1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/rwlock.h> 73 #include <sys/stat.h> 74 #include <sys/sysctl.h> 75 #include <sys/syslog.h> 76 #include <sys/vnode.h> 77 #include <sys/conf.h> 78 79 #include <ufs/ufs/dir.h> 80 #include <ufs/ufs/extattr.h> 81 #include <ufs/ufs/quota.h> 82 #include <ufs/ufs/inode.h> 83 #include <ufs/ufs/ufsmount.h> 84 #include <ufs/ffs/fs.h> 85 #include <ufs/ffs/softdep.h> 86 #include <ufs/ffs/ffs_extern.h> 87 #include <ufs/ufs/ufs_extern.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_object.h> 92 93 #include <geom/geom.h> 94 95 #include <ddb/ddb.h> 96 97 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 98 99 #ifndef SOFTUPDATES 100 101 int 102 softdep_flushfiles(oldmnt, flags, td) 103 struct mount *oldmnt; 104 int flags; 105 struct thread *td; 106 { 107 108 panic("softdep_flushfiles called"); 109 } 110 111 int 112 softdep_mount(devvp, mp, fs, cred) 113 struct vnode *devvp; 114 struct mount *mp; 115 struct fs *fs; 116 struct ucred *cred; 117 { 118 119 return (0); 120 } 121 122 void 123 softdep_initialize() 124 { 125 126 return; 127 } 128 129 void 130 softdep_uninitialize() 131 { 132 133 return; 134 } 135 136 void 137 softdep_unmount(mp) 138 struct mount *mp; 139 { 140 141 panic("softdep_unmount called"); 142 } 143 144 void 145 softdep_setup_sbupdate(ump, fs, bp) 146 struct ufsmount *ump; 147 struct fs *fs; 148 struct buf *bp; 149 { 150 151 panic("softdep_setup_sbupdate called"); 152 } 153 154 void 155 softdep_setup_inomapdep(bp, ip, newinum, mode) 156 struct buf *bp; 157 struct inode *ip; 158 ino_t newinum; 159 int mode; 160 { 161 162 panic("softdep_setup_inomapdep called"); 163 } 164 165 void 166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 167 struct buf *bp; 168 struct mount *mp; 169 ufs2_daddr_t newblkno; 170 int frags; 171 int oldfrags; 172 { 173 174 panic("softdep_setup_blkmapdep called"); 175 } 176 177 void 178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 179 struct inode *ip; 180 ufs_lbn_t lbn; 181 ufs2_daddr_t newblkno; 182 ufs2_daddr_t oldblkno; 183 long newsize; 184 long oldsize; 185 struct buf *bp; 186 { 187 188 panic("softdep_setup_allocdirect called"); 189 } 190 191 void 192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 193 struct inode *ip; 194 ufs_lbn_t lbn; 195 ufs2_daddr_t newblkno; 196 ufs2_daddr_t oldblkno; 197 long newsize; 198 long oldsize; 199 struct buf *bp; 200 { 201 202 panic("softdep_setup_allocext called"); 203 } 204 205 void 206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 207 struct inode *ip; 208 ufs_lbn_t lbn; 209 struct buf *bp; 210 int ptrno; 211 ufs2_daddr_t newblkno; 212 ufs2_daddr_t oldblkno; 213 struct buf *nbp; 214 { 215 216 panic("softdep_setup_allocindir_page called"); 217 } 218 219 void 220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 221 struct buf *nbp; 222 struct inode *ip; 223 struct buf *bp; 224 int ptrno; 225 ufs2_daddr_t newblkno; 226 { 227 228 panic("softdep_setup_allocindir_meta called"); 229 } 230 231 void 232 softdep_journal_freeblocks(ip, cred, length, flags) 233 struct inode *ip; 234 struct ucred *cred; 235 off_t length; 236 int flags; 237 { 238 239 panic("softdep_journal_freeblocks called"); 240 } 241 242 void 243 softdep_journal_fsync(ip) 244 struct inode *ip; 245 { 246 247 panic("softdep_journal_fsync called"); 248 } 249 250 void 251 softdep_setup_freeblocks(ip, length, flags) 252 struct inode *ip; 253 off_t length; 254 int flags; 255 { 256 257 panic("softdep_setup_freeblocks called"); 258 } 259 260 void 261 softdep_freefile(pvp, ino, mode) 262 struct vnode *pvp; 263 ino_t ino; 264 int mode; 265 { 266 267 panic("softdep_freefile called"); 268 } 269 270 int 271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 272 struct buf *bp; 273 struct inode *dp; 274 off_t diroffset; 275 ino_t newinum; 276 struct buf *newdirbp; 277 int isnewblk; 278 { 279 280 panic("softdep_setup_directory_add called"); 281 } 282 283 void 284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 285 struct buf *bp; 286 struct inode *dp; 287 caddr_t base; 288 caddr_t oldloc; 289 caddr_t newloc; 290 int entrysize; 291 { 292 293 panic("softdep_change_directoryentry_offset called"); 294 } 295 296 void 297 softdep_setup_remove(bp, dp, ip, isrmdir) 298 struct buf *bp; 299 struct inode *dp; 300 struct inode *ip; 301 int isrmdir; 302 { 303 304 panic("softdep_setup_remove called"); 305 } 306 307 void 308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 309 struct buf *bp; 310 struct inode *dp; 311 struct inode *ip; 312 ino_t newinum; 313 int isrmdir; 314 { 315 316 panic("softdep_setup_directory_change called"); 317 } 318 319 void 320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 321 struct mount *mp; 322 struct buf *bp; 323 ufs2_daddr_t blkno; 324 int frags; 325 struct workhead *wkhd; 326 { 327 328 panic("%s called", __FUNCTION__); 329 } 330 331 void 332 softdep_setup_inofree(mp, bp, ino, wkhd) 333 struct mount *mp; 334 struct buf *bp; 335 ino_t ino; 336 struct workhead *wkhd; 337 { 338 339 panic("%s called", __FUNCTION__); 340 } 341 342 void 343 softdep_setup_unlink(dp, ip) 344 struct inode *dp; 345 struct inode *ip; 346 { 347 348 panic("%s called", __FUNCTION__); 349 } 350 351 void 352 softdep_setup_link(dp, ip) 353 struct inode *dp; 354 struct inode *ip; 355 { 356 357 panic("%s called", __FUNCTION__); 358 } 359 360 void 361 softdep_revert_link(dp, ip) 362 struct inode *dp; 363 struct inode *ip; 364 { 365 366 panic("%s called", __FUNCTION__); 367 } 368 369 void 370 softdep_setup_rmdir(dp, ip) 371 struct inode *dp; 372 struct inode *ip; 373 { 374 375 panic("%s called", __FUNCTION__); 376 } 377 378 void 379 softdep_revert_rmdir(dp, ip) 380 struct inode *dp; 381 struct inode *ip; 382 { 383 384 panic("%s called", __FUNCTION__); 385 } 386 387 void 388 softdep_setup_create(dp, ip) 389 struct inode *dp; 390 struct inode *ip; 391 { 392 393 panic("%s called", __FUNCTION__); 394 } 395 396 void 397 softdep_revert_create(dp, ip) 398 struct inode *dp; 399 struct inode *ip; 400 { 401 402 panic("%s called", __FUNCTION__); 403 } 404 405 void 406 softdep_setup_mkdir(dp, ip) 407 struct inode *dp; 408 struct inode *ip; 409 { 410 411 panic("%s called", __FUNCTION__); 412 } 413 414 void 415 softdep_revert_mkdir(dp, ip) 416 struct inode *dp; 417 struct inode *ip; 418 { 419 420 panic("%s called", __FUNCTION__); 421 } 422 423 void 424 softdep_setup_dotdot_link(dp, ip) 425 struct inode *dp; 426 struct inode *ip; 427 { 428 429 panic("%s called", __FUNCTION__); 430 } 431 432 int 433 softdep_prealloc(vp, waitok) 434 struct vnode *vp; 435 int waitok; 436 { 437 438 panic("%s called", __FUNCTION__); 439 } 440 441 int 442 softdep_journal_lookup(mp, vpp) 443 struct mount *mp; 444 struct vnode **vpp; 445 { 446 447 return (ENOENT); 448 } 449 450 void 451 softdep_change_linkcnt(ip) 452 struct inode *ip; 453 { 454 455 panic("softdep_change_linkcnt called"); 456 } 457 458 void 459 softdep_load_inodeblock(ip) 460 struct inode *ip; 461 { 462 463 panic("softdep_load_inodeblock called"); 464 } 465 466 void 467 softdep_update_inodeblock(ip, bp, waitfor) 468 struct inode *ip; 469 struct buf *bp; 470 int waitfor; 471 { 472 473 panic("softdep_update_inodeblock called"); 474 } 475 476 int 477 softdep_fsync(vp) 478 struct vnode *vp; /* the "in_core" copy of the inode */ 479 { 480 481 return (0); 482 } 483 484 void 485 softdep_fsync_mountdev(vp) 486 struct vnode *vp; 487 { 488 489 return; 490 } 491 492 int 493 softdep_flushworklist(oldmnt, countp, td) 494 struct mount *oldmnt; 495 int *countp; 496 struct thread *td; 497 { 498 499 *countp = 0; 500 return (0); 501 } 502 503 int 504 softdep_sync_metadata(struct vnode *vp) 505 { 506 507 panic("softdep_sync_metadata called"); 508 } 509 510 int 511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 512 { 513 514 panic("softdep_sync_buf called"); 515 } 516 517 int 518 softdep_slowdown(vp) 519 struct vnode *vp; 520 { 521 522 panic("softdep_slowdown called"); 523 } 524 525 int 526 softdep_request_cleanup(fs, vp, cred, resource) 527 struct fs *fs; 528 struct vnode *vp; 529 struct ucred *cred; 530 int resource; 531 { 532 533 return (0); 534 } 535 536 int 537 softdep_check_suspend(struct mount *mp, 538 struct vnode *devvp, 539 int softdep_depcnt, 540 int softdep_accdepcnt, 541 int secondary_writes, 542 int secondary_accwrites) 543 { 544 struct bufobj *bo; 545 int error; 546 547 (void) softdep_depcnt, 548 (void) softdep_accdepcnt; 549 550 bo = &devvp->v_bufobj; 551 ASSERT_BO_WLOCKED(bo); 552 553 MNT_ILOCK(mp); 554 while (mp->mnt_secondary_writes != 0) { 555 BO_UNLOCK(bo); 556 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 557 (PUSER - 1) | PDROP, "secwr", 0); 558 BO_LOCK(bo); 559 MNT_ILOCK(mp); 560 } 561 562 /* 563 * Reasons for needing more work before suspend: 564 * - Dirty buffers on devvp. 565 * - Secondary writes occurred after start of vnode sync loop 566 */ 567 error = 0; 568 if (bo->bo_numoutput > 0 || 569 bo->bo_dirty.bv_cnt > 0 || 570 secondary_writes != 0 || 571 mp->mnt_secondary_writes != 0 || 572 secondary_accwrites != mp->mnt_secondary_accwrites) 573 error = EAGAIN; 574 BO_UNLOCK(bo); 575 return (error); 576 } 577 578 void 579 softdep_get_depcounts(struct mount *mp, 580 int *softdepactivep, 581 int *softdepactiveaccp) 582 { 583 (void) mp; 584 *softdepactivep = 0; 585 *softdepactiveaccp = 0; 586 } 587 588 void 589 softdep_buf_append(bp, wkhd) 590 struct buf *bp; 591 struct workhead *wkhd; 592 { 593 594 panic("softdep_buf_appendwork called"); 595 } 596 597 void 598 softdep_inode_append(ip, cred, wkhd) 599 struct inode *ip; 600 struct ucred *cred; 601 struct workhead *wkhd; 602 { 603 604 panic("softdep_inode_appendwork called"); 605 } 606 607 void 608 softdep_freework(wkhd) 609 struct workhead *wkhd; 610 { 611 612 panic("softdep_freework called"); 613 } 614 615 #else 616 617 FEATURE(softupdates, "FFS soft-updates support"); 618 619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 620 "soft updates stats"); 621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 622 "total dependencies allocated"); 623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 624 "high use dependencies allocated"); 625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 626 "current dependencies allocated"); 627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 628 "current dependencies written"); 629 630 unsigned long dep_current[D_LAST + 1]; 631 unsigned long dep_highuse[D_LAST + 1]; 632 unsigned long dep_total[D_LAST + 1]; 633 unsigned long dep_write[D_LAST + 1]; 634 635 #define SOFTDEP_TYPE(type, str, long) \ 636 static MALLOC_DEFINE(M_ ## type, #str, long); \ 637 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 638 &dep_total[D_ ## type], 0, ""); \ 639 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 640 &dep_current[D_ ## type], 0, ""); \ 641 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 642 &dep_highuse[D_ ## type], 0, ""); \ 643 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 644 &dep_write[D_ ## type], 0, ""); 645 646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 649 "Block or frag allocated from cyl group map"); 650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 674 675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 676 677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 680 681 #define M_SOFTDEP_FLAGS (M_WAITOK) 682 683 /* 684 * translate from workitem type to memory type 685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 686 */ 687 static struct malloc_type *memtype[] = { 688 M_PAGEDEP, 689 M_INODEDEP, 690 M_BMSAFEMAP, 691 M_NEWBLK, 692 M_ALLOCDIRECT, 693 M_INDIRDEP, 694 M_ALLOCINDIR, 695 M_FREEFRAG, 696 M_FREEBLKS, 697 M_FREEFILE, 698 M_DIRADD, 699 M_MKDIR, 700 M_DIRREM, 701 M_NEWDIRBLK, 702 M_FREEWORK, 703 M_FREEDEP, 704 M_JADDREF, 705 M_JREMREF, 706 M_JMVREF, 707 M_JNEWBLK, 708 M_JFREEBLK, 709 M_JFREEFRAG, 710 M_JSEG, 711 M_JSEGDEP, 712 M_SBDEP, 713 M_JTRUNC, 714 M_JFSYNC, 715 M_SENTINEL 716 }; 717 718 #define DtoM(type) (memtype[type]) 719 720 /* 721 * Names of malloc types. 722 */ 723 #define TYPENAME(type) \ 724 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 725 /* 726 * End system adaptation definitions. 727 */ 728 729 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 730 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 731 732 /* 733 * Internal function prototypes. 734 */ 735 static void check_clear_deps(struct mount *); 736 static void softdep_error(char *, int); 737 static int softdep_process_worklist(struct mount *, int); 738 static int softdep_waitidle(struct mount *); 739 static void drain_output(struct vnode *); 740 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 741 static void clear_remove(struct mount *); 742 static void clear_inodedeps(struct mount *); 743 static void unlinked_inodedep(struct mount *, struct inodedep *); 744 static void clear_unlinked_inodedep(struct inodedep *); 745 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 746 static int flush_pagedep_deps(struct vnode *, struct mount *, 747 struct diraddhd *); 748 static int free_pagedep(struct pagedep *); 749 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 750 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 751 static int flush_deplist(struct allocdirectlst *, int, int *); 752 static int sync_cgs(struct mount *, int); 753 static int handle_written_filepage(struct pagedep *, struct buf *); 754 static int handle_written_sbdep(struct sbdep *, struct buf *); 755 static void initiate_write_sbdep(struct sbdep *); 756 static void diradd_inode_written(struct diradd *, struct inodedep *); 757 static int handle_written_indirdep(struct indirdep *, struct buf *, 758 struct buf**); 759 static int handle_written_inodeblock(struct inodedep *, struct buf *); 760 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 761 uint8_t *); 762 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *); 763 static void handle_written_jaddref(struct jaddref *); 764 static void handle_written_jremref(struct jremref *); 765 static void handle_written_jseg(struct jseg *, struct buf *); 766 static void handle_written_jnewblk(struct jnewblk *); 767 static void handle_written_jblkdep(struct jblkdep *); 768 static void handle_written_jfreefrag(struct jfreefrag *); 769 static void complete_jseg(struct jseg *); 770 static void complete_jsegs(struct jseg *); 771 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 772 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 773 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 774 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 775 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 776 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 777 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 778 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 779 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 780 static inline void inoref_write(struct inoref *, struct jseg *, 781 struct jrefrec *); 782 static void handle_allocdirect_partdone(struct allocdirect *, 783 struct workhead *); 784 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 785 struct workhead *); 786 static void indirdep_complete(struct indirdep *); 787 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 788 static void indirblk_insert(struct freework *); 789 static void indirblk_remove(struct freework *); 790 static void handle_allocindir_partdone(struct allocindir *); 791 static void initiate_write_filepage(struct pagedep *, struct buf *); 792 static void initiate_write_indirdep(struct indirdep*, struct buf *); 793 static void handle_written_mkdir(struct mkdir *, int); 794 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 795 uint8_t *); 796 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 797 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 798 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 799 static void handle_workitem_freefile(struct freefile *); 800 static int handle_workitem_remove(struct dirrem *, int); 801 static struct dirrem *newdirrem(struct buf *, struct inode *, 802 struct inode *, int, struct dirrem **); 803 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 804 struct buf *); 805 static void cancel_indirdep(struct indirdep *, struct buf *, 806 struct freeblks *); 807 static void free_indirdep(struct indirdep *); 808 static void free_diradd(struct diradd *, struct workhead *); 809 static void merge_diradd(struct inodedep *, struct diradd *); 810 static void complete_diradd(struct diradd *); 811 static struct diradd *diradd_lookup(struct pagedep *, int); 812 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 813 struct jremref *); 814 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 815 struct jremref *); 816 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 817 struct jremref *, struct jremref *); 818 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 819 struct jremref *); 820 static void cancel_allocindir(struct allocindir *, struct buf *bp, 821 struct freeblks *, int); 822 static int setup_trunc_indir(struct freeblks *, struct inode *, 823 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 824 static void complete_trunc_indir(struct freework *); 825 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 826 int); 827 static void complete_mkdir(struct mkdir *); 828 static void free_newdirblk(struct newdirblk *); 829 static void free_jremref(struct jremref *); 830 static void free_jaddref(struct jaddref *); 831 static void free_jsegdep(struct jsegdep *); 832 static void free_jsegs(struct jblocks *); 833 static void rele_jseg(struct jseg *); 834 static void free_jseg(struct jseg *, struct jblocks *); 835 static void free_jnewblk(struct jnewblk *); 836 static void free_jblkdep(struct jblkdep *); 837 static void free_jfreefrag(struct jfreefrag *); 838 static void free_freedep(struct freedep *); 839 static void journal_jremref(struct dirrem *, struct jremref *, 840 struct inodedep *); 841 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 842 static int cancel_jaddref(struct jaddref *, struct inodedep *, 843 struct workhead *); 844 static void cancel_jfreefrag(struct jfreefrag *); 845 static inline void setup_freedirect(struct freeblks *, struct inode *, 846 int, int); 847 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 848 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 849 ufs_lbn_t, int); 850 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 851 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 852 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 853 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 854 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 855 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 856 int, int); 857 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 858 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 859 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 860 static void newblk_freefrag(struct newblk*); 861 static void free_newblk(struct newblk *); 862 static void cancel_allocdirect(struct allocdirectlst *, 863 struct allocdirect *, struct freeblks *); 864 static int check_inode_unwritten(struct inodedep *); 865 static int free_inodedep(struct inodedep *); 866 static void freework_freeblock(struct freework *); 867 static void freework_enqueue(struct freework *); 868 static int handle_workitem_freeblocks(struct freeblks *, int); 869 static int handle_complete_freeblocks(struct freeblks *, int); 870 static void handle_workitem_indirblk(struct freework *); 871 static void handle_written_freework(struct freework *); 872 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 873 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 874 struct workhead *); 875 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 876 struct inodedep *, struct allocindir *, ufs_lbn_t); 877 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 878 ufs2_daddr_t, ufs_lbn_t); 879 static void handle_workitem_freefrag(struct freefrag *); 880 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 881 ufs_lbn_t); 882 static void allocdirect_merge(struct allocdirectlst *, 883 struct allocdirect *, struct allocdirect *); 884 static struct freefrag *allocindir_merge(struct allocindir *, 885 struct allocindir *); 886 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 887 struct bmsafemap **); 888 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 889 int cg, struct bmsafemap *); 890 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 891 struct newblk **); 892 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 893 static int inodedep_find(struct inodedep_hashhead *, ino_t, 894 struct inodedep **); 895 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 896 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 897 int, struct pagedep **); 898 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 899 struct pagedep **); 900 static void pause_timer(void *); 901 static int request_cleanup(struct mount *, int); 902 static int process_worklist_item(struct mount *, int, int); 903 static void process_removes(struct vnode *); 904 static void process_truncates(struct vnode *); 905 static void jwork_move(struct workhead *, struct workhead *); 906 static void jwork_insert(struct workhead *, struct jsegdep *); 907 static void add_to_worklist(struct worklist *, int); 908 static void wake_worklist(struct worklist *); 909 static void wait_worklist(struct worklist *, char *); 910 static void remove_from_worklist(struct worklist *); 911 static void softdep_flush(void); 912 static void softdep_flushjournal(struct mount *); 913 static int softdep_speedup(void); 914 static void worklist_speedup(struct mount *); 915 static int journal_mount(struct mount *, struct fs *, struct ucred *); 916 static void journal_unmount(struct ufsmount *); 917 static int journal_space(struct ufsmount *, int); 918 static void journal_suspend(struct ufsmount *); 919 static int journal_unsuspend(struct ufsmount *ump); 920 static void softdep_prelink(struct vnode *, struct vnode *); 921 static void add_to_journal(struct worklist *); 922 static void remove_from_journal(struct worklist *); 923 static void softdep_process_journal(struct mount *, struct worklist *, int); 924 static struct jremref *newjremref(struct dirrem *, struct inode *, 925 struct inode *ip, off_t, nlink_t); 926 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 927 uint16_t); 928 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 929 uint16_t); 930 static inline struct jsegdep *inoref_jseg(struct inoref *); 931 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 932 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 933 ufs2_daddr_t, int); 934 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 935 static void move_newblock_dep(struct jaddref *, struct inodedep *); 936 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 937 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 938 ufs2_daddr_t, long, ufs_lbn_t); 939 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 940 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 941 static int jwait(struct worklist *, int); 942 static struct inodedep *inodedep_lookup_ip(struct inode *); 943 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 944 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 945 static void handle_jwork(struct workhead *); 946 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 947 struct mkdir **); 948 static struct jblocks *jblocks_create(void); 949 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 950 static void jblocks_free(struct jblocks *, struct mount *, int); 951 static void jblocks_destroy(struct jblocks *); 952 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 953 954 /* 955 * Exported softdep operations. 956 */ 957 static void softdep_disk_io_initiation(struct buf *); 958 static void softdep_disk_write_complete(struct buf *); 959 static void softdep_deallocate_dependencies(struct buf *); 960 static int softdep_count_dependencies(struct buf *bp, int); 961 962 /* 963 * Global lock over all of soft updates. 964 */ 965 static struct rwlock lk; 966 RW_SYSINIT(softdep_lock, &lk, "Softdep Lock"); 967 968 /* 969 * Allow per-filesystem soft-updates locking. 970 * For now all use the same global lock defined above. 971 */ 972 #define LOCK_PTR(ump) ((ump)->um_softdep->sd_fslock) 973 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock((ump)->um_softdep->sd_fslock) 974 #define ACQUIRE_LOCK(ump) rw_wlock((ump)->um_softdep->sd_fslock) 975 #define FREE_LOCK(ump) rw_wunlock((ump)->um_softdep->sd_fslock) 976 #define LOCK_OWNED(ump) rw_assert((ump)->um_softdep->sd_fslock, \ 977 RA_WLOCKED) 978 979 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 980 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 981 982 /* 983 * Worklist queue management. 984 * These routines require that the lock be held. 985 */ 986 #ifndef /* NOT */ DEBUG 987 #define WORKLIST_INSERT(head, item) do { \ 988 (item)->wk_state |= ONWORKLIST; \ 989 LIST_INSERT_HEAD(head, item, wk_list); \ 990 } while (0) 991 #define WORKLIST_REMOVE(item) do { \ 992 (item)->wk_state &= ~ONWORKLIST; \ 993 LIST_REMOVE(item, wk_list); \ 994 } while (0) 995 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 996 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 997 998 #else /* DEBUG */ 999 static void worklist_insert(struct workhead *, struct worklist *, int); 1000 static void worklist_remove(struct worklist *, int); 1001 1002 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1003 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1004 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1005 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1006 1007 static void 1008 worklist_insert(head, item, locked) 1009 struct workhead *head; 1010 struct worklist *item; 1011 int locked; 1012 { 1013 1014 if (locked) 1015 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1016 if (item->wk_state & ONWORKLIST) 1017 panic("worklist_insert: %p %s(0x%X) already on list", 1018 item, TYPENAME(item->wk_type), item->wk_state); 1019 item->wk_state |= ONWORKLIST; 1020 LIST_INSERT_HEAD(head, item, wk_list); 1021 } 1022 1023 static void 1024 worklist_remove(item, locked) 1025 struct worklist *item; 1026 int locked; 1027 { 1028 1029 if (locked) 1030 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1031 if ((item->wk_state & ONWORKLIST) == 0) 1032 panic("worklist_remove: %p %s(0x%X) not on list", 1033 item, TYPENAME(item->wk_type), item->wk_state); 1034 item->wk_state &= ~ONWORKLIST; 1035 LIST_REMOVE(item, wk_list); 1036 } 1037 #endif /* DEBUG */ 1038 1039 /* 1040 * Merge two jsegdeps keeping only the oldest one as newer references 1041 * can't be discarded until after older references. 1042 */ 1043 static inline struct jsegdep * 1044 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1045 { 1046 struct jsegdep *swp; 1047 1048 if (two == NULL) 1049 return (one); 1050 1051 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1052 swp = one; 1053 one = two; 1054 two = swp; 1055 } 1056 WORKLIST_REMOVE(&two->jd_list); 1057 free_jsegdep(two); 1058 1059 return (one); 1060 } 1061 1062 /* 1063 * If two freedeps are compatible free one to reduce list size. 1064 */ 1065 static inline struct freedep * 1066 freedep_merge(struct freedep *one, struct freedep *two) 1067 { 1068 if (two == NULL) 1069 return (one); 1070 1071 if (one->fd_freework == two->fd_freework) { 1072 WORKLIST_REMOVE(&two->fd_list); 1073 free_freedep(two); 1074 } 1075 return (one); 1076 } 1077 1078 /* 1079 * Move journal work from one list to another. Duplicate freedeps and 1080 * jsegdeps are coalesced to keep the lists as small as possible. 1081 */ 1082 static void 1083 jwork_move(dst, src) 1084 struct workhead *dst; 1085 struct workhead *src; 1086 { 1087 struct freedep *freedep; 1088 struct jsegdep *jsegdep; 1089 struct worklist *wkn; 1090 struct worklist *wk; 1091 1092 KASSERT(dst != src, 1093 ("jwork_move: dst == src")); 1094 freedep = NULL; 1095 jsegdep = NULL; 1096 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1097 if (wk->wk_type == D_JSEGDEP) 1098 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1099 else if (wk->wk_type == D_FREEDEP) 1100 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1101 } 1102 1103 while ((wk = LIST_FIRST(src)) != NULL) { 1104 WORKLIST_REMOVE(wk); 1105 WORKLIST_INSERT(dst, wk); 1106 if (wk->wk_type == D_JSEGDEP) { 1107 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1108 continue; 1109 } 1110 if (wk->wk_type == D_FREEDEP) 1111 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1112 } 1113 } 1114 1115 static void 1116 jwork_insert(dst, jsegdep) 1117 struct workhead *dst; 1118 struct jsegdep *jsegdep; 1119 { 1120 struct jsegdep *jsegdepn; 1121 struct worklist *wk; 1122 1123 LIST_FOREACH(wk, dst, wk_list) 1124 if (wk->wk_type == D_JSEGDEP) 1125 break; 1126 if (wk == NULL) { 1127 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1128 return; 1129 } 1130 jsegdepn = WK_JSEGDEP(wk); 1131 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1132 WORKLIST_REMOVE(wk); 1133 free_jsegdep(jsegdepn); 1134 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1135 } else 1136 free_jsegdep(jsegdep); 1137 } 1138 1139 /* 1140 * Routines for tracking and managing workitems. 1141 */ 1142 static void workitem_free(struct worklist *, int); 1143 static void workitem_alloc(struct worklist *, int, struct mount *); 1144 static void workitem_reassign(struct worklist *, int); 1145 1146 #define WORKITEM_FREE(item, type) \ 1147 workitem_free((struct worklist *)(item), (type)) 1148 #define WORKITEM_REASSIGN(item, type) \ 1149 workitem_reassign((struct worklist *)(item), (type)) 1150 1151 static void 1152 workitem_free(item, type) 1153 struct worklist *item; 1154 int type; 1155 { 1156 struct ufsmount *ump; 1157 1158 #ifdef DEBUG 1159 if (item->wk_state & ONWORKLIST) 1160 panic("workitem_free: %s(0x%X) still on list", 1161 TYPENAME(item->wk_type), item->wk_state); 1162 if (item->wk_type != type && type != D_NEWBLK) 1163 panic("workitem_free: type mismatch %s != %s", 1164 TYPENAME(item->wk_type), TYPENAME(type)); 1165 #endif 1166 if (item->wk_state & IOWAITING) 1167 wakeup(item); 1168 ump = VFSTOUFS(item->wk_mp); 1169 LOCK_OWNED(ump); 1170 KASSERT(ump->softdep_deps > 0, 1171 ("workitem_free: %s: softdep_deps going negative", 1172 ump->um_fs->fs_fsmnt)); 1173 if (--ump->softdep_deps == 0 && ump->softdep_req) 1174 wakeup(&ump->softdep_deps); 1175 KASSERT(dep_current[item->wk_type] > 0, 1176 ("workitem_free: %s: dep_current[%s] going negative", 1177 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1178 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1179 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1180 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1181 dep_current[item->wk_type]--; 1182 ump->softdep_curdeps[item->wk_type] -= 1; 1183 free(item, DtoM(type)); 1184 } 1185 1186 static void 1187 workitem_alloc(item, type, mp) 1188 struct worklist *item; 1189 int type; 1190 struct mount *mp; 1191 { 1192 struct ufsmount *ump; 1193 1194 item->wk_type = type; 1195 item->wk_mp = mp; 1196 item->wk_state = 0; 1197 1198 ump = VFSTOUFS(mp); 1199 ACQUIRE_LOCK(ump); 1200 dep_current[type]++; 1201 if (dep_current[type] > dep_highuse[type]) 1202 dep_highuse[type] = dep_current[type]; 1203 dep_total[type]++; 1204 ump->softdep_curdeps[type] += 1; 1205 ump->softdep_deps++; 1206 ump->softdep_accdeps++; 1207 FREE_LOCK(ump); 1208 } 1209 1210 static void 1211 workitem_reassign(item, newtype) 1212 struct worklist *item; 1213 int newtype; 1214 { 1215 struct ufsmount *ump; 1216 1217 ump = VFSTOUFS(item->wk_mp); 1218 LOCK_OWNED(ump); 1219 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1220 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1221 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1222 ump->softdep_curdeps[item->wk_type] -= 1; 1223 ump->softdep_curdeps[newtype] += 1; 1224 KASSERT(dep_current[item->wk_type] > 0, 1225 ("workitem_reassign: %s: dep_current[%s] going negative", 1226 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1227 dep_current[item->wk_type]--; 1228 dep_current[newtype]++; 1229 if (dep_current[newtype] > dep_highuse[newtype]) 1230 dep_highuse[newtype] = dep_current[newtype]; 1231 dep_total[newtype]++; 1232 item->wk_type = newtype; 1233 } 1234 1235 /* 1236 * Workitem queue management 1237 */ 1238 static int max_softdeps; /* maximum number of structs before slowdown */ 1239 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 1240 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1241 static int proc_waiting; /* tracks whether we have a timeout posted */ 1242 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1243 static struct callout softdep_callout; 1244 static struct mount *req_pending; 1245 #define ALLCLEAN ((struct mount *)-1) 1246 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1247 static int req_clear_remove; /* syncer process flush some freeblks */ 1248 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1249 1250 /* 1251 * runtime statistics 1252 */ 1253 static int stat_softdep_mounts; /* number of softdep mounted filesystems */ 1254 static int stat_worklist_push; /* number of worklist cleanups */ 1255 static int stat_blk_limit_push; /* number of times block limit neared */ 1256 static int stat_ino_limit_push; /* number of times inode limit neared */ 1257 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1258 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1259 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1260 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1261 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1262 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1263 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1264 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1265 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1266 static int stat_journal_min; /* Times hit journal min threshold */ 1267 static int stat_journal_low; /* Times hit journal low threshold */ 1268 static int stat_journal_wait; /* Times blocked in jwait(). */ 1269 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1270 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1271 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1272 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1273 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1274 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1275 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1276 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1277 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1278 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1279 1280 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1281 &max_softdeps, 0, ""); 1282 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1283 &tickdelay, 0, ""); 1284 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW, 1285 &maxindirdeps, 0, ""); 1286 SYSCTL_INT(_debug_softdep, OID_AUTO, softdep_mounts, CTLFLAG_RD, 1287 &stat_softdep_mounts, 0, ""); 1288 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1289 &stat_worklist_push, 0,""); 1290 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1291 &stat_blk_limit_push, 0,""); 1292 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1293 &stat_ino_limit_push, 0,""); 1294 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1295 &stat_blk_limit_hit, 0, ""); 1296 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1297 &stat_ino_limit_hit, 0, ""); 1298 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1299 &stat_sync_limit_hit, 0, ""); 1300 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1301 &stat_indir_blk_ptrs, 0, ""); 1302 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1303 &stat_inode_bitmap, 0, ""); 1304 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1305 &stat_direct_blk_ptrs, 0, ""); 1306 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1307 &stat_dir_entry, 0, ""); 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1309 &stat_jaddref, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1311 &stat_jnewblk, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1313 &stat_journal_low, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1315 &stat_journal_min, 0, ""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1317 &stat_journal_wait, 0, ""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1319 &stat_jwait_filepage, 0, ""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1321 &stat_jwait_freeblks, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1323 &stat_jwait_inode, 0, ""); 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1325 &stat_jwait_newblk, 0, ""); 1326 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1327 &stat_cleanup_blkrequests, 0, ""); 1328 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1329 &stat_cleanup_inorequests, 0, ""); 1330 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1331 &stat_cleanup_high_delay, 0, ""); 1332 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1333 &stat_cleanup_retries, 0, ""); 1334 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1335 &stat_cleanup_failures, 0, ""); 1336 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1337 &softdep_flushcache, 0, ""); 1338 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1339 &stat_emptyjblocks, 0, ""); 1340 1341 SYSCTL_DECL(_vfs_ffs); 1342 1343 /* Whether to recompute the summary at mount time */ 1344 static int compute_summary_at_mount = 0; 1345 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1346 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1347 static struct proc *softdepproc; 1348 static struct kproc_desc softdep_kp = { 1349 "softdepflush", 1350 softdep_flush, 1351 &softdepproc 1352 }; 1353 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, 1354 &softdep_kp); 1355 1356 static void 1357 softdep_flush(void) 1358 { 1359 struct mount *nmp; 1360 struct mount *mp; 1361 struct ufsmount *ump; 1362 struct thread *td; 1363 int remaining; 1364 int progress; 1365 1366 td = curthread; 1367 td->td_pflags |= TDP_NORUNNINGBUF; 1368 1369 for (;;) { 1370 kproc_suspend_check(softdepproc); 1371 remaining = progress = 0; 1372 mtx_lock(&mountlist_mtx); 1373 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1374 nmp = TAILQ_NEXT(mp, mnt_list); 1375 if (MOUNTEDSOFTDEP(mp) == 0) 1376 continue; 1377 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 1378 continue; 1379 ump = VFSTOUFS(mp); 1380 progress += softdep_process_worklist(mp, 0); 1381 remaining += ump->softdep_on_worklist; 1382 mtx_lock(&mountlist_mtx); 1383 nmp = TAILQ_NEXT(mp, mnt_list); 1384 vfs_unbusy(mp); 1385 } 1386 mtx_unlock(&mountlist_mtx); 1387 if (remaining && progress) 1388 continue; 1389 rw_wlock(&lk); 1390 if (req_pending == NULL) 1391 msleep(&req_pending, &lk, PVM, "sdflush", hz); 1392 req_pending = NULL; 1393 rw_wunlock(&lk); 1394 } 1395 } 1396 1397 static void 1398 worklist_speedup(mp) 1399 struct mount *mp; 1400 { 1401 rw_assert(&lk, RA_WLOCKED); 1402 if (req_pending == 0) { 1403 req_pending = mp; 1404 wakeup(&req_pending); 1405 } 1406 } 1407 1408 static int 1409 softdep_speedup(void) 1410 { 1411 1412 worklist_speedup(ALLCLEAN); 1413 bd_speedup(); 1414 return (speedup_syncer()); 1415 } 1416 1417 /* 1418 * Add an item to the end of the work queue. 1419 * This routine requires that the lock be held. 1420 * This is the only routine that adds items to the list. 1421 * The following routine is the only one that removes items 1422 * and does so in order from first to last. 1423 */ 1424 1425 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1426 #define WK_NODELAY 0x0002 /* Process immediately. */ 1427 1428 static void 1429 add_to_worklist(wk, flags) 1430 struct worklist *wk; 1431 int flags; 1432 { 1433 struct ufsmount *ump; 1434 1435 ump = VFSTOUFS(wk->wk_mp); 1436 LOCK_OWNED(ump); 1437 if (wk->wk_state & ONWORKLIST) 1438 panic("add_to_worklist: %s(0x%X) already on list", 1439 TYPENAME(wk->wk_type), wk->wk_state); 1440 wk->wk_state |= ONWORKLIST; 1441 if (ump->softdep_on_worklist == 0) { 1442 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1443 ump->softdep_worklist_tail = wk; 1444 } else if (flags & WK_HEAD) { 1445 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1446 } else { 1447 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1448 ump->softdep_worklist_tail = wk; 1449 } 1450 ump->softdep_on_worklist += 1; 1451 if (flags & WK_NODELAY) 1452 worklist_speedup(wk->wk_mp); 1453 } 1454 1455 /* 1456 * Remove the item to be processed. If we are removing the last 1457 * item on the list, we need to recalculate the tail pointer. 1458 */ 1459 static void 1460 remove_from_worklist(wk) 1461 struct worklist *wk; 1462 { 1463 struct ufsmount *ump; 1464 1465 ump = VFSTOUFS(wk->wk_mp); 1466 WORKLIST_REMOVE(wk); 1467 if (ump->softdep_worklist_tail == wk) 1468 ump->softdep_worklist_tail = 1469 (struct worklist *)wk->wk_list.le_prev; 1470 ump->softdep_on_worklist -= 1; 1471 } 1472 1473 static void 1474 wake_worklist(wk) 1475 struct worklist *wk; 1476 { 1477 if (wk->wk_state & IOWAITING) { 1478 wk->wk_state &= ~IOWAITING; 1479 wakeup(wk); 1480 } 1481 } 1482 1483 static void 1484 wait_worklist(wk, wmesg) 1485 struct worklist *wk; 1486 char *wmesg; 1487 { 1488 struct ufsmount *ump; 1489 1490 ump = VFSTOUFS(wk->wk_mp); 1491 wk->wk_state |= IOWAITING; 1492 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1493 } 1494 1495 /* 1496 * Process that runs once per second to handle items in the background queue. 1497 * 1498 * Note that we ensure that everything is done in the order in which they 1499 * appear in the queue. The code below depends on this property to ensure 1500 * that blocks of a file are freed before the inode itself is freed. This 1501 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1502 * until all the old ones have been purged from the dependency lists. 1503 */ 1504 static int 1505 softdep_process_worklist(mp, full) 1506 struct mount *mp; 1507 int full; 1508 { 1509 int cnt, matchcnt; 1510 struct ufsmount *ump; 1511 long starttime; 1512 1513 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1514 if (MOUNTEDSOFTDEP(mp) == 0) 1515 return (0); 1516 matchcnt = 0; 1517 ump = VFSTOUFS(mp); 1518 ACQUIRE_LOCK(ump); 1519 starttime = time_second; 1520 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1521 check_clear_deps(mp); 1522 while (ump->softdep_on_worklist > 0) { 1523 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1524 break; 1525 else 1526 matchcnt += cnt; 1527 check_clear_deps(mp); 1528 /* 1529 * We do not generally want to stop for buffer space, but if 1530 * we are really being a buffer hog, we will stop and wait. 1531 */ 1532 if (should_yield()) { 1533 FREE_LOCK(ump); 1534 kern_yield(PRI_USER); 1535 bwillwrite(); 1536 ACQUIRE_LOCK(ump); 1537 } 1538 /* 1539 * Never allow processing to run for more than one 1540 * second. This gives the syncer thread the opportunity 1541 * to pause if appropriate. 1542 */ 1543 if (!full && starttime != time_second) 1544 break; 1545 } 1546 if (full == 0) 1547 journal_unsuspend(ump); 1548 FREE_LOCK(ump); 1549 return (matchcnt); 1550 } 1551 1552 /* 1553 * Process all removes associated with a vnode if we are running out of 1554 * journal space. Any other process which attempts to flush these will 1555 * be unable as we have the vnodes locked. 1556 */ 1557 static void 1558 process_removes(vp) 1559 struct vnode *vp; 1560 { 1561 struct inodedep *inodedep; 1562 struct dirrem *dirrem; 1563 struct ufsmount *ump; 1564 struct mount *mp; 1565 ino_t inum; 1566 1567 mp = vp->v_mount; 1568 ump = VFSTOUFS(mp); 1569 LOCK_OWNED(ump); 1570 inum = VTOI(vp)->i_number; 1571 for (;;) { 1572 top: 1573 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1574 return; 1575 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1576 /* 1577 * If another thread is trying to lock this vnode 1578 * it will fail but we must wait for it to do so 1579 * before we can proceed. 1580 */ 1581 if (dirrem->dm_state & INPROGRESS) { 1582 wait_worklist(&dirrem->dm_list, "pwrwait"); 1583 goto top; 1584 } 1585 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1586 (COMPLETE | ONWORKLIST)) 1587 break; 1588 } 1589 if (dirrem == NULL) 1590 return; 1591 remove_from_worklist(&dirrem->dm_list); 1592 FREE_LOCK(ump); 1593 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1594 panic("process_removes: suspended filesystem"); 1595 handle_workitem_remove(dirrem, 0); 1596 vn_finished_secondary_write(mp); 1597 ACQUIRE_LOCK(ump); 1598 } 1599 } 1600 1601 /* 1602 * Process all truncations associated with a vnode if we are running out 1603 * of journal space. This is called when the vnode lock is already held 1604 * and no other process can clear the truncation. This function returns 1605 * a value greater than zero if it did any work. 1606 */ 1607 static void 1608 process_truncates(vp) 1609 struct vnode *vp; 1610 { 1611 struct inodedep *inodedep; 1612 struct freeblks *freeblks; 1613 struct ufsmount *ump; 1614 struct mount *mp; 1615 ino_t inum; 1616 int cgwait; 1617 1618 mp = vp->v_mount; 1619 ump = VFSTOUFS(mp); 1620 LOCK_OWNED(ump); 1621 inum = VTOI(vp)->i_number; 1622 for (;;) { 1623 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1624 return; 1625 cgwait = 0; 1626 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1627 /* Journal entries not yet written. */ 1628 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1629 jwait(&LIST_FIRST( 1630 &freeblks->fb_jblkdephd)->jb_list, 1631 MNT_WAIT); 1632 break; 1633 } 1634 /* Another thread is executing this item. */ 1635 if (freeblks->fb_state & INPROGRESS) { 1636 wait_worklist(&freeblks->fb_list, "ptrwait"); 1637 break; 1638 } 1639 /* Freeblks is waiting on a inode write. */ 1640 if ((freeblks->fb_state & COMPLETE) == 0) { 1641 FREE_LOCK(ump); 1642 ffs_update(vp, 1); 1643 ACQUIRE_LOCK(ump); 1644 break; 1645 } 1646 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1647 (ALLCOMPLETE | ONWORKLIST)) { 1648 remove_from_worklist(&freeblks->fb_list); 1649 freeblks->fb_state |= INPROGRESS; 1650 FREE_LOCK(ump); 1651 if (vn_start_secondary_write(NULL, &mp, 1652 V_NOWAIT)) 1653 panic("process_truncates: " 1654 "suspended filesystem"); 1655 handle_workitem_freeblocks(freeblks, 0); 1656 vn_finished_secondary_write(mp); 1657 ACQUIRE_LOCK(ump); 1658 break; 1659 } 1660 if (freeblks->fb_cgwait) 1661 cgwait++; 1662 } 1663 if (cgwait) { 1664 FREE_LOCK(ump); 1665 sync_cgs(mp, MNT_WAIT); 1666 ffs_sync_snap(mp, MNT_WAIT); 1667 ACQUIRE_LOCK(ump); 1668 continue; 1669 } 1670 if (freeblks == NULL) 1671 break; 1672 } 1673 return; 1674 } 1675 1676 /* 1677 * Process one item on the worklist. 1678 */ 1679 static int 1680 process_worklist_item(mp, target, flags) 1681 struct mount *mp; 1682 int target; 1683 int flags; 1684 { 1685 struct worklist sentinel; 1686 struct worklist *wk; 1687 struct ufsmount *ump; 1688 int matchcnt; 1689 int error; 1690 1691 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1692 /* 1693 * If we are being called because of a process doing a 1694 * copy-on-write, then it is not safe to write as we may 1695 * recurse into the copy-on-write routine. 1696 */ 1697 if (curthread->td_pflags & TDP_COWINPROGRESS) 1698 return (-1); 1699 PHOLD(curproc); /* Don't let the stack go away. */ 1700 ump = VFSTOUFS(mp); 1701 LOCK_OWNED(ump); 1702 matchcnt = 0; 1703 sentinel.wk_mp = NULL; 1704 sentinel.wk_type = D_SENTINEL; 1705 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1706 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1707 wk = LIST_NEXT(&sentinel, wk_list)) { 1708 if (wk->wk_type == D_SENTINEL) { 1709 LIST_REMOVE(&sentinel, wk_list); 1710 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1711 continue; 1712 } 1713 if (wk->wk_state & INPROGRESS) 1714 panic("process_worklist_item: %p already in progress.", 1715 wk); 1716 wk->wk_state |= INPROGRESS; 1717 remove_from_worklist(wk); 1718 FREE_LOCK(ump); 1719 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1720 panic("process_worklist_item: suspended filesystem"); 1721 switch (wk->wk_type) { 1722 case D_DIRREM: 1723 /* removal of a directory entry */ 1724 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1725 break; 1726 1727 case D_FREEBLKS: 1728 /* releasing blocks and/or fragments from a file */ 1729 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1730 flags); 1731 break; 1732 1733 case D_FREEFRAG: 1734 /* releasing a fragment when replaced as a file grows */ 1735 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1736 error = 0; 1737 break; 1738 1739 case D_FREEFILE: 1740 /* releasing an inode when its link count drops to 0 */ 1741 handle_workitem_freefile(WK_FREEFILE(wk)); 1742 error = 0; 1743 break; 1744 1745 default: 1746 panic("%s_process_worklist: Unknown type %s", 1747 "softdep", TYPENAME(wk->wk_type)); 1748 /* NOTREACHED */ 1749 } 1750 vn_finished_secondary_write(mp); 1751 ACQUIRE_LOCK(ump); 1752 if (error == 0) { 1753 if (++matchcnt == target) 1754 break; 1755 continue; 1756 } 1757 /* 1758 * We have to retry the worklist item later. Wake up any 1759 * waiters who may be able to complete it immediately and 1760 * add the item back to the head so we don't try to execute 1761 * it again. 1762 */ 1763 wk->wk_state &= ~INPROGRESS; 1764 wake_worklist(wk); 1765 add_to_worklist(wk, WK_HEAD); 1766 } 1767 LIST_REMOVE(&sentinel, wk_list); 1768 /* Sentinal could've become the tail from remove_from_worklist. */ 1769 if (ump->softdep_worklist_tail == &sentinel) 1770 ump->softdep_worklist_tail = 1771 (struct worklist *)sentinel.wk_list.le_prev; 1772 PRELE(curproc); 1773 return (matchcnt); 1774 } 1775 1776 /* 1777 * Move dependencies from one buffer to another. 1778 */ 1779 int 1780 softdep_move_dependencies(oldbp, newbp) 1781 struct buf *oldbp; 1782 struct buf *newbp; 1783 { 1784 struct worklist *wk, *wktail; 1785 struct ufsmount *ump; 1786 int dirty; 1787 1788 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1789 return (0); 1790 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1791 ("softdep_move_dependencies called on non-softdep filesystem")); 1792 dirty = 0; 1793 wktail = NULL; 1794 ump = VFSTOUFS(wk->wk_mp); 1795 ACQUIRE_LOCK(ump); 1796 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1797 LIST_REMOVE(wk, wk_list); 1798 if (wk->wk_type == D_BMSAFEMAP && 1799 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1800 dirty = 1; 1801 if (wktail == 0) 1802 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1803 else 1804 LIST_INSERT_AFTER(wktail, wk, wk_list); 1805 wktail = wk; 1806 } 1807 FREE_LOCK(ump); 1808 1809 return (dirty); 1810 } 1811 1812 /* 1813 * Purge the work list of all items associated with a particular mount point. 1814 */ 1815 int 1816 softdep_flushworklist(oldmnt, countp, td) 1817 struct mount *oldmnt; 1818 int *countp; 1819 struct thread *td; 1820 { 1821 struct vnode *devvp; 1822 int count, error = 0; 1823 struct ufsmount *ump; 1824 1825 /* 1826 * Alternately flush the block device associated with the mount 1827 * point and process any dependencies that the flushing 1828 * creates. We continue until no more worklist dependencies 1829 * are found. 1830 */ 1831 *countp = 0; 1832 ump = VFSTOUFS(oldmnt); 1833 devvp = ump->um_devvp; 1834 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1835 *countp += count; 1836 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1837 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1838 VOP_UNLOCK(devvp, 0); 1839 if (error) 1840 break; 1841 } 1842 return (error); 1843 } 1844 1845 static int 1846 softdep_waitidle(struct mount *mp) 1847 { 1848 struct ufsmount *ump; 1849 int error; 1850 int i; 1851 1852 ump = VFSTOUFS(mp); 1853 ACQUIRE_LOCK(ump); 1854 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1855 ump->softdep_req = 1; 1856 if (ump->softdep_on_worklist) 1857 panic("softdep_waitidle: work added after flush."); 1858 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1); 1859 } 1860 ump->softdep_req = 0; 1861 FREE_LOCK(ump); 1862 error = 0; 1863 if (i == 10) { 1864 error = EBUSY; 1865 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1866 mp); 1867 } 1868 1869 return (error); 1870 } 1871 1872 /* 1873 * Flush all vnodes and worklist items associated with a specified mount point. 1874 */ 1875 int 1876 softdep_flushfiles(oldmnt, flags, td) 1877 struct mount *oldmnt; 1878 int flags; 1879 struct thread *td; 1880 { 1881 #ifdef QUOTA 1882 struct ufsmount *ump; 1883 int i; 1884 #endif 1885 int error, early, depcount, loopcnt, retry_flush_count, retry; 1886 int morework; 1887 1888 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1889 ("softdep_flushfiles called on non-softdep filesystem")); 1890 loopcnt = 10; 1891 retry_flush_count = 3; 1892 retry_flush: 1893 error = 0; 1894 1895 /* 1896 * Alternately flush the vnodes associated with the mount 1897 * point and process any dependencies that the flushing 1898 * creates. In theory, this loop can happen at most twice, 1899 * but we give it a few extra just to be sure. 1900 */ 1901 for (; loopcnt > 0; loopcnt--) { 1902 /* 1903 * Do another flush in case any vnodes were brought in 1904 * as part of the cleanup operations. 1905 */ 1906 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1907 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1908 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1909 break; 1910 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1911 depcount == 0) 1912 break; 1913 } 1914 /* 1915 * If we are unmounting then it is an error to fail. If we 1916 * are simply trying to downgrade to read-only, then filesystem 1917 * activity can keep us busy forever, so we just fail with EBUSY. 1918 */ 1919 if (loopcnt == 0) { 1920 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1921 panic("softdep_flushfiles: looping"); 1922 error = EBUSY; 1923 } 1924 if (!error) 1925 error = softdep_waitidle(oldmnt); 1926 if (!error) { 1927 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 1928 retry = 0; 1929 MNT_ILOCK(oldmnt); 1930 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 1931 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 1932 morework = oldmnt->mnt_nvnodelistsize > 0; 1933 #ifdef QUOTA 1934 ump = VFSTOUFS(oldmnt); 1935 UFS_LOCK(ump); 1936 for (i = 0; i < MAXQUOTAS; i++) { 1937 if (ump->um_quotas[i] != NULLVP) 1938 morework = 1; 1939 } 1940 UFS_UNLOCK(ump); 1941 #endif 1942 if (morework) { 1943 if (--retry_flush_count > 0) { 1944 retry = 1; 1945 loopcnt = 3; 1946 } else 1947 error = EBUSY; 1948 } 1949 MNT_IUNLOCK(oldmnt); 1950 if (retry) 1951 goto retry_flush; 1952 } 1953 } 1954 return (error); 1955 } 1956 1957 /* 1958 * Structure hashing. 1959 * 1960 * There are four types of structures that can be looked up: 1961 * 1) pagedep structures identified by mount point, inode number, 1962 * and logical block. 1963 * 2) inodedep structures identified by mount point and inode number. 1964 * 3) newblk structures identified by mount point and 1965 * physical block number. 1966 * 4) bmsafemap structures identified by mount point and 1967 * cylinder group number. 1968 * 1969 * The "pagedep" and "inodedep" dependency structures are hashed 1970 * separately from the file blocks and inodes to which they correspond. 1971 * This separation helps when the in-memory copy of an inode or 1972 * file block must be replaced. It also obviates the need to access 1973 * an inode or file page when simply updating (or de-allocating) 1974 * dependency structures. Lookup of newblk structures is needed to 1975 * find newly allocated blocks when trying to associate them with 1976 * their allocdirect or allocindir structure. 1977 * 1978 * The lookup routines optionally create and hash a new instance when 1979 * an existing entry is not found. The bmsafemap lookup routine always 1980 * allocates a new structure if an existing one is not found. 1981 */ 1982 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1983 #define NODELAY 0x0002 /* cannot do background work */ 1984 1985 /* 1986 * Structures and routines associated with pagedep caching. 1987 */ 1988 #define PAGEDEP_HASH(ump, inum, lbn) \ 1989 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 1990 1991 static int 1992 pagedep_find(pagedephd, ino, lbn, pagedeppp) 1993 struct pagedep_hashhead *pagedephd; 1994 ino_t ino; 1995 ufs_lbn_t lbn; 1996 struct pagedep **pagedeppp; 1997 { 1998 struct pagedep *pagedep; 1999 2000 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2001 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2002 *pagedeppp = pagedep; 2003 return (1); 2004 } 2005 } 2006 *pagedeppp = NULL; 2007 return (0); 2008 } 2009 /* 2010 * Look up a pagedep. Return 1 if found, 0 otherwise. 2011 * If not found, allocate if DEPALLOC flag is passed. 2012 * Found or allocated entry is returned in pagedeppp. 2013 * This routine must be called with splbio interrupts blocked. 2014 */ 2015 static int 2016 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2017 struct mount *mp; 2018 struct buf *bp; 2019 ino_t ino; 2020 ufs_lbn_t lbn; 2021 int flags; 2022 struct pagedep **pagedeppp; 2023 { 2024 struct pagedep *pagedep; 2025 struct pagedep_hashhead *pagedephd; 2026 struct worklist *wk; 2027 struct ufsmount *ump; 2028 int ret; 2029 int i; 2030 2031 ump = VFSTOUFS(mp); 2032 LOCK_OWNED(ump); 2033 if (bp) { 2034 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2035 if (wk->wk_type == D_PAGEDEP) { 2036 *pagedeppp = WK_PAGEDEP(wk); 2037 return (1); 2038 } 2039 } 2040 } 2041 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2042 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2043 if (ret) { 2044 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2045 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2046 return (1); 2047 } 2048 if ((flags & DEPALLOC) == 0) 2049 return (0); 2050 FREE_LOCK(ump); 2051 pagedep = malloc(sizeof(struct pagedep), 2052 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2053 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2054 ACQUIRE_LOCK(ump); 2055 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2056 if (*pagedeppp) { 2057 /* 2058 * This should never happen since we only create pagedeps 2059 * with the vnode lock held. Could be an assert. 2060 */ 2061 WORKITEM_FREE(pagedep, D_PAGEDEP); 2062 return (ret); 2063 } 2064 pagedep->pd_ino = ino; 2065 pagedep->pd_lbn = lbn; 2066 LIST_INIT(&pagedep->pd_dirremhd); 2067 LIST_INIT(&pagedep->pd_pendinghd); 2068 for (i = 0; i < DAHASHSZ; i++) 2069 LIST_INIT(&pagedep->pd_diraddhd[i]); 2070 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2071 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2072 *pagedeppp = pagedep; 2073 return (0); 2074 } 2075 2076 /* 2077 * Structures and routines associated with inodedep caching. 2078 */ 2079 #define INODEDEP_HASH(ump, inum) \ 2080 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2081 2082 static int 2083 inodedep_find(inodedephd, inum, inodedeppp) 2084 struct inodedep_hashhead *inodedephd; 2085 ino_t inum; 2086 struct inodedep **inodedeppp; 2087 { 2088 struct inodedep *inodedep; 2089 2090 LIST_FOREACH(inodedep, inodedephd, id_hash) 2091 if (inum == inodedep->id_ino) 2092 break; 2093 if (inodedep) { 2094 *inodedeppp = inodedep; 2095 return (1); 2096 } 2097 *inodedeppp = NULL; 2098 2099 return (0); 2100 } 2101 /* 2102 * Look up an inodedep. Return 1 if found, 0 if not found. 2103 * If not found, allocate if DEPALLOC flag is passed. 2104 * Found or allocated entry is returned in inodedeppp. 2105 * This routine must be called with splbio interrupts blocked. 2106 */ 2107 static int 2108 inodedep_lookup(mp, inum, flags, inodedeppp) 2109 struct mount *mp; 2110 ino_t inum; 2111 int flags; 2112 struct inodedep **inodedeppp; 2113 { 2114 struct inodedep *inodedep; 2115 struct inodedep_hashhead *inodedephd; 2116 struct ufsmount *ump; 2117 struct fs *fs; 2118 2119 ump = VFSTOUFS(mp); 2120 LOCK_OWNED(ump); 2121 fs = ump->um_fs; 2122 inodedephd = INODEDEP_HASH(ump, inum); 2123 2124 if (inodedep_find(inodedephd, inum, inodedeppp)) 2125 return (1); 2126 if ((flags & DEPALLOC) == 0) 2127 return (0); 2128 /* 2129 * If we are over our limit, try to improve the situation. 2130 */ 2131 if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0) 2132 request_cleanup(mp, FLUSH_INODES); 2133 FREE_LOCK(ump); 2134 inodedep = malloc(sizeof(struct inodedep), 2135 M_INODEDEP, M_SOFTDEP_FLAGS); 2136 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2137 ACQUIRE_LOCK(ump); 2138 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2139 WORKITEM_FREE(inodedep, D_INODEDEP); 2140 return (1); 2141 } 2142 inodedep->id_fs = fs; 2143 inodedep->id_ino = inum; 2144 inodedep->id_state = ALLCOMPLETE; 2145 inodedep->id_nlinkdelta = 0; 2146 inodedep->id_savedino1 = NULL; 2147 inodedep->id_savedsize = -1; 2148 inodedep->id_savedextsize = -1; 2149 inodedep->id_savednlink = -1; 2150 inodedep->id_bmsafemap = NULL; 2151 inodedep->id_mkdiradd = NULL; 2152 LIST_INIT(&inodedep->id_dirremhd); 2153 LIST_INIT(&inodedep->id_pendinghd); 2154 LIST_INIT(&inodedep->id_inowait); 2155 LIST_INIT(&inodedep->id_bufwait); 2156 TAILQ_INIT(&inodedep->id_inoreflst); 2157 TAILQ_INIT(&inodedep->id_inoupdt); 2158 TAILQ_INIT(&inodedep->id_newinoupdt); 2159 TAILQ_INIT(&inodedep->id_extupdt); 2160 TAILQ_INIT(&inodedep->id_newextupdt); 2161 TAILQ_INIT(&inodedep->id_freeblklst); 2162 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2163 *inodedeppp = inodedep; 2164 return (0); 2165 } 2166 2167 /* 2168 * Structures and routines associated with newblk caching. 2169 */ 2170 #define NEWBLK_HASH(ump, inum) \ 2171 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2172 2173 static int 2174 newblk_find(newblkhd, newblkno, flags, newblkpp) 2175 struct newblk_hashhead *newblkhd; 2176 ufs2_daddr_t newblkno; 2177 int flags; 2178 struct newblk **newblkpp; 2179 { 2180 struct newblk *newblk; 2181 2182 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2183 if (newblkno != newblk->nb_newblkno) 2184 continue; 2185 /* 2186 * If we're creating a new dependency don't match those that 2187 * have already been converted to allocdirects. This is for 2188 * a frag extend. 2189 */ 2190 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2191 continue; 2192 break; 2193 } 2194 if (newblk) { 2195 *newblkpp = newblk; 2196 return (1); 2197 } 2198 *newblkpp = NULL; 2199 return (0); 2200 } 2201 2202 /* 2203 * Look up a newblk. Return 1 if found, 0 if not found. 2204 * If not found, allocate if DEPALLOC flag is passed. 2205 * Found or allocated entry is returned in newblkpp. 2206 */ 2207 static int 2208 newblk_lookup(mp, newblkno, flags, newblkpp) 2209 struct mount *mp; 2210 ufs2_daddr_t newblkno; 2211 int flags; 2212 struct newblk **newblkpp; 2213 { 2214 struct newblk *newblk; 2215 struct newblk_hashhead *newblkhd; 2216 struct ufsmount *ump; 2217 2218 ump = VFSTOUFS(mp); 2219 LOCK_OWNED(ump); 2220 newblkhd = NEWBLK_HASH(ump, newblkno); 2221 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2222 return (1); 2223 if ((flags & DEPALLOC) == 0) 2224 return (0); 2225 FREE_LOCK(ump); 2226 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2227 M_SOFTDEP_FLAGS | M_ZERO); 2228 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2229 ACQUIRE_LOCK(ump); 2230 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2231 WORKITEM_FREE(newblk, D_NEWBLK); 2232 return (1); 2233 } 2234 newblk->nb_freefrag = NULL; 2235 LIST_INIT(&newblk->nb_indirdeps); 2236 LIST_INIT(&newblk->nb_newdirblk); 2237 LIST_INIT(&newblk->nb_jwork); 2238 newblk->nb_state = ATTACHED; 2239 newblk->nb_newblkno = newblkno; 2240 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2241 *newblkpp = newblk; 2242 return (0); 2243 } 2244 2245 /* 2246 * Structures and routines associated with freed indirect block caching. 2247 */ 2248 #define INDIR_HASH(ump, blkno) \ 2249 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2250 2251 /* 2252 * Lookup an indirect block in the indir hash table. The freework is 2253 * removed and potentially freed. The caller must do a blocking journal 2254 * write before writing to the blkno. 2255 */ 2256 static int 2257 indirblk_lookup(mp, blkno) 2258 struct mount *mp; 2259 ufs2_daddr_t blkno; 2260 { 2261 struct freework *freework; 2262 struct indir_hashhead *wkhd; 2263 struct ufsmount *ump; 2264 2265 ump = VFSTOUFS(mp); 2266 wkhd = INDIR_HASH(ump, blkno); 2267 TAILQ_FOREACH(freework, wkhd, fw_next) { 2268 if (freework->fw_blkno != blkno) 2269 continue; 2270 indirblk_remove(freework); 2271 return (1); 2272 } 2273 return (0); 2274 } 2275 2276 /* 2277 * Insert an indirect block represented by freework into the indirblk 2278 * hash table so that it may prevent the block from being re-used prior 2279 * to the journal being written. 2280 */ 2281 static void 2282 indirblk_insert(freework) 2283 struct freework *freework; 2284 { 2285 struct jblocks *jblocks; 2286 struct jseg *jseg; 2287 struct ufsmount *ump; 2288 2289 ump = VFSTOUFS(freework->fw_list.wk_mp); 2290 jblocks = ump->softdep_jblocks; 2291 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2292 if (jseg == NULL) 2293 return; 2294 2295 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2296 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2297 fw_next); 2298 freework->fw_state &= ~DEPCOMPLETE; 2299 } 2300 2301 static void 2302 indirblk_remove(freework) 2303 struct freework *freework; 2304 { 2305 struct ufsmount *ump; 2306 2307 ump = VFSTOUFS(freework->fw_list.wk_mp); 2308 LIST_REMOVE(freework, fw_segs); 2309 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2310 freework->fw_state |= DEPCOMPLETE; 2311 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2312 WORKITEM_FREE(freework, D_FREEWORK); 2313 } 2314 2315 /* 2316 * Executed during filesystem system initialization before 2317 * mounting any filesystems. 2318 */ 2319 void 2320 softdep_initialize() 2321 { 2322 2323 max_softdeps = desiredvnodes * 4; 2324 2325 /* initialise bioops hack */ 2326 bioops.io_start = softdep_disk_io_initiation; 2327 bioops.io_complete = softdep_disk_write_complete; 2328 bioops.io_deallocate = softdep_deallocate_dependencies; 2329 bioops.io_countdeps = softdep_count_dependencies; 2330 2331 /* Initialize the callout with an mtx. */ 2332 callout_init_mtx(&softdep_callout, &lk, 0); 2333 } 2334 2335 /* 2336 * Executed after all filesystems have been unmounted during 2337 * filesystem module unload. 2338 */ 2339 void 2340 softdep_uninitialize() 2341 { 2342 2343 /* clear bioops hack */ 2344 bioops.io_start = NULL; 2345 bioops.io_complete = NULL; 2346 bioops.io_deallocate = NULL; 2347 bioops.io_countdeps = NULL; 2348 2349 callout_drain(&softdep_callout); 2350 } 2351 2352 /* 2353 * Called at mount time to notify the dependency code that a 2354 * filesystem wishes to use it. 2355 */ 2356 int 2357 softdep_mount(devvp, mp, fs, cred) 2358 struct vnode *devvp; 2359 struct mount *mp; 2360 struct fs *fs; 2361 struct ucred *cred; 2362 { 2363 struct csum_total cstotal; 2364 struct mount_softdeps *sdp; 2365 struct ufsmount *ump; 2366 struct cg *cgp; 2367 struct buf *bp; 2368 int i, error, cyl; 2369 2370 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2371 M_WAITOK | M_ZERO); 2372 MNT_ILOCK(mp); 2373 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2374 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2375 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2376 MNTK_SOFTDEP | MNTK_NOASYNC; 2377 } 2378 ump = VFSTOUFS(mp); 2379 ump->um_softdep = sdp; 2380 MNT_IUNLOCK(mp); 2381 LOCK_PTR(ump) = &lk; 2382 LIST_INIT(&ump->softdep_workitem_pending); 2383 LIST_INIT(&ump->softdep_journal_pending); 2384 TAILQ_INIT(&ump->softdep_unlinked); 2385 LIST_INIT(&ump->softdep_dirtycg); 2386 ump->softdep_worklist_tail = NULL; 2387 ump->softdep_on_worklist = 0; 2388 ump->softdep_deps = 0; 2389 LIST_INIT(&ump->softdep_mkdirlisthd); 2390 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2391 &ump->pagedep_hash_size); 2392 ump->pagedep_nextclean = 0; 2393 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2394 &ump->inodedep_hash_size); 2395 ump->inodedep_nextclean = 0; 2396 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2397 &ump->newblk_hash_size); 2398 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2399 &ump->bmsafemap_hash_size); 2400 i = 1 << (ffs(desiredvnodes / 10) - 1); 2401 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2402 M_FREEWORK, M_WAITOK); 2403 ump->indir_hash_size = i - 1; 2404 for (i = 0; i <= ump->indir_hash_size; i++) 2405 TAILQ_INIT(&ump->indir_hashtbl[i]); 2406 if ((fs->fs_flags & FS_SUJ) && 2407 (error = journal_mount(mp, fs, cred)) != 0) { 2408 printf("Failed to start journal: %d\n", error); 2409 softdep_unmount(mp); 2410 return (error); 2411 } 2412 atomic_add_int(&stat_softdep_mounts, 1); 2413 /* 2414 * When doing soft updates, the counters in the 2415 * superblock may have gotten out of sync. Recomputation 2416 * can take a long time and can be deferred for background 2417 * fsck. However, the old behavior of scanning the cylinder 2418 * groups and recalculating them at mount time is available 2419 * by setting vfs.ffs.compute_summary_at_mount to one. 2420 */ 2421 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2422 return (0); 2423 bzero(&cstotal, sizeof cstotal); 2424 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2425 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2426 fs->fs_cgsize, cred, &bp)) != 0) { 2427 brelse(bp); 2428 softdep_unmount(mp); 2429 return (error); 2430 } 2431 cgp = (struct cg *)bp->b_data; 2432 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2433 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2434 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2435 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2436 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2437 brelse(bp); 2438 } 2439 #ifdef DEBUG 2440 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2441 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2442 #endif 2443 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2444 return (0); 2445 } 2446 2447 void 2448 softdep_unmount(mp) 2449 struct mount *mp; 2450 { 2451 struct ufsmount *ump; 2452 #ifdef INVARIANTS 2453 int i; 2454 #endif 2455 2456 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2457 ("softdep_unmount called on non-softdep filesystem")); 2458 ump = VFSTOUFS(mp); 2459 MNT_ILOCK(mp); 2460 mp->mnt_flag &= ~MNT_SOFTDEP; 2461 if (MOUNTEDSUJ(mp) == 0) { 2462 MNT_IUNLOCK(mp); 2463 } else { 2464 mp->mnt_flag &= ~MNT_SUJ; 2465 MNT_IUNLOCK(mp); 2466 journal_unmount(ump); 2467 } 2468 atomic_subtract_int(&stat_softdep_mounts, 1); 2469 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2470 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2471 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2472 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2473 ump->bmsafemap_hash_size); 2474 free(ump->indir_hashtbl, M_FREEWORK); 2475 #ifdef INVARIANTS 2476 for (i = 0; i <= D_LAST; i++) 2477 KASSERT(ump->softdep_curdeps[i] == 0, 2478 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2479 TYPENAME(i), ump->softdep_curdeps[i])); 2480 #endif 2481 free(ump->um_softdep, M_MOUNTDATA); 2482 } 2483 2484 static struct jblocks * 2485 jblocks_create(void) 2486 { 2487 struct jblocks *jblocks; 2488 2489 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2490 TAILQ_INIT(&jblocks->jb_segs); 2491 jblocks->jb_avail = 10; 2492 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2493 M_JBLOCKS, M_WAITOK | M_ZERO); 2494 2495 return (jblocks); 2496 } 2497 2498 static ufs2_daddr_t 2499 jblocks_alloc(jblocks, bytes, actual) 2500 struct jblocks *jblocks; 2501 int bytes; 2502 int *actual; 2503 { 2504 ufs2_daddr_t daddr; 2505 struct jextent *jext; 2506 int freecnt; 2507 int blocks; 2508 2509 blocks = bytes / DEV_BSIZE; 2510 jext = &jblocks->jb_extent[jblocks->jb_head]; 2511 freecnt = jext->je_blocks - jblocks->jb_off; 2512 if (freecnt == 0) { 2513 jblocks->jb_off = 0; 2514 if (++jblocks->jb_head > jblocks->jb_used) 2515 jblocks->jb_head = 0; 2516 jext = &jblocks->jb_extent[jblocks->jb_head]; 2517 freecnt = jext->je_blocks; 2518 } 2519 if (freecnt > blocks) 2520 freecnt = blocks; 2521 *actual = freecnt * DEV_BSIZE; 2522 daddr = jext->je_daddr + jblocks->jb_off; 2523 jblocks->jb_off += freecnt; 2524 jblocks->jb_free -= freecnt; 2525 2526 return (daddr); 2527 } 2528 2529 static void 2530 jblocks_free(jblocks, mp, bytes) 2531 struct jblocks *jblocks; 2532 struct mount *mp; 2533 int bytes; 2534 { 2535 2536 LOCK_OWNED(VFSTOUFS(mp)); 2537 jblocks->jb_free += bytes / DEV_BSIZE; 2538 if (jblocks->jb_suspended) 2539 worklist_speedup(mp); 2540 wakeup(jblocks); 2541 } 2542 2543 static void 2544 jblocks_destroy(jblocks) 2545 struct jblocks *jblocks; 2546 { 2547 2548 if (jblocks->jb_extent) 2549 free(jblocks->jb_extent, M_JBLOCKS); 2550 free(jblocks, M_JBLOCKS); 2551 } 2552 2553 static void 2554 jblocks_add(jblocks, daddr, blocks) 2555 struct jblocks *jblocks; 2556 ufs2_daddr_t daddr; 2557 int blocks; 2558 { 2559 struct jextent *jext; 2560 2561 jblocks->jb_blocks += blocks; 2562 jblocks->jb_free += blocks; 2563 jext = &jblocks->jb_extent[jblocks->jb_used]; 2564 /* Adding the first block. */ 2565 if (jext->je_daddr == 0) { 2566 jext->je_daddr = daddr; 2567 jext->je_blocks = blocks; 2568 return; 2569 } 2570 /* Extending the last extent. */ 2571 if (jext->je_daddr + jext->je_blocks == daddr) { 2572 jext->je_blocks += blocks; 2573 return; 2574 } 2575 /* Adding a new extent. */ 2576 if (++jblocks->jb_used == jblocks->jb_avail) { 2577 jblocks->jb_avail *= 2; 2578 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2579 M_JBLOCKS, M_WAITOK | M_ZERO); 2580 memcpy(jext, jblocks->jb_extent, 2581 sizeof(struct jextent) * jblocks->jb_used); 2582 free(jblocks->jb_extent, M_JBLOCKS); 2583 jblocks->jb_extent = jext; 2584 } 2585 jext = &jblocks->jb_extent[jblocks->jb_used]; 2586 jext->je_daddr = daddr; 2587 jext->je_blocks = blocks; 2588 return; 2589 } 2590 2591 int 2592 softdep_journal_lookup(mp, vpp) 2593 struct mount *mp; 2594 struct vnode **vpp; 2595 { 2596 struct componentname cnp; 2597 struct vnode *dvp; 2598 ino_t sujournal; 2599 int error; 2600 2601 error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp); 2602 if (error) 2603 return (error); 2604 bzero(&cnp, sizeof(cnp)); 2605 cnp.cn_nameiop = LOOKUP; 2606 cnp.cn_flags = ISLASTCN; 2607 cnp.cn_thread = curthread; 2608 cnp.cn_cred = curthread->td_ucred; 2609 cnp.cn_pnbuf = SUJ_FILE; 2610 cnp.cn_nameptr = SUJ_FILE; 2611 cnp.cn_namelen = strlen(SUJ_FILE); 2612 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2613 vput(dvp); 2614 if (error != 0) 2615 return (error); 2616 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2617 return (error); 2618 } 2619 2620 /* 2621 * Open and verify the journal file. 2622 */ 2623 static int 2624 journal_mount(mp, fs, cred) 2625 struct mount *mp; 2626 struct fs *fs; 2627 struct ucred *cred; 2628 { 2629 struct jblocks *jblocks; 2630 struct ufsmount *ump; 2631 struct vnode *vp; 2632 struct inode *ip; 2633 ufs2_daddr_t blkno; 2634 int bcount; 2635 int error; 2636 int i; 2637 2638 ump = VFSTOUFS(mp); 2639 ump->softdep_journal_tail = NULL; 2640 ump->softdep_on_journal = 0; 2641 ump->softdep_accdeps = 0; 2642 ump->softdep_req = 0; 2643 ump->softdep_jblocks = NULL; 2644 error = softdep_journal_lookup(mp, &vp); 2645 if (error != 0) { 2646 printf("Failed to find journal. Use tunefs to create one\n"); 2647 return (error); 2648 } 2649 ip = VTOI(vp); 2650 if (ip->i_size < SUJ_MIN) { 2651 error = ENOSPC; 2652 goto out; 2653 } 2654 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2655 jblocks = jblocks_create(); 2656 for (i = 0; i < bcount; i++) { 2657 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2658 if (error) 2659 break; 2660 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2661 } 2662 if (error) { 2663 jblocks_destroy(jblocks); 2664 goto out; 2665 } 2666 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2667 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2668 ump->softdep_jblocks = jblocks; 2669 out: 2670 if (error == 0) { 2671 MNT_ILOCK(mp); 2672 mp->mnt_flag |= MNT_SUJ; 2673 mp->mnt_flag &= ~MNT_SOFTDEP; 2674 MNT_IUNLOCK(mp); 2675 /* 2676 * Only validate the journal contents if the 2677 * filesystem is clean, otherwise we write the logs 2678 * but they'll never be used. If the filesystem was 2679 * still dirty when we mounted it the journal is 2680 * invalid and a new journal can only be valid if it 2681 * starts from a clean mount. 2682 */ 2683 if (fs->fs_clean) { 2684 DIP_SET(ip, i_modrev, fs->fs_mtime); 2685 ip->i_flags |= IN_MODIFIED; 2686 ffs_update(vp, 1); 2687 } 2688 } 2689 vput(vp); 2690 return (error); 2691 } 2692 2693 static void 2694 journal_unmount(ump) 2695 struct ufsmount *ump; 2696 { 2697 2698 if (ump->softdep_jblocks) 2699 jblocks_destroy(ump->softdep_jblocks); 2700 ump->softdep_jblocks = NULL; 2701 } 2702 2703 /* 2704 * Called when a journal record is ready to be written. Space is allocated 2705 * and the journal entry is created when the journal is flushed to stable 2706 * store. 2707 */ 2708 static void 2709 add_to_journal(wk) 2710 struct worklist *wk; 2711 { 2712 struct ufsmount *ump; 2713 2714 ump = VFSTOUFS(wk->wk_mp); 2715 LOCK_OWNED(ump); 2716 if (wk->wk_state & ONWORKLIST) 2717 panic("add_to_journal: %s(0x%X) already on list", 2718 TYPENAME(wk->wk_type), wk->wk_state); 2719 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2720 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2721 ump->softdep_jblocks->jb_age = ticks; 2722 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2723 } else 2724 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2725 ump->softdep_journal_tail = wk; 2726 ump->softdep_on_journal += 1; 2727 } 2728 2729 /* 2730 * Remove an arbitrary item for the journal worklist maintain the tail 2731 * pointer. This happens when a new operation obviates the need to 2732 * journal an old operation. 2733 */ 2734 static void 2735 remove_from_journal(wk) 2736 struct worklist *wk; 2737 { 2738 struct ufsmount *ump; 2739 2740 ump = VFSTOUFS(wk->wk_mp); 2741 LOCK_OWNED(ump); 2742 #ifdef SUJ_DEBUG 2743 { 2744 struct worklist *wkn; 2745 2746 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2747 if (wkn == wk) 2748 break; 2749 if (wkn == NULL) 2750 panic("remove_from_journal: %p is not in journal", wk); 2751 } 2752 #endif 2753 /* 2754 * We emulate a TAILQ to save space in most structures which do not 2755 * require TAILQ semantics. Here we must update the tail position 2756 * when removing the tail which is not the final entry. This works 2757 * only if the worklist linkage are at the beginning of the structure. 2758 */ 2759 if (ump->softdep_journal_tail == wk) 2760 ump->softdep_journal_tail = 2761 (struct worklist *)wk->wk_list.le_prev; 2762 2763 WORKLIST_REMOVE(wk); 2764 ump->softdep_on_journal -= 1; 2765 } 2766 2767 /* 2768 * Check for journal space as well as dependency limits so the prelink 2769 * code can throttle both journaled and non-journaled filesystems. 2770 * Threshold is 0 for low and 1 for min. 2771 */ 2772 static int 2773 journal_space(ump, thresh) 2774 struct ufsmount *ump; 2775 int thresh; 2776 { 2777 struct jblocks *jblocks; 2778 int limit, avail; 2779 2780 jblocks = ump->softdep_jblocks; 2781 if (jblocks == NULL) 2782 return (1); 2783 /* 2784 * We use a tighter restriction here to prevent request_cleanup() 2785 * running in threads from running into locks we currently hold. 2786 * We have to be over the limit and our filesystem has to be 2787 * responsible for more than our share of that usage. 2788 */ 2789 limit = (max_softdeps / 10) * 9; 2790 if (dep_current[D_INODEDEP] > limit && 2791 ump->softdep_curdeps[D_INODEDEP] > limit / stat_softdep_mounts) 2792 return (0); 2793 if (thresh) 2794 thresh = jblocks->jb_min; 2795 else 2796 thresh = jblocks->jb_low; 2797 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2798 avail = jblocks->jb_free - avail; 2799 2800 return (avail > thresh); 2801 } 2802 2803 static void 2804 journal_suspend(ump) 2805 struct ufsmount *ump; 2806 { 2807 struct jblocks *jblocks; 2808 struct mount *mp; 2809 2810 mp = UFSTOVFS(ump); 2811 jblocks = ump->softdep_jblocks; 2812 MNT_ILOCK(mp); 2813 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2814 stat_journal_min++; 2815 mp->mnt_kern_flag |= MNTK_SUSPEND; 2816 mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc); 2817 } 2818 jblocks->jb_suspended = 1; 2819 MNT_IUNLOCK(mp); 2820 } 2821 2822 static int 2823 journal_unsuspend(struct ufsmount *ump) 2824 { 2825 struct jblocks *jblocks; 2826 struct mount *mp; 2827 2828 mp = UFSTOVFS(ump); 2829 jblocks = ump->softdep_jblocks; 2830 2831 if (jblocks != NULL && jblocks->jb_suspended && 2832 journal_space(ump, jblocks->jb_min)) { 2833 jblocks->jb_suspended = 0; 2834 FREE_LOCK(ump); 2835 mp->mnt_susp_owner = curthread; 2836 vfs_write_resume(mp, 0); 2837 ACQUIRE_LOCK(ump); 2838 return (1); 2839 } 2840 return (0); 2841 } 2842 2843 /* 2844 * Called before any allocation function to be certain that there is 2845 * sufficient space in the journal prior to creating any new records. 2846 * Since in the case of block allocation we may have multiple locked 2847 * buffers at the time of the actual allocation we can not block 2848 * when the journal records are created. Doing so would create a deadlock 2849 * if any of these buffers needed to be flushed to reclaim space. Instead 2850 * we require a sufficiently large amount of available space such that 2851 * each thread in the system could have passed this allocation check and 2852 * still have sufficient free space. With 20% of a minimum journal size 2853 * of 1MB we have 6553 records available. 2854 */ 2855 int 2856 softdep_prealloc(vp, waitok) 2857 struct vnode *vp; 2858 int waitok; 2859 { 2860 struct ufsmount *ump; 2861 2862 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 2863 ("softdep_prealloc called on non-softdep filesystem")); 2864 /* 2865 * Nothing to do if we are not running journaled soft updates. 2866 * If we currently hold the snapshot lock, we must avoid handling 2867 * other resources that could cause deadlock. 2868 */ 2869 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp))) 2870 return (0); 2871 ump = VFSTOUFS(vp->v_mount); 2872 ACQUIRE_LOCK(ump); 2873 if (journal_space(ump, 0)) { 2874 FREE_LOCK(ump); 2875 return (0); 2876 } 2877 stat_journal_low++; 2878 FREE_LOCK(ump); 2879 if (waitok == MNT_NOWAIT) 2880 return (ENOSPC); 2881 /* 2882 * Attempt to sync this vnode once to flush any journal 2883 * work attached to it. 2884 */ 2885 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 2886 ffs_syncvnode(vp, waitok, 0); 2887 ACQUIRE_LOCK(ump); 2888 process_removes(vp); 2889 process_truncates(vp); 2890 if (journal_space(ump, 0) == 0) { 2891 softdep_speedup(); 2892 if (journal_space(ump, 1) == 0) 2893 journal_suspend(ump); 2894 } 2895 FREE_LOCK(ump); 2896 2897 return (0); 2898 } 2899 2900 /* 2901 * Before adjusting a link count on a vnode verify that we have sufficient 2902 * journal space. If not, process operations that depend on the currently 2903 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 2904 * and softdep flush threads can not acquire these locks to reclaim space. 2905 */ 2906 static void 2907 softdep_prelink(dvp, vp) 2908 struct vnode *dvp; 2909 struct vnode *vp; 2910 { 2911 struct ufsmount *ump; 2912 2913 ump = VFSTOUFS(dvp->v_mount); 2914 LOCK_OWNED(ump); 2915 /* 2916 * Nothing to do if we have sufficient journal space. 2917 * If we currently hold the snapshot lock, we must avoid 2918 * handling other resources that could cause deadlock. 2919 */ 2920 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 2921 return; 2922 stat_journal_low++; 2923 FREE_LOCK(ump); 2924 if (vp) 2925 ffs_syncvnode(vp, MNT_NOWAIT, 0); 2926 ffs_syncvnode(dvp, MNT_WAIT, 0); 2927 ACQUIRE_LOCK(ump); 2928 /* Process vp before dvp as it may create .. removes. */ 2929 if (vp) { 2930 process_removes(vp); 2931 process_truncates(vp); 2932 } 2933 process_removes(dvp); 2934 process_truncates(dvp); 2935 softdep_speedup(); 2936 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 2937 if (journal_space(ump, 0) == 0) { 2938 softdep_speedup(); 2939 if (journal_space(ump, 1) == 0) 2940 journal_suspend(ump); 2941 } 2942 } 2943 2944 static void 2945 jseg_write(ump, jseg, data) 2946 struct ufsmount *ump; 2947 struct jseg *jseg; 2948 uint8_t *data; 2949 { 2950 struct jsegrec *rec; 2951 2952 rec = (struct jsegrec *)data; 2953 rec->jsr_seq = jseg->js_seq; 2954 rec->jsr_oldest = jseg->js_oldseq; 2955 rec->jsr_cnt = jseg->js_cnt; 2956 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 2957 rec->jsr_crc = 0; 2958 rec->jsr_time = ump->um_fs->fs_mtime; 2959 } 2960 2961 static inline void 2962 inoref_write(inoref, jseg, rec) 2963 struct inoref *inoref; 2964 struct jseg *jseg; 2965 struct jrefrec *rec; 2966 { 2967 2968 inoref->if_jsegdep->jd_seg = jseg; 2969 rec->jr_ino = inoref->if_ino; 2970 rec->jr_parent = inoref->if_parent; 2971 rec->jr_nlink = inoref->if_nlink; 2972 rec->jr_mode = inoref->if_mode; 2973 rec->jr_diroff = inoref->if_diroff; 2974 } 2975 2976 static void 2977 jaddref_write(jaddref, jseg, data) 2978 struct jaddref *jaddref; 2979 struct jseg *jseg; 2980 uint8_t *data; 2981 { 2982 struct jrefrec *rec; 2983 2984 rec = (struct jrefrec *)data; 2985 rec->jr_op = JOP_ADDREF; 2986 inoref_write(&jaddref->ja_ref, jseg, rec); 2987 } 2988 2989 static void 2990 jremref_write(jremref, jseg, data) 2991 struct jremref *jremref; 2992 struct jseg *jseg; 2993 uint8_t *data; 2994 { 2995 struct jrefrec *rec; 2996 2997 rec = (struct jrefrec *)data; 2998 rec->jr_op = JOP_REMREF; 2999 inoref_write(&jremref->jr_ref, jseg, rec); 3000 } 3001 3002 static void 3003 jmvref_write(jmvref, jseg, data) 3004 struct jmvref *jmvref; 3005 struct jseg *jseg; 3006 uint8_t *data; 3007 { 3008 struct jmvrec *rec; 3009 3010 rec = (struct jmvrec *)data; 3011 rec->jm_op = JOP_MVREF; 3012 rec->jm_ino = jmvref->jm_ino; 3013 rec->jm_parent = jmvref->jm_parent; 3014 rec->jm_oldoff = jmvref->jm_oldoff; 3015 rec->jm_newoff = jmvref->jm_newoff; 3016 } 3017 3018 static void 3019 jnewblk_write(jnewblk, jseg, data) 3020 struct jnewblk *jnewblk; 3021 struct jseg *jseg; 3022 uint8_t *data; 3023 { 3024 struct jblkrec *rec; 3025 3026 jnewblk->jn_jsegdep->jd_seg = jseg; 3027 rec = (struct jblkrec *)data; 3028 rec->jb_op = JOP_NEWBLK; 3029 rec->jb_ino = jnewblk->jn_ino; 3030 rec->jb_blkno = jnewblk->jn_blkno; 3031 rec->jb_lbn = jnewblk->jn_lbn; 3032 rec->jb_frags = jnewblk->jn_frags; 3033 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3034 } 3035 3036 static void 3037 jfreeblk_write(jfreeblk, jseg, data) 3038 struct jfreeblk *jfreeblk; 3039 struct jseg *jseg; 3040 uint8_t *data; 3041 { 3042 struct jblkrec *rec; 3043 3044 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3045 rec = (struct jblkrec *)data; 3046 rec->jb_op = JOP_FREEBLK; 3047 rec->jb_ino = jfreeblk->jf_ino; 3048 rec->jb_blkno = jfreeblk->jf_blkno; 3049 rec->jb_lbn = jfreeblk->jf_lbn; 3050 rec->jb_frags = jfreeblk->jf_frags; 3051 rec->jb_oldfrags = 0; 3052 } 3053 3054 static void 3055 jfreefrag_write(jfreefrag, jseg, data) 3056 struct jfreefrag *jfreefrag; 3057 struct jseg *jseg; 3058 uint8_t *data; 3059 { 3060 struct jblkrec *rec; 3061 3062 jfreefrag->fr_jsegdep->jd_seg = jseg; 3063 rec = (struct jblkrec *)data; 3064 rec->jb_op = JOP_FREEBLK; 3065 rec->jb_ino = jfreefrag->fr_ino; 3066 rec->jb_blkno = jfreefrag->fr_blkno; 3067 rec->jb_lbn = jfreefrag->fr_lbn; 3068 rec->jb_frags = jfreefrag->fr_frags; 3069 rec->jb_oldfrags = 0; 3070 } 3071 3072 static void 3073 jtrunc_write(jtrunc, jseg, data) 3074 struct jtrunc *jtrunc; 3075 struct jseg *jseg; 3076 uint8_t *data; 3077 { 3078 struct jtrncrec *rec; 3079 3080 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3081 rec = (struct jtrncrec *)data; 3082 rec->jt_op = JOP_TRUNC; 3083 rec->jt_ino = jtrunc->jt_ino; 3084 rec->jt_size = jtrunc->jt_size; 3085 rec->jt_extsize = jtrunc->jt_extsize; 3086 } 3087 3088 static void 3089 jfsync_write(jfsync, jseg, data) 3090 struct jfsync *jfsync; 3091 struct jseg *jseg; 3092 uint8_t *data; 3093 { 3094 struct jtrncrec *rec; 3095 3096 rec = (struct jtrncrec *)data; 3097 rec->jt_op = JOP_SYNC; 3098 rec->jt_ino = jfsync->jfs_ino; 3099 rec->jt_size = jfsync->jfs_size; 3100 rec->jt_extsize = jfsync->jfs_extsize; 3101 } 3102 3103 static void 3104 softdep_flushjournal(mp) 3105 struct mount *mp; 3106 { 3107 struct jblocks *jblocks; 3108 struct ufsmount *ump; 3109 3110 if (MOUNTEDSUJ(mp) == 0) 3111 return; 3112 ump = VFSTOUFS(mp); 3113 jblocks = ump->softdep_jblocks; 3114 ACQUIRE_LOCK(ump); 3115 while (ump->softdep_on_journal) { 3116 jblocks->jb_needseg = 1; 3117 softdep_process_journal(mp, NULL, MNT_WAIT); 3118 } 3119 FREE_LOCK(ump); 3120 } 3121 3122 static void softdep_synchronize_completed(struct bio *); 3123 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3124 3125 static void 3126 softdep_synchronize_completed(bp) 3127 struct bio *bp; 3128 { 3129 struct jseg *oldest; 3130 struct jseg *jseg; 3131 struct ufsmount *ump; 3132 3133 /* 3134 * caller1 marks the last segment written before we issued the 3135 * synchronize cache. 3136 */ 3137 jseg = bp->bio_caller1; 3138 if (jseg == NULL) { 3139 g_destroy_bio(bp); 3140 return; 3141 } 3142 ump = VFSTOUFS(jseg->js_list.wk_mp); 3143 ACQUIRE_LOCK(ump); 3144 oldest = NULL; 3145 /* 3146 * Mark all the journal entries waiting on the synchronize cache 3147 * as completed so they may continue on. 3148 */ 3149 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3150 jseg->js_state |= COMPLETE; 3151 oldest = jseg; 3152 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3153 } 3154 /* 3155 * Restart deferred journal entry processing from the oldest 3156 * completed jseg. 3157 */ 3158 if (oldest) 3159 complete_jsegs(oldest); 3160 3161 FREE_LOCK(ump); 3162 g_destroy_bio(bp); 3163 } 3164 3165 /* 3166 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3167 * barriers. The journal must be written prior to any blocks that depend 3168 * on it and the journal can not be released until the blocks have be 3169 * written. This code handles both barriers simultaneously. 3170 */ 3171 static void 3172 softdep_synchronize(bp, ump, caller1) 3173 struct bio *bp; 3174 struct ufsmount *ump; 3175 void *caller1; 3176 { 3177 3178 bp->bio_cmd = BIO_FLUSH; 3179 bp->bio_flags |= BIO_ORDERED; 3180 bp->bio_data = NULL; 3181 bp->bio_offset = ump->um_cp->provider->mediasize; 3182 bp->bio_length = 0; 3183 bp->bio_done = softdep_synchronize_completed; 3184 bp->bio_caller1 = caller1; 3185 g_io_request(bp, 3186 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3187 } 3188 3189 /* 3190 * Flush some journal records to disk. 3191 */ 3192 static void 3193 softdep_process_journal(mp, needwk, flags) 3194 struct mount *mp; 3195 struct worklist *needwk; 3196 int flags; 3197 { 3198 struct jblocks *jblocks; 3199 struct ufsmount *ump; 3200 struct worklist *wk; 3201 struct jseg *jseg; 3202 struct buf *bp; 3203 struct bio *bio; 3204 uint8_t *data; 3205 struct fs *fs; 3206 int shouldflush; 3207 int segwritten; 3208 int jrecmin; /* Minimum records per block. */ 3209 int jrecmax; /* Maximum records per block. */ 3210 int size; 3211 int cnt; 3212 int off; 3213 int devbsize; 3214 3215 if (MOUNTEDSUJ(mp) == 0) 3216 return; 3217 shouldflush = softdep_flushcache; 3218 bio = NULL; 3219 jseg = NULL; 3220 ump = VFSTOUFS(mp); 3221 LOCK_OWNED(ump); 3222 fs = ump->um_fs; 3223 jblocks = ump->softdep_jblocks; 3224 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3225 /* 3226 * We write anywhere between a disk block and fs block. The upper 3227 * bound is picked to prevent buffer cache fragmentation and limit 3228 * processing time per I/O. 3229 */ 3230 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3231 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3232 segwritten = 0; 3233 for (;;) { 3234 cnt = ump->softdep_on_journal; 3235 /* 3236 * Criteria for writing a segment: 3237 * 1) We have a full block. 3238 * 2) We're called from jwait() and haven't found the 3239 * journal item yet. 3240 * 3) Always write if needseg is set. 3241 * 4) If we are called from process_worklist and have 3242 * not yet written anything we write a partial block 3243 * to enforce a 1 second maximum latency on journal 3244 * entries. 3245 */ 3246 if (cnt < (jrecmax - 1) && needwk == NULL && 3247 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3248 break; 3249 cnt++; 3250 /* 3251 * Verify some free journal space. softdep_prealloc() should 3252 * guarantee that we don't run out so this is indicative of 3253 * a problem with the flow control. Try to recover 3254 * gracefully in any event. 3255 */ 3256 while (jblocks->jb_free == 0) { 3257 if (flags != MNT_WAIT) 3258 break; 3259 printf("softdep: Out of journal space!\n"); 3260 softdep_speedup(); 3261 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3262 } 3263 FREE_LOCK(ump); 3264 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3265 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3266 LIST_INIT(&jseg->js_entries); 3267 LIST_INIT(&jseg->js_indirs); 3268 jseg->js_state = ATTACHED; 3269 if (shouldflush == 0) 3270 jseg->js_state |= COMPLETE; 3271 else if (bio == NULL) 3272 bio = g_alloc_bio(); 3273 jseg->js_jblocks = jblocks; 3274 bp = geteblk(fs->fs_bsize, 0); 3275 ACQUIRE_LOCK(ump); 3276 /* 3277 * If there was a race while we were allocating the block 3278 * and jseg the entry we care about was likely written. 3279 * We bail out in both the WAIT and NOWAIT case and assume 3280 * the caller will loop if the entry it cares about is 3281 * not written. 3282 */ 3283 cnt = ump->softdep_on_journal; 3284 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3285 bp->b_flags |= B_INVAL | B_NOCACHE; 3286 WORKITEM_FREE(jseg, D_JSEG); 3287 FREE_LOCK(ump); 3288 brelse(bp); 3289 ACQUIRE_LOCK(ump); 3290 break; 3291 } 3292 /* 3293 * Calculate the disk block size required for the available 3294 * records rounded to the min size. 3295 */ 3296 if (cnt == 0) 3297 size = devbsize; 3298 else if (cnt < jrecmax) 3299 size = howmany(cnt, jrecmin) * devbsize; 3300 else 3301 size = fs->fs_bsize; 3302 /* 3303 * Allocate a disk block for this journal data and account 3304 * for truncation of the requested size if enough contiguous 3305 * space was not available. 3306 */ 3307 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3308 bp->b_lblkno = bp->b_blkno; 3309 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3310 bp->b_bcount = size; 3311 bp->b_flags &= ~B_INVAL; 3312 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3313 /* 3314 * Initialize our jseg with cnt records. Assign the next 3315 * sequence number to it and link it in-order. 3316 */ 3317 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3318 jseg->js_buf = bp; 3319 jseg->js_cnt = cnt; 3320 jseg->js_refs = cnt + 1; /* Self ref. */ 3321 jseg->js_size = size; 3322 jseg->js_seq = jblocks->jb_nextseq++; 3323 if (jblocks->jb_oldestseg == NULL) 3324 jblocks->jb_oldestseg = jseg; 3325 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3326 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3327 if (jblocks->jb_writeseg == NULL) 3328 jblocks->jb_writeseg = jseg; 3329 /* 3330 * Start filling in records from the pending list. 3331 */ 3332 data = bp->b_data; 3333 off = 0; 3334 3335 /* 3336 * Always put a header on the first block. 3337 * XXX As with below, there might not be a chance to get 3338 * into the loop. Ensure that something valid is written. 3339 */ 3340 jseg_write(ump, jseg, data); 3341 off += JREC_SIZE; 3342 data = bp->b_data + off; 3343 3344 /* 3345 * XXX Something is wrong here. There's no work to do, 3346 * but we need to perform and I/O and allow it to complete 3347 * anyways. 3348 */ 3349 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3350 stat_emptyjblocks++; 3351 3352 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3353 != NULL) { 3354 if (cnt == 0) 3355 break; 3356 /* Place a segment header on every device block. */ 3357 if ((off % devbsize) == 0) { 3358 jseg_write(ump, jseg, data); 3359 off += JREC_SIZE; 3360 data = bp->b_data + off; 3361 } 3362 if (wk == needwk) 3363 needwk = NULL; 3364 remove_from_journal(wk); 3365 wk->wk_state |= INPROGRESS; 3366 WORKLIST_INSERT(&jseg->js_entries, wk); 3367 switch (wk->wk_type) { 3368 case D_JADDREF: 3369 jaddref_write(WK_JADDREF(wk), jseg, data); 3370 break; 3371 case D_JREMREF: 3372 jremref_write(WK_JREMREF(wk), jseg, data); 3373 break; 3374 case D_JMVREF: 3375 jmvref_write(WK_JMVREF(wk), jseg, data); 3376 break; 3377 case D_JNEWBLK: 3378 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3379 break; 3380 case D_JFREEBLK: 3381 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3382 break; 3383 case D_JFREEFRAG: 3384 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3385 break; 3386 case D_JTRUNC: 3387 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3388 break; 3389 case D_JFSYNC: 3390 jfsync_write(WK_JFSYNC(wk), jseg, data); 3391 break; 3392 default: 3393 panic("process_journal: Unknown type %s", 3394 TYPENAME(wk->wk_type)); 3395 /* NOTREACHED */ 3396 } 3397 off += JREC_SIZE; 3398 data = bp->b_data + off; 3399 cnt--; 3400 } 3401 3402 /* Clear any remaining space so we don't leak kernel data */ 3403 if (size > off) 3404 bzero(data, size - off); 3405 3406 /* 3407 * Write this one buffer and continue. 3408 */ 3409 segwritten = 1; 3410 jblocks->jb_needseg = 0; 3411 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3412 FREE_LOCK(ump); 3413 pbgetvp(ump->um_devvp, bp); 3414 /* 3415 * We only do the blocking wait once we find the journal 3416 * entry we're looking for. 3417 */ 3418 if (needwk == NULL && flags == MNT_WAIT) 3419 bwrite(bp); 3420 else 3421 bawrite(bp); 3422 ACQUIRE_LOCK(ump); 3423 } 3424 /* 3425 * If we wrote a segment issue a synchronize cache so the journal 3426 * is reflected on disk before the data is written. Since reclaiming 3427 * journal space also requires writing a journal record this 3428 * process also enforces a barrier before reclamation. 3429 */ 3430 if (segwritten && shouldflush) { 3431 softdep_synchronize(bio, ump, 3432 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3433 } else if (bio) 3434 g_destroy_bio(bio); 3435 /* 3436 * If we've suspended the filesystem because we ran out of journal 3437 * space either try to sync it here to make some progress or 3438 * unsuspend it if we already have. 3439 */ 3440 if (flags == 0 && jblocks->jb_suspended) { 3441 if (journal_unsuspend(ump)) 3442 return; 3443 FREE_LOCK(ump); 3444 VFS_SYNC(mp, MNT_NOWAIT); 3445 ffs_sbupdate(ump, MNT_WAIT, 0); 3446 ACQUIRE_LOCK(ump); 3447 } 3448 } 3449 3450 /* 3451 * Complete a jseg, allowing all dependencies awaiting journal writes 3452 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3453 * structures so that the journal segment can be freed to reclaim space. 3454 */ 3455 static void 3456 complete_jseg(jseg) 3457 struct jseg *jseg; 3458 { 3459 struct worklist *wk; 3460 struct jmvref *jmvref; 3461 int waiting; 3462 #ifdef INVARIANTS 3463 int i = 0; 3464 #endif 3465 3466 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3467 WORKLIST_REMOVE(wk); 3468 waiting = wk->wk_state & IOWAITING; 3469 wk->wk_state &= ~(INPROGRESS | IOWAITING); 3470 wk->wk_state |= COMPLETE; 3471 KASSERT(i++ < jseg->js_cnt, 3472 ("handle_written_jseg: overflow %d >= %d", 3473 i - 1, jseg->js_cnt)); 3474 switch (wk->wk_type) { 3475 case D_JADDREF: 3476 handle_written_jaddref(WK_JADDREF(wk)); 3477 break; 3478 case D_JREMREF: 3479 handle_written_jremref(WK_JREMREF(wk)); 3480 break; 3481 case D_JMVREF: 3482 rele_jseg(jseg); /* No jsegdep. */ 3483 jmvref = WK_JMVREF(wk); 3484 LIST_REMOVE(jmvref, jm_deps); 3485 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3486 free_pagedep(jmvref->jm_pagedep); 3487 WORKITEM_FREE(jmvref, D_JMVREF); 3488 break; 3489 case D_JNEWBLK: 3490 handle_written_jnewblk(WK_JNEWBLK(wk)); 3491 break; 3492 case D_JFREEBLK: 3493 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3494 break; 3495 case D_JTRUNC: 3496 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3497 break; 3498 case D_JFSYNC: 3499 rele_jseg(jseg); /* No jsegdep. */ 3500 WORKITEM_FREE(wk, D_JFSYNC); 3501 break; 3502 case D_JFREEFRAG: 3503 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3504 break; 3505 default: 3506 panic("handle_written_jseg: Unknown type %s", 3507 TYPENAME(wk->wk_type)); 3508 /* NOTREACHED */ 3509 } 3510 if (waiting) 3511 wakeup(wk); 3512 } 3513 /* Release the self reference so the structure may be freed. */ 3514 rele_jseg(jseg); 3515 } 3516 3517 /* 3518 * Determine which jsegs are ready for completion processing. Waits for 3519 * synchronize cache to complete as well as forcing in-order completion 3520 * of journal entries. 3521 */ 3522 static void 3523 complete_jsegs(jseg) 3524 struct jseg *jseg; 3525 { 3526 struct jblocks *jblocks; 3527 struct jseg *jsegn; 3528 3529 jblocks = jseg->js_jblocks; 3530 /* 3531 * Don't allow out of order completions. If this isn't the first 3532 * block wait for it to write before we're done. 3533 */ 3534 if (jseg != jblocks->jb_writeseg) 3535 return; 3536 /* Iterate through available jsegs processing their entries. */ 3537 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3538 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3539 jsegn = TAILQ_NEXT(jseg, js_next); 3540 complete_jseg(jseg); 3541 jseg = jsegn; 3542 } 3543 jblocks->jb_writeseg = jseg; 3544 /* 3545 * Attempt to free jsegs now that oldestwrseq may have advanced. 3546 */ 3547 free_jsegs(jblocks); 3548 } 3549 3550 /* 3551 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3552 * the final completions. 3553 */ 3554 static void 3555 handle_written_jseg(jseg, bp) 3556 struct jseg *jseg; 3557 struct buf *bp; 3558 { 3559 3560 if (jseg->js_refs == 0) 3561 panic("handle_written_jseg: No self-reference on %p", jseg); 3562 jseg->js_state |= DEPCOMPLETE; 3563 /* 3564 * We'll never need this buffer again, set flags so it will be 3565 * discarded. 3566 */ 3567 bp->b_flags |= B_INVAL | B_NOCACHE; 3568 pbrelvp(bp); 3569 complete_jsegs(jseg); 3570 } 3571 3572 static inline struct jsegdep * 3573 inoref_jseg(inoref) 3574 struct inoref *inoref; 3575 { 3576 struct jsegdep *jsegdep; 3577 3578 jsegdep = inoref->if_jsegdep; 3579 inoref->if_jsegdep = NULL; 3580 3581 return (jsegdep); 3582 } 3583 3584 /* 3585 * Called once a jremref has made it to stable store. The jremref is marked 3586 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3587 * for the jremref to complete will be awoken by free_jremref. 3588 */ 3589 static void 3590 handle_written_jremref(jremref) 3591 struct jremref *jremref; 3592 { 3593 struct inodedep *inodedep; 3594 struct jsegdep *jsegdep; 3595 struct dirrem *dirrem; 3596 3597 /* Grab the jsegdep. */ 3598 jsegdep = inoref_jseg(&jremref->jr_ref); 3599 /* 3600 * Remove us from the inoref list. 3601 */ 3602 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3603 0, &inodedep) == 0) 3604 panic("handle_written_jremref: Lost inodedep"); 3605 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3606 /* 3607 * Complete the dirrem. 3608 */ 3609 dirrem = jremref->jr_dirrem; 3610 jremref->jr_dirrem = NULL; 3611 LIST_REMOVE(jremref, jr_deps); 3612 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3613 jwork_insert(&dirrem->dm_jwork, jsegdep); 3614 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3615 (dirrem->dm_state & COMPLETE) != 0) 3616 add_to_worklist(&dirrem->dm_list, 0); 3617 free_jremref(jremref); 3618 } 3619 3620 /* 3621 * Called once a jaddref has made it to stable store. The dependency is 3622 * marked complete and any dependent structures are added to the inode 3623 * bufwait list to be completed as soon as it is written. If a bitmap write 3624 * depends on this entry we move the inode into the inodedephd of the 3625 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3626 */ 3627 static void 3628 handle_written_jaddref(jaddref) 3629 struct jaddref *jaddref; 3630 { 3631 struct jsegdep *jsegdep; 3632 struct inodedep *inodedep; 3633 struct diradd *diradd; 3634 struct mkdir *mkdir; 3635 3636 /* Grab the jsegdep. */ 3637 jsegdep = inoref_jseg(&jaddref->ja_ref); 3638 mkdir = NULL; 3639 diradd = NULL; 3640 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3641 0, &inodedep) == 0) 3642 panic("handle_written_jaddref: Lost inodedep."); 3643 if (jaddref->ja_diradd == NULL) 3644 panic("handle_written_jaddref: No dependency"); 3645 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3646 diradd = jaddref->ja_diradd; 3647 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3648 } else if (jaddref->ja_state & MKDIR_PARENT) { 3649 mkdir = jaddref->ja_mkdir; 3650 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3651 } else if (jaddref->ja_state & MKDIR_BODY) 3652 mkdir = jaddref->ja_mkdir; 3653 else 3654 panic("handle_written_jaddref: Unknown dependency %p", 3655 jaddref->ja_diradd); 3656 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3657 /* 3658 * Remove us from the inode list. 3659 */ 3660 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3661 /* 3662 * The mkdir may be waiting on the jaddref to clear before freeing. 3663 */ 3664 if (mkdir) { 3665 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3666 ("handle_written_jaddref: Incorrect type for mkdir %s", 3667 TYPENAME(mkdir->md_list.wk_type))); 3668 mkdir->md_jaddref = NULL; 3669 diradd = mkdir->md_diradd; 3670 mkdir->md_state |= DEPCOMPLETE; 3671 complete_mkdir(mkdir); 3672 } 3673 jwork_insert(&diradd->da_jwork, jsegdep); 3674 if (jaddref->ja_state & NEWBLOCK) { 3675 inodedep->id_state |= ONDEPLIST; 3676 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3677 inodedep, id_deps); 3678 } 3679 free_jaddref(jaddref); 3680 } 3681 3682 /* 3683 * Called once a jnewblk journal is written. The allocdirect or allocindir 3684 * is placed in the bmsafemap to await notification of a written bitmap. If 3685 * the operation was canceled we add the segdep to the appropriate 3686 * dependency to free the journal space once the canceling operation 3687 * completes. 3688 */ 3689 static void 3690 handle_written_jnewblk(jnewblk) 3691 struct jnewblk *jnewblk; 3692 { 3693 struct bmsafemap *bmsafemap; 3694 struct freefrag *freefrag; 3695 struct freework *freework; 3696 struct jsegdep *jsegdep; 3697 struct newblk *newblk; 3698 3699 /* Grab the jsegdep. */ 3700 jsegdep = jnewblk->jn_jsegdep; 3701 jnewblk->jn_jsegdep = NULL; 3702 if (jnewblk->jn_dep == NULL) 3703 panic("handle_written_jnewblk: No dependency for the segdep."); 3704 switch (jnewblk->jn_dep->wk_type) { 3705 case D_NEWBLK: 3706 case D_ALLOCDIRECT: 3707 case D_ALLOCINDIR: 3708 /* 3709 * Add the written block to the bmsafemap so it can 3710 * be notified when the bitmap is on disk. 3711 */ 3712 newblk = WK_NEWBLK(jnewblk->jn_dep); 3713 newblk->nb_jnewblk = NULL; 3714 if ((newblk->nb_state & GOINGAWAY) == 0) { 3715 bmsafemap = newblk->nb_bmsafemap; 3716 newblk->nb_state |= ONDEPLIST; 3717 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3718 nb_deps); 3719 } 3720 jwork_insert(&newblk->nb_jwork, jsegdep); 3721 break; 3722 case D_FREEFRAG: 3723 /* 3724 * A newblock being removed by a freefrag when replaced by 3725 * frag extension. 3726 */ 3727 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3728 freefrag->ff_jdep = NULL; 3729 jwork_insert(&freefrag->ff_jwork, jsegdep); 3730 break; 3731 case D_FREEWORK: 3732 /* 3733 * A direct block was removed by truncate. 3734 */ 3735 freework = WK_FREEWORK(jnewblk->jn_dep); 3736 freework->fw_jnewblk = NULL; 3737 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3738 break; 3739 default: 3740 panic("handle_written_jnewblk: Unknown type %d.", 3741 jnewblk->jn_dep->wk_type); 3742 } 3743 jnewblk->jn_dep = NULL; 3744 free_jnewblk(jnewblk); 3745 } 3746 3747 /* 3748 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3749 * an in-flight allocation that has not yet been committed. Divorce us 3750 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3751 * to the worklist. 3752 */ 3753 static void 3754 cancel_jfreefrag(jfreefrag) 3755 struct jfreefrag *jfreefrag; 3756 { 3757 struct freefrag *freefrag; 3758 3759 if (jfreefrag->fr_jsegdep) { 3760 free_jsegdep(jfreefrag->fr_jsegdep); 3761 jfreefrag->fr_jsegdep = NULL; 3762 } 3763 freefrag = jfreefrag->fr_freefrag; 3764 jfreefrag->fr_freefrag = NULL; 3765 free_jfreefrag(jfreefrag); 3766 freefrag->ff_state |= DEPCOMPLETE; 3767 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3768 } 3769 3770 /* 3771 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3772 */ 3773 static void 3774 free_jfreefrag(jfreefrag) 3775 struct jfreefrag *jfreefrag; 3776 { 3777 3778 if (jfreefrag->fr_state & INPROGRESS) 3779 WORKLIST_REMOVE(&jfreefrag->fr_list); 3780 else if (jfreefrag->fr_state & ONWORKLIST) 3781 remove_from_journal(&jfreefrag->fr_list); 3782 if (jfreefrag->fr_freefrag != NULL) 3783 panic("free_jfreefrag: Still attached to a freefrag."); 3784 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3785 } 3786 3787 /* 3788 * Called when the journal write for a jfreefrag completes. The parent 3789 * freefrag is added to the worklist if this completes its dependencies. 3790 */ 3791 static void 3792 handle_written_jfreefrag(jfreefrag) 3793 struct jfreefrag *jfreefrag; 3794 { 3795 struct jsegdep *jsegdep; 3796 struct freefrag *freefrag; 3797 3798 /* Grab the jsegdep. */ 3799 jsegdep = jfreefrag->fr_jsegdep; 3800 jfreefrag->fr_jsegdep = NULL; 3801 freefrag = jfreefrag->fr_freefrag; 3802 if (freefrag == NULL) 3803 panic("handle_written_jfreefrag: No freefrag."); 3804 freefrag->ff_state |= DEPCOMPLETE; 3805 freefrag->ff_jdep = NULL; 3806 jwork_insert(&freefrag->ff_jwork, jsegdep); 3807 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3808 add_to_worklist(&freefrag->ff_list, 0); 3809 jfreefrag->fr_freefrag = NULL; 3810 free_jfreefrag(jfreefrag); 3811 } 3812 3813 /* 3814 * Called when the journal write for a jfreeblk completes. The jfreeblk 3815 * is removed from the freeblks list of pending journal writes and the 3816 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3817 * have been reclaimed. 3818 */ 3819 static void 3820 handle_written_jblkdep(jblkdep) 3821 struct jblkdep *jblkdep; 3822 { 3823 struct freeblks *freeblks; 3824 struct jsegdep *jsegdep; 3825 3826 /* Grab the jsegdep. */ 3827 jsegdep = jblkdep->jb_jsegdep; 3828 jblkdep->jb_jsegdep = NULL; 3829 freeblks = jblkdep->jb_freeblks; 3830 LIST_REMOVE(jblkdep, jb_deps); 3831 jwork_insert(&freeblks->fb_jwork, jsegdep); 3832 /* 3833 * If the freeblks is all journaled, we can add it to the worklist. 3834 */ 3835 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3836 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3837 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3838 3839 free_jblkdep(jblkdep); 3840 } 3841 3842 static struct jsegdep * 3843 newjsegdep(struct worklist *wk) 3844 { 3845 struct jsegdep *jsegdep; 3846 3847 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3848 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3849 jsegdep->jd_seg = NULL; 3850 3851 return (jsegdep); 3852 } 3853 3854 static struct jmvref * 3855 newjmvref(dp, ino, oldoff, newoff) 3856 struct inode *dp; 3857 ino_t ino; 3858 off_t oldoff; 3859 off_t newoff; 3860 { 3861 struct jmvref *jmvref; 3862 3863 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3864 workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump)); 3865 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 3866 jmvref->jm_parent = dp->i_number; 3867 jmvref->jm_ino = ino; 3868 jmvref->jm_oldoff = oldoff; 3869 jmvref->jm_newoff = newoff; 3870 3871 return (jmvref); 3872 } 3873 3874 /* 3875 * Allocate a new jremref that tracks the removal of ip from dp with the 3876 * directory entry offset of diroff. Mark the entry as ATTACHED and 3877 * DEPCOMPLETE as we have all the information required for the journal write 3878 * and the directory has already been removed from the buffer. The caller 3879 * is responsible for linking the jremref into the pagedep and adding it 3880 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 3881 * a DOTDOT addition so handle_workitem_remove() can properly assign 3882 * the jsegdep when we're done. 3883 */ 3884 static struct jremref * 3885 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 3886 off_t diroff, nlink_t nlink) 3887 { 3888 struct jremref *jremref; 3889 3890 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 3891 workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump)); 3892 jremref->jr_state = ATTACHED; 3893 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 3894 nlink, ip->i_mode); 3895 jremref->jr_dirrem = dirrem; 3896 3897 return (jremref); 3898 } 3899 3900 static inline void 3901 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 3902 nlink_t nlink, uint16_t mode) 3903 { 3904 3905 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 3906 inoref->if_diroff = diroff; 3907 inoref->if_ino = ino; 3908 inoref->if_parent = parent; 3909 inoref->if_nlink = nlink; 3910 inoref->if_mode = mode; 3911 } 3912 3913 /* 3914 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 3915 * directory offset may not be known until later. The caller is responsible 3916 * adding the entry to the journal when this information is available. nlink 3917 * should be the link count prior to the addition and mode is only required 3918 * to have the correct FMT. 3919 */ 3920 static struct jaddref * 3921 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 3922 uint16_t mode) 3923 { 3924 struct jaddref *jaddref; 3925 3926 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 3927 workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump)); 3928 jaddref->ja_state = ATTACHED; 3929 jaddref->ja_mkdir = NULL; 3930 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 3931 3932 return (jaddref); 3933 } 3934 3935 /* 3936 * Create a new free dependency for a freework. The caller is responsible 3937 * for adjusting the reference count when it has the lock held. The freedep 3938 * will track an outstanding bitmap write that will ultimately clear the 3939 * freework to continue. 3940 */ 3941 static struct freedep * 3942 newfreedep(struct freework *freework) 3943 { 3944 struct freedep *freedep; 3945 3946 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 3947 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 3948 freedep->fd_freework = freework; 3949 3950 return (freedep); 3951 } 3952 3953 /* 3954 * Free a freedep structure once the buffer it is linked to is written. If 3955 * this is the last reference to the freework schedule it for completion. 3956 */ 3957 static void 3958 free_freedep(freedep) 3959 struct freedep *freedep; 3960 { 3961 struct freework *freework; 3962 3963 freework = freedep->fd_freework; 3964 freework->fw_freeblks->fb_cgwait--; 3965 if (--freework->fw_ref == 0) 3966 freework_enqueue(freework); 3967 WORKITEM_FREE(freedep, D_FREEDEP); 3968 } 3969 3970 /* 3971 * Allocate a new freework structure that may be a level in an indirect 3972 * when parent is not NULL or a top level block when it is. The top level 3973 * freework structures are allocated without the soft updates lock held 3974 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 3975 */ 3976 static struct freework * 3977 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 3978 struct ufsmount *ump; 3979 struct freeblks *freeblks; 3980 struct freework *parent; 3981 ufs_lbn_t lbn; 3982 ufs2_daddr_t nb; 3983 int frags; 3984 int off; 3985 int journal; 3986 { 3987 struct freework *freework; 3988 3989 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 3990 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 3991 freework->fw_state = ATTACHED; 3992 freework->fw_jnewblk = NULL; 3993 freework->fw_freeblks = freeblks; 3994 freework->fw_parent = parent; 3995 freework->fw_lbn = lbn; 3996 freework->fw_blkno = nb; 3997 freework->fw_frags = frags; 3998 freework->fw_indir = NULL; 3999 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR) 4000 ? 0 : NINDIR(ump->um_fs) + 1; 4001 freework->fw_start = freework->fw_off = off; 4002 if (journal) 4003 newjfreeblk(freeblks, lbn, nb, frags); 4004 if (parent == NULL) { 4005 ACQUIRE_LOCK(ump); 4006 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4007 freeblks->fb_ref++; 4008 FREE_LOCK(ump); 4009 } 4010 4011 return (freework); 4012 } 4013 4014 /* 4015 * Eliminate a jfreeblk for a block that does not need journaling. 4016 */ 4017 static void 4018 cancel_jfreeblk(freeblks, blkno) 4019 struct freeblks *freeblks; 4020 ufs2_daddr_t blkno; 4021 { 4022 struct jfreeblk *jfreeblk; 4023 struct jblkdep *jblkdep; 4024 4025 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4026 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4027 continue; 4028 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4029 if (jfreeblk->jf_blkno == blkno) 4030 break; 4031 } 4032 if (jblkdep == NULL) 4033 return; 4034 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4035 free_jsegdep(jblkdep->jb_jsegdep); 4036 LIST_REMOVE(jblkdep, jb_deps); 4037 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4038 } 4039 4040 /* 4041 * Allocate a new jfreeblk to journal top level block pointer when truncating 4042 * a file. The caller must add this to the worklist when the soft updates 4043 * lock is held. 4044 */ 4045 static struct jfreeblk * 4046 newjfreeblk(freeblks, lbn, blkno, frags) 4047 struct freeblks *freeblks; 4048 ufs_lbn_t lbn; 4049 ufs2_daddr_t blkno; 4050 int frags; 4051 { 4052 struct jfreeblk *jfreeblk; 4053 4054 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4055 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4056 freeblks->fb_list.wk_mp); 4057 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4058 jfreeblk->jf_dep.jb_freeblks = freeblks; 4059 jfreeblk->jf_ino = freeblks->fb_inum; 4060 jfreeblk->jf_lbn = lbn; 4061 jfreeblk->jf_blkno = blkno; 4062 jfreeblk->jf_frags = frags; 4063 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4064 4065 return (jfreeblk); 4066 } 4067 4068 /* 4069 * Allocate a new jtrunc to track a partial truncation. 4070 */ 4071 static struct jtrunc * 4072 newjtrunc(freeblks, size, extsize) 4073 struct freeblks *freeblks; 4074 off_t size; 4075 int extsize; 4076 { 4077 struct jtrunc *jtrunc; 4078 4079 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4080 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4081 freeblks->fb_list.wk_mp); 4082 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4083 jtrunc->jt_dep.jb_freeblks = freeblks; 4084 jtrunc->jt_ino = freeblks->fb_inum; 4085 jtrunc->jt_size = size; 4086 jtrunc->jt_extsize = extsize; 4087 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4088 4089 return (jtrunc); 4090 } 4091 4092 /* 4093 * If we're canceling a new bitmap we have to search for another ref 4094 * to move into the bmsafemap dep. This might be better expressed 4095 * with another structure. 4096 */ 4097 static void 4098 move_newblock_dep(jaddref, inodedep) 4099 struct jaddref *jaddref; 4100 struct inodedep *inodedep; 4101 { 4102 struct inoref *inoref; 4103 struct jaddref *jaddrefn; 4104 4105 jaddrefn = NULL; 4106 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4107 inoref = TAILQ_NEXT(inoref, if_deps)) { 4108 if ((jaddref->ja_state & NEWBLOCK) && 4109 inoref->if_list.wk_type == D_JADDREF) { 4110 jaddrefn = (struct jaddref *)inoref; 4111 break; 4112 } 4113 } 4114 if (jaddrefn == NULL) 4115 return; 4116 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4117 jaddrefn->ja_state |= jaddref->ja_state & 4118 (ATTACHED | UNDONE | NEWBLOCK); 4119 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4120 jaddref->ja_state |= ATTACHED; 4121 LIST_REMOVE(jaddref, ja_bmdeps); 4122 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4123 ja_bmdeps); 4124 } 4125 4126 /* 4127 * Cancel a jaddref either before it has been written or while it is being 4128 * written. This happens when a link is removed before the add reaches 4129 * the disk. The jaddref dependency is kept linked into the bmsafemap 4130 * and inode to prevent the link count or bitmap from reaching the disk 4131 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4132 * required. 4133 * 4134 * Returns 1 if the canceled addref requires journaling of the remove and 4135 * 0 otherwise. 4136 */ 4137 static int 4138 cancel_jaddref(jaddref, inodedep, wkhd) 4139 struct jaddref *jaddref; 4140 struct inodedep *inodedep; 4141 struct workhead *wkhd; 4142 { 4143 struct inoref *inoref; 4144 struct jsegdep *jsegdep; 4145 int needsj; 4146 4147 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4148 ("cancel_jaddref: Canceling complete jaddref")); 4149 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4150 needsj = 1; 4151 else 4152 needsj = 0; 4153 if (inodedep == NULL) 4154 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4155 0, &inodedep) == 0) 4156 panic("cancel_jaddref: Lost inodedep"); 4157 /* 4158 * We must adjust the nlink of any reference operation that follows 4159 * us so that it is consistent with the in-memory reference. This 4160 * ensures that inode nlink rollbacks always have the correct link. 4161 */ 4162 if (needsj == 0) { 4163 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4164 inoref = TAILQ_NEXT(inoref, if_deps)) { 4165 if (inoref->if_state & GOINGAWAY) 4166 break; 4167 inoref->if_nlink--; 4168 } 4169 } 4170 jsegdep = inoref_jseg(&jaddref->ja_ref); 4171 if (jaddref->ja_state & NEWBLOCK) 4172 move_newblock_dep(jaddref, inodedep); 4173 wake_worklist(&jaddref->ja_list); 4174 jaddref->ja_mkdir = NULL; 4175 if (jaddref->ja_state & INPROGRESS) { 4176 jaddref->ja_state &= ~INPROGRESS; 4177 WORKLIST_REMOVE(&jaddref->ja_list); 4178 jwork_insert(wkhd, jsegdep); 4179 } else { 4180 free_jsegdep(jsegdep); 4181 if (jaddref->ja_state & DEPCOMPLETE) 4182 remove_from_journal(&jaddref->ja_list); 4183 } 4184 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4185 /* 4186 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4187 * can arrange for them to be freed with the bitmap. Otherwise we 4188 * no longer need this addref attached to the inoreflst and it 4189 * will incorrectly adjust nlink if we leave it. 4190 */ 4191 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4192 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4193 if_deps); 4194 jaddref->ja_state |= COMPLETE; 4195 free_jaddref(jaddref); 4196 return (needsj); 4197 } 4198 /* 4199 * Leave the head of the list for jsegdeps for fast merging. 4200 */ 4201 if (LIST_FIRST(wkhd) != NULL) { 4202 jaddref->ja_state |= ONWORKLIST; 4203 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4204 } else 4205 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4206 4207 return (needsj); 4208 } 4209 4210 /* 4211 * Attempt to free a jaddref structure when some work completes. This 4212 * should only succeed once the entry is written and all dependencies have 4213 * been notified. 4214 */ 4215 static void 4216 free_jaddref(jaddref) 4217 struct jaddref *jaddref; 4218 { 4219 4220 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4221 return; 4222 if (jaddref->ja_ref.if_jsegdep) 4223 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4224 jaddref, jaddref->ja_state); 4225 if (jaddref->ja_state & NEWBLOCK) 4226 LIST_REMOVE(jaddref, ja_bmdeps); 4227 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4228 panic("free_jaddref: Bad state %p(0x%X)", 4229 jaddref, jaddref->ja_state); 4230 if (jaddref->ja_mkdir != NULL) 4231 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4232 WORKITEM_FREE(jaddref, D_JADDREF); 4233 } 4234 4235 /* 4236 * Free a jremref structure once it has been written or discarded. 4237 */ 4238 static void 4239 free_jremref(jremref) 4240 struct jremref *jremref; 4241 { 4242 4243 if (jremref->jr_ref.if_jsegdep) 4244 free_jsegdep(jremref->jr_ref.if_jsegdep); 4245 if (jremref->jr_state & INPROGRESS) 4246 panic("free_jremref: IO still pending"); 4247 WORKITEM_FREE(jremref, D_JREMREF); 4248 } 4249 4250 /* 4251 * Free a jnewblk structure. 4252 */ 4253 static void 4254 free_jnewblk(jnewblk) 4255 struct jnewblk *jnewblk; 4256 { 4257 4258 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4259 return; 4260 LIST_REMOVE(jnewblk, jn_deps); 4261 if (jnewblk->jn_dep != NULL) 4262 panic("free_jnewblk: Dependency still attached."); 4263 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4264 } 4265 4266 /* 4267 * Cancel a jnewblk which has been been made redundant by frag extension. 4268 */ 4269 static void 4270 cancel_jnewblk(jnewblk, wkhd) 4271 struct jnewblk *jnewblk; 4272 struct workhead *wkhd; 4273 { 4274 struct jsegdep *jsegdep; 4275 4276 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4277 jsegdep = jnewblk->jn_jsegdep; 4278 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4279 panic("cancel_jnewblk: Invalid state"); 4280 jnewblk->jn_jsegdep = NULL; 4281 jnewblk->jn_dep = NULL; 4282 jnewblk->jn_state |= GOINGAWAY; 4283 if (jnewblk->jn_state & INPROGRESS) { 4284 jnewblk->jn_state &= ~INPROGRESS; 4285 WORKLIST_REMOVE(&jnewblk->jn_list); 4286 jwork_insert(wkhd, jsegdep); 4287 } else { 4288 free_jsegdep(jsegdep); 4289 remove_from_journal(&jnewblk->jn_list); 4290 } 4291 wake_worklist(&jnewblk->jn_list); 4292 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4293 } 4294 4295 static void 4296 free_jblkdep(jblkdep) 4297 struct jblkdep *jblkdep; 4298 { 4299 4300 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4301 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4302 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4303 WORKITEM_FREE(jblkdep, D_JTRUNC); 4304 else 4305 panic("free_jblkdep: Unexpected type %s", 4306 TYPENAME(jblkdep->jb_list.wk_type)); 4307 } 4308 4309 /* 4310 * Free a single jseg once it is no longer referenced in memory or on 4311 * disk. Reclaim journal blocks and dependencies waiting for the segment 4312 * to disappear. 4313 */ 4314 static void 4315 free_jseg(jseg, jblocks) 4316 struct jseg *jseg; 4317 struct jblocks *jblocks; 4318 { 4319 struct freework *freework; 4320 4321 /* 4322 * Free freework structures that were lingering to indicate freed 4323 * indirect blocks that forced journal write ordering on reallocate. 4324 */ 4325 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4326 indirblk_remove(freework); 4327 if (jblocks->jb_oldestseg == jseg) 4328 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4329 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4330 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4331 KASSERT(LIST_EMPTY(&jseg->js_entries), 4332 ("free_jseg: Freed jseg has valid entries.")); 4333 WORKITEM_FREE(jseg, D_JSEG); 4334 } 4335 4336 /* 4337 * Free all jsegs that meet the criteria for being reclaimed and update 4338 * oldestseg. 4339 */ 4340 static void 4341 free_jsegs(jblocks) 4342 struct jblocks *jblocks; 4343 { 4344 struct jseg *jseg; 4345 4346 /* 4347 * Free only those jsegs which have none allocated before them to 4348 * preserve the journal space ordering. 4349 */ 4350 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4351 /* 4352 * Only reclaim space when nothing depends on this journal 4353 * set and another set has written that it is no longer 4354 * valid. 4355 */ 4356 if (jseg->js_refs != 0) { 4357 jblocks->jb_oldestseg = jseg; 4358 return; 4359 } 4360 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4361 break; 4362 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4363 break; 4364 /* 4365 * We can free jsegs that didn't write entries when 4366 * oldestwrseq == js_seq. 4367 */ 4368 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4369 jseg->js_cnt != 0) 4370 break; 4371 free_jseg(jseg, jblocks); 4372 } 4373 /* 4374 * If we exited the loop above we still must discover the 4375 * oldest valid segment. 4376 */ 4377 if (jseg) 4378 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4379 jseg = TAILQ_NEXT(jseg, js_next)) 4380 if (jseg->js_refs != 0) 4381 break; 4382 jblocks->jb_oldestseg = jseg; 4383 /* 4384 * The journal has no valid records but some jsegs may still be 4385 * waiting on oldestwrseq to advance. We force a small record 4386 * out to permit these lingering records to be reclaimed. 4387 */ 4388 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4389 jblocks->jb_needseg = 1; 4390 } 4391 4392 /* 4393 * Release one reference to a jseg and free it if the count reaches 0. This 4394 * should eventually reclaim journal space as well. 4395 */ 4396 static void 4397 rele_jseg(jseg) 4398 struct jseg *jseg; 4399 { 4400 4401 KASSERT(jseg->js_refs > 0, 4402 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4403 if (--jseg->js_refs != 0) 4404 return; 4405 free_jsegs(jseg->js_jblocks); 4406 } 4407 4408 /* 4409 * Release a jsegdep and decrement the jseg count. 4410 */ 4411 static void 4412 free_jsegdep(jsegdep) 4413 struct jsegdep *jsegdep; 4414 { 4415 4416 if (jsegdep->jd_seg) 4417 rele_jseg(jsegdep->jd_seg); 4418 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4419 } 4420 4421 /* 4422 * Wait for a journal item to make it to disk. Initiate journal processing 4423 * if required. 4424 */ 4425 static int 4426 jwait(wk, waitfor) 4427 struct worklist *wk; 4428 int waitfor; 4429 { 4430 4431 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4432 /* 4433 * Blocking journal waits cause slow synchronous behavior. Record 4434 * stats on the frequency of these blocking operations. 4435 */ 4436 if (waitfor == MNT_WAIT) { 4437 stat_journal_wait++; 4438 switch (wk->wk_type) { 4439 case D_JREMREF: 4440 case D_JMVREF: 4441 stat_jwait_filepage++; 4442 break; 4443 case D_JTRUNC: 4444 case D_JFREEBLK: 4445 stat_jwait_freeblks++; 4446 break; 4447 case D_JNEWBLK: 4448 stat_jwait_newblk++; 4449 break; 4450 case D_JADDREF: 4451 stat_jwait_inode++; 4452 break; 4453 default: 4454 break; 4455 } 4456 } 4457 /* 4458 * If IO has not started we process the journal. We can't mark the 4459 * worklist item as IOWAITING because we drop the lock while 4460 * processing the journal and the worklist entry may be freed after 4461 * this point. The caller may call back in and re-issue the request. 4462 */ 4463 if ((wk->wk_state & INPROGRESS) == 0) { 4464 softdep_process_journal(wk->wk_mp, wk, waitfor); 4465 if (waitfor != MNT_WAIT) 4466 return (EBUSY); 4467 return (0); 4468 } 4469 if (waitfor != MNT_WAIT) 4470 return (EBUSY); 4471 wait_worklist(wk, "jwait"); 4472 return (0); 4473 } 4474 4475 /* 4476 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4477 * appropriate. This is a convenience function to reduce duplicate code 4478 * for the setup and revert functions below. 4479 */ 4480 static struct inodedep * 4481 inodedep_lookup_ip(ip) 4482 struct inode *ip; 4483 { 4484 struct inodedep *inodedep; 4485 int dflags; 4486 4487 KASSERT(ip->i_nlink >= ip->i_effnlink, 4488 ("inodedep_lookup_ip: bad delta")); 4489 dflags = DEPALLOC; 4490 if (IS_SNAPSHOT(ip)) 4491 dflags |= NODELAY; 4492 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, 4493 &inodedep); 4494 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4495 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4496 4497 return (inodedep); 4498 } 4499 4500 /* 4501 * Called prior to creating a new inode and linking it to a directory. The 4502 * jaddref structure must already be allocated by softdep_setup_inomapdep 4503 * and it is discovered here so we can initialize the mode and update 4504 * nlinkdelta. 4505 */ 4506 void 4507 softdep_setup_create(dp, ip) 4508 struct inode *dp; 4509 struct inode *ip; 4510 { 4511 struct inodedep *inodedep; 4512 struct jaddref *jaddref; 4513 struct vnode *dvp; 4514 4515 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4516 ("softdep_setup_create called on non-softdep filesystem")); 4517 KASSERT(ip->i_nlink == 1, 4518 ("softdep_setup_create: Invalid link count.")); 4519 dvp = ITOV(dp); 4520 ACQUIRE_LOCK(dp->i_ump); 4521 inodedep = inodedep_lookup_ip(ip); 4522 if (DOINGSUJ(dvp)) { 4523 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4524 inoreflst); 4525 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4526 ("softdep_setup_create: No addref structure present.")); 4527 } 4528 softdep_prelink(dvp, NULL); 4529 FREE_LOCK(dp->i_ump); 4530 } 4531 4532 /* 4533 * Create a jaddref structure to track the addition of a DOTDOT link when 4534 * we are reparenting an inode as part of a rename. This jaddref will be 4535 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4536 * non-journaling softdep. 4537 */ 4538 void 4539 softdep_setup_dotdot_link(dp, ip) 4540 struct inode *dp; 4541 struct inode *ip; 4542 { 4543 struct inodedep *inodedep; 4544 struct jaddref *jaddref; 4545 struct vnode *dvp; 4546 struct vnode *vp; 4547 4548 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4549 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4550 dvp = ITOV(dp); 4551 vp = ITOV(ip); 4552 jaddref = NULL; 4553 /* 4554 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4555 * is used as a normal link would be. 4556 */ 4557 if (DOINGSUJ(dvp)) 4558 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4559 dp->i_effnlink - 1, dp->i_mode); 4560 ACQUIRE_LOCK(dp->i_ump); 4561 inodedep = inodedep_lookup_ip(dp); 4562 if (jaddref) 4563 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4564 if_deps); 4565 softdep_prelink(dvp, ITOV(ip)); 4566 FREE_LOCK(dp->i_ump); 4567 } 4568 4569 /* 4570 * Create a jaddref structure to track a new link to an inode. The directory 4571 * offset is not known until softdep_setup_directory_add or 4572 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4573 * softdep. 4574 */ 4575 void 4576 softdep_setup_link(dp, ip) 4577 struct inode *dp; 4578 struct inode *ip; 4579 { 4580 struct inodedep *inodedep; 4581 struct jaddref *jaddref; 4582 struct vnode *dvp; 4583 4584 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4585 ("softdep_setup_link called on non-softdep filesystem")); 4586 dvp = ITOV(dp); 4587 jaddref = NULL; 4588 if (DOINGSUJ(dvp)) 4589 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4590 ip->i_mode); 4591 ACQUIRE_LOCK(dp->i_ump); 4592 inodedep = inodedep_lookup_ip(ip); 4593 if (jaddref) 4594 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4595 if_deps); 4596 softdep_prelink(dvp, ITOV(ip)); 4597 FREE_LOCK(dp->i_ump); 4598 } 4599 4600 /* 4601 * Called to create the jaddref structures to track . and .. references as 4602 * well as lookup and further initialize the incomplete jaddref created 4603 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4604 * nlinkdelta for non-journaling softdep. 4605 */ 4606 void 4607 softdep_setup_mkdir(dp, ip) 4608 struct inode *dp; 4609 struct inode *ip; 4610 { 4611 struct inodedep *inodedep; 4612 struct jaddref *dotdotaddref; 4613 struct jaddref *dotaddref; 4614 struct jaddref *jaddref; 4615 struct vnode *dvp; 4616 4617 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4618 ("softdep_setup_mkdir called on non-softdep filesystem")); 4619 dvp = ITOV(dp); 4620 dotaddref = dotdotaddref = NULL; 4621 if (DOINGSUJ(dvp)) { 4622 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4623 ip->i_mode); 4624 dotaddref->ja_state |= MKDIR_BODY; 4625 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4626 dp->i_effnlink - 1, dp->i_mode); 4627 dotdotaddref->ja_state |= MKDIR_PARENT; 4628 } 4629 ACQUIRE_LOCK(dp->i_ump); 4630 inodedep = inodedep_lookup_ip(ip); 4631 if (DOINGSUJ(dvp)) { 4632 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4633 inoreflst); 4634 KASSERT(jaddref != NULL, 4635 ("softdep_setup_mkdir: No addref structure present.")); 4636 KASSERT(jaddref->ja_parent == dp->i_number, 4637 ("softdep_setup_mkdir: bad parent %ju", 4638 (uintmax_t)jaddref->ja_parent)); 4639 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4640 if_deps); 4641 } 4642 inodedep = inodedep_lookup_ip(dp); 4643 if (DOINGSUJ(dvp)) 4644 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4645 &dotdotaddref->ja_ref, if_deps); 4646 softdep_prelink(ITOV(dp), NULL); 4647 FREE_LOCK(dp->i_ump); 4648 } 4649 4650 /* 4651 * Called to track nlinkdelta of the inode and parent directories prior to 4652 * unlinking a directory. 4653 */ 4654 void 4655 softdep_setup_rmdir(dp, ip) 4656 struct inode *dp; 4657 struct inode *ip; 4658 { 4659 struct vnode *dvp; 4660 4661 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4662 ("softdep_setup_rmdir called on non-softdep filesystem")); 4663 dvp = ITOV(dp); 4664 ACQUIRE_LOCK(dp->i_ump); 4665 (void) inodedep_lookup_ip(ip); 4666 (void) inodedep_lookup_ip(dp); 4667 softdep_prelink(dvp, ITOV(ip)); 4668 FREE_LOCK(dp->i_ump); 4669 } 4670 4671 /* 4672 * Called to track nlinkdelta of the inode and parent directories prior to 4673 * unlink. 4674 */ 4675 void 4676 softdep_setup_unlink(dp, ip) 4677 struct inode *dp; 4678 struct inode *ip; 4679 { 4680 struct vnode *dvp; 4681 4682 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4683 ("softdep_setup_unlink called on non-softdep filesystem")); 4684 dvp = ITOV(dp); 4685 ACQUIRE_LOCK(dp->i_ump); 4686 (void) inodedep_lookup_ip(ip); 4687 (void) inodedep_lookup_ip(dp); 4688 softdep_prelink(dvp, ITOV(ip)); 4689 FREE_LOCK(dp->i_ump); 4690 } 4691 4692 /* 4693 * Called to release the journal structures created by a failed non-directory 4694 * creation. Adjusts nlinkdelta for non-journaling softdep. 4695 */ 4696 void 4697 softdep_revert_create(dp, ip) 4698 struct inode *dp; 4699 struct inode *ip; 4700 { 4701 struct inodedep *inodedep; 4702 struct jaddref *jaddref; 4703 struct vnode *dvp; 4704 4705 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4706 ("softdep_revert_create called on non-softdep filesystem")); 4707 dvp = ITOV(dp); 4708 ACQUIRE_LOCK(dp->i_ump); 4709 inodedep = inodedep_lookup_ip(ip); 4710 if (DOINGSUJ(dvp)) { 4711 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4712 inoreflst); 4713 KASSERT(jaddref->ja_parent == dp->i_number, 4714 ("softdep_revert_create: addref parent mismatch")); 4715 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4716 } 4717 FREE_LOCK(dp->i_ump); 4718 } 4719 4720 /* 4721 * Called to release the journal structures created by a failed link 4722 * addition. Adjusts nlinkdelta for non-journaling softdep. 4723 */ 4724 void 4725 softdep_revert_link(dp, ip) 4726 struct inode *dp; 4727 struct inode *ip; 4728 { 4729 struct inodedep *inodedep; 4730 struct jaddref *jaddref; 4731 struct vnode *dvp; 4732 4733 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4734 ("softdep_revert_link called on non-softdep filesystem")); 4735 dvp = ITOV(dp); 4736 ACQUIRE_LOCK(dp->i_ump); 4737 inodedep = inodedep_lookup_ip(ip); 4738 if (DOINGSUJ(dvp)) { 4739 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4740 inoreflst); 4741 KASSERT(jaddref->ja_parent == dp->i_number, 4742 ("softdep_revert_link: addref parent mismatch")); 4743 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4744 } 4745 FREE_LOCK(dp->i_ump); 4746 } 4747 4748 /* 4749 * Called to release the journal structures created by a failed mkdir 4750 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4751 */ 4752 void 4753 softdep_revert_mkdir(dp, ip) 4754 struct inode *dp; 4755 struct inode *ip; 4756 { 4757 struct inodedep *inodedep; 4758 struct jaddref *jaddref; 4759 struct jaddref *dotaddref; 4760 struct vnode *dvp; 4761 4762 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4763 ("softdep_revert_mkdir called on non-softdep filesystem")); 4764 dvp = ITOV(dp); 4765 4766 ACQUIRE_LOCK(dp->i_ump); 4767 inodedep = inodedep_lookup_ip(dp); 4768 if (DOINGSUJ(dvp)) { 4769 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4770 inoreflst); 4771 KASSERT(jaddref->ja_parent == ip->i_number, 4772 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4773 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4774 } 4775 inodedep = inodedep_lookup_ip(ip); 4776 if (DOINGSUJ(dvp)) { 4777 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4778 inoreflst); 4779 KASSERT(jaddref->ja_parent == dp->i_number, 4780 ("softdep_revert_mkdir: addref parent mismatch")); 4781 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4782 inoreflst, if_deps); 4783 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4784 KASSERT(dotaddref->ja_parent == ip->i_number, 4785 ("softdep_revert_mkdir: dot addref parent mismatch")); 4786 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4787 } 4788 FREE_LOCK(dp->i_ump); 4789 } 4790 4791 /* 4792 * Called to correct nlinkdelta after a failed rmdir. 4793 */ 4794 void 4795 softdep_revert_rmdir(dp, ip) 4796 struct inode *dp; 4797 struct inode *ip; 4798 { 4799 4800 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4801 ("softdep_revert_rmdir called on non-softdep filesystem")); 4802 ACQUIRE_LOCK(dp->i_ump); 4803 (void) inodedep_lookup_ip(ip); 4804 (void) inodedep_lookup_ip(dp); 4805 FREE_LOCK(dp->i_ump); 4806 } 4807 4808 /* 4809 * Protecting the freemaps (or bitmaps). 4810 * 4811 * To eliminate the need to execute fsck before mounting a filesystem 4812 * after a power failure, one must (conservatively) guarantee that the 4813 * on-disk copy of the bitmaps never indicate that a live inode or block is 4814 * free. So, when a block or inode is allocated, the bitmap should be 4815 * updated (on disk) before any new pointers. When a block or inode is 4816 * freed, the bitmap should not be updated until all pointers have been 4817 * reset. The latter dependency is handled by the delayed de-allocation 4818 * approach described below for block and inode de-allocation. The former 4819 * dependency is handled by calling the following procedure when a block or 4820 * inode is allocated. When an inode is allocated an "inodedep" is created 4821 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4822 * Each "inodedep" is also inserted into the hash indexing structure so 4823 * that any additional link additions can be made dependent on the inode 4824 * allocation. 4825 * 4826 * The ufs filesystem maintains a number of free block counts (e.g., per 4827 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4828 * in addition to the bitmaps. These counts are used to improve efficiency 4829 * during allocation and therefore must be consistent with the bitmaps. 4830 * There is no convenient way to guarantee post-crash consistency of these 4831 * counts with simple update ordering, for two main reasons: (1) The counts 4832 * and bitmaps for a single cylinder group block are not in the same disk 4833 * sector. If a disk write is interrupted (e.g., by power failure), one may 4834 * be written and the other not. (2) Some of the counts are located in the 4835 * superblock rather than the cylinder group block. So, we focus our soft 4836 * updates implementation on protecting the bitmaps. When mounting a 4837 * filesystem, we recompute the auxiliary counts from the bitmaps. 4838 */ 4839 4840 /* 4841 * Called just after updating the cylinder group block to allocate an inode. 4842 */ 4843 void 4844 softdep_setup_inomapdep(bp, ip, newinum, mode) 4845 struct buf *bp; /* buffer for cylgroup block with inode map */ 4846 struct inode *ip; /* inode related to allocation */ 4847 ino_t newinum; /* new inode number being allocated */ 4848 int mode; 4849 { 4850 struct inodedep *inodedep; 4851 struct bmsafemap *bmsafemap; 4852 struct jaddref *jaddref; 4853 struct mount *mp; 4854 struct fs *fs; 4855 4856 mp = UFSTOVFS(ip->i_ump); 4857 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 4858 ("softdep_setup_inomapdep called on non-softdep filesystem")); 4859 fs = ip->i_ump->um_fs; 4860 jaddref = NULL; 4861 4862 /* 4863 * Allocate the journal reference add structure so that the bitmap 4864 * can be dependent on it. 4865 */ 4866 if (MOUNTEDSUJ(mp)) { 4867 jaddref = newjaddref(ip, newinum, 0, 0, mode); 4868 jaddref->ja_state |= NEWBLOCK; 4869 } 4870 4871 /* 4872 * Create a dependency for the newly allocated inode. 4873 * Panic if it already exists as something is seriously wrong. 4874 * Otherwise add it to the dependency list for the buffer holding 4875 * the cylinder group map from which it was allocated. 4876 * 4877 * We have to preallocate a bmsafemap entry in case it is needed 4878 * in bmsafemap_lookup since once we allocate the inodedep, we 4879 * have to finish initializing it before we can FREE_LOCK(). 4880 * By preallocating, we avoid FREE_LOCK() while doing a malloc 4881 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 4882 * creating the inodedep as it can be freed during the time 4883 * that we FREE_LOCK() while allocating the inodedep. We must 4884 * call workitem_alloc() before entering the locked section as 4885 * it also acquires the lock and we must avoid trying doing so 4886 * recursively. 4887 */ 4888 bmsafemap = malloc(sizeof(struct bmsafemap), 4889 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 4890 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 4891 ACQUIRE_LOCK(ip->i_ump); 4892 if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep))) 4893 panic("softdep_setup_inomapdep: dependency %p for new" 4894 "inode already exists", inodedep); 4895 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 4896 if (jaddref) { 4897 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 4898 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4899 if_deps); 4900 } else { 4901 inodedep->id_state |= ONDEPLIST; 4902 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 4903 } 4904 inodedep->id_bmsafemap = bmsafemap; 4905 inodedep->id_state &= ~DEPCOMPLETE; 4906 FREE_LOCK(ip->i_ump); 4907 } 4908 4909 /* 4910 * Called just after updating the cylinder group block to 4911 * allocate block or fragment. 4912 */ 4913 void 4914 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 4915 struct buf *bp; /* buffer for cylgroup block with block map */ 4916 struct mount *mp; /* filesystem doing allocation */ 4917 ufs2_daddr_t newblkno; /* number of newly allocated block */ 4918 int frags; /* Number of fragments. */ 4919 int oldfrags; /* Previous number of fragments for extend. */ 4920 { 4921 struct newblk *newblk; 4922 struct bmsafemap *bmsafemap; 4923 struct jnewblk *jnewblk; 4924 struct ufsmount *ump; 4925 struct fs *fs; 4926 4927 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 4928 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 4929 ump = VFSTOUFS(mp); 4930 fs = ump->um_fs; 4931 jnewblk = NULL; 4932 /* 4933 * Create a dependency for the newly allocated block. 4934 * Add it to the dependency list for the buffer holding 4935 * the cylinder group map from which it was allocated. 4936 */ 4937 if (MOUNTEDSUJ(mp)) { 4938 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 4939 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 4940 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 4941 jnewblk->jn_state = ATTACHED; 4942 jnewblk->jn_blkno = newblkno; 4943 jnewblk->jn_frags = frags; 4944 jnewblk->jn_oldfrags = oldfrags; 4945 #ifdef SUJ_DEBUG 4946 { 4947 struct cg *cgp; 4948 uint8_t *blksfree; 4949 long bno; 4950 int i; 4951 4952 cgp = (struct cg *)bp->b_data; 4953 blksfree = cg_blksfree(cgp); 4954 bno = dtogd(fs, jnewblk->jn_blkno); 4955 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 4956 i++) { 4957 if (isset(blksfree, bno + i)) 4958 panic("softdep_setup_blkmapdep: " 4959 "free fragment %d from %d-%d " 4960 "state 0x%X dep %p", i, 4961 jnewblk->jn_oldfrags, 4962 jnewblk->jn_frags, 4963 jnewblk->jn_state, 4964 jnewblk->jn_dep); 4965 } 4966 } 4967 #endif 4968 } 4969 4970 CTR3(KTR_SUJ, 4971 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 4972 newblkno, frags, oldfrags); 4973 ACQUIRE_LOCK(ump); 4974 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 4975 panic("softdep_setup_blkmapdep: found block"); 4976 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 4977 dtog(fs, newblkno), NULL); 4978 if (jnewblk) { 4979 jnewblk->jn_dep = (struct worklist *)newblk; 4980 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 4981 } else { 4982 newblk->nb_state |= ONDEPLIST; 4983 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 4984 } 4985 newblk->nb_bmsafemap = bmsafemap; 4986 newblk->nb_jnewblk = jnewblk; 4987 FREE_LOCK(ump); 4988 } 4989 4990 #define BMSAFEMAP_HASH(ump, cg) \ 4991 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 4992 4993 static int 4994 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 4995 struct bmsafemap_hashhead *bmsafemaphd; 4996 int cg; 4997 struct bmsafemap **bmsafemapp; 4998 { 4999 struct bmsafemap *bmsafemap; 5000 5001 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5002 if (bmsafemap->sm_cg == cg) 5003 break; 5004 if (bmsafemap) { 5005 *bmsafemapp = bmsafemap; 5006 return (1); 5007 } 5008 *bmsafemapp = NULL; 5009 5010 return (0); 5011 } 5012 5013 /* 5014 * Find the bmsafemap associated with a cylinder group buffer. 5015 * If none exists, create one. The buffer must be locked when 5016 * this routine is called and this routine must be called with 5017 * the softdep lock held. To avoid giving up the lock while 5018 * allocating a new bmsafemap, a preallocated bmsafemap may be 5019 * provided. If it is provided but not needed, it is freed. 5020 */ 5021 static struct bmsafemap * 5022 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5023 struct mount *mp; 5024 struct buf *bp; 5025 int cg; 5026 struct bmsafemap *newbmsafemap; 5027 { 5028 struct bmsafemap_hashhead *bmsafemaphd; 5029 struct bmsafemap *bmsafemap, *collision; 5030 struct worklist *wk; 5031 struct ufsmount *ump; 5032 5033 ump = VFSTOUFS(mp); 5034 LOCK_OWNED(ump); 5035 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5036 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5037 if (wk->wk_type == D_BMSAFEMAP) { 5038 if (newbmsafemap) 5039 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5040 return (WK_BMSAFEMAP(wk)); 5041 } 5042 } 5043 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5044 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5045 if (newbmsafemap) 5046 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5047 return (bmsafemap); 5048 } 5049 if (newbmsafemap) { 5050 bmsafemap = newbmsafemap; 5051 } else { 5052 FREE_LOCK(ump); 5053 bmsafemap = malloc(sizeof(struct bmsafemap), 5054 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5055 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5056 ACQUIRE_LOCK(ump); 5057 } 5058 bmsafemap->sm_buf = bp; 5059 LIST_INIT(&bmsafemap->sm_inodedephd); 5060 LIST_INIT(&bmsafemap->sm_inodedepwr); 5061 LIST_INIT(&bmsafemap->sm_newblkhd); 5062 LIST_INIT(&bmsafemap->sm_newblkwr); 5063 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5064 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5065 LIST_INIT(&bmsafemap->sm_freehd); 5066 LIST_INIT(&bmsafemap->sm_freewr); 5067 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5068 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5069 return (collision); 5070 } 5071 bmsafemap->sm_cg = cg; 5072 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5073 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5074 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5075 return (bmsafemap); 5076 } 5077 5078 /* 5079 * Direct block allocation dependencies. 5080 * 5081 * When a new block is allocated, the corresponding disk locations must be 5082 * initialized (with zeros or new data) before the on-disk inode points to 5083 * them. Also, the freemap from which the block was allocated must be 5084 * updated (on disk) before the inode's pointer. These two dependencies are 5085 * independent of each other and are needed for all file blocks and indirect 5086 * blocks that are pointed to directly by the inode. Just before the 5087 * "in-core" version of the inode is updated with a newly allocated block 5088 * number, a procedure (below) is called to setup allocation dependency 5089 * structures. These structures are removed when the corresponding 5090 * dependencies are satisfied or when the block allocation becomes obsolete 5091 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5092 * fragment that gets upgraded). All of these cases are handled in 5093 * procedures described later. 5094 * 5095 * When a file extension causes a fragment to be upgraded, either to a larger 5096 * fragment or to a full block, the on-disk location may change (if the 5097 * previous fragment could not simply be extended). In this case, the old 5098 * fragment must be de-allocated, but not until after the inode's pointer has 5099 * been updated. In most cases, this is handled by later procedures, which 5100 * will construct a "freefrag" structure to be added to the workitem queue 5101 * when the inode update is complete (or obsolete). The main exception to 5102 * this is when an allocation occurs while a pending allocation dependency 5103 * (for the same block pointer) remains. This case is handled in the main 5104 * allocation dependency setup procedure by immediately freeing the 5105 * unreferenced fragments. 5106 */ 5107 void 5108 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5109 struct inode *ip; /* inode to which block is being added */ 5110 ufs_lbn_t off; /* block pointer within inode */ 5111 ufs2_daddr_t newblkno; /* disk block number being added */ 5112 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5113 long newsize; /* size of new block */ 5114 long oldsize; /* size of new block */ 5115 struct buf *bp; /* bp for allocated block */ 5116 { 5117 struct allocdirect *adp, *oldadp; 5118 struct allocdirectlst *adphead; 5119 struct freefrag *freefrag; 5120 struct inodedep *inodedep; 5121 struct pagedep *pagedep; 5122 struct jnewblk *jnewblk; 5123 struct newblk *newblk; 5124 struct mount *mp; 5125 ufs_lbn_t lbn; 5126 5127 lbn = bp->b_lblkno; 5128 mp = UFSTOVFS(ip->i_ump); 5129 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5130 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5131 if (oldblkno && oldblkno != newblkno) 5132 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5133 else 5134 freefrag = NULL; 5135 5136 CTR6(KTR_SUJ, 5137 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5138 "off %jd newsize %ld oldsize %d", 5139 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5140 ACQUIRE_LOCK(ip->i_ump); 5141 if (off >= NDADDR) { 5142 if (lbn > 0) 5143 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5144 lbn, off); 5145 /* allocating an indirect block */ 5146 if (oldblkno != 0) 5147 panic("softdep_setup_allocdirect: non-zero indir"); 5148 } else { 5149 if (off != lbn) 5150 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5151 lbn, off); 5152 /* 5153 * Allocating a direct block. 5154 * 5155 * If we are allocating a directory block, then we must 5156 * allocate an associated pagedep to track additions and 5157 * deletions. 5158 */ 5159 if ((ip->i_mode & IFMT) == IFDIR) 5160 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5161 &pagedep); 5162 } 5163 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5164 panic("softdep_setup_allocdirect: lost block"); 5165 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5166 ("softdep_setup_allocdirect: newblk already initialized")); 5167 /* 5168 * Convert the newblk to an allocdirect. 5169 */ 5170 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5171 adp = (struct allocdirect *)newblk; 5172 newblk->nb_freefrag = freefrag; 5173 adp->ad_offset = off; 5174 adp->ad_oldblkno = oldblkno; 5175 adp->ad_newsize = newsize; 5176 adp->ad_oldsize = oldsize; 5177 5178 /* 5179 * Finish initializing the journal. 5180 */ 5181 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5182 jnewblk->jn_ino = ip->i_number; 5183 jnewblk->jn_lbn = lbn; 5184 add_to_journal(&jnewblk->jn_list); 5185 } 5186 if (freefrag && freefrag->ff_jdep != NULL && 5187 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5188 add_to_journal(freefrag->ff_jdep); 5189 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5190 adp->ad_inodedep = inodedep; 5191 5192 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5193 /* 5194 * The list of allocdirects must be kept in sorted and ascending 5195 * order so that the rollback routines can quickly determine the 5196 * first uncommitted block (the size of the file stored on disk 5197 * ends at the end of the lowest committed fragment, or if there 5198 * are no fragments, at the end of the highest committed block). 5199 * Since files generally grow, the typical case is that the new 5200 * block is to be added at the end of the list. We speed this 5201 * special case by checking against the last allocdirect in the 5202 * list before laboriously traversing the list looking for the 5203 * insertion point. 5204 */ 5205 adphead = &inodedep->id_newinoupdt; 5206 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5207 if (oldadp == NULL || oldadp->ad_offset <= off) { 5208 /* insert at end of list */ 5209 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5210 if (oldadp != NULL && oldadp->ad_offset == off) 5211 allocdirect_merge(adphead, adp, oldadp); 5212 FREE_LOCK(ip->i_ump); 5213 return; 5214 } 5215 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5216 if (oldadp->ad_offset >= off) 5217 break; 5218 } 5219 if (oldadp == NULL) 5220 panic("softdep_setup_allocdirect: lost entry"); 5221 /* insert in middle of list */ 5222 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5223 if (oldadp->ad_offset == off) 5224 allocdirect_merge(adphead, adp, oldadp); 5225 5226 FREE_LOCK(ip->i_ump); 5227 } 5228 5229 /* 5230 * Merge a newer and older journal record to be stored either in a 5231 * newblock or freefrag. This handles aggregating journal records for 5232 * fragment allocation into a second record as well as replacing a 5233 * journal free with an aborted journal allocation. A segment for the 5234 * oldest record will be placed on wkhd if it has been written. If not 5235 * the segment for the newer record will suffice. 5236 */ 5237 static struct worklist * 5238 jnewblk_merge(new, old, wkhd) 5239 struct worklist *new; 5240 struct worklist *old; 5241 struct workhead *wkhd; 5242 { 5243 struct jnewblk *njnewblk; 5244 struct jnewblk *jnewblk; 5245 5246 /* Handle NULLs to simplify callers. */ 5247 if (new == NULL) 5248 return (old); 5249 if (old == NULL) 5250 return (new); 5251 /* Replace a jfreefrag with a jnewblk. */ 5252 if (new->wk_type == D_JFREEFRAG) { 5253 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5254 panic("jnewblk_merge: blkno mismatch: %p, %p", 5255 old, new); 5256 cancel_jfreefrag(WK_JFREEFRAG(new)); 5257 return (old); 5258 } 5259 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5260 panic("jnewblk_merge: Bad type: old %d new %d\n", 5261 old->wk_type, new->wk_type); 5262 /* 5263 * Handle merging of two jnewblk records that describe 5264 * different sets of fragments in the same block. 5265 */ 5266 jnewblk = WK_JNEWBLK(old); 5267 njnewblk = WK_JNEWBLK(new); 5268 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5269 panic("jnewblk_merge: Merging disparate blocks."); 5270 /* 5271 * The record may be rolled back in the cg. 5272 */ 5273 if (jnewblk->jn_state & UNDONE) { 5274 jnewblk->jn_state &= ~UNDONE; 5275 njnewblk->jn_state |= UNDONE; 5276 njnewblk->jn_state &= ~ATTACHED; 5277 } 5278 /* 5279 * We modify the newer addref and free the older so that if neither 5280 * has been written the most up-to-date copy will be on disk. If 5281 * both have been written but rolled back we only temporarily need 5282 * one of them to fix the bits when the cg write completes. 5283 */ 5284 jnewblk->jn_state |= ATTACHED | COMPLETE; 5285 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5286 cancel_jnewblk(jnewblk, wkhd); 5287 WORKLIST_REMOVE(&jnewblk->jn_list); 5288 free_jnewblk(jnewblk); 5289 return (new); 5290 } 5291 5292 /* 5293 * Replace an old allocdirect dependency with a newer one. 5294 * This routine must be called with splbio interrupts blocked. 5295 */ 5296 static void 5297 allocdirect_merge(adphead, newadp, oldadp) 5298 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5299 struct allocdirect *newadp; /* allocdirect being added */ 5300 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5301 { 5302 struct worklist *wk; 5303 struct freefrag *freefrag; 5304 5305 freefrag = NULL; 5306 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5307 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5308 newadp->ad_oldsize != oldadp->ad_newsize || 5309 newadp->ad_offset >= NDADDR) 5310 panic("%s %jd != new %jd || old size %ld != new %ld", 5311 "allocdirect_merge: old blkno", 5312 (intmax_t)newadp->ad_oldblkno, 5313 (intmax_t)oldadp->ad_newblkno, 5314 newadp->ad_oldsize, oldadp->ad_newsize); 5315 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5316 newadp->ad_oldsize = oldadp->ad_oldsize; 5317 /* 5318 * If the old dependency had a fragment to free or had never 5319 * previously had a block allocated, then the new dependency 5320 * can immediately post its freefrag and adopt the old freefrag. 5321 * This action is done by swapping the freefrag dependencies. 5322 * The new dependency gains the old one's freefrag, and the 5323 * old one gets the new one and then immediately puts it on 5324 * the worklist when it is freed by free_newblk. It is 5325 * not possible to do this swap when the old dependency had a 5326 * non-zero size but no previous fragment to free. This condition 5327 * arises when the new block is an extension of the old block. 5328 * Here, the first part of the fragment allocated to the new 5329 * dependency is part of the block currently claimed on disk by 5330 * the old dependency, so cannot legitimately be freed until the 5331 * conditions for the new dependency are fulfilled. 5332 */ 5333 freefrag = newadp->ad_freefrag; 5334 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5335 newadp->ad_freefrag = oldadp->ad_freefrag; 5336 oldadp->ad_freefrag = freefrag; 5337 } 5338 /* 5339 * If we are tracking a new directory-block allocation, 5340 * move it from the old allocdirect to the new allocdirect. 5341 */ 5342 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5343 WORKLIST_REMOVE(wk); 5344 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5345 panic("allocdirect_merge: extra newdirblk"); 5346 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5347 } 5348 TAILQ_REMOVE(adphead, oldadp, ad_next); 5349 /* 5350 * We need to move any journal dependencies over to the freefrag 5351 * that releases this block if it exists. Otherwise we are 5352 * extending an existing block and we'll wait until that is 5353 * complete to release the journal space and extend the 5354 * new journal to cover this old space as well. 5355 */ 5356 if (freefrag == NULL) { 5357 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5358 panic("allocdirect_merge: %jd != %jd", 5359 oldadp->ad_newblkno, newadp->ad_newblkno); 5360 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5361 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5362 &oldadp->ad_block.nb_jnewblk->jn_list, 5363 &newadp->ad_block.nb_jwork); 5364 oldadp->ad_block.nb_jnewblk = NULL; 5365 cancel_newblk(&oldadp->ad_block, NULL, 5366 &newadp->ad_block.nb_jwork); 5367 } else { 5368 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5369 &freefrag->ff_list, &freefrag->ff_jwork); 5370 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5371 &freefrag->ff_jwork); 5372 } 5373 free_newblk(&oldadp->ad_block); 5374 } 5375 5376 /* 5377 * Allocate a jfreefrag structure to journal a single block free. 5378 */ 5379 static struct jfreefrag * 5380 newjfreefrag(freefrag, ip, blkno, size, lbn) 5381 struct freefrag *freefrag; 5382 struct inode *ip; 5383 ufs2_daddr_t blkno; 5384 long size; 5385 ufs_lbn_t lbn; 5386 { 5387 struct jfreefrag *jfreefrag; 5388 struct fs *fs; 5389 5390 fs = ip->i_fs; 5391 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5392 M_SOFTDEP_FLAGS); 5393 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump)); 5394 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5395 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5396 jfreefrag->fr_ino = ip->i_number; 5397 jfreefrag->fr_lbn = lbn; 5398 jfreefrag->fr_blkno = blkno; 5399 jfreefrag->fr_frags = numfrags(fs, size); 5400 jfreefrag->fr_freefrag = freefrag; 5401 5402 return (jfreefrag); 5403 } 5404 5405 /* 5406 * Allocate a new freefrag structure. 5407 */ 5408 static struct freefrag * 5409 newfreefrag(ip, blkno, size, lbn) 5410 struct inode *ip; 5411 ufs2_daddr_t blkno; 5412 long size; 5413 ufs_lbn_t lbn; 5414 { 5415 struct freefrag *freefrag; 5416 struct fs *fs; 5417 5418 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5419 ip->i_number, blkno, size, lbn); 5420 fs = ip->i_fs; 5421 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5422 panic("newfreefrag: frag size"); 5423 freefrag = malloc(sizeof(struct freefrag), 5424 M_FREEFRAG, M_SOFTDEP_FLAGS); 5425 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 5426 freefrag->ff_state = ATTACHED; 5427 LIST_INIT(&freefrag->ff_jwork); 5428 freefrag->ff_inum = ip->i_number; 5429 freefrag->ff_vtype = ITOV(ip)->v_type; 5430 freefrag->ff_blkno = blkno; 5431 freefrag->ff_fragsize = size; 5432 5433 if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) { 5434 freefrag->ff_jdep = (struct worklist *) 5435 newjfreefrag(freefrag, ip, blkno, size, lbn); 5436 } else { 5437 freefrag->ff_state |= DEPCOMPLETE; 5438 freefrag->ff_jdep = NULL; 5439 } 5440 5441 return (freefrag); 5442 } 5443 5444 /* 5445 * This workitem de-allocates fragments that were replaced during 5446 * file block allocation. 5447 */ 5448 static void 5449 handle_workitem_freefrag(freefrag) 5450 struct freefrag *freefrag; 5451 { 5452 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5453 struct workhead wkhd; 5454 5455 CTR3(KTR_SUJ, 5456 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5457 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5458 /* 5459 * It would be illegal to add new completion items to the 5460 * freefrag after it was schedule to be done so it must be 5461 * safe to modify the list head here. 5462 */ 5463 LIST_INIT(&wkhd); 5464 ACQUIRE_LOCK(ump); 5465 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5466 /* 5467 * If the journal has not been written we must cancel it here. 5468 */ 5469 if (freefrag->ff_jdep) { 5470 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5471 panic("handle_workitem_freefrag: Unexpected type %d\n", 5472 freefrag->ff_jdep->wk_type); 5473 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5474 } 5475 FREE_LOCK(ump); 5476 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5477 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5478 ACQUIRE_LOCK(ump); 5479 WORKITEM_FREE(freefrag, D_FREEFRAG); 5480 FREE_LOCK(ump); 5481 } 5482 5483 /* 5484 * Set up a dependency structure for an external attributes data block. 5485 * This routine follows much of the structure of softdep_setup_allocdirect. 5486 * See the description of softdep_setup_allocdirect above for details. 5487 */ 5488 void 5489 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5490 struct inode *ip; 5491 ufs_lbn_t off; 5492 ufs2_daddr_t newblkno; 5493 ufs2_daddr_t oldblkno; 5494 long newsize; 5495 long oldsize; 5496 struct buf *bp; 5497 { 5498 struct allocdirect *adp, *oldadp; 5499 struct allocdirectlst *adphead; 5500 struct freefrag *freefrag; 5501 struct inodedep *inodedep; 5502 struct jnewblk *jnewblk; 5503 struct newblk *newblk; 5504 struct mount *mp; 5505 ufs_lbn_t lbn; 5506 5507 mp = UFSTOVFS(ip->i_ump); 5508 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5509 ("softdep_setup_allocext called on non-softdep filesystem")); 5510 KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR", 5511 (long long)off)); 5512 5513 lbn = bp->b_lblkno; 5514 if (oldblkno && oldblkno != newblkno) 5515 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5516 else 5517 freefrag = NULL; 5518 5519 ACQUIRE_LOCK(ip->i_ump); 5520 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5521 panic("softdep_setup_allocext: lost block"); 5522 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5523 ("softdep_setup_allocext: newblk already initialized")); 5524 /* 5525 * Convert the newblk to an allocdirect. 5526 */ 5527 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5528 adp = (struct allocdirect *)newblk; 5529 newblk->nb_freefrag = freefrag; 5530 adp->ad_offset = off; 5531 adp->ad_oldblkno = oldblkno; 5532 adp->ad_newsize = newsize; 5533 adp->ad_oldsize = oldsize; 5534 adp->ad_state |= EXTDATA; 5535 5536 /* 5537 * Finish initializing the journal. 5538 */ 5539 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5540 jnewblk->jn_ino = ip->i_number; 5541 jnewblk->jn_lbn = lbn; 5542 add_to_journal(&jnewblk->jn_list); 5543 } 5544 if (freefrag && freefrag->ff_jdep != NULL && 5545 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5546 add_to_journal(freefrag->ff_jdep); 5547 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5548 adp->ad_inodedep = inodedep; 5549 5550 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5551 /* 5552 * The list of allocdirects must be kept in sorted and ascending 5553 * order so that the rollback routines can quickly determine the 5554 * first uncommitted block (the size of the file stored on disk 5555 * ends at the end of the lowest committed fragment, or if there 5556 * are no fragments, at the end of the highest committed block). 5557 * Since files generally grow, the typical case is that the new 5558 * block is to be added at the end of the list. We speed this 5559 * special case by checking against the last allocdirect in the 5560 * list before laboriously traversing the list looking for the 5561 * insertion point. 5562 */ 5563 adphead = &inodedep->id_newextupdt; 5564 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5565 if (oldadp == NULL || oldadp->ad_offset <= off) { 5566 /* insert at end of list */ 5567 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5568 if (oldadp != NULL && oldadp->ad_offset == off) 5569 allocdirect_merge(adphead, adp, oldadp); 5570 FREE_LOCK(ip->i_ump); 5571 return; 5572 } 5573 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5574 if (oldadp->ad_offset >= off) 5575 break; 5576 } 5577 if (oldadp == NULL) 5578 panic("softdep_setup_allocext: lost entry"); 5579 /* insert in middle of list */ 5580 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5581 if (oldadp->ad_offset == off) 5582 allocdirect_merge(adphead, adp, oldadp); 5583 FREE_LOCK(ip->i_ump); 5584 } 5585 5586 /* 5587 * Indirect block allocation dependencies. 5588 * 5589 * The same dependencies that exist for a direct block also exist when 5590 * a new block is allocated and pointed to by an entry in a block of 5591 * indirect pointers. The undo/redo states described above are also 5592 * used here. Because an indirect block contains many pointers that 5593 * may have dependencies, a second copy of the entire in-memory indirect 5594 * block is kept. The buffer cache copy is always completely up-to-date. 5595 * The second copy, which is used only as a source for disk writes, 5596 * contains only the safe pointers (i.e., those that have no remaining 5597 * update dependencies). The second copy is freed when all pointers 5598 * are safe. The cache is not allowed to replace indirect blocks with 5599 * pending update dependencies. If a buffer containing an indirect 5600 * block with dependencies is written, these routines will mark it 5601 * dirty again. It can only be successfully written once all the 5602 * dependencies are removed. The ffs_fsync routine in conjunction with 5603 * softdep_sync_metadata work together to get all the dependencies 5604 * removed so that a file can be successfully written to disk. Three 5605 * procedures are used when setting up indirect block pointer 5606 * dependencies. The division is necessary because of the organization 5607 * of the "balloc" routine and because of the distinction between file 5608 * pages and file metadata blocks. 5609 */ 5610 5611 /* 5612 * Allocate a new allocindir structure. 5613 */ 5614 static struct allocindir * 5615 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5616 struct inode *ip; /* inode for file being extended */ 5617 int ptrno; /* offset of pointer in indirect block */ 5618 ufs2_daddr_t newblkno; /* disk block number being added */ 5619 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5620 ufs_lbn_t lbn; 5621 { 5622 struct newblk *newblk; 5623 struct allocindir *aip; 5624 struct freefrag *freefrag; 5625 struct jnewblk *jnewblk; 5626 5627 if (oldblkno) 5628 freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn); 5629 else 5630 freefrag = NULL; 5631 ACQUIRE_LOCK(ip->i_ump); 5632 if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0) 5633 panic("new_allocindir: lost block"); 5634 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5635 ("newallocindir: newblk already initialized")); 5636 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5637 newblk->nb_freefrag = freefrag; 5638 aip = (struct allocindir *)newblk; 5639 aip->ai_offset = ptrno; 5640 aip->ai_oldblkno = oldblkno; 5641 aip->ai_lbn = lbn; 5642 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5643 jnewblk->jn_ino = ip->i_number; 5644 jnewblk->jn_lbn = lbn; 5645 add_to_journal(&jnewblk->jn_list); 5646 } 5647 if (freefrag && freefrag->ff_jdep != NULL && 5648 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5649 add_to_journal(freefrag->ff_jdep); 5650 return (aip); 5651 } 5652 5653 /* 5654 * Called just before setting an indirect block pointer 5655 * to a newly allocated file page. 5656 */ 5657 void 5658 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5659 struct inode *ip; /* inode for file being extended */ 5660 ufs_lbn_t lbn; /* allocated block number within file */ 5661 struct buf *bp; /* buffer with indirect blk referencing page */ 5662 int ptrno; /* offset of pointer in indirect block */ 5663 ufs2_daddr_t newblkno; /* disk block number being added */ 5664 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5665 struct buf *nbp; /* buffer holding allocated page */ 5666 { 5667 struct inodedep *inodedep; 5668 struct freefrag *freefrag; 5669 struct allocindir *aip; 5670 struct pagedep *pagedep; 5671 struct mount *mp; 5672 int dflags; 5673 5674 mp = UFSTOVFS(ip->i_ump); 5675 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5676 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5677 KASSERT(lbn == nbp->b_lblkno, 5678 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5679 lbn, bp->b_lblkno)); 5680 CTR4(KTR_SUJ, 5681 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5682 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5683 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5684 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5685 dflags = DEPALLOC; 5686 if (IS_SNAPSHOT(ip)) 5687 dflags |= NODELAY; 5688 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 5689 /* 5690 * If we are allocating a directory page, then we must 5691 * allocate an associated pagedep to track additions and 5692 * deletions. 5693 */ 5694 if ((ip->i_mode & IFMT) == IFDIR) 5695 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5696 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5697 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5698 FREE_LOCK(ip->i_ump); 5699 if (freefrag) 5700 handle_workitem_freefrag(freefrag); 5701 } 5702 5703 /* 5704 * Called just before setting an indirect block pointer to a 5705 * newly allocated indirect block. 5706 */ 5707 void 5708 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5709 struct buf *nbp; /* newly allocated indirect block */ 5710 struct inode *ip; /* inode for file being extended */ 5711 struct buf *bp; /* indirect block referencing allocated block */ 5712 int ptrno; /* offset of pointer in indirect block */ 5713 ufs2_daddr_t newblkno; /* disk block number being added */ 5714 { 5715 struct inodedep *inodedep; 5716 struct allocindir *aip; 5717 ufs_lbn_t lbn; 5718 int dflags; 5719 5720 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 5721 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5722 CTR3(KTR_SUJ, 5723 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5724 ip->i_number, newblkno, ptrno); 5725 lbn = nbp->b_lblkno; 5726 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5727 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5728 dflags = DEPALLOC; 5729 if (IS_SNAPSHOT(ip)) 5730 dflags |= NODELAY; 5731 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 5732 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5733 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5734 panic("softdep_setup_allocindir_meta: Block already existed"); 5735 FREE_LOCK(ip->i_ump); 5736 } 5737 5738 static void 5739 indirdep_complete(indirdep) 5740 struct indirdep *indirdep; 5741 { 5742 struct allocindir *aip; 5743 5744 LIST_REMOVE(indirdep, ir_next); 5745 indirdep->ir_state |= DEPCOMPLETE; 5746 5747 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5748 LIST_REMOVE(aip, ai_next); 5749 free_newblk(&aip->ai_block); 5750 } 5751 /* 5752 * If this indirdep is not attached to a buf it was simply waiting 5753 * on completion to clear completehd. free_indirdep() asserts 5754 * that nothing is dangling. 5755 */ 5756 if ((indirdep->ir_state & ONWORKLIST) == 0) 5757 free_indirdep(indirdep); 5758 } 5759 5760 static struct indirdep * 5761 indirdep_lookup(mp, ip, bp) 5762 struct mount *mp; 5763 struct inode *ip; 5764 struct buf *bp; 5765 { 5766 struct indirdep *indirdep, *newindirdep; 5767 struct newblk *newblk; 5768 struct ufsmount *ump; 5769 struct worklist *wk; 5770 struct fs *fs; 5771 ufs2_daddr_t blkno; 5772 5773 ump = VFSTOUFS(mp); 5774 LOCK_OWNED(ump); 5775 indirdep = NULL; 5776 newindirdep = NULL; 5777 fs = ip->i_fs; 5778 for (;;) { 5779 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5780 if (wk->wk_type != D_INDIRDEP) 5781 continue; 5782 indirdep = WK_INDIRDEP(wk); 5783 break; 5784 } 5785 /* Found on the buffer worklist, no new structure to free. */ 5786 if (indirdep != NULL && newindirdep == NULL) 5787 return (indirdep); 5788 if (indirdep != NULL && newindirdep != NULL) 5789 panic("indirdep_lookup: simultaneous create"); 5790 /* None found on the buffer and a new structure is ready. */ 5791 if (indirdep == NULL && newindirdep != NULL) 5792 break; 5793 /* None found and no new structure available. */ 5794 FREE_LOCK(ump); 5795 newindirdep = malloc(sizeof(struct indirdep), 5796 M_INDIRDEP, M_SOFTDEP_FLAGS); 5797 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5798 newindirdep->ir_state = ATTACHED; 5799 if (ip->i_ump->um_fstype == UFS1) 5800 newindirdep->ir_state |= UFS1FMT; 5801 TAILQ_INIT(&newindirdep->ir_trunc); 5802 newindirdep->ir_saveddata = NULL; 5803 LIST_INIT(&newindirdep->ir_deplisthd); 5804 LIST_INIT(&newindirdep->ir_donehd); 5805 LIST_INIT(&newindirdep->ir_writehd); 5806 LIST_INIT(&newindirdep->ir_completehd); 5807 if (bp->b_blkno == bp->b_lblkno) { 5808 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5809 NULL, NULL); 5810 bp->b_blkno = blkno; 5811 } 5812 newindirdep->ir_freeblks = NULL; 5813 newindirdep->ir_savebp = 5814 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5815 newindirdep->ir_bp = bp; 5816 BUF_KERNPROC(newindirdep->ir_savebp); 5817 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5818 ACQUIRE_LOCK(ump); 5819 } 5820 indirdep = newindirdep; 5821 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5822 /* 5823 * If the block is not yet allocated we don't set DEPCOMPLETE so 5824 * that we don't free dependencies until the pointers are valid. 5825 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5826 * than using the hash. 5827 */ 5828 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5829 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5830 else 5831 indirdep->ir_state |= DEPCOMPLETE; 5832 return (indirdep); 5833 } 5834 5835 /* 5836 * Called to finish the allocation of the "aip" allocated 5837 * by one of the two routines above. 5838 */ 5839 static struct freefrag * 5840 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5841 struct buf *bp; /* in-memory copy of the indirect block */ 5842 struct inode *ip; /* inode for file being extended */ 5843 struct inodedep *inodedep; /* Inodedep for ip */ 5844 struct allocindir *aip; /* allocindir allocated by the above routines */ 5845 ufs_lbn_t lbn; /* Logical block number for this block. */ 5846 { 5847 struct fs *fs; 5848 struct indirdep *indirdep; 5849 struct allocindir *oldaip; 5850 struct freefrag *freefrag; 5851 struct mount *mp; 5852 5853 LOCK_OWNED(ip->i_ump); 5854 mp = UFSTOVFS(ip->i_ump); 5855 fs = ip->i_fs; 5856 if (bp->b_lblkno >= 0) 5857 panic("setup_allocindir_phase2: not indir blk"); 5858 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 5859 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 5860 indirdep = indirdep_lookup(mp, ip, bp); 5861 KASSERT(indirdep->ir_savebp != NULL, 5862 ("setup_allocindir_phase2 NULL ir_savebp")); 5863 aip->ai_indirdep = indirdep; 5864 /* 5865 * Check for an unwritten dependency for this indirect offset. If 5866 * there is, merge the old dependency into the new one. This happens 5867 * as a result of reallocblk only. 5868 */ 5869 freefrag = NULL; 5870 if (aip->ai_oldblkno != 0) { 5871 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 5872 if (oldaip->ai_offset == aip->ai_offset) { 5873 freefrag = allocindir_merge(aip, oldaip); 5874 goto done; 5875 } 5876 } 5877 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 5878 if (oldaip->ai_offset == aip->ai_offset) { 5879 freefrag = allocindir_merge(aip, oldaip); 5880 goto done; 5881 } 5882 } 5883 } 5884 done: 5885 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 5886 return (freefrag); 5887 } 5888 5889 /* 5890 * Merge two allocindirs which refer to the same block. Move newblock 5891 * dependencies and setup the freefrags appropriately. 5892 */ 5893 static struct freefrag * 5894 allocindir_merge(aip, oldaip) 5895 struct allocindir *aip; 5896 struct allocindir *oldaip; 5897 { 5898 struct freefrag *freefrag; 5899 struct worklist *wk; 5900 5901 if (oldaip->ai_newblkno != aip->ai_oldblkno) 5902 panic("allocindir_merge: blkno"); 5903 aip->ai_oldblkno = oldaip->ai_oldblkno; 5904 freefrag = aip->ai_freefrag; 5905 aip->ai_freefrag = oldaip->ai_freefrag; 5906 oldaip->ai_freefrag = NULL; 5907 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 5908 /* 5909 * If we are tracking a new directory-block allocation, 5910 * move it from the old allocindir to the new allocindir. 5911 */ 5912 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 5913 WORKLIST_REMOVE(wk); 5914 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 5915 panic("allocindir_merge: extra newdirblk"); 5916 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 5917 } 5918 /* 5919 * We can skip journaling for this freefrag and just complete 5920 * any pending journal work for the allocindir that is being 5921 * removed after the freefrag completes. 5922 */ 5923 if (freefrag->ff_jdep) 5924 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 5925 LIST_REMOVE(oldaip, ai_next); 5926 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 5927 &freefrag->ff_list, &freefrag->ff_jwork); 5928 free_newblk(&oldaip->ai_block); 5929 5930 return (freefrag); 5931 } 5932 5933 static inline void 5934 setup_freedirect(freeblks, ip, i, needj) 5935 struct freeblks *freeblks; 5936 struct inode *ip; 5937 int i; 5938 int needj; 5939 { 5940 ufs2_daddr_t blkno; 5941 int frags; 5942 5943 blkno = DIP(ip, i_db[i]); 5944 if (blkno == 0) 5945 return; 5946 DIP_SET(ip, i_db[i], 0); 5947 frags = sblksize(ip->i_fs, ip->i_size, i); 5948 frags = numfrags(ip->i_fs, frags); 5949 newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj); 5950 } 5951 5952 static inline void 5953 setup_freeext(freeblks, ip, i, needj) 5954 struct freeblks *freeblks; 5955 struct inode *ip; 5956 int i; 5957 int needj; 5958 { 5959 ufs2_daddr_t blkno; 5960 int frags; 5961 5962 blkno = ip->i_din2->di_extb[i]; 5963 if (blkno == 0) 5964 return; 5965 ip->i_din2->di_extb[i] = 0; 5966 frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i); 5967 frags = numfrags(ip->i_fs, frags); 5968 newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 5969 } 5970 5971 static inline void 5972 setup_freeindir(freeblks, ip, i, lbn, needj) 5973 struct freeblks *freeblks; 5974 struct inode *ip; 5975 int i; 5976 ufs_lbn_t lbn; 5977 int needj; 5978 { 5979 ufs2_daddr_t blkno; 5980 5981 blkno = DIP(ip, i_ib[i]); 5982 if (blkno == 0) 5983 return; 5984 DIP_SET(ip, i_ib[i], 0); 5985 newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag, 5986 0, needj); 5987 } 5988 5989 static inline struct freeblks * 5990 newfreeblks(mp, ip) 5991 struct mount *mp; 5992 struct inode *ip; 5993 { 5994 struct freeblks *freeblks; 5995 5996 freeblks = malloc(sizeof(struct freeblks), 5997 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 5998 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 5999 LIST_INIT(&freeblks->fb_jblkdephd); 6000 LIST_INIT(&freeblks->fb_jwork); 6001 freeblks->fb_ref = 0; 6002 freeblks->fb_cgwait = 0; 6003 freeblks->fb_state = ATTACHED; 6004 freeblks->fb_uid = ip->i_uid; 6005 freeblks->fb_inum = ip->i_number; 6006 freeblks->fb_vtype = ITOV(ip)->v_type; 6007 freeblks->fb_modrev = DIP(ip, i_modrev); 6008 freeblks->fb_devvp = ip->i_devvp; 6009 freeblks->fb_chkcnt = 0; 6010 freeblks->fb_len = 0; 6011 6012 return (freeblks); 6013 } 6014 6015 static void 6016 trunc_indirdep(indirdep, freeblks, bp, off) 6017 struct indirdep *indirdep; 6018 struct freeblks *freeblks; 6019 struct buf *bp; 6020 int off; 6021 { 6022 struct allocindir *aip, *aipn; 6023 6024 /* 6025 * The first set of allocindirs won't be in savedbp. 6026 */ 6027 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6028 if (aip->ai_offset > off) 6029 cancel_allocindir(aip, bp, freeblks, 1); 6030 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6031 if (aip->ai_offset > off) 6032 cancel_allocindir(aip, bp, freeblks, 1); 6033 /* 6034 * These will exist in savedbp. 6035 */ 6036 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6037 if (aip->ai_offset > off) 6038 cancel_allocindir(aip, NULL, freeblks, 0); 6039 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6040 if (aip->ai_offset > off) 6041 cancel_allocindir(aip, NULL, freeblks, 0); 6042 } 6043 6044 /* 6045 * Follow the chain of indirects down to lastlbn creating a freework 6046 * structure for each. This will be used to start indir_trunc() at 6047 * the right offset and create the journal records for the parrtial 6048 * truncation. A second step will handle the truncated dependencies. 6049 */ 6050 static int 6051 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6052 struct freeblks *freeblks; 6053 struct inode *ip; 6054 ufs_lbn_t lbn; 6055 ufs_lbn_t lastlbn; 6056 ufs2_daddr_t blkno; 6057 { 6058 struct indirdep *indirdep; 6059 struct indirdep *indirn; 6060 struct freework *freework; 6061 struct newblk *newblk; 6062 struct mount *mp; 6063 struct buf *bp; 6064 uint8_t *start; 6065 uint8_t *end; 6066 ufs_lbn_t lbnadd; 6067 int level; 6068 int error; 6069 int off; 6070 6071 6072 freework = NULL; 6073 if (blkno == 0) 6074 return (0); 6075 mp = freeblks->fb_list.wk_mp; 6076 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6077 if ((bp->b_flags & B_CACHE) == 0) { 6078 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6079 bp->b_iocmd = BIO_READ; 6080 bp->b_flags &= ~B_INVAL; 6081 bp->b_ioflags &= ~BIO_ERROR; 6082 vfs_busy_pages(bp, 0); 6083 bp->b_iooffset = dbtob(bp->b_blkno); 6084 bstrategy(bp); 6085 curthread->td_ru.ru_inblock++; 6086 error = bufwait(bp); 6087 if (error) { 6088 brelse(bp); 6089 return (error); 6090 } 6091 } 6092 level = lbn_level(lbn); 6093 lbnadd = lbn_offset(ip->i_fs, level); 6094 /* 6095 * Compute the offset of the last block we want to keep. Store 6096 * in the freework the first block we want to completely free. 6097 */ 6098 off = (lastlbn - -(lbn + level)) / lbnadd; 6099 if (off + 1 == NINDIR(ip->i_fs)) 6100 goto nowork; 6101 freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1, 6102 0); 6103 /* 6104 * Link the freework into the indirdep. This will prevent any new 6105 * allocations from proceeding until we are finished with the 6106 * truncate and the block is written. 6107 */ 6108 ACQUIRE_LOCK(ip->i_ump); 6109 indirdep = indirdep_lookup(mp, ip, bp); 6110 if (indirdep->ir_freeblks) 6111 panic("setup_trunc_indir: indirdep already truncated."); 6112 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6113 freework->fw_indir = indirdep; 6114 /* 6115 * Cancel any allocindirs that will not make it to disk. 6116 * We have to do this for all copies of the indirdep that 6117 * live on this newblk. 6118 */ 6119 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6120 newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk); 6121 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6122 trunc_indirdep(indirn, freeblks, bp, off); 6123 } else 6124 trunc_indirdep(indirdep, freeblks, bp, off); 6125 FREE_LOCK(ip->i_ump); 6126 /* 6127 * Creation is protected by the buf lock. The saveddata is only 6128 * needed if a full truncation follows a partial truncation but it 6129 * is difficult to allocate in that case so we fetch it anyway. 6130 */ 6131 if (indirdep->ir_saveddata == NULL) 6132 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6133 M_SOFTDEP_FLAGS); 6134 nowork: 6135 /* Fetch the blkno of the child and the zero start offset. */ 6136 if (ip->i_ump->um_fstype == UFS1) { 6137 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6138 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6139 } else { 6140 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6141 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6142 } 6143 if (freework) { 6144 /* Zero the truncated pointers. */ 6145 end = bp->b_data + bp->b_bcount; 6146 bzero(start, end - start); 6147 bdwrite(bp); 6148 } else 6149 bqrelse(bp); 6150 if (level == 0) 6151 return (0); 6152 lbn++; /* adjust level */ 6153 lbn -= (off * lbnadd); 6154 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6155 } 6156 6157 /* 6158 * Complete the partial truncation of an indirect block setup by 6159 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6160 * copy and writes them to disk before the freeblks is allowed to complete. 6161 */ 6162 static void 6163 complete_trunc_indir(freework) 6164 struct freework *freework; 6165 { 6166 struct freework *fwn; 6167 struct indirdep *indirdep; 6168 struct ufsmount *ump; 6169 struct buf *bp; 6170 uintptr_t start; 6171 int count; 6172 6173 ump = VFSTOUFS(freework->fw_list.wk_mp); 6174 LOCK_OWNED(ump); 6175 indirdep = freework->fw_indir; 6176 for (;;) { 6177 bp = indirdep->ir_bp; 6178 /* See if the block was discarded. */ 6179 if (bp == NULL) 6180 break; 6181 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6182 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6183 break; 6184 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6185 LOCK_PTR(ump)) == 0) 6186 BUF_UNLOCK(bp); 6187 ACQUIRE_LOCK(ump); 6188 } 6189 freework->fw_state |= DEPCOMPLETE; 6190 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6191 /* 6192 * Zero the pointers in the saved copy. 6193 */ 6194 if (indirdep->ir_state & UFS1FMT) 6195 start = sizeof(ufs1_daddr_t); 6196 else 6197 start = sizeof(ufs2_daddr_t); 6198 start *= freework->fw_start; 6199 count = indirdep->ir_savebp->b_bcount - start; 6200 start += (uintptr_t)indirdep->ir_savebp->b_data; 6201 bzero((char *)start, count); 6202 /* 6203 * We need to start the next truncation in the list if it has not 6204 * been started yet. 6205 */ 6206 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6207 if (fwn != NULL) { 6208 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6209 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6210 if ((fwn->fw_state & ONWORKLIST) == 0) 6211 freework_enqueue(fwn); 6212 } 6213 /* 6214 * If bp is NULL the block was fully truncated, restore 6215 * the saved block list otherwise free it if it is no 6216 * longer needed. 6217 */ 6218 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6219 if (bp == NULL) 6220 bcopy(indirdep->ir_saveddata, 6221 indirdep->ir_savebp->b_data, 6222 indirdep->ir_savebp->b_bcount); 6223 free(indirdep->ir_saveddata, M_INDIRDEP); 6224 indirdep->ir_saveddata = NULL; 6225 } 6226 /* 6227 * When bp is NULL there is a full truncation pending. We 6228 * must wait for this full truncation to be journaled before 6229 * we can release this freework because the disk pointers will 6230 * never be written as zero. 6231 */ 6232 if (bp == NULL) { 6233 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6234 handle_written_freework(freework); 6235 else 6236 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6237 &freework->fw_list); 6238 } else { 6239 /* Complete when the real copy is written. */ 6240 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6241 BUF_UNLOCK(bp); 6242 } 6243 } 6244 6245 /* 6246 * Calculate the number of blocks we are going to release where datablocks 6247 * is the current total and length is the new file size. 6248 */ 6249 static ufs2_daddr_t 6250 blkcount(fs, datablocks, length) 6251 struct fs *fs; 6252 ufs2_daddr_t datablocks; 6253 off_t length; 6254 { 6255 off_t totblks, numblks; 6256 6257 totblks = 0; 6258 numblks = howmany(length, fs->fs_bsize); 6259 if (numblks <= NDADDR) { 6260 totblks = howmany(length, fs->fs_fsize); 6261 goto out; 6262 } 6263 totblks = blkstofrags(fs, numblks); 6264 numblks -= NDADDR; 6265 /* 6266 * Count all single, then double, then triple indirects required. 6267 * Subtracting one indirects worth of blocks for each pass 6268 * acknowledges one of each pointed to by the inode. 6269 */ 6270 for (;;) { 6271 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6272 numblks -= NINDIR(fs); 6273 if (numblks <= 0) 6274 break; 6275 numblks = howmany(numblks, NINDIR(fs)); 6276 } 6277 out: 6278 totblks = fsbtodb(fs, totblks); 6279 /* 6280 * Handle sparse files. We can't reclaim more blocks than the inode 6281 * references. We will correct it later in handle_complete_freeblks() 6282 * when we know the real count. 6283 */ 6284 if (totblks > datablocks) 6285 return (0); 6286 return (datablocks - totblks); 6287 } 6288 6289 /* 6290 * Handle freeblocks for journaled softupdate filesystems. 6291 * 6292 * Contrary to normal softupdates, we must preserve the block pointers in 6293 * indirects until their subordinates are free. This is to avoid journaling 6294 * every block that is freed which may consume more space than the journal 6295 * itself. The recovery program will see the free block journals at the 6296 * base of the truncated area and traverse them to reclaim space. The 6297 * pointers in the inode may be cleared immediately after the journal 6298 * records are written because each direct and indirect pointer in the 6299 * inode is recorded in a journal. This permits full truncation to proceed 6300 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6301 * 6302 * The algorithm is as follows: 6303 * 1) Traverse the in-memory state and create journal entries to release 6304 * the relevant blocks and full indirect trees. 6305 * 2) Traverse the indirect block chain adding partial truncation freework 6306 * records to indirects in the path to lastlbn. The freework will 6307 * prevent new allocation dependencies from being satisfied in this 6308 * indirect until the truncation completes. 6309 * 3) Read and lock the inode block, performing an update with the new size 6310 * and pointers. This prevents truncated data from becoming valid on 6311 * disk through step 4. 6312 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6313 * eliminate journal work for those records that do not require it. 6314 * 5) Schedule the journal records to be written followed by the inode block. 6315 * 6) Allocate any necessary frags for the end of file. 6316 * 7) Zero any partially truncated blocks. 6317 * 6318 * From this truncation proceeds asynchronously using the freework and 6319 * indir_trunc machinery. The file will not be extended again into a 6320 * partially truncated indirect block until all work is completed but 6321 * the normal dependency mechanism ensures that it is rolled back/forward 6322 * as appropriate. Further truncation may occur without delay and is 6323 * serialized in indir_trunc(). 6324 */ 6325 void 6326 softdep_journal_freeblocks(ip, cred, length, flags) 6327 struct inode *ip; /* The inode whose length is to be reduced */ 6328 struct ucred *cred; 6329 off_t length; /* The new length for the file */ 6330 int flags; /* IO_EXT and/or IO_NORMAL */ 6331 { 6332 struct freeblks *freeblks, *fbn; 6333 struct worklist *wk, *wkn; 6334 struct inodedep *inodedep; 6335 struct jblkdep *jblkdep; 6336 struct allocdirect *adp, *adpn; 6337 struct ufsmount *ump; 6338 struct fs *fs; 6339 struct buf *bp; 6340 struct vnode *vp; 6341 struct mount *mp; 6342 ufs2_daddr_t extblocks, datablocks; 6343 ufs_lbn_t tmpval, lbn, lastlbn; 6344 int frags, lastoff, iboff, allocblock, needj, dflags, error, i; 6345 6346 fs = ip->i_fs; 6347 ump = ip->i_ump; 6348 mp = UFSTOVFS(ump); 6349 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6350 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6351 vp = ITOV(ip); 6352 needj = 1; 6353 iboff = -1; 6354 allocblock = 0; 6355 extblocks = 0; 6356 datablocks = 0; 6357 frags = 0; 6358 freeblks = newfreeblks(mp, ip); 6359 ACQUIRE_LOCK(ump); 6360 /* 6361 * If we're truncating a removed file that will never be written 6362 * we don't need to journal the block frees. The canceled journals 6363 * for the allocations will suffice. 6364 */ 6365 dflags = DEPALLOC; 6366 if (IS_SNAPSHOT(ip)) 6367 dflags |= NODELAY; 6368 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6369 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6370 length == 0) 6371 needj = 0; 6372 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6373 ip->i_number, length, needj); 6374 FREE_LOCK(ump); 6375 /* 6376 * Calculate the lbn that we are truncating to. This results in -1 6377 * if we're truncating the 0 bytes. So it is the last lbn we want 6378 * to keep, not the first lbn we want to truncate. 6379 */ 6380 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6381 lastoff = blkoff(fs, length); 6382 /* 6383 * Compute frags we are keeping in lastlbn. 0 means all. 6384 */ 6385 if (lastlbn >= 0 && lastlbn < NDADDR) { 6386 frags = fragroundup(fs, lastoff); 6387 /* adp offset of last valid allocdirect. */ 6388 iboff = lastlbn; 6389 } else if (lastlbn > 0) 6390 iboff = NDADDR; 6391 if (fs->fs_magic == FS_UFS2_MAGIC) 6392 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6393 /* 6394 * Handle normal data blocks and indirects. This section saves 6395 * values used after the inode update to complete frag and indirect 6396 * truncation. 6397 */ 6398 if ((flags & IO_NORMAL) != 0) { 6399 /* 6400 * Handle truncation of whole direct and indirect blocks. 6401 */ 6402 for (i = iboff + 1; i < NDADDR; i++) 6403 setup_freedirect(freeblks, ip, i, needj); 6404 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6405 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6406 /* Release a whole indirect tree. */ 6407 if (lbn > lastlbn) { 6408 setup_freeindir(freeblks, ip, i, -lbn -i, 6409 needj); 6410 continue; 6411 } 6412 iboff = i + NDADDR; 6413 /* 6414 * Traverse partially truncated indirect tree. 6415 */ 6416 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6417 setup_trunc_indir(freeblks, ip, -lbn - i, 6418 lastlbn, DIP(ip, i_ib[i])); 6419 } 6420 /* 6421 * Handle partial truncation to a frag boundary. 6422 */ 6423 if (frags) { 6424 ufs2_daddr_t blkno; 6425 long oldfrags; 6426 6427 oldfrags = blksize(fs, ip, lastlbn); 6428 blkno = DIP(ip, i_db[lastlbn]); 6429 if (blkno && oldfrags != frags) { 6430 oldfrags -= frags; 6431 oldfrags = numfrags(ip->i_fs, oldfrags); 6432 blkno += numfrags(ip->i_fs, frags); 6433 newfreework(ump, freeblks, NULL, lastlbn, 6434 blkno, oldfrags, 0, needj); 6435 } else if (blkno == 0) 6436 allocblock = 1; 6437 } 6438 /* 6439 * Add a journal record for partial truncate if we are 6440 * handling indirect blocks. Non-indirects need no extra 6441 * journaling. 6442 */ 6443 if (length != 0 && lastlbn >= NDADDR) { 6444 ip->i_flag |= IN_TRUNCATED; 6445 newjtrunc(freeblks, length, 0); 6446 } 6447 ip->i_size = length; 6448 DIP_SET(ip, i_size, ip->i_size); 6449 datablocks = DIP(ip, i_blocks) - extblocks; 6450 if (length != 0) 6451 datablocks = blkcount(ip->i_fs, datablocks, length); 6452 freeblks->fb_len = length; 6453 } 6454 if ((flags & IO_EXT) != 0) { 6455 for (i = 0; i < NXADDR; i++) 6456 setup_freeext(freeblks, ip, i, needj); 6457 ip->i_din2->di_extsize = 0; 6458 datablocks += extblocks; 6459 } 6460 #ifdef QUOTA 6461 /* Reference the quotas in case the block count is wrong in the end. */ 6462 quotaref(vp, freeblks->fb_quota); 6463 (void) chkdq(ip, -datablocks, NOCRED, 0); 6464 #endif 6465 freeblks->fb_chkcnt = -datablocks; 6466 UFS_LOCK(ump); 6467 fs->fs_pendingblocks += datablocks; 6468 UFS_UNLOCK(ump); 6469 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6470 /* 6471 * Handle truncation of incomplete alloc direct dependencies. We 6472 * hold the inode block locked to prevent incomplete dependencies 6473 * from reaching the disk while we are eliminating those that 6474 * have been truncated. This is a partially inlined ffs_update(). 6475 */ 6476 ufs_itimes(vp); 6477 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6478 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6479 (int)fs->fs_bsize, cred, &bp); 6480 if (error) { 6481 brelse(bp); 6482 softdep_error("softdep_journal_freeblocks", error); 6483 return; 6484 } 6485 if (bp->b_bufsize == fs->fs_bsize) 6486 bp->b_flags |= B_CLUSTEROK; 6487 softdep_update_inodeblock(ip, bp, 0); 6488 if (ump->um_fstype == UFS1) 6489 *((struct ufs1_dinode *)bp->b_data + 6490 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6491 else 6492 *((struct ufs2_dinode *)bp->b_data + 6493 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6494 ACQUIRE_LOCK(ump); 6495 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6496 if ((inodedep->id_state & IOSTARTED) != 0) 6497 panic("softdep_setup_freeblocks: inode busy"); 6498 /* 6499 * Add the freeblks structure to the list of operations that 6500 * must await the zero'ed inode being written to disk. If we 6501 * still have a bitmap dependency (needj), then the inode 6502 * has never been written to disk, so we can process the 6503 * freeblks below once we have deleted the dependencies. 6504 */ 6505 if (needj) 6506 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6507 else 6508 freeblks->fb_state |= COMPLETE; 6509 if ((flags & IO_NORMAL) != 0) { 6510 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6511 if (adp->ad_offset > iboff) 6512 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6513 freeblks); 6514 /* 6515 * Truncate the allocdirect. We could eliminate 6516 * or modify journal records as well. 6517 */ 6518 else if (adp->ad_offset == iboff && frags) 6519 adp->ad_newsize = frags; 6520 } 6521 } 6522 if ((flags & IO_EXT) != 0) 6523 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6524 cancel_allocdirect(&inodedep->id_extupdt, adp, 6525 freeblks); 6526 /* 6527 * Scan the bufwait list for newblock dependencies that will never 6528 * make it to disk. 6529 */ 6530 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6531 if (wk->wk_type != D_ALLOCDIRECT) 6532 continue; 6533 adp = WK_ALLOCDIRECT(wk); 6534 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6535 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6536 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6537 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6538 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6539 } 6540 } 6541 /* 6542 * Add journal work. 6543 */ 6544 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6545 add_to_journal(&jblkdep->jb_list); 6546 FREE_LOCK(ump); 6547 bdwrite(bp); 6548 /* 6549 * Truncate dependency structures beyond length. 6550 */ 6551 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6552 /* 6553 * This is only set when we need to allocate a fragment because 6554 * none existed at the end of a frag-sized file. It handles only 6555 * allocating a new, zero filled block. 6556 */ 6557 if (allocblock) { 6558 ip->i_size = length - lastoff; 6559 DIP_SET(ip, i_size, ip->i_size); 6560 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6561 if (error != 0) { 6562 softdep_error("softdep_journal_freeblks", error); 6563 return; 6564 } 6565 ip->i_size = length; 6566 DIP_SET(ip, i_size, length); 6567 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6568 allocbuf(bp, frags); 6569 ffs_update(vp, 0); 6570 bawrite(bp); 6571 } else if (lastoff != 0 && vp->v_type != VDIR) { 6572 int size; 6573 6574 /* 6575 * Zero the end of a truncated frag or block. 6576 */ 6577 size = sblksize(fs, length, lastlbn); 6578 error = bread(vp, lastlbn, size, cred, &bp); 6579 if (error) { 6580 softdep_error("softdep_journal_freeblks", error); 6581 return; 6582 } 6583 bzero((char *)bp->b_data + lastoff, size - lastoff); 6584 bawrite(bp); 6585 6586 } 6587 ACQUIRE_LOCK(ump); 6588 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6589 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6590 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6591 /* 6592 * We zero earlier truncations so they don't erroneously 6593 * update i_blocks. 6594 */ 6595 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6596 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6597 fbn->fb_len = 0; 6598 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6599 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6600 freeblks->fb_state |= INPROGRESS; 6601 else 6602 freeblks = NULL; 6603 FREE_LOCK(ump); 6604 if (freeblks) 6605 handle_workitem_freeblocks(freeblks, 0); 6606 trunc_pages(ip, length, extblocks, flags); 6607 6608 } 6609 6610 /* 6611 * Flush a JOP_SYNC to the journal. 6612 */ 6613 void 6614 softdep_journal_fsync(ip) 6615 struct inode *ip; 6616 { 6617 struct jfsync *jfsync; 6618 6619 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 6620 ("softdep_journal_fsync called on non-softdep filesystem")); 6621 if ((ip->i_flag & IN_TRUNCATED) == 0) 6622 return; 6623 ip->i_flag &= ~IN_TRUNCATED; 6624 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6625 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump)); 6626 jfsync->jfs_size = ip->i_size; 6627 jfsync->jfs_ino = ip->i_number; 6628 ACQUIRE_LOCK(ip->i_ump); 6629 add_to_journal(&jfsync->jfs_list); 6630 jwait(&jfsync->jfs_list, MNT_WAIT); 6631 FREE_LOCK(ip->i_ump); 6632 } 6633 6634 /* 6635 * Block de-allocation dependencies. 6636 * 6637 * When blocks are de-allocated, the on-disk pointers must be nullified before 6638 * the blocks are made available for use by other files. (The true 6639 * requirement is that old pointers must be nullified before new on-disk 6640 * pointers are set. We chose this slightly more stringent requirement to 6641 * reduce complexity.) Our implementation handles this dependency by updating 6642 * the inode (or indirect block) appropriately but delaying the actual block 6643 * de-allocation (i.e., freemap and free space count manipulation) until 6644 * after the updated versions reach stable storage. After the disk is 6645 * updated, the blocks can be safely de-allocated whenever it is convenient. 6646 * This implementation handles only the common case of reducing a file's 6647 * length to zero. Other cases are handled by the conventional synchronous 6648 * write approach. 6649 * 6650 * The ffs implementation with which we worked double-checks 6651 * the state of the block pointers and file size as it reduces 6652 * a file's length. Some of this code is replicated here in our 6653 * soft updates implementation. The freeblks->fb_chkcnt field is 6654 * used to transfer a part of this information to the procedure 6655 * that eventually de-allocates the blocks. 6656 * 6657 * This routine should be called from the routine that shortens 6658 * a file's length, before the inode's size or block pointers 6659 * are modified. It will save the block pointer information for 6660 * later release and zero the inode so that the calling routine 6661 * can release it. 6662 */ 6663 void 6664 softdep_setup_freeblocks(ip, length, flags) 6665 struct inode *ip; /* The inode whose length is to be reduced */ 6666 off_t length; /* The new length for the file */ 6667 int flags; /* IO_EXT and/or IO_NORMAL */ 6668 { 6669 struct ufs1_dinode *dp1; 6670 struct ufs2_dinode *dp2; 6671 struct freeblks *freeblks; 6672 struct inodedep *inodedep; 6673 struct allocdirect *adp; 6674 struct ufsmount *ump; 6675 struct buf *bp; 6676 struct fs *fs; 6677 ufs2_daddr_t extblocks, datablocks; 6678 struct mount *mp; 6679 int i, delay, error, dflags; 6680 ufs_lbn_t tmpval; 6681 ufs_lbn_t lbn; 6682 6683 ump = ip->i_ump; 6684 mp = UFSTOVFS(ump); 6685 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6686 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6687 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6688 ip->i_number, length); 6689 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6690 fs = ip->i_fs; 6691 freeblks = newfreeblks(mp, ip); 6692 extblocks = 0; 6693 datablocks = 0; 6694 if (fs->fs_magic == FS_UFS2_MAGIC) 6695 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6696 if ((flags & IO_NORMAL) != 0) { 6697 for (i = 0; i < NDADDR; i++) 6698 setup_freedirect(freeblks, ip, i, 0); 6699 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6700 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6701 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6702 ip->i_size = 0; 6703 DIP_SET(ip, i_size, 0); 6704 datablocks = DIP(ip, i_blocks) - extblocks; 6705 } 6706 if ((flags & IO_EXT) != 0) { 6707 for (i = 0; i < NXADDR; i++) 6708 setup_freeext(freeblks, ip, i, 0); 6709 ip->i_din2->di_extsize = 0; 6710 datablocks += extblocks; 6711 } 6712 #ifdef QUOTA 6713 /* Reference the quotas in case the block count is wrong in the end. */ 6714 quotaref(ITOV(ip), freeblks->fb_quota); 6715 (void) chkdq(ip, -datablocks, NOCRED, 0); 6716 #endif 6717 freeblks->fb_chkcnt = -datablocks; 6718 UFS_LOCK(ump); 6719 fs->fs_pendingblocks += datablocks; 6720 UFS_UNLOCK(ump); 6721 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6722 /* 6723 * Push the zero'ed inode to to its disk buffer so that we are free 6724 * to delete its dependencies below. Once the dependencies are gone 6725 * the buffer can be safely released. 6726 */ 6727 if ((error = bread(ip->i_devvp, 6728 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6729 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6730 brelse(bp); 6731 softdep_error("softdep_setup_freeblocks", error); 6732 } 6733 if (ump->um_fstype == UFS1) { 6734 dp1 = ((struct ufs1_dinode *)bp->b_data + 6735 ino_to_fsbo(fs, ip->i_number)); 6736 ip->i_din1->di_freelink = dp1->di_freelink; 6737 *dp1 = *ip->i_din1; 6738 } else { 6739 dp2 = ((struct ufs2_dinode *)bp->b_data + 6740 ino_to_fsbo(fs, ip->i_number)); 6741 ip->i_din2->di_freelink = dp2->di_freelink; 6742 *dp2 = *ip->i_din2; 6743 } 6744 /* 6745 * Find and eliminate any inode dependencies. 6746 */ 6747 ACQUIRE_LOCK(ump); 6748 dflags = DEPALLOC; 6749 if (IS_SNAPSHOT(ip)) 6750 dflags |= NODELAY; 6751 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6752 if ((inodedep->id_state & IOSTARTED) != 0) 6753 panic("softdep_setup_freeblocks: inode busy"); 6754 /* 6755 * Add the freeblks structure to the list of operations that 6756 * must await the zero'ed inode being written to disk. If we 6757 * still have a bitmap dependency (delay == 0), then the inode 6758 * has never been written to disk, so we can process the 6759 * freeblks below once we have deleted the dependencies. 6760 */ 6761 delay = (inodedep->id_state & DEPCOMPLETE); 6762 if (delay) 6763 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6764 else 6765 freeblks->fb_state |= COMPLETE; 6766 /* 6767 * Because the file length has been truncated to zero, any 6768 * pending block allocation dependency structures associated 6769 * with this inode are obsolete and can simply be de-allocated. 6770 * We must first merge the two dependency lists to get rid of 6771 * any duplicate freefrag structures, then purge the merged list. 6772 * If we still have a bitmap dependency, then the inode has never 6773 * been written to disk, so we can free any fragments without delay. 6774 */ 6775 if (flags & IO_NORMAL) { 6776 merge_inode_lists(&inodedep->id_newinoupdt, 6777 &inodedep->id_inoupdt); 6778 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 6779 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6780 freeblks); 6781 } 6782 if (flags & IO_EXT) { 6783 merge_inode_lists(&inodedep->id_newextupdt, 6784 &inodedep->id_extupdt); 6785 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6786 cancel_allocdirect(&inodedep->id_extupdt, adp, 6787 freeblks); 6788 } 6789 FREE_LOCK(ump); 6790 bdwrite(bp); 6791 trunc_dependencies(ip, freeblks, -1, 0, flags); 6792 ACQUIRE_LOCK(ump); 6793 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6794 (void) free_inodedep(inodedep); 6795 freeblks->fb_state |= DEPCOMPLETE; 6796 /* 6797 * If the inode with zeroed block pointers is now on disk 6798 * we can start freeing blocks. 6799 */ 6800 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6801 freeblks->fb_state |= INPROGRESS; 6802 else 6803 freeblks = NULL; 6804 FREE_LOCK(ump); 6805 if (freeblks) 6806 handle_workitem_freeblocks(freeblks, 0); 6807 trunc_pages(ip, length, extblocks, flags); 6808 } 6809 6810 /* 6811 * Eliminate pages from the page cache that back parts of this inode and 6812 * adjust the vnode pager's idea of our size. This prevents stale data 6813 * from hanging around in the page cache. 6814 */ 6815 static void 6816 trunc_pages(ip, length, extblocks, flags) 6817 struct inode *ip; 6818 off_t length; 6819 ufs2_daddr_t extblocks; 6820 int flags; 6821 { 6822 struct vnode *vp; 6823 struct fs *fs; 6824 ufs_lbn_t lbn; 6825 off_t end, extend; 6826 6827 vp = ITOV(ip); 6828 fs = ip->i_fs; 6829 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 6830 if ((flags & IO_EXT) != 0) 6831 vn_pages_remove(vp, extend, 0); 6832 if ((flags & IO_NORMAL) == 0) 6833 return; 6834 BO_LOCK(&vp->v_bufobj); 6835 drain_output(vp); 6836 BO_UNLOCK(&vp->v_bufobj); 6837 /* 6838 * The vnode pager eliminates file pages we eliminate indirects 6839 * below. 6840 */ 6841 vnode_pager_setsize(vp, length); 6842 /* 6843 * Calculate the end based on the last indirect we want to keep. If 6844 * the block extends into indirects we can just use the negative of 6845 * its lbn. Doubles and triples exist at lower numbers so we must 6846 * be careful not to remove those, if they exist. double and triple 6847 * indirect lbns do not overlap with others so it is not important 6848 * to verify how many levels are required. 6849 */ 6850 lbn = lblkno(fs, length); 6851 if (lbn >= NDADDR) { 6852 /* Calculate the virtual lbn of the triple indirect. */ 6853 lbn = -lbn - (NIADDR - 1); 6854 end = OFF_TO_IDX(lblktosize(fs, lbn)); 6855 } else 6856 end = extend; 6857 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 6858 } 6859 6860 /* 6861 * See if the buf bp is in the range eliminated by truncation. 6862 */ 6863 static int 6864 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 6865 struct buf *bp; 6866 int *blkoffp; 6867 ufs_lbn_t lastlbn; 6868 int lastoff; 6869 int flags; 6870 { 6871 ufs_lbn_t lbn; 6872 6873 *blkoffp = 0; 6874 /* Only match ext/normal blocks as appropriate. */ 6875 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 6876 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 6877 return (0); 6878 /* ALTDATA is always a full truncation. */ 6879 if ((bp->b_xflags & BX_ALTDATA) != 0) 6880 return (1); 6881 /* -1 is full truncation. */ 6882 if (lastlbn == -1) 6883 return (1); 6884 /* 6885 * If this is a partial truncate we only want those 6886 * blocks and indirect blocks that cover the range 6887 * we're after. 6888 */ 6889 lbn = bp->b_lblkno; 6890 if (lbn < 0) 6891 lbn = -(lbn + lbn_level(lbn)); 6892 if (lbn < lastlbn) 6893 return (0); 6894 /* Here we only truncate lblkno if it's partial. */ 6895 if (lbn == lastlbn) { 6896 if (lastoff == 0) 6897 return (0); 6898 *blkoffp = lastoff; 6899 } 6900 return (1); 6901 } 6902 6903 /* 6904 * Eliminate any dependencies that exist in memory beyond lblkno:off 6905 */ 6906 static void 6907 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 6908 struct inode *ip; 6909 struct freeblks *freeblks; 6910 ufs_lbn_t lastlbn; 6911 int lastoff; 6912 int flags; 6913 { 6914 struct bufobj *bo; 6915 struct vnode *vp; 6916 struct buf *bp; 6917 struct fs *fs; 6918 int blkoff; 6919 6920 /* 6921 * We must wait for any I/O in progress to finish so that 6922 * all potential buffers on the dirty list will be visible. 6923 * Once they are all there, walk the list and get rid of 6924 * any dependencies. 6925 */ 6926 fs = ip->i_fs; 6927 vp = ITOV(ip); 6928 bo = &vp->v_bufobj; 6929 BO_LOCK(bo); 6930 drain_output(vp); 6931 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 6932 bp->b_vflags &= ~BV_SCANNED; 6933 restart: 6934 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 6935 if (bp->b_vflags & BV_SCANNED) 6936 continue; 6937 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6938 bp->b_vflags |= BV_SCANNED; 6939 continue; 6940 } 6941 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 6942 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 6943 goto restart; 6944 BO_UNLOCK(bo); 6945 if (deallocate_dependencies(bp, freeblks, blkoff)) 6946 bqrelse(bp); 6947 else 6948 brelse(bp); 6949 BO_LOCK(bo); 6950 goto restart; 6951 } 6952 /* 6953 * Now do the work of vtruncbuf while also matching indirect blocks. 6954 */ 6955 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 6956 bp->b_vflags &= ~BV_SCANNED; 6957 cleanrestart: 6958 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 6959 if (bp->b_vflags & BV_SCANNED) 6960 continue; 6961 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6962 bp->b_vflags |= BV_SCANNED; 6963 continue; 6964 } 6965 if (BUF_LOCK(bp, 6966 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6967 BO_LOCKPTR(bo)) == ENOLCK) { 6968 BO_LOCK(bo); 6969 goto cleanrestart; 6970 } 6971 bp->b_vflags |= BV_SCANNED; 6972 bremfree(bp); 6973 if (blkoff != 0) { 6974 allocbuf(bp, blkoff); 6975 bqrelse(bp); 6976 } else { 6977 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 6978 brelse(bp); 6979 } 6980 BO_LOCK(bo); 6981 goto cleanrestart; 6982 } 6983 drain_output(vp); 6984 BO_UNLOCK(bo); 6985 } 6986 6987 static int 6988 cancel_pagedep(pagedep, freeblks, blkoff) 6989 struct pagedep *pagedep; 6990 struct freeblks *freeblks; 6991 int blkoff; 6992 { 6993 struct jremref *jremref; 6994 struct jmvref *jmvref; 6995 struct dirrem *dirrem, *tmp; 6996 int i; 6997 6998 /* 6999 * Copy any directory remove dependencies to the list 7000 * to be processed after the freeblks proceeds. If 7001 * directory entry never made it to disk they 7002 * can be dumped directly onto the work list. 7003 */ 7004 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7005 /* Skip this directory removal if it is intended to remain. */ 7006 if (dirrem->dm_offset < blkoff) 7007 continue; 7008 /* 7009 * If there are any dirrems we wait for the journal write 7010 * to complete and then restart the buf scan as the lock 7011 * has been dropped. 7012 */ 7013 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7014 jwait(&jremref->jr_list, MNT_WAIT); 7015 return (ERESTART); 7016 } 7017 LIST_REMOVE(dirrem, dm_next); 7018 dirrem->dm_dirinum = pagedep->pd_ino; 7019 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7020 } 7021 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7022 jwait(&jmvref->jm_list, MNT_WAIT); 7023 return (ERESTART); 7024 } 7025 /* 7026 * When we're partially truncating a pagedep we just want to flush 7027 * journal entries and return. There can not be any adds in the 7028 * truncated portion of the directory and newblk must remain if 7029 * part of the block remains. 7030 */ 7031 if (blkoff != 0) { 7032 struct diradd *dap; 7033 7034 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7035 if (dap->da_offset > blkoff) 7036 panic("cancel_pagedep: diradd %p off %d > %d", 7037 dap, dap->da_offset, blkoff); 7038 for (i = 0; i < DAHASHSZ; i++) 7039 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7040 if (dap->da_offset > blkoff) 7041 panic("cancel_pagedep: diradd %p off %d > %d", 7042 dap, dap->da_offset, blkoff); 7043 return (0); 7044 } 7045 /* 7046 * There should be no directory add dependencies present 7047 * as the directory could not be truncated until all 7048 * children were removed. 7049 */ 7050 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7051 ("deallocate_dependencies: pendinghd != NULL")); 7052 for (i = 0; i < DAHASHSZ; i++) 7053 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7054 ("deallocate_dependencies: diraddhd != NULL")); 7055 if ((pagedep->pd_state & NEWBLOCK) != 0) 7056 free_newdirblk(pagedep->pd_newdirblk); 7057 if (free_pagedep(pagedep) == 0) 7058 panic("Failed to free pagedep %p", pagedep); 7059 return (0); 7060 } 7061 7062 /* 7063 * Reclaim any dependency structures from a buffer that is about to 7064 * be reallocated to a new vnode. The buffer must be locked, thus, 7065 * no I/O completion operations can occur while we are manipulating 7066 * its associated dependencies. The mutex is held so that other I/O's 7067 * associated with related dependencies do not occur. 7068 */ 7069 static int 7070 deallocate_dependencies(bp, freeblks, off) 7071 struct buf *bp; 7072 struct freeblks *freeblks; 7073 int off; 7074 { 7075 struct indirdep *indirdep; 7076 struct pagedep *pagedep; 7077 struct allocdirect *adp; 7078 struct worklist *wk, *wkn; 7079 struct ufsmount *ump; 7080 7081 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 7082 goto done; 7083 ump = VFSTOUFS(wk->wk_mp); 7084 ACQUIRE_LOCK(ump); 7085 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7086 switch (wk->wk_type) { 7087 case D_INDIRDEP: 7088 indirdep = WK_INDIRDEP(wk); 7089 if (bp->b_lblkno >= 0 || 7090 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7091 panic("deallocate_dependencies: not indir"); 7092 cancel_indirdep(indirdep, bp, freeblks); 7093 continue; 7094 7095 case D_PAGEDEP: 7096 pagedep = WK_PAGEDEP(wk); 7097 if (cancel_pagedep(pagedep, freeblks, off)) { 7098 FREE_LOCK(ump); 7099 return (ERESTART); 7100 } 7101 continue; 7102 7103 case D_ALLOCINDIR: 7104 /* 7105 * Simply remove the allocindir, we'll find it via 7106 * the indirdep where we can clear pointers if 7107 * needed. 7108 */ 7109 WORKLIST_REMOVE(wk); 7110 continue; 7111 7112 case D_FREEWORK: 7113 /* 7114 * A truncation is waiting for the zero'd pointers 7115 * to be written. It can be freed when the freeblks 7116 * is journaled. 7117 */ 7118 WORKLIST_REMOVE(wk); 7119 wk->wk_state |= ONDEPLIST; 7120 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7121 break; 7122 7123 case D_ALLOCDIRECT: 7124 adp = WK_ALLOCDIRECT(wk); 7125 if (off != 0) 7126 continue; 7127 /* FALLTHROUGH */ 7128 default: 7129 panic("deallocate_dependencies: Unexpected type %s", 7130 TYPENAME(wk->wk_type)); 7131 /* NOTREACHED */ 7132 } 7133 } 7134 FREE_LOCK(ump); 7135 done: 7136 /* 7137 * Don't throw away this buf, we were partially truncating and 7138 * some deps may always remain. 7139 */ 7140 if (off) { 7141 allocbuf(bp, off); 7142 bp->b_vflags |= BV_SCANNED; 7143 return (EBUSY); 7144 } 7145 bp->b_flags |= B_INVAL | B_NOCACHE; 7146 7147 return (0); 7148 } 7149 7150 /* 7151 * An allocdirect is being canceled due to a truncate. We must make sure 7152 * the journal entry is released in concert with the blkfree that releases 7153 * the storage. Completed journal entries must not be released until the 7154 * space is no longer pointed to by the inode or in the bitmap. 7155 */ 7156 static void 7157 cancel_allocdirect(adphead, adp, freeblks) 7158 struct allocdirectlst *adphead; 7159 struct allocdirect *adp; 7160 struct freeblks *freeblks; 7161 { 7162 struct freework *freework; 7163 struct newblk *newblk; 7164 struct worklist *wk; 7165 7166 TAILQ_REMOVE(adphead, adp, ad_next); 7167 newblk = (struct newblk *)adp; 7168 freework = NULL; 7169 /* 7170 * Find the correct freework structure. 7171 */ 7172 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7173 if (wk->wk_type != D_FREEWORK) 7174 continue; 7175 freework = WK_FREEWORK(wk); 7176 if (freework->fw_blkno == newblk->nb_newblkno) 7177 break; 7178 } 7179 if (freework == NULL) 7180 panic("cancel_allocdirect: Freework not found"); 7181 /* 7182 * If a newblk exists at all we still have the journal entry that 7183 * initiated the allocation so we do not need to journal the free. 7184 */ 7185 cancel_jfreeblk(freeblks, freework->fw_blkno); 7186 /* 7187 * If the journal hasn't been written the jnewblk must be passed 7188 * to the call to ffs_blkfree that reclaims the space. We accomplish 7189 * this by linking the journal dependency into the freework to be 7190 * freed when freework_freeblock() is called. If the journal has 7191 * been written we can simply reclaim the journal space when the 7192 * freeblks work is complete. 7193 */ 7194 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7195 &freeblks->fb_jwork); 7196 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7197 } 7198 7199 7200 /* 7201 * Cancel a new block allocation. May be an indirect or direct block. We 7202 * remove it from various lists and return any journal record that needs to 7203 * be resolved by the caller. 7204 * 7205 * A special consideration is made for indirects which were never pointed 7206 * at on disk and will never be found once this block is released. 7207 */ 7208 static struct jnewblk * 7209 cancel_newblk(newblk, wk, wkhd) 7210 struct newblk *newblk; 7211 struct worklist *wk; 7212 struct workhead *wkhd; 7213 { 7214 struct jnewblk *jnewblk; 7215 7216 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7217 7218 newblk->nb_state |= GOINGAWAY; 7219 /* 7220 * Previously we traversed the completedhd on each indirdep 7221 * attached to this newblk to cancel them and gather journal 7222 * work. Since we need only the oldest journal segment and 7223 * the lowest point on the tree will always have the oldest 7224 * journal segment we are free to release the segments 7225 * of any subordinates and may leave the indirdep list to 7226 * indirdep_complete() when this newblk is freed. 7227 */ 7228 if (newblk->nb_state & ONDEPLIST) { 7229 newblk->nb_state &= ~ONDEPLIST; 7230 LIST_REMOVE(newblk, nb_deps); 7231 } 7232 if (newblk->nb_state & ONWORKLIST) 7233 WORKLIST_REMOVE(&newblk->nb_list); 7234 /* 7235 * If the journal entry hasn't been written we save a pointer to 7236 * the dependency that frees it until it is written or the 7237 * superseding operation completes. 7238 */ 7239 jnewblk = newblk->nb_jnewblk; 7240 if (jnewblk != NULL && wk != NULL) { 7241 newblk->nb_jnewblk = NULL; 7242 jnewblk->jn_dep = wk; 7243 } 7244 if (!LIST_EMPTY(&newblk->nb_jwork)) 7245 jwork_move(wkhd, &newblk->nb_jwork); 7246 /* 7247 * When truncating we must free the newdirblk early to remove 7248 * the pagedep from the hash before returning. 7249 */ 7250 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7251 free_newdirblk(WK_NEWDIRBLK(wk)); 7252 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7253 panic("cancel_newblk: extra newdirblk"); 7254 7255 return (jnewblk); 7256 } 7257 7258 /* 7259 * Schedule the freefrag associated with a newblk to be released once 7260 * the pointers are written and the previous block is no longer needed. 7261 */ 7262 static void 7263 newblk_freefrag(newblk) 7264 struct newblk *newblk; 7265 { 7266 struct freefrag *freefrag; 7267 7268 if (newblk->nb_freefrag == NULL) 7269 return; 7270 freefrag = newblk->nb_freefrag; 7271 newblk->nb_freefrag = NULL; 7272 freefrag->ff_state |= COMPLETE; 7273 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7274 add_to_worklist(&freefrag->ff_list, 0); 7275 } 7276 7277 /* 7278 * Free a newblk. Generate a new freefrag work request if appropriate. 7279 * This must be called after the inode pointer and any direct block pointers 7280 * are valid or fully removed via truncate or frag extension. 7281 */ 7282 static void 7283 free_newblk(newblk) 7284 struct newblk *newblk; 7285 { 7286 struct indirdep *indirdep; 7287 struct worklist *wk; 7288 7289 KASSERT(newblk->nb_jnewblk == NULL, 7290 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7291 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7292 ("free_newblk: unclaimed newblk")); 7293 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7294 newblk_freefrag(newblk); 7295 if (newblk->nb_state & ONDEPLIST) 7296 LIST_REMOVE(newblk, nb_deps); 7297 if (newblk->nb_state & ONWORKLIST) 7298 WORKLIST_REMOVE(&newblk->nb_list); 7299 LIST_REMOVE(newblk, nb_hash); 7300 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7301 free_newdirblk(WK_NEWDIRBLK(wk)); 7302 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7303 panic("free_newblk: extra newdirblk"); 7304 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7305 indirdep_complete(indirdep); 7306 handle_jwork(&newblk->nb_jwork); 7307 WORKITEM_FREE(newblk, D_NEWBLK); 7308 } 7309 7310 /* 7311 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7312 * This routine must be called with splbio interrupts blocked. 7313 */ 7314 static void 7315 free_newdirblk(newdirblk) 7316 struct newdirblk *newdirblk; 7317 { 7318 struct pagedep *pagedep; 7319 struct diradd *dap; 7320 struct worklist *wk; 7321 7322 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7323 WORKLIST_REMOVE(&newdirblk->db_list); 7324 /* 7325 * If the pagedep is still linked onto the directory buffer 7326 * dependency chain, then some of the entries on the 7327 * pd_pendinghd list may not be committed to disk yet. In 7328 * this case, we will simply clear the NEWBLOCK flag and 7329 * let the pd_pendinghd list be processed when the pagedep 7330 * is next written. If the pagedep is no longer on the buffer 7331 * dependency chain, then all the entries on the pd_pending 7332 * list are committed to disk and we can free them here. 7333 */ 7334 pagedep = newdirblk->db_pagedep; 7335 pagedep->pd_state &= ~NEWBLOCK; 7336 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7337 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7338 free_diradd(dap, NULL); 7339 /* 7340 * If no dependencies remain, the pagedep will be freed. 7341 */ 7342 free_pagedep(pagedep); 7343 } 7344 /* Should only ever be one item in the list. */ 7345 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7346 WORKLIST_REMOVE(wk); 7347 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7348 } 7349 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7350 } 7351 7352 /* 7353 * Prepare an inode to be freed. The actual free operation is not 7354 * done until the zero'ed inode has been written to disk. 7355 */ 7356 void 7357 softdep_freefile(pvp, ino, mode) 7358 struct vnode *pvp; 7359 ino_t ino; 7360 int mode; 7361 { 7362 struct inode *ip = VTOI(pvp); 7363 struct inodedep *inodedep; 7364 struct freefile *freefile; 7365 struct freeblks *freeblks; 7366 struct ufsmount *ump; 7367 7368 ump = ip->i_ump; 7369 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7370 ("softdep_freefile called on non-softdep filesystem")); 7371 /* 7372 * This sets up the inode de-allocation dependency. 7373 */ 7374 freefile = malloc(sizeof(struct freefile), 7375 M_FREEFILE, M_SOFTDEP_FLAGS); 7376 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7377 freefile->fx_mode = mode; 7378 freefile->fx_oldinum = ino; 7379 freefile->fx_devvp = ip->i_devvp; 7380 LIST_INIT(&freefile->fx_jwork); 7381 UFS_LOCK(ump); 7382 ip->i_fs->fs_pendinginodes += 1; 7383 UFS_UNLOCK(ump); 7384 7385 /* 7386 * If the inodedep does not exist, then the zero'ed inode has 7387 * been written to disk. If the allocated inode has never been 7388 * written to disk, then the on-disk inode is zero'ed. In either 7389 * case we can free the file immediately. If the journal was 7390 * canceled before being written the inode will never make it to 7391 * disk and we must send the canceled journal entrys to 7392 * ffs_freefile() to be cleared in conjunction with the bitmap. 7393 * Any blocks waiting on the inode to write can be safely freed 7394 * here as it will never been written. 7395 */ 7396 ACQUIRE_LOCK(ump); 7397 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7398 if (inodedep) { 7399 /* 7400 * Clear out freeblks that no longer need to reference 7401 * this inode. 7402 */ 7403 while ((freeblks = 7404 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7405 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7406 fb_next); 7407 freeblks->fb_state &= ~ONDEPLIST; 7408 } 7409 /* 7410 * Remove this inode from the unlinked list. 7411 */ 7412 if (inodedep->id_state & UNLINKED) { 7413 /* 7414 * Save the journal work to be freed with the bitmap 7415 * before we clear UNLINKED. Otherwise it can be lost 7416 * if the inode block is written. 7417 */ 7418 handle_bufwait(inodedep, &freefile->fx_jwork); 7419 clear_unlinked_inodedep(inodedep); 7420 /* 7421 * Re-acquire inodedep as we've dropped the 7422 * soft updates lock in clear_unlinked_inodedep(). 7423 */ 7424 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7425 } 7426 } 7427 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7428 FREE_LOCK(ump); 7429 handle_workitem_freefile(freefile); 7430 return; 7431 } 7432 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7433 inodedep->id_state |= GOINGAWAY; 7434 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7435 FREE_LOCK(ump); 7436 if (ip->i_number == ino) 7437 ip->i_flag |= IN_MODIFIED; 7438 } 7439 7440 /* 7441 * Check to see if an inode has never been written to disk. If 7442 * so free the inodedep and return success, otherwise return failure. 7443 * This routine must be called with splbio interrupts blocked. 7444 * 7445 * If we still have a bitmap dependency, then the inode has never 7446 * been written to disk. Drop the dependency as it is no longer 7447 * necessary since the inode is being deallocated. We set the 7448 * ALLCOMPLETE flags since the bitmap now properly shows that the 7449 * inode is not allocated. Even if the inode is actively being 7450 * written, it has been rolled back to its zero'ed state, so we 7451 * are ensured that a zero inode is what is on the disk. For short 7452 * lived files, this change will usually result in removing all the 7453 * dependencies from the inode so that it can be freed immediately. 7454 */ 7455 static int 7456 check_inode_unwritten(inodedep) 7457 struct inodedep *inodedep; 7458 { 7459 7460 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7461 7462 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7463 !LIST_EMPTY(&inodedep->id_dirremhd) || 7464 !LIST_EMPTY(&inodedep->id_pendinghd) || 7465 !LIST_EMPTY(&inodedep->id_bufwait) || 7466 !LIST_EMPTY(&inodedep->id_inowait) || 7467 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7468 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7469 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7470 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7471 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7472 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7473 inodedep->id_mkdiradd != NULL || 7474 inodedep->id_nlinkdelta != 0) 7475 return (0); 7476 /* 7477 * Another process might be in initiate_write_inodeblock_ufs[12] 7478 * trying to allocate memory without holding "Softdep Lock". 7479 */ 7480 if ((inodedep->id_state & IOSTARTED) != 0 && 7481 inodedep->id_savedino1 == NULL) 7482 return (0); 7483 7484 if (inodedep->id_state & ONDEPLIST) 7485 LIST_REMOVE(inodedep, id_deps); 7486 inodedep->id_state &= ~ONDEPLIST; 7487 inodedep->id_state |= ALLCOMPLETE; 7488 inodedep->id_bmsafemap = NULL; 7489 if (inodedep->id_state & ONWORKLIST) 7490 WORKLIST_REMOVE(&inodedep->id_list); 7491 if (inodedep->id_savedino1 != NULL) { 7492 free(inodedep->id_savedino1, M_SAVEDINO); 7493 inodedep->id_savedino1 = NULL; 7494 } 7495 if (free_inodedep(inodedep) == 0) 7496 panic("check_inode_unwritten: busy inode"); 7497 return (1); 7498 } 7499 7500 /* 7501 * Try to free an inodedep structure. Return 1 if it could be freed. 7502 */ 7503 static int 7504 free_inodedep(inodedep) 7505 struct inodedep *inodedep; 7506 { 7507 7508 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7509 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7510 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7511 !LIST_EMPTY(&inodedep->id_dirremhd) || 7512 !LIST_EMPTY(&inodedep->id_pendinghd) || 7513 !LIST_EMPTY(&inodedep->id_bufwait) || 7514 !LIST_EMPTY(&inodedep->id_inowait) || 7515 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7516 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7517 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7518 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7519 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7520 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7521 inodedep->id_mkdiradd != NULL || 7522 inodedep->id_nlinkdelta != 0 || 7523 inodedep->id_savedino1 != NULL) 7524 return (0); 7525 if (inodedep->id_state & ONDEPLIST) 7526 LIST_REMOVE(inodedep, id_deps); 7527 LIST_REMOVE(inodedep, id_hash); 7528 WORKITEM_FREE(inodedep, D_INODEDEP); 7529 return (1); 7530 } 7531 7532 /* 7533 * Free the block referenced by a freework structure. The parent freeblks 7534 * structure is released and completed when the final cg bitmap reaches 7535 * the disk. This routine may be freeing a jnewblk which never made it to 7536 * disk in which case we do not have to wait as the operation is undone 7537 * in memory immediately. 7538 */ 7539 static void 7540 freework_freeblock(freework) 7541 struct freework *freework; 7542 { 7543 struct freeblks *freeblks; 7544 struct jnewblk *jnewblk; 7545 struct ufsmount *ump; 7546 struct workhead wkhd; 7547 struct fs *fs; 7548 int bsize; 7549 int needj; 7550 7551 ump = VFSTOUFS(freework->fw_list.wk_mp); 7552 LOCK_OWNED(ump); 7553 /* 7554 * Handle partial truncate separately. 7555 */ 7556 if (freework->fw_indir) { 7557 complete_trunc_indir(freework); 7558 return; 7559 } 7560 freeblks = freework->fw_freeblks; 7561 fs = ump->um_fs; 7562 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7563 bsize = lfragtosize(fs, freework->fw_frags); 7564 LIST_INIT(&wkhd); 7565 /* 7566 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7567 * on the indirblk hashtable and prevents premature freeing. 7568 */ 7569 freework->fw_state |= DEPCOMPLETE; 7570 /* 7571 * SUJ needs to wait for the segment referencing freed indirect 7572 * blocks to expire so that we know the checker will not confuse 7573 * a re-allocated indirect block with its old contents. 7574 */ 7575 if (needj && freework->fw_lbn <= -NDADDR) 7576 indirblk_insert(freework); 7577 /* 7578 * If we are canceling an existing jnewblk pass it to the free 7579 * routine, otherwise pass the freeblk which will ultimately 7580 * release the freeblks. If we're not journaling, we can just 7581 * free the freeblks immediately. 7582 */ 7583 jnewblk = freework->fw_jnewblk; 7584 if (jnewblk != NULL) { 7585 cancel_jnewblk(jnewblk, &wkhd); 7586 needj = 0; 7587 } else if (needj) { 7588 freework->fw_state |= DELAYEDFREE; 7589 freeblks->fb_cgwait++; 7590 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7591 } 7592 FREE_LOCK(ump); 7593 freeblks_free(ump, freeblks, btodb(bsize)); 7594 CTR4(KTR_SUJ, 7595 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7596 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7597 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7598 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7599 ACQUIRE_LOCK(ump); 7600 /* 7601 * The jnewblk will be discarded and the bits in the map never 7602 * made it to disk. We can immediately free the freeblk. 7603 */ 7604 if (needj == 0) 7605 handle_written_freework(freework); 7606 } 7607 7608 /* 7609 * We enqueue freework items that need processing back on the freeblks and 7610 * add the freeblks to the worklist. This makes it easier to find all work 7611 * required to flush a truncation in process_truncates(). 7612 */ 7613 static void 7614 freework_enqueue(freework) 7615 struct freework *freework; 7616 { 7617 struct freeblks *freeblks; 7618 7619 freeblks = freework->fw_freeblks; 7620 if ((freework->fw_state & INPROGRESS) == 0) 7621 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7622 if ((freeblks->fb_state & 7623 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7624 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7625 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7626 } 7627 7628 /* 7629 * Start, continue, or finish the process of freeing an indirect block tree. 7630 * The free operation may be paused at any point with fw_off containing the 7631 * offset to restart from. This enables us to implement some flow control 7632 * for large truncates which may fan out and generate a huge number of 7633 * dependencies. 7634 */ 7635 static void 7636 handle_workitem_indirblk(freework) 7637 struct freework *freework; 7638 { 7639 struct freeblks *freeblks; 7640 struct ufsmount *ump; 7641 struct fs *fs; 7642 7643 freeblks = freework->fw_freeblks; 7644 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7645 fs = ump->um_fs; 7646 if (freework->fw_state & DEPCOMPLETE) { 7647 handle_written_freework(freework); 7648 return; 7649 } 7650 if (freework->fw_off == NINDIR(fs)) { 7651 freework_freeblock(freework); 7652 return; 7653 } 7654 freework->fw_state |= INPROGRESS; 7655 FREE_LOCK(ump); 7656 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7657 freework->fw_lbn); 7658 ACQUIRE_LOCK(ump); 7659 } 7660 7661 /* 7662 * Called when a freework structure attached to a cg buf is written. The 7663 * ref on either the parent or the freeblks structure is released and 7664 * the freeblks is added back to the worklist if there is more work to do. 7665 */ 7666 static void 7667 handle_written_freework(freework) 7668 struct freework *freework; 7669 { 7670 struct freeblks *freeblks; 7671 struct freework *parent; 7672 7673 freeblks = freework->fw_freeblks; 7674 parent = freework->fw_parent; 7675 if (freework->fw_state & DELAYEDFREE) 7676 freeblks->fb_cgwait--; 7677 freework->fw_state |= COMPLETE; 7678 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7679 WORKITEM_FREE(freework, D_FREEWORK); 7680 if (parent) { 7681 if (--parent->fw_ref == 0) 7682 freework_enqueue(parent); 7683 return; 7684 } 7685 if (--freeblks->fb_ref != 0) 7686 return; 7687 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7688 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7689 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7690 } 7691 7692 /* 7693 * This workitem routine performs the block de-allocation. 7694 * The workitem is added to the pending list after the updated 7695 * inode block has been written to disk. As mentioned above, 7696 * checks regarding the number of blocks de-allocated (compared 7697 * to the number of blocks allocated for the file) are also 7698 * performed in this function. 7699 */ 7700 static int 7701 handle_workitem_freeblocks(freeblks, flags) 7702 struct freeblks *freeblks; 7703 int flags; 7704 { 7705 struct freework *freework; 7706 struct newblk *newblk; 7707 struct allocindir *aip; 7708 struct ufsmount *ump; 7709 struct worklist *wk; 7710 7711 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7712 ("handle_workitem_freeblocks: Journal entries not written.")); 7713 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7714 ACQUIRE_LOCK(ump); 7715 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7716 WORKLIST_REMOVE(wk); 7717 switch (wk->wk_type) { 7718 case D_DIRREM: 7719 wk->wk_state |= COMPLETE; 7720 add_to_worklist(wk, 0); 7721 continue; 7722 7723 case D_ALLOCDIRECT: 7724 free_newblk(WK_NEWBLK(wk)); 7725 continue; 7726 7727 case D_ALLOCINDIR: 7728 aip = WK_ALLOCINDIR(wk); 7729 freework = NULL; 7730 if (aip->ai_state & DELAYEDFREE) { 7731 FREE_LOCK(ump); 7732 freework = newfreework(ump, freeblks, NULL, 7733 aip->ai_lbn, aip->ai_newblkno, 7734 ump->um_fs->fs_frag, 0, 0); 7735 ACQUIRE_LOCK(ump); 7736 } 7737 newblk = WK_NEWBLK(wk); 7738 if (newblk->nb_jnewblk) { 7739 freework->fw_jnewblk = newblk->nb_jnewblk; 7740 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7741 newblk->nb_jnewblk = NULL; 7742 } 7743 free_newblk(newblk); 7744 continue; 7745 7746 case D_FREEWORK: 7747 freework = WK_FREEWORK(wk); 7748 if (freework->fw_lbn <= -NDADDR) 7749 handle_workitem_indirblk(freework); 7750 else 7751 freework_freeblock(freework); 7752 continue; 7753 default: 7754 panic("handle_workitem_freeblocks: Unknown type %s", 7755 TYPENAME(wk->wk_type)); 7756 } 7757 } 7758 if (freeblks->fb_ref != 0) { 7759 freeblks->fb_state &= ~INPROGRESS; 7760 wake_worklist(&freeblks->fb_list); 7761 freeblks = NULL; 7762 } 7763 FREE_LOCK(ump); 7764 if (freeblks) 7765 return handle_complete_freeblocks(freeblks, flags); 7766 return (0); 7767 } 7768 7769 /* 7770 * Handle completion of block free via truncate. This allows fs_pending 7771 * to track the actual free block count more closely than if we only updated 7772 * it at the end. We must be careful to handle cases where the block count 7773 * on free was incorrect. 7774 */ 7775 static void 7776 freeblks_free(ump, freeblks, blocks) 7777 struct ufsmount *ump; 7778 struct freeblks *freeblks; 7779 int blocks; 7780 { 7781 struct fs *fs; 7782 ufs2_daddr_t remain; 7783 7784 UFS_LOCK(ump); 7785 remain = -freeblks->fb_chkcnt; 7786 freeblks->fb_chkcnt += blocks; 7787 if (remain > 0) { 7788 if (remain < blocks) 7789 blocks = remain; 7790 fs = ump->um_fs; 7791 fs->fs_pendingblocks -= blocks; 7792 } 7793 UFS_UNLOCK(ump); 7794 } 7795 7796 /* 7797 * Once all of the freework workitems are complete we can retire the 7798 * freeblocks dependency and any journal work awaiting completion. This 7799 * can not be called until all other dependencies are stable on disk. 7800 */ 7801 static int 7802 handle_complete_freeblocks(freeblks, flags) 7803 struct freeblks *freeblks; 7804 int flags; 7805 { 7806 struct inodedep *inodedep; 7807 struct inode *ip; 7808 struct vnode *vp; 7809 struct fs *fs; 7810 struct ufsmount *ump; 7811 ufs2_daddr_t spare; 7812 7813 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7814 fs = ump->um_fs; 7815 flags = LK_EXCLUSIVE | flags; 7816 spare = freeblks->fb_chkcnt; 7817 7818 /* 7819 * If we did not release the expected number of blocks we may have 7820 * to adjust the inode block count here. Only do so if it wasn't 7821 * a truncation to zero and the modrev still matches. 7822 */ 7823 if (spare && freeblks->fb_len != 0) { 7824 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7825 flags, &vp, FFSV_FORCEINSMQ) != 0) 7826 return (EBUSY); 7827 ip = VTOI(vp); 7828 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 7829 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 7830 ip->i_flag |= IN_CHANGE; 7831 /* 7832 * We must wait so this happens before the 7833 * journal is reclaimed. 7834 */ 7835 ffs_update(vp, 1); 7836 } 7837 vput(vp); 7838 } 7839 if (spare < 0) { 7840 UFS_LOCK(ump); 7841 fs->fs_pendingblocks += spare; 7842 UFS_UNLOCK(ump); 7843 } 7844 #ifdef QUOTA 7845 /* Handle spare. */ 7846 if (spare) 7847 quotaadj(freeblks->fb_quota, ump, -spare); 7848 quotarele(freeblks->fb_quota); 7849 #endif 7850 ACQUIRE_LOCK(ump); 7851 if (freeblks->fb_state & ONDEPLIST) { 7852 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7853 0, &inodedep); 7854 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 7855 freeblks->fb_state &= ~ONDEPLIST; 7856 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 7857 free_inodedep(inodedep); 7858 } 7859 /* 7860 * All of the freeblock deps must be complete prior to this call 7861 * so it's now safe to complete earlier outstanding journal entries. 7862 */ 7863 handle_jwork(&freeblks->fb_jwork); 7864 WORKITEM_FREE(freeblks, D_FREEBLKS); 7865 FREE_LOCK(ump); 7866 return (0); 7867 } 7868 7869 /* 7870 * Release blocks associated with the freeblks and stored in the indirect 7871 * block dbn. If level is greater than SINGLE, the block is an indirect block 7872 * and recursive calls to indirtrunc must be used to cleanse other indirect 7873 * blocks. 7874 * 7875 * This handles partial and complete truncation of blocks. Partial is noted 7876 * with goingaway == 0. In this case the freework is completed after the 7877 * zero'd indirects are written to disk. For full truncation the freework 7878 * is completed after the block is freed. 7879 */ 7880 static void 7881 indir_trunc(freework, dbn, lbn) 7882 struct freework *freework; 7883 ufs2_daddr_t dbn; 7884 ufs_lbn_t lbn; 7885 { 7886 struct freework *nfreework; 7887 struct workhead wkhd; 7888 struct freeblks *freeblks; 7889 struct buf *bp; 7890 struct fs *fs; 7891 struct indirdep *indirdep; 7892 struct ufsmount *ump; 7893 ufs1_daddr_t *bap1 = 0; 7894 ufs2_daddr_t nb, nnb, *bap2 = 0; 7895 ufs_lbn_t lbnadd, nlbn; 7896 int i, nblocks, ufs1fmt; 7897 int freedblocks; 7898 int goingaway; 7899 int freedeps; 7900 int needj; 7901 int level; 7902 int cnt; 7903 7904 freeblks = freework->fw_freeblks; 7905 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7906 fs = ump->um_fs; 7907 /* 7908 * Get buffer of block pointers to be freed. There are three cases: 7909 * 7910 * 1) Partial truncate caches the indirdep pointer in the freework 7911 * which provides us a back copy to the save bp which holds the 7912 * pointers we want to clear. When this completes the zero 7913 * pointers are written to the real copy. 7914 * 2) The indirect is being completely truncated, cancel_indirdep() 7915 * eliminated the real copy and placed the indirdep on the saved 7916 * copy. The indirdep and buf are discarded when this completes. 7917 * 3) The indirect was not in memory, we read a copy off of the disk 7918 * using the devvp and drop and invalidate the buffer when we're 7919 * done. 7920 */ 7921 goingaway = 1; 7922 indirdep = NULL; 7923 if (freework->fw_indir != NULL) { 7924 goingaway = 0; 7925 indirdep = freework->fw_indir; 7926 bp = indirdep->ir_savebp; 7927 if (bp == NULL || bp->b_blkno != dbn) 7928 panic("indir_trunc: Bad saved buf %p blkno %jd", 7929 bp, (intmax_t)dbn); 7930 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 7931 /* 7932 * The lock prevents the buf dep list from changing and 7933 * indirects on devvp should only ever have one dependency. 7934 */ 7935 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 7936 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 7937 panic("indir_trunc: Bad indirdep %p from buf %p", 7938 indirdep, bp); 7939 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 7940 NOCRED, &bp) != 0) { 7941 brelse(bp); 7942 return; 7943 } 7944 ACQUIRE_LOCK(ump); 7945 /* Protects against a race with complete_trunc_indir(). */ 7946 freework->fw_state &= ~INPROGRESS; 7947 /* 7948 * If we have an indirdep we need to enforce the truncation order 7949 * and discard it when it is complete. 7950 */ 7951 if (indirdep) { 7952 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 7953 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 7954 /* 7955 * Add the complete truncate to the list on the 7956 * indirdep to enforce in-order processing. 7957 */ 7958 if (freework->fw_indir == NULL) 7959 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 7960 freework, fw_next); 7961 FREE_LOCK(ump); 7962 return; 7963 } 7964 /* 7965 * If we're goingaway, free the indirdep. Otherwise it will 7966 * linger until the write completes. 7967 */ 7968 if (goingaway) { 7969 free_indirdep(indirdep); 7970 ump->softdep_numindirdeps -= 1; 7971 } 7972 } 7973 FREE_LOCK(ump); 7974 /* Initialize pointers depending on block size. */ 7975 if (ump->um_fstype == UFS1) { 7976 bap1 = (ufs1_daddr_t *)bp->b_data; 7977 nb = bap1[freework->fw_off]; 7978 ufs1fmt = 1; 7979 } else { 7980 bap2 = (ufs2_daddr_t *)bp->b_data; 7981 nb = bap2[freework->fw_off]; 7982 ufs1fmt = 0; 7983 } 7984 level = lbn_level(lbn); 7985 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 7986 lbnadd = lbn_offset(fs, level); 7987 nblocks = btodb(fs->fs_bsize); 7988 nfreework = freework; 7989 freedeps = 0; 7990 cnt = 0; 7991 /* 7992 * Reclaim blocks. Traverses into nested indirect levels and 7993 * arranges for the current level to be freed when subordinates 7994 * are free when journaling. 7995 */ 7996 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 7997 if (i != NINDIR(fs) - 1) { 7998 if (ufs1fmt) 7999 nnb = bap1[i+1]; 8000 else 8001 nnb = bap2[i+1]; 8002 } else 8003 nnb = 0; 8004 if (nb == 0) 8005 continue; 8006 cnt++; 8007 if (level != 0) { 8008 nlbn = (lbn + 1) - (i * lbnadd); 8009 if (needj != 0) { 8010 nfreework = newfreework(ump, freeblks, freework, 8011 nlbn, nb, fs->fs_frag, 0, 0); 8012 freedeps++; 8013 } 8014 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8015 } else { 8016 struct freedep *freedep; 8017 8018 /* 8019 * Attempt to aggregate freedep dependencies for 8020 * all blocks being released to the same CG. 8021 */ 8022 LIST_INIT(&wkhd); 8023 if (needj != 0 && 8024 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8025 freedep = newfreedep(freework); 8026 WORKLIST_INSERT_UNLOCKED(&wkhd, 8027 &freedep->fd_list); 8028 freedeps++; 8029 } 8030 CTR3(KTR_SUJ, 8031 "indir_trunc: ino %d blkno %jd size %ld", 8032 freeblks->fb_inum, nb, fs->fs_bsize); 8033 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8034 fs->fs_bsize, freeblks->fb_inum, 8035 freeblks->fb_vtype, &wkhd); 8036 } 8037 } 8038 if (goingaway) { 8039 bp->b_flags |= B_INVAL | B_NOCACHE; 8040 brelse(bp); 8041 } 8042 freedblocks = 0; 8043 if (level == 0) 8044 freedblocks = (nblocks * cnt); 8045 if (needj == 0) 8046 freedblocks += nblocks; 8047 freeblks_free(ump, freeblks, freedblocks); 8048 /* 8049 * If we are journaling set up the ref counts and offset so this 8050 * indirect can be completed when its children are free. 8051 */ 8052 if (needj) { 8053 ACQUIRE_LOCK(ump); 8054 freework->fw_off = i; 8055 freework->fw_ref += freedeps; 8056 freework->fw_ref -= NINDIR(fs) + 1; 8057 if (level == 0) 8058 freeblks->fb_cgwait += freedeps; 8059 if (freework->fw_ref == 0) 8060 freework_freeblock(freework); 8061 FREE_LOCK(ump); 8062 return; 8063 } 8064 /* 8065 * If we're not journaling we can free the indirect now. 8066 */ 8067 dbn = dbtofsb(fs, dbn); 8068 CTR3(KTR_SUJ, 8069 "indir_trunc 2: ino %d blkno %jd size %ld", 8070 freeblks->fb_inum, dbn, fs->fs_bsize); 8071 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8072 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8073 /* Non SUJ softdep does single-threaded truncations. */ 8074 if (freework->fw_blkno == dbn) { 8075 freework->fw_state |= ALLCOMPLETE; 8076 ACQUIRE_LOCK(ump); 8077 handle_written_freework(freework); 8078 FREE_LOCK(ump); 8079 } 8080 return; 8081 } 8082 8083 /* 8084 * Cancel an allocindir when it is removed via truncation. When bp is not 8085 * NULL the indirect never appeared on disk and is scheduled to be freed 8086 * independently of the indir so we can more easily track journal work. 8087 */ 8088 static void 8089 cancel_allocindir(aip, bp, freeblks, trunc) 8090 struct allocindir *aip; 8091 struct buf *bp; 8092 struct freeblks *freeblks; 8093 int trunc; 8094 { 8095 struct indirdep *indirdep; 8096 struct freefrag *freefrag; 8097 struct newblk *newblk; 8098 8099 newblk = (struct newblk *)aip; 8100 LIST_REMOVE(aip, ai_next); 8101 /* 8102 * We must eliminate the pointer in bp if it must be freed on its 8103 * own due to partial truncate or pending journal work. 8104 */ 8105 if (bp && (trunc || newblk->nb_jnewblk)) { 8106 /* 8107 * Clear the pointer and mark the aip to be freed 8108 * directly if it never existed on disk. 8109 */ 8110 aip->ai_state |= DELAYEDFREE; 8111 indirdep = aip->ai_indirdep; 8112 if (indirdep->ir_state & UFS1FMT) 8113 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8114 else 8115 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8116 } 8117 /* 8118 * When truncating the previous pointer will be freed via 8119 * savedbp. Eliminate the freefrag which would dup free. 8120 */ 8121 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8122 newblk->nb_freefrag = NULL; 8123 if (freefrag->ff_jdep) 8124 cancel_jfreefrag( 8125 WK_JFREEFRAG(freefrag->ff_jdep)); 8126 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8127 WORKITEM_FREE(freefrag, D_FREEFRAG); 8128 } 8129 /* 8130 * If the journal hasn't been written the jnewblk must be passed 8131 * to the call to ffs_blkfree that reclaims the space. We accomplish 8132 * this by leaving the journal dependency on the newblk to be freed 8133 * when a freework is created in handle_workitem_freeblocks(). 8134 */ 8135 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8136 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8137 } 8138 8139 /* 8140 * Create the mkdir dependencies for . and .. in a new directory. Link them 8141 * in to a newdirblk so any subsequent additions are tracked properly. The 8142 * caller is responsible for adding the mkdir1 dependency to the journal 8143 * and updating id_mkdiradd. This function returns with the soft updates 8144 * lock held. 8145 */ 8146 static struct mkdir * 8147 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8148 struct diradd *dap; 8149 ino_t newinum; 8150 ino_t dinum; 8151 struct buf *newdirbp; 8152 struct mkdir **mkdirp; 8153 { 8154 struct newblk *newblk; 8155 struct pagedep *pagedep; 8156 struct inodedep *inodedep; 8157 struct newdirblk *newdirblk = 0; 8158 struct mkdir *mkdir1, *mkdir2; 8159 struct worklist *wk; 8160 struct jaddref *jaddref; 8161 struct ufsmount *ump; 8162 struct mount *mp; 8163 8164 mp = dap->da_list.wk_mp; 8165 ump = VFSTOUFS(mp); 8166 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8167 M_SOFTDEP_FLAGS); 8168 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8169 LIST_INIT(&newdirblk->db_mkdir); 8170 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8171 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8172 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8173 mkdir1->md_diradd = dap; 8174 mkdir1->md_jaddref = NULL; 8175 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8176 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8177 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8178 mkdir2->md_diradd = dap; 8179 mkdir2->md_jaddref = NULL; 8180 if (MOUNTEDSUJ(mp) == 0) { 8181 mkdir1->md_state |= DEPCOMPLETE; 8182 mkdir2->md_state |= DEPCOMPLETE; 8183 } 8184 /* 8185 * Dependency on "." and ".." being written to disk. 8186 */ 8187 mkdir1->md_buf = newdirbp; 8188 ACQUIRE_LOCK(VFSTOUFS(mp)); 8189 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8190 /* 8191 * We must link the pagedep, allocdirect, and newdirblk for 8192 * the initial file page so the pointer to the new directory 8193 * is not written until the directory contents are live and 8194 * any subsequent additions are not marked live until the 8195 * block is reachable via the inode. 8196 */ 8197 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8198 panic("setup_newdir: lost pagedep"); 8199 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8200 if (wk->wk_type == D_ALLOCDIRECT) 8201 break; 8202 if (wk == NULL) 8203 panic("setup_newdir: lost allocdirect"); 8204 if (pagedep->pd_state & NEWBLOCK) 8205 panic("setup_newdir: NEWBLOCK already set"); 8206 newblk = WK_NEWBLK(wk); 8207 pagedep->pd_state |= NEWBLOCK; 8208 pagedep->pd_newdirblk = newdirblk; 8209 newdirblk->db_pagedep = pagedep; 8210 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8211 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8212 /* 8213 * Look up the inodedep for the parent directory so that we 8214 * can link mkdir2 into the pending dotdot jaddref or 8215 * the inode write if there is none. If the inode is 8216 * ALLCOMPLETE and no jaddref is present all dependencies have 8217 * been satisfied and mkdir2 can be freed. 8218 */ 8219 inodedep_lookup(mp, dinum, 0, &inodedep); 8220 if (MOUNTEDSUJ(mp)) { 8221 if (inodedep == NULL) 8222 panic("setup_newdir: Lost parent."); 8223 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8224 inoreflst); 8225 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8226 (jaddref->ja_state & MKDIR_PARENT), 8227 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8228 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8229 mkdir2->md_jaddref = jaddref; 8230 jaddref->ja_mkdir = mkdir2; 8231 } else if (inodedep == NULL || 8232 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8233 dap->da_state &= ~MKDIR_PARENT; 8234 WORKITEM_FREE(mkdir2, D_MKDIR); 8235 mkdir2 = NULL; 8236 } else { 8237 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8238 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8239 } 8240 *mkdirp = mkdir2; 8241 8242 return (mkdir1); 8243 } 8244 8245 /* 8246 * Directory entry addition dependencies. 8247 * 8248 * When adding a new directory entry, the inode (with its incremented link 8249 * count) must be written to disk before the directory entry's pointer to it. 8250 * Also, if the inode is newly allocated, the corresponding freemap must be 8251 * updated (on disk) before the directory entry's pointer. These requirements 8252 * are met via undo/redo on the directory entry's pointer, which consists 8253 * simply of the inode number. 8254 * 8255 * As directory entries are added and deleted, the free space within a 8256 * directory block can become fragmented. The ufs filesystem will compact 8257 * a fragmented directory block to make space for a new entry. When this 8258 * occurs, the offsets of previously added entries change. Any "diradd" 8259 * dependency structures corresponding to these entries must be updated with 8260 * the new offsets. 8261 */ 8262 8263 /* 8264 * This routine is called after the in-memory inode's link 8265 * count has been incremented, but before the directory entry's 8266 * pointer to the inode has been set. 8267 */ 8268 int 8269 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8270 struct buf *bp; /* buffer containing directory block */ 8271 struct inode *dp; /* inode for directory */ 8272 off_t diroffset; /* offset of new entry in directory */ 8273 ino_t newinum; /* inode referenced by new directory entry */ 8274 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8275 int isnewblk; /* entry is in a newly allocated block */ 8276 { 8277 int offset; /* offset of new entry within directory block */ 8278 ufs_lbn_t lbn; /* block in directory containing new entry */ 8279 struct fs *fs; 8280 struct diradd *dap; 8281 struct newblk *newblk; 8282 struct pagedep *pagedep; 8283 struct inodedep *inodedep; 8284 struct newdirblk *newdirblk = 0; 8285 struct mkdir *mkdir1, *mkdir2; 8286 struct jaddref *jaddref; 8287 struct ufsmount *ump; 8288 struct mount *mp; 8289 int isindir; 8290 8291 ump = dp->i_ump; 8292 mp = UFSTOVFS(ump); 8293 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8294 ("softdep_setup_directory_add called on non-softdep filesystem")); 8295 /* 8296 * Whiteouts have no dependencies. 8297 */ 8298 if (newinum == WINO) { 8299 if (newdirbp != NULL) 8300 bdwrite(newdirbp); 8301 return (0); 8302 } 8303 jaddref = NULL; 8304 mkdir1 = mkdir2 = NULL; 8305 fs = dp->i_fs; 8306 lbn = lblkno(fs, diroffset); 8307 offset = blkoff(fs, diroffset); 8308 dap = malloc(sizeof(struct diradd), M_DIRADD, 8309 M_SOFTDEP_FLAGS|M_ZERO); 8310 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8311 dap->da_offset = offset; 8312 dap->da_newinum = newinum; 8313 dap->da_state = ATTACHED; 8314 LIST_INIT(&dap->da_jwork); 8315 isindir = bp->b_lblkno >= NDADDR; 8316 if (isnewblk && 8317 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8318 newdirblk = malloc(sizeof(struct newdirblk), 8319 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8320 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8321 LIST_INIT(&newdirblk->db_mkdir); 8322 } 8323 /* 8324 * If we're creating a new directory setup the dependencies and set 8325 * the dap state to wait for them. Otherwise it's COMPLETE and 8326 * we can move on. 8327 */ 8328 if (newdirbp == NULL) { 8329 dap->da_state |= DEPCOMPLETE; 8330 ACQUIRE_LOCK(ump); 8331 } else { 8332 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8333 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8334 &mkdir2); 8335 } 8336 /* 8337 * Link into parent directory pagedep to await its being written. 8338 */ 8339 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8340 #ifdef DEBUG 8341 if (diradd_lookup(pagedep, offset) != NULL) 8342 panic("softdep_setup_directory_add: %p already at off %d\n", 8343 diradd_lookup(pagedep, offset), offset); 8344 #endif 8345 dap->da_pagedep = pagedep; 8346 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8347 da_pdlist); 8348 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 8349 /* 8350 * If we're journaling, link the diradd into the jaddref so it 8351 * may be completed after the journal entry is written. Otherwise, 8352 * link the diradd into its inodedep. If the inode is not yet 8353 * written place it on the bufwait list, otherwise do the post-inode 8354 * write processing to put it on the id_pendinghd list. 8355 */ 8356 if (MOUNTEDSUJ(mp)) { 8357 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8358 inoreflst); 8359 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8360 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8361 jaddref->ja_diroff = diroffset; 8362 jaddref->ja_diradd = dap; 8363 add_to_journal(&jaddref->ja_list); 8364 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8365 diradd_inode_written(dap, inodedep); 8366 else 8367 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8368 /* 8369 * Add the journal entries for . and .. links now that the primary 8370 * link is written. 8371 */ 8372 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8373 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8374 inoreflst, if_deps); 8375 KASSERT(jaddref != NULL && 8376 jaddref->ja_ino == jaddref->ja_parent && 8377 (jaddref->ja_state & MKDIR_BODY), 8378 ("softdep_setup_directory_add: bad dot jaddref %p", 8379 jaddref)); 8380 mkdir1->md_jaddref = jaddref; 8381 jaddref->ja_mkdir = mkdir1; 8382 /* 8383 * It is important that the dotdot journal entry 8384 * is added prior to the dot entry since dot writes 8385 * both the dot and dotdot links. These both must 8386 * be added after the primary link for the journal 8387 * to remain consistent. 8388 */ 8389 add_to_journal(&mkdir2->md_jaddref->ja_list); 8390 add_to_journal(&jaddref->ja_list); 8391 } 8392 /* 8393 * If we are adding a new directory remember this diradd so that if 8394 * we rename it we can keep the dot and dotdot dependencies. If 8395 * we are adding a new name for an inode that has a mkdiradd we 8396 * must be in rename and we have to move the dot and dotdot 8397 * dependencies to this new name. The old name is being orphaned 8398 * soon. 8399 */ 8400 if (mkdir1 != NULL) { 8401 if (inodedep->id_mkdiradd != NULL) 8402 panic("softdep_setup_directory_add: Existing mkdir"); 8403 inodedep->id_mkdiradd = dap; 8404 } else if (inodedep->id_mkdiradd) 8405 merge_diradd(inodedep, dap); 8406 if (newdirblk) { 8407 /* 8408 * There is nothing to do if we are already tracking 8409 * this block. 8410 */ 8411 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8412 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8413 FREE_LOCK(ump); 8414 return (0); 8415 } 8416 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8417 == 0) 8418 panic("softdep_setup_directory_add: lost entry"); 8419 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8420 pagedep->pd_state |= NEWBLOCK; 8421 pagedep->pd_newdirblk = newdirblk; 8422 newdirblk->db_pagedep = pagedep; 8423 FREE_LOCK(ump); 8424 /* 8425 * If we extended into an indirect signal direnter to sync. 8426 */ 8427 if (isindir) 8428 return (1); 8429 return (0); 8430 } 8431 FREE_LOCK(ump); 8432 return (0); 8433 } 8434 8435 /* 8436 * This procedure is called to change the offset of a directory 8437 * entry when compacting a directory block which must be owned 8438 * exclusively by the caller. Note that the actual entry movement 8439 * must be done in this procedure to ensure that no I/O completions 8440 * occur while the move is in progress. 8441 */ 8442 void 8443 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8444 struct buf *bp; /* Buffer holding directory block. */ 8445 struct inode *dp; /* inode for directory */ 8446 caddr_t base; /* address of dp->i_offset */ 8447 caddr_t oldloc; /* address of old directory location */ 8448 caddr_t newloc; /* address of new directory location */ 8449 int entrysize; /* size of directory entry */ 8450 { 8451 int offset, oldoffset, newoffset; 8452 struct pagedep *pagedep; 8453 struct jmvref *jmvref; 8454 struct diradd *dap; 8455 struct direct *de; 8456 struct mount *mp; 8457 ufs_lbn_t lbn; 8458 int flags; 8459 8460 mp = UFSTOVFS(dp->i_ump); 8461 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8462 ("softdep_change_directoryentry_offset called on " 8463 "non-softdep filesystem")); 8464 de = (struct direct *)oldloc; 8465 jmvref = NULL; 8466 flags = 0; 8467 /* 8468 * Moves are always journaled as it would be too complex to 8469 * determine if any affected adds or removes are present in the 8470 * journal. 8471 */ 8472 if (MOUNTEDSUJ(mp)) { 8473 flags = DEPALLOC; 8474 jmvref = newjmvref(dp, de->d_ino, 8475 dp->i_offset + (oldloc - base), 8476 dp->i_offset + (newloc - base)); 8477 } 8478 lbn = lblkno(dp->i_fs, dp->i_offset); 8479 offset = blkoff(dp->i_fs, dp->i_offset); 8480 oldoffset = offset + (oldloc - base); 8481 newoffset = offset + (newloc - base); 8482 ACQUIRE_LOCK(dp->i_ump); 8483 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8484 goto done; 8485 dap = diradd_lookup(pagedep, oldoffset); 8486 if (dap) { 8487 dap->da_offset = newoffset; 8488 newoffset = DIRADDHASH(newoffset); 8489 oldoffset = DIRADDHASH(oldoffset); 8490 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8491 newoffset != oldoffset) { 8492 LIST_REMOVE(dap, da_pdlist); 8493 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8494 dap, da_pdlist); 8495 } 8496 } 8497 done: 8498 if (jmvref) { 8499 jmvref->jm_pagedep = pagedep; 8500 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8501 add_to_journal(&jmvref->jm_list); 8502 } 8503 bcopy(oldloc, newloc, entrysize); 8504 FREE_LOCK(dp->i_ump); 8505 } 8506 8507 /* 8508 * Move the mkdir dependencies and journal work from one diradd to another 8509 * when renaming a directory. The new name must depend on the mkdir deps 8510 * completing as the old name did. Directories can only have one valid link 8511 * at a time so one must be canonical. 8512 */ 8513 static void 8514 merge_diradd(inodedep, newdap) 8515 struct inodedep *inodedep; 8516 struct diradd *newdap; 8517 { 8518 struct diradd *olddap; 8519 struct mkdir *mkdir, *nextmd; 8520 struct ufsmount *ump; 8521 short state; 8522 8523 olddap = inodedep->id_mkdiradd; 8524 inodedep->id_mkdiradd = newdap; 8525 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8526 newdap->da_state &= ~DEPCOMPLETE; 8527 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8528 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8529 mkdir = nextmd) { 8530 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8531 if (mkdir->md_diradd != olddap) 8532 continue; 8533 mkdir->md_diradd = newdap; 8534 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8535 newdap->da_state |= state; 8536 olddap->da_state &= ~state; 8537 if ((olddap->da_state & 8538 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8539 break; 8540 } 8541 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8542 panic("merge_diradd: unfound ref"); 8543 } 8544 /* 8545 * Any mkdir related journal items are not safe to be freed until 8546 * the new name is stable. 8547 */ 8548 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8549 olddap->da_state |= DEPCOMPLETE; 8550 complete_diradd(olddap); 8551 } 8552 8553 /* 8554 * Move the diradd to the pending list when all diradd dependencies are 8555 * complete. 8556 */ 8557 static void 8558 complete_diradd(dap) 8559 struct diradd *dap; 8560 { 8561 struct pagedep *pagedep; 8562 8563 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8564 if (dap->da_state & DIRCHG) 8565 pagedep = dap->da_previous->dm_pagedep; 8566 else 8567 pagedep = dap->da_pagedep; 8568 LIST_REMOVE(dap, da_pdlist); 8569 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8570 } 8571 } 8572 8573 /* 8574 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8575 * add entries and conditonally journal the remove. 8576 */ 8577 static void 8578 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8579 struct diradd *dap; 8580 struct dirrem *dirrem; 8581 struct jremref *jremref; 8582 struct jremref *dotremref; 8583 struct jremref *dotdotremref; 8584 { 8585 struct inodedep *inodedep; 8586 struct jaddref *jaddref; 8587 struct inoref *inoref; 8588 struct ufsmount *ump; 8589 struct mkdir *mkdir; 8590 8591 /* 8592 * If no remove references were allocated we're on a non-journaled 8593 * filesystem and can skip the cancel step. 8594 */ 8595 if (jremref == NULL) { 8596 free_diradd(dap, NULL); 8597 return; 8598 } 8599 /* 8600 * Cancel the primary name an free it if it does not require 8601 * journaling. 8602 */ 8603 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8604 0, &inodedep) != 0) { 8605 /* Abort the addref that reference this diradd. */ 8606 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8607 if (inoref->if_list.wk_type != D_JADDREF) 8608 continue; 8609 jaddref = (struct jaddref *)inoref; 8610 if (jaddref->ja_diradd != dap) 8611 continue; 8612 if (cancel_jaddref(jaddref, inodedep, 8613 &dirrem->dm_jwork) == 0) { 8614 free_jremref(jremref); 8615 jremref = NULL; 8616 } 8617 break; 8618 } 8619 } 8620 /* 8621 * Cancel subordinate names and free them if they do not require 8622 * journaling. 8623 */ 8624 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8625 ump = VFSTOUFS(dap->da_list.wk_mp); 8626 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8627 if (mkdir->md_diradd != dap) 8628 continue; 8629 if ((jaddref = mkdir->md_jaddref) == NULL) 8630 continue; 8631 mkdir->md_jaddref = NULL; 8632 if (mkdir->md_state & MKDIR_PARENT) { 8633 if (cancel_jaddref(jaddref, NULL, 8634 &dirrem->dm_jwork) == 0) { 8635 free_jremref(dotdotremref); 8636 dotdotremref = NULL; 8637 } 8638 } else { 8639 if (cancel_jaddref(jaddref, inodedep, 8640 &dirrem->dm_jwork) == 0) { 8641 free_jremref(dotremref); 8642 dotremref = NULL; 8643 } 8644 } 8645 } 8646 } 8647 8648 if (jremref) 8649 journal_jremref(dirrem, jremref, inodedep); 8650 if (dotremref) 8651 journal_jremref(dirrem, dotremref, inodedep); 8652 if (dotdotremref) 8653 journal_jremref(dirrem, dotdotremref, NULL); 8654 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8655 free_diradd(dap, &dirrem->dm_jwork); 8656 } 8657 8658 /* 8659 * Free a diradd dependency structure. This routine must be called 8660 * with splbio interrupts blocked. 8661 */ 8662 static void 8663 free_diradd(dap, wkhd) 8664 struct diradd *dap; 8665 struct workhead *wkhd; 8666 { 8667 struct dirrem *dirrem; 8668 struct pagedep *pagedep; 8669 struct inodedep *inodedep; 8670 struct mkdir *mkdir, *nextmd; 8671 struct ufsmount *ump; 8672 8673 ump = VFSTOUFS(dap->da_list.wk_mp); 8674 LOCK_OWNED(ump); 8675 LIST_REMOVE(dap, da_pdlist); 8676 if (dap->da_state & ONWORKLIST) 8677 WORKLIST_REMOVE(&dap->da_list); 8678 if ((dap->da_state & DIRCHG) == 0) { 8679 pagedep = dap->da_pagedep; 8680 } else { 8681 dirrem = dap->da_previous; 8682 pagedep = dirrem->dm_pagedep; 8683 dirrem->dm_dirinum = pagedep->pd_ino; 8684 dirrem->dm_state |= COMPLETE; 8685 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8686 add_to_worklist(&dirrem->dm_list, 0); 8687 } 8688 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8689 0, &inodedep) != 0) 8690 if (inodedep->id_mkdiradd == dap) 8691 inodedep->id_mkdiradd = NULL; 8692 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8693 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8694 mkdir = nextmd) { 8695 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8696 if (mkdir->md_diradd != dap) 8697 continue; 8698 dap->da_state &= 8699 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8700 LIST_REMOVE(mkdir, md_mkdirs); 8701 if (mkdir->md_state & ONWORKLIST) 8702 WORKLIST_REMOVE(&mkdir->md_list); 8703 if (mkdir->md_jaddref != NULL) 8704 panic("free_diradd: Unexpected jaddref"); 8705 WORKITEM_FREE(mkdir, D_MKDIR); 8706 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8707 break; 8708 } 8709 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8710 panic("free_diradd: unfound ref"); 8711 } 8712 if (inodedep) 8713 free_inodedep(inodedep); 8714 /* 8715 * Free any journal segments waiting for the directory write. 8716 */ 8717 handle_jwork(&dap->da_jwork); 8718 WORKITEM_FREE(dap, D_DIRADD); 8719 } 8720 8721 /* 8722 * Directory entry removal dependencies. 8723 * 8724 * When removing a directory entry, the entry's inode pointer must be 8725 * zero'ed on disk before the corresponding inode's link count is decremented 8726 * (possibly freeing the inode for re-use). This dependency is handled by 8727 * updating the directory entry but delaying the inode count reduction until 8728 * after the directory block has been written to disk. After this point, the 8729 * inode count can be decremented whenever it is convenient. 8730 */ 8731 8732 /* 8733 * This routine should be called immediately after removing 8734 * a directory entry. The inode's link count should not be 8735 * decremented by the calling procedure -- the soft updates 8736 * code will do this task when it is safe. 8737 */ 8738 void 8739 softdep_setup_remove(bp, dp, ip, isrmdir) 8740 struct buf *bp; /* buffer containing directory block */ 8741 struct inode *dp; /* inode for the directory being modified */ 8742 struct inode *ip; /* inode for directory entry being removed */ 8743 int isrmdir; /* indicates if doing RMDIR */ 8744 { 8745 struct dirrem *dirrem, *prevdirrem; 8746 struct inodedep *inodedep; 8747 int direct; 8748 8749 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 8750 ("softdep_setup_remove called on non-softdep filesystem")); 8751 /* 8752 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8753 * newdirrem() to setup the full directory remove which requires 8754 * isrmdir > 1. 8755 */ 8756 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8757 /* 8758 * Add the dirrem to the inodedep's pending remove list for quick 8759 * discovery later. 8760 */ 8761 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8762 &inodedep) == 0) 8763 panic("softdep_setup_remove: Lost inodedep."); 8764 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8765 dirrem->dm_state |= ONDEPLIST; 8766 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8767 8768 /* 8769 * If the COMPLETE flag is clear, then there were no active 8770 * entries and we want to roll back to a zeroed entry until 8771 * the new inode is committed to disk. If the COMPLETE flag is 8772 * set then we have deleted an entry that never made it to 8773 * disk. If the entry we deleted resulted from a name change, 8774 * then the old name still resides on disk. We cannot delete 8775 * its inode (returned to us in prevdirrem) until the zeroed 8776 * directory entry gets to disk. The new inode has never been 8777 * referenced on the disk, so can be deleted immediately. 8778 */ 8779 if ((dirrem->dm_state & COMPLETE) == 0) { 8780 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8781 dm_next); 8782 FREE_LOCK(ip->i_ump); 8783 } else { 8784 if (prevdirrem != NULL) 8785 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8786 prevdirrem, dm_next); 8787 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8788 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8789 FREE_LOCK(ip->i_ump); 8790 if (direct) 8791 handle_workitem_remove(dirrem, 0); 8792 } 8793 } 8794 8795 /* 8796 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8797 * pd_pendinghd list of a pagedep. 8798 */ 8799 static struct diradd * 8800 diradd_lookup(pagedep, offset) 8801 struct pagedep *pagedep; 8802 int offset; 8803 { 8804 struct diradd *dap; 8805 8806 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8807 if (dap->da_offset == offset) 8808 return (dap); 8809 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8810 if (dap->da_offset == offset) 8811 return (dap); 8812 return (NULL); 8813 } 8814 8815 /* 8816 * Search for a .. diradd dependency in a directory that is being removed. 8817 * If the directory was renamed to a new parent we have a diradd rather 8818 * than a mkdir for the .. entry. We need to cancel it now before 8819 * it is found in truncate(). 8820 */ 8821 static struct jremref * 8822 cancel_diradd_dotdot(ip, dirrem, jremref) 8823 struct inode *ip; 8824 struct dirrem *dirrem; 8825 struct jremref *jremref; 8826 { 8827 struct pagedep *pagedep; 8828 struct diradd *dap; 8829 struct worklist *wk; 8830 8831 if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0, 8832 &pagedep) == 0) 8833 return (jremref); 8834 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 8835 if (dap == NULL) 8836 return (jremref); 8837 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 8838 /* 8839 * Mark any journal work as belonging to the parent so it is freed 8840 * with the .. reference. 8841 */ 8842 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 8843 wk->wk_state |= MKDIR_PARENT; 8844 return (NULL); 8845 } 8846 8847 /* 8848 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 8849 * replace it with a dirrem/diradd pair as a result of re-parenting a 8850 * directory. This ensures that we don't simultaneously have a mkdir and 8851 * a diradd for the same .. entry. 8852 */ 8853 static struct jremref * 8854 cancel_mkdir_dotdot(ip, dirrem, jremref) 8855 struct inode *ip; 8856 struct dirrem *dirrem; 8857 struct jremref *jremref; 8858 { 8859 struct inodedep *inodedep; 8860 struct jaddref *jaddref; 8861 struct ufsmount *ump; 8862 struct mkdir *mkdir; 8863 struct diradd *dap; 8864 8865 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8866 &inodedep) == 0) 8867 return (jremref); 8868 dap = inodedep->id_mkdiradd; 8869 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 8870 return (jremref); 8871 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8872 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8873 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 8874 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 8875 break; 8876 if (mkdir == NULL) 8877 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 8878 if ((jaddref = mkdir->md_jaddref) != NULL) { 8879 mkdir->md_jaddref = NULL; 8880 jaddref->ja_state &= ~MKDIR_PARENT; 8881 if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0, 8882 &inodedep) == 0) 8883 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 8884 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 8885 journal_jremref(dirrem, jremref, inodedep); 8886 jremref = NULL; 8887 } 8888 } 8889 if (mkdir->md_state & ONWORKLIST) 8890 WORKLIST_REMOVE(&mkdir->md_list); 8891 mkdir->md_state |= ALLCOMPLETE; 8892 complete_mkdir(mkdir); 8893 return (jremref); 8894 } 8895 8896 static void 8897 journal_jremref(dirrem, jremref, inodedep) 8898 struct dirrem *dirrem; 8899 struct jremref *jremref; 8900 struct inodedep *inodedep; 8901 { 8902 8903 if (inodedep == NULL) 8904 if (inodedep_lookup(jremref->jr_list.wk_mp, 8905 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 8906 panic("journal_jremref: Lost inodedep"); 8907 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 8908 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 8909 add_to_journal(&jremref->jr_list); 8910 } 8911 8912 static void 8913 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 8914 struct dirrem *dirrem; 8915 struct jremref *jremref; 8916 struct jremref *dotremref; 8917 struct jremref *dotdotremref; 8918 { 8919 struct inodedep *inodedep; 8920 8921 8922 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 8923 &inodedep) == 0) 8924 panic("dirrem_journal: Lost inodedep"); 8925 journal_jremref(dirrem, jremref, inodedep); 8926 if (dotremref) 8927 journal_jremref(dirrem, dotremref, inodedep); 8928 if (dotdotremref) 8929 journal_jremref(dirrem, dotdotremref, NULL); 8930 } 8931 8932 /* 8933 * Allocate a new dirrem if appropriate and return it along with 8934 * its associated pagedep. Called without a lock, returns with lock. 8935 */ 8936 static struct dirrem * 8937 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 8938 struct buf *bp; /* buffer containing directory block */ 8939 struct inode *dp; /* inode for the directory being modified */ 8940 struct inode *ip; /* inode for directory entry being removed */ 8941 int isrmdir; /* indicates if doing RMDIR */ 8942 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 8943 { 8944 int offset; 8945 ufs_lbn_t lbn; 8946 struct diradd *dap; 8947 struct dirrem *dirrem; 8948 struct pagedep *pagedep; 8949 struct jremref *jremref; 8950 struct jremref *dotremref; 8951 struct jremref *dotdotremref; 8952 struct vnode *dvp; 8953 8954 /* 8955 * Whiteouts have no deletion dependencies. 8956 */ 8957 if (ip == NULL) 8958 panic("newdirrem: whiteout"); 8959 dvp = ITOV(dp); 8960 /* 8961 * If we are over our limit, try to improve the situation. 8962 * Limiting the number of dirrem structures will also limit 8963 * the number of freefile and freeblks structures. 8964 */ 8965 ACQUIRE_LOCK(ip->i_ump); 8966 if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2) 8967 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS); 8968 FREE_LOCK(ip->i_ump); 8969 dirrem = malloc(sizeof(struct dirrem), 8970 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 8971 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 8972 LIST_INIT(&dirrem->dm_jremrefhd); 8973 LIST_INIT(&dirrem->dm_jwork); 8974 dirrem->dm_state = isrmdir ? RMDIR : 0; 8975 dirrem->dm_oldinum = ip->i_number; 8976 *prevdirremp = NULL; 8977 /* 8978 * Allocate remove reference structures to track journal write 8979 * dependencies. We will always have one for the link and 8980 * when doing directories we will always have one more for dot. 8981 * When renaming a directory we skip the dotdot link change so 8982 * this is not needed. 8983 */ 8984 jremref = dotremref = dotdotremref = NULL; 8985 if (DOINGSUJ(dvp)) { 8986 if (isrmdir) { 8987 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8988 ip->i_effnlink + 2); 8989 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 8990 ip->i_effnlink + 1); 8991 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 8992 dp->i_effnlink + 1); 8993 dotdotremref->jr_state |= MKDIR_PARENT; 8994 } else 8995 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8996 ip->i_effnlink + 1); 8997 } 8998 ACQUIRE_LOCK(ip->i_ump); 8999 lbn = lblkno(dp->i_fs, dp->i_offset); 9000 offset = blkoff(dp->i_fs, dp->i_offset); 9001 pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC, 9002 &pagedep); 9003 dirrem->dm_pagedep = pagedep; 9004 dirrem->dm_offset = offset; 9005 /* 9006 * If we're renaming a .. link to a new directory, cancel any 9007 * existing MKDIR_PARENT mkdir. If it has already been canceled 9008 * the jremref is preserved for any potential diradd in this 9009 * location. This can not coincide with a rmdir. 9010 */ 9011 if (dp->i_offset == DOTDOT_OFFSET) { 9012 if (isrmdir) 9013 panic("newdirrem: .. directory change during remove?"); 9014 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9015 } 9016 /* 9017 * If we're removing a directory search for the .. dependency now and 9018 * cancel it. Any pending journal work will be added to the dirrem 9019 * to be completed when the workitem remove completes. 9020 */ 9021 if (isrmdir) 9022 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9023 /* 9024 * Check for a diradd dependency for the same directory entry. 9025 * If present, then both dependencies become obsolete and can 9026 * be de-allocated. 9027 */ 9028 dap = diradd_lookup(pagedep, offset); 9029 if (dap == NULL) { 9030 /* 9031 * Link the jremref structures into the dirrem so they are 9032 * written prior to the pagedep. 9033 */ 9034 if (jremref) 9035 dirrem_journal(dirrem, jremref, dotremref, 9036 dotdotremref); 9037 return (dirrem); 9038 } 9039 /* 9040 * Must be ATTACHED at this point. 9041 */ 9042 if ((dap->da_state & ATTACHED) == 0) 9043 panic("newdirrem: not ATTACHED"); 9044 if (dap->da_newinum != ip->i_number) 9045 panic("newdirrem: inum %ju should be %ju", 9046 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9047 /* 9048 * If we are deleting a changed name that never made it to disk, 9049 * then return the dirrem describing the previous inode (which 9050 * represents the inode currently referenced from this entry on disk). 9051 */ 9052 if ((dap->da_state & DIRCHG) != 0) { 9053 *prevdirremp = dap->da_previous; 9054 dap->da_state &= ~DIRCHG; 9055 dap->da_pagedep = pagedep; 9056 } 9057 /* 9058 * We are deleting an entry that never made it to disk. 9059 * Mark it COMPLETE so we can delete its inode immediately. 9060 */ 9061 dirrem->dm_state |= COMPLETE; 9062 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9063 #ifdef SUJ_DEBUG 9064 if (isrmdir == 0) { 9065 struct worklist *wk; 9066 9067 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9068 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9069 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9070 } 9071 #endif 9072 9073 return (dirrem); 9074 } 9075 9076 /* 9077 * Directory entry change dependencies. 9078 * 9079 * Changing an existing directory entry requires that an add operation 9080 * be completed first followed by a deletion. The semantics for the addition 9081 * are identical to the description of adding a new entry above except 9082 * that the rollback is to the old inode number rather than zero. Once 9083 * the addition dependency is completed, the removal is done as described 9084 * in the removal routine above. 9085 */ 9086 9087 /* 9088 * This routine should be called immediately after changing 9089 * a directory entry. The inode's link count should not be 9090 * decremented by the calling procedure -- the soft updates 9091 * code will perform this task when it is safe. 9092 */ 9093 void 9094 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9095 struct buf *bp; /* buffer containing directory block */ 9096 struct inode *dp; /* inode for the directory being modified */ 9097 struct inode *ip; /* inode for directory entry being removed */ 9098 ino_t newinum; /* new inode number for changed entry */ 9099 int isrmdir; /* indicates if doing RMDIR */ 9100 { 9101 int offset; 9102 struct diradd *dap = NULL; 9103 struct dirrem *dirrem, *prevdirrem; 9104 struct pagedep *pagedep; 9105 struct inodedep *inodedep; 9106 struct jaddref *jaddref; 9107 struct mount *mp; 9108 9109 offset = blkoff(dp->i_fs, dp->i_offset); 9110 mp = UFSTOVFS(dp->i_ump); 9111 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9112 ("softdep_setup_directory_change called on non-softdep filesystem")); 9113 9114 /* 9115 * Whiteouts do not need diradd dependencies. 9116 */ 9117 if (newinum != WINO) { 9118 dap = malloc(sizeof(struct diradd), 9119 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9120 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9121 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9122 dap->da_offset = offset; 9123 dap->da_newinum = newinum; 9124 LIST_INIT(&dap->da_jwork); 9125 } 9126 9127 /* 9128 * Allocate a new dirrem and ACQUIRE_LOCK. 9129 */ 9130 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9131 pagedep = dirrem->dm_pagedep; 9132 /* 9133 * The possible values for isrmdir: 9134 * 0 - non-directory file rename 9135 * 1 - directory rename within same directory 9136 * inum - directory rename to new directory of given inode number 9137 * When renaming to a new directory, we are both deleting and 9138 * creating a new directory entry, so the link count on the new 9139 * directory should not change. Thus we do not need the followup 9140 * dirrem which is usually done in handle_workitem_remove. We set 9141 * the DIRCHG flag to tell handle_workitem_remove to skip the 9142 * followup dirrem. 9143 */ 9144 if (isrmdir > 1) 9145 dirrem->dm_state |= DIRCHG; 9146 9147 /* 9148 * Whiteouts have no additional dependencies, 9149 * so just put the dirrem on the correct list. 9150 */ 9151 if (newinum == WINO) { 9152 if ((dirrem->dm_state & COMPLETE) == 0) { 9153 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9154 dm_next); 9155 } else { 9156 dirrem->dm_dirinum = pagedep->pd_ino; 9157 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9158 add_to_worklist(&dirrem->dm_list, 0); 9159 } 9160 FREE_LOCK(dp->i_ump); 9161 return; 9162 } 9163 /* 9164 * Add the dirrem to the inodedep's pending remove list for quick 9165 * discovery later. A valid nlinkdelta ensures that this lookup 9166 * will not fail. 9167 */ 9168 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9169 panic("softdep_setup_directory_change: Lost inodedep."); 9170 dirrem->dm_state |= ONDEPLIST; 9171 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9172 9173 /* 9174 * If the COMPLETE flag is clear, then there were no active 9175 * entries and we want to roll back to the previous inode until 9176 * the new inode is committed to disk. If the COMPLETE flag is 9177 * set, then we have deleted an entry that never made it to disk. 9178 * If the entry we deleted resulted from a name change, then the old 9179 * inode reference still resides on disk. Any rollback that we do 9180 * needs to be to that old inode (returned to us in prevdirrem). If 9181 * the entry we deleted resulted from a create, then there is 9182 * no entry on the disk, so we want to roll back to zero rather 9183 * than the uncommitted inode. In either of the COMPLETE cases we 9184 * want to immediately free the unwritten and unreferenced inode. 9185 */ 9186 if ((dirrem->dm_state & COMPLETE) == 0) { 9187 dap->da_previous = dirrem; 9188 } else { 9189 if (prevdirrem != NULL) { 9190 dap->da_previous = prevdirrem; 9191 } else { 9192 dap->da_state &= ~DIRCHG; 9193 dap->da_pagedep = pagedep; 9194 } 9195 dirrem->dm_dirinum = pagedep->pd_ino; 9196 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9197 add_to_worklist(&dirrem->dm_list, 0); 9198 } 9199 /* 9200 * Lookup the jaddref for this journal entry. We must finish 9201 * initializing it and make the diradd write dependent on it. 9202 * If we're not journaling, put it on the id_bufwait list if the 9203 * inode is not yet written. If it is written, do the post-inode 9204 * write processing to put it on the id_pendinghd list. 9205 */ 9206 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 9207 if (MOUNTEDSUJ(mp)) { 9208 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9209 inoreflst); 9210 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9211 ("softdep_setup_directory_change: bad jaddref %p", 9212 jaddref)); 9213 jaddref->ja_diroff = dp->i_offset; 9214 jaddref->ja_diradd = dap; 9215 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9216 dap, da_pdlist); 9217 add_to_journal(&jaddref->ja_list); 9218 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9219 dap->da_state |= COMPLETE; 9220 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9221 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9222 } else { 9223 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9224 dap, da_pdlist); 9225 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9226 } 9227 /* 9228 * If we're making a new name for a directory that has not been 9229 * committed when need to move the dot and dotdot references to 9230 * this new name. 9231 */ 9232 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9233 merge_diradd(inodedep, dap); 9234 FREE_LOCK(dp->i_ump); 9235 } 9236 9237 /* 9238 * Called whenever the link count on an inode is changed. 9239 * It creates an inode dependency so that the new reference(s) 9240 * to the inode cannot be committed to disk until the updated 9241 * inode has been written. 9242 */ 9243 void 9244 softdep_change_linkcnt(ip) 9245 struct inode *ip; /* the inode with the increased link count */ 9246 { 9247 struct inodedep *inodedep; 9248 int dflags; 9249 9250 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 9251 ("softdep_change_linkcnt called on non-softdep filesystem")); 9252 ACQUIRE_LOCK(ip->i_ump); 9253 dflags = DEPALLOC; 9254 if (IS_SNAPSHOT(ip)) 9255 dflags |= NODELAY; 9256 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 9257 if (ip->i_nlink < ip->i_effnlink) 9258 panic("softdep_change_linkcnt: bad delta"); 9259 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9260 FREE_LOCK(ip->i_ump); 9261 } 9262 9263 /* 9264 * Attach a sbdep dependency to the superblock buf so that we can keep 9265 * track of the head of the linked list of referenced but unlinked inodes. 9266 */ 9267 void 9268 softdep_setup_sbupdate(ump, fs, bp) 9269 struct ufsmount *ump; 9270 struct fs *fs; 9271 struct buf *bp; 9272 { 9273 struct sbdep *sbdep; 9274 struct worklist *wk; 9275 9276 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9277 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9278 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9279 if (wk->wk_type == D_SBDEP) 9280 break; 9281 if (wk != NULL) 9282 return; 9283 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9284 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9285 sbdep->sb_fs = fs; 9286 sbdep->sb_ump = ump; 9287 ACQUIRE_LOCK(ump); 9288 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9289 FREE_LOCK(ump); 9290 } 9291 9292 /* 9293 * Return the first unlinked inodedep which is ready to be the head of the 9294 * list. The inodedep and all those after it must have valid next pointers. 9295 */ 9296 static struct inodedep * 9297 first_unlinked_inodedep(ump) 9298 struct ufsmount *ump; 9299 { 9300 struct inodedep *inodedep; 9301 struct inodedep *idp; 9302 9303 LOCK_OWNED(ump); 9304 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9305 inodedep; inodedep = idp) { 9306 if ((inodedep->id_state & UNLINKNEXT) == 0) 9307 return (NULL); 9308 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9309 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9310 break; 9311 if ((inodedep->id_state & UNLINKPREV) == 0) 9312 break; 9313 } 9314 return (inodedep); 9315 } 9316 9317 /* 9318 * Set the sujfree unlinked head pointer prior to writing a superblock. 9319 */ 9320 static void 9321 initiate_write_sbdep(sbdep) 9322 struct sbdep *sbdep; 9323 { 9324 struct inodedep *inodedep; 9325 struct fs *bpfs; 9326 struct fs *fs; 9327 9328 bpfs = sbdep->sb_fs; 9329 fs = sbdep->sb_ump->um_fs; 9330 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9331 if (inodedep) { 9332 fs->fs_sujfree = inodedep->id_ino; 9333 inodedep->id_state |= UNLINKPREV; 9334 } else 9335 fs->fs_sujfree = 0; 9336 bpfs->fs_sujfree = fs->fs_sujfree; 9337 } 9338 9339 /* 9340 * After a superblock is written determine whether it must be written again 9341 * due to a changing unlinked list head. 9342 */ 9343 static int 9344 handle_written_sbdep(sbdep, bp) 9345 struct sbdep *sbdep; 9346 struct buf *bp; 9347 { 9348 struct inodedep *inodedep; 9349 struct mount *mp; 9350 struct fs *fs; 9351 9352 LOCK_OWNED(sbdep->sb_ump); 9353 fs = sbdep->sb_fs; 9354 mp = UFSTOVFS(sbdep->sb_ump); 9355 /* 9356 * If the superblock doesn't match the in-memory list start over. 9357 */ 9358 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9359 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9360 (inodedep == NULL && fs->fs_sujfree != 0)) { 9361 bdirty(bp); 9362 return (1); 9363 } 9364 WORKITEM_FREE(sbdep, D_SBDEP); 9365 if (fs->fs_sujfree == 0) 9366 return (0); 9367 /* 9368 * Now that we have a record of this inode in stable store allow it 9369 * to be written to free up pending work. Inodes may see a lot of 9370 * write activity after they are unlinked which we must not hold up. 9371 */ 9372 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9373 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9374 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9375 inodedep, inodedep->id_state); 9376 if (inodedep->id_state & UNLINKONLIST) 9377 break; 9378 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9379 } 9380 9381 return (0); 9382 } 9383 9384 /* 9385 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9386 */ 9387 static void 9388 unlinked_inodedep(mp, inodedep) 9389 struct mount *mp; 9390 struct inodedep *inodedep; 9391 { 9392 struct ufsmount *ump; 9393 9394 ump = VFSTOUFS(mp); 9395 LOCK_OWNED(ump); 9396 if (MOUNTEDSUJ(mp) == 0) 9397 return; 9398 ump->um_fs->fs_fmod = 1; 9399 if (inodedep->id_state & UNLINKED) 9400 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9401 inodedep->id_state |= UNLINKED; 9402 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9403 } 9404 9405 /* 9406 * Remove an inodedep from the unlinked inodedep list. This may require 9407 * disk writes if the inode has made it that far. 9408 */ 9409 static void 9410 clear_unlinked_inodedep(inodedep) 9411 struct inodedep *inodedep; 9412 { 9413 struct ufsmount *ump; 9414 struct inodedep *idp; 9415 struct inodedep *idn; 9416 struct fs *fs; 9417 struct buf *bp; 9418 ino_t ino; 9419 ino_t nino; 9420 ino_t pino; 9421 int error; 9422 9423 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9424 fs = ump->um_fs; 9425 ino = inodedep->id_ino; 9426 error = 0; 9427 for (;;) { 9428 LOCK_OWNED(ump); 9429 KASSERT((inodedep->id_state & UNLINKED) != 0, 9430 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9431 inodedep)); 9432 /* 9433 * If nothing has yet been written simply remove us from 9434 * the in memory list and return. This is the most common 9435 * case where handle_workitem_remove() loses the final 9436 * reference. 9437 */ 9438 if ((inodedep->id_state & UNLINKLINKS) == 0) 9439 break; 9440 /* 9441 * If we have a NEXT pointer and no PREV pointer we can simply 9442 * clear NEXT's PREV and remove ourselves from the list. Be 9443 * careful not to clear PREV if the superblock points at 9444 * next as well. 9445 */ 9446 idn = TAILQ_NEXT(inodedep, id_unlinked); 9447 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9448 if (idn && fs->fs_sujfree != idn->id_ino) 9449 idn->id_state &= ~UNLINKPREV; 9450 break; 9451 } 9452 /* 9453 * Here we have an inodedep which is actually linked into 9454 * the list. We must remove it by forcing a write to the 9455 * link before us, whether it be the superblock or an inode. 9456 * Unfortunately the list may change while we're waiting 9457 * on the buf lock for either resource so we must loop until 9458 * we lock the right one. If both the superblock and an 9459 * inode point to this inode we must clear the inode first 9460 * followed by the superblock. 9461 */ 9462 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9463 pino = 0; 9464 if (idp && (idp->id_state & UNLINKNEXT)) 9465 pino = idp->id_ino; 9466 FREE_LOCK(ump); 9467 if (pino == 0) { 9468 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9469 (int)fs->fs_sbsize, 0, 0, 0); 9470 } else { 9471 error = bread(ump->um_devvp, 9472 fsbtodb(fs, ino_to_fsba(fs, pino)), 9473 (int)fs->fs_bsize, NOCRED, &bp); 9474 if (error) 9475 brelse(bp); 9476 } 9477 ACQUIRE_LOCK(ump); 9478 if (error) 9479 break; 9480 /* If the list has changed restart the loop. */ 9481 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9482 nino = 0; 9483 if (idp && (idp->id_state & UNLINKNEXT)) 9484 nino = idp->id_ino; 9485 if (nino != pino || 9486 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9487 FREE_LOCK(ump); 9488 brelse(bp); 9489 ACQUIRE_LOCK(ump); 9490 continue; 9491 } 9492 nino = 0; 9493 idn = TAILQ_NEXT(inodedep, id_unlinked); 9494 if (idn) 9495 nino = idn->id_ino; 9496 /* 9497 * Remove us from the in memory list. After this we cannot 9498 * access the inodedep. 9499 */ 9500 KASSERT((inodedep->id_state & UNLINKED) != 0, 9501 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9502 inodedep)); 9503 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9504 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9505 FREE_LOCK(ump); 9506 /* 9507 * The predecessor's next pointer is manually updated here 9508 * so that the NEXT flag is never cleared for an element 9509 * that is in the list. 9510 */ 9511 if (pino == 0) { 9512 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9513 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9514 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9515 bp); 9516 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9517 ((struct ufs1_dinode *)bp->b_data + 9518 ino_to_fsbo(fs, pino))->di_freelink = nino; 9519 else 9520 ((struct ufs2_dinode *)bp->b_data + 9521 ino_to_fsbo(fs, pino))->di_freelink = nino; 9522 /* 9523 * If the bwrite fails we have no recourse to recover. The 9524 * filesystem is corrupted already. 9525 */ 9526 bwrite(bp); 9527 ACQUIRE_LOCK(ump); 9528 /* 9529 * If the superblock pointer still needs to be cleared force 9530 * a write here. 9531 */ 9532 if (fs->fs_sujfree == ino) { 9533 FREE_LOCK(ump); 9534 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9535 (int)fs->fs_sbsize, 0, 0, 0); 9536 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9537 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9538 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9539 bp); 9540 bwrite(bp); 9541 ACQUIRE_LOCK(ump); 9542 } 9543 9544 if (fs->fs_sujfree != ino) 9545 return; 9546 panic("clear_unlinked_inodedep: Failed to clear free head"); 9547 } 9548 if (inodedep->id_ino == fs->fs_sujfree) 9549 panic("clear_unlinked_inodedep: Freeing head of free list"); 9550 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9551 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9552 return; 9553 } 9554 9555 /* 9556 * This workitem decrements the inode's link count. 9557 * If the link count reaches zero, the file is removed. 9558 */ 9559 static int 9560 handle_workitem_remove(dirrem, flags) 9561 struct dirrem *dirrem; 9562 int flags; 9563 { 9564 struct inodedep *inodedep; 9565 struct workhead dotdotwk; 9566 struct worklist *wk; 9567 struct ufsmount *ump; 9568 struct mount *mp; 9569 struct vnode *vp; 9570 struct inode *ip; 9571 ino_t oldinum; 9572 9573 if (dirrem->dm_state & ONWORKLIST) 9574 panic("handle_workitem_remove: dirrem %p still on worklist", 9575 dirrem); 9576 oldinum = dirrem->dm_oldinum; 9577 mp = dirrem->dm_list.wk_mp; 9578 ump = VFSTOUFS(mp); 9579 flags |= LK_EXCLUSIVE; 9580 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9581 return (EBUSY); 9582 ip = VTOI(vp); 9583 ACQUIRE_LOCK(ump); 9584 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9585 panic("handle_workitem_remove: lost inodedep"); 9586 if (dirrem->dm_state & ONDEPLIST) 9587 LIST_REMOVE(dirrem, dm_inonext); 9588 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9589 ("handle_workitem_remove: Journal entries not written.")); 9590 9591 /* 9592 * Move all dependencies waiting on the remove to complete 9593 * from the dirrem to the inode inowait list to be completed 9594 * after the inode has been updated and written to disk. Any 9595 * marked MKDIR_PARENT are saved to be completed when the .. ref 9596 * is removed. 9597 */ 9598 LIST_INIT(&dotdotwk); 9599 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9600 WORKLIST_REMOVE(wk); 9601 if (wk->wk_state & MKDIR_PARENT) { 9602 wk->wk_state &= ~MKDIR_PARENT; 9603 WORKLIST_INSERT(&dotdotwk, wk); 9604 continue; 9605 } 9606 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9607 } 9608 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9609 /* 9610 * Normal file deletion. 9611 */ 9612 if ((dirrem->dm_state & RMDIR) == 0) { 9613 ip->i_nlink--; 9614 DIP_SET(ip, i_nlink, ip->i_nlink); 9615 ip->i_flag |= IN_CHANGE; 9616 if (ip->i_nlink < ip->i_effnlink) 9617 panic("handle_workitem_remove: bad file delta"); 9618 if (ip->i_nlink == 0) 9619 unlinked_inodedep(mp, inodedep); 9620 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9621 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9622 ("handle_workitem_remove: worklist not empty. %s", 9623 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9624 WORKITEM_FREE(dirrem, D_DIRREM); 9625 FREE_LOCK(ump); 9626 goto out; 9627 } 9628 /* 9629 * Directory deletion. Decrement reference count for both the 9630 * just deleted parent directory entry and the reference for ".". 9631 * Arrange to have the reference count on the parent decremented 9632 * to account for the loss of "..". 9633 */ 9634 ip->i_nlink -= 2; 9635 DIP_SET(ip, i_nlink, ip->i_nlink); 9636 ip->i_flag |= IN_CHANGE; 9637 if (ip->i_nlink < ip->i_effnlink) 9638 panic("handle_workitem_remove: bad dir delta"); 9639 if (ip->i_nlink == 0) 9640 unlinked_inodedep(mp, inodedep); 9641 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9642 /* 9643 * Rename a directory to a new parent. Since, we are both deleting 9644 * and creating a new directory entry, the link count on the new 9645 * directory should not change. Thus we skip the followup dirrem. 9646 */ 9647 if (dirrem->dm_state & DIRCHG) { 9648 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9649 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9650 WORKITEM_FREE(dirrem, D_DIRREM); 9651 FREE_LOCK(ump); 9652 goto out; 9653 } 9654 dirrem->dm_state = ONDEPLIST; 9655 dirrem->dm_oldinum = dirrem->dm_dirinum; 9656 /* 9657 * Place the dirrem on the parent's diremhd list. 9658 */ 9659 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9660 panic("handle_workitem_remove: lost dir inodedep"); 9661 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9662 /* 9663 * If the allocated inode has never been written to disk, then 9664 * the on-disk inode is zero'ed and we can remove the file 9665 * immediately. When journaling if the inode has been marked 9666 * unlinked and not DEPCOMPLETE we know it can never be written. 9667 */ 9668 inodedep_lookup(mp, oldinum, 0, &inodedep); 9669 if (inodedep == NULL || 9670 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9671 check_inode_unwritten(inodedep)) { 9672 FREE_LOCK(ump); 9673 vput(vp); 9674 return handle_workitem_remove(dirrem, flags); 9675 } 9676 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9677 FREE_LOCK(ump); 9678 ip->i_flag |= IN_CHANGE; 9679 out: 9680 ffs_update(vp, 0); 9681 vput(vp); 9682 return (0); 9683 } 9684 9685 /* 9686 * Inode de-allocation dependencies. 9687 * 9688 * When an inode's link count is reduced to zero, it can be de-allocated. We 9689 * found it convenient to postpone de-allocation until after the inode is 9690 * written to disk with its new link count (zero). At this point, all of the 9691 * on-disk inode's block pointers are nullified and, with careful dependency 9692 * list ordering, all dependencies related to the inode will be satisfied and 9693 * the corresponding dependency structures de-allocated. So, if/when the 9694 * inode is reused, there will be no mixing of old dependencies with new 9695 * ones. This artificial dependency is set up by the block de-allocation 9696 * procedure above (softdep_setup_freeblocks) and completed by the 9697 * following procedure. 9698 */ 9699 static void 9700 handle_workitem_freefile(freefile) 9701 struct freefile *freefile; 9702 { 9703 struct workhead wkhd; 9704 struct fs *fs; 9705 struct inodedep *idp; 9706 struct ufsmount *ump; 9707 int error; 9708 9709 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9710 fs = ump->um_fs; 9711 #ifdef DEBUG 9712 ACQUIRE_LOCK(ump); 9713 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9714 FREE_LOCK(ump); 9715 if (error) 9716 panic("handle_workitem_freefile: inodedep %p survived", idp); 9717 #endif 9718 UFS_LOCK(ump); 9719 fs->fs_pendinginodes -= 1; 9720 UFS_UNLOCK(ump); 9721 LIST_INIT(&wkhd); 9722 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9723 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9724 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9725 softdep_error("handle_workitem_freefile", error); 9726 ACQUIRE_LOCK(ump); 9727 WORKITEM_FREE(freefile, D_FREEFILE); 9728 FREE_LOCK(ump); 9729 } 9730 9731 9732 /* 9733 * Helper function which unlinks marker element from work list and returns 9734 * the next element on the list. 9735 */ 9736 static __inline struct worklist * 9737 markernext(struct worklist *marker) 9738 { 9739 struct worklist *next; 9740 9741 next = LIST_NEXT(marker, wk_list); 9742 LIST_REMOVE(marker, wk_list); 9743 return next; 9744 } 9745 9746 /* 9747 * Disk writes. 9748 * 9749 * The dependency structures constructed above are most actively used when file 9750 * system blocks are written to disk. No constraints are placed on when a 9751 * block can be written, but unsatisfied update dependencies are made safe by 9752 * modifying (or replacing) the source memory for the duration of the disk 9753 * write. When the disk write completes, the memory block is again brought 9754 * up-to-date. 9755 * 9756 * In-core inode structure reclamation. 9757 * 9758 * Because there are a finite number of "in-core" inode structures, they are 9759 * reused regularly. By transferring all inode-related dependencies to the 9760 * in-memory inode block and indexing them separately (via "inodedep"s), we 9761 * can allow "in-core" inode structures to be reused at any time and avoid 9762 * any increase in contention. 9763 * 9764 * Called just before entering the device driver to initiate a new disk I/O. 9765 * The buffer must be locked, thus, no I/O completion operations can occur 9766 * while we are manipulating its associated dependencies. 9767 */ 9768 static void 9769 softdep_disk_io_initiation(bp) 9770 struct buf *bp; /* structure describing disk write to occur */ 9771 { 9772 struct worklist *wk; 9773 struct worklist marker; 9774 struct inodedep *inodedep; 9775 struct freeblks *freeblks; 9776 struct jblkdep *jblkdep; 9777 struct newblk *newblk; 9778 struct ufsmount *ump; 9779 9780 /* 9781 * We only care about write operations. There should never 9782 * be dependencies for reads. 9783 */ 9784 if (bp->b_iocmd != BIO_WRITE) 9785 panic("softdep_disk_io_initiation: not write"); 9786 9787 if (bp->b_vflags & BV_BKGRDINPROG) 9788 panic("softdep_disk_io_initiation: Writing buffer with " 9789 "background write in progress: %p", bp); 9790 9791 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 9792 return; 9793 ump = VFSTOUFS(wk->wk_mp); 9794 9795 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9796 PHOLD(curproc); /* Don't swap out kernel stack */ 9797 ACQUIRE_LOCK(ump); 9798 /* 9799 * Do any necessary pre-I/O processing. 9800 */ 9801 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9802 wk = markernext(&marker)) { 9803 LIST_INSERT_AFTER(wk, &marker, wk_list); 9804 switch (wk->wk_type) { 9805 9806 case D_PAGEDEP: 9807 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9808 continue; 9809 9810 case D_INODEDEP: 9811 inodedep = WK_INODEDEP(wk); 9812 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 9813 initiate_write_inodeblock_ufs1(inodedep, bp); 9814 else 9815 initiate_write_inodeblock_ufs2(inodedep, bp); 9816 continue; 9817 9818 case D_INDIRDEP: 9819 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 9820 continue; 9821 9822 case D_BMSAFEMAP: 9823 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 9824 continue; 9825 9826 case D_JSEG: 9827 WK_JSEG(wk)->js_buf = NULL; 9828 continue; 9829 9830 case D_FREEBLKS: 9831 freeblks = WK_FREEBLKS(wk); 9832 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 9833 /* 9834 * We have to wait for the freeblks to be journaled 9835 * before we can write an inodeblock with updated 9836 * pointers. Be careful to arrange the marker so 9837 * we revisit the freeblks if it's not removed by 9838 * the first jwait(). 9839 */ 9840 if (jblkdep != NULL) { 9841 LIST_REMOVE(&marker, wk_list); 9842 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9843 jwait(&jblkdep->jb_list, MNT_WAIT); 9844 } 9845 continue; 9846 case D_ALLOCDIRECT: 9847 case D_ALLOCINDIR: 9848 /* 9849 * We have to wait for the jnewblk to be journaled 9850 * before we can write to a block if the contents 9851 * may be confused with an earlier file's indirect 9852 * at recovery time. Handle the marker as described 9853 * above. 9854 */ 9855 newblk = WK_NEWBLK(wk); 9856 if (newblk->nb_jnewblk != NULL && 9857 indirblk_lookup(newblk->nb_list.wk_mp, 9858 newblk->nb_newblkno)) { 9859 LIST_REMOVE(&marker, wk_list); 9860 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9861 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 9862 } 9863 continue; 9864 9865 case D_SBDEP: 9866 initiate_write_sbdep(WK_SBDEP(wk)); 9867 continue; 9868 9869 case D_MKDIR: 9870 case D_FREEWORK: 9871 case D_FREEDEP: 9872 case D_JSEGDEP: 9873 continue; 9874 9875 default: 9876 panic("handle_disk_io_initiation: Unexpected type %s", 9877 TYPENAME(wk->wk_type)); 9878 /* NOTREACHED */ 9879 } 9880 } 9881 FREE_LOCK(ump); 9882 PRELE(curproc); /* Allow swapout of kernel stack */ 9883 } 9884 9885 /* 9886 * Called from within the procedure above to deal with unsatisfied 9887 * allocation dependencies in a directory. The buffer must be locked, 9888 * thus, no I/O completion operations can occur while we are 9889 * manipulating its associated dependencies. 9890 */ 9891 static void 9892 initiate_write_filepage(pagedep, bp) 9893 struct pagedep *pagedep; 9894 struct buf *bp; 9895 { 9896 struct jremref *jremref; 9897 struct jmvref *jmvref; 9898 struct dirrem *dirrem; 9899 struct diradd *dap; 9900 struct direct *ep; 9901 int i; 9902 9903 if (pagedep->pd_state & IOSTARTED) { 9904 /* 9905 * This can only happen if there is a driver that does not 9906 * understand chaining. Here biodone will reissue the call 9907 * to strategy for the incomplete buffers. 9908 */ 9909 printf("initiate_write_filepage: already started\n"); 9910 return; 9911 } 9912 pagedep->pd_state |= IOSTARTED; 9913 /* 9914 * Wait for all journal remove dependencies to hit the disk. 9915 * We can not allow any potentially conflicting directory adds 9916 * to be visible before removes and rollback is too difficult. 9917 * The soft updates lock may be dropped and re-acquired, however 9918 * we hold the buf locked so the dependency can not go away. 9919 */ 9920 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 9921 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 9922 jwait(&jremref->jr_list, MNT_WAIT); 9923 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 9924 jwait(&jmvref->jm_list, MNT_WAIT); 9925 for (i = 0; i < DAHASHSZ; i++) { 9926 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 9927 ep = (struct direct *) 9928 ((char *)bp->b_data + dap->da_offset); 9929 if (ep->d_ino != dap->da_newinum) 9930 panic("%s: dir inum %ju != new %ju", 9931 "initiate_write_filepage", 9932 (uintmax_t)ep->d_ino, 9933 (uintmax_t)dap->da_newinum); 9934 if (dap->da_state & DIRCHG) 9935 ep->d_ino = dap->da_previous->dm_oldinum; 9936 else 9937 ep->d_ino = 0; 9938 dap->da_state &= ~ATTACHED; 9939 dap->da_state |= UNDONE; 9940 } 9941 } 9942 } 9943 9944 /* 9945 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 9946 * Note that any bug fixes made to this routine must be done in the 9947 * version found below. 9948 * 9949 * Called from within the procedure above to deal with unsatisfied 9950 * allocation dependencies in an inodeblock. The buffer must be 9951 * locked, thus, no I/O completion operations can occur while we 9952 * are manipulating its associated dependencies. 9953 */ 9954 static void 9955 initiate_write_inodeblock_ufs1(inodedep, bp) 9956 struct inodedep *inodedep; 9957 struct buf *bp; /* The inode block */ 9958 { 9959 struct allocdirect *adp, *lastadp; 9960 struct ufs1_dinode *dp; 9961 struct ufs1_dinode *sip; 9962 struct inoref *inoref; 9963 struct ufsmount *ump; 9964 struct fs *fs; 9965 ufs_lbn_t i; 9966 #ifdef INVARIANTS 9967 ufs_lbn_t prevlbn = 0; 9968 #endif 9969 int deplist; 9970 9971 if (inodedep->id_state & IOSTARTED) 9972 panic("initiate_write_inodeblock_ufs1: already started"); 9973 inodedep->id_state |= IOSTARTED; 9974 fs = inodedep->id_fs; 9975 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9976 LOCK_OWNED(ump); 9977 dp = (struct ufs1_dinode *)bp->b_data + 9978 ino_to_fsbo(fs, inodedep->id_ino); 9979 9980 /* 9981 * If we're on the unlinked list but have not yet written our 9982 * next pointer initialize it here. 9983 */ 9984 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 9985 struct inodedep *inon; 9986 9987 inon = TAILQ_NEXT(inodedep, id_unlinked); 9988 dp->di_freelink = inon ? inon->id_ino : 0; 9989 } 9990 /* 9991 * If the bitmap is not yet written, then the allocated 9992 * inode cannot be written to disk. 9993 */ 9994 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 9995 if (inodedep->id_savedino1 != NULL) 9996 panic("initiate_write_inodeblock_ufs1: I/O underway"); 9997 FREE_LOCK(ump); 9998 sip = malloc(sizeof(struct ufs1_dinode), 9999 M_SAVEDINO, M_SOFTDEP_FLAGS); 10000 ACQUIRE_LOCK(ump); 10001 inodedep->id_savedino1 = sip; 10002 *inodedep->id_savedino1 = *dp; 10003 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10004 dp->di_gen = inodedep->id_savedino1->di_gen; 10005 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10006 return; 10007 } 10008 /* 10009 * If no dependencies, then there is nothing to roll back. 10010 */ 10011 inodedep->id_savedsize = dp->di_size; 10012 inodedep->id_savedextsize = 0; 10013 inodedep->id_savednlink = dp->di_nlink; 10014 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10015 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10016 return; 10017 /* 10018 * Revert the link count to that of the first unwritten journal entry. 10019 */ 10020 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10021 if (inoref) 10022 dp->di_nlink = inoref->if_nlink; 10023 /* 10024 * Set the dependencies to busy. 10025 */ 10026 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10027 adp = TAILQ_NEXT(adp, ad_next)) { 10028 #ifdef INVARIANTS 10029 if (deplist != 0 && prevlbn >= adp->ad_offset) 10030 panic("softdep_write_inodeblock: lbn order"); 10031 prevlbn = adp->ad_offset; 10032 if (adp->ad_offset < NDADDR && 10033 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10034 panic("%s: direct pointer #%jd mismatch %d != %jd", 10035 "softdep_write_inodeblock", 10036 (intmax_t)adp->ad_offset, 10037 dp->di_db[adp->ad_offset], 10038 (intmax_t)adp->ad_newblkno); 10039 if (adp->ad_offset >= NDADDR && 10040 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10041 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10042 "softdep_write_inodeblock", 10043 (intmax_t)adp->ad_offset - NDADDR, 10044 dp->di_ib[adp->ad_offset - NDADDR], 10045 (intmax_t)adp->ad_newblkno); 10046 deplist |= 1 << adp->ad_offset; 10047 if ((adp->ad_state & ATTACHED) == 0) 10048 panic("softdep_write_inodeblock: Unknown state 0x%x", 10049 adp->ad_state); 10050 #endif /* INVARIANTS */ 10051 adp->ad_state &= ~ATTACHED; 10052 adp->ad_state |= UNDONE; 10053 } 10054 /* 10055 * The on-disk inode cannot claim to be any larger than the last 10056 * fragment that has been written. Otherwise, the on-disk inode 10057 * might have fragments that were not the last block in the file 10058 * which would corrupt the filesystem. 10059 */ 10060 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10061 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10062 if (adp->ad_offset >= NDADDR) 10063 break; 10064 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10065 /* keep going until hitting a rollback to a frag */ 10066 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10067 continue; 10068 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10069 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10070 #ifdef INVARIANTS 10071 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10072 panic("softdep_write_inodeblock: lost dep1"); 10073 #endif /* INVARIANTS */ 10074 dp->di_db[i] = 0; 10075 } 10076 for (i = 0; i < NIADDR; i++) { 10077 #ifdef INVARIANTS 10078 if (dp->di_ib[i] != 0 && 10079 (deplist & ((1 << NDADDR) << i)) == 0) 10080 panic("softdep_write_inodeblock: lost dep2"); 10081 #endif /* INVARIANTS */ 10082 dp->di_ib[i] = 0; 10083 } 10084 return; 10085 } 10086 /* 10087 * If we have zero'ed out the last allocated block of the file, 10088 * roll back the size to the last currently allocated block. 10089 * We know that this last allocated block is a full-sized as 10090 * we already checked for fragments in the loop above. 10091 */ 10092 if (lastadp != NULL && 10093 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10094 for (i = lastadp->ad_offset; i >= 0; i--) 10095 if (dp->di_db[i] != 0) 10096 break; 10097 dp->di_size = (i + 1) * fs->fs_bsize; 10098 } 10099 /* 10100 * The only dependencies are for indirect blocks. 10101 * 10102 * The file size for indirect block additions is not guaranteed. 10103 * Such a guarantee would be non-trivial to achieve. The conventional 10104 * synchronous write implementation also does not make this guarantee. 10105 * Fsck should catch and fix discrepancies. Arguably, the file size 10106 * can be over-estimated without destroying integrity when the file 10107 * moves into the indirect blocks (i.e., is large). If we want to 10108 * postpone fsck, we are stuck with this argument. 10109 */ 10110 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10111 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10112 } 10113 10114 /* 10115 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10116 * Note that any bug fixes made to this routine must be done in the 10117 * version found above. 10118 * 10119 * Called from within the procedure above to deal with unsatisfied 10120 * allocation dependencies in an inodeblock. The buffer must be 10121 * locked, thus, no I/O completion operations can occur while we 10122 * are manipulating its associated dependencies. 10123 */ 10124 static void 10125 initiate_write_inodeblock_ufs2(inodedep, bp) 10126 struct inodedep *inodedep; 10127 struct buf *bp; /* The inode block */ 10128 { 10129 struct allocdirect *adp, *lastadp; 10130 struct ufs2_dinode *dp; 10131 struct ufs2_dinode *sip; 10132 struct inoref *inoref; 10133 struct ufsmount *ump; 10134 struct fs *fs; 10135 ufs_lbn_t i; 10136 #ifdef INVARIANTS 10137 ufs_lbn_t prevlbn = 0; 10138 #endif 10139 int deplist; 10140 10141 if (inodedep->id_state & IOSTARTED) 10142 panic("initiate_write_inodeblock_ufs2: already started"); 10143 inodedep->id_state |= IOSTARTED; 10144 fs = inodedep->id_fs; 10145 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10146 LOCK_OWNED(ump); 10147 dp = (struct ufs2_dinode *)bp->b_data + 10148 ino_to_fsbo(fs, inodedep->id_ino); 10149 10150 /* 10151 * If we're on the unlinked list but have not yet written our 10152 * next pointer initialize it here. 10153 */ 10154 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10155 struct inodedep *inon; 10156 10157 inon = TAILQ_NEXT(inodedep, id_unlinked); 10158 dp->di_freelink = inon ? inon->id_ino : 0; 10159 } 10160 /* 10161 * If the bitmap is not yet written, then the allocated 10162 * inode cannot be written to disk. 10163 */ 10164 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10165 if (inodedep->id_savedino2 != NULL) 10166 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10167 FREE_LOCK(ump); 10168 sip = malloc(sizeof(struct ufs2_dinode), 10169 M_SAVEDINO, M_SOFTDEP_FLAGS); 10170 ACQUIRE_LOCK(ump); 10171 inodedep->id_savedino2 = sip; 10172 *inodedep->id_savedino2 = *dp; 10173 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10174 dp->di_gen = inodedep->id_savedino2->di_gen; 10175 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10176 return; 10177 } 10178 /* 10179 * If no dependencies, then there is nothing to roll back. 10180 */ 10181 inodedep->id_savedsize = dp->di_size; 10182 inodedep->id_savedextsize = dp->di_extsize; 10183 inodedep->id_savednlink = dp->di_nlink; 10184 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10185 TAILQ_EMPTY(&inodedep->id_extupdt) && 10186 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10187 return; 10188 /* 10189 * Revert the link count to that of the first unwritten journal entry. 10190 */ 10191 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10192 if (inoref) 10193 dp->di_nlink = inoref->if_nlink; 10194 10195 /* 10196 * Set the ext data dependencies to busy. 10197 */ 10198 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10199 adp = TAILQ_NEXT(adp, ad_next)) { 10200 #ifdef INVARIANTS 10201 if (deplist != 0 && prevlbn >= adp->ad_offset) 10202 panic("softdep_write_inodeblock: lbn order"); 10203 prevlbn = adp->ad_offset; 10204 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10205 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10206 "softdep_write_inodeblock", 10207 (intmax_t)adp->ad_offset, 10208 (intmax_t)dp->di_extb[adp->ad_offset], 10209 (intmax_t)adp->ad_newblkno); 10210 deplist |= 1 << adp->ad_offset; 10211 if ((adp->ad_state & ATTACHED) == 0) 10212 panic("softdep_write_inodeblock: Unknown state 0x%x", 10213 adp->ad_state); 10214 #endif /* INVARIANTS */ 10215 adp->ad_state &= ~ATTACHED; 10216 adp->ad_state |= UNDONE; 10217 } 10218 /* 10219 * The on-disk inode cannot claim to be any larger than the last 10220 * fragment that has been written. Otherwise, the on-disk inode 10221 * might have fragments that were not the last block in the ext 10222 * data which would corrupt the filesystem. 10223 */ 10224 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10225 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10226 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10227 /* keep going until hitting a rollback to a frag */ 10228 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10229 continue; 10230 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10231 for (i = adp->ad_offset + 1; i < NXADDR; i++) { 10232 #ifdef INVARIANTS 10233 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10234 panic("softdep_write_inodeblock: lost dep1"); 10235 #endif /* INVARIANTS */ 10236 dp->di_extb[i] = 0; 10237 } 10238 lastadp = NULL; 10239 break; 10240 } 10241 /* 10242 * If we have zero'ed out the last allocated block of the ext 10243 * data, roll back the size to the last currently allocated block. 10244 * We know that this last allocated block is a full-sized as 10245 * we already checked for fragments in the loop above. 10246 */ 10247 if (lastadp != NULL && 10248 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10249 for (i = lastadp->ad_offset; i >= 0; i--) 10250 if (dp->di_extb[i] != 0) 10251 break; 10252 dp->di_extsize = (i + 1) * fs->fs_bsize; 10253 } 10254 /* 10255 * Set the file data dependencies to busy. 10256 */ 10257 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10258 adp = TAILQ_NEXT(adp, ad_next)) { 10259 #ifdef INVARIANTS 10260 if (deplist != 0 && prevlbn >= adp->ad_offset) 10261 panic("softdep_write_inodeblock: lbn order"); 10262 if ((adp->ad_state & ATTACHED) == 0) 10263 panic("inodedep %p and adp %p not attached", inodedep, adp); 10264 prevlbn = adp->ad_offset; 10265 if (adp->ad_offset < NDADDR && 10266 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10267 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10268 "softdep_write_inodeblock", 10269 (intmax_t)adp->ad_offset, 10270 (intmax_t)dp->di_db[adp->ad_offset], 10271 (intmax_t)adp->ad_newblkno); 10272 if (adp->ad_offset >= NDADDR && 10273 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10274 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10275 "softdep_write_inodeblock:", 10276 (intmax_t)adp->ad_offset - NDADDR, 10277 (intmax_t)dp->di_ib[adp->ad_offset - NDADDR], 10278 (intmax_t)adp->ad_newblkno); 10279 deplist |= 1 << adp->ad_offset; 10280 if ((adp->ad_state & ATTACHED) == 0) 10281 panic("softdep_write_inodeblock: Unknown state 0x%x", 10282 adp->ad_state); 10283 #endif /* INVARIANTS */ 10284 adp->ad_state &= ~ATTACHED; 10285 adp->ad_state |= UNDONE; 10286 } 10287 /* 10288 * The on-disk inode cannot claim to be any larger than the last 10289 * fragment that has been written. Otherwise, the on-disk inode 10290 * might have fragments that were not the last block in the file 10291 * which would corrupt the filesystem. 10292 */ 10293 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10294 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10295 if (adp->ad_offset >= NDADDR) 10296 break; 10297 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10298 /* keep going until hitting a rollback to a frag */ 10299 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10300 continue; 10301 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10302 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10303 #ifdef INVARIANTS 10304 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10305 panic("softdep_write_inodeblock: lost dep2"); 10306 #endif /* INVARIANTS */ 10307 dp->di_db[i] = 0; 10308 } 10309 for (i = 0; i < NIADDR; i++) { 10310 #ifdef INVARIANTS 10311 if (dp->di_ib[i] != 0 && 10312 (deplist & ((1 << NDADDR) << i)) == 0) 10313 panic("softdep_write_inodeblock: lost dep3"); 10314 #endif /* INVARIANTS */ 10315 dp->di_ib[i] = 0; 10316 } 10317 return; 10318 } 10319 /* 10320 * If we have zero'ed out the last allocated block of the file, 10321 * roll back the size to the last currently allocated block. 10322 * We know that this last allocated block is a full-sized as 10323 * we already checked for fragments in the loop above. 10324 */ 10325 if (lastadp != NULL && 10326 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10327 for (i = lastadp->ad_offset; i >= 0; i--) 10328 if (dp->di_db[i] != 0) 10329 break; 10330 dp->di_size = (i + 1) * fs->fs_bsize; 10331 } 10332 /* 10333 * The only dependencies are for indirect blocks. 10334 * 10335 * The file size for indirect block additions is not guaranteed. 10336 * Such a guarantee would be non-trivial to achieve. The conventional 10337 * synchronous write implementation also does not make this guarantee. 10338 * Fsck should catch and fix discrepancies. Arguably, the file size 10339 * can be over-estimated without destroying integrity when the file 10340 * moves into the indirect blocks (i.e., is large). If we want to 10341 * postpone fsck, we are stuck with this argument. 10342 */ 10343 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10344 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10345 } 10346 10347 /* 10348 * Cancel an indirdep as a result of truncation. Release all of the 10349 * children allocindirs and place their journal work on the appropriate 10350 * list. 10351 */ 10352 static void 10353 cancel_indirdep(indirdep, bp, freeblks) 10354 struct indirdep *indirdep; 10355 struct buf *bp; 10356 struct freeblks *freeblks; 10357 { 10358 struct allocindir *aip; 10359 10360 /* 10361 * None of the indirect pointers will ever be visible, 10362 * so they can simply be tossed. GOINGAWAY ensures 10363 * that allocated pointers will be saved in the buffer 10364 * cache until they are freed. Note that they will 10365 * only be able to be found by their physical address 10366 * since the inode mapping the logical address will 10367 * be gone. The save buffer used for the safe copy 10368 * was allocated in setup_allocindir_phase2 using 10369 * the physical address so it could be used for this 10370 * purpose. Hence we swap the safe copy with the real 10371 * copy, allowing the safe copy to be freed and holding 10372 * on to the real copy for later use in indir_trunc. 10373 */ 10374 if (indirdep->ir_state & GOINGAWAY) 10375 panic("cancel_indirdep: already gone"); 10376 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10377 indirdep->ir_state |= DEPCOMPLETE; 10378 LIST_REMOVE(indirdep, ir_next); 10379 } 10380 indirdep->ir_state |= GOINGAWAY; 10381 VFSTOUFS(indirdep->ir_list.wk_mp)->softdep_numindirdeps += 1; 10382 /* 10383 * Pass in bp for blocks still have journal writes 10384 * pending so we can cancel them on their own. 10385 */ 10386 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 10387 cancel_allocindir(aip, bp, freeblks, 0); 10388 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) 10389 cancel_allocindir(aip, NULL, freeblks, 0); 10390 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) 10391 cancel_allocindir(aip, NULL, freeblks, 0); 10392 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0) 10393 cancel_allocindir(aip, NULL, freeblks, 0); 10394 /* 10395 * If there are pending partial truncations we need to keep the 10396 * old block copy around until they complete. This is because 10397 * the current b_data is not a perfect superset of the available 10398 * blocks. 10399 */ 10400 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10401 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10402 else 10403 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10404 WORKLIST_REMOVE(&indirdep->ir_list); 10405 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10406 indirdep->ir_bp = NULL; 10407 indirdep->ir_freeblks = freeblks; 10408 } 10409 10410 /* 10411 * Free an indirdep once it no longer has new pointers to track. 10412 */ 10413 static void 10414 free_indirdep(indirdep) 10415 struct indirdep *indirdep; 10416 { 10417 10418 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10419 ("free_indirdep: Indir trunc list not empty.")); 10420 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10421 ("free_indirdep: Complete head not empty.")); 10422 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10423 ("free_indirdep: write head not empty.")); 10424 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10425 ("free_indirdep: done head not empty.")); 10426 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10427 ("free_indirdep: deplist head not empty.")); 10428 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10429 ("free_indirdep: %p still on newblk list.", indirdep)); 10430 KASSERT(indirdep->ir_saveddata == NULL, 10431 ("free_indirdep: %p still has saved data.", indirdep)); 10432 if (indirdep->ir_state & ONWORKLIST) 10433 WORKLIST_REMOVE(&indirdep->ir_list); 10434 WORKITEM_FREE(indirdep, D_INDIRDEP); 10435 } 10436 10437 /* 10438 * Called before a write to an indirdep. This routine is responsible for 10439 * rolling back pointers to a safe state which includes only those 10440 * allocindirs which have been completed. 10441 */ 10442 static void 10443 initiate_write_indirdep(indirdep, bp) 10444 struct indirdep *indirdep; 10445 struct buf *bp; 10446 { 10447 struct ufsmount *ump; 10448 10449 indirdep->ir_state |= IOSTARTED; 10450 if (indirdep->ir_state & GOINGAWAY) 10451 panic("disk_io_initiation: indirdep gone"); 10452 /* 10453 * If there are no remaining dependencies, this will be writing 10454 * the real pointers. 10455 */ 10456 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10457 TAILQ_EMPTY(&indirdep->ir_trunc)) 10458 return; 10459 /* 10460 * Replace up-to-date version with safe version. 10461 */ 10462 if (indirdep->ir_saveddata == NULL) { 10463 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10464 LOCK_OWNED(ump); 10465 FREE_LOCK(ump); 10466 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10467 M_SOFTDEP_FLAGS); 10468 ACQUIRE_LOCK(ump); 10469 } 10470 indirdep->ir_state &= ~ATTACHED; 10471 indirdep->ir_state |= UNDONE; 10472 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10473 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10474 bp->b_bcount); 10475 } 10476 10477 /* 10478 * Called when an inode has been cleared in a cg bitmap. This finally 10479 * eliminates any canceled jaddrefs 10480 */ 10481 void 10482 softdep_setup_inofree(mp, bp, ino, wkhd) 10483 struct mount *mp; 10484 struct buf *bp; 10485 ino_t ino; 10486 struct workhead *wkhd; 10487 { 10488 struct worklist *wk, *wkn; 10489 struct inodedep *inodedep; 10490 struct ufsmount *ump; 10491 uint8_t *inosused; 10492 struct cg *cgp; 10493 struct fs *fs; 10494 10495 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10496 ("softdep_setup_inofree called on non-softdep filesystem")); 10497 ump = VFSTOUFS(mp); 10498 ACQUIRE_LOCK(ump); 10499 fs = ump->um_fs; 10500 cgp = (struct cg *)bp->b_data; 10501 inosused = cg_inosused(cgp); 10502 if (isset(inosused, ino % fs->fs_ipg)) 10503 panic("softdep_setup_inofree: inode %ju not freed.", 10504 (uintmax_t)ino); 10505 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10506 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10507 (uintmax_t)ino, inodedep); 10508 if (wkhd) { 10509 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10510 if (wk->wk_type != D_JADDREF) 10511 continue; 10512 WORKLIST_REMOVE(wk); 10513 /* 10514 * We can free immediately even if the jaddref 10515 * isn't attached in a background write as now 10516 * the bitmaps are reconciled. 10517 */ 10518 wk->wk_state |= COMPLETE | ATTACHED; 10519 free_jaddref(WK_JADDREF(wk)); 10520 } 10521 jwork_move(&bp->b_dep, wkhd); 10522 } 10523 FREE_LOCK(ump); 10524 } 10525 10526 10527 /* 10528 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10529 * map. Any dependencies waiting for the write to clear are added to the 10530 * buf's list and any jnewblks that are being canceled are discarded 10531 * immediately. 10532 */ 10533 void 10534 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10535 struct mount *mp; 10536 struct buf *bp; 10537 ufs2_daddr_t blkno; 10538 int frags; 10539 struct workhead *wkhd; 10540 { 10541 struct bmsafemap *bmsafemap; 10542 struct jnewblk *jnewblk; 10543 struct ufsmount *ump; 10544 struct worklist *wk; 10545 struct fs *fs; 10546 #ifdef SUJ_DEBUG 10547 uint8_t *blksfree; 10548 struct cg *cgp; 10549 ufs2_daddr_t jstart; 10550 ufs2_daddr_t jend; 10551 ufs2_daddr_t end; 10552 long bno; 10553 int i; 10554 #endif 10555 10556 CTR3(KTR_SUJ, 10557 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10558 blkno, frags, wkhd); 10559 10560 ump = VFSTOUFS(mp); 10561 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10562 ("softdep_setup_blkfree called on non-softdep filesystem")); 10563 ACQUIRE_LOCK(ump); 10564 /* Lookup the bmsafemap so we track when it is dirty. */ 10565 fs = ump->um_fs; 10566 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10567 /* 10568 * Detach any jnewblks which have been canceled. They must linger 10569 * until the bitmap is cleared again by ffs_blkfree() to prevent 10570 * an unjournaled allocation from hitting the disk. 10571 */ 10572 if (wkhd) { 10573 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10574 CTR2(KTR_SUJ, 10575 "softdep_setup_blkfree: blkno %jd wk type %d", 10576 blkno, wk->wk_type); 10577 WORKLIST_REMOVE(wk); 10578 if (wk->wk_type != D_JNEWBLK) { 10579 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10580 continue; 10581 } 10582 jnewblk = WK_JNEWBLK(wk); 10583 KASSERT(jnewblk->jn_state & GOINGAWAY, 10584 ("softdep_setup_blkfree: jnewblk not canceled.")); 10585 #ifdef SUJ_DEBUG 10586 /* 10587 * Assert that this block is free in the bitmap 10588 * before we discard the jnewblk. 10589 */ 10590 cgp = (struct cg *)bp->b_data; 10591 blksfree = cg_blksfree(cgp); 10592 bno = dtogd(fs, jnewblk->jn_blkno); 10593 for (i = jnewblk->jn_oldfrags; 10594 i < jnewblk->jn_frags; i++) { 10595 if (isset(blksfree, bno + i)) 10596 continue; 10597 panic("softdep_setup_blkfree: not free"); 10598 } 10599 #endif 10600 /* 10601 * Even if it's not attached we can free immediately 10602 * as the new bitmap is correct. 10603 */ 10604 wk->wk_state |= COMPLETE | ATTACHED; 10605 free_jnewblk(jnewblk); 10606 } 10607 } 10608 10609 #ifdef SUJ_DEBUG 10610 /* 10611 * Assert that we are not freeing a block which has an outstanding 10612 * allocation dependency. 10613 */ 10614 fs = VFSTOUFS(mp)->um_fs; 10615 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10616 end = blkno + frags; 10617 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10618 /* 10619 * Don't match against blocks that will be freed when the 10620 * background write is done. 10621 */ 10622 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10623 (COMPLETE | DEPCOMPLETE)) 10624 continue; 10625 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10626 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10627 if ((blkno >= jstart && blkno < jend) || 10628 (end > jstart && end <= jend)) { 10629 printf("state 0x%X %jd - %d %d dep %p\n", 10630 jnewblk->jn_state, jnewblk->jn_blkno, 10631 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10632 jnewblk->jn_dep); 10633 panic("softdep_setup_blkfree: " 10634 "%jd-%jd(%d) overlaps with %jd-%jd", 10635 blkno, end, frags, jstart, jend); 10636 } 10637 } 10638 #endif 10639 FREE_LOCK(ump); 10640 } 10641 10642 /* 10643 * Revert a block allocation when the journal record that describes it 10644 * is not yet written. 10645 */ 10646 static int 10647 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10648 struct jnewblk *jnewblk; 10649 struct fs *fs; 10650 struct cg *cgp; 10651 uint8_t *blksfree; 10652 { 10653 ufs1_daddr_t fragno; 10654 long cgbno, bbase; 10655 int frags, blk; 10656 int i; 10657 10658 frags = 0; 10659 cgbno = dtogd(fs, jnewblk->jn_blkno); 10660 /* 10661 * We have to test which frags need to be rolled back. We may 10662 * be operating on a stale copy when doing background writes. 10663 */ 10664 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10665 if (isclr(blksfree, cgbno + i)) 10666 frags++; 10667 if (frags == 0) 10668 return (0); 10669 /* 10670 * This is mostly ffs_blkfree() sans some validation and 10671 * superblock updates. 10672 */ 10673 if (frags == fs->fs_frag) { 10674 fragno = fragstoblks(fs, cgbno); 10675 ffs_setblock(fs, blksfree, fragno); 10676 ffs_clusteracct(fs, cgp, fragno, 1); 10677 cgp->cg_cs.cs_nbfree++; 10678 } else { 10679 cgbno += jnewblk->jn_oldfrags; 10680 bbase = cgbno - fragnum(fs, cgbno); 10681 /* Decrement the old frags. */ 10682 blk = blkmap(fs, blksfree, bbase); 10683 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10684 /* Deallocate the fragment */ 10685 for (i = 0; i < frags; i++) 10686 setbit(blksfree, cgbno + i); 10687 cgp->cg_cs.cs_nffree += frags; 10688 /* Add back in counts associated with the new frags */ 10689 blk = blkmap(fs, blksfree, bbase); 10690 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10691 /* If a complete block has been reassembled, account for it. */ 10692 fragno = fragstoblks(fs, bbase); 10693 if (ffs_isblock(fs, blksfree, fragno)) { 10694 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10695 ffs_clusteracct(fs, cgp, fragno, 1); 10696 cgp->cg_cs.cs_nbfree++; 10697 } 10698 } 10699 stat_jnewblk++; 10700 jnewblk->jn_state &= ~ATTACHED; 10701 jnewblk->jn_state |= UNDONE; 10702 10703 return (frags); 10704 } 10705 10706 static void 10707 initiate_write_bmsafemap(bmsafemap, bp) 10708 struct bmsafemap *bmsafemap; 10709 struct buf *bp; /* The cg block. */ 10710 { 10711 struct jaddref *jaddref; 10712 struct jnewblk *jnewblk; 10713 uint8_t *inosused; 10714 uint8_t *blksfree; 10715 struct cg *cgp; 10716 struct fs *fs; 10717 ino_t ino; 10718 10719 if (bmsafemap->sm_state & IOSTARTED) 10720 return; 10721 bmsafemap->sm_state |= IOSTARTED; 10722 /* 10723 * Clear any inode allocations which are pending journal writes. 10724 */ 10725 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10726 cgp = (struct cg *)bp->b_data; 10727 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10728 inosused = cg_inosused(cgp); 10729 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10730 ino = jaddref->ja_ino % fs->fs_ipg; 10731 if (isset(inosused, ino)) { 10732 if ((jaddref->ja_mode & IFMT) == IFDIR) 10733 cgp->cg_cs.cs_ndir--; 10734 cgp->cg_cs.cs_nifree++; 10735 clrbit(inosused, ino); 10736 jaddref->ja_state &= ~ATTACHED; 10737 jaddref->ja_state |= UNDONE; 10738 stat_jaddref++; 10739 } else 10740 panic("initiate_write_bmsafemap: inode %ju " 10741 "marked free", (uintmax_t)jaddref->ja_ino); 10742 } 10743 } 10744 /* 10745 * Clear any block allocations which are pending journal writes. 10746 */ 10747 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10748 cgp = (struct cg *)bp->b_data; 10749 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10750 blksfree = cg_blksfree(cgp); 10751 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10752 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10753 continue; 10754 panic("initiate_write_bmsafemap: block %jd " 10755 "marked free", jnewblk->jn_blkno); 10756 } 10757 } 10758 /* 10759 * Move allocation lists to the written lists so they can be 10760 * cleared once the block write is complete. 10761 */ 10762 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10763 inodedep, id_deps); 10764 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10765 newblk, nb_deps); 10766 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10767 wk_list); 10768 } 10769 10770 /* 10771 * This routine is called during the completion interrupt 10772 * service routine for a disk write (from the procedure called 10773 * by the device driver to inform the filesystem caches of 10774 * a request completion). It should be called early in this 10775 * procedure, before the block is made available to other 10776 * processes or other routines are called. 10777 * 10778 */ 10779 static void 10780 softdep_disk_write_complete(bp) 10781 struct buf *bp; /* describes the completed disk write */ 10782 { 10783 struct worklist *wk; 10784 struct worklist *owk; 10785 struct ufsmount *ump; 10786 struct workhead reattach; 10787 struct freeblks *freeblks; 10788 struct buf *sbp; 10789 10790 /* 10791 * If an error occurred while doing the write, then the data 10792 * has not hit the disk and the dependencies cannot be unrolled. 10793 */ 10794 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 10795 return; 10796 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 10797 return; 10798 ump = VFSTOUFS(wk->wk_mp); 10799 LIST_INIT(&reattach); 10800 /* 10801 * This lock must not be released anywhere in this code segment. 10802 */ 10803 sbp = NULL; 10804 owk = NULL; 10805 ACQUIRE_LOCK(ump); 10806 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 10807 WORKLIST_REMOVE(wk); 10808 dep_write[wk->wk_type]++; 10809 if (wk == owk) 10810 panic("duplicate worklist: %p\n", wk); 10811 owk = wk; 10812 switch (wk->wk_type) { 10813 10814 case D_PAGEDEP: 10815 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 10816 WORKLIST_INSERT(&reattach, wk); 10817 continue; 10818 10819 case D_INODEDEP: 10820 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 10821 WORKLIST_INSERT(&reattach, wk); 10822 continue; 10823 10824 case D_BMSAFEMAP: 10825 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp)) 10826 WORKLIST_INSERT(&reattach, wk); 10827 continue; 10828 10829 case D_MKDIR: 10830 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 10831 continue; 10832 10833 case D_ALLOCDIRECT: 10834 wk->wk_state |= COMPLETE; 10835 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 10836 continue; 10837 10838 case D_ALLOCINDIR: 10839 wk->wk_state |= COMPLETE; 10840 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 10841 continue; 10842 10843 case D_INDIRDEP: 10844 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp)) 10845 WORKLIST_INSERT(&reattach, wk); 10846 continue; 10847 10848 case D_FREEBLKS: 10849 wk->wk_state |= COMPLETE; 10850 freeblks = WK_FREEBLKS(wk); 10851 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 10852 LIST_EMPTY(&freeblks->fb_jblkdephd)) 10853 add_to_worklist(wk, WK_NODELAY); 10854 continue; 10855 10856 case D_FREEWORK: 10857 handle_written_freework(WK_FREEWORK(wk)); 10858 break; 10859 10860 case D_JSEGDEP: 10861 free_jsegdep(WK_JSEGDEP(wk)); 10862 continue; 10863 10864 case D_JSEG: 10865 handle_written_jseg(WK_JSEG(wk), bp); 10866 continue; 10867 10868 case D_SBDEP: 10869 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 10870 WORKLIST_INSERT(&reattach, wk); 10871 continue; 10872 10873 case D_FREEDEP: 10874 free_freedep(WK_FREEDEP(wk)); 10875 continue; 10876 10877 default: 10878 panic("handle_disk_write_complete: Unknown type %s", 10879 TYPENAME(wk->wk_type)); 10880 /* NOTREACHED */ 10881 } 10882 } 10883 /* 10884 * Reattach any requests that must be redone. 10885 */ 10886 while ((wk = LIST_FIRST(&reattach)) != NULL) { 10887 WORKLIST_REMOVE(wk); 10888 WORKLIST_INSERT(&bp->b_dep, wk); 10889 } 10890 FREE_LOCK(ump); 10891 if (sbp) 10892 brelse(sbp); 10893 } 10894 10895 /* 10896 * Called from within softdep_disk_write_complete above. Note that 10897 * this routine is always called from interrupt level with further 10898 * splbio interrupts blocked. 10899 */ 10900 static void 10901 handle_allocdirect_partdone(adp, wkhd) 10902 struct allocdirect *adp; /* the completed allocdirect */ 10903 struct workhead *wkhd; /* Work to do when inode is writtne. */ 10904 { 10905 struct allocdirectlst *listhead; 10906 struct allocdirect *listadp; 10907 struct inodedep *inodedep; 10908 long bsize; 10909 10910 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10911 return; 10912 /* 10913 * The on-disk inode cannot claim to be any larger than the last 10914 * fragment that has been written. Otherwise, the on-disk inode 10915 * might have fragments that were not the last block in the file 10916 * which would corrupt the filesystem. Thus, we cannot free any 10917 * allocdirects after one whose ad_oldblkno claims a fragment as 10918 * these blocks must be rolled back to zero before writing the inode. 10919 * We check the currently active set of allocdirects in id_inoupdt 10920 * or id_extupdt as appropriate. 10921 */ 10922 inodedep = adp->ad_inodedep; 10923 bsize = inodedep->id_fs->fs_bsize; 10924 if (adp->ad_state & EXTDATA) 10925 listhead = &inodedep->id_extupdt; 10926 else 10927 listhead = &inodedep->id_inoupdt; 10928 TAILQ_FOREACH(listadp, listhead, ad_next) { 10929 /* found our block */ 10930 if (listadp == adp) 10931 break; 10932 /* continue if ad_oldlbn is not a fragment */ 10933 if (listadp->ad_oldsize == 0 || 10934 listadp->ad_oldsize == bsize) 10935 continue; 10936 /* hit a fragment */ 10937 return; 10938 } 10939 /* 10940 * If we have reached the end of the current list without 10941 * finding the just finished dependency, then it must be 10942 * on the future dependency list. Future dependencies cannot 10943 * be freed until they are moved to the current list. 10944 */ 10945 if (listadp == NULL) { 10946 #ifdef DEBUG 10947 if (adp->ad_state & EXTDATA) 10948 listhead = &inodedep->id_newextupdt; 10949 else 10950 listhead = &inodedep->id_newinoupdt; 10951 TAILQ_FOREACH(listadp, listhead, ad_next) 10952 /* found our block */ 10953 if (listadp == adp) 10954 break; 10955 if (listadp == NULL) 10956 panic("handle_allocdirect_partdone: lost dep"); 10957 #endif /* DEBUG */ 10958 return; 10959 } 10960 /* 10961 * If we have found the just finished dependency, then queue 10962 * it along with anything that follows it that is complete. 10963 * Since the pointer has not yet been written in the inode 10964 * as the dependency prevents it, place the allocdirect on the 10965 * bufwait list where it will be freed once the pointer is 10966 * valid. 10967 */ 10968 if (wkhd == NULL) 10969 wkhd = &inodedep->id_bufwait; 10970 for (; adp; adp = listadp) { 10971 listadp = TAILQ_NEXT(adp, ad_next); 10972 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10973 return; 10974 TAILQ_REMOVE(listhead, adp, ad_next); 10975 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 10976 } 10977 } 10978 10979 /* 10980 * Called from within softdep_disk_write_complete above. This routine 10981 * completes successfully written allocindirs. 10982 */ 10983 static void 10984 handle_allocindir_partdone(aip) 10985 struct allocindir *aip; /* the completed allocindir */ 10986 { 10987 struct indirdep *indirdep; 10988 10989 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 10990 return; 10991 indirdep = aip->ai_indirdep; 10992 LIST_REMOVE(aip, ai_next); 10993 /* 10994 * Don't set a pointer while the buffer is undergoing IO or while 10995 * we have active truncations. 10996 */ 10997 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 10998 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 10999 return; 11000 } 11001 if (indirdep->ir_state & UFS1FMT) 11002 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11003 aip->ai_newblkno; 11004 else 11005 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11006 aip->ai_newblkno; 11007 /* 11008 * Await the pointer write before freeing the allocindir. 11009 */ 11010 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11011 } 11012 11013 /* 11014 * Release segments held on a jwork list. 11015 */ 11016 static void 11017 handle_jwork(wkhd) 11018 struct workhead *wkhd; 11019 { 11020 struct worklist *wk; 11021 11022 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11023 WORKLIST_REMOVE(wk); 11024 switch (wk->wk_type) { 11025 case D_JSEGDEP: 11026 free_jsegdep(WK_JSEGDEP(wk)); 11027 continue; 11028 case D_FREEDEP: 11029 free_freedep(WK_FREEDEP(wk)); 11030 continue; 11031 case D_FREEFRAG: 11032 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11033 WORKITEM_FREE(wk, D_FREEFRAG); 11034 continue; 11035 case D_FREEWORK: 11036 handle_written_freework(WK_FREEWORK(wk)); 11037 continue; 11038 default: 11039 panic("handle_jwork: Unknown type %s\n", 11040 TYPENAME(wk->wk_type)); 11041 } 11042 } 11043 } 11044 11045 /* 11046 * Handle the bufwait list on an inode when it is safe to release items 11047 * held there. This normally happens after an inode block is written but 11048 * may be delayed and handled later if there are pending journal items that 11049 * are not yet safe to be released. 11050 */ 11051 static struct freefile * 11052 handle_bufwait(inodedep, refhd) 11053 struct inodedep *inodedep; 11054 struct workhead *refhd; 11055 { 11056 struct jaddref *jaddref; 11057 struct freefile *freefile; 11058 struct worklist *wk; 11059 11060 freefile = NULL; 11061 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11062 WORKLIST_REMOVE(wk); 11063 switch (wk->wk_type) { 11064 case D_FREEFILE: 11065 /* 11066 * We defer adding freefile to the worklist 11067 * until all other additions have been made to 11068 * ensure that it will be done after all the 11069 * old blocks have been freed. 11070 */ 11071 if (freefile != NULL) 11072 panic("handle_bufwait: freefile"); 11073 freefile = WK_FREEFILE(wk); 11074 continue; 11075 11076 case D_MKDIR: 11077 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11078 continue; 11079 11080 case D_DIRADD: 11081 diradd_inode_written(WK_DIRADD(wk), inodedep); 11082 continue; 11083 11084 case D_FREEFRAG: 11085 wk->wk_state |= COMPLETE; 11086 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11087 add_to_worklist(wk, 0); 11088 continue; 11089 11090 case D_DIRREM: 11091 wk->wk_state |= COMPLETE; 11092 add_to_worklist(wk, 0); 11093 continue; 11094 11095 case D_ALLOCDIRECT: 11096 case D_ALLOCINDIR: 11097 free_newblk(WK_NEWBLK(wk)); 11098 continue; 11099 11100 case D_JNEWBLK: 11101 wk->wk_state |= COMPLETE; 11102 free_jnewblk(WK_JNEWBLK(wk)); 11103 continue; 11104 11105 /* 11106 * Save freed journal segments and add references on 11107 * the supplied list which will delay their release 11108 * until the cg bitmap is cleared on disk. 11109 */ 11110 case D_JSEGDEP: 11111 if (refhd == NULL) 11112 free_jsegdep(WK_JSEGDEP(wk)); 11113 else 11114 WORKLIST_INSERT(refhd, wk); 11115 continue; 11116 11117 case D_JADDREF: 11118 jaddref = WK_JADDREF(wk); 11119 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11120 if_deps); 11121 /* 11122 * Transfer any jaddrefs to the list to be freed with 11123 * the bitmap if we're handling a removed file. 11124 */ 11125 if (refhd == NULL) { 11126 wk->wk_state |= COMPLETE; 11127 free_jaddref(jaddref); 11128 } else 11129 WORKLIST_INSERT(refhd, wk); 11130 continue; 11131 11132 default: 11133 panic("handle_bufwait: Unknown type %p(%s)", 11134 wk, TYPENAME(wk->wk_type)); 11135 /* NOTREACHED */ 11136 } 11137 } 11138 return (freefile); 11139 } 11140 /* 11141 * Called from within softdep_disk_write_complete above to restore 11142 * in-memory inode block contents to their most up-to-date state. Note 11143 * that this routine is always called from interrupt level with further 11144 * splbio interrupts blocked. 11145 */ 11146 static int 11147 handle_written_inodeblock(inodedep, bp) 11148 struct inodedep *inodedep; 11149 struct buf *bp; /* buffer containing the inode block */ 11150 { 11151 struct freefile *freefile; 11152 struct allocdirect *adp, *nextadp; 11153 struct ufs1_dinode *dp1 = NULL; 11154 struct ufs2_dinode *dp2 = NULL; 11155 struct workhead wkhd; 11156 int hadchanges, fstype; 11157 ino_t freelink; 11158 11159 LIST_INIT(&wkhd); 11160 hadchanges = 0; 11161 freefile = NULL; 11162 if ((inodedep->id_state & IOSTARTED) == 0) 11163 panic("handle_written_inodeblock: not started"); 11164 inodedep->id_state &= ~IOSTARTED; 11165 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11166 fstype = UFS1; 11167 dp1 = (struct ufs1_dinode *)bp->b_data + 11168 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11169 freelink = dp1->di_freelink; 11170 } else { 11171 fstype = UFS2; 11172 dp2 = (struct ufs2_dinode *)bp->b_data + 11173 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11174 freelink = dp2->di_freelink; 11175 } 11176 /* 11177 * Leave this inodeblock dirty until it's in the list. 11178 */ 11179 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) { 11180 struct inodedep *inon; 11181 11182 inon = TAILQ_NEXT(inodedep, id_unlinked); 11183 if ((inon == NULL && freelink == 0) || 11184 (inon && inon->id_ino == freelink)) { 11185 if (inon) 11186 inon->id_state |= UNLINKPREV; 11187 inodedep->id_state |= UNLINKNEXT; 11188 } 11189 hadchanges = 1; 11190 } 11191 /* 11192 * If we had to rollback the inode allocation because of 11193 * bitmaps being incomplete, then simply restore it. 11194 * Keep the block dirty so that it will not be reclaimed until 11195 * all associated dependencies have been cleared and the 11196 * corresponding updates written to disk. 11197 */ 11198 if (inodedep->id_savedino1 != NULL) { 11199 hadchanges = 1; 11200 if (fstype == UFS1) 11201 *dp1 = *inodedep->id_savedino1; 11202 else 11203 *dp2 = *inodedep->id_savedino2; 11204 free(inodedep->id_savedino1, M_SAVEDINO); 11205 inodedep->id_savedino1 = NULL; 11206 if ((bp->b_flags & B_DELWRI) == 0) 11207 stat_inode_bitmap++; 11208 bdirty(bp); 11209 /* 11210 * If the inode is clear here and GOINGAWAY it will never 11211 * be written. Process the bufwait and clear any pending 11212 * work which may include the freefile. 11213 */ 11214 if (inodedep->id_state & GOINGAWAY) 11215 goto bufwait; 11216 return (1); 11217 } 11218 inodedep->id_state |= COMPLETE; 11219 /* 11220 * Roll forward anything that had to be rolled back before 11221 * the inode could be updated. 11222 */ 11223 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11224 nextadp = TAILQ_NEXT(adp, ad_next); 11225 if (adp->ad_state & ATTACHED) 11226 panic("handle_written_inodeblock: new entry"); 11227 if (fstype == UFS1) { 11228 if (adp->ad_offset < NDADDR) { 11229 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11230 panic("%s %s #%jd mismatch %d != %jd", 11231 "handle_written_inodeblock:", 11232 "direct pointer", 11233 (intmax_t)adp->ad_offset, 11234 dp1->di_db[adp->ad_offset], 11235 (intmax_t)adp->ad_oldblkno); 11236 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11237 } else { 11238 if (dp1->di_ib[adp->ad_offset - NDADDR] != 0) 11239 panic("%s: %s #%jd allocated as %d", 11240 "handle_written_inodeblock", 11241 "indirect pointer", 11242 (intmax_t)adp->ad_offset - NDADDR, 11243 dp1->di_ib[adp->ad_offset - NDADDR]); 11244 dp1->di_ib[adp->ad_offset - NDADDR] = 11245 adp->ad_newblkno; 11246 } 11247 } else { 11248 if (adp->ad_offset < NDADDR) { 11249 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11250 panic("%s: %s #%jd %s %jd != %jd", 11251 "handle_written_inodeblock", 11252 "direct pointer", 11253 (intmax_t)adp->ad_offset, "mismatch", 11254 (intmax_t)dp2->di_db[adp->ad_offset], 11255 (intmax_t)adp->ad_oldblkno); 11256 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11257 } else { 11258 if (dp2->di_ib[adp->ad_offset - NDADDR] != 0) 11259 panic("%s: %s #%jd allocated as %jd", 11260 "handle_written_inodeblock", 11261 "indirect pointer", 11262 (intmax_t)adp->ad_offset - NDADDR, 11263 (intmax_t) 11264 dp2->di_ib[adp->ad_offset - NDADDR]); 11265 dp2->di_ib[adp->ad_offset - NDADDR] = 11266 adp->ad_newblkno; 11267 } 11268 } 11269 adp->ad_state &= ~UNDONE; 11270 adp->ad_state |= ATTACHED; 11271 hadchanges = 1; 11272 } 11273 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11274 nextadp = TAILQ_NEXT(adp, ad_next); 11275 if (adp->ad_state & ATTACHED) 11276 panic("handle_written_inodeblock: new entry"); 11277 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11278 panic("%s: direct pointers #%jd %s %jd != %jd", 11279 "handle_written_inodeblock", 11280 (intmax_t)adp->ad_offset, "mismatch", 11281 (intmax_t)dp2->di_extb[adp->ad_offset], 11282 (intmax_t)adp->ad_oldblkno); 11283 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11284 adp->ad_state &= ~UNDONE; 11285 adp->ad_state |= ATTACHED; 11286 hadchanges = 1; 11287 } 11288 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11289 stat_direct_blk_ptrs++; 11290 /* 11291 * Reset the file size to its most up-to-date value. 11292 */ 11293 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11294 panic("handle_written_inodeblock: bad size"); 11295 if (inodedep->id_savednlink > LINK_MAX) 11296 panic("handle_written_inodeblock: Invalid link count " 11297 "%d for inodedep %p", inodedep->id_savednlink, inodedep); 11298 if (fstype == UFS1) { 11299 if (dp1->di_nlink != inodedep->id_savednlink) { 11300 dp1->di_nlink = inodedep->id_savednlink; 11301 hadchanges = 1; 11302 } 11303 if (dp1->di_size != inodedep->id_savedsize) { 11304 dp1->di_size = inodedep->id_savedsize; 11305 hadchanges = 1; 11306 } 11307 } else { 11308 if (dp2->di_nlink != inodedep->id_savednlink) { 11309 dp2->di_nlink = inodedep->id_savednlink; 11310 hadchanges = 1; 11311 } 11312 if (dp2->di_size != inodedep->id_savedsize) { 11313 dp2->di_size = inodedep->id_savedsize; 11314 hadchanges = 1; 11315 } 11316 if (dp2->di_extsize != inodedep->id_savedextsize) { 11317 dp2->di_extsize = inodedep->id_savedextsize; 11318 hadchanges = 1; 11319 } 11320 } 11321 inodedep->id_savedsize = -1; 11322 inodedep->id_savedextsize = -1; 11323 inodedep->id_savednlink = -1; 11324 /* 11325 * If there were any rollbacks in the inode block, then it must be 11326 * marked dirty so that its will eventually get written back in 11327 * its correct form. 11328 */ 11329 if (hadchanges) 11330 bdirty(bp); 11331 bufwait: 11332 /* 11333 * Process any allocdirects that completed during the update. 11334 */ 11335 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11336 handle_allocdirect_partdone(adp, &wkhd); 11337 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11338 handle_allocdirect_partdone(adp, &wkhd); 11339 /* 11340 * Process deallocations that were held pending until the 11341 * inode had been written to disk. Freeing of the inode 11342 * is delayed until after all blocks have been freed to 11343 * avoid creation of new <vfsid, inum, lbn> triples 11344 * before the old ones have been deleted. Completely 11345 * unlinked inodes are not processed until the unlinked 11346 * inode list is written or the last reference is removed. 11347 */ 11348 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11349 freefile = handle_bufwait(inodedep, NULL); 11350 if (freefile && !LIST_EMPTY(&wkhd)) { 11351 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11352 freefile = NULL; 11353 } 11354 } 11355 /* 11356 * Move rolled forward dependency completions to the bufwait list 11357 * now that those that were already written have been processed. 11358 */ 11359 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11360 panic("handle_written_inodeblock: bufwait but no changes"); 11361 jwork_move(&inodedep->id_bufwait, &wkhd); 11362 11363 if (freefile != NULL) { 11364 /* 11365 * If the inode is goingaway it was never written. Fake up 11366 * the state here so free_inodedep() can succeed. 11367 */ 11368 if (inodedep->id_state & GOINGAWAY) 11369 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11370 if (free_inodedep(inodedep) == 0) 11371 panic("handle_written_inodeblock: live inodedep %p", 11372 inodedep); 11373 add_to_worklist(&freefile->fx_list, 0); 11374 return (0); 11375 } 11376 11377 /* 11378 * If no outstanding dependencies, free it. 11379 */ 11380 if (free_inodedep(inodedep) || 11381 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11382 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11383 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11384 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11385 return (0); 11386 return (hadchanges); 11387 } 11388 11389 static int 11390 handle_written_indirdep(indirdep, bp, bpp) 11391 struct indirdep *indirdep; 11392 struct buf *bp; 11393 struct buf **bpp; 11394 { 11395 struct allocindir *aip; 11396 struct buf *sbp; 11397 int chgs; 11398 11399 if (indirdep->ir_state & GOINGAWAY) 11400 panic("handle_written_indirdep: indirdep gone"); 11401 if ((indirdep->ir_state & IOSTARTED) == 0) 11402 panic("handle_written_indirdep: IO not started"); 11403 chgs = 0; 11404 /* 11405 * If there were rollbacks revert them here. 11406 */ 11407 if (indirdep->ir_saveddata) { 11408 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11409 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11410 free(indirdep->ir_saveddata, M_INDIRDEP); 11411 indirdep->ir_saveddata = NULL; 11412 } 11413 chgs = 1; 11414 } 11415 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11416 indirdep->ir_state |= ATTACHED; 11417 /* 11418 * Move allocindirs with written pointers to the completehd if 11419 * the indirdep's pointer is not yet written. Otherwise 11420 * free them here. 11421 */ 11422 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) { 11423 LIST_REMOVE(aip, ai_next); 11424 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11425 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11426 ai_next); 11427 newblk_freefrag(&aip->ai_block); 11428 continue; 11429 } 11430 free_newblk(&aip->ai_block); 11431 } 11432 /* 11433 * Move allocindirs that have finished dependency processing from 11434 * the done list to the write list after updating the pointers. 11435 */ 11436 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11437 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 11438 handle_allocindir_partdone(aip); 11439 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11440 panic("disk_write_complete: not gone"); 11441 chgs = 1; 11442 } 11443 } 11444 /* 11445 * Preserve the indirdep if there were any changes or if it is not 11446 * yet valid on disk. 11447 */ 11448 if (chgs) { 11449 stat_indir_blk_ptrs++; 11450 bdirty(bp); 11451 return (1); 11452 } 11453 /* 11454 * If there were no changes we can discard the savedbp and detach 11455 * ourselves from the buf. We are only carrying completed pointers 11456 * in this case. 11457 */ 11458 sbp = indirdep->ir_savebp; 11459 sbp->b_flags |= B_INVAL | B_NOCACHE; 11460 indirdep->ir_savebp = NULL; 11461 indirdep->ir_bp = NULL; 11462 if (*bpp != NULL) 11463 panic("handle_written_indirdep: bp already exists."); 11464 *bpp = sbp; 11465 /* 11466 * The indirdep may not be freed until its parent points at it. 11467 */ 11468 if (indirdep->ir_state & DEPCOMPLETE) 11469 free_indirdep(indirdep); 11470 11471 return (0); 11472 } 11473 11474 /* 11475 * Process a diradd entry after its dependent inode has been written. 11476 * This routine must be called with splbio interrupts blocked. 11477 */ 11478 static void 11479 diradd_inode_written(dap, inodedep) 11480 struct diradd *dap; 11481 struct inodedep *inodedep; 11482 { 11483 11484 dap->da_state |= COMPLETE; 11485 complete_diradd(dap); 11486 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11487 } 11488 11489 /* 11490 * Returns true if the bmsafemap will have rollbacks when written. Must only 11491 * be called with the soft updates lock and the buf lock on the cg held. 11492 */ 11493 static int 11494 bmsafemap_backgroundwrite(bmsafemap, bp) 11495 struct bmsafemap *bmsafemap; 11496 struct buf *bp; 11497 { 11498 int dirty; 11499 11500 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11501 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11502 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11503 /* 11504 * If we're initiating a background write we need to process the 11505 * rollbacks as they exist now, not as they exist when IO starts. 11506 * No other consumers will look at the contents of the shadowed 11507 * buf so this is safe to do here. 11508 */ 11509 if (bp->b_xflags & BX_BKGRDMARKER) 11510 initiate_write_bmsafemap(bmsafemap, bp); 11511 11512 return (dirty); 11513 } 11514 11515 /* 11516 * Re-apply an allocation when a cg write is complete. 11517 */ 11518 static int 11519 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11520 struct jnewblk *jnewblk; 11521 struct fs *fs; 11522 struct cg *cgp; 11523 uint8_t *blksfree; 11524 { 11525 ufs1_daddr_t fragno; 11526 ufs2_daddr_t blkno; 11527 long cgbno, bbase; 11528 int frags, blk; 11529 int i; 11530 11531 frags = 0; 11532 cgbno = dtogd(fs, jnewblk->jn_blkno); 11533 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11534 if (isclr(blksfree, cgbno + i)) 11535 panic("jnewblk_rollforward: re-allocated fragment"); 11536 frags++; 11537 } 11538 if (frags == fs->fs_frag) { 11539 blkno = fragstoblks(fs, cgbno); 11540 ffs_clrblock(fs, blksfree, (long)blkno); 11541 ffs_clusteracct(fs, cgp, blkno, -1); 11542 cgp->cg_cs.cs_nbfree--; 11543 } else { 11544 bbase = cgbno - fragnum(fs, cgbno); 11545 cgbno += jnewblk->jn_oldfrags; 11546 /* If a complete block had been reassembled, account for it. */ 11547 fragno = fragstoblks(fs, bbase); 11548 if (ffs_isblock(fs, blksfree, fragno)) { 11549 cgp->cg_cs.cs_nffree += fs->fs_frag; 11550 ffs_clusteracct(fs, cgp, fragno, -1); 11551 cgp->cg_cs.cs_nbfree--; 11552 } 11553 /* Decrement the old frags. */ 11554 blk = blkmap(fs, blksfree, bbase); 11555 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11556 /* Allocate the fragment */ 11557 for (i = 0; i < frags; i++) 11558 clrbit(blksfree, cgbno + i); 11559 cgp->cg_cs.cs_nffree -= frags; 11560 /* Add back in counts associated with the new frags */ 11561 blk = blkmap(fs, blksfree, bbase); 11562 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11563 } 11564 return (frags); 11565 } 11566 11567 /* 11568 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11569 * changes if it's not a background write. Set all written dependencies 11570 * to DEPCOMPLETE and free the structure if possible. 11571 */ 11572 static int 11573 handle_written_bmsafemap(bmsafemap, bp) 11574 struct bmsafemap *bmsafemap; 11575 struct buf *bp; 11576 { 11577 struct newblk *newblk; 11578 struct inodedep *inodedep; 11579 struct jaddref *jaddref, *jatmp; 11580 struct jnewblk *jnewblk, *jntmp; 11581 struct ufsmount *ump; 11582 uint8_t *inosused; 11583 uint8_t *blksfree; 11584 struct cg *cgp; 11585 struct fs *fs; 11586 ino_t ino; 11587 int foreground; 11588 int chgs; 11589 11590 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11591 panic("initiate_write_bmsafemap: Not started\n"); 11592 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11593 chgs = 0; 11594 bmsafemap->sm_state &= ~IOSTARTED; 11595 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11596 /* 11597 * Release journal work that was waiting on the write. 11598 */ 11599 handle_jwork(&bmsafemap->sm_freewr); 11600 11601 /* 11602 * Restore unwritten inode allocation pending jaddref writes. 11603 */ 11604 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11605 cgp = (struct cg *)bp->b_data; 11606 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11607 inosused = cg_inosused(cgp); 11608 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11609 ja_bmdeps, jatmp) { 11610 if ((jaddref->ja_state & UNDONE) == 0) 11611 continue; 11612 ino = jaddref->ja_ino % fs->fs_ipg; 11613 if (isset(inosused, ino)) 11614 panic("handle_written_bmsafemap: " 11615 "re-allocated inode"); 11616 /* Do the roll-forward only if it's a real copy. */ 11617 if (foreground) { 11618 if ((jaddref->ja_mode & IFMT) == IFDIR) 11619 cgp->cg_cs.cs_ndir++; 11620 cgp->cg_cs.cs_nifree--; 11621 setbit(inosused, ino); 11622 chgs = 1; 11623 } 11624 jaddref->ja_state &= ~UNDONE; 11625 jaddref->ja_state |= ATTACHED; 11626 free_jaddref(jaddref); 11627 } 11628 } 11629 /* 11630 * Restore any block allocations which are pending journal writes. 11631 */ 11632 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11633 cgp = (struct cg *)bp->b_data; 11634 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11635 blksfree = cg_blksfree(cgp); 11636 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11637 jntmp) { 11638 if ((jnewblk->jn_state & UNDONE) == 0) 11639 continue; 11640 /* Do the roll-forward only if it's a real copy. */ 11641 if (foreground && 11642 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11643 chgs = 1; 11644 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11645 jnewblk->jn_state |= ATTACHED; 11646 free_jnewblk(jnewblk); 11647 } 11648 } 11649 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11650 newblk->nb_state |= DEPCOMPLETE; 11651 newblk->nb_state &= ~ONDEPLIST; 11652 newblk->nb_bmsafemap = NULL; 11653 LIST_REMOVE(newblk, nb_deps); 11654 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11655 handle_allocdirect_partdone( 11656 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11657 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11658 handle_allocindir_partdone( 11659 WK_ALLOCINDIR(&newblk->nb_list)); 11660 else if (newblk->nb_list.wk_type != D_NEWBLK) 11661 panic("handle_written_bmsafemap: Unexpected type: %s", 11662 TYPENAME(newblk->nb_list.wk_type)); 11663 } 11664 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11665 inodedep->id_state |= DEPCOMPLETE; 11666 inodedep->id_state &= ~ONDEPLIST; 11667 LIST_REMOVE(inodedep, id_deps); 11668 inodedep->id_bmsafemap = NULL; 11669 } 11670 LIST_REMOVE(bmsafemap, sm_next); 11671 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11672 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11673 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11674 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11675 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11676 LIST_REMOVE(bmsafemap, sm_hash); 11677 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11678 return (0); 11679 } 11680 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11681 if (foreground) 11682 bdirty(bp); 11683 return (1); 11684 } 11685 11686 /* 11687 * Try to free a mkdir dependency. 11688 */ 11689 static void 11690 complete_mkdir(mkdir) 11691 struct mkdir *mkdir; 11692 { 11693 struct diradd *dap; 11694 11695 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11696 return; 11697 LIST_REMOVE(mkdir, md_mkdirs); 11698 dap = mkdir->md_diradd; 11699 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11700 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11701 dap->da_state |= DEPCOMPLETE; 11702 complete_diradd(dap); 11703 } 11704 WORKITEM_FREE(mkdir, D_MKDIR); 11705 } 11706 11707 /* 11708 * Handle the completion of a mkdir dependency. 11709 */ 11710 static void 11711 handle_written_mkdir(mkdir, type) 11712 struct mkdir *mkdir; 11713 int type; 11714 { 11715 11716 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 11717 panic("handle_written_mkdir: bad type"); 11718 mkdir->md_state |= COMPLETE; 11719 complete_mkdir(mkdir); 11720 } 11721 11722 static int 11723 free_pagedep(pagedep) 11724 struct pagedep *pagedep; 11725 { 11726 int i; 11727 11728 if (pagedep->pd_state & NEWBLOCK) 11729 return (0); 11730 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 11731 return (0); 11732 for (i = 0; i < DAHASHSZ; i++) 11733 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 11734 return (0); 11735 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 11736 return (0); 11737 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 11738 return (0); 11739 if (pagedep->pd_state & ONWORKLIST) 11740 WORKLIST_REMOVE(&pagedep->pd_list); 11741 LIST_REMOVE(pagedep, pd_hash); 11742 WORKITEM_FREE(pagedep, D_PAGEDEP); 11743 11744 return (1); 11745 } 11746 11747 /* 11748 * Called from within softdep_disk_write_complete above. 11749 * A write operation was just completed. Removed inodes can 11750 * now be freed and associated block pointers may be committed. 11751 * Note that this routine is always called from interrupt level 11752 * with further splbio interrupts blocked. 11753 */ 11754 static int 11755 handle_written_filepage(pagedep, bp) 11756 struct pagedep *pagedep; 11757 struct buf *bp; /* buffer containing the written page */ 11758 { 11759 struct dirrem *dirrem; 11760 struct diradd *dap, *nextdap; 11761 struct direct *ep; 11762 int i, chgs; 11763 11764 if ((pagedep->pd_state & IOSTARTED) == 0) 11765 panic("handle_written_filepage: not started"); 11766 pagedep->pd_state &= ~IOSTARTED; 11767 /* 11768 * Process any directory removals that have been committed. 11769 */ 11770 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 11771 LIST_REMOVE(dirrem, dm_next); 11772 dirrem->dm_state |= COMPLETE; 11773 dirrem->dm_dirinum = pagedep->pd_ino; 11774 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 11775 ("handle_written_filepage: Journal entries not written.")); 11776 add_to_worklist(&dirrem->dm_list, 0); 11777 } 11778 /* 11779 * Free any directory additions that have been committed. 11780 * If it is a newly allocated block, we have to wait until 11781 * the on-disk directory inode claims the new block. 11782 */ 11783 if ((pagedep->pd_state & NEWBLOCK) == 0) 11784 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 11785 free_diradd(dap, NULL); 11786 /* 11787 * Uncommitted directory entries must be restored. 11788 */ 11789 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 11790 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 11791 dap = nextdap) { 11792 nextdap = LIST_NEXT(dap, da_pdlist); 11793 if (dap->da_state & ATTACHED) 11794 panic("handle_written_filepage: attached"); 11795 ep = (struct direct *) 11796 ((char *)bp->b_data + dap->da_offset); 11797 ep->d_ino = dap->da_newinum; 11798 dap->da_state &= ~UNDONE; 11799 dap->da_state |= ATTACHED; 11800 chgs = 1; 11801 /* 11802 * If the inode referenced by the directory has 11803 * been written out, then the dependency can be 11804 * moved to the pending list. 11805 */ 11806 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 11807 LIST_REMOVE(dap, da_pdlist); 11808 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 11809 da_pdlist); 11810 } 11811 } 11812 } 11813 /* 11814 * If there were any rollbacks in the directory, then it must be 11815 * marked dirty so that its will eventually get written back in 11816 * its correct form. 11817 */ 11818 if (chgs) { 11819 if ((bp->b_flags & B_DELWRI) == 0) 11820 stat_dir_entry++; 11821 bdirty(bp); 11822 return (1); 11823 } 11824 /* 11825 * If we are not waiting for a new directory block to be 11826 * claimed by its inode, then the pagedep will be freed. 11827 * Otherwise it will remain to track any new entries on 11828 * the page in case they are fsync'ed. 11829 */ 11830 free_pagedep(pagedep); 11831 return (0); 11832 } 11833 11834 /* 11835 * Writing back in-core inode structures. 11836 * 11837 * The filesystem only accesses an inode's contents when it occupies an 11838 * "in-core" inode structure. These "in-core" structures are separate from 11839 * the page frames used to cache inode blocks. Only the latter are 11840 * transferred to/from the disk. So, when the updated contents of the 11841 * "in-core" inode structure are copied to the corresponding in-memory inode 11842 * block, the dependencies are also transferred. The following procedure is 11843 * called when copying a dirty "in-core" inode to a cached inode block. 11844 */ 11845 11846 /* 11847 * Called when an inode is loaded from disk. If the effective link count 11848 * differed from the actual link count when it was last flushed, then we 11849 * need to ensure that the correct effective link count is put back. 11850 */ 11851 void 11852 softdep_load_inodeblock(ip) 11853 struct inode *ip; /* the "in_core" copy of the inode */ 11854 { 11855 struct inodedep *inodedep; 11856 11857 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 11858 ("softdep_load_inodeblock called on non-softdep filesystem")); 11859 /* 11860 * Check for alternate nlink count. 11861 */ 11862 ip->i_effnlink = ip->i_nlink; 11863 ACQUIRE_LOCK(ip->i_ump); 11864 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 11865 &inodedep) == 0) { 11866 FREE_LOCK(ip->i_ump); 11867 return; 11868 } 11869 ip->i_effnlink -= inodedep->id_nlinkdelta; 11870 FREE_LOCK(ip->i_ump); 11871 } 11872 11873 /* 11874 * This routine is called just before the "in-core" inode 11875 * information is to be copied to the in-memory inode block. 11876 * Recall that an inode block contains several inodes. If 11877 * the force flag is set, then the dependencies will be 11878 * cleared so that the update can always be made. Note that 11879 * the buffer is locked when this routine is called, so we 11880 * will never be in the middle of writing the inode block 11881 * to disk. 11882 */ 11883 void 11884 softdep_update_inodeblock(ip, bp, waitfor) 11885 struct inode *ip; /* the "in_core" copy of the inode */ 11886 struct buf *bp; /* the buffer containing the inode block */ 11887 int waitfor; /* nonzero => update must be allowed */ 11888 { 11889 struct inodedep *inodedep; 11890 struct inoref *inoref; 11891 struct ufsmount *ump; 11892 struct worklist *wk; 11893 struct mount *mp; 11894 struct buf *ibp; 11895 struct fs *fs; 11896 int error; 11897 11898 ump = ip->i_ump; 11899 mp = UFSTOVFS(ump); 11900 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 11901 ("softdep_update_inodeblock called on non-softdep filesystem")); 11902 fs = ip->i_fs; 11903 /* 11904 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 11905 * does not have access to the in-core ip so must write directly into 11906 * the inode block buffer when setting freelink. 11907 */ 11908 if (fs->fs_magic == FS_UFS1_MAGIC) 11909 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 11910 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11911 else 11912 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 11913 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11914 /* 11915 * If the effective link count is not equal to the actual link 11916 * count, then we must track the difference in an inodedep while 11917 * the inode is (potentially) tossed out of the cache. Otherwise, 11918 * if there is no existing inodedep, then there are no dependencies 11919 * to track. 11920 */ 11921 ACQUIRE_LOCK(ump); 11922 again: 11923 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 11924 FREE_LOCK(ump); 11925 if (ip->i_effnlink != ip->i_nlink) 11926 panic("softdep_update_inodeblock: bad link count"); 11927 return; 11928 } 11929 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 11930 panic("softdep_update_inodeblock: bad delta"); 11931 /* 11932 * If we're flushing all dependencies we must also move any waiting 11933 * for journal writes onto the bufwait list prior to I/O. 11934 */ 11935 if (waitfor) { 11936 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 11937 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 11938 == DEPCOMPLETE) { 11939 jwait(&inoref->if_list, MNT_WAIT); 11940 goto again; 11941 } 11942 } 11943 } 11944 /* 11945 * Changes have been initiated. Anything depending on these 11946 * changes cannot occur until this inode has been written. 11947 */ 11948 inodedep->id_state &= ~COMPLETE; 11949 if ((inodedep->id_state & ONWORKLIST) == 0) 11950 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 11951 /* 11952 * Any new dependencies associated with the incore inode must 11953 * now be moved to the list associated with the buffer holding 11954 * the in-memory copy of the inode. Once merged process any 11955 * allocdirects that are completed by the merger. 11956 */ 11957 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 11958 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 11959 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 11960 NULL); 11961 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 11962 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 11963 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 11964 NULL); 11965 /* 11966 * Now that the inode has been pushed into the buffer, the 11967 * operations dependent on the inode being written to disk 11968 * can be moved to the id_bufwait so that they will be 11969 * processed when the buffer I/O completes. 11970 */ 11971 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 11972 WORKLIST_REMOVE(wk); 11973 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 11974 } 11975 /* 11976 * Newly allocated inodes cannot be written until the bitmap 11977 * that allocates them have been written (indicated by 11978 * DEPCOMPLETE being set in id_state). If we are doing a 11979 * forced sync (e.g., an fsync on a file), we force the bitmap 11980 * to be written so that the update can be done. 11981 */ 11982 if (waitfor == 0) { 11983 FREE_LOCK(ump); 11984 return; 11985 } 11986 retry: 11987 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 11988 FREE_LOCK(ump); 11989 return; 11990 } 11991 ibp = inodedep->id_bmsafemap->sm_buf; 11992 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 11993 if (ibp == NULL) { 11994 /* 11995 * If ibp came back as NULL, the dependency could have been 11996 * freed while we slept. Look it up again, and check to see 11997 * that it has completed. 11998 */ 11999 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12000 goto retry; 12001 FREE_LOCK(ump); 12002 return; 12003 } 12004 FREE_LOCK(ump); 12005 if ((error = bwrite(ibp)) != 0) 12006 softdep_error("softdep_update_inodeblock: bwrite", error); 12007 } 12008 12009 /* 12010 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12011 * old inode dependency list (such as id_inoupdt). This routine must be 12012 * called with splbio interrupts blocked. 12013 */ 12014 static void 12015 merge_inode_lists(newlisthead, oldlisthead) 12016 struct allocdirectlst *newlisthead; 12017 struct allocdirectlst *oldlisthead; 12018 { 12019 struct allocdirect *listadp, *newadp; 12020 12021 newadp = TAILQ_FIRST(newlisthead); 12022 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12023 if (listadp->ad_offset < newadp->ad_offset) { 12024 listadp = TAILQ_NEXT(listadp, ad_next); 12025 continue; 12026 } 12027 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12028 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12029 if (listadp->ad_offset == newadp->ad_offset) { 12030 allocdirect_merge(oldlisthead, newadp, 12031 listadp); 12032 listadp = newadp; 12033 } 12034 newadp = TAILQ_FIRST(newlisthead); 12035 } 12036 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12037 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12038 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12039 } 12040 } 12041 12042 /* 12043 * If we are doing an fsync, then we must ensure that any directory 12044 * entries for the inode have been written after the inode gets to disk. 12045 */ 12046 int 12047 softdep_fsync(vp) 12048 struct vnode *vp; /* the "in_core" copy of the inode */ 12049 { 12050 struct inodedep *inodedep; 12051 struct pagedep *pagedep; 12052 struct inoref *inoref; 12053 struct ufsmount *ump; 12054 struct worklist *wk; 12055 struct diradd *dap; 12056 struct mount *mp; 12057 struct vnode *pvp; 12058 struct inode *ip; 12059 struct buf *bp; 12060 struct fs *fs; 12061 struct thread *td = curthread; 12062 int error, flushparent, pagedep_new_block; 12063 ino_t parentino; 12064 ufs_lbn_t lbn; 12065 12066 ip = VTOI(vp); 12067 fs = ip->i_fs; 12068 ump = ip->i_ump; 12069 mp = vp->v_mount; 12070 if (MOUNTEDSOFTDEP(mp) == 0) 12071 return (0); 12072 ACQUIRE_LOCK(ump); 12073 restart: 12074 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12075 FREE_LOCK(ump); 12076 return (0); 12077 } 12078 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12079 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12080 == DEPCOMPLETE) { 12081 jwait(&inoref->if_list, MNT_WAIT); 12082 goto restart; 12083 } 12084 } 12085 if (!LIST_EMPTY(&inodedep->id_inowait) || 12086 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12087 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12088 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12089 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12090 panic("softdep_fsync: pending ops %p", inodedep); 12091 for (error = 0, flushparent = 0; ; ) { 12092 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12093 break; 12094 if (wk->wk_type != D_DIRADD) 12095 panic("softdep_fsync: Unexpected type %s", 12096 TYPENAME(wk->wk_type)); 12097 dap = WK_DIRADD(wk); 12098 /* 12099 * Flush our parent if this directory entry has a MKDIR_PARENT 12100 * dependency or is contained in a newly allocated block. 12101 */ 12102 if (dap->da_state & DIRCHG) 12103 pagedep = dap->da_previous->dm_pagedep; 12104 else 12105 pagedep = dap->da_pagedep; 12106 parentino = pagedep->pd_ino; 12107 lbn = pagedep->pd_lbn; 12108 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12109 panic("softdep_fsync: dirty"); 12110 if ((dap->da_state & MKDIR_PARENT) || 12111 (pagedep->pd_state & NEWBLOCK)) 12112 flushparent = 1; 12113 else 12114 flushparent = 0; 12115 /* 12116 * If we are being fsync'ed as part of vgone'ing this vnode, 12117 * then we will not be able to release and recover the 12118 * vnode below, so we just have to give up on writing its 12119 * directory entry out. It will eventually be written, just 12120 * not now, but then the user was not asking to have it 12121 * written, so we are not breaking any promises. 12122 */ 12123 if (vp->v_iflag & VI_DOOMED) 12124 break; 12125 /* 12126 * We prevent deadlock by always fetching inodes from the 12127 * root, moving down the directory tree. Thus, when fetching 12128 * our parent directory, we first try to get the lock. If 12129 * that fails, we must unlock ourselves before requesting 12130 * the lock on our parent. See the comment in ufs_lookup 12131 * for details on possible races. 12132 */ 12133 FREE_LOCK(ump); 12134 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12135 FFSV_FORCEINSMQ)) { 12136 error = vfs_busy(mp, MBF_NOWAIT); 12137 if (error != 0) { 12138 vfs_ref(mp); 12139 VOP_UNLOCK(vp, 0); 12140 error = vfs_busy(mp, 0); 12141 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12142 vfs_rel(mp); 12143 if (error != 0) 12144 return (ENOENT); 12145 if (vp->v_iflag & VI_DOOMED) { 12146 vfs_unbusy(mp); 12147 return (ENOENT); 12148 } 12149 } 12150 VOP_UNLOCK(vp, 0); 12151 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12152 &pvp, FFSV_FORCEINSMQ); 12153 vfs_unbusy(mp); 12154 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12155 if (vp->v_iflag & VI_DOOMED) { 12156 if (error == 0) 12157 vput(pvp); 12158 error = ENOENT; 12159 } 12160 if (error != 0) 12161 return (error); 12162 } 12163 /* 12164 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12165 * that are contained in direct blocks will be resolved by 12166 * doing a ffs_update. Pagedeps contained in indirect blocks 12167 * may require a complete sync'ing of the directory. So, we 12168 * try the cheap and fast ffs_update first, and if that fails, 12169 * then we do the slower ffs_syncvnode of the directory. 12170 */ 12171 if (flushparent) { 12172 int locked; 12173 12174 if ((error = ffs_update(pvp, 1)) != 0) { 12175 vput(pvp); 12176 return (error); 12177 } 12178 ACQUIRE_LOCK(ump); 12179 locked = 1; 12180 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12181 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12182 if (wk->wk_type != D_DIRADD) 12183 panic("softdep_fsync: Unexpected type %s", 12184 TYPENAME(wk->wk_type)); 12185 dap = WK_DIRADD(wk); 12186 if (dap->da_state & DIRCHG) 12187 pagedep = dap->da_previous->dm_pagedep; 12188 else 12189 pagedep = dap->da_pagedep; 12190 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12191 FREE_LOCK(ump); 12192 locked = 0; 12193 if (pagedep_new_block && (error = 12194 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12195 vput(pvp); 12196 return (error); 12197 } 12198 } 12199 } 12200 if (locked) 12201 FREE_LOCK(ump); 12202 } 12203 /* 12204 * Flush directory page containing the inode's name. 12205 */ 12206 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12207 &bp); 12208 if (error == 0) 12209 error = bwrite(bp); 12210 else 12211 brelse(bp); 12212 vput(pvp); 12213 if (error != 0) 12214 return (error); 12215 ACQUIRE_LOCK(ump); 12216 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12217 break; 12218 } 12219 FREE_LOCK(ump); 12220 return (0); 12221 } 12222 12223 /* 12224 * Flush all the dirty bitmaps associated with the block device 12225 * before flushing the rest of the dirty blocks so as to reduce 12226 * the number of dependencies that will have to be rolled back. 12227 * 12228 * XXX Unused? 12229 */ 12230 void 12231 softdep_fsync_mountdev(vp) 12232 struct vnode *vp; 12233 { 12234 struct buf *bp, *nbp; 12235 struct worklist *wk; 12236 struct bufobj *bo; 12237 12238 if (!vn_isdisk(vp, NULL)) 12239 panic("softdep_fsync_mountdev: vnode not a disk"); 12240 bo = &vp->v_bufobj; 12241 restart: 12242 BO_LOCK(bo); 12243 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12244 /* 12245 * If it is already scheduled, skip to the next buffer. 12246 */ 12247 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12248 continue; 12249 12250 if ((bp->b_flags & B_DELWRI) == 0) 12251 panic("softdep_fsync_mountdev: not dirty"); 12252 /* 12253 * We are only interested in bitmaps with outstanding 12254 * dependencies. 12255 */ 12256 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12257 wk->wk_type != D_BMSAFEMAP || 12258 (bp->b_vflags & BV_BKGRDINPROG)) { 12259 BUF_UNLOCK(bp); 12260 continue; 12261 } 12262 BO_UNLOCK(bo); 12263 bremfree(bp); 12264 (void) bawrite(bp); 12265 goto restart; 12266 } 12267 drain_output(vp); 12268 BO_UNLOCK(bo); 12269 } 12270 12271 /* 12272 * Sync all cylinder groups that were dirty at the time this function is 12273 * called. Newly dirtied cgs will be inserted before the sentinel. This 12274 * is used to flush freedep activity that may be holding up writes to a 12275 * indirect block. 12276 */ 12277 static int 12278 sync_cgs(mp, waitfor) 12279 struct mount *mp; 12280 int waitfor; 12281 { 12282 struct bmsafemap *bmsafemap; 12283 struct bmsafemap *sentinel; 12284 struct ufsmount *ump; 12285 struct buf *bp; 12286 int error; 12287 12288 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12289 sentinel->sm_cg = -1; 12290 ump = VFSTOUFS(mp); 12291 error = 0; 12292 ACQUIRE_LOCK(ump); 12293 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12294 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12295 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12296 /* Skip sentinels and cgs with no work to release. */ 12297 if (bmsafemap->sm_cg == -1 || 12298 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12299 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12300 LIST_REMOVE(sentinel, sm_next); 12301 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12302 continue; 12303 } 12304 /* 12305 * If we don't get the lock and we're waiting try again, if 12306 * not move on to the next buf and try to sync it. 12307 */ 12308 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12309 if (bp == NULL && waitfor == MNT_WAIT) 12310 continue; 12311 LIST_REMOVE(sentinel, sm_next); 12312 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12313 if (bp == NULL) 12314 continue; 12315 FREE_LOCK(ump); 12316 if (waitfor == MNT_NOWAIT) 12317 bawrite(bp); 12318 else 12319 error = bwrite(bp); 12320 ACQUIRE_LOCK(ump); 12321 if (error) 12322 break; 12323 } 12324 LIST_REMOVE(sentinel, sm_next); 12325 FREE_LOCK(ump); 12326 free(sentinel, M_BMSAFEMAP); 12327 return (error); 12328 } 12329 12330 /* 12331 * This routine is called when we are trying to synchronously flush a 12332 * file. This routine must eliminate any filesystem metadata dependencies 12333 * so that the syncing routine can succeed. 12334 */ 12335 int 12336 softdep_sync_metadata(struct vnode *vp) 12337 { 12338 struct inode *ip; 12339 int error; 12340 12341 ip = VTOI(vp); 12342 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 12343 ("softdep_sync_metadata called on non-softdep filesystem")); 12344 /* 12345 * Ensure that any direct block dependencies have been cleared, 12346 * truncations are started, and inode references are journaled. 12347 */ 12348 ACQUIRE_LOCK(ip->i_ump); 12349 /* 12350 * Write all journal records to prevent rollbacks on devvp. 12351 */ 12352 if (vp->v_type == VCHR) 12353 softdep_flushjournal(vp->v_mount); 12354 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12355 /* 12356 * Ensure that all truncates are written so we won't find deps on 12357 * indirect blocks. 12358 */ 12359 process_truncates(vp); 12360 FREE_LOCK(ip->i_ump); 12361 12362 return (error); 12363 } 12364 12365 /* 12366 * This routine is called when we are attempting to sync a buf with 12367 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12368 * other IO it can but returns EBUSY if the buffer is not yet able to 12369 * be written. Dependencies which will not cause rollbacks will always 12370 * return 0. 12371 */ 12372 int 12373 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12374 { 12375 struct indirdep *indirdep; 12376 struct pagedep *pagedep; 12377 struct allocindir *aip; 12378 struct newblk *newblk; 12379 struct ufsmount *ump; 12380 struct buf *nbp; 12381 struct worklist *wk; 12382 int i, error; 12383 12384 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12385 ("softdep_sync_buf called on non-softdep filesystem")); 12386 /* 12387 * For VCHR we just don't want to force flush any dependencies that 12388 * will cause rollbacks. 12389 */ 12390 if (vp->v_type == VCHR) { 12391 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12392 return (EBUSY); 12393 return (0); 12394 } 12395 ump = VTOI(vp)->i_ump; 12396 ACQUIRE_LOCK(ump); 12397 /* 12398 * As we hold the buffer locked, none of its dependencies 12399 * will disappear. 12400 */ 12401 error = 0; 12402 top: 12403 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12404 switch (wk->wk_type) { 12405 12406 case D_ALLOCDIRECT: 12407 case D_ALLOCINDIR: 12408 newblk = WK_NEWBLK(wk); 12409 if (newblk->nb_jnewblk != NULL) { 12410 if (waitfor == MNT_NOWAIT) { 12411 error = EBUSY; 12412 goto out_unlock; 12413 } 12414 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12415 goto top; 12416 } 12417 if (newblk->nb_state & DEPCOMPLETE || 12418 waitfor == MNT_NOWAIT) 12419 continue; 12420 nbp = newblk->nb_bmsafemap->sm_buf; 12421 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12422 if (nbp == NULL) 12423 goto top; 12424 FREE_LOCK(ump); 12425 if ((error = bwrite(nbp)) != 0) 12426 goto out; 12427 ACQUIRE_LOCK(ump); 12428 continue; 12429 12430 case D_INDIRDEP: 12431 indirdep = WK_INDIRDEP(wk); 12432 if (waitfor == MNT_NOWAIT) { 12433 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12434 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12435 error = EBUSY; 12436 goto out_unlock; 12437 } 12438 } 12439 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12440 panic("softdep_sync_buf: truncation pending."); 12441 restart: 12442 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12443 newblk = (struct newblk *)aip; 12444 if (newblk->nb_jnewblk != NULL) { 12445 jwait(&newblk->nb_jnewblk->jn_list, 12446 waitfor); 12447 goto restart; 12448 } 12449 if (newblk->nb_state & DEPCOMPLETE) 12450 continue; 12451 nbp = newblk->nb_bmsafemap->sm_buf; 12452 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12453 if (nbp == NULL) 12454 goto restart; 12455 FREE_LOCK(ump); 12456 if ((error = bwrite(nbp)) != 0) 12457 goto out; 12458 ACQUIRE_LOCK(ump); 12459 goto restart; 12460 } 12461 continue; 12462 12463 case D_PAGEDEP: 12464 /* 12465 * Only flush directory entries in synchronous passes. 12466 */ 12467 if (waitfor != MNT_WAIT) { 12468 error = EBUSY; 12469 goto out_unlock; 12470 } 12471 /* 12472 * While syncing snapshots, we must allow recursive 12473 * lookups. 12474 */ 12475 BUF_AREC(bp); 12476 /* 12477 * We are trying to sync a directory that may 12478 * have dependencies on both its own metadata 12479 * and/or dependencies on the inodes of any 12480 * recently allocated files. We walk its diradd 12481 * lists pushing out the associated inode. 12482 */ 12483 pagedep = WK_PAGEDEP(wk); 12484 for (i = 0; i < DAHASHSZ; i++) { 12485 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12486 continue; 12487 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12488 &pagedep->pd_diraddhd[i]))) { 12489 BUF_NOREC(bp); 12490 goto out_unlock; 12491 } 12492 } 12493 BUF_NOREC(bp); 12494 continue; 12495 12496 case D_FREEWORK: 12497 case D_FREEDEP: 12498 case D_JSEGDEP: 12499 case D_JNEWBLK: 12500 continue; 12501 12502 default: 12503 panic("softdep_sync_buf: Unknown type %s", 12504 TYPENAME(wk->wk_type)); 12505 /* NOTREACHED */ 12506 } 12507 } 12508 out_unlock: 12509 FREE_LOCK(ump); 12510 out: 12511 return (error); 12512 } 12513 12514 /* 12515 * Flush the dependencies associated with an inodedep. 12516 * Called with splbio blocked. 12517 */ 12518 static int 12519 flush_inodedep_deps(vp, mp, ino) 12520 struct vnode *vp; 12521 struct mount *mp; 12522 ino_t ino; 12523 { 12524 struct inodedep *inodedep; 12525 struct inoref *inoref; 12526 struct ufsmount *ump; 12527 int error, waitfor; 12528 12529 /* 12530 * This work is done in two passes. The first pass grabs most 12531 * of the buffers and begins asynchronously writing them. The 12532 * only way to wait for these asynchronous writes is to sleep 12533 * on the filesystem vnode which may stay busy for a long time 12534 * if the filesystem is active. So, instead, we make a second 12535 * pass over the dependencies blocking on each write. In the 12536 * usual case we will be blocking against a write that we 12537 * initiated, so when it is done the dependency will have been 12538 * resolved. Thus the second pass is expected to end quickly. 12539 * We give a brief window at the top of the loop to allow 12540 * any pending I/O to complete. 12541 */ 12542 ump = VFSTOUFS(mp); 12543 LOCK_OWNED(ump); 12544 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12545 if (error) 12546 return (error); 12547 FREE_LOCK(ump); 12548 ACQUIRE_LOCK(ump); 12549 restart: 12550 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12551 return (0); 12552 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12553 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12554 == DEPCOMPLETE) { 12555 jwait(&inoref->if_list, MNT_WAIT); 12556 goto restart; 12557 } 12558 } 12559 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12560 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12561 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12562 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12563 continue; 12564 /* 12565 * If pass2, we are done, otherwise do pass 2. 12566 */ 12567 if (waitfor == MNT_WAIT) 12568 break; 12569 waitfor = MNT_WAIT; 12570 } 12571 /* 12572 * Try freeing inodedep in case all dependencies have been removed. 12573 */ 12574 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12575 (void) free_inodedep(inodedep); 12576 return (0); 12577 } 12578 12579 /* 12580 * Flush an inode dependency list. 12581 * Called with splbio blocked. 12582 */ 12583 static int 12584 flush_deplist(listhead, waitfor, errorp) 12585 struct allocdirectlst *listhead; 12586 int waitfor; 12587 int *errorp; 12588 { 12589 struct allocdirect *adp; 12590 struct newblk *newblk; 12591 struct ufsmount *ump; 12592 struct buf *bp; 12593 12594 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12595 return (0); 12596 ump = VFSTOUFS(adp->ad_list.wk_mp); 12597 LOCK_OWNED(ump); 12598 TAILQ_FOREACH(adp, listhead, ad_next) { 12599 newblk = (struct newblk *)adp; 12600 if (newblk->nb_jnewblk != NULL) { 12601 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12602 return (1); 12603 } 12604 if (newblk->nb_state & DEPCOMPLETE) 12605 continue; 12606 bp = newblk->nb_bmsafemap->sm_buf; 12607 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12608 if (bp == NULL) { 12609 if (waitfor == MNT_NOWAIT) 12610 continue; 12611 return (1); 12612 } 12613 FREE_LOCK(ump); 12614 if (waitfor == MNT_NOWAIT) 12615 bawrite(bp); 12616 else 12617 *errorp = bwrite(bp); 12618 ACQUIRE_LOCK(ump); 12619 return (1); 12620 } 12621 return (0); 12622 } 12623 12624 /* 12625 * Flush dependencies associated with an allocdirect block. 12626 */ 12627 static int 12628 flush_newblk_dep(vp, mp, lbn) 12629 struct vnode *vp; 12630 struct mount *mp; 12631 ufs_lbn_t lbn; 12632 { 12633 struct newblk *newblk; 12634 struct ufsmount *ump; 12635 struct bufobj *bo; 12636 struct inode *ip; 12637 struct buf *bp; 12638 ufs2_daddr_t blkno; 12639 int error; 12640 12641 error = 0; 12642 bo = &vp->v_bufobj; 12643 ip = VTOI(vp); 12644 blkno = DIP(ip, i_db[lbn]); 12645 if (blkno == 0) 12646 panic("flush_newblk_dep: Missing block"); 12647 ump = VFSTOUFS(mp); 12648 ACQUIRE_LOCK(ump); 12649 /* 12650 * Loop until all dependencies related to this block are satisfied. 12651 * We must be careful to restart after each sleep in case a write 12652 * completes some part of this process for us. 12653 */ 12654 for (;;) { 12655 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12656 FREE_LOCK(ump); 12657 break; 12658 } 12659 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12660 panic("flush_newblk_deps: Bad newblk %p", newblk); 12661 /* 12662 * Flush the journal. 12663 */ 12664 if (newblk->nb_jnewblk != NULL) { 12665 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12666 continue; 12667 } 12668 /* 12669 * Write the bitmap dependency. 12670 */ 12671 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12672 bp = newblk->nb_bmsafemap->sm_buf; 12673 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12674 if (bp == NULL) 12675 continue; 12676 FREE_LOCK(ump); 12677 error = bwrite(bp); 12678 if (error) 12679 break; 12680 ACQUIRE_LOCK(ump); 12681 continue; 12682 } 12683 /* 12684 * Write the buffer. 12685 */ 12686 FREE_LOCK(ump); 12687 BO_LOCK(bo); 12688 bp = gbincore(bo, lbn); 12689 if (bp != NULL) { 12690 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12691 LK_INTERLOCK, BO_LOCKPTR(bo)); 12692 if (error == ENOLCK) { 12693 ACQUIRE_LOCK(ump); 12694 continue; /* Slept, retry */ 12695 } 12696 if (error != 0) 12697 break; /* Failed */ 12698 if (bp->b_flags & B_DELWRI) { 12699 bremfree(bp); 12700 error = bwrite(bp); 12701 if (error) 12702 break; 12703 } else 12704 BUF_UNLOCK(bp); 12705 } else 12706 BO_UNLOCK(bo); 12707 /* 12708 * We have to wait for the direct pointers to 12709 * point at the newdirblk before the dependency 12710 * will go away. 12711 */ 12712 error = ffs_update(vp, 1); 12713 if (error) 12714 break; 12715 ACQUIRE_LOCK(ump); 12716 } 12717 return (error); 12718 } 12719 12720 /* 12721 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 12722 * Called with splbio blocked. 12723 */ 12724 static int 12725 flush_pagedep_deps(pvp, mp, diraddhdp) 12726 struct vnode *pvp; 12727 struct mount *mp; 12728 struct diraddhd *diraddhdp; 12729 { 12730 struct inodedep *inodedep; 12731 struct inoref *inoref; 12732 struct ufsmount *ump; 12733 struct diradd *dap; 12734 struct vnode *vp; 12735 int error = 0; 12736 struct buf *bp; 12737 ino_t inum; 12738 struct diraddhd unfinished; 12739 12740 LIST_INIT(&unfinished); 12741 ump = VFSTOUFS(mp); 12742 LOCK_OWNED(ump); 12743 restart: 12744 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 12745 /* 12746 * Flush ourselves if this directory entry 12747 * has a MKDIR_PARENT dependency. 12748 */ 12749 if (dap->da_state & MKDIR_PARENT) { 12750 FREE_LOCK(ump); 12751 if ((error = ffs_update(pvp, 1)) != 0) 12752 break; 12753 ACQUIRE_LOCK(ump); 12754 /* 12755 * If that cleared dependencies, go on to next. 12756 */ 12757 if (dap != LIST_FIRST(diraddhdp)) 12758 continue; 12759 /* 12760 * All MKDIR_PARENT dependencies and all the 12761 * NEWBLOCK pagedeps that are contained in direct 12762 * blocks were resolved by doing above ffs_update. 12763 * Pagedeps contained in indirect blocks may 12764 * require a complete sync'ing of the directory. 12765 * We are in the midst of doing a complete sync, 12766 * so if they are not resolved in this pass we 12767 * defer them for now as they will be sync'ed by 12768 * our caller shortly. 12769 */ 12770 LIST_REMOVE(dap, da_pdlist); 12771 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 12772 continue; 12773 } 12774 /* 12775 * A newly allocated directory must have its "." and 12776 * ".." entries written out before its name can be 12777 * committed in its parent. 12778 */ 12779 inum = dap->da_newinum; 12780 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12781 panic("flush_pagedep_deps: lost inode1"); 12782 /* 12783 * Wait for any pending journal adds to complete so we don't 12784 * cause rollbacks while syncing. 12785 */ 12786 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12787 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12788 == DEPCOMPLETE) { 12789 jwait(&inoref->if_list, MNT_WAIT); 12790 goto restart; 12791 } 12792 } 12793 if (dap->da_state & MKDIR_BODY) { 12794 FREE_LOCK(ump); 12795 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12796 FFSV_FORCEINSMQ))) 12797 break; 12798 error = flush_newblk_dep(vp, mp, 0); 12799 /* 12800 * If we still have the dependency we might need to 12801 * update the vnode to sync the new link count to 12802 * disk. 12803 */ 12804 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 12805 error = ffs_update(vp, 1); 12806 vput(vp); 12807 if (error != 0) 12808 break; 12809 ACQUIRE_LOCK(ump); 12810 /* 12811 * If that cleared dependencies, go on to next. 12812 */ 12813 if (dap != LIST_FIRST(diraddhdp)) 12814 continue; 12815 if (dap->da_state & MKDIR_BODY) { 12816 inodedep_lookup(UFSTOVFS(ump), inum, 0, 12817 &inodedep); 12818 panic("flush_pagedep_deps: MKDIR_BODY " 12819 "inodedep %p dap %p vp %p", 12820 inodedep, dap, vp); 12821 } 12822 } 12823 /* 12824 * Flush the inode on which the directory entry depends. 12825 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 12826 * the only remaining dependency is that the updated inode 12827 * count must get pushed to disk. The inode has already 12828 * been pushed into its inode buffer (via VOP_UPDATE) at 12829 * the time of the reference count change. So we need only 12830 * locate that buffer, ensure that there will be no rollback 12831 * caused by a bitmap dependency, then write the inode buffer. 12832 */ 12833 retry: 12834 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12835 panic("flush_pagedep_deps: lost inode"); 12836 /* 12837 * If the inode still has bitmap dependencies, 12838 * push them to disk. 12839 */ 12840 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 12841 bp = inodedep->id_bmsafemap->sm_buf; 12842 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12843 if (bp == NULL) 12844 goto retry; 12845 FREE_LOCK(ump); 12846 if ((error = bwrite(bp)) != 0) 12847 break; 12848 ACQUIRE_LOCK(ump); 12849 if (dap != LIST_FIRST(diraddhdp)) 12850 continue; 12851 } 12852 /* 12853 * If the inode is still sitting in a buffer waiting 12854 * to be written or waiting for the link count to be 12855 * adjusted update it here to flush it to disk. 12856 */ 12857 if (dap == LIST_FIRST(diraddhdp)) { 12858 FREE_LOCK(ump); 12859 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12860 FFSV_FORCEINSMQ))) 12861 break; 12862 error = ffs_update(vp, 1); 12863 vput(vp); 12864 if (error) 12865 break; 12866 ACQUIRE_LOCK(ump); 12867 } 12868 /* 12869 * If we have failed to get rid of all the dependencies 12870 * then something is seriously wrong. 12871 */ 12872 if (dap == LIST_FIRST(diraddhdp)) { 12873 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 12874 panic("flush_pagedep_deps: failed to flush " 12875 "inodedep %p ino %ju dap %p", 12876 inodedep, (uintmax_t)inum, dap); 12877 } 12878 } 12879 if (error) 12880 ACQUIRE_LOCK(ump); 12881 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 12882 LIST_REMOVE(dap, da_pdlist); 12883 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 12884 } 12885 return (error); 12886 } 12887 12888 /* 12889 * A large burst of file addition or deletion activity can drive the 12890 * memory load excessively high. First attempt to slow things down 12891 * using the techniques below. If that fails, this routine requests 12892 * the offending operations to fall back to running synchronously 12893 * until the memory load returns to a reasonable level. 12894 */ 12895 int 12896 softdep_slowdown(vp) 12897 struct vnode *vp; 12898 { 12899 struct ufsmount *ump; 12900 int jlow; 12901 int max_softdeps_hard; 12902 12903 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12904 ("softdep_slowdown called on non-softdep filesystem")); 12905 ump = VFSTOUFS(vp->v_mount); 12906 ACQUIRE_LOCK(ump); 12907 jlow = 0; 12908 /* 12909 * Check for journal space if needed. 12910 */ 12911 if (DOINGSUJ(vp)) { 12912 if (journal_space(ump, 0) == 0) 12913 jlow = 1; 12914 } 12915 max_softdeps_hard = max_softdeps * 11 / 10; 12916 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 12917 dep_current[D_INODEDEP] < max_softdeps_hard && 12918 VFSTOUFS(vp->v_mount)->softdep_numindirdeps < maxindirdeps && 12919 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) { 12920 FREE_LOCK(ump); 12921 return (0); 12922 } 12923 if (VFSTOUFS(vp->v_mount)->softdep_numindirdeps >= maxindirdeps || jlow) 12924 softdep_speedup(); 12925 stat_sync_limit_hit += 1; 12926 FREE_LOCK(ump); 12927 if (DOINGSUJ(vp)) 12928 return (0); 12929 return (1); 12930 } 12931 12932 /* 12933 * Called by the allocation routines when they are about to fail 12934 * in the hope that we can free up the requested resource (inodes 12935 * or disk space). 12936 * 12937 * First check to see if the work list has anything on it. If it has, 12938 * clean up entries until we successfully free the requested resource. 12939 * Because this process holds inodes locked, we cannot handle any remove 12940 * requests that might block on a locked inode as that could lead to 12941 * deadlock. If the worklist yields none of the requested resource, 12942 * start syncing out vnodes to free up the needed space. 12943 */ 12944 int 12945 softdep_request_cleanup(fs, vp, cred, resource) 12946 struct fs *fs; 12947 struct vnode *vp; 12948 struct ucred *cred; 12949 int resource; 12950 { 12951 struct ufsmount *ump; 12952 struct mount *mp; 12953 struct vnode *lvp, *mvp; 12954 long starttime; 12955 ufs2_daddr_t needed; 12956 int error; 12957 12958 /* 12959 * If we are being called because of a process doing a 12960 * copy-on-write, then it is not safe to process any 12961 * worklist items as we will recurse into the copyonwrite 12962 * routine. This will result in an incoherent snapshot. 12963 * If the vnode that we hold is a snapshot, we must avoid 12964 * handling other resources that could cause deadlock. 12965 */ 12966 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 12967 return (0); 12968 12969 if (resource == FLUSH_BLOCKS_WAIT) 12970 stat_cleanup_blkrequests += 1; 12971 else 12972 stat_cleanup_inorequests += 1; 12973 12974 mp = vp->v_mount; 12975 ump = VFSTOUFS(mp); 12976 mtx_assert(UFS_MTX(ump), MA_OWNED); 12977 UFS_UNLOCK(ump); 12978 error = ffs_update(vp, 1); 12979 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 12980 UFS_LOCK(ump); 12981 return (0); 12982 } 12983 /* 12984 * If we are in need of resources, consider pausing for 12985 * tickdelay to give ourselves some breathing room. 12986 */ 12987 ACQUIRE_LOCK(ump); 12988 process_removes(vp); 12989 process_truncates(vp); 12990 request_cleanup(UFSTOVFS(ump), resource); 12991 FREE_LOCK(ump); 12992 /* 12993 * Now clean up at least as many resources as we will need. 12994 * 12995 * When requested to clean up inodes, the number that are needed 12996 * is set by the number of simultaneous writers (mnt_writeopcount) 12997 * plus a bit of slop (2) in case some more writers show up while 12998 * we are cleaning. 12999 * 13000 * When requested to free up space, the amount of space that 13001 * we need is enough blocks to allocate a full-sized segment 13002 * (fs_contigsumsize). The number of such segments that will 13003 * be needed is set by the number of simultaneous writers 13004 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13005 * writers show up while we are cleaning. 13006 * 13007 * Additionally, if we are unpriviledged and allocating space, 13008 * we need to ensure that we clean up enough blocks to get the 13009 * needed number of blocks over the threshhold of the minimum 13010 * number of blocks required to be kept free by the filesystem 13011 * (fs_minfree). 13012 */ 13013 if (resource == FLUSH_INODES_WAIT) { 13014 needed = vp->v_mount->mnt_writeopcount + 2; 13015 } else if (resource == FLUSH_BLOCKS_WAIT) { 13016 needed = (vp->v_mount->mnt_writeopcount + 2) * 13017 fs->fs_contigsumsize; 13018 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 13019 needed += fragstoblks(fs, 13020 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13021 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13022 } else { 13023 UFS_LOCK(ump); 13024 printf("softdep_request_cleanup: Unknown resource type %d\n", 13025 resource); 13026 return (0); 13027 } 13028 starttime = time_second; 13029 retry: 13030 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13031 fs->fs_cstotal.cs_nbfree <= needed) || 13032 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13033 fs->fs_cstotal.cs_nifree <= needed)) { 13034 ACQUIRE_LOCK(ump); 13035 if (ump->softdep_on_worklist > 0 && 13036 process_worklist_item(UFSTOVFS(ump), 13037 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13038 stat_worklist_push += 1; 13039 FREE_LOCK(ump); 13040 } 13041 /* 13042 * If we still need resources and there are no more worklist 13043 * entries to process to obtain them, we have to start flushing 13044 * the dirty vnodes to force the release of additional requests 13045 * to the worklist that we can then process to reap addition 13046 * resources. We walk the vnodes associated with the mount point 13047 * until we get the needed worklist requests that we can reap. 13048 */ 13049 if ((resource == FLUSH_BLOCKS_WAIT && 13050 fs->fs_cstotal.cs_nbfree <= needed) || 13051 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13052 fs->fs_cstotal.cs_nifree <= needed)) { 13053 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13054 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13055 VI_UNLOCK(lvp); 13056 continue; 13057 } 13058 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13059 curthread)) 13060 continue; 13061 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13062 vput(lvp); 13063 continue; 13064 } 13065 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13066 vput(lvp); 13067 } 13068 lvp = ump->um_devvp; 13069 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13070 VOP_FSYNC(lvp, MNT_NOWAIT, curthread); 13071 VOP_UNLOCK(lvp, 0); 13072 } 13073 if (ump->softdep_on_worklist > 0) { 13074 stat_cleanup_retries += 1; 13075 goto retry; 13076 } 13077 stat_cleanup_failures += 1; 13078 } 13079 if (time_second - starttime > stat_cleanup_high_delay) 13080 stat_cleanup_high_delay = time_second - starttime; 13081 UFS_LOCK(ump); 13082 return (1); 13083 } 13084 13085 /* 13086 * If memory utilization has gotten too high, deliberately slow things 13087 * down and speed up the I/O processing. 13088 */ 13089 static int 13090 request_cleanup(mp, resource) 13091 struct mount *mp; 13092 int resource; 13093 { 13094 struct thread *td = curthread; 13095 struct ufsmount *ump; 13096 13097 ump = VFSTOUFS(mp); 13098 LOCK_OWNED(ump); 13099 /* 13100 * We never hold up the filesystem syncer or buf daemon. 13101 */ 13102 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13103 return (0); 13104 /* 13105 * First check to see if the work list has gotten backlogged. 13106 * If it has, co-opt this process to help clean up two entries. 13107 * Because this process may hold inodes locked, we cannot 13108 * handle any remove requests that might block on a locked 13109 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13110 * to avoid recursively processing the worklist. 13111 */ 13112 if (ump->softdep_on_worklist > max_softdeps / 10) { 13113 td->td_pflags |= TDP_SOFTDEP; 13114 process_worklist_item(mp, 2, LK_NOWAIT); 13115 td->td_pflags &= ~TDP_SOFTDEP; 13116 stat_worklist_push += 2; 13117 return(1); 13118 } 13119 /* 13120 * Next, we attempt to speed up the syncer process. If that 13121 * is successful, then we allow the process to continue. 13122 */ 13123 if (softdep_speedup() && 13124 resource != FLUSH_BLOCKS_WAIT && 13125 resource != FLUSH_INODES_WAIT) 13126 return(0); 13127 /* 13128 * If we are resource constrained on inode dependencies, try 13129 * flushing some dirty inodes. Otherwise, we are constrained 13130 * by file deletions, so try accelerating flushes of directories 13131 * with removal dependencies. We would like to do the cleanup 13132 * here, but we probably hold an inode locked at this point and 13133 * that might deadlock against one that we try to clean. So, 13134 * the best that we can do is request the syncer daemon to do 13135 * the cleanup for us. 13136 */ 13137 switch (resource) { 13138 13139 case FLUSH_INODES: 13140 case FLUSH_INODES_WAIT: 13141 stat_ino_limit_push += 1; 13142 req_clear_inodedeps += 1; 13143 stat_countp = &stat_ino_limit_hit; 13144 break; 13145 13146 case FLUSH_BLOCKS: 13147 case FLUSH_BLOCKS_WAIT: 13148 stat_blk_limit_push += 1; 13149 req_clear_remove += 1; 13150 stat_countp = &stat_blk_limit_hit; 13151 break; 13152 13153 default: 13154 panic("request_cleanup: unknown type"); 13155 } 13156 /* 13157 * Hopefully the syncer daemon will catch up and awaken us. 13158 * We wait at most tickdelay before proceeding in any case. 13159 */ 13160 proc_waiting += 1; 13161 if (callout_pending(&softdep_callout) == FALSE) 13162 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13163 pause_timer, 0); 13164 13165 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13166 proc_waiting -= 1; 13167 return (1); 13168 } 13169 13170 /* 13171 * Awaken processes pausing in request_cleanup and clear proc_waiting 13172 * to indicate that there is no longer a timer running. Pause_timer 13173 * will be called with the global softdep mutex (&lk) locked. 13174 */ 13175 static void 13176 pause_timer(arg) 13177 void *arg; 13178 { 13179 13180 rw_assert(&lk, RA_WLOCKED); 13181 /* 13182 * The callout_ API has acquired mtx and will hold it around this 13183 * function call. 13184 */ 13185 *stat_countp += 1; 13186 wakeup_one(&proc_waiting); 13187 if (proc_waiting > 0) 13188 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13189 pause_timer, 0); 13190 } 13191 13192 /* 13193 * If requested, try removing inode or removal dependencies. 13194 */ 13195 static void 13196 check_clear_deps(mp) 13197 struct mount *mp; 13198 { 13199 13200 rw_assert(&lk, RA_WLOCKED); 13201 /* 13202 * If we are suspended, it may be because of our using 13203 * too many inodedeps, so help clear them out. 13204 */ 13205 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13206 clear_inodedeps(mp); 13207 /* 13208 * General requests for cleanup of backed up dependencies 13209 */ 13210 if (req_clear_inodedeps) { 13211 req_clear_inodedeps -= 1; 13212 clear_inodedeps(mp); 13213 wakeup_one(&proc_waiting); 13214 } 13215 if (req_clear_remove) { 13216 req_clear_remove -= 1; 13217 clear_remove(mp); 13218 wakeup_one(&proc_waiting); 13219 } 13220 } 13221 13222 /* 13223 * Flush out a directory with at least one removal dependency in an effort to 13224 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13225 */ 13226 static void 13227 clear_remove(mp) 13228 struct mount *mp; 13229 { 13230 struct pagedep_hashhead *pagedephd; 13231 struct pagedep *pagedep; 13232 struct ufsmount *ump; 13233 struct vnode *vp; 13234 struct bufobj *bo; 13235 int error, cnt; 13236 ino_t ino; 13237 13238 ump = VFSTOUFS(mp); 13239 LOCK_OWNED(ump); 13240 13241 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13242 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13243 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13244 ump->pagedep_nextclean = 0; 13245 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13246 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13247 continue; 13248 ino = pagedep->pd_ino; 13249 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13250 continue; 13251 FREE_LOCK(ump); 13252 13253 /* 13254 * Let unmount clear deps 13255 */ 13256 error = vfs_busy(mp, MBF_NOWAIT); 13257 if (error != 0) 13258 goto finish_write; 13259 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13260 FFSV_FORCEINSMQ); 13261 vfs_unbusy(mp); 13262 if (error != 0) { 13263 softdep_error("clear_remove: vget", error); 13264 goto finish_write; 13265 } 13266 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13267 softdep_error("clear_remove: fsync", error); 13268 bo = &vp->v_bufobj; 13269 BO_LOCK(bo); 13270 drain_output(vp); 13271 BO_UNLOCK(bo); 13272 vput(vp); 13273 finish_write: 13274 vn_finished_write(mp); 13275 ACQUIRE_LOCK(ump); 13276 return; 13277 } 13278 } 13279 } 13280 13281 /* 13282 * Clear out a block of dirty inodes in an effort to reduce 13283 * the number of inodedep dependency structures. 13284 */ 13285 static void 13286 clear_inodedeps(mp) 13287 struct mount *mp; 13288 { 13289 struct inodedep_hashhead *inodedephd; 13290 struct inodedep *inodedep; 13291 struct ufsmount *ump; 13292 struct vnode *vp; 13293 struct fs *fs; 13294 int error, cnt; 13295 ino_t firstino, lastino, ino; 13296 13297 ump = VFSTOUFS(mp); 13298 fs = ump->um_fs; 13299 LOCK_OWNED(ump); 13300 /* 13301 * Pick a random inode dependency to be cleared. 13302 * We will then gather up all the inodes in its block 13303 * that have dependencies and flush them out. 13304 */ 13305 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13306 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13307 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13308 ump->inodedep_nextclean = 0; 13309 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13310 break; 13311 } 13312 if (inodedep == NULL) 13313 return; 13314 /* 13315 * Find the last inode in the block with dependencies. 13316 */ 13317 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 13318 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13319 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13320 break; 13321 /* 13322 * Asynchronously push all but the last inode with dependencies. 13323 * Synchronously push the last inode with dependencies to ensure 13324 * that the inode block gets written to free up the inodedeps. 13325 */ 13326 for (ino = firstino; ino <= lastino; ino++) { 13327 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13328 continue; 13329 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13330 continue; 13331 FREE_LOCK(ump); 13332 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13333 if (error != 0) { 13334 vn_finished_write(mp); 13335 ACQUIRE_LOCK(ump); 13336 return; 13337 } 13338 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13339 FFSV_FORCEINSMQ)) != 0) { 13340 softdep_error("clear_inodedeps: vget", error); 13341 vfs_unbusy(mp); 13342 vn_finished_write(mp); 13343 ACQUIRE_LOCK(ump); 13344 return; 13345 } 13346 vfs_unbusy(mp); 13347 if (ino == lastino) { 13348 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13349 softdep_error("clear_inodedeps: fsync1", error); 13350 } else { 13351 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13352 softdep_error("clear_inodedeps: fsync2", error); 13353 BO_LOCK(&vp->v_bufobj); 13354 drain_output(vp); 13355 BO_UNLOCK(&vp->v_bufobj); 13356 } 13357 vput(vp); 13358 vn_finished_write(mp); 13359 ACQUIRE_LOCK(ump); 13360 } 13361 } 13362 13363 void 13364 softdep_buf_append(bp, wkhd) 13365 struct buf *bp; 13366 struct workhead *wkhd; 13367 { 13368 struct worklist *wk; 13369 struct ufsmount *ump; 13370 13371 if ((wk = LIST_FIRST(wkhd)) == NULL) 13372 return; 13373 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13374 ("softdep_buf_append called on non-softdep filesystem")); 13375 ump = VFSTOUFS(wk->wk_mp); 13376 ACQUIRE_LOCK(ump); 13377 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13378 WORKLIST_REMOVE(wk); 13379 WORKLIST_INSERT(&bp->b_dep, wk); 13380 } 13381 FREE_LOCK(ump); 13382 13383 } 13384 13385 void 13386 softdep_inode_append(ip, cred, wkhd) 13387 struct inode *ip; 13388 struct ucred *cred; 13389 struct workhead *wkhd; 13390 { 13391 struct buf *bp; 13392 struct fs *fs; 13393 int error; 13394 13395 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 13396 ("softdep_inode_append called on non-softdep filesystem")); 13397 fs = ip->i_fs; 13398 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13399 (int)fs->fs_bsize, cred, &bp); 13400 if (error) { 13401 bqrelse(bp); 13402 softdep_freework(wkhd); 13403 return; 13404 } 13405 softdep_buf_append(bp, wkhd); 13406 bqrelse(bp); 13407 } 13408 13409 void 13410 softdep_freework(wkhd) 13411 struct workhead *wkhd; 13412 { 13413 struct worklist *wk; 13414 struct ufsmount *ump; 13415 13416 if ((wk = LIST_FIRST(wkhd)) == NULL) 13417 return; 13418 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13419 ("softdep_freework called on non-softdep filesystem")); 13420 ump = VFSTOUFS(wk->wk_mp); 13421 ACQUIRE_LOCK(ump); 13422 handle_jwork(wkhd); 13423 FREE_LOCK(ump); 13424 } 13425 13426 /* 13427 * Function to determine if the buffer has outstanding dependencies 13428 * that will cause a roll-back if the buffer is written. If wantcount 13429 * is set, return number of dependencies, otherwise just yes or no. 13430 */ 13431 static int 13432 softdep_count_dependencies(bp, wantcount) 13433 struct buf *bp; 13434 int wantcount; 13435 { 13436 struct worklist *wk; 13437 struct ufsmount *ump; 13438 struct bmsafemap *bmsafemap; 13439 struct freework *freework; 13440 struct inodedep *inodedep; 13441 struct indirdep *indirdep; 13442 struct freeblks *freeblks; 13443 struct allocindir *aip; 13444 struct pagedep *pagedep; 13445 struct dirrem *dirrem; 13446 struct newblk *newblk; 13447 struct mkdir *mkdir; 13448 struct diradd *dap; 13449 int i, retval; 13450 13451 retval = 0; 13452 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 13453 return (0); 13454 ump = VFSTOUFS(wk->wk_mp); 13455 ACQUIRE_LOCK(ump); 13456 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13457 switch (wk->wk_type) { 13458 13459 case D_INODEDEP: 13460 inodedep = WK_INODEDEP(wk); 13461 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13462 /* bitmap allocation dependency */ 13463 retval += 1; 13464 if (!wantcount) 13465 goto out; 13466 } 13467 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13468 /* direct block pointer dependency */ 13469 retval += 1; 13470 if (!wantcount) 13471 goto out; 13472 } 13473 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13474 /* direct block pointer dependency */ 13475 retval += 1; 13476 if (!wantcount) 13477 goto out; 13478 } 13479 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13480 /* Add reference dependency. */ 13481 retval += 1; 13482 if (!wantcount) 13483 goto out; 13484 } 13485 continue; 13486 13487 case D_INDIRDEP: 13488 indirdep = WK_INDIRDEP(wk); 13489 13490 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13491 /* indirect truncation dependency */ 13492 retval += 1; 13493 if (!wantcount) 13494 goto out; 13495 } 13496 13497 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13498 /* indirect block pointer dependency */ 13499 retval += 1; 13500 if (!wantcount) 13501 goto out; 13502 } 13503 continue; 13504 13505 case D_PAGEDEP: 13506 pagedep = WK_PAGEDEP(wk); 13507 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 13508 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 13509 /* Journal remove ref dependency. */ 13510 retval += 1; 13511 if (!wantcount) 13512 goto out; 13513 } 13514 } 13515 for (i = 0; i < DAHASHSZ; i++) { 13516 13517 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 13518 /* directory entry dependency */ 13519 retval += 1; 13520 if (!wantcount) 13521 goto out; 13522 } 13523 } 13524 continue; 13525 13526 case D_BMSAFEMAP: 13527 bmsafemap = WK_BMSAFEMAP(wk); 13528 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 13529 /* Add reference dependency. */ 13530 retval += 1; 13531 if (!wantcount) 13532 goto out; 13533 } 13534 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 13535 /* Allocate block dependency. */ 13536 retval += 1; 13537 if (!wantcount) 13538 goto out; 13539 } 13540 continue; 13541 13542 case D_FREEBLKS: 13543 freeblks = WK_FREEBLKS(wk); 13544 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 13545 /* Freeblk journal dependency. */ 13546 retval += 1; 13547 if (!wantcount) 13548 goto out; 13549 } 13550 continue; 13551 13552 case D_ALLOCDIRECT: 13553 case D_ALLOCINDIR: 13554 newblk = WK_NEWBLK(wk); 13555 if (newblk->nb_jnewblk) { 13556 /* Journal allocate dependency. */ 13557 retval += 1; 13558 if (!wantcount) 13559 goto out; 13560 } 13561 continue; 13562 13563 case D_MKDIR: 13564 mkdir = WK_MKDIR(wk); 13565 if (mkdir->md_jaddref) { 13566 /* Journal reference dependency. */ 13567 retval += 1; 13568 if (!wantcount) 13569 goto out; 13570 } 13571 continue; 13572 13573 case D_FREEWORK: 13574 case D_FREEDEP: 13575 case D_JSEGDEP: 13576 case D_JSEG: 13577 case D_SBDEP: 13578 /* never a dependency on these blocks */ 13579 continue; 13580 13581 default: 13582 panic("softdep_count_dependencies: Unexpected type %s", 13583 TYPENAME(wk->wk_type)); 13584 /* NOTREACHED */ 13585 } 13586 } 13587 out: 13588 FREE_LOCK(ump); 13589 return retval; 13590 } 13591 13592 /* 13593 * Acquire exclusive access to a buffer. 13594 * Must be called with a locked mtx parameter. 13595 * Return acquired buffer or NULL on failure. 13596 */ 13597 static struct buf * 13598 getdirtybuf(bp, lock, waitfor) 13599 struct buf *bp; 13600 struct rwlock *lock; 13601 int waitfor; 13602 { 13603 int error; 13604 13605 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 13606 if (waitfor != MNT_WAIT) 13607 return (NULL); 13608 error = BUF_LOCK(bp, 13609 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 13610 /* 13611 * Even if we sucessfully acquire bp here, we have dropped 13612 * lock, which may violates our guarantee. 13613 */ 13614 if (error == 0) 13615 BUF_UNLOCK(bp); 13616 else if (error != ENOLCK) 13617 panic("getdirtybuf: inconsistent lock: %d", error); 13618 rw_wlock(lock); 13619 return (NULL); 13620 } 13621 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13622 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 13623 rw_wunlock(lock); 13624 BO_LOCK(bp->b_bufobj); 13625 BUF_UNLOCK(bp); 13626 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13627 bp->b_vflags |= BV_BKGRDWAIT; 13628 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 13629 PRIBIO | PDROP, "getbuf", 0); 13630 } else 13631 BO_UNLOCK(bp->b_bufobj); 13632 rw_wlock(lock); 13633 return (NULL); 13634 } 13635 BUF_UNLOCK(bp); 13636 if (waitfor != MNT_WAIT) 13637 return (NULL); 13638 /* 13639 * The lock argument must be bp->b_vp's mutex in 13640 * this case. 13641 */ 13642 #ifdef DEBUG_VFS_LOCKS 13643 if (bp->b_vp->v_type != VCHR) 13644 ASSERT_BO_WLOCKED(bp->b_bufobj); 13645 #endif 13646 bp->b_vflags |= BV_BKGRDWAIT; 13647 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 13648 return (NULL); 13649 } 13650 if ((bp->b_flags & B_DELWRI) == 0) { 13651 BUF_UNLOCK(bp); 13652 return (NULL); 13653 } 13654 bremfree(bp); 13655 return (bp); 13656 } 13657 13658 13659 /* 13660 * Check if it is safe to suspend the file system now. On entry, 13661 * the vnode interlock for devvp should be held. Return 0 with 13662 * the mount interlock held if the file system can be suspended now, 13663 * otherwise return EAGAIN with the mount interlock held. 13664 */ 13665 int 13666 softdep_check_suspend(struct mount *mp, 13667 struct vnode *devvp, 13668 int softdep_depcnt, 13669 int softdep_accdepcnt, 13670 int secondary_writes, 13671 int secondary_accwrites) 13672 { 13673 struct bufobj *bo; 13674 struct ufsmount *ump; 13675 int error; 13676 13677 bo = &devvp->v_bufobj; 13678 ASSERT_BO_WLOCKED(bo); 13679 13680 /* 13681 * If we are not running with soft updates, then we need only 13682 * deal with secondary writes as we try to suspend. 13683 */ 13684 if (MOUNTEDSOFTDEP(mp) == 0) { 13685 MNT_ILOCK(mp); 13686 while (mp->mnt_secondary_writes != 0) { 13687 BO_UNLOCK(bo); 13688 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 13689 (PUSER - 1) | PDROP, "secwr", 0); 13690 BO_LOCK(bo); 13691 MNT_ILOCK(mp); 13692 } 13693 13694 /* 13695 * Reasons for needing more work before suspend: 13696 * - Dirty buffers on devvp. 13697 * - Secondary writes occurred after start of vnode sync loop 13698 */ 13699 error = 0; 13700 if (bo->bo_numoutput > 0 || 13701 bo->bo_dirty.bv_cnt > 0 || 13702 secondary_writes != 0 || 13703 mp->mnt_secondary_writes != 0 || 13704 secondary_accwrites != mp->mnt_secondary_accwrites) 13705 error = EAGAIN; 13706 BO_UNLOCK(bo); 13707 return (error); 13708 } 13709 13710 /* 13711 * If we are running with soft updates, then we need to coordinate 13712 * with them as we try to suspend. 13713 */ 13714 ump = VFSTOUFS(mp); 13715 for (;;) { 13716 if (!TRY_ACQUIRE_LOCK(ump)) { 13717 BO_UNLOCK(bo); 13718 ACQUIRE_LOCK(ump); 13719 FREE_LOCK(ump); 13720 BO_LOCK(bo); 13721 continue; 13722 } 13723 MNT_ILOCK(mp); 13724 if (mp->mnt_secondary_writes != 0) { 13725 FREE_LOCK(ump); 13726 BO_UNLOCK(bo); 13727 msleep(&mp->mnt_secondary_writes, 13728 MNT_MTX(mp), 13729 (PUSER - 1) | PDROP, "secwr", 0); 13730 BO_LOCK(bo); 13731 continue; 13732 } 13733 break; 13734 } 13735 13736 /* 13737 * Reasons for needing more work before suspend: 13738 * - Dirty buffers on devvp. 13739 * - Softdep activity occurred after start of vnode sync loop 13740 * - Secondary writes occurred after start of vnode sync loop 13741 */ 13742 error = 0; 13743 if (bo->bo_numoutput > 0 || 13744 bo->bo_dirty.bv_cnt > 0 || 13745 softdep_depcnt != 0 || 13746 ump->softdep_deps != 0 || 13747 softdep_accdepcnt != ump->softdep_accdeps || 13748 secondary_writes != 0 || 13749 mp->mnt_secondary_writes != 0 || 13750 secondary_accwrites != mp->mnt_secondary_accwrites) 13751 error = EAGAIN; 13752 FREE_LOCK(ump); 13753 BO_UNLOCK(bo); 13754 return (error); 13755 } 13756 13757 13758 /* 13759 * Get the number of dependency structures for the file system, both 13760 * the current number and the total number allocated. These will 13761 * later be used to detect that softdep processing has occurred. 13762 */ 13763 void 13764 softdep_get_depcounts(struct mount *mp, 13765 int *softdep_depsp, 13766 int *softdep_accdepsp) 13767 { 13768 struct ufsmount *ump; 13769 13770 if (MOUNTEDSOFTDEP(mp) == 0) { 13771 *softdep_depsp = 0; 13772 *softdep_accdepsp = 0; 13773 return; 13774 } 13775 ump = VFSTOUFS(mp); 13776 ACQUIRE_LOCK(ump); 13777 *softdep_depsp = ump->softdep_deps; 13778 *softdep_accdepsp = ump->softdep_accdeps; 13779 FREE_LOCK(ump); 13780 } 13781 13782 /* 13783 * Wait for pending output on a vnode to complete. 13784 * Must be called with vnode lock and interlock locked. 13785 * 13786 * XXX: Should just be a call to bufobj_wwait(). 13787 */ 13788 static void 13789 drain_output(vp) 13790 struct vnode *vp; 13791 { 13792 struct bufobj *bo; 13793 13794 bo = &vp->v_bufobj; 13795 ASSERT_VOP_LOCKED(vp, "drain_output"); 13796 ASSERT_BO_WLOCKED(bo); 13797 13798 while (bo->bo_numoutput) { 13799 bo->bo_flag |= BO_WWAIT; 13800 msleep((caddr_t)&bo->bo_numoutput, 13801 BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0); 13802 } 13803 } 13804 13805 /* 13806 * Called whenever a buffer that is being invalidated or reallocated 13807 * contains dependencies. This should only happen if an I/O error has 13808 * occurred. The routine is called with the buffer locked. 13809 */ 13810 static void 13811 softdep_deallocate_dependencies(bp) 13812 struct buf *bp; 13813 { 13814 13815 if ((bp->b_ioflags & BIO_ERROR) == 0) 13816 panic("softdep_deallocate_dependencies: dangling deps"); 13817 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 13818 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 13819 else 13820 printf("softdep_deallocate_dependencies: " 13821 "got error %d while accessing filesystem\n", bp->b_error); 13822 if (bp->b_error != ENXIO) 13823 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 13824 } 13825 13826 /* 13827 * Function to handle asynchronous write errors in the filesystem. 13828 */ 13829 static void 13830 softdep_error(func, error) 13831 char *func; 13832 int error; 13833 { 13834 13835 /* XXX should do something better! */ 13836 printf("%s: got error %d while accessing filesystem\n", func, error); 13837 } 13838 13839 #ifdef DDB 13840 13841 static void 13842 inodedep_print(struct inodedep *inodedep, int verbose) 13843 { 13844 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d" 13845 " saveino %p\n", 13846 inodedep, inodedep->id_fs, inodedep->id_state, 13847 (intmax_t)inodedep->id_ino, 13848 (intmax_t)fsbtodb(inodedep->id_fs, 13849 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 13850 inodedep->id_nlinkdelta, inodedep->id_savednlink, 13851 inodedep->id_savedino1); 13852 13853 if (verbose == 0) 13854 return; 13855 13856 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 13857 "mkdiradd %p\n", 13858 LIST_FIRST(&inodedep->id_pendinghd), 13859 LIST_FIRST(&inodedep->id_bufwait), 13860 LIST_FIRST(&inodedep->id_inowait), 13861 TAILQ_FIRST(&inodedep->id_inoreflst), 13862 inodedep->id_mkdiradd); 13863 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 13864 TAILQ_FIRST(&inodedep->id_inoupdt), 13865 TAILQ_FIRST(&inodedep->id_newinoupdt), 13866 TAILQ_FIRST(&inodedep->id_extupdt), 13867 TAILQ_FIRST(&inodedep->id_newextupdt)); 13868 } 13869 13870 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 13871 { 13872 13873 if (have_addr == 0) { 13874 db_printf("Address required\n"); 13875 return; 13876 } 13877 inodedep_print((struct inodedep*)addr, 1); 13878 } 13879 13880 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 13881 { 13882 struct inodedep_hashhead *inodedephd; 13883 struct inodedep *inodedep; 13884 struct ufsmount *ump; 13885 int cnt; 13886 13887 if (have_addr == 0) { 13888 db_printf("Address required\n"); 13889 return; 13890 } 13891 ump = (struct ufsmount *)addr; 13892 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 13893 inodedephd = &ump->inodedep_hashtbl[cnt]; 13894 LIST_FOREACH(inodedep, inodedephd, id_hash) { 13895 inodedep_print(inodedep, 0); 13896 } 13897 } 13898 } 13899 13900 DB_SHOW_COMMAND(worklist, db_show_worklist) 13901 { 13902 struct worklist *wk; 13903 13904 if (have_addr == 0) { 13905 db_printf("Address required\n"); 13906 return; 13907 } 13908 wk = (struct worklist *)addr; 13909 printf("worklist: %p type %s state 0x%X\n", 13910 wk, TYPENAME(wk->wk_type), wk->wk_state); 13911 } 13912 13913 DB_SHOW_COMMAND(workhead, db_show_workhead) 13914 { 13915 struct workhead *wkhd; 13916 struct worklist *wk; 13917 int i; 13918 13919 if (have_addr == 0) { 13920 db_printf("Address required\n"); 13921 return; 13922 } 13923 wkhd = (struct workhead *)addr; 13924 wk = LIST_FIRST(wkhd); 13925 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 13926 db_printf("worklist: %p type %s state 0x%X", 13927 wk, TYPENAME(wk->wk_type), wk->wk_state); 13928 if (i == 100) 13929 db_printf("workhead overflow"); 13930 printf("\n"); 13931 } 13932 13933 13934 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 13935 { 13936 struct mkdirlist *mkdirlisthd; 13937 struct jaddref *jaddref; 13938 struct diradd *diradd; 13939 struct mkdir *mkdir; 13940 13941 if (have_addr == 0) { 13942 db_printf("Address required\n"); 13943 return; 13944 } 13945 mkdirlisthd = (struct mkdirlist *)addr; 13946 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 13947 diradd = mkdir->md_diradd; 13948 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 13949 mkdir, mkdir->md_state, diradd, diradd->da_state); 13950 if ((jaddref = mkdir->md_jaddref) != NULL) 13951 db_printf(" jaddref %p jaddref state 0x%X", 13952 jaddref, jaddref->ja_state); 13953 db_printf("\n"); 13954 } 13955 } 13956 13957 /* exported to ffs_vfsops.c */ 13958 extern void db_print_ffs(struct ufsmount *ump); 13959 void 13960 db_print_ffs(struct ufsmount *ump) 13961 { 13962 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 13963 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 13964 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 13965 ump->softdep_deps, ump->softdep_req); 13966 } 13967 13968 #endif /* DDB */ 13969 13970 #endif /* SOFTUPDATES */ 13971