allocdirectlst *oldlisthead;
12018 {
12019 	struct allocdirect *listadp, *newadp;
12020 
12021 	newadp = TAILQ_FIRST(newlisthead);
12022 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12023 		if (listadp->ad_offset < newadp->ad_offset) {
12024 			listadp = TAILQ_NEXT(listadp, ad_next);
12025 			continue;
12026 		}
12027 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12028 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12029 		if (listadp->ad_offset == newadp->ad_offset) {
12030 			allocdirect_merge(oldlisthead, newadp,
12031 			    listadp);
12032 			listadp = newadp;
12033 		}
12034 		newadp = TAILQ_FIRST(newlisthead);
12035 	}
12036 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12037 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12038 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12039 	}
12040 }
12041 
12042 /*
12043  * If we are doing an fsync, then we must ensure that any directory
12044  * entries for the inode have been written after the inode gets to disk.
12045  */
12046 int
12047 softdep_fsync(vp)
12048 	struct vnode *vp;	/* the "in_core" copy of the inode */
12049 {
12050 	struct inodedep *inodedep;
12051 	struct pagedep *pagedep;
12052 	struct inoref *inoref;
12053 	struct ufsmount *ump;
12054 	struct worklist *wk;
12055 	struct diradd *dap;
12056 	struct mount *mp;
12057 	struct vnode *pvp;
12058 	struct inode *ip;
12059 	struct buf *bp;
12060 	struct fs *fs;
12061 	struct thread *td = curthread;
12062 	int error, flushparent, pagedep_new_block;
12063 	ino_t parentino;
12064 	ufs_lbn_t lbn;
12065 
12066 	ip = VTOI(vp);
12067 	fs = ip->i_fs;
12068 	ump = ip->i_ump;
12069 	mp = vp->v_mount;
12070 	if (MOUNTEDSOFTDEP(mp) == 0)
12071 		return (0);
12072 	ACQUIRE_LOCK(ump);
12073 restart:
12074 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12075 		FREE_LOCK(ump);
12076 		return (0);
12077 	}
12078 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12079 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12080 		    == DEPCOMPLETE) {
12081 			jwait(&inoref->if_list, MNT_WAIT);
12082 			goto restart;
12083 		}
12084 	}
12085 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12086 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12087 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12088 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12089 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12090 		panic("softdep_fsync: pending ops %p", inodedep);
12091 	for (error = 0, flushparent = 0; ; ) {
12092 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12093 			break;
12094 		if (wk->wk_type != D_DIRADD)
12095 			panic("softdep_fsync: Unexpected type %s",
12096 			    TYPENAME(wk->wk_type));
12097 		dap = WK_DIRADD(wk);
12098 		/*
12099 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12100 		 * dependency or is contained in a newly allocated block.
12101 		 */
12102 		if (dap->da_state & DIRCHG)
12103 			pagedep = dap->da_previous->dm_pagedep;
12104 		else
12105 			pagedep = dap->da_pagedep;
12106 		parentino = pagedep->pd_ino;
12107 		lbn = pagedep->pd_lbn;
12108 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12109 			panic("softdep_fsync: dirty");
12110 		if ((dap->da_state & MKDIR_PARENT) ||
12111 		    (pagedep->pd_state & NEWBLOCK))
12112 			flushparent = 1;
12113 		else
12114 			flushparent = 0;
12115 		/*
12116 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12117 		 * then we will not be able to release and recover the
12118 		 * vnode below, so we just have to give up on writing its
12119 		 * directory entry out. It will eventually be written, just
12120 		 * not now, but then the user was not asking to have it
12121 		 * written, so we are not breaking any promises.
12122 		 */
12123 		if (vp->v_iflag & VI_DOOMED)
12124 			break;
12125 		/*
12126 		 * We prevent deadlock by always fetching inodes from the
12127 		 * root, moving down the directory tree. Thus, when fetching
12128 		 * our parent directory, we first try to get the lock. If
12129 		 * that fails, we must unlock ourselves before requesting
12130 		 * the lock on our parent. See the comment in ufs_lookup
12131 		 * for details on possible races.
12132 		 */
12133 		FREE_LOCK(ump);
12134 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12135 		    FFSV_FORCEINSMQ)) {
12136 			error = vfs_busy(mp, MBF_NOWAIT);
12137 			if (error != 0) {
12138 				vfs_ref(mp);
12139 				VOP_UNLOCK(vp, 0);
12140 				error = vfs_busy(mp, 0);
12141 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12142 				vfs_rel(mp);
12143 				if (error != 0)
12144 					return (ENOENT);
12145 				if (vp->v_iflag & VI_DOOMED) {
12146 					vfs_unbusy(mp);
12147 					return (ENOENT);
12148 				}
12149 			}
12150 			VOP_UNLOCK(vp, 0);
12151 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12152 			    &pvp, FFSV_FORCEINSMQ);
12153 			vfs_unbusy(mp);
12154 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12155 			if (vp->v_iflag & VI_DOOMED) {
12156 				if (error == 0)
12157 					vput(pvp);
12158 				error = ENOENT;
12159 			}
12160 			if (error != 0)
12161 				return (error);
12162 		}
12163 		/*
12164 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12165 		 * that are contained in direct blocks will be resolved by
12166 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12167 		 * may require a complete sync'ing of the directory. So, we
12168 		 * try the cheap and fast ffs_update first, and if that fails,
12169 		 * then we do the slower ffs_syncvnode of the directory.
12170 		 */
12171 		if (flushparent) {
12172 			int locked;
12173 
12174 			if ((error = ffs_update(pvp, 1)) != 0) {
12175 				vput(pvp);
12176 				return (error);
12177 			}
12178 			ACQUIRE_LOCK(ump);
12179 			locked = 1;
12180 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12181 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12182 					if (wk->wk_type != D_DIRADD)
12183 						panic("softdep_fsync: Unexpected type %s",
12184 						      TYPENAME(wk->wk_type));
12185 					dap = WK_DIRADD(wk);
12186 					if (dap->da_state & DIRCHG)
12187 						pagedep = dap->da_previous->dm_pagedep;
12188 					else
12189 						pagedep = dap->da_pagedep;
12190 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12191 					FREE_LOCK(ump);
12192 					locked = 0;
12193 					if (pagedep_new_block && (error =
12194 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12195 						vput(pvp);
12196 						return (error);
12197 					}
12198 				}
12199 			}
12200 			if (locked)
12201 				FREE_LOCK(ump);
12202 		}
12203 		/*
12204 		 * Flush directory page containing the inode's name.
12205 		 */
12206 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12207 		    &bp);
12208 		if (error == 0)
12209 			error = bwrite(bp);
12210 		else
12211 			brelse(bp);
12212 		vput(pvp);
12213 		if (error != 0)
12214 			return (error);
12215 		ACQUIRE_LOCK(ump);
12216 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12217 			break;
12218 	}
12219 	FREE_LOCK(ump);
12220 	return (0);
12221 }
12222 
12223 /*
12224  * Flush all the dirty bitmaps associated with the block device
12225  * before flushing the rest of the dirty blocks so as to reduce
12226  * the number of dependencies that will have to be rolled back.
12227  *
12228  * XXX Unused?
12229  */
12230 void
12231 softdep_fsync_mountdev(vp)
12232 	struct vnode *vp;
12233 {
12234 	struct buf *bp, *nbp;
12235 	struct worklist *wk;
12236 	struct bufobj *bo;
12237 
12238 	if (!vn_isdisk(vp, NULL))
12239 		panic("softdep_fsync_mountdev: vnode not a disk");
12240 	bo = &vp->v_bufobj;
12241 restart:
12242 	BO_LOCK(bo);
12243 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12244 		/*
12245 		 * If it is already scheduled, skip to the next buffer.
12246 		 */
12247 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12248 			continue;
12249 
12250 		if ((bp->b_flags & B_DELWRI) == 0)
12251 			panic("softdep_fsync_mountdev: not dirty");
12252 		/*
12253 		 * We are only interested in bitmaps with outstanding
12254 		 * dependencies.
12255 		 */
12256 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12257 		    wk->wk_type != D_BMSAFEMAP ||
12258 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12259 			BUF_UNLOCK(bp);
12260 			continue;
12261 		}
12262 		BO_UNLOCK(bo);
12263 		bremfree(bp);
12264 		(void) bawrite(bp);
12265 		goto restart;
12266 	}
12267 	drain_output(vp);
12268 	BO_UNLOCK(bo);
12269 }
12270 
12271 /*
12272  * Sync all cylinder groups that were dirty at the time this function is
12273  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12274  * is used to flush freedep activity that may be holding up writes to a
12275  * indirect block.
12276  */
12277 static int
12278 sync_cgs(mp, waitfor)
12279 	struct mount *mp;
12280 	int waitfor;
12281 {
12282 	struct bmsafemap *bmsafemap;
12283 	struct bmsafemap *sentinel;
12284 	struct ufsmount *ump;
12285 	struct buf *bp;
12286 	int error;
12287 
12288 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12289 	sentinel->sm_cg = -1;
12290 	ump = VFSTOUFS(mp);
12291 	error = 0;
12292 	ACQUIRE_LOCK(ump);
12293 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12294 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12295 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12296 		/* Skip sentinels and cgs with no work to release. */
12297 		if (bmsafemap->sm_cg == -1 ||
12298 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12299 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12300 			LIST_REMOVE(sentinel, sm_next);
12301 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12302 			continue;
12303 		}
12304 		/*
12305 		 * If we don't get the lock and we're waiting try again, if
12306 		 * not move on to the next buf and try to sync it.
12307 		 */
12308 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12309 		if (bp == NULL && waitfor == MNT_WAIT)
12310 			continue;
12311 		LIST_REMOVE(sentinel, sm_next);
12312 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12313 		if (bp == NULL)
12314 			continue;
12315 		FREE_LOCK(ump);
12316 		if (waitfor == MNT_NOWAIT)
12317 			bawrite(bp);
12318 		else
12319 			error = bwrite(bp);
12320 		ACQUIRE_LOCK(ump);
12321 		if (error)
12322 			break;
12323 	}
12324 	LIST_REMOVE(sentinel, sm_next);
12325 	FREE_LOCK(ump);
12326 	free(sentinel, M_BMSAFEMAP);
12327 	return (error);
12328 }
12329 
12330 /*
12331  * This routine is called when we are trying to synchronously flush a
12332  * file. This routine must eliminate any filesystem metadata dependencies
12333  * so that the syncing routine can succeed.
12334  */
12335 int
12336 softdep_sync_metadata(struct vnode *vp)
12337 {
12338 	struct inode *ip;
12339 	int error;
12340 
12341 	ip = VTOI(vp);
12342 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12343 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12344 	/*
12345 	 * Ensure that any direct block dependencies have been cleared,
12346 	 * truncations are started, and inode references are journaled.
12347 	 */
12348 	ACQUIRE_LOCK(ip->i_ump);
12349 	/*
12350 	 * Write all journal records to prevent rollbacks on devvp.
12351 	 */
12352 	if (vp->v_type == VCHR)
12353 		softdep_flushjournal(vp->v_mount);
12354 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12355 	/*
12356 	 * Ensure that all truncates are written so we won't find deps on
12357 	 * indirect blocks.
12358 	 */
12359 	process_truncates(vp);
12360 	FREE_LOCK(ip->i_ump);
12361 
12362 	return (error);
12363 }
12364 
12365 /*
12366  * This routine is called when we are attempting to sync a buf with
12367  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12368  * other IO it can but returns EBUSY if the buffer is not yet able to
12369  * be written.  Dependencies which will not cause rollbacks will always
12370  * return 0.
12371  */
12372 int
12373 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12374 {
12375 	struct indirdep *indirdep;
12376 	struct pagedep *pagedep;
12377 	struct allocindir *aip;
12378 	struct newblk *newblk;
12379 	struct ufsmount *ump;
12380 	struct buf *nbp;
12381 	struct worklist *wk;
12382 	int i, error;
12383 
12384 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12385 	    ("softdep_sync_buf called on non-softdep filesystem"));
12386 	/*
12387 	 * For VCHR we just don't want to force flush any dependencies that
12388 	 * will cause rollbacks.
12389 	 */
12390 	if (vp->v_type == VCHR) {
12391 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12392 			return (EBUSY);
12393 		return (0);
12394 	}
12395 	ump = VTOI(vp)->i_ump;
12396 	ACQUIRE_LOCK(ump);
12397 	/*
12398 	 * As we hold the buffer locked, none of its dependencies
12399 	 * will disappear.
12400 	 */
12401 	error = 0;
12402 top:
12403 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12404 		switch (wk->wk_type) {
12405 
12406 		case D_ALLOCDIRECT:
12407 		case D_ALLOCINDIR:
12408 			newblk = WK_NEWBLK(wk);
12409 			if (newblk->nb_jnewblk != NULL) {
12410 				if (waitfor == MNT_NOWAIT) {
12411 					error = EBUSY;
12412 					goto out_unlock;
12413 				}
12414 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12415 				goto top;
12416 			}
12417 			if (newblk->nb_state & DEPCOMPLETE ||
12418 			    waitfor == MNT_NOWAIT)
12419 				continue;
12420 			nbp = newblk->nb_bmsafemap->sm_buf;
12421 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12422 			if (nbp == NULL)
12423 				goto top;
12424 			FREE_LOCK(ump);
12425 			if ((error = bwrite(nbp)) != 0)
12426 				goto out;
12427 			ACQUIRE_LOCK(ump);
12428 			continue;
12429 
12430 		case D_INDIRDEP:
12431 			indirdep = WK_INDIRDEP(wk);
12432 			if (waitfor == MNT_NOWAIT) {
12433 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12434 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12435 					error = EBUSY;
12436 					goto out_unlock;
12437 				}
12438 			}
12439 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12440 				panic("softdep_sync_buf: truncation pending.");
12441 		restart:
12442 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12443 				newblk = (struct newblk *)aip;
12444 				if (newblk->nb_jnewblk != NULL) {
12445 					jwait(&newblk->nb_jnewblk->jn_list,
12446 					    waitfor);
12447 					goto restart;
12448 				}
12449 				if (newblk->nb_state & DEPCOMPLETE)
12450 					continue;
12451 				nbp = newblk->nb_bmsafemap->sm_buf;
12452 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12453 				if (nbp == NULL)
12454 					goto restart;
12455 				FREE_LOCK(ump);
12456 				if ((error = bwrite(nbp)) != 0)
12457 					goto out;
12458 				ACQUIRE_LOCK(ump);
12459 				goto restart;
12460 			}
12461 			continue;
12462 
12463 		case D_PAGEDEP:
12464 			/*
12465 			 * Only flush directory entries in synchronous passes.
12466 			 */
12467 			if (waitfor != MNT_WAIT) {
12468 				error = EBUSY;
12469 				goto out_unlock;
12470 			}
12471 			/*
12472 			 * While syncing snapshots, we must allow recursive
12473 			 * lookups.
12474 			 */
12475 			BUF_AREC(bp);
12476 			/*
12477 			 * We are trying to sync a directory that may
12478 			 * have dependencies on both its own metadata
12479 			 * and/or dependencies on the inodes of any
12480 			 * recently allocated files. We walk its diradd
12481 			 * lists pushing out the associated inode.
12482 			 */
12483 			pagedep = WK_PAGEDEP(wk);
12484 			for (i = 0; i < DAHASHSZ; i++) {
12485 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12486 					continue;
12487 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12488 				    &pagedep->pd_diraddhd[i]))) {
12489 					BUF_NOREC(bp);
12490 					goto out_unlock;
12491 				}
12492 			}
12493 			BUF_NOREC(bp);
12494 			continue;
12495 
12496 		case D_FREEWORK:
12497 		case D_FREEDEP:
12498 		case D_JSEGDEP:
12499 		case D_JNEWBLK:
12500 			continue;
12501 
12502 		default:
12503 			panic("softdep_sync_buf: Unknown type %s",
12504 			    TYPENAME(wk->wk_type));
12505 			/* NOTREACHED */
12506 		}
12507 	}
12508 out_unlock:
12509 	FREE_LOCK(ump);
12510 out:
12511 	return (error);
12512 }
12513 
12514 /*
12515  * Flush the dependencies associated with an inodedep.
12516  * Called with splbio blocked.
12517  */
12518 static int
12519 flush_inodedep_deps(vp, mp, ino)
12520 	struct vnode *vp;
12521 	struct mount *mp;
12522 	ino_t ino;
12523 {
12524 	struct inodedep *inodedep;
12525 	struct inoref *inoref;
12526 	struct ufsmount *ump;
12527 	int error, waitfor;
12528 
12529 	/*
12530 	 * This work is done in two passes. The first pass grabs most
12531 	 * of the buffers and begins asynchronously writing them. The
12532 	 * only way to wait for these asynchronous writes is to sleep
12533 	 * on the filesystem vnode which may stay busy for a long time
12534 	 * if the filesystem is active. So, instead, we make a second
12535 	 * pass over the dependencies blocking on each write. In the
12536 	 * usual case we will be blocking against a write that we
12537 	 * initiated, so when it is done the dependency will have been
12538 	 * resolved. Thus the second pass is expected to end quickly.
12539 	 * We give a brief window at the top of the loop to allow
12540 	 * any pending I/O to complete.
12541 	 */
12542 	ump = VFSTOUFS(mp);
12543 	LOCK_OWNED(ump);
12544 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12545 		if (error)
12546 			return (error);
12547 		FREE_LOCK(ump);
12548 		ACQUIRE_LOCK(ump);
12549 restart:
12550 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12551 			return (0);
12552 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12553 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12554 			    == DEPCOMPLETE) {
12555 				jwait(&inoref->if_list, MNT_WAIT);
12556 				goto restart;
12557 			}
12558 		}
12559 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12560 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12561 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12562 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12563 			continue;
12564 		/*
12565 		 * If pass2, we are done, otherwise do pass 2.
12566 		 */
12567 		if (waitfor == MNT_WAIT)
12568 			break;
12569 		waitfor = MNT_WAIT;
12570 	}
12571 	/*
12572 	 * Try freeing inodedep in case all dependencies have been removed.
12573 	 */
12574 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12575 		(void) free_inodedep(inodedep);
12576 	return (0);
12577 }
12578 
12579 /*
12580  * Flush an inode dependency list.
12581  * Called with splbio blocked.
12582  */
12583 static int
12584 flush_deplist(listhead, waitfor, errorp)
12585 	struct allocdirectlst *listhead;
12586 	int waitfor;
12587 	int *errorp;
12588 {
12589 	struct allocdirect *adp;
12590 	struct newblk *newblk;
12591 	struct ufsmount *ump;
12592 	struct buf *bp;
12593 
12594 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12595 		return (0);
12596 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12597 	LOCK_OWNED(ump);
12598 	TAILQ_FOREACH(adp, listhead, ad_next) {
12599 		newblk = (struct newblk *)adp;
12600 		if (newblk->nb_jnewblk != NULL) {
12601 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12602 			return (1);
12603 		}
12604 		if (newblk->nb_state & DEPCOMPLETE)
12605 			continue;
12606 		bp = newblk->nb_bmsafemap->sm_buf;
12607 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12608 		if (bp == NULL) {
12609 			if (waitfor == MNT_NOWAIT)
12610 				continue;
12611 			return (1);
12612 		}
12613 		FREE_LOCK(ump);
12614 		if (waitfor == MNT_NOWAIT)
12615 			bawrite(bp);
12616 		else
12617 			*errorp = bwrite(bp);
12618 		ACQUIRE_LOCK(ump);
12619 		return (1);
12620 	}
12621 	return (0);
12622 }
12623 
12624 /*
12625  * Flush dependencies associated with an allocdirect block.
12626  */
12627 static int
12628 flush_newblk_dep(vp, mp, lbn)
12629 	struct vnode *vp;
12630 	struct mount *mp;
12631 	ufs_lbn_t lbn;
12632 {
12633 	struct newblk *newblk;
12634 	struct ufsmount *ump;
12635 	struct bufobj *bo;
12636 	struct inode *ip;
12637 	struct buf *bp;
12638 	ufs2_daddr_t blkno;
12639 	int error;
12640 
12641 	error = 0;
12642 	bo = &vp->v_bufobj;
12643 	ip = VTOI(vp);
12644 	blkno = DIP(ip, i_db[lbn]);
12645 	if (blkno == 0)
12646 		panic("flush_newblk_dep: Missing block");
12647 	ump = VFSTOUFS(mp);
12648 	ACQUIRE_LOCK(ump);
12649 	/*
12650 	 * Loop until all dependencies related to this block are satisfied.
12651 	 * We must be careful to restart after each sleep in case a write
12652 	 * completes some part of this process for us.
12653 	 */
12654 	for (;;) {
12655 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12656 			FREE_LOCK(ump);
12657 			break;
12658 		}
12659 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12660 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12661 		/*
12662 		 * Flush the journal.
12663 		 */
12664 		if (newblk->nb_jnewblk != NULL) {
12665 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12666 			continue;
12667 		}
12668 		/*
12669 		 * Write the bitmap dependency.
12670 		 */
12671 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12672 			bp = newblk->nb_bmsafemap->sm_buf;
12673 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12674 			if (bp == NULL)
12675 				continue;
12676 			FREE_LOCK(ump);
12677 			error = bwrite(bp);
12678 			if (error)
12679 				break;
12680 			ACQUIRE_LOCK(ump);
12681 			continue;
12682 		}
12683 		/*
12684 		 * Write the buffer.
12685 		 */
12686 		FREE_LOCK(ump);
12687 		BO_LOCK(bo);
12688 		bp = gbincore(bo, lbn);
12689 		if (bp != NULL) {
12690 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12691 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12692 			if (error == ENOLCK) {
12693 				ACQUIRE_LOCK(ump);
12694 				continue; /* Slept, retry */
12695 			}
12696 			if (error != 0)
12697 				break;	/* Failed */
12698 			if (bp->b_flags & B_DELWRI) {
12699 				bremfree(bp);
12700 				error = bwrite(bp);
12701 				if (error)
12702 					break;
12703 			} else
12704 				BUF_UNLOCK(bp);
12705 		} else
12706 			BO_UNLOCK(bo);
12707 		/*
12708 		 * We have to wait for the direct pointers to
12709 		 * point at the newdirblk before the dependency
12710 		 * will go away.
12711 		 */
12712 		error = ffs_update(vp, 1);
12713 		if (error)
12714 			break;
12715 		ACQUIRE_LOCK(ump);
12716 	}
12717 	return (error);
12718 }
12719 
12720 /*
12721  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12722  * Called with splbio blocked.
12723  */
12724 static int
12725 flush_pagedep_deps(pvp, mp, diraddhdp)
12726 	struct vnode *pvp;
12727 	struct mount *mp;
12728 	struct diraddhd *diraddhdp;
12729 {
12730 	struct inodedep *inodedep;
12731 	struct inoref *inoref;
12732 	struct ufsmount *ump;
12733 	struct diradd *dap;
12734 	struct vnode *vp;
12735 	int error = 0;
12736 	struct buf *bp;
12737 	ino_t inum;
12738 	struct diraddhd unfinished;
12739 
12740 	LIST_INIT(&unfinished);
12741 	ump = VFSTOUFS(mp);
12742 	LOCK_OWNED(ump);
12743 restart:
12744 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12745 		/*
12746 		 * Flush ourselves if this directory entry
12747 		 * has a MKDIR_PARENT dependency.
12748 		 */
12749 		if (dap->da_state & MKDIR_PARENT) {
12750 			FREE_LOCK(ump);
12751 			if ((error = ffs_update(pvp, 1)) != 0)
12752 				break;
12753 			ACQUIRE_LOCK(ump);
12754 			/*
12755 			 * If that cleared dependencies, go on to next.
12756 			 */
12757 			if (dap != LIST_FIRST(diraddhdp))
12758 				continue;
12759 			/*
12760 			 * All MKDIR_PARENT dependencies and all the
12761 			 * NEWBLOCK pagedeps that are contained in direct
12762 			 * blocks were resolved by doing above ffs_update.
12763 			 * Pagedeps contained in indirect blocks may
12764 			 * require a complete sync'ing of the directory.
12765 			 * We are in the midst of doing a complete sync,
12766 			 * so if they are not resolved in this pass we
12767 			 * defer them for now as they will be sync'ed by
12768 			 * our caller shortly.
12769 			 */
12770 			LIST_REMOVE(dap, da_pdlist);
12771 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12772 			continue;
12773 		}
12774 		/*
12775 		 * A newly allocated directory must have its "." and
12776 		 * ".." entries written out before its name can be
12777 		 * committed in its parent.
12778 		 */
12779 		inum = dap->da_newinum;
12780 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12781 			panic("flush_pagedep_deps: lost inode1");
12782 		/*
12783 		 * Wait for any pending journal adds to complete so we don't
12784 		 * cause rollbacks while syncing.
12785 		 */
12786 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12787 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12788 			    == DEPCOMPLETE) {
12789 				jwait(&inoref->if_list, MNT_WAIT);
12790 				goto restart;
12791 			}
12792 		}
12793 		if (dap->da_state & MKDIR_BODY) {
12794 			FREE_LOCK(ump);
12795 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12796 			    FFSV_FORCEINSMQ)))
12797 				break;
12798 			error = flush_newblk_dep(vp, mp, 0);
12799 			/*
12800 			 * If we still have the dependency we might need to
12801 			 * update the vnode to sync the new link count to
12802 			 * disk.
12803 			 */
12804 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12805 				error = ffs_update(vp, 1);
12806 			vput(vp);
12807 			if (error != 0)
12808 				break;
12809 			ACQUIRE_LOCK(ump);
12810 			/*
12811 			 * If that cleared dependencies, go on to next.
12812 			 */
12813 			if (dap != LIST_FIRST(diraddhdp))
12814 				continue;
12815 			if (dap->da_state & MKDIR_BODY) {
12816 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12817 				    &inodedep);
12818 				panic("flush_pagedep_deps: MKDIR_BODY "
12819 				    "inodedep %p dap %p vp %p",
12820 				    inodedep, dap, vp);
12821 			}
12822 		}
12823 		/*
12824 		 * Flush the inode on which the directory entry depends.
12825 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12826 		 * the only remaining dependency is that the updated inode
12827 		 * count must get pushed to disk. The inode has already
12828 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12829 		 * the time of the reference count change. So we need only
12830 		 * locate that buffer, ensure that there will be no rollback
12831 		 * caused by a bitmap dependency, then write the inode buffer.
12832 		 */
12833 retry:
12834 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12835 			panic("flush_pagedep_deps: lost inode");
12836 		/*
12837 		 * If the inode still has bitmap dependencies,
12838 		 * push them to disk.
12839 		 */
12840 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12841 			bp = inodedep->id_bmsafemap->sm_buf;
12842 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12843 			if (bp == NULL)
12844 				goto retry;
12845 			FREE_LOCK(ump);
12846 			if ((error = bwrite(bp)) != 0)
12847 				break;
12848 			ACQUIRE_LOCK(ump);
12849 			if (dap != LIST_FIRST(diraddhdp))
12850 				continue;
12851 		}
12852 		/*
12853 		 * If the inode is still sitting in a buffer waiting
12854 		 * to be written or waiting for the link count to be
12855 		 * adjusted update it here to flush it to disk.
12856 		 */
12857 		if (dap == LIST_FIRST(diraddhdp)) {
12858 			FREE_LOCK(ump);
12859 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12860 			    FFSV_FORCEINSMQ)))
12861 				break;
12862 			error = ffs_update(vp, 1);
12863 			vput(vp);
12864 			if (error)
12865 				break;
12866 			ACQUIRE_LOCK(ump);
12867 		}
12868 		/*
12869 		 * If we have failed to get rid of all the dependencies
12870 		 * then something is seriously wrong.
12871 		 */
12872 		if (dap == LIST_FIRST(diraddhdp)) {
12873 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12874 			panic("flush_pagedep_deps: failed to flush "
12875 			    "inodedep %p ino %ju dap %p",
12876 			    inodedep, (uintmax_t)inum, dap);
12877 		}
12878 	}
12879 	if (error)
12880 		ACQUIRE_LOCK(ump);
12881 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
12882 		LIST_REMOVE(dap, da_pdlist);
12883 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
12884 	}
12885 	return (error);
12886 }
12887 
12888 /*
12889  * A large burst of file addition or deletion activity can drive the
12890  * memory load excessively high. First attempt to slow things down
12891  * using the techniques below. If that fails, this routine requests
12892  * the offending operations to fall back to running synchronously
12893  * until the memory load returns to a reasonable level.
12894  */
12895 int
12896 softdep_slowdown(vp)
12897 	struct vnode *vp;
12898 {
12899 	struct ufsmount *ump;
12900 	int jlow;
12901 	int max_softdeps_hard;
12902 
12903 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12904 	    ("softdep_slowdown called on non-softdep filesystem"));
12905 	ump = VFSTOUFS(vp->v_mount);
12906 	ACQUIRE_LOCK(ump);
12907 	jlow = 0;
12908 	/*
12909 	 * Check for journal space if needed.
12910 	 */
12911 	if (DOINGSUJ(vp)) {
12912 		if (journal_space(ump, 0) == 0)
12913 			jlow = 1;
12914 	}
12915 	max_softdeps_hard = max_softdeps * 11 / 10;
12916 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12917 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12918 	    VFSTOUFS(vp->v_mount)->softdep_numindirdeps < maxindirdeps &&
12919 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12920 		FREE_LOCK(ump);
12921   		return (0);
12922 	}
12923 	if (VFSTOUFS(vp->v_mount)->softdep_numindirdeps >= maxindirdeps || jlow)
12924 		softdep_speedup();
12925 	stat_sync_limit_hit += 1;
12926 	FREE_LOCK(ump);
12927 	if (DOINGSUJ(vp))
12928 		return (0);
12929 	return (1);
12930 }
12931 
12932 /*
12933  * Called by the allocation routines when they are about to fail
12934  * in the hope that we can free up the requested resource (inodes
12935  * or disk space).
12936  *
12937  * First check to see if the work list has anything on it. If it has,
12938  * clean up entries until we successfully free the requested resource.
12939  * Because this process holds inodes locked, we cannot handle any remove
12940  * requests that might block on a locked inode as that could lead to
12941  * deadlock. If the worklist yields none of the requested resource,
12942  * start syncing out vnodes to free up the needed space.
12943  */
12944 int
12945 softdep_request_cleanup(fs, vp, cred, resource)
12946 	struct fs *fs;
12947 	struct vnode *vp;
12948 	struct ucred *cred;
12949 	int resource;
12950 {
12951 	struct ufsmount *ump;
12952 	struct mount *mp;
12953 	struct vnode *lvp, *mvp;
12954 	long starttime;
12955 	ufs2_daddr_t needed;
12956 	int error;
12957 
12958 	/*
12959 	 * If we are being called because of a process doing a
12960 	 * copy-on-write, then it is not safe to process any
12961 	 * worklist items as we will recurse into the copyonwrite
12962 	 * routine.  This will result in an incoherent snapshot.
12963 	 * If the vnode that we hold is a snapshot, we must avoid
12964 	 * handling other resources that could cause deadlock.
12965 	 */
12966 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12967 		return (0);
12968 
12969 	if (resource == FLUSH_BLOCKS_WAIT)
12970 		stat_cleanup_blkrequests += 1;
12971 	else
12972 		stat_cleanup_inorequests += 1;
12973 
12974 	mp = vp->v_mount;
12975 	ump = VFSTOUFS(mp);
12976 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12977 	UFS_UNLOCK(ump);
12978 	error = ffs_update(vp, 1);
12979 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
12980 		UFS_LOCK(ump);
12981 		return (0);
12982 	}
12983 	/*
12984 	 * If we are in need of resources, consider pausing for
12985 	 * tickdelay to give ourselves some breathing room.
12986 	 */
12987 	ACQUIRE_LOCK(ump);
12988 	process_removes(vp);
12989 	process_truncates(vp);
12990 	request_cleanup(UFSTOVFS(ump), resource);
12991 	FREE_LOCK(ump);
12992 	/*
12993 	 * Now clean up at least as many resources as we will need.
12994 	 *
12995 	 * When requested to clean up inodes, the number that are needed
12996 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12997 	 * plus a bit of slop (2) in case some more writers show up while
12998 	 * we are cleaning.
12999 	 *
13000 	 * When requested to free up space, the amount of space that
13001 	 * we need is enough blocks to allocate a full-sized segment
13002 	 * (fs_contigsumsize). The number of such segments that will
13003 	 * be needed is set by the number of simultaneous writers
13004 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13005 	 * writers show up while we are cleaning.
13006 	 *
13007 	 * Additionally, if we are unpriviledged and allocating space,
13008 	 * we need to ensure that we clean up enough blocks to get the
13009 	 * needed number of blocks over the threshhold of the minimum
13010 	 * number of blocks required to be kept free by the filesystem
13011 	 * (fs_minfree).
13012 	 */
13013 	if (resource == FLUSH_INODES_WAIT) {
13014 		needed = vp->v_mount->mnt_writeopcount + 2;
13015 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13016 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13017 		    fs->fs_contigsumsize;
13018 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13019 			needed += fragstoblks(fs,
13020 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13021 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13022 	} else {
13023 		UFS_LOCK(ump);
13024 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13025 		    resource);
13026 		return (0);
13027 	}
13028 	starttime = time_second;
13029 retry:
13030 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13031 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13032 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13033 	    fs->fs_cstotal.cs_nifree <= needed)) {
13034 		ACQUIRE_LOCK(ump);
13035 		if (ump->softdep_on_worklist > 0 &&
13036 		    process_worklist_item(UFSTOVFS(ump),
13037 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13038 			stat_worklist_push += 1;
13039 		FREE_LOCK(ump);
13040 	}
13041 	/*
13042 	 * If we still need resources and there are no more worklist
13043 	 * entries to process to obtain them, we have to start flushing
13044 	 * the dirty vnodes to force the release of additional requests
13045 	 * to the worklist that we can then process to reap addition
13046 	 * resources. We walk the vnodes associated with the mount point
13047 	 * until we get the needed worklist requests that we can reap.
13048 	 */
13049 	if ((resource == FLUSH_BLOCKS_WAIT &&
13050 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13051 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13052 	     fs->fs_cstotal.cs_nifree <= needed)) {
13053 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13054 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13055 				VI_UNLOCK(lvp);
13056 				continue;
13057 			}
13058 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13059 			    curthread))
13060 				continue;
13061 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13062 				vput(lvp);
13063 				continue;
13064 			}
13065 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13066 			vput(lvp);
13067 		}
13068 		lvp = ump->um_devvp;
13069 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13070 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13071 			VOP_UNLOCK(lvp, 0);
13072 		}
13073 		if (ump->softdep_on_worklist > 0) {
13074 			stat_cleanup_retries += 1;
13075 			goto retry;
13076 		}
13077 		stat_cleanup_failures += 1;
13078 	}
13079 	if (time_second - starttime > stat_cleanup_high_delay)
13080 		stat_cleanup_high_delay = time_second - starttime;
13081 	UFS_LOCK(ump);
13082 	return (1);
13083 }
13084 
13085 /*
13086  * If memory utilization has gotten too high, deliberately slow things
13087  * down and speed up the I/O processing.
13088  */
13089 static int
13090 request_cleanup(mp, resource)
13091 	struct mount *mp;
13092 	int resource;
13093 {
13094 	struct thread *td = curthread;
13095 	struct ufsmount *ump;
13096 
13097 	ump = VFSTOUFS(mp);
13098 	LOCK_OWNED(ump);
13099 	/*
13100 	 * We never hold up the filesystem syncer or buf daemon.
13101 	 */
13102 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13103 		return (0);
13104 	/*
13105 	 * First check to see if the work list has gotten backlogged.
13106 	 * If it has, co-opt this process to help clean up two entries.
13107 	 * Because this process may hold inodes locked, we cannot
13108 	 * handle any remove requests that might block on a locked
13109 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13110 	 * to avoid recursively processing the worklist.
13111 	 */
13112 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13113 		td->td_pflags |= TDP_SOFTDEP;
13114 		process_worklist_item(mp, 2, LK_NOWAIT);
13115 		td->td_pflags &= ~TDP_SOFTDEP;
13116 		stat_worklist_push += 2;
13117 		return(1);
13118 	}
13119 	/*
13120 	 * Next, we attempt to speed up the syncer process. If that
13121 	 * is successful, then we allow the process to continue.
13122 	 */
13123 	if (softdep_speedup() &&
13124 	    resource != FLUSH_BLOCKS_WAIT &&
13125 	    resource != FLUSH_INODES_WAIT)
13126 		return(0);
13127 	/*
13128 	 * If we are resource constrained on inode dependencies, try
13129 	 * flushing some dirty inodes. Otherwise, we are constrained
13130 	 * by file deletions, so try accelerating flushes of directories
13131 	 * with removal dependencies. We would like to do the cleanup
13132 	 * here, but we probably hold an inode locked at this point and
13133 	 * that might deadlock against one that we try to clean. So,
13134 	 * the best that we can do is request the syncer daemon to do
13135 	 * the cleanup for us.
13136 	 */
13137 	switch (resource) {
13138 
13139 	case FLUSH_INODES:
13140 	case FLUSH_INODES_WAIT:
13141 		stat_ino_limit_push += 1;
13142 		req_clear_inodedeps += 1;
13143 		stat_countp = &stat_ino_limit_hit;
13144 		break;
13145 
13146 	case FLUSH_BLOCKS:
13147 	case FLUSH_BLOCKS_WAIT:
13148 		stat_blk_limit_push += 1;
13149 		req_clear_remove += 1;
13150 		stat_countp = &stat_blk_limit_hit;
13151 		break;
13152 
13153 	default:
13154 		panic("request_cleanup: unknown type");
13155 	}
13156 	/*
13157 	 * Hopefully the syncer daemon will catch up and awaken us.
13158 	 * We wait at most tickdelay before proceeding in any case.
13159 	 */
13160 	proc_waiting += 1;
13161 	if (callout_pending(&softdep_callout) == FALSE)
13162 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13163 		    pause_timer, 0);
13164 
13165 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13166 	proc_waiting -= 1;
13167 	return (1);
13168 }
13169 
13170 /*
13171  * Awaken processes pausing in request_cleanup and clear proc_waiting
13172  * to indicate that there is no longer a timer running. Pause_timer
13173  * will be called with the global softdep mutex (&lk) locked.
13174  */
13175 static void
13176 pause_timer(arg)
13177 	void *arg;
13178 {
13179 
13180 	rw_assert(&lk, RA_WLOCKED);
13181 	/*
13182 	 * The callout_ API has acquired mtx and will hold it around this
13183 	 * function call.
13184 	 */
13185 	*stat_countp += 1;
13186 	wakeup_one(&proc_waiting);
13187 	if (proc_waiting > 0)
13188 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13189 		    pause_timer, 0);
13190 }
13191 
13192 /*
13193  * If requested, try removing inode or removal dependencies.
13194  */
13195 static void
13196 check_clear_deps(mp)
13197 	struct mount *mp;
13198 {
13199 
13200 	rw_assert(&lk, RA_WLOCKED);
13201 	/*
13202 	 * If we are suspended, it may be because of our using
13203 	 * too many inodedeps, so help clear them out.
13204 	 */
13205 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13206 		clear_inodedeps(mp);
13207 	/*
13208 	 * General requests for cleanup of backed up dependencies
13209 	 */
13210 	if (req_clear_inodedeps) {
13211 		req_clear_inodedeps -= 1;
13212 		clear_inodedeps(mp);
13213 		wakeup_one(&proc_waiting);
13214 	}
13215 	if (req_clear_remove) {
13216 		req_clear_remove -= 1;
13217 		clear_remove(mp);
13218 		wakeup_one(&proc_waiting);
13219 	}
13220 }
13221 
13222 /*
13223  * Flush out a directory with at least one removal dependency in an effort to
13224  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13225  */
13226 static void
13227 clear_remove(mp)
13228 	struct mount *mp;
13229 {
13230 	struct pagedep_hashhead *pagedephd;
13231 	struct pagedep *pagedep;
13232 	struct ufsmount *ump;
13233 	struct vnode *vp;
13234 	struct bufobj *bo;
13235 	int error, cnt;
13236 	ino_t ino;
13237 
13238 	ump = VFSTOUFS(mp);
13239 	LOCK_OWNED(ump);
13240 
13241 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13242 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13243 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13244 			ump->pagedep_nextclean = 0;
13245 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13246 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13247 				continue;
13248 			ino = pagedep->pd_ino;
13249 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13250 				continue;
13251 			FREE_LOCK(ump);
13252 
13253 			/*
13254 			 * Let unmount clear deps
13255 			 */
13256 			error = vfs_busy(mp, MBF_NOWAIT);
13257 			if (error != 0)
13258 				goto finish_write;
13259 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13260 			     FFSV_FORCEINSMQ);
13261 			vfs_unbusy(mp);
13262 			if (error != 0) {
13263 				softdep_error("clear_remove: vget", error);
13264 				goto finish_write;
13265 			}
13266 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13267 				softdep_error("clear_remove: fsync", error);
13268 			bo = &vp->v_bufobj;
13269 			BO_LOCK(bo);
13270 			drain_output(vp);
13271 			BO_UNLOCK(bo);
13272 			vput(vp);
13273 		finish_write:
13274 			vn_finished_write(mp);
13275 			ACQUIRE_LOCK(ump);
13276 			return;
13277 		}
13278 	}
13279 }
13280 
13281 /*
13282  * Clear out a block of dirty inodes in an effort to reduce
13283  * the number of inodedep dependency structures.
13284  */
13285 static void
13286 clear_inodedeps(mp)
13287 	struct mount *mp;
13288 {
13289 	struct inodedep_hashhead *inodedephd;
13290 	struct inodedep *inodedep;
13291 	struct ufsmount *ump;
13292 	struct vnode *vp;
13293 	struct fs *fs;
13294 	int error, cnt;
13295 	ino_t firstino, lastino, ino;
13296 
13297 	ump = VFSTOUFS(mp);
13298 	fs = ump->um_fs;
13299 	LOCK_OWNED(ump);
13300 	/*
13301 	 * Pick a random inode dependency to be cleared.
13302 	 * We will then gather up all the inodes in its block
13303 	 * that have dependencies and flush them out.
13304 	 */
13305 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13306 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13307 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13308 			ump->inodedep_nextclean = 0;
13309 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13310 			break;
13311 	}
13312 	if (inodedep == NULL)
13313 		return;
13314 	/*
13315 	 * Find the last inode in the block with dependencies.
13316 	 */
13317 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13318 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13319 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13320 			break;
13321 	/*
13322 	 * Asynchronously push all but the last inode with dependencies.
13323 	 * Synchronously push the last inode with dependencies to ensure
13324 	 * that the inode block gets written to free up the inodedeps.
13325 	 */
13326 	for (ino = firstino; ino <= lastino; ino++) {
13327 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13328 			continue;
13329 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13330 			continue;
13331 		FREE_LOCK(ump);
13332 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13333 		if (error != 0) {
13334 			vn_finished_write(mp);
13335 			ACQUIRE_LOCK(ump);
13336 			return;
13337 		}
13338 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13339 		    FFSV_FORCEINSMQ)) != 0) {
13340 			softdep_error("clear_inodedeps: vget", error);
13341 			vfs_unbusy(mp);
13342 			vn_finished_write(mp);
13343 			ACQUIRE_LOCK(ump);
13344 			return;
13345 		}
13346 		vfs_unbusy(mp);
13347 		if (ino == lastino) {
13348 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13349 				softdep_error("clear_inodedeps: fsync1", error);
13350 		} else {
13351 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13352 				softdep_error("clear_inodedeps: fsync2", error);
13353 			BO_LOCK(&vp->v_bufobj);
13354 			drain_output(vp);
13355 			BO_UNLOCK(&vp->v_bufobj);
13356 		}
13357 		vput(vp);
13358 		vn_finished_write(mp);
13359 		ACQUIRE_LOCK(ump);
13360 	}
13361 }
13362 
13363 void
13364 softdep_buf_append(bp, wkhd)
13365 	struct buf *bp;
13366 	struct workhead *wkhd;
13367 {
13368 	struct worklist *wk;
13369 	struct ufsmount *ump;
13370 
13371 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13372 		return;
13373 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13374 	    ("softdep_buf_append called on non-softdep filesystem"));
13375 	ump = VFSTOUFS(wk->wk_mp);
13376 	ACQUIRE_LOCK(ump);
13377 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13378 		WORKLIST_REMOVE(wk);
13379 		WORKLIST_INSERT(&bp->b_dep, wk);
13380 	}
13381 	FREE_LOCK(ump);
13382 
13383 }
13384 
13385 void
13386 softdep_inode_append(ip, cred, wkhd)
13387 	struct inode *ip;
13388 	struct ucred *cred;
13389 	struct workhead *wkhd;
13390 {
13391 	struct buf *bp;
13392 	struct fs *fs;
13393 	int error;
13394 
13395 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13396 	    ("softdep_inode_append called on non-softdep filesystem"));
13397 	fs = ip->i_fs;
13398 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13399 	    (int)fs->fs_bsize, cred, &bp);
13400 	if (error) {
13401 		bqrelse(bp);
13402 		softdep_freework(wkhd);
13403 		return;
13404 	}
13405 	softdep_buf_append(bp, wkhd);
13406 	bqrelse(bp);
13407 }
13408 
13409 void
13410 softdep_freework(wkhd)
13411 	struct workhead *wkhd;
13412 {
13413 	struct worklist *wk;
13414 	struct ufsmount *ump;
13415 
13416 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13417 		return;
13418 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13419 	    ("softdep_freework called on non-softdep filesystem"));
13420 	ump = VFSTOUFS(wk->wk_mp);
13421 	ACQUIRE_LOCK(ump);
13422 	handle_jwork(wkhd);
13423 	FREE_LOCK(ump);
13424 }
13425 
13426 /*
13427  * Function to determine if the buffer has outstanding dependencies
13428  * that will cause a roll-back if the buffer is written. If wantcount
13429  * is set, return number of dependencies, otherwise just yes or no.
13430  */
13431 static int
13432 softdep_count_dependencies(bp, wantcount)
13433 	struct buf *bp;
13434 	int wantcount;
13435 {
13436 	struct worklist *wk;
13437 	struct ufsmount *ump;
13438 	struct bmsafemap *bmsafemap;
13439 	struct freework *freework;
13440 	struct inodedep *inodedep;
13441 	struct indirdep *indirdep;
13442 	struct freeblks *freeblks;
13443 	struct allocindir *aip;
13444 	struct pagedep *pagedep;
13445 	struct dirrem *dirrem;
13446 	struct newblk *newblk;
13447 	struct mkdir *mkdir;
13448 	struct diradd *dap;
13449 	int i, retval;
13450 
13451 	retval = 0;
13452 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13453 		return (0);
13454 	ump = VFSTOUFS(wk->wk_mp);
13455 	ACQUIRE_LOCK(ump);
13456 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13457 		switch (wk->wk_type) {
13458 
13459 		case D_INODEDEP:
13460 			inodedep = WK_INODEDEP(wk);
13461 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13462 				/* bitmap allocation dependency */
13463 				retval += 1;
13464 				if (!wantcount)
13465 					goto out;
13466 			}
13467 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13468 				/* direct block pointer dependency */
13469 				retval += 1;
13470 				if (!wantcount)
13471 					goto out;
13472 			}
13473 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13474 				/* direct block pointer dependency */
13475 				retval += 1;
13476 				if (!wantcount)
13477 					goto out;
13478 			}
13479 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13480 				/* Add reference dependency. */
13481 				retval += 1;
13482 				if (!wantcount)
13483 					goto out;
13484 			}
13485 			continue;
13486 
13487 		case D_INDIRDEP:
13488 			indirdep = WK_INDIRDEP(wk);
13489 
13490 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13491 				/* indirect truncation dependency */
13492 				retval += 1;
13493 				if (!wantcount)
13494 					goto out;
13495 			}
13496 
13497 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13498 				/* indirect block pointer dependency */
13499 				retval += 1;
13500 				if (!wantcount)
13501 					goto out;
13502 			}
13503 			continue;
13504 
13505 		case D_PAGEDEP:
13506 			pagedep = WK_PAGEDEP(wk);
13507 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13508 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13509 					/* Journal remove ref dependency. */
13510 					retval += 1;
13511 					if (!wantcount)
13512 						goto out;
13513 				}
13514 			}
13515 			for (i = 0; i < DAHASHSZ; i++) {
13516 
13517 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13518 					/* directory entry dependency */
13519 					retval += 1;
13520 					if (!wantcount)
13521 						goto out;
13522 				}
13523 			}
13524 			continue;
13525 
13526 		case D_BMSAFEMAP:
13527 			bmsafemap = WK_BMSAFEMAP(wk);
13528 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13529 				/* Add reference dependency. */
13530 				retval += 1;
13531 				if (!wantcount)
13532 					goto out;
13533 			}
13534 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13535 				/* Allocate block dependency. */
13536 				retval += 1;
13537 				if (!wantcount)
13538 					goto out;
13539 			}
13540 			continue;
13541 
13542 		case D_FREEBLKS:
13543 			freeblks = WK_FREEBLKS(wk);
13544 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13545 				/* Freeblk journal dependency. */
13546 				retval += 1;
13547 				if (!wantcount)
13548 					goto out;
13549 			}
13550 			continue;
13551 
13552 		case D_ALLOCDIRECT:
13553 		case D_ALLOCINDIR:
13554 			newblk = WK_NEWBLK(wk);
13555 			if (newblk->nb_jnewblk) {
13556 				/* Journal allocate dependency. */
13557 				retval += 1;
13558 				if (!wantcount)
13559 					goto out;
13560 			}
13561 			continue;
13562 
13563 		case D_MKDIR:
13564 			mkdir = WK_MKDIR(wk);
13565 			if (mkdir->md_jaddref) {
13566 				/* Journal reference dependency. */
13567 				retval += 1;
13568 				if (!wantcount)
13569 					goto out;
13570 			}
13571 			continue;
13572 
13573 		case D_FREEWORK:
13574 		case D_FREEDEP:
13575 		case D_JSEGDEP:
13576 		case D_JSEG:
13577 		case D_SBDEP:
13578 			/* never a dependency on these blocks */
13579 			continue;
13580 
13581 		default:
13582 			panic("softdep_count_dependencies: Unexpected type %s",
13583 			    TYPENAME(wk->wk_type));
13584 			/* NOTREACHED */
13585 		}
13586 	}
13587 out:
13588 	FREE_LOCK(ump);
13589 	return retval;
13590 }
13591 
13592 /*
13593  * Acquire exclusive access to a buffer.
13594  * Must be called with a locked mtx parameter.
13595  * Return acquired buffer or NULL on failure.
13596  */
13597 static struct buf *
13598 getdirtybuf(bp, lock, waitfor)
13599 	struct buf *bp;
13600 	struct rwlock *lock;
13601 	int waitfor;
13602 {
13603 	int error;
13604 
13605 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13606 		if (waitfor != MNT_WAIT)
13607 			return (NULL);
13608 		error = BUF_LOCK(bp,
13609 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13610 		/*
13611 		 * Even if we sucessfully acquire bp here, we have dropped
13612 		 * lock, which may violates our guarantee.
13613 		 */
13614 		if (error == 0)
13615 			BUF_UNLOCK(bp);
13616 		else if (error != ENOLCK)
13617 			panic("getdirtybuf: inconsistent lock: %d", error);
13618 		rw_wlock(lock);
13619 		return (NULL);
13620 	}
13621 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13622 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13623 			rw_wunlock(lock);
13624 			BO_LOCK(bp->b_bufobj);
13625 			BUF_UNLOCK(bp);
13626 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13627 				bp->b_vflags |= BV_BKGRDWAIT;
13628 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13629 				       PRIBIO | PDROP, "getbuf", 0);
13630 			} else
13631 				BO_UNLOCK(bp->b_bufobj);
13632 			rw_wlock(lock);
13633 			return (NULL);
13634 		}
13635 		BUF_UNLOCK(bp);
13636 		if (waitfor != MNT_WAIT)
13637 			return (NULL);
13638 		/*
13639 		 * The lock argument must be bp->b_vp's mutex in
13640 		 * this case.
13641 		 */
13642 #ifdef	DEBUG_VFS_LOCKS
13643 		if (bp->b_vp->v_type != VCHR)
13644 			ASSERT_BO_WLOCKED(bp->b_bufobj);
13645 #endif
13646 		bp->b_vflags |= BV_BKGRDWAIT;
13647 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13648 		return (NULL);
13649 	}
13650 	if ((bp->b_flags & B_DELWRI) == 0) {
13651 		BUF_UNLOCK(bp);
13652 		return (NULL);
13653 	}
13654 	bremfree(bp);
13655 	return (bp);
13656 }
13657 
13658 
13659 /*
13660  * Check if it is safe to suspend the file system now.  On entry,
13661  * the vnode interlock for devvp should be held.  Return 0 with
13662  * the mount interlock held if the file system can be suspended now,
13663  * otherwise return EAGAIN with the mount interlock held.
13664  */
13665 int
13666 softdep_check_suspend(struct mount *mp,
13667 		      struct vnode *devvp,
13668 		      int softdep_depcnt,
13669 		      int softdep_accdepcnt,
13670 		      int secondary_writes,
13671 		      int secondary_accwrites)
13672 {
13673 	struct bufobj *bo;
13674 	struct ufsmount *ump;
13675 	int error;
13676 
13677 	bo = &devvp->v_bufobj;
13678 	ASSERT_BO_WLOCKED(bo);
13679 
13680 	/*
13681 	 * If we are not running with soft updates, then we need only
13682 	 * deal with secondary writes as we try to suspend.
13683 	 */
13684 	if (MOUNTEDSOFTDEP(mp) == 0) {
13685 		MNT_ILOCK(mp);
13686 		while (mp->mnt_secondary_writes != 0) {
13687 			BO_UNLOCK(bo);
13688 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13689 			    (PUSER - 1) | PDROP, "secwr", 0);
13690 			BO_LOCK(bo);
13691 			MNT_ILOCK(mp);
13692 		}
13693 
13694 		/*
13695 		 * Reasons for needing more work before suspend:
13696 		 * - Dirty buffers on devvp.
13697 		 * - Secondary writes occurred after start of vnode sync loop
13698 		 */
13699 		error = 0;
13700 		if (bo->bo_numoutput > 0 ||
13701 		    bo->bo_dirty.bv_cnt > 0 ||
13702 		    secondary_writes != 0 ||
13703 		    mp->mnt_secondary_writes != 0 ||
13704 		    secondary_accwrites != mp->mnt_secondary_accwrites)
13705 			error = EAGAIN;
13706 		BO_UNLOCK(bo);
13707 		return (error);
13708 	}
13709 
13710 	/*
13711 	 * If we are running with soft updates, then we need to coordinate
13712 	 * with them as we try to suspend.
13713 	 */
13714 	ump = VFSTOUFS(mp);
13715 	for (;;) {
13716 		if (!TRY_ACQUIRE_LOCK(ump)) {
13717 			BO_UNLOCK(bo);
13718 			ACQUIRE_LOCK(ump);
13719 			FREE_LOCK(ump);
13720 			BO_LOCK(bo);
13721 			continue;
13722 		}
13723 		MNT_ILOCK(mp);
13724 		if (mp->mnt_secondary_writes != 0) {
13725 			FREE_LOCK(ump);
13726 			BO_UNLOCK(bo);
13727 			msleep(&mp->mnt_secondary_writes,
13728 			       MNT_MTX(mp),
13729 			       (PUSER - 1) | PDROP, "secwr", 0);
13730 			BO_LOCK(bo);
13731 			continue;
13732 		}
13733 		break;
13734 	}
13735 
13736 	/*
13737 	 * Reasons for needing more work before suspend:
13738 	 * - Dirty buffers on devvp.
13739 	 * - Softdep activity occurred after start of vnode sync loop
13740 	 * - Secondary writes occurred after start of vnode sync loop
13741 	 */
13742 	error = 0;
13743 	if (bo->bo_numoutput > 0 ||
13744 	    bo->bo_dirty.bv_cnt > 0 ||
13745 	    softdep_depcnt != 0 ||
13746 	    ump->softdep_deps != 0 ||
13747 	    softdep_accdepcnt != ump->softdep_accdeps ||
13748 	    secondary_writes != 0 ||
13749 	    mp->mnt_secondary_writes != 0 ||
13750 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13751 		error = EAGAIN;
13752 	FREE_LOCK(ump);
13753 	BO_UNLOCK(bo);
13754 	return (error);
13755 }
13756 
13757 
13758 /*
13759  * Get the number of dependency structures for the file system, both
13760  * the current number and the total number allocated.  These will
13761  * later be used to detect that softdep processing has occurred.
13762  */
13763 void
13764 softdep_get_depcounts(struct mount *mp,
13765 		      int *softdep_depsp,
13766 		      int *softdep_accdepsp)
13767 {
13768 	struct ufsmount *ump;
13769 
13770 	if (MOUNTEDSOFTDEP(mp) == 0) {
13771 		*softdep_depsp = 0;
13772 		*softdep_accdepsp = 0;
13773 		return;
13774 	}
13775 	ump = VFSTOUFS(mp);
13776 	ACQUIRE_LOCK(ump);
13777 	*softdep_depsp = ump->softdep_deps;
13778 	*softdep_accdepsp = ump->softdep_accdeps;
13779 	FREE_LOCK(ump);
13780 }
13781 
13782 /*
13783  * Wait for pending output on a vnode to complete.
13784  * Must be called with vnode lock and interlock locked.
13785  *
13786  * XXX: Should just be a call to bufobj_wwait().
13787  */
13788 static void
13789 drain_output(vp)
13790 	struct vnode *vp;
13791 {
13792 	struct bufobj *bo;
13793 
13794 	bo = &vp->v_bufobj;
13795 	ASSERT_VOP_LOCKED(vp, "drain_output");
13796 	ASSERT_BO_WLOCKED(bo);
13797 
13798 	while (bo->bo_numoutput) {
13799 		bo->bo_flag |= BO_WWAIT;
13800 		msleep((caddr_t)&bo->bo_numoutput,
13801 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
13802 	}
13803 }
13804 
13805 /*
13806  * Called whenever a buffer that is being invalidated or reallocated
13807  * contains dependencies. This should only happen if an I/O error has
13808  * occurred. The routine is called with the buffer locked.
13809  */
13810 static void
13811 softdep_deallocate_dependencies(bp)
13812 	struct buf *bp;
13813 {
13814 
13815 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13816 		panic("softdep_deallocate_dependencies: dangling deps");
13817 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13818 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13819 	else
13820 		printf("softdep_deallocate_dependencies: "
13821 		    "got error %d while accessing filesystem\n", bp->b_error);
13822 	if (bp->b_error != ENXIO)
13823 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13824 }
13825 
13826 /*
13827  * Function to handle asynchronous write errors in the filesystem.
13828  */
13829 static void
13830 softdep_error(func, error)
13831 	char *func;
13832 	int error;
13833 {
13834 
13835 	/* XXX should do something better! */
13836 	printf("%s: got error %d while accessing filesystem\n", func, error);
13837 }
13838 
13839 #ifdef DDB
13840 
13841 static void
13842 inodedep_print(struct inodedep *inodedep, int verbose)
13843 {
13844 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13845 	    " saveino %p\n",
13846 	    inodedep, inodedep->id_fs, inodedep->id_state,
13847 	    (intmax_t)inodedep->id_ino,
13848 	    (intmax_t)fsbtodb(inodedep->id_fs,
13849 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13850 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13851 	    inodedep->id_savedino1);
13852 
13853 	if (verbose == 0)
13854 		return;
13855 
13856 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13857 	    "mkdiradd %p\n",
13858 	    LIST_FIRST(&inodedep->id_pendinghd),
13859 	    LIST_FIRST(&inodedep->id_bufwait),
13860 	    LIST_FIRST(&inodedep->id_inowait),
13861 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13862 	    inodedep->id_mkdiradd);
13863 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13864 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13865 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13866 	    TAILQ_FIRST(&inodedep->id_extupdt),
13867 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13868 }
13869 
13870 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13871 {
13872 
13873 	if (have_addr == 0) {
13874 		db_printf("Address required\n");
13875 		return;
13876 	}
13877 	inodedep_print((struct inodedep*)addr, 1);
13878 }
13879 
13880 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13881 {
13882 	struct inodedep_hashhead *inodedephd;
13883 	struct inodedep *inodedep;
13884 	struct ufsmount *ump;
13885 	int cnt;
13886 
13887 	if (have_addr == 0) {
13888 		db_printf("Address required\n");
13889 		return;
13890 	}
13891 	ump = (struct ufsmount *)addr;
13892 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
13893 		inodedephd = &ump->inodedep_hashtbl[cnt];
13894 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13895 			inodedep_print(inodedep, 0);
13896 		}
13897 	}
13898 }
13899 
13900 DB_SHOW_COMMAND(worklist, db_show_worklist)
13901 {
13902 	struct worklist *wk;
13903 
13904 	if (have_addr == 0) {
13905 		db_printf("Address required\n");
13906 		return;
13907 	}
13908 	wk = (struct worklist *)addr;
13909 	printf("worklist: %p type %s state 0x%X\n",
13910 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13911 }
13912 
13913 DB_SHOW_COMMAND(workhead, db_show_workhead)
13914 {
13915 	struct workhead *wkhd;
13916 	struct worklist *wk;
13917 	int i;
13918 
13919 	if (have_addr == 0) {
13920 		db_printf("Address required\n");
13921 		return;
13922 	}
13923 	wkhd = (struct workhead *)addr;
13924 	wk = LIST_FIRST(wkhd);
13925 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13926 		db_printf("worklist: %p type %s state 0x%X",
13927 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13928 	if (i == 100)
13929 		db_printf("workhead overflow");
13930 	printf("\n");
13931 }
13932 
13933 
13934 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13935 {
13936 	struct mkdirlist *mkdirlisthd;
13937 	struct jaddref *jaddref;
13938 	struct diradd *diradd;
13939 	struct mkdir *mkdir;
13940 
13941 	if (have_addr == 0) {
13942 		db_printf("Address required\n");
13943 		return;
13944 	}
13945 	mkdirlisthd = (struct mkdirlist *)addr;
13946 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
13947 		diradd = mkdir->md_diradd;
13948 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13949 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13950 		if ((jaddref = mkdir->md_jaddref) != NULL)
13951 			db_printf(" jaddref %p jaddref state 0x%X",
13952 			    jaddref, jaddref->ja_state);
13953 		db_printf("\n");
13954 	}
13955 }
13956 
13957 /* exported to ffs_vfsops.c */
13958 extern void db_print_ffs(struct ufsmount *ump);
13959 void
13960 db_print_ffs(struct ufsmount *ump)
13961 {
13962 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
13963 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
13964 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
13965 	    ump->softdep_deps, ump->softdep_req);
13966 }
13967 
13968 #endif /* DDB */
13969 
13970 #endif /* SOFTUPDATES */
13971