1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 91 #include <ddb/ddb.h> 92 93 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 94 95 #ifndef SOFTUPDATES 96 97 int 98 softdep_flushfiles(oldmnt, flags, td) 99 struct mount *oldmnt; 100 int flags; 101 struct thread *td; 102 { 103 104 panic("softdep_flushfiles called"); 105 } 106 107 int 108 softdep_mount(devvp, mp, fs, cred) 109 struct vnode *devvp; 110 struct mount *mp; 111 struct fs *fs; 112 struct ucred *cred; 113 { 114 115 return (0); 116 } 117 118 void 119 softdep_initialize() 120 { 121 122 return; 123 } 124 125 void 126 softdep_uninitialize() 127 { 128 129 return; 130 } 131 132 void 133 softdep_unmount(mp) 134 struct mount *mp; 135 { 136 137 panic("softdep_unmount called"); 138 } 139 140 void 141 softdep_setup_sbupdate(ump, fs, bp) 142 struct ufsmount *ump; 143 struct fs *fs; 144 struct buf *bp; 145 { 146 147 panic("softdep_setup_sbupdate called"); 148 } 149 150 void 151 softdep_setup_inomapdep(bp, ip, newinum, mode) 152 struct buf *bp; 153 struct inode *ip; 154 ino_t newinum; 155 int mode; 156 { 157 158 panic("softdep_setup_inomapdep called"); 159 } 160 161 void 162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 163 struct buf *bp; 164 struct mount *mp; 165 ufs2_daddr_t newblkno; 166 int frags; 167 int oldfrags; 168 { 169 170 panic("softdep_setup_blkmapdep called"); 171 } 172 173 void 174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 175 struct inode *ip; 176 ufs_lbn_t lbn; 177 ufs2_daddr_t newblkno; 178 ufs2_daddr_t oldblkno; 179 long newsize; 180 long oldsize; 181 struct buf *bp; 182 { 183 184 panic("softdep_setup_allocdirect called"); 185 } 186 187 void 188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 189 struct inode *ip; 190 ufs_lbn_t lbn; 191 ufs2_daddr_t newblkno; 192 ufs2_daddr_t oldblkno; 193 long newsize; 194 long oldsize; 195 struct buf *bp; 196 { 197 198 panic("softdep_setup_allocext called"); 199 } 200 201 void 202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 203 struct inode *ip; 204 ufs_lbn_t lbn; 205 struct buf *bp; 206 int ptrno; 207 ufs2_daddr_t newblkno; 208 ufs2_daddr_t oldblkno; 209 struct buf *nbp; 210 { 211 212 panic("softdep_setup_allocindir_page called"); 213 } 214 215 void 216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 217 struct buf *nbp; 218 struct inode *ip; 219 struct buf *bp; 220 int ptrno; 221 ufs2_daddr_t newblkno; 222 { 223 224 panic("softdep_setup_allocindir_meta called"); 225 } 226 227 void 228 softdep_journal_freeblocks(ip, cred, length, flags) 229 struct inode *ip; 230 struct ucred *cred; 231 off_t length; 232 int flags; 233 { 234 235 panic("softdep_journal_freeblocks called"); 236 } 237 238 void 239 softdep_journal_fsync(ip) 240 struct inode *ip; 241 { 242 243 panic("softdep_journal_fsync called"); 244 } 245 246 void 247 softdep_setup_freeblocks(ip, length, flags) 248 struct inode *ip; 249 off_t length; 250 int flags; 251 { 252 253 panic("softdep_setup_freeblocks called"); 254 } 255 256 void 257 softdep_freefile(pvp, ino, mode) 258 struct vnode *pvp; 259 ino_t ino; 260 int mode; 261 { 262 263 panic("softdep_freefile called"); 264 } 265 266 int 267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 268 struct buf *bp; 269 struct inode *dp; 270 off_t diroffset; 271 ino_t newinum; 272 struct buf *newdirbp; 273 int isnewblk; 274 { 275 276 panic("softdep_setup_directory_add called"); 277 } 278 279 void 280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 281 struct buf *bp; 282 struct inode *dp; 283 caddr_t base; 284 caddr_t oldloc; 285 caddr_t newloc; 286 int entrysize; 287 { 288 289 panic("softdep_change_directoryentry_offset called"); 290 } 291 292 void 293 softdep_setup_remove(bp, dp, ip, isrmdir) 294 struct buf *bp; 295 struct inode *dp; 296 struct inode *ip; 297 int isrmdir; 298 { 299 300 panic("softdep_setup_remove called"); 301 } 302 303 void 304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 305 struct buf *bp; 306 struct inode *dp; 307 struct inode *ip; 308 ino_t newinum; 309 int isrmdir; 310 { 311 312 panic("softdep_setup_directory_change called"); 313 } 314 315 void 316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 317 struct mount *mp; 318 struct buf *bp; 319 ufs2_daddr_t blkno; 320 int frags; 321 struct workhead *wkhd; 322 { 323 324 panic("%s called", __FUNCTION__); 325 } 326 327 void 328 softdep_setup_inofree(mp, bp, ino, wkhd) 329 struct mount *mp; 330 struct buf *bp; 331 ino_t ino; 332 struct workhead *wkhd; 333 { 334 335 panic("%s called", __FUNCTION__); 336 } 337 338 void 339 softdep_setup_unlink(dp, ip) 340 struct inode *dp; 341 struct inode *ip; 342 { 343 344 panic("%s called", __FUNCTION__); 345 } 346 347 void 348 softdep_setup_link(dp, ip) 349 struct inode *dp; 350 struct inode *ip; 351 { 352 353 panic("%s called", __FUNCTION__); 354 } 355 356 void 357 softdep_revert_link(dp, ip) 358 struct inode *dp; 359 struct inode *ip; 360 { 361 362 panic("%s called", __FUNCTION__); 363 } 364 365 void 366 softdep_setup_rmdir(dp, ip) 367 struct inode *dp; 368 struct inode *ip; 369 { 370 371 panic("%s called", __FUNCTION__); 372 } 373 374 void 375 softdep_revert_rmdir(dp, ip) 376 struct inode *dp; 377 struct inode *ip; 378 { 379 380 panic("%s called", __FUNCTION__); 381 } 382 383 void 384 softdep_setup_create(dp, ip) 385 struct inode *dp; 386 struct inode *ip; 387 { 388 389 panic("%s called", __FUNCTION__); 390 } 391 392 void 393 softdep_revert_create(dp, ip) 394 struct inode *dp; 395 struct inode *ip; 396 { 397 398 panic("%s called", __FUNCTION__); 399 } 400 401 void 402 softdep_setup_mkdir(dp, ip) 403 struct inode *dp; 404 struct inode *ip; 405 { 406 407 panic("%s called", __FUNCTION__); 408 } 409 410 void 411 softdep_revert_mkdir(dp, ip) 412 struct inode *dp; 413 struct inode *ip; 414 { 415 416 panic("%s called", __FUNCTION__); 417 } 418 419 void 420 softdep_setup_dotdot_link(dp, ip) 421 struct inode *dp; 422 struct inode *ip; 423 { 424 425 panic("%s called", __FUNCTION__); 426 } 427 428 int 429 softdep_prealloc(vp, waitok) 430 struct vnode *vp; 431 int waitok; 432 { 433 434 panic("%s called", __FUNCTION__); 435 } 436 437 int 438 softdep_journal_lookup(mp, vpp) 439 struct mount *mp; 440 struct vnode **vpp; 441 { 442 443 return (ENOENT); 444 } 445 446 void 447 softdep_change_linkcnt(ip) 448 struct inode *ip; 449 { 450 451 panic("softdep_change_linkcnt called"); 452 } 453 454 void 455 softdep_load_inodeblock(ip) 456 struct inode *ip; 457 { 458 459 panic("softdep_load_inodeblock called"); 460 } 461 462 void 463 softdep_update_inodeblock(ip, bp, waitfor) 464 struct inode *ip; 465 struct buf *bp; 466 int waitfor; 467 { 468 469 panic("softdep_update_inodeblock called"); 470 } 471 472 int 473 softdep_fsync(vp) 474 struct vnode *vp; /* the "in_core" copy of the inode */ 475 { 476 477 return (0); 478 } 479 480 void 481 softdep_fsync_mountdev(vp) 482 struct vnode *vp; 483 { 484 485 return; 486 } 487 488 int 489 softdep_flushworklist(oldmnt, countp, td) 490 struct mount *oldmnt; 491 int *countp; 492 struct thread *td; 493 { 494 495 *countp = 0; 496 return (0); 497 } 498 499 int 500 softdep_sync_metadata(struct vnode *vp) 501 { 502 503 panic("softdep_sync_metadata called"); 504 } 505 506 int 507 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 508 { 509 510 panic("softdep_sync_buf called"); 511 } 512 513 int 514 softdep_slowdown(vp) 515 struct vnode *vp; 516 { 517 518 panic("softdep_slowdown called"); 519 } 520 521 int 522 softdep_request_cleanup(fs, vp, cred, resource) 523 struct fs *fs; 524 struct vnode *vp; 525 struct ucred *cred; 526 int resource; 527 { 528 529 return (0); 530 } 531 532 int 533 softdep_check_suspend(struct mount *mp, 534 struct vnode *devvp, 535 int softdep_depcnt, 536 int softdep_accdepcnt, 537 int secondary_writes, 538 int secondary_accwrites) 539 { 540 struct bufobj *bo; 541 int error; 542 543 (void) softdep_depcnt, 544 (void) softdep_accdepcnt; 545 546 bo = &devvp->v_bufobj; 547 ASSERT_BO_WLOCKED(bo); 548 549 MNT_ILOCK(mp); 550 while (mp->mnt_secondary_writes != 0) { 551 BO_UNLOCK(bo); 552 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 553 (PUSER - 1) | PDROP, "secwr", 0); 554 BO_LOCK(bo); 555 MNT_ILOCK(mp); 556 } 557 558 /* 559 * Reasons for needing more work before suspend: 560 * - Dirty buffers on devvp. 561 * - Secondary writes occurred after start of vnode sync loop 562 */ 563 error = 0; 564 if (bo->bo_numoutput > 0 || 565 bo->bo_dirty.bv_cnt > 0 || 566 secondary_writes != 0 || 567 mp->mnt_secondary_writes != 0 || 568 secondary_accwrites != mp->mnt_secondary_accwrites) 569 error = EAGAIN; 570 BO_UNLOCK(bo); 571 return (error); 572 } 573 574 void 575 softdep_get_depcounts(struct mount *mp, 576 int *softdepactivep, 577 int *softdepactiveaccp) 578 { 579 (void) mp; 580 *softdepactivep = 0; 581 *softdepactiveaccp = 0; 582 } 583 584 void 585 softdep_buf_append(bp, wkhd) 586 struct buf *bp; 587 struct workhead *wkhd; 588 { 589 590 panic("softdep_buf_appendwork called"); 591 } 592 593 void 594 softdep_inode_append(ip, cred, wkhd) 595 struct inode *ip; 596 struct ucred *cred; 597 struct workhead *wkhd; 598 { 599 600 panic("softdep_inode_appendwork called"); 601 } 602 603 void 604 softdep_freework(wkhd) 605 struct workhead *wkhd; 606 { 607 608 panic("softdep_freework called"); 609 } 610 611 #else 612 613 FEATURE(softupdates, "FFS soft-updates support"); 614 615 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 616 "soft updates stats"); 617 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 618 "total dependencies allocated"); 619 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 620 "high use dependencies allocated"); 621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 622 "current dependencies allocated"); 623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 624 "current dependencies written"); 625 626 unsigned long dep_current[D_LAST + 1]; 627 unsigned long dep_highuse[D_LAST + 1]; 628 unsigned long dep_total[D_LAST + 1]; 629 unsigned long dep_write[D_LAST + 1]; 630 631 #define SOFTDEP_TYPE(type, str, long) \ 632 static MALLOC_DEFINE(M_ ## type, #str, long); \ 633 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 634 &dep_total[D_ ## type], 0, ""); \ 635 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 636 &dep_current[D_ ## type], 0, ""); \ 637 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 638 &dep_highuse[D_ ## type], 0, ""); \ 639 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 640 &dep_write[D_ ## type], 0, ""); 641 642 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 643 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 644 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 645 "Block or frag allocated from cyl group map"); 646 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 647 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 648 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 649 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 650 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 651 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 652 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 653 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 654 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 655 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 656 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 657 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 658 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 659 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 660 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 661 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 662 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 663 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 664 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 665 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 666 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 667 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 668 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 669 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 670 671 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 672 673 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 674 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 675 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 676 677 #define M_SOFTDEP_FLAGS (M_WAITOK) 678 679 /* 680 * translate from workitem type to memory type 681 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 682 */ 683 static struct malloc_type *memtype[] = { 684 NULL, 685 M_PAGEDEP, 686 M_INODEDEP, 687 M_BMSAFEMAP, 688 M_NEWBLK, 689 M_ALLOCDIRECT, 690 M_INDIRDEP, 691 M_ALLOCINDIR, 692 M_FREEFRAG, 693 M_FREEBLKS, 694 M_FREEFILE, 695 M_DIRADD, 696 M_MKDIR, 697 M_DIRREM, 698 M_NEWDIRBLK, 699 M_FREEWORK, 700 M_FREEDEP, 701 M_JADDREF, 702 M_JREMREF, 703 M_JMVREF, 704 M_JNEWBLK, 705 M_JFREEBLK, 706 M_JFREEFRAG, 707 M_JSEG, 708 M_JSEGDEP, 709 M_SBDEP, 710 M_JTRUNC, 711 M_JFSYNC, 712 M_SENTINEL 713 }; 714 715 #define DtoM(type) (memtype[type]) 716 717 /* 718 * Names of malloc types. 719 */ 720 #define TYPENAME(type) \ 721 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 722 memtype[type]->ks_shortdesc : "???") 723 /* 724 * End system adaptation definitions. 725 */ 726 727 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 728 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 729 730 /* 731 * Internal function prototypes. 732 */ 733 static void check_clear_deps(struct mount *); 734 static void softdep_error(char *, int); 735 static int softdep_process_worklist(struct mount *, int); 736 static int softdep_waitidle(struct mount *, int); 737 static void drain_output(struct vnode *); 738 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 739 static int check_inodedep_free(struct inodedep *); 740 static void clear_remove(struct mount *); 741 static void clear_inodedeps(struct mount *); 742 static void unlinked_inodedep(struct mount *, struct inodedep *); 743 static void clear_unlinked_inodedep(struct inodedep *); 744 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 745 static int flush_pagedep_deps(struct vnode *, struct mount *, 746 struct diraddhd *); 747 static int free_pagedep(struct pagedep *); 748 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 749 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 750 static int flush_deplist(struct allocdirectlst *, int, int *); 751 static int sync_cgs(struct mount *, int); 752 static int handle_written_filepage(struct pagedep *, struct buf *, int); 753 static int handle_written_sbdep(struct sbdep *, struct buf *); 754 static void initiate_write_sbdep(struct sbdep *); 755 static void diradd_inode_written(struct diradd *, struct inodedep *); 756 static int handle_written_indirdep(struct indirdep *, struct buf *, 757 struct buf**, int); 758 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 759 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 760 uint8_t *); 761 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 762 static void handle_written_jaddref(struct jaddref *); 763 static void handle_written_jremref(struct jremref *); 764 static void handle_written_jseg(struct jseg *, struct buf *); 765 static void handle_written_jnewblk(struct jnewblk *); 766 static void handle_written_jblkdep(struct jblkdep *); 767 static void handle_written_jfreefrag(struct jfreefrag *); 768 static void complete_jseg(struct jseg *); 769 static void complete_jsegs(struct jseg *); 770 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 771 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 772 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 773 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 774 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 775 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 776 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 777 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 778 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 779 static inline void inoref_write(struct inoref *, struct jseg *, 780 struct jrefrec *); 781 static void handle_allocdirect_partdone(struct allocdirect *, 782 struct workhead *); 783 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 784 struct workhead *); 785 static void indirdep_complete(struct indirdep *); 786 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 787 static void indirblk_insert(struct freework *); 788 static void indirblk_remove(struct freework *); 789 static void handle_allocindir_partdone(struct allocindir *); 790 static void initiate_write_filepage(struct pagedep *, struct buf *); 791 static void initiate_write_indirdep(struct indirdep*, struct buf *); 792 static void handle_written_mkdir(struct mkdir *, int); 793 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 794 uint8_t *); 795 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 796 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 797 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 798 static void handle_workitem_freefile(struct freefile *); 799 static int handle_workitem_remove(struct dirrem *, int); 800 static struct dirrem *newdirrem(struct buf *, struct inode *, 801 struct inode *, int, struct dirrem **); 802 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 803 struct buf *); 804 static void cancel_indirdep(struct indirdep *, struct buf *, 805 struct freeblks *); 806 static void free_indirdep(struct indirdep *); 807 static void free_diradd(struct diradd *, struct workhead *); 808 static void merge_diradd(struct inodedep *, struct diradd *); 809 static void complete_diradd(struct diradd *); 810 static struct diradd *diradd_lookup(struct pagedep *, int); 811 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 812 struct jremref *); 813 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 814 struct jremref *); 815 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 816 struct jremref *, struct jremref *); 817 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 818 struct jremref *); 819 static void cancel_allocindir(struct allocindir *, struct buf *bp, 820 struct freeblks *, int); 821 static int setup_trunc_indir(struct freeblks *, struct inode *, 822 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 823 static void complete_trunc_indir(struct freework *); 824 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 825 int); 826 static void complete_mkdir(struct mkdir *); 827 static void free_newdirblk(struct newdirblk *); 828 static void free_jremref(struct jremref *); 829 static void free_jaddref(struct jaddref *); 830 static void free_jsegdep(struct jsegdep *); 831 static void free_jsegs(struct jblocks *); 832 static void rele_jseg(struct jseg *); 833 static void free_jseg(struct jseg *, struct jblocks *); 834 static void free_jnewblk(struct jnewblk *); 835 static void free_jblkdep(struct jblkdep *); 836 static void free_jfreefrag(struct jfreefrag *); 837 static void free_freedep(struct freedep *); 838 static void journal_jremref(struct dirrem *, struct jremref *, 839 struct inodedep *); 840 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 841 static int cancel_jaddref(struct jaddref *, struct inodedep *, 842 struct workhead *); 843 static void cancel_jfreefrag(struct jfreefrag *); 844 static inline void setup_freedirect(struct freeblks *, struct inode *, 845 int, int); 846 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 847 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 848 ufs_lbn_t, int); 849 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 850 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 851 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 852 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 853 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 854 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 855 int, int); 856 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 857 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 858 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 859 static void newblk_freefrag(struct newblk*); 860 static void free_newblk(struct newblk *); 861 static void cancel_allocdirect(struct allocdirectlst *, 862 struct allocdirect *, struct freeblks *); 863 static int check_inode_unwritten(struct inodedep *); 864 static int free_inodedep(struct inodedep *); 865 static void freework_freeblock(struct freework *, u_long); 866 static void freework_enqueue(struct freework *); 867 static int handle_workitem_freeblocks(struct freeblks *, int); 868 static int handle_complete_freeblocks(struct freeblks *, int); 869 static void handle_workitem_indirblk(struct freework *); 870 static void handle_written_freework(struct freework *); 871 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 872 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 873 struct workhead *); 874 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 875 struct inodedep *, struct allocindir *, ufs_lbn_t); 876 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 877 ufs2_daddr_t, ufs_lbn_t); 878 static void handle_workitem_freefrag(struct freefrag *); 879 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 880 ufs_lbn_t, u_long); 881 static void allocdirect_merge(struct allocdirectlst *, 882 struct allocdirect *, struct allocdirect *); 883 static struct freefrag *allocindir_merge(struct allocindir *, 884 struct allocindir *); 885 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 886 struct bmsafemap **); 887 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 888 int cg, struct bmsafemap *); 889 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 890 struct newblk **); 891 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 892 static int inodedep_find(struct inodedep_hashhead *, ino_t, 893 struct inodedep **); 894 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 895 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 896 int, struct pagedep **); 897 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 898 struct pagedep **); 899 static void pause_timer(void *); 900 static int request_cleanup(struct mount *, int); 901 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 902 static void schedule_cleanup(struct mount *); 903 static void softdep_ast_cleanup_proc(struct thread *); 904 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 905 static int process_worklist_item(struct mount *, int, int); 906 static void process_removes(struct vnode *); 907 static void process_truncates(struct vnode *); 908 static void jwork_move(struct workhead *, struct workhead *); 909 static void jwork_insert(struct workhead *, struct jsegdep *); 910 static void add_to_worklist(struct worklist *, int); 911 static void wake_worklist(struct worklist *); 912 static void wait_worklist(struct worklist *, char *); 913 static void remove_from_worklist(struct worklist *); 914 static void softdep_flush(void *); 915 static void softdep_flushjournal(struct mount *); 916 static int softdep_speedup(struct ufsmount *); 917 static void worklist_speedup(struct mount *); 918 static int journal_mount(struct mount *, struct fs *, struct ucred *); 919 static void journal_unmount(struct ufsmount *); 920 static int journal_space(struct ufsmount *, int); 921 static void journal_suspend(struct ufsmount *); 922 static int journal_unsuspend(struct ufsmount *ump); 923 static void softdep_prelink(struct vnode *, struct vnode *); 924 static void add_to_journal(struct worklist *); 925 static void remove_from_journal(struct worklist *); 926 static bool softdep_excess_items(struct ufsmount *, int); 927 static void softdep_process_journal(struct mount *, struct worklist *, int); 928 static struct jremref *newjremref(struct dirrem *, struct inode *, 929 struct inode *ip, off_t, nlink_t); 930 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 931 uint16_t); 932 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 933 uint16_t); 934 static inline struct jsegdep *inoref_jseg(struct inoref *); 935 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 936 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 937 ufs2_daddr_t, int); 938 static void adjust_newfreework(struct freeblks *, int); 939 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 940 static void move_newblock_dep(struct jaddref *, struct inodedep *); 941 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 942 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 943 ufs2_daddr_t, long, ufs_lbn_t); 944 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 945 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 946 static int jwait(struct worklist *, int); 947 static struct inodedep *inodedep_lookup_ip(struct inode *); 948 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 949 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 950 static void handle_jwork(struct workhead *); 951 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 952 struct mkdir **); 953 static struct jblocks *jblocks_create(void); 954 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 955 static void jblocks_free(struct jblocks *, struct mount *, int); 956 static void jblocks_destroy(struct jblocks *); 957 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 958 959 /* 960 * Exported softdep operations. 961 */ 962 static void softdep_disk_io_initiation(struct buf *); 963 static void softdep_disk_write_complete(struct buf *); 964 static void softdep_deallocate_dependencies(struct buf *); 965 static int softdep_count_dependencies(struct buf *bp, int); 966 967 /* 968 * Global lock over all of soft updates. 969 */ 970 static struct mtx lk; 971 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 972 973 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 974 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 975 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 976 977 /* 978 * Per-filesystem soft-updates locking. 979 */ 980 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 981 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 982 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 983 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 984 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 985 RA_WLOCKED) 986 987 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 988 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 989 990 /* 991 * Worklist queue management. 992 * These routines require that the lock be held. 993 */ 994 #ifndef /* NOT */ INVARIANTS 995 #define WORKLIST_INSERT(head, item) do { \ 996 (item)->wk_state |= ONWORKLIST; \ 997 LIST_INSERT_HEAD(head, item, wk_list); \ 998 } while (0) 999 #define WORKLIST_REMOVE(item) do { \ 1000 (item)->wk_state &= ~ONWORKLIST; \ 1001 LIST_REMOVE(item, wk_list); \ 1002 } while (0) 1003 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1004 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1005 1006 #else /* INVARIANTS */ 1007 static void worklist_insert(struct workhead *, struct worklist *, int, 1008 const char *, int); 1009 static void worklist_remove(struct worklist *, int, const char *, int); 1010 1011 #define WORKLIST_INSERT(head, item) \ 1012 worklist_insert(head, item, 1, __func__, __LINE__) 1013 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1014 worklist_insert(head, item, 0, __func__, __LINE__) 1015 #define WORKLIST_REMOVE(item)\ 1016 worklist_remove(item, 1, __func__, __LINE__) 1017 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1018 worklist_remove(item, 0, __func__, __LINE__) 1019 1020 static void 1021 worklist_insert(head, item, locked, func, line) 1022 struct workhead *head; 1023 struct worklist *item; 1024 int locked; 1025 const char *func; 1026 int line; 1027 { 1028 1029 if (locked) 1030 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1031 if (item->wk_state & ONWORKLIST) 1032 panic("worklist_insert: %p %s(0x%X) already on list, " 1033 "added in function %s at line %d", 1034 item, TYPENAME(item->wk_type), item->wk_state, 1035 item->wk_func, item->wk_line); 1036 item->wk_state |= ONWORKLIST; 1037 item->wk_func = func; 1038 item->wk_line = line; 1039 LIST_INSERT_HEAD(head, item, wk_list); 1040 } 1041 1042 static void 1043 worklist_remove(item, locked, func, line) 1044 struct worklist *item; 1045 int locked; 1046 const char *func; 1047 int line; 1048 { 1049 1050 if (locked) 1051 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1052 if ((item->wk_state & ONWORKLIST) == 0) 1053 panic("worklist_remove: %p %s(0x%X) not on list, " 1054 "removed in function %s at line %d", 1055 item, TYPENAME(item->wk_type), item->wk_state, 1056 item->wk_func, item->wk_line); 1057 item->wk_state &= ~ONWORKLIST; 1058 item->wk_func = func; 1059 item->wk_line = line; 1060 LIST_REMOVE(item, wk_list); 1061 } 1062 #endif /* INVARIANTS */ 1063 1064 /* 1065 * Merge two jsegdeps keeping only the oldest one as newer references 1066 * can't be discarded until after older references. 1067 */ 1068 static inline struct jsegdep * 1069 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1070 { 1071 struct jsegdep *swp; 1072 1073 if (two == NULL) 1074 return (one); 1075 1076 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1077 swp = one; 1078 one = two; 1079 two = swp; 1080 } 1081 WORKLIST_REMOVE(&two->jd_list); 1082 free_jsegdep(two); 1083 1084 return (one); 1085 } 1086 1087 /* 1088 * If two freedeps are compatible free one to reduce list size. 1089 */ 1090 static inline struct freedep * 1091 freedep_merge(struct freedep *one, struct freedep *two) 1092 { 1093 if (two == NULL) 1094 return (one); 1095 1096 if (one->fd_freework == two->fd_freework) { 1097 WORKLIST_REMOVE(&two->fd_list); 1098 free_freedep(two); 1099 } 1100 return (one); 1101 } 1102 1103 /* 1104 * Move journal work from one list to another. Duplicate freedeps and 1105 * jsegdeps are coalesced to keep the lists as small as possible. 1106 */ 1107 static void 1108 jwork_move(dst, src) 1109 struct workhead *dst; 1110 struct workhead *src; 1111 { 1112 struct freedep *freedep; 1113 struct jsegdep *jsegdep; 1114 struct worklist *wkn; 1115 struct worklist *wk; 1116 1117 KASSERT(dst != src, 1118 ("jwork_move: dst == src")); 1119 freedep = NULL; 1120 jsegdep = NULL; 1121 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1122 if (wk->wk_type == D_JSEGDEP) 1123 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1124 else if (wk->wk_type == D_FREEDEP) 1125 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1126 } 1127 1128 while ((wk = LIST_FIRST(src)) != NULL) { 1129 WORKLIST_REMOVE(wk); 1130 WORKLIST_INSERT(dst, wk); 1131 if (wk->wk_type == D_JSEGDEP) { 1132 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1133 continue; 1134 } 1135 if (wk->wk_type == D_FREEDEP) 1136 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1137 } 1138 } 1139 1140 static void 1141 jwork_insert(dst, jsegdep) 1142 struct workhead *dst; 1143 struct jsegdep *jsegdep; 1144 { 1145 struct jsegdep *jsegdepn; 1146 struct worklist *wk; 1147 1148 LIST_FOREACH(wk, dst, wk_list) 1149 if (wk->wk_type == D_JSEGDEP) 1150 break; 1151 if (wk == NULL) { 1152 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1153 return; 1154 } 1155 jsegdepn = WK_JSEGDEP(wk); 1156 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1157 WORKLIST_REMOVE(wk); 1158 free_jsegdep(jsegdepn); 1159 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1160 } else 1161 free_jsegdep(jsegdep); 1162 } 1163 1164 /* 1165 * Routines for tracking and managing workitems. 1166 */ 1167 static void workitem_free(struct worklist *, int); 1168 static void workitem_alloc(struct worklist *, int, struct mount *); 1169 static void workitem_reassign(struct worklist *, int); 1170 1171 #define WORKITEM_FREE(item, type) \ 1172 workitem_free((struct worklist *)(item), (type)) 1173 #define WORKITEM_REASSIGN(item, type) \ 1174 workitem_reassign((struct worklist *)(item), (type)) 1175 1176 static void 1177 workitem_free(item, type) 1178 struct worklist *item; 1179 int type; 1180 { 1181 struct ufsmount *ump; 1182 1183 #ifdef INVARIANTS 1184 if (item->wk_state & ONWORKLIST) 1185 panic("workitem_free: %s(0x%X) still on list, " 1186 "added in function %s at line %d", 1187 TYPENAME(item->wk_type), item->wk_state, 1188 item->wk_func, item->wk_line); 1189 if (item->wk_type != type && type != D_NEWBLK) 1190 panic("workitem_free: type mismatch %s != %s", 1191 TYPENAME(item->wk_type), TYPENAME(type)); 1192 #endif 1193 if (item->wk_state & IOWAITING) 1194 wakeup(item); 1195 ump = VFSTOUFS(item->wk_mp); 1196 LOCK_OWNED(ump); 1197 KASSERT(ump->softdep_deps > 0, 1198 ("workitem_free: %s: softdep_deps going negative", 1199 ump->um_fs->fs_fsmnt)); 1200 if (--ump->softdep_deps == 0 && ump->softdep_req) 1201 wakeup(&ump->softdep_deps); 1202 KASSERT(dep_current[item->wk_type] > 0, 1203 ("workitem_free: %s: dep_current[%s] going negative", 1204 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1205 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1206 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1207 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1208 atomic_subtract_long(&dep_current[item->wk_type], 1); 1209 ump->softdep_curdeps[item->wk_type] -= 1; 1210 free(item, DtoM(type)); 1211 } 1212 1213 static void 1214 workitem_alloc(item, type, mp) 1215 struct worklist *item; 1216 int type; 1217 struct mount *mp; 1218 { 1219 struct ufsmount *ump; 1220 1221 item->wk_type = type; 1222 item->wk_mp = mp; 1223 item->wk_state = 0; 1224 1225 ump = VFSTOUFS(mp); 1226 ACQUIRE_GBLLOCK(&lk); 1227 dep_current[type]++; 1228 if (dep_current[type] > dep_highuse[type]) 1229 dep_highuse[type] = dep_current[type]; 1230 dep_total[type]++; 1231 FREE_GBLLOCK(&lk); 1232 ACQUIRE_LOCK(ump); 1233 ump->softdep_curdeps[type] += 1; 1234 ump->softdep_deps++; 1235 ump->softdep_accdeps++; 1236 FREE_LOCK(ump); 1237 } 1238 1239 static void 1240 workitem_reassign(item, newtype) 1241 struct worklist *item; 1242 int newtype; 1243 { 1244 struct ufsmount *ump; 1245 1246 ump = VFSTOUFS(item->wk_mp); 1247 LOCK_OWNED(ump); 1248 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1249 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1250 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1251 ump->softdep_curdeps[item->wk_type] -= 1; 1252 ump->softdep_curdeps[newtype] += 1; 1253 KASSERT(dep_current[item->wk_type] > 0, 1254 ("workitem_reassign: %s: dep_current[%s] going negative", 1255 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1256 ACQUIRE_GBLLOCK(&lk); 1257 dep_current[newtype]++; 1258 dep_current[item->wk_type]--; 1259 if (dep_current[newtype] > dep_highuse[newtype]) 1260 dep_highuse[newtype] = dep_current[newtype]; 1261 dep_total[newtype]++; 1262 FREE_GBLLOCK(&lk); 1263 item->wk_type = newtype; 1264 } 1265 1266 /* 1267 * Workitem queue management 1268 */ 1269 static int max_softdeps; /* maximum number of structs before slowdown */ 1270 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1271 static int proc_waiting; /* tracks whether we have a timeout posted */ 1272 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1273 static struct callout softdep_callout; 1274 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1275 static int req_clear_remove; /* syncer process flush some freeblks */ 1276 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1277 1278 /* 1279 * runtime statistics 1280 */ 1281 static int stat_flush_threads; /* number of softdep flushing threads */ 1282 static int stat_worklist_push; /* number of worklist cleanups */ 1283 static int stat_blk_limit_push; /* number of times block limit neared */ 1284 static int stat_ino_limit_push; /* number of times inode limit neared */ 1285 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1286 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1287 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1288 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1289 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1290 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1291 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1292 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1293 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1294 static int stat_journal_min; /* Times hit journal min threshold */ 1295 static int stat_journal_low; /* Times hit journal low threshold */ 1296 static int stat_journal_wait; /* Times blocked in jwait(). */ 1297 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1298 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1299 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1300 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1301 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1302 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1303 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1304 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1305 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1306 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1307 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1309 &max_softdeps, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1311 &tickdelay, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1313 &stat_flush_threads, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1315 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1317 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1319 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1321 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1323 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1325 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1326 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1327 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1328 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1329 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1330 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1331 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1332 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1333 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1335 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1337 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1338 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1339 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1340 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1341 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1342 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1343 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1344 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1345 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1346 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1347 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1348 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1349 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1350 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1351 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1352 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1353 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1354 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1355 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1356 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1357 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1358 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1359 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1360 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1361 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1362 1363 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1364 &softdep_flushcache, 0, ""); 1365 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1366 &stat_emptyjblocks, 0, ""); 1367 1368 SYSCTL_DECL(_vfs_ffs); 1369 1370 /* Whether to recompute the summary at mount time */ 1371 static int compute_summary_at_mount = 0; 1372 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1373 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1374 static int print_threads = 0; 1375 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1376 &print_threads, 0, "Notify flusher thread start/stop"); 1377 1378 /* List of all filesystems mounted with soft updates */ 1379 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1380 1381 /* 1382 * This function cleans the worklist for a filesystem. 1383 * Each filesystem running with soft dependencies gets its own 1384 * thread to run in this function. The thread is started up in 1385 * softdep_mount and shutdown in softdep_unmount. They show up 1386 * as part of the kernel "bufdaemon" process whose process 1387 * entry is available in bufdaemonproc. 1388 */ 1389 static int searchfailed; 1390 extern struct proc *bufdaemonproc; 1391 static void 1392 softdep_flush(addr) 1393 void *addr; 1394 { 1395 struct mount *mp; 1396 struct thread *td; 1397 struct ufsmount *ump; 1398 1399 td = curthread; 1400 td->td_pflags |= TDP_NORUNNINGBUF; 1401 mp = (struct mount *)addr; 1402 ump = VFSTOUFS(mp); 1403 atomic_add_int(&stat_flush_threads, 1); 1404 ACQUIRE_LOCK(ump); 1405 ump->softdep_flags &= ~FLUSH_STARTING; 1406 wakeup(&ump->softdep_flushtd); 1407 FREE_LOCK(ump); 1408 if (print_threads) { 1409 if (stat_flush_threads == 1) 1410 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1411 bufdaemonproc->p_pid); 1412 printf("Start thread %s\n", td->td_name); 1413 } 1414 for (;;) { 1415 while (softdep_process_worklist(mp, 0) > 0 || 1416 (MOUNTEDSUJ(mp) && 1417 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1418 kthread_suspend_check(); 1419 ACQUIRE_LOCK(ump); 1420 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1421 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1422 "sdflush", hz / 2); 1423 ump->softdep_flags &= ~FLUSH_CLEANUP; 1424 /* 1425 * Check to see if we are done and need to exit. 1426 */ 1427 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1428 FREE_LOCK(ump); 1429 continue; 1430 } 1431 ump->softdep_flags &= ~FLUSH_EXIT; 1432 FREE_LOCK(ump); 1433 wakeup(&ump->softdep_flags); 1434 if (print_threads) 1435 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1436 atomic_subtract_int(&stat_flush_threads, 1); 1437 kthread_exit(); 1438 panic("kthread_exit failed\n"); 1439 } 1440 } 1441 1442 static void 1443 worklist_speedup(mp) 1444 struct mount *mp; 1445 { 1446 struct ufsmount *ump; 1447 1448 ump = VFSTOUFS(mp); 1449 LOCK_OWNED(ump); 1450 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1451 ump->softdep_flags |= FLUSH_CLEANUP; 1452 wakeup(&ump->softdep_flushtd); 1453 } 1454 1455 static int 1456 softdep_speedup(ump) 1457 struct ufsmount *ump; 1458 { 1459 struct ufsmount *altump; 1460 struct mount_softdeps *sdp; 1461 1462 LOCK_OWNED(ump); 1463 worklist_speedup(ump->um_mountp); 1464 bd_speedup(); 1465 /* 1466 * If we have global shortages, then we need other 1467 * filesystems to help with the cleanup. Here we wakeup a 1468 * flusher thread for a filesystem that is over its fair 1469 * share of resources. 1470 */ 1471 if (req_clear_inodedeps || req_clear_remove) { 1472 ACQUIRE_GBLLOCK(&lk); 1473 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1474 if ((altump = sdp->sd_ump) == ump) 1475 continue; 1476 if (((req_clear_inodedeps && 1477 altump->softdep_curdeps[D_INODEDEP] > 1478 max_softdeps / stat_flush_threads) || 1479 (req_clear_remove && 1480 altump->softdep_curdeps[D_DIRREM] > 1481 (max_softdeps / 2) / stat_flush_threads)) && 1482 TRY_ACQUIRE_LOCK(altump)) 1483 break; 1484 } 1485 if (sdp == NULL) { 1486 searchfailed++; 1487 FREE_GBLLOCK(&lk); 1488 } else { 1489 /* 1490 * Move to the end of the list so we pick a 1491 * different one on out next try. 1492 */ 1493 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1494 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1495 FREE_GBLLOCK(&lk); 1496 if ((altump->softdep_flags & 1497 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1498 altump->softdep_flags |= FLUSH_CLEANUP; 1499 altump->um_softdep->sd_cleanups++; 1500 wakeup(&altump->softdep_flushtd); 1501 FREE_LOCK(altump); 1502 } 1503 } 1504 return (speedup_syncer()); 1505 } 1506 1507 /* 1508 * Add an item to the end of the work queue. 1509 * This routine requires that the lock be held. 1510 * This is the only routine that adds items to the list. 1511 * The following routine is the only one that removes items 1512 * and does so in order from first to last. 1513 */ 1514 1515 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1516 #define WK_NODELAY 0x0002 /* Process immediately. */ 1517 1518 static void 1519 add_to_worklist(wk, flags) 1520 struct worklist *wk; 1521 int flags; 1522 { 1523 struct ufsmount *ump; 1524 1525 ump = VFSTOUFS(wk->wk_mp); 1526 LOCK_OWNED(ump); 1527 if (wk->wk_state & ONWORKLIST) 1528 panic("add_to_worklist: %s(0x%X) already on list", 1529 TYPENAME(wk->wk_type), wk->wk_state); 1530 wk->wk_state |= ONWORKLIST; 1531 if (ump->softdep_on_worklist == 0) { 1532 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1533 ump->softdep_worklist_tail = wk; 1534 } else if (flags & WK_HEAD) { 1535 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1536 } else { 1537 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1538 ump->softdep_worklist_tail = wk; 1539 } 1540 ump->softdep_on_worklist += 1; 1541 if (flags & WK_NODELAY) 1542 worklist_speedup(wk->wk_mp); 1543 } 1544 1545 /* 1546 * Remove the item to be processed. If we are removing the last 1547 * item on the list, we need to recalculate the tail pointer. 1548 */ 1549 static void 1550 remove_from_worklist(wk) 1551 struct worklist *wk; 1552 { 1553 struct ufsmount *ump; 1554 1555 ump = VFSTOUFS(wk->wk_mp); 1556 if (ump->softdep_worklist_tail == wk) 1557 ump->softdep_worklist_tail = 1558 (struct worklist *)wk->wk_list.le_prev; 1559 WORKLIST_REMOVE(wk); 1560 ump->softdep_on_worklist -= 1; 1561 } 1562 1563 static void 1564 wake_worklist(wk) 1565 struct worklist *wk; 1566 { 1567 if (wk->wk_state & IOWAITING) { 1568 wk->wk_state &= ~IOWAITING; 1569 wakeup(wk); 1570 } 1571 } 1572 1573 static void 1574 wait_worklist(wk, wmesg) 1575 struct worklist *wk; 1576 char *wmesg; 1577 { 1578 struct ufsmount *ump; 1579 1580 ump = VFSTOUFS(wk->wk_mp); 1581 wk->wk_state |= IOWAITING; 1582 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1583 } 1584 1585 /* 1586 * Process that runs once per second to handle items in the background queue. 1587 * 1588 * Note that we ensure that everything is done in the order in which they 1589 * appear in the queue. The code below depends on this property to ensure 1590 * that blocks of a file are freed before the inode itself is freed. This 1591 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1592 * until all the old ones have been purged from the dependency lists. 1593 */ 1594 static int 1595 softdep_process_worklist(mp, full) 1596 struct mount *mp; 1597 int full; 1598 { 1599 int cnt, matchcnt; 1600 struct ufsmount *ump; 1601 long starttime; 1602 1603 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1604 if (MOUNTEDSOFTDEP(mp) == 0) 1605 return (0); 1606 matchcnt = 0; 1607 ump = VFSTOUFS(mp); 1608 ACQUIRE_LOCK(ump); 1609 starttime = time_second; 1610 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1611 check_clear_deps(mp); 1612 while (ump->softdep_on_worklist > 0) { 1613 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1614 break; 1615 else 1616 matchcnt += cnt; 1617 check_clear_deps(mp); 1618 /* 1619 * We do not generally want to stop for buffer space, but if 1620 * we are really being a buffer hog, we will stop and wait. 1621 */ 1622 if (should_yield()) { 1623 FREE_LOCK(ump); 1624 kern_yield(PRI_USER); 1625 bwillwrite(); 1626 ACQUIRE_LOCK(ump); 1627 } 1628 /* 1629 * Never allow processing to run for more than one 1630 * second. This gives the syncer thread the opportunity 1631 * to pause if appropriate. 1632 */ 1633 if (!full && starttime != time_second) 1634 break; 1635 } 1636 if (full == 0) 1637 journal_unsuspend(ump); 1638 FREE_LOCK(ump); 1639 return (matchcnt); 1640 } 1641 1642 /* 1643 * Process all removes associated with a vnode if we are running out of 1644 * journal space. Any other process which attempts to flush these will 1645 * be unable as we have the vnodes locked. 1646 */ 1647 static void 1648 process_removes(vp) 1649 struct vnode *vp; 1650 { 1651 struct inodedep *inodedep; 1652 struct dirrem *dirrem; 1653 struct ufsmount *ump; 1654 struct mount *mp; 1655 ino_t inum; 1656 1657 mp = vp->v_mount; 1658 ump = VFSTOUFS(mp); 1659 LOCK_OWNED(ump); 1660 inum = VTOI(vp)->i_number; 1661 for (;;) { 1662 top: 1663 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1664 return; 1665 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1666 /* 1667 * If another thread is trying to lock this vnode 1668 * it will fail but we must wait for it to do so 1669 * before we can proceed. 1670 */ 1671 if (dirrem->dm_state & INPROGRESS) { 1672 wait_worklist(&dirrem->dm_list, "pwrwait"); 1673 goto top; 1674 } 1675 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1676 (COMPLETE | ONWORKLIST)) 1677 break; 1678 } 1679 if (dirrem == NULL) 1680 return; 1681 remove_from_worklist(&dirrem->dm_list); 1682 FREE_LOCK(ump); 1683 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1684 panic("process_removes: suspended filesystem"); 1685 handle_workitem_remove(dirrem, 0); 1686 vn_finished_secondary_write(mp); 1687 ACQUIRE_LOCK(ump); 1688 } 1689 } 1690 1691 /* 1692 * Process all truncations associated with a vnode if we are running out 1693 * of journal space. This is called when the vnode lock is already held 1694 * and no other process can clear the truncation. This function returns 1695 * a value greater than zero if it did any work. 1696 */ 1697 static void 1698 process_truncates(vp) 1699 struct vnode *vp; 1700 { 1701 struct inodedep *inodedep; 1702 struct freeblks *freeblks; 1703 struct ufsmount *ump; 1704 struct mount *mp; 1705 ino_t inum; 1706 int cgwait; 1707 1708 mp = vp->v_mount; 1709 ump = VFSTOUFS(mp); 1710 LOCK_OWNED(ump); 1711 inum = VTOI(vp)->i_number; 1712 for (;;) { 1713 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1714 return; 1715 cgwait = 0; 1716 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1717 /* Journal entries not yet written. */ 1718 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1719 jwait(&LIST_FIRST( 1720 &freeblks->fb_jblkdephd)->jb_list, 1721 MNT_WAIT); 1722 break; 1723 } 1724 /* Another thread is executing this item. */ 1725 if (freeblks->fb_state & INPROGRESS) { 1726 wait_worklist(&freeblks->fb_list, "ptrwait"); 1727 break; 1728 } 1729 /* Freeblks is waiting on a inode write. */ 1730 if ((freeblks->fb_state & COMPLETE) == 0) { 1731 FREE_LOCK(ump); 1732 ffs_update(vp, 1); 1733 ACQUIRE_LOCK(ump); 1734 break; 1735 } 1736 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1737 (ALLCOMPLETE | ONWORKLIST)) { 1738 remove_from_worklist(&freeblks->fb_list); 1739 freeblks->fb_state |= INPROGRESS; 1740 FREE_LOCK(ump); 1741 if (vn_start_secondary_write(NULL, &mp, 1742 V_NOWAIT)) 1743 panic("process_truncates: " 1744 "suspended filesystem"); 1745 handle_workitem_freeblocks(freeblks, 0); 1746 vn_finished_secondary_write(mp); 1747 ACQUIRE_LOCK(ump); 1748 break; 1749 } 1750 if (freeblks->fb_cgwait) 1751 cgwait++; 1752 } 1753 if (cgwait) { 1754 FREE_LOCK(ump); 1755 sync_cgs(mp, MNT_WAIT); 1756 ffs_sync_snap(mp, MNT_WAIT); 1757 ACQUIRE_LOCK(ump); 1758 continue; 1759 } 1760 if (freeblks == NULL) 1761 break; 1762 } 1763 return; 1764 } 1765 1766 /* 1767 * Process one item on the worklist. 1768 */ 1769 static int 1770 process_worklist_item(mp, target, flags) 1771 struct mount *mp; 1772 int target; 1773 int flags; 1774 { 1775 struct worklist sentinel; 1776 struct worklist *wk; 1777 struct ufsmount *ump; 1778 int matchcnt; 1779 int error; 1780 1781 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1782 /* 1783 * If we are being called because of a process doing a 1784 * copy-on-write, then it is not safe to write as we may 1785 * recurse into the copy-on-write routine. 1786 */ 1787 if (curthread->td_pflags & TDP_COWINPROGRESS) 1788 return (-1); 1789 PHOLD(curproc); /* Don't let the stack go away. */ 1790 ump = VFSTOUFS(mp); 1791 LOCK_OWNED(ump); 1792 matchcnt = 0; 1793 sentinel.wk_mp = NULL; 1794 sentinel.wk_type = D_SENTINEL; 1795 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1796 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1797 wk = LIST_NEXT(&sentinel, wk_list)) { 1798 if (wk->wk_type == D_SENTINEL) { 1799 LIST_REMOVE(&sentinel, wk_list); 1800 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1801 continue; 1802 } 1803 if (wk->wk_state & INPROGRESS) 1804 panic("process_worklist_item: %p already in progress.", 1805 wk); 1806 wk->wk_state |= INPROGRESS; 1807 remove_from_worklist(wk); 1808 FREE_LOCK(ump); 1809 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1810 panic("process_worklist_item: suspended filesystem"); 1811 switch (wk->wk_type) { 1812 case D_DIRREM: 1813 /* removal of a directory entry */ 1814 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1815 break; 1816 1817 case D_FREEBLKS: 1818 /* releasing blocks and/or fragments from a file */ 1819 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1820 flags); 1821 break; 1822 1823 case D_FREEFRAG: 1824 /* releasing a fragment when replaced as a file grows */ 1825 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1826 error = 0; 1827 break; 1828 1829 case D_FREEFILE: 1830 /* releasing an inode when its link count drops to 0 */ 1831 handle_workitem_freefile(WK_FREEFILE(wk)); 1832 error = 0; 1833 break; 1834 1835 default: 1836 panic("%s_process_worklist: Unknown type %s", 1837 "softdep", TYPENAME(wk->wk_type)); 1838 /* NOTREACHED */ 1839 } 1840 vn_finished_secondary_write(mp); 1841 ACQUIRE_LOCK(ump); 1842 if (error == 0) { 1843 if (++matchcnt == target) 1844 break; 1845 continue; 1846 } 1847 /* 1848 * We have to retry the worklist item later. Wake up any 1849 * waiters who may be able to complete it immediately and 1850 * add the item back to the head so we don't try to execute 1851 * it again. 1852 */ 1853 wk->wk_state &= ~INPROGRESS; 1854 wake_worklist(wk); 1855 add_to_worklist(wk, WK_HEAD); 1856 } 1857 /* Sentinal could've become the tail from remove_from_worklist. */ 1858 if (ump->softdep_worklist_tail == &sentinel) 1859 ump->softdep_worklist_tail = 1860 (struct worklist *)sentinel.wk_list.le_prev; 1861 LIST_REMOVE(&sentinel, wk_list); 1862 PRELE(curproc); 1863 return (matchcnt); 1864 } 1865 1866 /* 1867 * Move dependencies from one buffer to another. 1868 */ 1869 int 1870 softdep_move_dependencies(oldbp, newbp) 1871 struct buf *oldbp; 1872 struct buf *newbp; 1873 { 1874 struct worklist *wk, *wktail; 1875 struct ufsmount *ump; 1876 int dirty; 1877 1878 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1879 return (0); 1880 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1881 ("softdep_move_dependencies called on non-softdep filesystem")); 1882 dirty = 0; 1883 wktail = NULL; 1884 ump = VFSTOUFS(wk->wk_mp); 1885 ACQUIRE_LOCK(ump); 1886 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1887 LIST_REMOVE(wk, wk_list); 1888 if (wk->wk_type == D_BMSAFEMAP && 1889 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1890 dirty = 1; 1891 if (wktail == NULL) 1892 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1893 else 1894 LIST_INSERT_AFTER(wktail, wk, wk_list); 1895 wktail = wk; 1896 } 1897 FREE_LOCK(ump); 1898 1899 return (dirty); 1900 } 1901 1902 /* 1903 * Purge the work list of all items associated with a particular mount point. 1904 */ 1905 int 1906 softdep_flushworklist(oldmnt, countp, td) 1907 struct mount *oldmnt; 1908 int *countp; 1909 struct thread *td; 1910 { 1911 struct vnode *devvp; 1912 struct ufsmount *ump; 1913 int count, error; 1914 1915 /* 1916 * Alternately flush the block device associated with the mount 1917 * point and process any dependencies that the flushing 1918 * creates. We continue until no more worklist dependencies 1919 * are found. 1920 */ 1921 *countp = 0; 1922 error = 0; 1923 ump = VFSTOUFS(oldmnt); 1924 devvp = ump->um_devvp; 1925 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1926 *countp += count; 1927 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1928 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1929 VOP_UNLOCK(devvp, 0); 1930 if (error != 0) 1931 break; 1932 } 1933 return (error); 1934 } 1935 1936 #define SU_WAITIDLE_RETRIES 20 1937 static int 1938 softdep_waitidle(struct mount *mp, int flags __unused) 1939 { 1940 struct ufsmount *ump; 1941 struct vnode *devvp; 1942 struct thread *td; 1943 int error, i; 1944 1945 ump = VFSTOUFS(mp); 1946 devvp = ump->um_devvp; 1947 td = curthread; 1948 error = 0; 1949 ACQUIRE_LOCK(ump); 1950 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1951 ump->softdep_req = 1; 1952 KASSERT((flags & FORCECLOSE) == 0 || 1953 ump->softdep_on_worklist == 0, 1954 ("softdep_waitidle: work added after flush")); 1955 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1956 "softdeps", 10 * hz); 1957 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1958 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1959 VOP_UNLOCK(devvp, 0); 1960 ACQUIRE_LOCK(ump); 1961 if (error != 0) 1962 break; 1963 } 1964 ump->softdep_req = 0; 1965 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1966 error = EBUSY; 1967 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1968 mp); 1969 } 1970 FREE_LOCK(ump); 1971 return (error); 1972 } 1973 1974 /* 1975 * Flush all vnodes and worklist items associated with a specified mount point. 1976 */ 1977 int 1978 softdep_flushfiles(oldmnt, flags, td) 1979 struct mount *oldmnt; 1980 int flags; 1981 struct thread *td; 1982 { 1983 #ifdef QUOTA 1984 struct ufsmount *ump; 1985 int i; 1986 #endif 1987 int error, early, depcount, loopcnt, retry_flush_count, retry; 1988 int morework; 1989 1990 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1991 ("softdep_flushfiles called on non-softdep filesystem")); 1992 loopcnt = 10; 1993 retry_flush_count = 3; 1994 retry_flush: 1995 error = 0; 1996 1997 /* 1998 * Alternately flush the vnodes associated with the mount 1999 * point and process any dependencies that the flushing 2000 * creates. In theory, this loop can happen at most twice, 2001 * but we give it a few extra just to be sure. 2002 */ 2003 for (; loopcnt > 0; loopcnt--) { 2004 /* 2005 * Do another flush in case any vnodes were brought in 2006 * as part of the cleanup operations. 2007 */ 2008 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2009 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2010 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2011 break; 2012 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2013 depcount == 0) 2014 break; 2015 } 2016 /* 2017 * If we are unmounting then it is an error to fail. If we 2018 * are simply trying to downgrade to read-only, then filesystem 2019 * activity can keep us busy forever, so we just fail with EBUSY. 2020 */ 2021 if (loopcnt == 0) { 2022 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2023 panic("softdep_flushfiles: looping"); 2024 error = EBUSY; 2025 } 2026 if (!error) 2027 error = softdep_waitidle(oldmnt, flags); 2028 if (!error) { 2029 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2030 retry = 0; 2031 MNT_ILOCK(oldmnt); 2032 morework = oldmnt->mnt_nvnodelistsize > 0; 2033 #ifdef QUOTA 2034 ump = VFSTOUFS(oldmnt); 2035 UFS_LOCK(ump); 2036 for (i = 0; i < MAXQUOTAS; i++) { 2037 if (ump->um_quotas[i] != NULLVP) 2038 morework = 1; 2039 } 2040 UFS_UNLOCK(ump); 2041 #endif 2042 if (morework) { 2043 if (--retry_flush_count > 0) { 2044 retry = 1; 2045 loopcnt = 3; 2046 } else 2047 error = EBUSY; 2048 } 2049 MNT_IUNLOCK(oldmnt); 2050 if (retry) 2051 goto retry_flush; 2052 } 2053 } 2054 return (error); 2055 } 2056 2057 /* 2058 * Structure hashing. 2059 * 2060 * There are four types of structures that can be looked up: 2061 * 1) pagedep structures identified by mount point, inode number, 2062 * and logical block. 2063 * 2) inodedep structures identified by mount point and inode number. 2064 * 3) newblk structures identified by mount point and 2065 * physical block number. 2066 * 4) bmsafemap structures identified by mount point and 2067 * cylinder group number. 2068 * 2069 * The "pagedep" and "inodedep" dependency structures are hashed 2070 * separately from the file blocks and inodes to which they correspond. 2071 * This separation helps when the in-memory copy of an inode or 2072 * file block must be replaced. It also obviates the need to access 2073 * an inode or file page when simply updating (or de-allocating) 2074 * dependency structures. Lookup of newblk structures is needed to 2075 * find newly allocated blocks when trying to associate them with 2076 * their allocdirect or allocindir structure. 2077 * 2078 * The lookup routines optionally create and hash a new instance when 2079 * an existing entry is not found. The bmsafemap lookup routine always 2080 * allocates a new structure if an existing one is not found. 2081 */ 2082 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2083 2084 /* 2085 * Structures and routines associated with pagedep caching. 2086 */ 2087 #define PAGEDEP_HASH(ump, inum, lbn) \ 2088 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2089 2090 static int 2091 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2092 struct pagedep_hashhead *pagedephd; 2093 ino_t ino; 2094 ufs_lbn_t lbn; 2095 struct pagedep **pagedeppp; 2096 { 2097 struct pagedep *pagedep; 2098 2099 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2100 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2101 *pagedeppp = pagedep; 2102 return (1); 2103 } 2104 } 2105 *pagedeppp = NULL; 2106 return (0); 2107 } 2108 /* 2109 * Look up a pagedep. Return 1 if found, 0 otherwise. 2110 * If not found, allocate if DEPALLOC flag is passed. 2111 * Found or allocated entry is returned in pagedeppp. 2112 */ 2113 static int 2114 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2115 struct mount *mp; 2116 struct buf *bp; 2117 ino_t ino; 2118 ufs_lbn_t lbn; 2119 int flags; 2120 struct pagedep **pagedeppp; 2121 { 2122 struct pagedep *pagedep; 2123 struct pagedep_hashhead *pagedephd; 2124 struct worklist *wk; 2125 struct ufsmount *ump; 2126 int ret; 2127 int i; 2128 2129 ump = VFSTOUFS(mp); 2130 LOCK_OWNED(ump); 2131 if (bp) { 2132 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2133 if (wk->wk_type == D_PAGEDEP) { 2134 *pagedeppp = WK_PAGEDEP(wk); 2135 return (1); 2136 } 2137 } 2138 } 2139 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2140 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2141 if (ret) { 2142 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2143 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2144 return (1); 2145 } 2146 if ((flags & DEPALLOC) == 0) 2147 return (0); 2148 FREE_LOCK(ump); 2149 pagedep = malloc(sizeof(struct pagedep), 2150 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2151 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2152 ACQUIRE_LOCK(ump); 2153 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2154 if (*pagedeppp) { 2155 /* 2156 * This should never happen since we only create pagedeps 2157 * with the vnode lock held. Could be an assert. 2158 */ 2159 WORKITEM_FREE(pagedep, D_PAGEDEP); 2160 return (ret); 2161 } 2162 pagedep->pd_ino = ino; 2163 pagedep->pd_lbn = lbn; 2164 LIST_INIT(&pagedep->pd_dirremhd); 2165 LIST_INIT(&pagedep->pd_pendinghd); 2166 for (i = 0; i < DAHASHSZ; i++) 2167 LIST_INIT(&pagedep->pd_diraddhd[i]); 2168 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2169 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2170 *pagedeppp = pagedep; 2171 return (0); 2172 } 2173 2174 /* 2175 * Structures and routines associated with inodedep caching. 2176 */ 2177 #define INODEDEP_HASH(ump, inum) \ 2178 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2179 2180 static int 2181 inodedep_find(inodedephd, inum, inodedeppp) 2182 struct inodedep_hashhead *inodedephd; 2183 ino_t inum; 2184 struct inodedep **inodedeppp; 2185 { 2186 struct inodedep *inodedep; 2187 2188 LIST_FOREACH(inodedep, inodedephd, id_hash) 2189 if (inum == inodedep->id_ino) 2190 break; 2191 if (inodedep) { 2192 *inodedeppp = inodedep; 2193 return (1); 2194 } 2195 *inodedeppp = NULL; 2196 2197 return (0); 2198 } 2199 /* 2200 * Look up an inodedep. Return 1 if found, 0 if not found. 2201 * If not found, allocate if DEPALLOC flag is passed. 2202 * Found or allocated entry is returned in inodedeppp. 2203 */ 2204 static int 2205 inodedep_lookup(mp, inum, flags, inodedeppp) 2206 struct mount *mp; 2207 ino_t inum; 2208 int flags; 2209 struct inodedep **inodedeppp; 2210 { 2211 struct inodedep *inodedep; 2212 struct inodedep_hashhead *inodedephd; 2213 struct ufsmount *ump; 2214 struct fs *fs; 2215 2216 ump = VFSTOUFS(mp); 2217 LOCK_OWNED(ump); 2218 fs = ump->um_fs; 2219 inodedephd = INODEDEP_HASH(ump, inum); 2220 2221 if (inodedep_find(inodedephd, inum, inodedeppp)) 2222 return (1); 2223 if ((flags & DEPALLOC) == 0) 2224 return (0); 2225 /* 2226 * If the system is over its limit and our filesystem is 2227 * responsible for more than our share of that usage and 2228 * we are not in a rush, request some inodedep cleanup. 2229 */ 2230 if (softdep_excess_items(ump, D_INODEDEP)) 2231 schedule_cleanup(mp); 2232 else 2233 FREE_LOCK(ump); 2234 inodedep = malloc(sizeof(struct inodedep), 2235 M_INODEDEP, M_SOFTDEP_FLAGS); 2236 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2237 ACQUIRE_LOCK(ump); 2238 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2239 WORKITEM_FREE(inodedep, D_INODEDEP); 2240 return (1); 2241 } 2242 inodedep->id_fs = fs; 2243 inodedep->id_ino = inum; 2244 inodedep->id_state = ALLCOMPLETE; 2245 inodedep->id_nlinkdelta = 0; 2246 inodedep->id_savedino1 = NULL; 2247 inodedep->id_savedsize = -1; 2248 inodedep->id_savedextsize = -1; 2249 inodedep->id_savednlink = -1; 2250 inodedep->id_bmsafemap = NULL; 2251 inodedep->id_mkdiradd = NULL; 2252 LIST_INIT(&inodedep->id_dirremhd); 2253 LIST_INIT(&inodedep->id_pendinghd); 2254 LIST_INIT(&inodedep->id_inowait); 2255 LIST_INIT(&inodedep->id_bufwait); 2256 TAILQ_INIT(&inodedep->id_inoreflst); 2257 TAILQ_INIT(&inodedep->id_inoupdt); 2258 TAILQ_INIT(&inodedep->id_newinoupdt); 2259 TAILQ_INIT(&inodedep->id_extupdt); 2260 TAILQ_INIT(&inodedep->id_newextupdt); 2261 TAILQ_INIT(&inodedep->id_freeblklst); 2262 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2263 *inodedeppp = inodedep; 2264 return (0); 2265 } 2266 2267 /* 2268 * Structures and routines associated with newblk caching. 2269 */ 2270 #define NEWBLK_HASH(ump, inum) \ 2271 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2272 2273 static int 2274 newblk_find(newblkhd, newblkno, flags, newblkpp) 2275 struct newblk_hashhead *newblkhd; 2276 ufs2_daddr_t newblkno; 2277 int flags; 2278 struct newblk **newblkpp; 2279 { 2280 struct newblk *newblk; 2281 2282 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2283 if (newblkno != newblk->nb_newblkno) 2284 continue; 2285 /* 2286 * If we're creating a new dependency don't match those that 2287 * have already been converted to allocdirects. This is for 2288 * a frag extend. 2289 */ 2290 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2291 continue; 2292 break; 2293 } 2294 if (newblk) { 2295 *newblkpp = newblk; 2296 return (1); 2297 } 2298 *newblkpp = NULL; 2299 return (0); 2300 } 2301 2302 /* 2303 * Look up a newblk. Return 1 if found, 0 if not found. 2304 * If not found, allocate if DEPALLOC flag is passed. 2305 * Found or allocated entry is returned in newblkpp. 2306 */ 2307 static int 2308 newblk_lookup(mp, newblkno, flags, newblkpp) 2309 struct mount *mp; 2310 ufs2_daddr_t newblkno; 2311 int flags; 2312 struct newblk **newblkpp; 2313 { 2314 struct newblk *newblk; 2315 struct newblk_hashhead *newblkhd; 2316 struct ufsmount *ump; 2317 2318 ump = VFSTOUFS(mp); 2319 LOCK_OWNED(ump); 2320 newblkhd = NEWBLK_HASH(ump, newblkno); 2321 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2322 return (1); 2323 if ((flags & DEPALLOC) == 0) 2324 return (0); 2325 if (softdep_excess_items(ump, D_NEWBLK) || 2326 softdep_excess_items(ump, D_ALLOCDIRECT) || 2327 softdep_excess_items(ump, D_ALLOCINDIR)) 2328 schedule_cleanup(mp); 2329 else 2330 FREE_LOCK(ump); 2331 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2332 M_SOFTDEP_FLAGS | M_ZERO); 2333 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2334 ACQUIRE_LOCK(ump); 2335 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2336 WORKITEM_FREE(newblk, D_NEWBLK); 2337 return (1); 2338 } 2339 newblk->nb_freefrag = NULL; 2340 LIST_INIT(&newblk->nb_indirdeps); 2341 LIST_INIT(&newblk->nb_newdirblk); 2342 LIST_INIT(&newblk->nb_jwork); 2343 newblk->nb_state = ATTACHED; 2344 newblk->nb_newblkno = newblkno; 2345 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2346 *newblkpp = newblk; 2347 return (0); 2348 } 2349 2350 /* 2351 * Structures and routines associated with freed indirect block caching. 2352 */ 2353 #define INDIR_HASH(ump, blkno) \ 2354 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2355 2356 /* 2357 * Lookup an indirect block in the indir hash table. The freework is 2358 * removed and potentially freed. The caller must do a blocking journal 2359 * write before writing to the blkno. 2360 */ 2361 static int 2362 indirblk_lookup(mp, blkno) 2363 struct mount *mp; 2364 ufs2_daddr_t blkno; 2365 { 2366 struct freework *freework; 2367 struct indir_hashhead *wkhd; 2368 struct ufsmount *ump; 2369 2370 ump = VFSTOUFS(mp); 2371 wkhd = INDIR_HASH(ump, blkno); 2372 TAILQ_FOREACH(freework, wkhd, fw_next) { 2373 if (freework->fw_blkno != blkno) 2374 continue; 2375 indirblk_remove(freework); 2376 return (1); 2377 } 2378 return (0); 2379 } 2380 2381 /* 2382 * Insert an indirect block represented by freework into the indirblk 2383 * hash table so that it may prevent the block from being re-used prior 2384 * to the journal being written. 2385 */ 2386 static void 2387 indirblk_insert(freework) 2388 struct freework *freework; 2389 { 2390 struct jblocks *jblocks; 2391 struct jseg *jseg; 2392 struct ufsmount *ump; 2393 2394 ump = VFSTOUFS(freework->fw_list.wk_mp); 2395 jblocks = ump->softdep_jblocks; 2396 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2397 if (jseg == NULL) 2398 return; 2399 2400 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2401 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2402 fw_next); 2403 freework->fw_state &= ~DEPCOMPLETE; 2404 } 2405 2406 static void 2407 indirblk_remove(freework) 2408 struct freework *freework; 2409 { 2410 struct ufsmount *ump; 2411 2412 ump = VFSTOUFS(freework->fw_list.wk_mp); 2413 LIST_REMOVE(freework, fw_segs); 2414 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2415 freework->fw_state |= DEPCOMPLETE; 2416 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2417 WORKITEM_FREE(freework, D_FREEWORK); 2418 } 2419 2420 /* 2421 * Executed during filesystem system initialization before 2422 * mounting any filesystems. 2423 */ 2424 void 2425 softdep_initialize() 2426 { 2427 2428 TAILQ_INIT(&softdepmounts); 2429 #ifdef __LP64__ 2430 max_softdeps = desiredvnodes * 4; 2431 #else 2432 max_softdeps = desiredvnodes * 2; 2433 #endif 2434 2435 /* initialise bioops hack */ 2436 bioops.io_start = softdep_disk_io_initiation; 2437 bioops.io_complete = softdep_disk_write_complete; 2438 bioops.io_deallocate = softdep_deallocate_dependencies; 2439 bioops.io_countdeps = softdep_count_dependencies; 2440 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2441 2442 /* Initialize the callout with an mtx. */ 2443 callout_init_mtx(&softdep_callout, &lk, 0); 2444 } 2445 2446 /* 2447 * Executed after all filesystems have been unmounted during 2448 * filesystem module unload. 2449 */ 2450 void 2451 softdep_uninitialize() 2452 { 2453 2454 /* clear bioops hack */ 2455 bioops.io_start = NULL; 2456 bioops.io_complete = NULL; 2457 bioops.io_deallocate = NULL; 2458 bioops.io_countdeps = NULL; 2459 softdep_ast_cleanup = NULL; 2460 2461 callout_drain(&softdep_callout); 2462 } 2463 2464 /* 2465 * Called at mount time to notify the dependency code that a 2466 * filesystem wishes to use it. 2467 */ 2468 int 2469 softdep_mount(devvp, mp, fs, cred) 2470 struct vnode *devvp; 2471 struct mount *mp; 2472 struct fs *fs; 2473 struct ucred *cred; 2474 { 2475 struct csum_total cstotal; 2476 struct mount_softdeps *sdp; 2477 struct ufsmount *ump; 2478 struct cg *cgp; 2479 struct buf *bp; 2480 u_int cyl, i; 2481 int error; 2482 2483 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2484 M_WAITOK | M_ZERO); 2485 MNT_ILOCK(mp); 2486 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2487 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2488 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2489 MNTK_SOFTDEP | MNTK_NOASYNC; 2490 } 2491 ump = VFSTOUFS(mp); 2492 ump->um_softdep = sdp; 2493 MNT_IUNLOCK(mp); 2494 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2495 sdp->sd_ump = ump; 2496 LIST_INIT(&ump->softdep_workitem_pending); 2497 LIST_INIT(&ump->softdep_journal_pending); 2498 TAILQ_INIT(&ump->softdep_unlinked); 2499 LIST_INIT(&ump->softdep_dirtycg); 2500 ump->softdep_worklist_tail = NULL; 2501 ump->softdep_on_worklist = 0; 2502 ump->softdep_deps = 0; 2503 LIST_INIT(&ump->softdep_mkdirlisthd); 2504 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2505 &ump->pagedep_hash_size); 2506 ump->pagedep_nextclean = 0; 2507 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2508 &ump->inodedep_hash_size); 2509 ump->inodedep_nextclean = 0; 2510 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2511 &ump->newblk_hash_size); 2512 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2513 &ump->bmsafemap_hash_size); 2514 i = 1 << (ffs(desiredvnodes / 10) - 1); 2515 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2516 M_FREEWORK, M_WAITOK); 2517 ump->indir_hash_size = i - 1; 2518 for (i = 0; i <= ump->indir_hash_size; i++) 2519 TAILQ_INIT(&ump->indir_hashtbl[i]); 2520 ACQUIRE_GBLLOCK(&lk); 2521 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2522 FREE_GBLLOCK(&lk); 2523 if ((fs->fs_flags & FS_SUJ) && 2524 (error = journal_mount(mp, fs, cred)) != 0) { 2525 printf("Failed to start journal: %d\n", error); 2526 softdep_unmount(mp); 2527 return (error); 2528 } 2529 /* 2530 * Start our flushing thread in the bufdaemon process. 2531 */ 2532 ACQUIRE_LOCK(ump); 2533 ump->softdep_flags |= FLUSH_STARTING; 2534 FREE_LOCK(ump); 2535 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2536 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2537 mp->mnt_stat.f_mntonname); 2538 ACQUIRE_LOCK(ump); 2539 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2540 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2541 hz / 2); 2542 } 2543 FREE_LOCK(ump); 2544 /* 2545 * When doing soft updates, the counters in the 2546 * superblock may have gotten out of sync. Recomputation 2547 * can take a long time and can be deferred for background 2548 * fsck. However, the old behavior of scanning the cylinder 2549 * groups and recalculating them at mount time is available 2550 * by setting vfs.ffs.compute_summary_at_mount to one. 2551 */ 2552 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2553 return (0); 2554 bzero(&cstotal, sizeof cstotal); 2555 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2556 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2557 fs->fs_cgsize, cred, &bp)) != 0) { 2558 brelse(bp); 2559 softdep_unmount(mp); 2560 return (error); 2561 } 2562 cgp = (struct cg *)bp->b_data; 2563 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2564 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2565 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2566 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2567 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2568 brelse(bp); 2569 } 2570 #ifdef INVARIANTS 2571 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2572 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2573 #endif 2574 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2575 return (0); 2576 } 2577 2578 void 2579 softdep_unmount(mp) 2580 struct mount *mp; 2581 { 2582 struct ufsmount *ump; 2583 #ifdef INVARIANTS 2584 int i; 2585 #endif 2586 2587 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2588 ("softdep_unmount called on non-softdep filesystem")); 2589 ump = VFSTOUFS(mp); 2590 MNT_ILOCK(mp); 2591 mp->mnt_flag &= ~MNT_SOFTDEP; 2592 if (MOUNTEDSUJ(mp) == 0) { 2593 MNT_IUNLOCK(mp); 2594 } else { 2595 mp->mnt_flag &= ~MNT_SUJ; 2596 MNT_IUNLOCK(mp); 2597 journal_unmount(ump); 2598 } 2599 /* 2600 * Shut down our flushing thread. Check for NULL is if 2601 * softdep_mount errors out before the thread has been created. 2602 */ 2603 if (ump->softdep_flushtd != NULL) { 2604 ACQUIRE_LOCK(ump); 2605 ump->softdep_flags |= FLUSH_EXIT; 2606 wakeup(&ump->softdep_flushtd); 2607 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2608 "sdwait", 0); 2609 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2610 ("Thread shutdown failed")); 2611 } 2612 /* 2613 * Free up our resources. 2614 */ 2615 ACQUIRE_GBLLOCK(&lk); 2616 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2617 FREE_GBLLOCK(&lk); 2618 rw_destroy(LOCK_PTR(ump)); 2619 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2620 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2621 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2622 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2623 ump->bmsafemap_hash_size); 2624 free(ump->indir_hashtbl, M_FREEWORK); 2625 #ifdef INVARIANTS 2626 for (i = 0; i <= D_LAST; i++) 2627 KASSERT(ump->softdep_curdeps[i] == 0, 2628 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2629 TYPENAME(i), ump->softdep_curdeps[i])); 2630 #endif 2631 free(ump->um_softdep, M_MOUNTDATA); 2632 } 2633 2634 static struct jblocks * 2635 jblocks_create(void) 2636 { 2637 struct jblocks *jblocks; 2638 2639 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2640 TAILQ_INIT(&jblocks->jb_segs); 2641 jblocks->jb_avail = 10; 2642 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2643 M_JBLOCKS, M_WAITOK | M_ZERO); 2644 2645 return (jblocks); 2646 } 2647 2648 static ufs2_daddr_t 2649 jblocks_alloc(jblocks, bytes, actual) 2650 struct jblocks *jblocks; 2651 int bytes; 2652 int *actual; 2653 { 2654 ufs2_daddr_t daddr; 2655 struct jextent *jext; 2656 int freecnt; 2657 int blocks; 2658 2659 blocks = bytes / DEV_BSIZE; 2660 jext = &jblocks->jb_extent[jblocks->jb_head]; 2661 freecnt = jext->je_blocks - jblocks->jb_off; 2662 if (freecnt == 0) { 2663 jblocks->jb_off = 0; 2664 if (++jblocks->jb_head > jblocks->jb_used) 2665 jblocks->jb_head = 0; 2666 jext = &jblocks->jb_extent[jblocks->jb_head]; 2667 freecnt = jext->je_blocks; 2668 } 2669 if (freecnt > blocks) 2670 freecnt = blocks; 2671 *actual = freecnt * DEV_BSIZE; 2672 daddr = jext->je_daddr + jblocks->jb_off; 2673 jblocks->jb_off += freecnt; 2674 jblocks->jb_free -= freecnt; 2675 2676 return (daddr); 2677 } 2678 2679 static void 2680 jblocks_free(jblocks, mp, bytes) 2681 struct jblocks *jblocks; 2682 struct mount *mp; 2683 int bytes; 2684 { 2685 2686 LOCK_OWNED(VFSTOUFS(mp)); 2687 jblocks->jb_free += bytes / DEV_BSIZE; 2688 if (jblocks->jb_suspended) 2689 worklist_speedup(mp); 2690 wakeup(jblocks); 2691 } 2692 2693 static void 2694 jblocks_destroy(jblocks) 2695 struct jblocks *jblocks; 2696 { 2697 2698 if (jblocks->jb_extent) 2699 free(jblocks->jb_extent, M_JBLOCKS); 2700 free(jblocks, M_JBLOCKS); 2701 } 2702 2703 static void 2704 jblocks_add(jblocks, daddr, blocks) 2705 struct jblocks *jblocks; 2706 ufs2_daddr_t daddr; 2707 int blocks; 2708 { 2709 struct jextent *jext; 2710 2711 jblocks->jb_blocks += blocks; 2712 jblocks->jb_free += blocks; 2713 jext = &jblocks->jb_extent[jblocks->jb_used]; 2714 /* Adding the first block. */ 2715 if (jext->je_daddr == 0) { 2716 jext->je_daddr = daddr; 2717 jext->je_blocks = blocks; 2718 return; 2719 } 2720 /* Extending the last extent. */ 2721 if (jext->je_daddr + jext->je_blocks == daddr) { 2722 jext->je_blocks += blocks; 2723 return; 2724 } 2725 /* Adding a new extent. */ 2726 if (++jblocks->jb_used == jblocks->jb_avail) { 2727 jblocks->jb_avail *= 2; 2728 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2729 M_JBLOCKS, M_WAITOK | M_ZERO); 2730 memcpy(jext, jblocks->jb_extent, 2731 sizeof(struct jextent) * jblocks->jb_used); 2732 free(jblocks->jb_extent, M_JBLOCKS); 2733 jblocks->jb_extent = jext; 2734 } 2735 jext = &jblocks->jb_extent[jblocks->jb_used]; 2736 jext->je_daddr = daddr; 2737 jext->je_blocks = blocks; 2738 return; 2739 } 2740 2741 int 2742 softdep_journal_lookup(mp, vpp) 2743 struct mount *mp; 2744 struct vnode **vpp; 2745 { 2746 struct componentname cnp; 2747 struct vnode *dvp; 2748 ino_t sujournal; 2749 int error; 2750 2751 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2752 if (error) 2753 return (error); 2754 bzero(&cnp, sizeof(cnp)); 2755 cnp.cn_nameiop = LOOKUP; 2756 cnp.cn_flags = ISLASTCN; 2757 cnp.cn_thread = curthread; 2758 cnp.cn_cred = curthread->td_ucred; 2759 cnp.cn_pnbuf = SUJ_FILE; 2760 cnp.cn_nameptr = SUJ_FILE; 2761 cnp.cn_namelen = strlen(SUJ_FILE); 2762 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2763 vput(dvp); 2764 if (error != 0) 2765 return (error); 2766 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2767 return (error); 2768 } 2769 2770 /* 2771 * Open and verify the journal file. 2772 */ 2773 static int 2774 journal_mount(mp, fs, cred) 2775 struct mount *mp; 2776 struct fs *fs; 2777 struct ucred *cred; 2778 { 2779 struct jblocks *jblocks; 2780 struct ufsmount *ump; 2781 struct vnode *vp; 2782 struct inode *ip; 2783 ufs2_daddr_t blkno; 2784 int bcount; 2785 int error; 2786 int i; 2787 2788 ump = VFSTOUFS(mp); 2789 ump->softdep_journal_tail = NULL; 2790 ump->softdep_on_journal = 0; 2791 ump->softdep_accdeps = 0; 2792 ump->softdep_req = 0; 2793 ump->softdep_jblocks = NULL; 2794 error = softdep_journal_lookup(mp, &vp); 2795 if (error != 0) { 2796 printf("Failed to find journal. Use tunefs to create one\n"); 2797 return (error); 2798 } 2799 ip = VTOI(vp); 2800 if (ip->i_size < SUJ_MIN) { 2801 error = ENOSPC; 2802 goto out; 2803 } 2804 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2805 jblocks = jblocks_create(); 2806 for (i = 0; i < bcount; i++) { 2807 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2808 if (error) 2809 break; 2810 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2811 } 2812 if (error) { 2813 jblocks_destroy(jblocks); 2814 goto out; 2815 } 2816 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2817 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2818 ump->softdep_jblocks = jblocks; 2819 out: 2820 if (error == 0) { 2821 MNT_ILOCK(mp); 2822 mp->mnt_flag |= MNT_SUJ; 2823 mp->mnt_flag &= ~MNT_SOFTDEP; 2824 MNT_IUNLOCK(mp); 2825 /* 2826 * Only validate the journal contents if the 2827 * filesystem is clean, otherwise we write the logs 2828 * but they'll never be used. If the filesystem was 2829 * still dirty when we mounted it the journal is 2830 * invalid and a new journal can only be valid if it 2831 * starts from a clean mount. 2832 */ 2833 if (fs->fs_clean) { 2834 DIP_SET(ip, i_modrev, fs->fs_mtime); 2835 ip->i_flags |= IN_MODIFIED; 2836 ffs_update(vp, 1); 2837 } 2838 } 2839 vput(vp); 2840 return (error); 2841 } 2842 2843 static void 2844 journal_unmount(ump) 2845 struct ufsmount *ump; 2846 { 2847 2848 if (ump->softdep_jblocks) 2849 jblocks_destroy(ump->softdep_jblocks); 2850 ump->softdep_jblocks = NULL; 2851 } 2852 2853 /* 2854 * Called when a journal record is ready to be written. Space is allocated 2855 * and the journal entry is created when the journal is flushed to stable 2856 * store. 2857 */ 2858 static void 2859 add_to_journal(wk) 2860 struct worklist *wk; 2861 { 2862 struct ufsmount *ump; 2863 2864 ump = VFSTOUFS(wk->wk_mp); 2865 LOCK_OWNED(ump); 2866 if (wk->wk_state & ONWORKLIST) 2867 panic("add_to_journal: %s(0x%X) already on list", 2868 TYPENAME(wk->wk_type), wk->wk_state); 2869 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2870 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2871 ump->softdep_jblocks->jb_age = ticks; 2872 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2873 } else 2874 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2875 ump->softdep_journal_tail = wk; 2876 ump->softdep_on_journal += 1; 2877 } 2878 2879 /* 2880 * Remove an arbitrary item for the journal worklist maintain the tail 2881 * pointer. This happens when a new operation obviates the need to 2882 * journal an old operation. 2883 */ 2884 static void 2885 remove_from_journal(wk) 2886 struct worklist *wk; 2887 { 2888 struct ufsmount *ump; 2889 2890 ump = VFSTOUFS(wk->wk_mp); 2891 LOCK_OWNED(ump); 2892 #ifdef INVARIANTS 2893 { 2894 struct worklist *wkn; 2895 2896 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2897 if (wkn == wk) 2898 break; 2899 if (wkn == NULL) 2900 panic("remove_from_journal: %p is not in journal", wk); 2901 } 2902 #endif 2903 /* 2904 * We emulate a TAILQ to save space in most structures which do not 2905 * require TAILQ semantics. Here we must update the tail position 2906 * when removing the tail which is not the final entry. This works 2907 * only if the worklist linkage are at the beginning of the structure. 2908 */ 2909 if (ump->softdep_journal_tail == wk) 2910 ump->softdep_journal_tail = 2911 (struct worklist *)wk->wk_list.le_prev; 2912 WORKLIST_REMOVE(wk); 2913 ump->softdep_on_journal -= 1; 2914 } 2915 2916 /* 2917 * Check for journal space as well as dependency limits so the prelink 2918 * code can throttle both journaled and non-journaled filesystems. 2919 * Threshold is 0 for low and 1 for min. 2920 */ 2921 static int 2922 journal_space(ump, thresh) 2923 struct ufsmount *ump; 2924 int thresh; 2925 { 2926 struct jblocks *jblocks; 2927 int limit, avail; 2928 2929 jblocks = ump->softdep_jblocks; 2930 if (jblocks == NULL) 2931 return (1); 2932 /* 2933 * We use a tighter restriction here to prevent request_cleanup() 2934 * running in threads from running into locks we currently hold. 2935 * We have to be over the limit and our filesystem has to be 2936 * responsible for more than our share of that usage. 2937 */ 2938 limit = (max_softdeps / 10) * 9; 2939 if (dep_current[D_INODEDEP] > limit && 2940 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2941 return (0); 2942 if (thresh) 2943 thresh = jblocks->jb_min; 2944 else 2945 thresh = jblocks->jb_low; 2946 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2947 avail = jblocks->jb_free - avail; 2948 2949 return (avail > thresh); 2950 } 2951 2952 static void 2953 journal_suspend(ump) 2954 struct ufsmount *ump; 2955 { 2956 struct jblocks *jblocks; 2957 struct mount *mp; 2958 bool set; 2959 2960 mp = UFSTOVFS(ump); 2961 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 2962 return; 2963 2964 jblocks = ump->softdep_jblocks; 2965 vfs_op_enter(mp); 2966 set = false; 2967 MNT_ILOCK(mp); 2968 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2969 stat_journal_min++; 2970 mp->mnt_kern_flag |= MNTK_SUSPEND; 2971 mp->mnt_susp_owner = ump->softdep_flushtd; 2972 set = true; 2973 } 2974 jblocks->jb_suspended = 1; 2975 MNT_IUNLOCK(mp); 2976 if (!set) 2977 vfs_op_exit(mp); 2978 } 2979 2980 static int 2981 journal_unsuspend(struct ufsmount *ump) 2982 { 2983 struct jblocks *jblocks; 2984 struct mount *mp; 2985 2986 mp = UFSTOVFS(ump); 2987 jblocks = ump->softdep_jblocks; 2988 2989 if (jblocks != NULL && jblocks->jb_suspended && 2990 journal_space(ump, jblocks->jb_min)) { 2991 jblocks->jb_suspended = 0; 2992 FREE_LOCK(ump); 2993 mp->mnt_susp_owner = curthread; 2994 vfs_write_resume(mp, 0); 2995 ACQUIRE_LOCK(ump); 2996 return (1); 2997 } 2998 return (0); 2999 } 3000 3001 /* 3002 * Called before any allocation function to be certain that there is 3003 * sufficient space in the journal prior to creating any new records. 3004 * Since in the case of block allocation we may have multiple locked 3005 * buffers at the time of the actual allocation we can not block 3006 * when the journal records are created. Doing so would create a deadlock 3007 * if any of these buffers needed to be flushed to reclaim space. Instead 3008 * we require a sufficiently large amount of available space such that 3009 * each thread in the system could have passed this allocation check and 3010 * still have sufficient free space. With 20% of a minimum journal size 3011 * of 1MB we have 6553 records available. 3012 */ 3013 int 3014 softdep_prealloc(vp, waitok) 3015 struct vnode *vp; 3016 int waitok; 3017 { 3018 struct ufsmount *ump; 3019 3020 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3021 ("softdep_prealloc called on non-softdep filesystem")); 3022 /* 3023 * Nothing to do if we are not running journaled soft updates. 3024 * If we currently hold the snapshot lock, we must avoid 3025 * handling other resources that could cause deadlock. Do not 3026 * touch quotas vnode since it is typically recursed with 3027 * other vnode locks held. 3028 */ 3029 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3030 (vp->v_vflag & VV_SYSTEM) != 0) 3031 return (0); 3032 ump = VFSTOUFS(vp->v_mount); 3033 ACQUIRE_LOCK(ump); 3034 if (journal_space(ump, 0)) { 3035 FREE_LOCK(ump); 3036 return (0); 3037 } 3038 stat_journal_low++; 3039 FREE_LOCK(ump); 3040 if (waitok == MNT_NOWAIT) 3041 return (ENOSPC); 3042 /* 3043 * Attempt to sync this vnode once to flush any journal 3044 * work attached to it. 3045 */ 3046 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3047 ffs_syncvnode(vp, waitok, 0); 3048 ACQUIRE_LOCK(ump); 3049 process_removes(vp); 3050 process_truncates(vp); 3051 if (journal_space(ump, 0) == 0) { 3052 softdep_speedup(ump); 3053 if (journal_space(ump, 1) == 0) 3054 journal_suspend(ump); 3055 } 3056 FREE_LOCK(ump); 3057 3058 return (0); 3059 } 3060 3061 /* 3062 * Before adjusting a link count on a vnode verify that we have sufficient 3063 * journal space. If not, process operations that depend on the currently 3064 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3065 * and softdep flush threads can not acquire these locks to reclaim space. 3066 */ 3067 static void 3068 softdep_prelink(dvp, vp) 3069 struct vnode *dvp; 3070 struct vnode *vp; 3071 { 3072 struct ufsmount *ump; 3073 3074 ump = VFSTOUFS(dvp->v_mount); 3075 LOCK_OWNED(ump); 3076 /* 3077 * Nothing to do if we have sufficient journal space. 3078 * If we currently hold the snapshot lock, we must avoid 3079 * handling other resources that could cause deadlock. 3080 */ 3081 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3082 return; 3083 stat_journal_low++; 3084 FREE_LOCK(ump); 3085 if (vp) 3086 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3087 ffs_syncvnode(dvp, MNT_WAIT, 0); 3088 ACQUIRE_LOCK(ump); 3089 /* Process vp before dvp as it may create .. removes. */ 3090 if (vp) { 3091 process_removes(vp); 3092 process_truncates(vp); 3093 } 3094 process_removes(dvp); 3095 process_truncates(dvp); 3096 softdep_speedup(ump); 3097 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3098 if (journal_space(ump, 0) == 0) { 3099 softdep_speedup(ump); 3100 if (journal_space(ump, 1) == 0) 3101 journal_suspend(ump); 3102 } 3103 } 3104 3105 static void 3106 jseg_write(ump, jseg, data) 3107 struct ufsmount *ump; 3108 struct jseg *jseg; 3109 uint8_t *data; 3110 { 3111 struct jsegrec *rec; 3112 3113 rec = (struct jsegrec *)data; 3114 rec->jsr_seq = jseg->js_seq; 3115 rec->jsr_oldest = jseg->js_oldseq; 3116 rec->jsr_cnt = jseg->js_cnt; 3117 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3118 rec->jsr_crc = 0; 3119 rec->jsr_time = ump->um_fs->fs_mtime; 3120 } 3121 3122 static inline void 3123 inoref_write(inoref, jseg, rec) 3124 struct inoref *inoref; 3125 struct jseg *jseg; 3126 struct jrefrec *rec; 3127 { 3128 3129 inoref->if_jsegdep->jd_seg = jseg; 3130 rec->jr_ino = inoref->if_ino; 3131 rec->jr_parent = inoref->if_parent; 3132 rec->jr_nlink = inoref->if_nlink; 3133 rec->jr_mode = inoref->if_mode; 3134 rec->jr_diroff = inoref->if_diroff; 3135 } 3136 3137 static void 3138 jaddref_write(jaddref, jseg, data) 3139 struct jaddref *jaddref; 3140 struct jseg *jseg; 3141 uint8_t *data; 3142 { 3143 struct jrefrec *rec; 3144 3145 rec = (struct jrefrec *)data; 3146 rec->jr_op = JOP_ADDREF; 3147 inoref_write(&jaddref->ja_ref, jseg, rec); 3148 } 3149 3150 static void 3151 jremref_write(jremref, jseg, data) 3152 struct jremref *jremref; 3153 struct jseg *jseg; 3154 uint8_t *data; 3155 { 3156 struct jrefrec *rec; 3157 3158 rec = (struct jrefrec *)data; 3159 rec->jr_op = JOP_REMREF; 3160 inoref_write(&jremref->jr_ref, jseg, rec); 3161 } 3162 3163 static void 3164 jmvref_write(jmvref, jseg, data) 3165 struct jmvref *jmvref; 3166 struct jseg *jseg; 3167 uint8_t *data; 3168 { 3169 struct jmvrec *rec; 3170 3171 rec = (struct jmvrec *)data; 3172 rec->jm_op = JOP_MVREF; 3173 rec->jm_ino = jmvref->jm_ino; 3174 rec->jm_parent = jmvref->jm_parent; 3175 rec->jm_oldoff = jmvref->jm_oldoff; 3176 rec->jm_newoff = jmvref->jm_newoff; 3177 } 3178 3179 static void 3180 jnewblk_write(jnewblk, jseg, data) 3181 struct jnewblk *jnewblk; 3182 struct jseg *jseg; 3183 uint8_t *data; 3184 { 3185 struct jblkrec *rec; 3186 3187 jnewblk->jn_jsegdep->jd_seg = jseg; 3188 rec = (struct jblkrec *)data; 3189 rec->jb_op = JOP_NEWBLK; 3190 rec->jb_ino = jnewblk->jn_ino; 3191 rec->jb_blkno = jnewblk->jn_blkno; 3192 rec->jb_lbn = jnewblk->jn_lbn; 3193 rec->jb_frags = jnewblk->jn_frags; 3194 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3195 } 3196 3197 static void 3198 jfreeblk_write(jfreeblk, jseg, data) 3199 struct jfreeblk *jfreeblk; 3200 struct jseg *jseg; 3201 uint8_t *data; 3202 { 3203 struct jblkrec *rec; 3204 3205 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3206 rec = (struct jblkrec *)data; 3207 rec->jb_op = JOP_FREEBLK; 3208 rec->jb_ino = jfreeblk->jf_ino; 3209 rec->jb_blkno = jfreeblk->jf_blkno; 3210 rec->jb_lbn = jfreeblk->jf_lbn; 3211 rec->jb_frags = jfreeblk->jf_frags; 3212 rec->jb_oldfrags = 0; 3213 } 3214 3215 static void 3216 jfreefrag_write(jfreefrag, jseg, data) 3217 struct jfreefrag *jfreefrag; 3218 struct jseg *jseg; 3219 uint8_t *data; 3220 { 3221 struct jblkrec *rec; 3222 3223 jfreefrag->fr_jsegdep->jd_seg = jseg; 3224 rec = (struct jblkrec *)data; 3225 rec->jb_op = JOP_FREEBLK; 3226 rec->jb_ino = jfreefrag->fr_ino; 3227 rec->jb_blkno = jfreefrag->fr_blkno; 3228 rec->jb_lbn = jfreefrag->fr_lbn; 3229 rec->jb_frags = jfreefrag->fr_frags; 3230 rec->jb_oldfrags = 0; 3231 } 3232 3233 static void 3234 jtrunc_write(jtrunc, jseg, data) 3235 struct jtrunc *jtrunc; 3236 struct jseg *jseg; 3237 uint8_t *data; 3238 { 3239 struct jtrncrec *rec; 3240 3241 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3242 rec = (struct jtrncrec *)data; 3243 rec->jt_op = JOP_TRUNC; 3244 rec->jt_ino = jtrunc->jt_ino; 3245 rec->jt_size = jtrunc->jt_size; 3246 rec->jt_extsize = jtrunc->jt_extsize; 3247 } 3248 3249 static void 3250 jfsync_write(jfsync, jseg, data) 3251 struct jfsync *jfsync; 3252 struct jseg *jseg; 3253 uint8_t *data; 3254 { 3255 struct jtrncrec *rec; 3256 3257 rec = (struct jtrncrec *)data; 3258 rec->jt_op = JOP_SYNC; 3259 rec->jt_ino = jfsync->jfs_ino; 3260 rec->jt_size = jfsync->jfs_size; 3261 rec->jt_extsize = jfsync->jfs_extsize; 3262 } 3263 3264 static void 3265 softdep_flushjournal(mp) 3266 struct mount *mp; 3267 { 3268 struct jblocks *jblocks; 3269 struct ufsmount *ump; 3270 3271 if (MOUNTEDSUJ(mp) == 0) 3272 return; 3273 ump = VFSTOUFS(mp); 3274 jblocks = ump->softdep_jblocks; 3275 ACQUIRE_LOCK(ump); 3276 while (ump->softdep_on_journal) { 3277 jblocks->jb_needseg = 1; 3278 softdep_process_journal(mp, NULL, MNT_WAIT); 3279 } 3280 FREE_LOCK(ump); 3281 } 3282 3283 static void softdep_synchronize_completed(struct bio *); 3284 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3285 3286 static void 3287 softdep_synchronize_completed(bp) 3288 struct bio *bp; 3289 { 3290 struct jseg *oldest; 3291 struct jseg *jseg; 3292 struct ufsmount *ump; 3293 3294 /* 3295 * caller1 marks the last segment written before we issued the 3296 * synchronize cache. 3297 */ 3298 jseg = bp->bio_caller1; 3299 if (jseg == NULL) { 3300 g_destroy_bio(bp); 3301 return; 3302 } 3303 ump = VFSTOUFS(jseg->js_list.wk_mp); 3304 ACQUIRE_LOCK(ump); 3305 oldest = NULL; 3306 /* 3307 * Mark all the journal entries waiting on the synchronize cache 3308 * as completed so they may continue on. 3309 */ 3310 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3311 jseg->js_state |= COMPLETE; 3312 oldest = jseg; 3313 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3314 } 3315 /* 3316 * Restart deferred journal entry processing from the oldest 3317 * completed jseg. 3318 */ 3319 if (oldest) 3320 complete_jsegs(oldest); 3321 3322 FREE_LOCK(ump); 3323 g_destroy_bio(bp); 3324 } 3325 3326 /* 3327 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3328 * barriers. The journal must be written prior to any blocks that depend 3329 * on it and the journal can not be released until the blocks have be 3330 * written. This code handles both barriers simultaneously. 3331 */ 3332 static void 3333 softdep_synchronize(bp, ump, caller1) 3334 struct bio *bp; 3335 struct ufsmount *ump; 3336 void *caller1; 3337 { 3338 3339 bp->bio_cmd = BIO_FLUSH; 3340 bp->bio_flags |= BIO_ORDERED; 3341 bp->bio_data = NULL; 3342 bp->bio_offset = ump->um_cp->provider->mediasize; 3343 bp->bio_length = 0; 3344 bp->bio_done = softdep_synchronize_completed; 3345 bp->bio_caller1 = caller1; 3346 g_io_request(bp, 3347 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3348 } 3349 3350 /* 3351 * Flush some journal records to disk. 3352 */ 3353 static void 3354 softdep_process_journal(mp, needwk, flags) 3355 struct mount *mp; 3356 struct worklist *needwk; 3357 int flags; 3358 { 3359 struct jblocks *jblocks; 3360 struct ufsmount *ump; 3361 struct worklist *wk; 3362 struct jseg *jseg; 3363 struct buf *bp; 3364 struct bio *bio; 3365 uint8_t *data; 3366 struct fs *fs; 3367 int shouldflush; 3368 int segwritten; 3369 int jrecmin; /* Minimum records per block. */ 3370 int jrecmax; /* Maximum records per block. */ 3371 int size; 3372 int cnt; 3373 int off; 3374 int devbsize; 3375 3376 if (MOUNTEDSUJ(mp) == 0) 3377 return; 3378 shouldflush = softdep_flushcache; 3379 bio = NULL; 3380 jseg = NULL; 3381 ump = VFSTOUFS(mp); 3382 LOCK_OWNED(ump); 3383 fs = ump->um_fs; 3384 jblocks = ump->softdep_jblocks; 3385 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3386 /* 3387 * We write anywhere between a disk block and fs block. The upper 3388 * bound is picked to prevent buffer cache fragmentation and limit 3389 * processing time per I/O. 3390 */ 3391 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3392 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3393 segwritten = 0; 3394 for (;;) { 3395 cnt = ump->softdep_on_journal; 3396 /* 3397 * Criteria for writing a segment: 3398 * 1) We have a full block. 3399 * 2) We're called from jwait() and haven't found the 3400 * journal item yet. 3401 * 3) Always write if needseg is set. 3402 * 4) If we are called from process_worklist and have 3403 * not yet written anything we write a partial block 3404 * to enforce a 1 second maximum latency on journal 3405 * entries. 3406 */ 3407 if (cnt < (jrecmax - 1) && needwk == NULL && 3408 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3409 break; 3410 cnt++; 3411 /* 3412 * Verify some free journal space. softdep_prealloc() should 3413 * guarantee that we don't run out so this is indicative of 3414 * a problem with the flow control. Try to recover 3415 * gracefully in any event. 3416 */ 3417 while (jblocks->jb_free == 0) { 3418 if (flags != MNT_WAIT) 3419 break; 3420 printf("softdep: Out of journal space!\n"); 3421 softdep_speedup(ump); 3422 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3423 } 3424 FREE_LOCK(ump); 3425 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3426 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3427 LIST_INIT(&jseg->js_entries); 3428 LIST_INIT(&jseg->js_indirs); 3429 jseg->js_state = ATTACHED; 3430 if (shouldflush == 0) 3431 jseg->js_state |= COMPLETE; 3432 else if (bio == NULL) 3433 bio = g_alloc_bio(); 3434 jseg->js_jblocks = jblocks; 3435 bp = geteblk(fs->fs_bsize, 0); 3436 ACQUIRE_LOCK(ump); 3437 /* 3438 * If there was a race while we were allocating the block 3439 * and jseg the entry we care about was likely written. 3440 * We bail out in both the WAIT and NOWAIT case and assume 3441 * the caller will loop if the entry it cares about is 3442 * not written. 3443 */ 3444 cnt = ump->softdep_on_journal; 3445 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3446 bp->b_flags |= B_INVAL | B_NOCACHE; 3447 WORKITEM_FREE(jseg, D_JSEG); 3448 FREE_LOCK(ump); 3449 brelse(bp); 3450 ACQUIRE_LOCK(ump); 3451 break; 3452 } 3453 /* 3454 * Calculate the disk block size required for the available 3455 * records rounded to the min size. 3456 */ 3457 if (cnt == 0) 3458 size = devbsize; 3459 else if (cnt < jrecmax) 3460 size = howmany(cnt, jrecmin) * devbsize; 3461 else 3462 size = fs->fs_bsize; 3463 /* 3464 * Allocate a disk block for this journal data and account 3465 * for truncation of the requested size if enough contiguous 3466 * space was not available. 3467 */ 3468 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3469 bp->b_lblkno = bp->b_blkno; 3470 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3471 bp->b_bcount = size; 3472 bp->b_flags &= ~B_INVAL; 3473 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3474 /* 3475 * Initialize our jseg with cnt records. Assign the next 3476 * sequence number to it and link it in-order. 3477 */ 3478 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3479 jseg->js_buf = bp; 3480 jseg->js_cnt = cnt; 3481 jseg->js_refs = cnt + 1; /* Self ref. */ 3482 jseg->js_size = size; 3483 jseg->js_seq = jblocks->jb_nextseq++; 3484 if (jblocks->jb_oldestseg == NULL) 3485 jblocks->jb_oldestseg = jseg; 3486 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3487 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3488 if (jblocks->jb_writeseg == NULL) 3489 jblocks->jb_writeseg = jseg; 3490 /* 3491 * Start filling in records from the pending list. 3492 */ 3493 data = bp->b_data; 3494 off = 0; 3495 3496 /* 3497 * Always put a header on the first block. 3498 * XXX As with below, there might not be a chance to get 3499 * into the loop. Ensure that something valid is written. 3500 */ 3501 jseg_write(ump, jseg, data); 3502 off += JREC_SIZE; 3503 data = bp->b_data + off; 3504 3505 /* 3506 * XXX Something is wrong here. There's no work to do, 3507 * but we need to perform and I/O and allow it to complete 3508 * anyways. 3509 */ 3510 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3511 stat_emptyjblocks++; 3512 3513 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3514 != NULL) { 3515 if (cnt == 0) 3516 break; 3517 /* Place a segment header on every device block. */ 3518 if ((off % devbsize) == 0) { 3519 jseg_write(ump, jseg, data); 3520 off += JREC_SIZE; 3521 data = bp->b_data + off; 3522 } 3523 if (wk == needwk) 3524 needwk = NULL; 3525 remove_from_journal(wk); 3526 wk->wk_state |= INPROGRESS; 3527 WORKLIST_INSERT(&jseg->js_entries, wk); 3528 switch (wk->wk_type) { 3529 case D_JADDREF: 3530 jaddref_write(WK_JADDREF(wk), jseg, data); 3531 break; 3532 case D_JREMREF: 3533 jremref_write(WK_JREMREF(wk), jseg, data); 3534 break; 3535 case D_JMVREF: 3536 jmvref_write(WK_JMVREF(wk), jseg, data); 3537 break; 3538 case D_JNEWBLK: 3539 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3540 break; 3541 case D_JFREEBLK: 3542 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3543 break; 3544 case D_JFREEFRAG: 3545 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3546 break; 3547 case D_JTRUNC: 3548 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3549 break; 3550 case D_JFSYNC: 3551 jfsync_write(WK_JFSYNC(wk), jseg, data); 3552 break; 3553 default: 3554 panic("process_journal: Unknown type %s", 3555 TYPENAME(wk->wk_type)); 3556 /* NOTREACHED */ 3557 } 3558 off += JREC_SIZE; 3559 data = bp->b_data + off; 3560 cnt--; 3561 } 3562 3563 /* Clear any remaining space so we don't leak kernel data */ 3564 if (size > off) 3565 bzero(data, size - off); 3566 3567 /* 3568 * Write this one buffer and continue. 3569 */ 3570 segwritten = 1; 3571 jblocks->jb_needseg = 0; 3572 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3573 FREE_LOCK(ump); 3574 pbgetvp(ump->um_devvp, bp); 3575 /* 3576 * We only do the blocking wait once we find the journal 3577 * entry we're looking for. 3578 */ 3579 if (needwk == NULL && flags == MNT_WAIT) 3580 bwrite(bp); 3581 else 3582 bawrite(bp); 3583 ACQUIRE_LOCK(ump); 3584 } 3585 /* 3586 * If we wrote a segment issue a synchronize cache so the journal 3587 * is reflected on disk before the data is written. Since reclaiming 3588 * journal space also requires writing a journal record this 3589 * process also enforces a barrier before reclamation. 3590 */ 3591 if (segwritten && shouldflush) { 3592 softdep_synchronize(bio, ump, 3593 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3594 } else if (bio) 3595 g_destroy_bio(bio); 3596 /* 3597 * If we've suspended the filesystem because we ran out of journal 3598 * space either try to sync it here to make some progress or 3599 * unsuspend it if we already have. 3600 */ 3601 if (flags == 0 && jblocks->jb_suspended) { 3602 if (journal_unsuspend(ump)) 3603 return; 3604 FREE_LOCK(ump); 3605 VFS_SYNC(mp, MNT_NOWAIT); 3606 ffs_sbupdate(ump, MNT_WAIT, 0); 3607 ACQUIRE_LOCK(ump); 3608 } 3609 } 3610 3611 /* 3612 * Complete a jseg, allowing all dependencies awaiting journal writes 3613 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3614 * structures so that the journal segment can be freed to reclaim space. 3615 */ 3616 static void 3617 complete_jseg(jseg) 3618 struct jseg *jseg; 3619 { 3620 struct worklist *wk; 3621 struct jmvref *jmvref; 3622 #ifdef INVARIANTS 3623 int i = 0; 3624 #endif 3625 3626 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3627 WORKLIST_REMOVE(wk); 3628 wk->wk_state &= ~INPROGRESS; 3629 wk->wk_state |= COMPLETE; 3630 KASSERT(i++ < jseg->js_cnt, 3631 ("handle_written_jseg: overflow %d >= %d", 3632 i - 1, jseg->js_cnt)); 3633 switch (wk->wk_type) { 3634 case D_JADDREF: 3635 handle_written_jaddref(WK_JADDREF(wk)); 3636 break; 3637 case D_JREMREF: 3638 handle_written_jremref(WK_JREMREF(wk)); 3639 break; 3640 case D_JMVREF: 3641 rele_jseg(jseg); /* No jsegdep. */ 3642 jmvref = WK_JMVREF(wk); 3643 LIST_REMOVE(jmvref, jm_deps); 3644 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3645 free_pagedep(jmvref->jm_pagedep); 3646 WORKITEM_FREE(jmvref, D_JMVREF); 3647 break; 3648 case D_JNEWBLK: 3649 handle_written_jnewblk(WK_JNEWBLK(wk)); 3650 break; 3651 case D_JFREEBLK: 3652 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3653 break; 3654 case D_JTRUNC: 3655 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3656 break; 3657 case D_JFSYNC: 3658 rele_jseg(jseg); /* No jsegdep. */ 3659 WORKITEM_FREE(wk, D_JFSYNC); 3660 break; 3661 case D_JFREEFRAG: 3662 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3663 break; 3664 default: 3665 panic("handle_written_jseg: Unknown type %s", 3666 TYPENAME(wk->wk_type)); 3667 /* NOTREACHED */ 3668 } 3669 } 3670 /* Release the self reference so the structure may be freed. */ 3671 rele_jseg(jseg); 3672 } 3673 3674 /* 3675 * Determine which jsegs are ready for completion processing. Waits for 3676 * synchronize cache to complete as well as forcing in-order completion 3677 * of journal entries. 3678 */ 3679 static void 3680 complete_jsegs(jseg) 3681 struct jseg *jseg; 3682 { 3683 struct jblocks *jblocks; 3684 struct jseg *jsegn; 3685 3686 jblocks = jseg->js_jblocks; 3687 /* 3688 * Don't allow out of order completions. If this isn't the first 3689 * block wait for it to write before we're done. 3690 */ 3691 if (jseg != jblocks->jb_writeseg) 3692 return; 3693 /* Iterate through available jsegs processing their entries. */ 3694 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3695 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3696 jsegn = TAILQ_NEXT(jseg, js_next); 3697 complete_jseg(jseg); 3698 jseg = jsegn; 3699 } 3700 jblocks->jb_writeseg = jseg; 3701 /* 3702 * Attempt to free jsegs now that oldestwrseq may have advanced. 3703 */ 3704 free_jsegs(jblocks); 3705 } 3706 3707 /* 3708 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3709 * the final completions. 3710 */ 3711 static void 3712 handle_written_jseg(jseg, bp) 3713 struct jseg *jseg; 3714 struct buf *bp; 3715 { 3716 3717 if (jseg->js_refs == 0) 3718 panic("handle_written_jseg: No self-reference on %p", jseg); 3719 jseg->js_state |= DEPCOMPLETE; 3720 /* 3721 * We'll never need this buffer again, set flags so it will be 3722 * discarded. 3723 */ 3724 bp->b_flags |= B_INVAL | B_NOCACHE; 3725 pbrelvp(bp); 3726 complete_jsegs(jseg); 3727 } 3728 3729 static inline struct jsegdep * 3730 inoref_jseg(inoref) 3731 struct inoref *inoref; 3732 { 3733 struct jsegdep *jsegdep; 3734 3735 jsegdep = inoref->if_jsegdep; 3736 inoref->if_jsegdep = NULL; 3737 3738 return (jsegdep); 3739 } 3740 3741 /* 3742 * Called once a jremref has made it to stable store. The jremref is marked 3743 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3744 * for the jremref to complete will be awoken by free_jremref. 3745 */ 3746 static void 3747 handle_written_jremref(jremref) 3748 struct jremref *jremref; 3749 { 3750 struct inodedep *inodedep; 3751 struct jsegdep *jsegdep; 3752 struct dirrem *dirrem; 3753 3754 /* Grab the jsegdep. */ 3755 jsegdep = inoref_jseg(&jremref->jr_ref); 3756 /* 3757 * Remove us from the inoref list. 3758 */ 3759 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3760 0, &inodedep) == 0) 3761 panic("handle_written_jremref: Lost inodedep"); 3762 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3763 /* 3764 * Complete the dirrem. 3765 */ 3766 dirrem = jremref->jr_dirrem; 3767 jremref->jr_dirrem = NULL; 3768 LIST_REMOVE(jremref, jr_deps); 3769 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3770 jwork_insert(&dirrem->dm_jwork, jsegdep); 3771 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3772 (dirrem->dm_state & COMPLETE) != 0) 3773 add_to_worklist(&dirrem->dm_list, 0); 3774 free_jremref(jremref); 3775 } 3776 3777 /* 3778 * Called once a jaddref has made it to stable store. The dependency is 3779 * marked complete and any dependent structures are added to the inode 3780 * bufwait list to be completed as soon as it is written. If a bitmap write 3781 * depends on this entry we move the inode into the inodedephd of the 3782 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3783 */ 3784 static void 3785 handle_written_jaddref(jaddref) 3786 struct jaddref *jaddref; 3787 { 3788 struct jsegdep *jsegdep; 3789 struct inodedep *inodedep; 3790 struct diradd *diradd; 3791 struct mkdir *mkdir; 3792 3793 /* Grab the jsegdep. */ 3794 jsegdep = inoref_jseg(&jaddref->ja_ref); 3795 mkdir = NULL; 3796 diradd = NULL; 3797 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3798 0, &inodedep) == 0) 3799 panic("handle_written_jaddref: Lost inodedep."); 3800 if (jaddref->ja_diradd == NULL) 3801 panic("handle_written_jaddref: No dependency"); 3802 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3803 diradd = jaddref->ja_diradd; 3804 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3805 } else if (jaddref->ja_state & MKDIR_PARENT) { 3806 mkdir = jaddref->ja_mkdir; 3807 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3808 } else if (jaddref->ja_state & MKDIR_BODY) 3809 mkdir = jaddref->ja_mkdir; 3810 else 3811 panic("handle_written_jaddref: Unknown dependency %p", 3812 jaddref->ja_diradd); 3813 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3814 /* 3815 * Remove us from the inode list. 3816 */ 3817 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3818 /* 3819 * The mkdir may be waiting on the jaddref to clear before freeing. 3820 */ 3821 if (mkdir) { 3822 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3823 ("handle_written_jaddref: Incorrect type for mkdir %s", 3824 TYPENAME(mkdir->md_list.wk_type))); 3825 mkdir->md_jaddref = NULL; 3826 diradd = mkdir->md_diradd; 3827 mkdir->md_state |= DEPCOMPLETE; 3828 complete_mkdir(mkdir); 3829 } 3830 jwork_insert(&diradd->da_jwork, jsegdep); 3831 if (jaddref->ja_state & NEWBLOCK) { 3832 inodedep->id_state |= ONDEPLIST; 3833 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3834 inodedep, id_deps); 3835 } 3836 free_jaddref(jaddref); 3837 } 3838 3839 /* 3840 * Called once a jnewblk journal is written. The allocdirect or allocindir 3841 * is placed in the bmsafemap to await notification of a written bitmap. If 3842 * the operation was canceled we add the segdep to the appropriate 3843 * dependency to free the journal space once the canceling operation 3844 * completes. 3845 */ 3846 static void 3847 handle_written_jnewblk(jnewblk) 3848 struct jnewblk *jnewblk; 3849 { 3850 struct bmsafemap *bmsafemap; 3851 struct freefrag *freefrag; 3852 struct freework *freework; 3853 struct jsegdep *jsegdep; 3854 struct newblk *newblk; 3855 3856 /* Grab the jsegdep. */ 3857 jsegdep = jnewblk->jn_jsegdep; 3858 jnewblk->jn_jsegdep = NULL; 3859 if (jnewblk->jn_dep == NULL) 3860 panic("handle_written_jnewblk: No dependency for the segdep."); 3861 switch (jnewblk->jn_dep->wk_type) { 3862 case D_NEWBLK: 3863 case D_ALLOCDIRECT: 3864 case D_ALLOCINDIR: 3865 /* 3866 * Add the written block to the bmsafemap so it can 3867 * be notified when the bitmap is on disk. 3868 */ 3869 newblk = WK_NEWBLK(jnewblk->jn_dep); 3870 newblk->nb_jnewblk = NULL; 3871 if ((newblk->nb_state & GOINGAWAY) == 0) { 3872 bmsafemap = newblk->nb_bmsafemap; 3873 newblk->nb_state |= ONDEPLIST; 3874 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3875 nb_deps); 3876 } 3877 jwork_insert(&newblk->nb_jwork, jsegdep); 3878 break; 3879 case D_FREEFRAG: 3880 /* 3881 * A newblock being removed by a freefrag when replaced by 3882 * frag extension. 3883 */ 3884 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3885 freefrag->ff_jdep = NULL; 3886 jwork_insert(&freefrag->ff_jwork, jsegdep); 3887 break; 3888 case D_FREEWORK: 3889 /* 3890 * A direct block was removed by truncate. 3891 */ 3892 freework = WK_FREEWORK(jnewblk->jn_dep); 3893 freework->fw_jnewblk = NULL; 3894 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3895 break; 3896 default: 3897 panic("handle_written_jnewblk: Unknown type %d.", 3898 jnewblk->jn_dep->wk_type); 3899 } 3900 jnewblk->jn_dep = NULL; 3901 free_jnewblk(jnewblk); 3902 } 3903 3904 /* 3905 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3906 * an in-flight allocation that has not yet been committed. Divorce us 3907 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3908 * to the worklist. 3909 */ 3910 static void 3911 cancel_jfreefrag(jfreefrag) 3912 struct jfreefrag *jfreefrag; 3913 { 3914 struct freefrag *freefrag; 3915 3916 if (jfreefrag->fr_jsegdep) { 3917 free_jsegdep(jfreefrag->fr_jsegdep); 3918 jfreefrag->fr_jsegdep = NULL; 3919 } 3920 freefrag = jfreefrag->fr_freefrag; 3921 jfreefrag->fr_freefrag = NULL; 3922 free_jfreefrag(jfreefrag); 3923 freefrag->ff_state |= DEPCOMPLETE; 3924 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3925 } 3926 3927 /* 3928 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3929 */ 3930 static void 3931 free_jfreefrag(jfreefrag) 3932 struct jfreefrag *jfreefrag; 3933 { 3934 3935 if (jfreefrag->fr_state & INPROGRESS) 3936 WORKLIST_REMOVE(&jfreefrag->fr_list); 3937 else if (jfreefrag->fr_state & ONWORKLIST) 3938 remove_from_journal(&jfreefrag->fr_list); 3939 if (jfreefrag->fr_freefrag != NULL) 3940 panic("free_jfreefrag: Still attached to a freefrag."); 3941 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3942 } 3943 3944 /* 3945 * Called when the journal write for a jfreefrag completes. The parent 3946 * freefrag is added to the worklist if this completes its dependencies. 3947 */ 3948 static void 3949 handle_written_jfreefrag(jfreefrag) 3950 struct jfreefrag *jfreefrag; 3951 { 3952 struct jsegdep *jsegdep; 3953 struct freefrag *freefrag; 3954 3955 /* Grab the jsegdep. */ 3956 jsegdep = jfreefrag->fr_jsegdep; 3957 jfreefrag->fr_jsegdep = NULL; 3958 freefrag = jfreefrag->fr_freefrag; 3959 if (freefrag == NULL) 3960 panic("handle_written_jfreefrag: No freefrag."); 3961 freefrag->ff_state |= DEPCOMPLETE; 3962 freefrag->ff_jdep = NULL; 3963 jwork_insert(&freefrag->ff_jwork, jsegdep); 3964 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3965 add_to_worklist(&freefrag->ff_list, 0); 3966 jfreefrag->fr_freefrag = NULL; 3967 free_jfreefrag(jfreefrag); 3968 } 3969 3970 /* 3971 * Called when the journal write for a jfreeblk completes. The jfreeblk 3972 * is removed from the freeblks list of pending journal writes and the 3973 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3974 * have been reclaimed. 3975 */ 3976 static void 3977 handle_written_jblkdep(jblkdep) 3978 struct jblkdep *jblkdep; 3979 { 3980 struct freeblks *freeblks; 3981 struct jsegdep *jsegdep; 3982 3983 /* Grab the jsegdep. */ 3984 jsegdep = jblkdep->jb_jsegdep; 3985 jblkdep->jb_jsegdep = NULL; 3986 freeblks = jblkdep->jb_freeblks; 3987 LIST_REMOVE(jblkdep, jb_deps); 3988 jwork_insert(&freeblks->fb_jwork, jsegdep); 3989 /* 3990 * If the freeblks is all journaled, we can add it to the worklist. 3991 */ 3992 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3993 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3994 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3995 3996 free_jblkdep(jblkdep); 3997 } 3998 3999 static struct jsegdep * 4000 newjsegdep(struct worklist *wk) 4001 { 4002 struct jsegdep *jsegdep; 4003 4004 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4005 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4006 jsegdep->jd_seg = NULL; 4007 4008 return (jsegdep); 4009 } 4010 4011 static struct jmvref * 4012 newjmvref(dp, ino, oldoff, newoff) 4013 struct inode *dp; 4014 ino_t ino; 4015 off_t oldoff; 4016 off_t newoff; 4017 { 4018 struct jmvref *jmvref; 4019 4020 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4021 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4022 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4023 jmvref->jm_parent = dp->i_number; 4024 jmvref->jm_ino = ino; 4025 jmvref->jm_oldoff = oldoff; 4026 jmvref->jm_newoff = newoff; 4027 4028 return (jmvref); 4029 } 4030 4031 /* 4032 * Allocate a new jremref that tracks the removal of ip from dp with the 4033 * directory entry offset of diroff. Mark the entry as ATTACHED and 4034 * DEPCOMPLETE as we have all the information required for the journal write 4035 * and the directory has already been removed from the buffer. The caller 4036 * is responsible for linking the jremref into the pagedep and adding it 4037 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4038 * a DOTDOT addition so handle_workitem_remove() can properly assign 4039 * the jsegdep when we're done. 4040 */ 4041 static struct jremref * 4042 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4043 off_t diroff, nlink_t nlink) 4044 { 4045 struct jremref *jremref; 4046 4047 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4048 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4049 jremref->jr_state = ATTACHED; 4050 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4051 nlink, ip->i_mode); 4052 jremref->jr_dirrem = dirrem; 4053 4054 return (jremref); 4055 } 4056 4057 static inline void 4058 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4059 nlink_t nlink, uint16_t mode) 4060 { 4061 4062 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4063 inoref->if_diroff = diroff; 4064 inoref->if_ino = ino; 4065 inoref->if_parent = parent; 4066 inoref->if_nlink = nlink; 4067 inoref->if_mode = mode; 4068 } 4069 4070 /* 4071 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4072 * directory offset may not be known until later. The caller is responsible 4073 * adding the entry to the journal when this information is available. nlink 4074 * should be the link count prior to the addition and mode is only required 4075 * to have the correct FMT. 4076 */ 4077 static struct jaddref * 4078 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4079 uint16_t mode) 4080 { 4081 struct jaddref *jaddref; 4082 4083 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4084 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4085 jaddref->ja_state = ATTACHED; 4086 jaddref->ja_mkdir = NULL; 4087 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4088 4089 return (jaddref); 4090 } 4091 4092 /* 4093 * Create a new free dependency for a freework. The caller is responsible 4094 * for adjusting the reference count when it has the lock held. The freedep 4095 * will track an outstanding bitmap write that will ultimately clear the 4096 * freework to continue. 4097 */ 4098 static struct freedep * 4099 newfreedep(struct freework *freework) 4100 { 4101 struct freedep *freedep; 4102 4103 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4104 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4105 freedep->fd_freework = freework; 4106 4107 return (freedep); 4108 } 4109 4110 /* 4111 * Free a freedep structure once the buffer it is linked to is written. If 4112 * this is the last reference to the freework schedule it for completion. 4113 */ 4114 static void 4115 free_freedep(freedep) 4116 struct freedep *freedep; 4117 { 4118 struct freework *freework; 4119 4120 freework = freedep->fd_freework; 4121 freework->fw_freeblks->fb_cgwait--; 4122 if (--freework->fw_ref == 0) 4123 freework_enqueue(freework); 4124 WORKITEM_FREE(freedep, D_FREEDEP); 4125 } 4126 4127 /* 4128 * Allocate a new freework structure that may be a level in an indirect 4129 * when parent is not NULL or a top level block when it is. The top level 4130 * freework structures are allocated without the per-filesystem lock held 4131 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4132 */ 4133 static struct freework * 4134 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4135 struct ufsmount *ump; 4136 struct freeblks *freeblks; 4137 struct freework *parent; 4138 ufs_lbn_t lbn; 4139 ufs2_daddr_t nb; 4140 int frags; 4141 int off; 4142 int journal; 4143 { 4144 struct freework *freework; 4145 4146 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4147 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4148 freework->fw_state = ATTACHED; 4149 freework->fw_jnewblk = NULL; 4150 freework->fw_freeblks = freeblks; 4151 freework->fw_parent = parent; 4152 freework->fw_lbn = lbn; 4153 freework->fw_blkno = nb; 4154 freework->fw_frags = frags; 4155 freework->fw_indir = NULL; 4156 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4157 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4158 freework->fw_start = freework->fw_off = off; 4159 if (journal) 4160 newjfreeblk(freeblks, lbn, nb, frags); 4161 if (parent == NULL) { 4162 ACQUIRE_LOCK(ump); 4163 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4164 freeblks->fb_ref++; 4165 FREE_LOCK(ump); 4166 } 4167 4168 return (freework); 4169 } 4170 4171 /* 4172 * Eliminate a jfreeblk for a block that does not need journaling. 4173 */ 4174 static void 4175 cancel_jfreeblk(freeblks, blkno) 4176 struct freeblks *freeblks; 4177 ufs2_daddr_t blkno; 4178 { 4179 struct jfreeblk *jfreeblk; 4180 struct jblkdep *jblkdep; 4181 4182 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4183 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4184 continue; 4185 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4186 if (jfreeblk->jf_blkno == blkno) 4187 break; 4188 } 4189 if (jblkdep == NULL) 4190 return; 4191 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4192 free_jsegdep(jblkdep->jb_jsegdep); 4193 LIST_REMOVE(jblkdep, jb_deps); 4194 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4195 } 4196 4197 /* 4198 * Allocate a new jfreeblk to journal top level block pointer when truncating 4199 * a file. The caller must add this to the worklist when the per-filesystem 4200 * lock is held. 4201 */ 4202 static struct jfreeblk * 4203 newjfreeblk(freeblks, lbn, blkno, frags) 4204 struct freeblks *freeblks; 4205 ufs_lbn_t lbn; 4206 ufs2_daddr_t blkno; 4207 int frags; 4208 { 4209 struct jfreeblk *jfreeblk; 4210 4211 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4212 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4213 freeblks->fb_list.wk_mp); 4214 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4215 jfreeblk->jf_dep.jb_freeblks = freeblks; 4216 jfreeblk->jf_ino = freeblks->fb_inum; 4217 jfreeblk->jf_lbn = lbn; 4218 jfreeblk->jf_blkno = blkno; 4219 jfreeblk->jf_frags = frags; 4220 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4221 4222 return (jfreeblk); 4223 } 4224 4225 /* 4226 * The journal is only prepared to handle full-size block numbers, so we 4227 * have to adjust the record to reflect the change to a full-size block. 4228 * For example, suppose we have a block made up of fragments 8-15 and 4229 * want to free its last two fragments. We are given a request that says: 4230 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4231 * where frags are the number of fragments to free and oldfrags are the 4232 * number of fragments to keep. To block align it, we have to change it to 4233 * have a valid full-size blkno, so it becomes: 4234 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4235 */ 4236 static void 4237 adjust_newfreework(freeblks, frag_offset) 4238 struct freeblks *freeblks; 4239 int frag_offset; 4240 { 4241 struct jfreeblk *jfreeblk; 4242 4243 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4244 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4245 ("adjust_newfreework: Missing freeblks dependency")); 4246 4247 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4248 jfreeblk->jf_blkno -= frag_offset; 4249 jfreeblk->jf_frags += frag_offset; 4250 } 4251 4252 /* 4253 * Allocate a new jtrunc to track a partial truncation. 4254 */ 4255 static struct jtrunc * 4256 newjtrunc(freeblks, size, extsize) 4257 struct freeblks *freeblks; 4258 off_t size; 4259 int extsize; 4260 { 4261 struct jtrunc *jtrunc; 4262 4263 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4264 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4265 freeblks->fb_list.wk_mp); 4266 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4267 jtrunc->jt_dep.jb_freeblks = freeblks; 4268 jtrunc->jt_ino = freeblks->fb_inum; 4269 jtrunc->jt_size = size; 4270 jtrunc->jt_extsize = extsize; 4271 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4272 4273 return (jtrunc); 4274 } 4275 4276 /* 4277 * If we're canceling a new bitmap we have to search for another ref 4278 * to move into the bmsafemap dep. This might be better expressed 4279 * with another structure. 4280 */ 4281 static void 4282 move_newblock_dep(jaddref, inodedep) 4283 struct jaddref *jaddref; 4284 struct inodedep *inodedep; 4285 { 4286 struct inoref *inoref; 4287 struct jaddref *jaddrefn; 4288 4289 jaddrefn = NULL; 4290 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4291 inoref = TAILQ_NEXT(inoref, if_deps)) { 4292 if ((jaddref->ja_state & NEWBLOCK) && 4293 inoref->if_list.wk_type == D_JADDREF) { 4294 jaddrefn = (struct jaddref *)inoref; 4295 break; 4296 } 4297 } 4298 if (jaddrefn == NULL) 4299 return; 4300 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4301 jaddrefn->ja_state |= jaddref->ja_state & 4302 (ATTACHED | UNDONE | NEWBLOCK); 4303 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4304 jaddref->ja_state |= ATTACHED; 4305 LIST_REMOVE(jaddref, ja_bmdeps); 4306 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4307 ja_bmdeps); 4308 } 4309 4310 /* 4311 * Cancel a jaddref either before it has been written or while it is being 4312 * written. This happens when a link is removed before the add reaches 4313 * the disk. The jaddref dependency is kept linked into the bmsafemap 4314 * and inode to prevent the link count or bitmap from reaching the disk 4315 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4316 * required. 4317 * 4318 * Returns 1 if the canceled addref requires journaling of the remove and 4319 * 0 otherwise. 4320 */ 4321 static int 4322 cancel_jaddref(jaddref, inodedep, wkhd) 4323 struct jaddref *jaddref; 4324 struct inodedep *inodedep; 4325 struct workhead *wkhd; 4326 { 4327 struct inoref *inoref; 4328 struct jsegdep *jsegdep; 4329 int needsj; 4330 4331 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4332 ("cancel_jaddref: Canceling complete jaddref")); 4333 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4334 needsj = 1; 4335 else 4336 needsj = 0; 4337 if (inodedep == NULL) 4338 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4339 0, &inodedep) == 0) 4340 panic("cancel_jaddref: Lost inodedep"); 4341 /* 4342 * We must adjust the nlink of any reference operation that follows 4343 * us so that it is consistent with the in-memory reference. This 4344 * ensures that inode nlink rollbacks always have the correct link. 4345 */ 4346 if (needsj == 0) { 4347 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4348 inoref = TAILQ_NEXT(inoref, if_deps)) { 4349 if (inoref->if_state & GOINGAWAY) 4350 break; 4351 inoref->if_nlink--; 4352 } 4353 } 4354 jsegdep = inoref_jseg(&jaddref->ja_ref); 4355 if (jaddref->ja_state & NEWBLOCK) 4356 move_newblock_dep(jaddref, inodedep); 4357 wake_worklist(&jaddref->ja_list); 4358 jaddref->ja_mkdir = NULL; 4359 if (jaddref->ja_state & INPROGRESS) { 4360 jaddref->ja_state &= ~INPROGRESS; 4361 WORKLIST_REMOVE(&jaddref->ja_list); 4362 jwork_insert(wkhd, jsegdep); 4363 } else { 4364 free_jsegdep(jsegdep); 4365 if (jaddref->ja_state & DEPCOMPLETE) 4366 remove_from_journal(&jaddref->ja_list); 4367 } 4368 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4369 /* 4370 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4371 * can arrange for them to be freed with the bitmap. Otherwise we 4372 * no longer need this addref attached to the inoreflst and it 4373 * will incorrectly adjust nlink if we leave it. 4374 */ 4375 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4376 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4377 if_deps); 4378 jaddref->ja_state |= COMPLETE; 4379 free_jaddref(jaddref); 4380 return (needsj); 4381 } 4382 /* 4383 * Leave the head of the list for jsegdeps for fast merging. 4384 */ 4385 if (LIST_FIRST(wkhd) != NULL) { 4386 jaddref->ja_state |= ONWORKLIST; 4387 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4388 } else 4389 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4390 4391 return (needsj); 4392 } 4393 4394 /* 4395 * Attempt to free a jaddref structure when some work completes. This 4396 * should only succeed once the entry is written and all dependencies have 4397 * been notified. 4398 */ 4399 static void 4400 free_jaddref(jaddref) 4401 struct jaddref *jaddref; 4402 { 4403 4404 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4405 return; 4406 if (jaddref->ja_ref.if_jsegdep) 4407 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4408 jaddref, jaddref->ja_state); 4409 if (jaddref->ja_state & NEWBLOCK) 4410 LIST_REMOVE(jaddref, ja_bmdeps); 4411 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4412 panic("free_jaddref: Bad state %p(0x%X)", 4413 jaddref, jaddref->ja_state); 4414 if (jaddref->ja_mkdir != NULL) 4415 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4416 WORKITEM_FREE(jaddref, D_JADDREF); 4417 } 4418 4419 /* 4420 * Free a jremref structure once it has been written or discarded. 4421 */ 4422 static void 4423 free_jremref(jremref) 4424 struct jremref *jremref; 4425 { 4426 4427 if (jremref->jr_ref.if_jsegdep) 4428 free_jsegdep(jremref->jr_ref.if_jsegdep); 4429 if (jremref->jr_state & INPROGRESS) 4430 panic("free_jremref: IO still pending"); 4431 WORKITEM_FREE(jremref, D_JREMREF); 4432 } 4433 4434 /* 4435 * Free a jnewblk structure. 4436 */ 4437 static void 4438 free_jnewblk(jnewblk) 4439 struct jnewblk *jnewblk; 4440 { 4441 4442 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4443 return; 4444 LIST_REMOVE(jnewblk, jn_deps); 4445 if (jnewblk->jn_dep != NULL) 4446 panic("free_jnewblk: Dependency still attached."); 4447 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4448 } 4449 4450 /* 4451 * Cancel a jnewblk which has been been made redundant by frag extension. 4452 */ 4453 static void 4454 cancel_jnewblk(jnewblk, wkhd) 4455 struct jnewblk *jnewblk; 4456 struct workhead *wkhd; 4457 { 4458 struct jsegdep *jsegdep; 4459 4460 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4461 jsegdep = jnewblk->jn_jsegdep; 4462 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4463 panic("cancel_jnewblk: Invalid state"); 4464 jnewblk->jn_jsegdep = NULL; 4465 jnewblk->jn_dep = NULL; 4466 jnewblk->jn_state |= GOINGAWAY; 4467 if (jnewblk->jn_state & INPROGRESS) { 4468 jnewblk->jn_state &= ~INPROGRESS; 4469 WORKLIST_REMOVE(&jnewblk->jn_list); 4470 jwork_insert(wkhd, jsegdep); 4471 } else { 4472 free_jsegdep(jsegdep); 4473 remove_from_journal(&jnewblk->jn_list); 4474 } 4475 wake_worklist(&jnewblk->jn_list); 4476 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4477 } 4478 4479 static void 4480 free_jblkdep(jblkdep) 4481 struct jblkdep *jblkdep; 4482 { 4483 4484 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4485 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4486 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4487 WORKITEM_FREE(jblkdep, D_JTRUNC); 4488 else 4489 panic("free_jblkdep: Unexpected type %s", 4490 TYPENAME(jblkdep->jb_list.wk_type)); 4491 } 4492 4493 /* 4494 * Free a single jseg once it is no longer referenced in memory or on 4495 * disk. Reclaim journal blocks and dependencies waiting for the segment 4496 * to disappear. 4497 */ 4498 static void 4499 free_jseg(jseg, jblocks) 4500 struct jseg *jseg; 4501 struct jblocks *jblocks; 4502 { 4503 struct freework *freework; 4504 4505 /* 4506 * Free freework structures that were lingering to indicate freed 4507 * indirect blocks that forced journal write ordering on reallocate. 4508 */ 4509 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4510 indirblk_remove(freework); 4511 if (jblocks->jb_oldestseg == jseg) 4512 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4513 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4514 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4515 KASSERT(LIST_EMPTY(&jseg->js_entries), 4516 ("free_jseg: Freed jseg has valid entries.")); 4517 WORKITEM_FREE(jseg, D_JSEG); 4518 } 4519 4520 /* 4521 * Free all jsegs that meet the criteria for being reclaimed and update 4522 * oldestseg. 4523 */ 4524 static void 4525 free_jsegs(jblocks) 4526 struct jblocks *jblocks; 4527 { 4528 struct jseg *jseg; 4529 4530 /* 4531 * Free only those jsegs which have none allocated before them to 4532 * preserve the journal space ordering. 4533 */ 4534 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4535 /* 4536 * Only reclaim space when nothing depends on this journal 4537 * set and another set has written that it is no longer 4538 * valid. 4539 */ 4540 if (jseg->js_refs != 0) { 4541 jblocks->jb_oldestseg = jseg; 4542 return; 4543 } 4544 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4545 break; 4546 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4547 break; 4548 /* 4549 * We can free jsegs that didn't write entries when 4550 * oldestwrseq == js_seq. 4551 */ 4552 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4553 jseg->js_cnt != 0) 4554 break; 4555 free_jseg(jseg, jblocks); 4556 } 4557 /* 4558 * If we exited the loop above we still must discover the 4559 * oldest valid segment. 4560 */ 4561 if (jseg) 4562 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4563 jseg = TAILQ_NEXT(jseg, js_next)) 4564 if (jseg->js_refs != 0) 4565 break; 4566 jblocks->jb_oldestseg = jseg; 4567 /* 4568 * The journal has no valid records but some jsegs may still be 4569 * waiting on oldestwrseq to advance. We force a small record 4570 * out to permit these lingering records to be reclaimed. 4571 */ 4572 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4573 jblocks->jb_needseg = 1; 4574 } 4575 4576 /* 4577 * Release one reference to a jseg and free it if the count reaches 0. This 4578 * should eventually reclaim journal space as well. 4579 */ 4580 static void 4581 rele_jseg(jseg) 4582 struct jseg *jseg; 4583 { 4584 4585 KASSERT(jseg->js_refs > 0, 4586 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4587 if (--jseg->js_refs != 0) 4588 return; 4589 free_jsegs(jseg->js_jblocks); 4590 } 4591 4592 /* 4593 * Release a jsegdep and decrement the jseg count. 4594 */ 4595 static void 4596 free_jsegdep(jsegdep) 4597 struct jsegdep *jsegdep; 4598 { 4599 4600 if (jsegdep->jd_seg) 4601 rele_jseg(jsegdep->jd_seg); 4602 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4603 } 4604 4605 /* 4606 * Wait for a journal item to make it to disk. Initiate journal processing 4607 * if required. 4608 */ 4609 static int 4610 jwait(wk, waitfor) 4611 struct worklist *wk; 4612 int waitfor; 4613 { 4614 4615 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4616 /* 4617 * Blocking journal waits cause slow synchronous behavior. Record 4618 * stats on the frequency of these blocking operations. 4619 */ 4620 if (waitfor == MNT_WAIT) { 4621 stat_journal_wait++; 4622 switch (wk->wk_type) { 4623 case D_JREMREF: 4624 case D_JMVREF: 4625 stat_jwait_filepage++; 4626 break; 4627 case D_JTRUNC: 4628 case D_JFREEBLK: 4629 stat_jwait_freeblks++; 4630 break; 4631 case D_JNEWBLK: 4632 stat_jwait_newblk++; 4633 break; 4634 case D_JADDREF: 4635 stat_jwait_inode++; 4636 break; 4637 default: 4638 break; 4639 } 4640 } 4641 /* 4642 * If IO has not started we process the journal. We can't mark the 4643 * worklist item as IOWAITING because we drop the lock while 4644 * processing the journal and the worklist entry may be freed after 4645 * this point. The caller may call back in and re-issue the request. 4646 */ 4647 if ((wk->wk_state & INPROGRESS) == 0) { 4648 softdep_process_journal(wk->wk_mp, wk, waitfor); 4649 if (waitfor != MNT_WAIT) 4650 return (EBUSY); 4651 return (0); 4652 } 4653 if (waitfor != MNT_WAIT) 4654 return (EBUSY); 4655 wait_worklist(wk, "jwait"); 4656 return (0); 4657 } 4658 4659 /* 4660 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4661 * appropriate. This is a convenience function to reduce duplicate code 4662 * for the setup and revert functions below. 4663 */ 4664 static struct inodedep * 4665 inodedep_lookup_ip(ip) 4666 struct inode *ip; 4667 { 4668 struct inodedep *inodedep; 4669 4670 KASSERT(ip->i_nlink >= ip->i_effnlink, 4671 ("inodedep_lookup_ip: bad delta")); 4672 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4673 &inodedep); 4674 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4675 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4676 4677 return (inodedep); 4678 } 4679 4680 /* 4681 * Called prior to creating a new inode and linking it to a directory. The 4682 * jaddref structure must already be allocated by softdep_setup_inomapdep 4683 * and it is discovered here so we can initialize the mode and update 4684 * nlinkdelta. 4685 */ 4686 void 4687 softdep_setup_create(dp, ip) 4688 struct inode *dp; 4689 struct inode *ip; 4690 { 4691 struct inodedep *inodedep; 4692 struct jaddref *jaddref; 4693 struct vnode *dvp; 4694 4695 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4696 ("softdep_setup_create called on non-softdep filesystem")); 4697 KASSERT(ip->i_nlink == 1, 4698 ("softdep_setup_create: Invalid link count.")); 4699 dvp = ITOV(dp); 4700 ACQUIRE_LOCK(ITOUMP(dp)); 4701 inodedep = inodedep_lookup_ip(ip); 4702 if (DOINGSUJ(dvp)) { 4703 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4704 inoreflst); 4705 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4706 ("softdep_setup_create: No addref structure present.")); 4707 } 4708 softdep_prelink(dvp, NULL); 4709 FREE_LOCK(ITOUMP(dp)); 4710 } 4711 4712 /* 4713 * Create a jaddref structure to track the addition of a DOTDOT link when 4714 * we are reparenting an inode as part of a rename. This jaddref will be 4715 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4716 * non-journaling softdep. 4717 */ 4718 void 4719 softdep_setup_dotdot_link(dp, ip) 4720 struct inode *dp; 4721 struct inode *ip; 4722 { 4723 struct inodedep *inodedep; 4724 struct jaddref *jaddref; 4725 struct vnode *dvp; 4726 4727 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4728 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4729 dvp = ITOV(dp); 4730 jaddref = NULL; 4731 /* 4732 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4733 * is used as a normal link would be. 4734 */ 4735 if (DOINGSUJ(dvp)) 4736 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4737 dp->i_effnlink - 1, dp->i_mode); 4738 ACQUIRE_LOCK(ITOUMP(dp)); 4739 inodedep = inodedep_lookup_ip(dp); 4740 if (jaddref) 4741 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4742 if_deps); 4743 softdep_prelink(dvp, ITOV(ip)); 4744 FREE_LOCK(ITOUMP(dp)); 4745 } 4746 4747 /* 4748 * Create a jaddref structure to track a new link to an inode. The directory 4749 * offset is not known until softdep_setup_directory_add or 4750 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4751 * softdep. 4752 */ 4753 void 4754 softdep_setup_link(dp, ip) 4755 struct inode *dp; 4756 struct inode *ip; 4757 { 4758 struct inodedep *inodedep; 4759 struct jaddref *jaddref; 4760 struct vnode *dvp; 4761 4762 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4763 ("softdep_setup_link called on non-softdep filesystem")); 4764 dvp = ITOV(dp); 4765 jaddref = NULL; 4766 if (DOINGSUJ(dvp)) 4767 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4768 ip->i_mode); 4769 ACQUIRE_LOCK(ITOUMP(dp)); 4770 inodedep = inodedep_lookup_ip(ip); 4771 if (jaddref) 4772 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4773 if_deps); 4774 softdep_prelink(dvp, ITOV(ip)); 4775 FREE_LOCK(ITOUMP(dp)); 4776 } 4777 4778 /* 4779 * Called to create the jaddref structures to track . and .. references as 4780 * well as lookup and further initialize the incomplete jaddref created 4781 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4782 * nlinkdelta for non-journaling softdep. 4783 */ 4784 void 4785 softdep_setup_mkdir(dp, ip) 4786 struct inode *dp; 4787 struct inode *ip; 4788 { 4789 struct inodedep *inodedep; 4790 struct jaddref *dotdotaddref; 4791 struct jaddref *dotaddref; 4792 struct jaddref *jaddref; 4793 struct vnode *dvp; 4794 4795 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4796 ("softdep_setup_mkdir called on non-softdep filesystem")); 4797 dvp = ITOV(dp); 4798 dotaddref = dotdotaddref = NULL; 4799 if (DOINGSUJ(dvp)) { 4800 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4801 ip->i_mode); 4802 dotaddref->ja_state |= MKDIR_BODY; 4803 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4804 dp->i_effnlink - 1, dp->i_mode); 4805 dotdotaddref->ja_state |= MKDIR_PARENT; 4806 } 4807 ACQUIRE_LOCK(ITOUMP(dp)); 4808 inodedep = inodedep_lookup_ip(ip); 4809 if (DOINGSUJ(dvp)) { 4810 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4811 inoreflst); 4812 KASSERT(jaddref != NULL, 4813 ("softdep_setup_mkdir: No addref structure present.")); 4814 KASSERT(jaddref->ja_parent == dp->i_number, 4815 ("softdep_setup_mkdir: bad parent %ju", 4816 (uintmax_t)jaddref->ja_parent)); 4817 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4818 if_deps); 4819 } 4820 inodedep = inodedep_lookup_ip(dp); 4821 if (DOINGSUJ(dvp)) 4822 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4823 &dotdotaddref->ja_ref, if_deps); 4824 softdep_prelink(ITOV(dp), NULL); 4825 FREE_LOCK(ITOUMP(dp)); 4826 } 4827 4828 /* 4829 * Called to track nlinkdelta of the inode and parent directories prior to 4830 * unlinking a directory. 4831 */ 4832 void 4833 softdep_setup_rmdir(dp, ip) 4834 struct inode *dp; 4835 struct inode *ip; 4836 { 4837 struct vnode *dvp; 4838 4839 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4840 ("softdep_setup_rmdir called on non-softdep filesystem")); 4841 dvp = ITOV(dp); 4842 ACQUIRE_LOCK(ITOUMP(dp)); 4843 (void) inodedep_lookup_ip(ip); 4844 (void) inodedep_lookup_ip(dp); 4845 softdep_prelink(dvp, ITOV(ip)); 4846 FREE_LOCK(ITOUMP(dp)); 4847 } 4848 4849 /* 4850 * Called to track nlinkdelta of the inode and parent directories prior to 4851 * unlink. 4852 */ 4853 void 4854 softdep_setup_unlink(dp, ip) 4855 struct inode *dp; 4856 struct inode *ip; 4857 { 4858 struct vnode *dvp; 4859 4860 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4861 ("softdep_setup_unlink called on non-softdep filesystem")); 4862 dvp = ITOV(dp); 4863 ACQUIRE_LOCK(ITOUMP(dp)); 4864 (void) inodedep_lookup_ip(ip); 4865 (void) inodedep_lookup_ip(dp); 4866 softdep_prelink(dvp, ITOV(ip)); 4867 FREE_LOCK(ITOUMP(dp)); 4868 } 4869 4870 /* 4871 * Called to release the journal structures created by a failed non-directory 4872 * creation. Adjusts nlinkdelta for non-journaling softdep. 4873 */ 4874 void 4875 softdep_revert_create(dp, ip) 4876 struct inode *dp; 4877 struct inode *ip; 4878 { 4879 struct inodedep *inodedep; 4880 struct jaddref *jaddref; 4881 struct vnode *dvp; 4882 4883 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4884 ("softdep_revert_create called on non-softdep filesystem")); 4885 dvp = ITOV(dp); 4886 ACQUIRE_LOCK(ITOUMP(dp)); 4887 inodedep = inodedep_lookup_ip(ip); 4888 if (DOINGSUJ(dvp)) { 4889 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4890 inoreflst); 4891 KASSERT(jaddref->ja_parent == dp->i_number, 4892 ("softdep_revert_create: addref parent mismatch")); 4893 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4894 } 4895 FREE_LOCK(ITOUMP(dp)); 4896 } 4897 4898 /* 4899 * Called to release the journal structures created by a failed link 4900 * addition. Adjusts nlinkdelta for non-journaling softdep. 4901 */ 4902 void 4903 softdep_revert_link(dp, ip) 4904 struct inode *dp; 4905 struct inode *ip; 4906 { 4907 struct inodedep *inodedep; 4908 struct jaddref *jaddref; 4909 struct vnode *dvp; 4910 4911 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4912 ("softdep_revert_link called on non-softdep filesystem")); 4913 dvp = ITOV(dp); 4914 ACQUIRE_LOCK(ITOUMP(dp)); 4915 inodedep = inodedep_lookup_ip(ip); 4916 if (DOINGSUJ(dvp)) { 4917 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4918 inoreflst); 4919 KASSERT(jaddref->ja_parent == dp->i_number, 4920 ("softdep_revert_link: addref parent mismatch")); 4921 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4922 } 4923 FREE_LOCK(ITOUMP(dp)); 4924 } 4925 4926 /* 4927 * Called to release the journal structures created by a failed mkdir 4928 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4929 */ 4930 void 4931 softdep_revert_mkdir(dp, ip) 4932 struct inode *dp; 4933 struct inode *ip; 4934 { 4935 struct inodedep *inodedep; 4936 struct jaddref *jaddref; 4937 struct jaddref *dotaddref; 4938 struct vnode *dvp; 4939 4940 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4941 ("softdep_revert_mkdir called on non-softdep filesystem")); 4942 dvp = ITOV(dp); 4943 4944 ACQUIRE_LOCK(ITOUMP(dp)); 4945 inodedep = inodedep_lookup_ip(dp); 4946 if (DOINGSUJ(dvp)) { 4947 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4948 inoreflst); 4949 KASSERT(jaddref->ja_parent == ip->i_number, 4950 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4951 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4952 } 4953 inodedep = inodedep_lookup_ip(ip); 4954 if (DOINGSUJ(dvp)) { 4955 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4956 inoreflst); 4957 KASSERT(jaddref->ja_parent == dp->i_number, 4958 ("softdep_revert_mkdir: addref parent mismatch")); 4959 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4960 inoreflst, if_deps); 4961 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4962 KASSERT(dotaddref->ja_parent == ip->i_number, 4963 ("softdep_revert_mkdir: dot addref parent mismatch")); 4964 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4965 } 4966 FREE_LOCK(ITOUMP(dp)); 4967 } 4968 4969 /* 4970 * Called to correct nlinkdelta after a failed rmdir. 4971 */ 4972 void 4973 softdep_revert_rmdir(dp, ip) 4974 struct inode *dp; 4975 struct inode *ip; 4976 { 4977 4978 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4979 ("softdep_revert_rmdir called on non-softdep filesystem")); 4980 ACQUIRE_LOCK(ITOUMP(dp)); 4981 (void) inodedep_lookup_ip(ip); 4982 (void) inodedep_lookup_ip(dp); 4983 FREE_LOCK(ITOUMP(dp)); 4984 } 4985 4986 /* 4987 * Protecting the freemaps (or bitmaps). 4988 * 4989 * To eliminate the need to execute fsck before mounting a filesystem 4990 * after a power failure, one must (conservatively) guarantee that the 4991 * on-disk copy of the bitmaps never indicate that a live inode or block is 4992 * free. So, when a block or inode is allocated, the bitmap should be 4993 * updated (on disk) before any new pointers. When a block or inode is 4994 * freed, the bitmap should not be updated until all pointers have been 4995 * reset. The latter dependency is handled by the delayed de-allocation 4996 * approach described below for block and inode de-allocation. The former 4997 * dependency is handled by calling the following procedure when a block or 4998 * inode is allocated. When an inode is allocated an "inodedep" is created 4999 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5000 * Each "inodedep" is also inserted into the hash indexing structure so 5001 * that any additional link additions can be made dependent on the inode 5002 * allocation. 5003 * 5004 * The ufs filesystem maintains a number of free block counts (e.g., per 5005 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5006 * in addition to the bitmaps. These counts are used to improve efficiency 5007 * during allocation and therefore must be consistent with the bitmaps. 5008 * There is no convenient way to guarantee post-crash consistency of these 5009 * counts with simple update ordering, for two main reasons: (1) The counts 5010 * and bitmaps for a single cylinder group block are not in the same disk 5011 * sector. If a disk write is interrupted (e.g., by power failure), one may 5012 * be written and the other not. (2) Some of the counts are located in the 5013 * superblock rather than the cylinder group block. So, we focus our soft 5014 * updates implementation on protecting the bitmaps. When mounting a 5015 * filesystem, we recompute the auxiliary counts from the bitmaps. 5016 */ 5017 5018 /* 5019 * Called just after updating the cylinder group block to allocate an inode. 5020 */ 5021 void 5022 softdep_setup_inomapdep(bp, ip, newinum, mode) 5023 struct buf *bp; /* buffer for cylgroup block with inode map */ 5024 struct inode *ip; /* inode related to allocation */ 5025 ino_t newinum; /* new inode number being allocated */ 5026 int mode; 5027 { 5028 struct inodedep *inodedep; 5029 struct bmsafemap *bmsafemap; 5030 struct jaddref *jaddref; 5031 struct mount *mp; 5032 struct fs *fs; 5033 5034 mp = ITOVFS(ip); 5035 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5036 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5037 fs = VFSTOUFS(mp)->um_fs; 5038 jaddref = NULL; 5039 5040 /* 5041 * Allocate the journal reference add structure so that the bitmap 5042 * can be dependent on it. 5043 */ 5044 if (MOUNTEDSUJ(mp)) { 5045 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5046 jaddref->ja_state |= NEWBLOCK; 5047 } 5048 5049 /* 5050 * Create a dependency for the newly allocated inode. 5051 * Panic if it already exists as something is seriously wrong. 5052 * Otherwise add it to the dependency list for the buffer holding 5053 * the cylinder group map from which it was allocated. 5054 * 5055 * We have to preallocate a bmsafemap entry in case it is needed 5056 * in bmsafemap_lookup since once we allocate the inodedep, we 5057 * have to finish initializing it before we can FREE_LOCK(). 5058 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5059 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5060 * creating the inodedep as it can be freed during the time 5061 * that we FREE_LOCK() while allocating the inodedep. We must 5062 * call workitem_alloc() before entering the locked section as 5063 * it also acquires the lock and we must avoid trying doing so 5064 * recursively. 5065 */ 5066 bmsafemap = malloc(sizeof(struct bmsafemap), 5067 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5068 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5069 ACQUIRE_LOCK(ITOUMP(ip)); 5070 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5071 panic("softdep_setup_inomapdep: dependency %p for new" 5072 "inode already exists", inodedep); 5073 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5074 if (jaddref) { 5075 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5076 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5077 if_deps); 5078 } else { 5079 inodedep->id_state |= ONDEPLIST; 5080 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5081 } 5082 inodedep->id_bmsafemap = bmsafemap; 5083 inodedep->id_state &= ~DEPCOMPLETE; 5084 FREE_LOCK(ITOUMP(ip)); 5085 } 5086 5087 /* 5088 * Called just after updating the cylinder group block to 5089 * allocate block or fragment. 5090 */ 5091 void 5092 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5093 struct buf *bp; /* buffer for cylgroup block with block map */ 5094 struct mount *mp; /* filesystem doing allocation */ 5095 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5096 int frags; /* Number of fragments. */ 5097 int oldfrags; /* Previous number of fragments for extend. */ 5098 { 5099 struct newblk *newblk; 5100 struct bmsafemap *bmsafemap; 5101 struct jnewblk *jnewblk; 5102 struct ufsmount *ump; 5103 struct fs *fs; 5104 5105 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5106 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5107 ump = VFSTOUFS(mp); 5108 fs = ump->um_fs; 5109 jnewblk = NULL; 5110 /* 5111 * Create a dependency for the newly allocated block. 5112 * Add it to the dependency list for the buffer holding 5113 * the cylinder group map from which it was allocated. 5114 */ 5115 if (MOUNTEDSUJ(mp)) { 5116 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5117 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5118 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5119 jnewblk->jn_state = ATTACHED; 5120 jnewblk->jn_blkno = newblkno; 5121 jnewblk->jn_frags = frags; 5122 jnewblk->jn_oldfrags = oldfrags; 5123 #ifdef INVARIANTS 5124 { 5125 struct cg *cgp; 5126 uint8_t *blksfree; 5127 long bno; 5128 int i; 5129 5130 cgp = (struct cg *)bp->b_data; 5131 blksfree = cg_blksfree(cgp); 5132 bno = dtogd(fs, jnewblk->jn_blkno); 5133 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5134 i++) { 5135 if (isset(blksfree, bno + i)) 5136 panic("softdep_setup_blkmapdep: " 5137 "free fragment %d from %d-%d " 5138 "state 0x%X dep %p", i, 5139 jnewblk->jn_oldfrags, 5140 jnewblk->jn_frags, 5141 jnewblk->jn_state, 5142 jnewblk->jn_dep); 5143 } 5144 } 5145 #endif 5146 } 5147 5148 CTR3(KTR_SUJ, 5149 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5150 newblkno, frags, oldfrags); 5151 ACQUIRE_LOCK(ump); 5152 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5153 panic("softdep_setup_blkmapdep: found block"); 5154 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5155 dtog(fs, newblkno), NULL); 5156 if (jnewblk) { 5157 jnewblk->jn_dep = (struct worklist *)newblk; 5158 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5159 } else { 5160 newblk->nb_state |= ONDEPLIST; 5161 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5162 } 5163 newblk->nb_bmsafemap = bmsafemap; 5164 newblk->nb_jnewblk = jnewblk; 5165 FREE_LOCK(ump); 5166 } 5167 5168 #define BMSAFEMAP_HASH(ump, cg) \ 5169 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5170 5171 static int 5172 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5173 struct bmsafemap_hashhead *bmsafemaphd; 5174 int cg; 5175 struct bmsafemap **bmsafemapp; 5176 { 5177 struct bmsafemap *bmsafemap; 5178 5179 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5180 if (bmsafemap->sm_cg == cg) 5181 break; 5182 if (bmsafemap) { 5183 *bmsafemapp = bmsafemap; 5184 return (1); 5185 } 5186 *bmsafemapp = NULL; 5187 5188 return (0); 5189 } 5190 5191 /* 5192 * Find the bmsafemap associated with a cylinder group buffer. 5193 * If none exists, create one. The buffer must be locked when 5194 * this routine is called and this routine must be called with 5195 * the softdep lock held. To avoid giving up the lock while 5196 * allocating a new bmsafemap, a preallocated bmsafemap may be 5197 * provided. If it is provided but not needed, it is freed. 5198 */ 5199 static struct bmsafemap * 5200 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5201 struct mount *mp; 5202 struct buf *bp; 5203 int cg; 5204 struct bmsafemap *newbmsafemap; 5205 { 5206 struct bmsafemap_hashhead *bmsafemaphd; 5207 struct bmsafemap *bmsafemap, *collision; 5208 struct worklist *wk; 5209 struct ufsmount *ump; 5210 5211 ump = VFSTOUFS(mp); 5212 LOCK_OWNED(ump); 5213 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5214 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5215 if (wk->wk_type == D_BMSAFEMAP) { 5216 if (newbmsafemap) 5217 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5218 return (WK_BMSAFEMAP(wk)); 5219 } 5220 } 5221 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5222 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5223 if (newbmsafemap) 5224 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5225 return (bmsafemap); 5226 } 5227 if (newbmsafemap) { 5228 bmsafemap = newbmsafemap; 5229 } else { 5230 FREE_LOCK(ump); 5231 bmsafemap = malloc(sizeof(struct bmsafemap), 5232 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5233 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5234 ACQUIRE_LOCK(ump); 5235 } 5236 bmsafemap->sm_buf = bp; 5237 LIST_INIT(&bmsafemap->sm_inodedephd); 5238 LIST_INIT(&bmsafemap->sm_inodedepwr); 5239 LIST_INIT(&bmsafemap->sm_newblkhd); 5240 LIST_INIT(&bmsafemap->sm_newblkwr); 5241 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5242 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5243 LIST_INIT(&bmsafemap->sm_freehd); 5244 LIST_INIT(&bmsafemap->sm_freewr); 5245 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5246 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5247 return (collision); 5248 } 5249 bmsafemap->sm_cg = cg; 5250 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5251 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5252 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5253 return (bmsafemap); 5254 } 5255 5256 /* 5257 * Direct block allocation dependencies. 5258 * 5259 * When a new block is allocated, the corresponding disk locations must be 5260 * initialized (with zeros or new data) before the on-disk inode points to 5261 * them. Also, the freemap from which the block was allocated must be 5262 * updated (on disk) before the inode's pointer. These two dependencies are 5263 * independent of each other and are needed for all file blocks and indirect 5264 * blocks that are pointed to directly by the inode. Just before the 5265 * "in-core" version of the inode is updated with a newly allocated block 5266 * number, a procedure (below) is called to setup allocation dependency 5267 * structures. These structures are removed when the corresponding 5268 * dependencies are satisfied or when the block allocation becomes obsolete 5269 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5270 * fragment that gets upgraded). All of these cases are handled in 5271 * procedures described later. 5272 * 5273 * When a file extension causes a fragment to be upgraded, either to a larger 5274 * fragment or to a full block, the on-disk location may change (if the 5275 * previous fragment could not simply be extended). In this case, the old 5276 * fragment must be de-allocated, but not until after the inode's pointer has 5277 * been updated. In most cases, this is handled by later procedures, which 5278 * will construct a "freefrag" structure to be added to the workitem queue 5279 * when the inode update is complete (or obsolete). The main exception to 5280 * this is when an allocation occurs while a pending allocation dependency 5281 * (for the same block pointer) remains. This case is handled in the main 5282 * allocation dependency setup procedure by immediately freeing the 5283 * unreferenced fragments. 5284 */ 5285 void 5286 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5287 struct inode *ip; /* inode to which block is being added */ 5288 ufs_lbn_t off; /* block pointer within inode */ 5289 ufs2_daddr_t newblkno; /* disk block number being added */ 5290 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5291 long newsize; /* size of new block */ 5292 long oldsize; /* size of new block */ 5293 struct buf *bp; /* bp for allocated block */ 5294 { 5295 struct allocdirect *adp, *oldadp; 5296 struct allocdirectlst *adphead; 5297 struct freefrag *freefrag; 5298 struct inodedep *inodedep; 5299 struct pagedep *pagedep; 5300 struct jnewblk *jnewblk; 5301 struct newblk *newblk; 5302 struct mount *mp; 5303 ufs_lbn_t lbn; 5304 5305 lbn = bp->b_lblkno; 5306 mp = ITOVFS(ip); 5307 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5308 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5309 if (oldblkno && oldblkno != newblkno) 5310 /* 5311 * The usual case is that a smaller fragment that 5312 * was just allocated has been replaced with a bigger 5313 * fragment or a full-size block. If it is marked as 5314 * B_DELWRI, the current contents have not been written 5315 * to disk. It is possible that the block was written 5316 * earlier, but very uncommon. If the block has never 5317 * been written, there is no need to send a BIO_DELETE 5318 * for it when it is freed. The gain from avoiding the 5319 * TRIMs for the common case of unwritten blocks far 5320 * exceeds the cost of the write amplification for the 5321 * uncommon case of failing to send a TRIM for a block 5322 * that had been written. 5323 */ 5324 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5325 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5326 else 5327 freefrag = NULL; 5328 5329 CTR6(KTR_SUJ, 5330 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5331 "off %jd newsize %ld oldsize %d", 5332 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5333 ACQUIRE_LOCK(ITOUMP(ip)); 5334 if (off >= UFS_NDADDR) { 5335 if (lbn > 0) 5336 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5337 lbn, off); 5338 /* allocating an indirect block */ 5339 if (oldblkno != 0) 5340 panic("softdep_setup_allocdirect: non-zero indir"); 5341 } else { 5342 if (off != lbn) 5343 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5344 lbn, off); 5345 /* 5346 * Allocating a direct block. 5347 * 5348 * If we are allocating a directory block, then we must 5349 * allocate an associated pagedep to track additions and 5350 * deletions. 5351 */ 5352 if ((ip->i_mode & IFMT) == IFDIR) 5353 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5354 &pagedep); 5355 } 5356 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5357 panic("softdep_setup_allocdirect: lost block"); 5358 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5359 ("softdep_setup_allocdirect: newblk already initialized")); 5360 /* 5361 * Convert the newblk to an allocdirect. 5362 */ 5363 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5364 adp = (struct allocdirect *)newblk; 5365 newblk->nb_freefrag = freefrag; 5366 adp->ad_offset = off; 5367 adp->ad_oldblkno = oldblkno; 5368 adp->ad_newsize = newsize; 5369 adp->ad_oldsize = oldsize; 5370 5371 /* 5372 * Finish initializing the journal. 5373 */ 5374 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5375 jnewblk->jn_ino = ip->i_number; 5376 jnewblk->jn_lbn = lbn; 5377 add_to_journal(&jnewblk->jn_list); 5378 } 5379 if (freefrag && freefrag->ff_jdep != NULL && 5380 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5381 add_to_journal(freefrag->ff_jdep); 5382 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5383 adp->ad_inodedep = inodedep; 5384 5385 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5386 /* 5387 * The list of allocdirects must be kept in sorted and ascending 5388 * order so that the rollback routines can quickly determine the 5389 * first uncommitted block (the size of the file stored on disk 5390 * ends at the end of the lowest committed fragment, or if there 5391 * are no fragments, at the end of the highest committed block). 5392 * Since files generally grow, the typical case is that the new 5393 * block is to be added at the end of the list. We speed this 5394 * special case by checking against the last allocdirect in the 5395 * list before laboriously traversing the list looking for the 5396 * insertion point. 5397 */ 5398 adphead = &inodedep->id_newinoupdt; 5399 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5400 if (oldadp == NULL || oldadp->ad_offset <= off) { 5401 /* insert at end of list */ 5402 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5403 if (oldadp != NULL && oldadp->ad_offset == off) 5404 allocdirect_merge(adphead, adp, oldadp); 5405 FREE_LOCK(ITOUMP(ip)); 5406 return; 5407 } 5408 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5409 if (oldadp->ad_offset >= off) 5410 break; 5411 } 5412 if (oldadp == NULL) 5413 panic("softdep_setup_allocdirect: lost entry"); 5414 /* insert in middle of list */ 5415 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5416 if (oldadp->ad_offset == off) 5417 allocdirect_merge(adphead, adp, oldadp); 5418 5419 FREE_LOCK(ITOUMP(ip)); 5420 } 5421 5422 /* 5423 * Merge a newer and older journal record to be stored either in a 5424 * newblock or freefrag. This handles aggregating journal records for 5425 * fragment allocation into a second record as well as replacing a 5426 * journal free with an aborted journal allocation. A segment for the 5427 * oldest record will be placed on wkhd if it has been written. If not 5428 * the segment for the newer record will suffice. 5429 */ 5430 static struct worklist * 5431 jnewblk_merge(new, old, wkhd) 5432 struct worklist *new; 5433 struct worklist *old; 5434 struct workhead *wkhd; 5435 { 5436 struct jnewblk *njnewblk; 5437 struct jnewblk *jnewblk; 5438 5439 /* Handle NULLs to simplify callers. */ 5440 if (new == NULL) 5441 return (old); 5442 if (old == NULL) 5443 return (new); 5444 /* Replace a jfreefrag with a jnewblk. */ 5445 if (new->wk_type == D_JFREEFRAG) { 5446 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5447 panic("jnewblk_merge: blkno mismatch: %p, %p", 5448 old, new); 5449 cancel_jfreefrag(WK_JFREEFRAG(new)); 5450 return (old); 5451 } 5452 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5453 panic("jnewblk_merge: Bad type: old %d new %d\n", 5454 old->wk_type, new->wk_type); 5455 /* 5456 * Handle merging of two jnewblk records that describe 5457 * different sets of fragments in the same block. 5458 */ 5459 jnewblk = WK_JNEWBLK(old); 5460 njnewblk = WK_JNEWBLK(new); 5461 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5462 panic("jnewblk_merge: Merging disparate blocks."); 5463 /* 5464 * The record may be rolled back in the cg. 5465 */ 5466 if (jnewblk->jn_state & UNDONE) { 5467 jnewblk->jn_state &= ~UNDONE; 5468 njnewblk->jn_state |= UNDONE; 5469 njnewblk->jn_state &= ~ATTACHED; 5470 } 5471 /* 5472 * We modify the newer addref and free the older so that if neither 5473 * has been written the most up-to-date copy will be on disk. If 5474 * both have been written but rolled back we only temporarily need 5475 * one of them to fix the bits when the cg write completes. 5476 */ 5477 jnewblk->jn_state |= ATTACHED | COMPLETE; 5478 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5479 cancel_jnewblk(jnewblk, wkhd); 5480 WORKLIST_REMOVE(&jnewblk->jn_list); 5481 free_jnewblk(jnewblk); 5482 return (new); 5483 } 5484 5485 /* 5486 * Replace an old allocdirect dependency with a newer one. 5487 */ 5488 static void 5489 allocdirect_merge(adphead, newadp, oldadp) 5490 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5491 struct allocdirect *newadp; /* allocdirect being added */ 5492 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5493 { 5494 struct worklist *wk; 5495 struct freefrag *freefrag; 5496 5497 freefrag = NULL; 5498 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5499 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5500 newadp->ad_oldsize != oldadp->ad_newsize || 5501 newadp->ad_offset >= UFS_NDADDR) 5502 panic("%s %jd != new %jd || old size %ld != new %ld", 5503 "allocdirect_merge: old blkno", 5504 (intmax_t)newadp->ad_oldblkno, 5505 (intmax_t)oldadp->ad_newblkno, 5506 newadp->ad_oldsize, oldadp->ad_newsize); 5507 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5508 newadp->ad_oldsize = oldadp->ad_oldsize; 5509 /* 5510 * If the old dependency had a fragment to free or had never 5511 * previously had a block allocated, then the new dependency 5512 * can immediately post its freefrag and adopt the old freefrag. 5513 * This action is done by swapping the freefrag dependencies. 5514 * The new dependency gains the old one's freefrag, and the 5515 * old one gets the new one and then immediately puts it on 5516 * the worklist when it is freed by free_newblk. It is 5517 * not possible to do this swap when the old dependency had a 5518 * non-zero size but no previous fragment to free. This condition 5519 * arises when the new block is an extension of the old block. 5520 * Here, the first part of the fragment allocated to the new 5521 * dependency is part of the block currently claimed on disk by 5522 * the old dependency, so cannot legitimately be freed until the 5523 * conditions for the new dependency are fulfilled. 5524 */ 5525 freefrag = newadp->ad_freefrag; 5526 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5527 newadp->ad_freefrag = oldadp->ad_freefrag; 5528 oldadp->ad_freefrag = freefrag; 5529 } 5530 /* 5531 * If we are tracking a new directory-block allocation, 5532 * move it from the old allocdirect to the new allocdirect. 5533 */ 5534 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5535 WORKLIST_REMOVE(wk); 5536 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5537 panic("allocdirect_merge: extra newdirblk"); 5538 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5539 } 5540 TAILQ_REMOVE(adphead, oldadp, ad_next); 5541 /* 5542 * We need to move any journal dependencies over to the freefrag 5543 * that releases this block if it exists. Otherwise we are 5544 * extending an existing block and we'll wait until that is 5545 * complete to release the journal space and extend the 5546 * new journal to cover this old space as well. 5547 */ 5548 if (freefrag == NULL) { 5549 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5550 panic("allocdirect_merge: %jd != %jd", 5551 oldadp->ad_newblkno, newadp->ad_newblkno); 5552 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5553 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5554 &oldadp->ad_block.nb_jnewblk->jn_list, 5555 &newadp->ad_block.nb_jwork); 5556 oldadp->ad_block.nb_jnewblk = NULL; 5557 cancel_newblk(&oldadp->ad_block, NULL, 5558 &newadp->ad_block.nb_jwork); 5559 } else { 5560 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5561 &freefrag->ff_list, &freefrag->ff_jwork); 5562 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5563 &freefrag->ff_jwork); 5564 } 5565 free_newblk(&oldadp->ad_block); 5566 } 5567 5568 /* 5569 * Allocate a jfreefrag structure to journal a single block free. 5570 */ 5571 static struct jfreefrag * 5572 newjfreefrag(freefrag, ip, blkno, size, lbn) 5573 struct freefrag *freefrag; 5574 struct inode *ip; 5575 ufs2_daddr_t blkno; 5576 long size; 5577 ufs_lbn_t lbn; 5578 { 5579 struct jfreefrag *jfreefrag; 5580 struct fs *fs; 5581 5582 fs = ITOFS(ip); 5583 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5584 M_SOFTDEP_FLAGS); 5585 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5586 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5587 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5588 jfreefrag->fr_ino = ip->i_number; 5589 jfreefrag->fr_lbn = lbn; 5590 jfreefrag->fr_blkno = blkno; 5591 jfreefrag->fr_frags = numfrags(fs, size); 5592 jfreefrag->fr_freefrag = freefrag; 5593 5594 return (jfreefrag); 5595 } 5596 5597 /* 5598 * Allocate a new freefrag structure. 5599 */ 5600 static struct freefrag * 5601 newfreefrag(ip, blkno, size, lbn, key) 5602 struct inode *ip; 5603 ufs2_daddr_t blkno; 5604 long size; 5605 ufs_lbn_t lbn; 5606 u_long key; 5607 { 5608 struct freefrag *freefrag; 5609 struct ufsmount *ump; 5610 struct fs *fs; 5611 5612 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5613 ip->i_number, blkno, size, lbn); 5614 ump = ITOUMP(ip); 5615 fs = ump->um_fs; 5616 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5617 panic("newfreefrag: frag size"); 5618 freefrag = malloc(sizeof(struct freefrag), 5619 M_FREEFRAG, M_SOFTDEP_FLAGS); 5620 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5621 freefrag->ff_state = ATTACHED; 5622 LIST_INIT(&freefrag->ff_jwork); 5623 freefrag->ff_inum = ip->i_number; 5624 freefrag->ff_vtype = ITOV(ip)->v_type; 5625 freefrag->ff_blkno = blkno; 5626 freefrag->ff_fragsize = size; 5627 freefrag->ff_key = key; 5628 5629 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5630 freefrag->ff_jdep = (struct worklist *) 5631 newjfreefrag(freefrag, ip, blkno, size, lbn); 5632 } else { 5633 freefrag->ff_state |= DEPCOMPLETE; 5634 freefrag->ff_jdep = NULL; 5635 } 5636 5637 return (freefrag); 5638 } 5639 5640 /* 5641 * This workitem de-allocates fragments that were replaced during 5642 * file block allocation. 5643 */ 5644 static void 5645 handle_workitem_freefrag(freefrag) 5646 struct freefrag *freefrag; 5647 { 5648 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5649 struct workhead wkhd; 5650 5651 CTR3(KTR_SUJ, 5652 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5653 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5654 /* 5655 * It would be illegal to add new completion items to the 5656 * freefrag after it was schedule to be done so it must be 5657 * safe to modify the list head here. 5658 */ 5659 LIST_INIT(&wkhd); 5660 ACQUIRE_LOCK(ump); 5661 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5662 /* 5663 * If the journal has not been written we must cancel it here. 5664 */ 5665 if (freefrag->ff_jdep) { 5666 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5667 panic("handle_workitem_freefrag: Unexpected type %d\n", 5668 freefrag->ff_jdep->wk_type); 5669 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5670 } 5671 FREE_LOCK(ump); 5672 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5673 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5674 &wkhd, freefrag->ff_key); 5675 ACQUIRE_LOCK(ump); 5676 WORKITEM_FREE(freefrag, D_FREEFRAG); 5677 FREE_LOCK(ump); 5678 } 5679 5680 /* 5681 * Set up a dependency structure for an external attributes data block. 5682 * This routine follows much of the structure of softdep_setup_allocdirect. 5683 * See the description of softdep_setup_allocdirect above for details. 5684 */ 5685 void 5686 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5687 struct inode *ip; 5688 ufs_lbn_t off; 5689 ufs2_daddr_t newblkno; 5690 ufs2_daddr_t oldblkno; 5691 long newsize; 5692 long oldsize; 5693 struct buf *bp; 5694 { 5695 struct allocdirect *adp, *oldadp; 5696 struct allocdirectlst *adphead; 5697 struct freefrag *freefrag; 5698 struct inodedep *inodedep; 5699 struct jnewblk *jnewblk; 5700 struct newblk *newblk; 5701 struct mount *mp; 5702 struct ufsmount *ump; 5703 ufs_lbn_t lbn; 5704 5705 mp = ITOVFS(ip); 5706 ump = VFSTOUFS(mp); 5707 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5708 ("softdep_setup_allocext called on non-softdep filesystem")); 5709 KASSERT(off < UFS_NXADDR, 5710 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5711 5712 lbn = bp->b_lblkno; 5713 if (oldblkno && oldblkno != newblkno) 5714 /* 5715 * The usual case is that a smaller fragment that 5716 * was just allocated has been replaced with a bigger 5717 * fragment or a full-size block. If it is marked as 5718 * B_DELWRI, the current contents have not been written 5719 * to disk. It is possible that the block was written 5720 * earlier, but very uncommon. If the block has never 5721 * been written, there is no need to send a BIO_DELETE 5722 * for it when it is freed. The gain from avoiding the 5723 * TRIMs for the common case of unwritten blocks far 5724 * exceeds the cost of the write amplification for the 5725 * uncommon case of failing to send a TRIM for a block 5726 * that had been written. 5727 */ 5728 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5729 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5730 else 5731 freefrag = NULL; 5732 5733 ACQUIRE_LOCK(ump); 5734 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5735 panic("softdep_setup_allocext: lost block"); 5736 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5737 ("softdep_setup_allocext: newblk already initialized")); 5738 /* 5739 * Convert the newblk to an allocdirect. 5740 */ 5741 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5742 adp = (struct allocdirect *)newblk; 5743 newblk->nb_freefrag = freefrag; 5744 adp->ad_offset = off; 5745 adp->ad_oldblkno = oldblkno; 5746 adp->ad_newsize = newsize; 5747 adp->ad_oldsize = oldsize; 5748 adp->ad_state |= EXTDATA; 5749 5750 /* 5751 * Finish initializing the journal. 5752 */ 5753 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5754 jnewblk->jn_ino = ip->i_number; 5755 jnewblk->jn_lbn = lbn; 5756 add_to_journal(&jnewblk->jn_list); 5757 } 5758 if (freefrag && freefrag->ff_jdep != NULL && 5759 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5760 add_to_journal(freefrag->ff_jdep); 5761 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5762 adp->ad_inodedep = inodedep; 5763 5764 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5765 /* 5766 * The list of allocdirects must be kept in sorted and ascending 5767 * order so that the rollback routines can quickly determine the 5768 * first uncommitted block (the size of the file stored on disk 5769 * ends at the end of the lowest committed fragment, or if there 5770 * are no fragments, at the end of the highest committed block). 5771 * Since files generally grow, the typical case is that the new 5772 * block is to be added at the end of the list. We speed this 5773 * special case by checking against the last allocdirect in the 5774 * list before laboriously traversing the list looking for the 5775 * insertion point. 5776 */ 5777 adphead = &inodedep->id_newextupdt; 5778 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5779 if (oldadp == NULL || oldadp->ad_offset <= off) { 5780 /* insert at end of list */ 5781 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5782 if (oldadp != NULL && oldadp->ad_offset == off) 5783 allocdirect_merge(adphead, adp, oldadp); 5784 FREE_LOCK(ump); 5785 return; 5786 } 5787 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5788 if (oldadp->ad_offset >= off) 5789 break; 5790 } 5791 if (oldadp == NULL) 5792 panic("softdep_setup_allocext: lost entry"); 5793 /* insert in middle of list */ 5794 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5795 if (oldadp->ad_offset == off) 5796 allocdirect_merge(adphead, adp, oldadp); 5797 FREE_LOCK(ump); 5798 } 5799 5800 /* 5801 * Indirect block allocation dependencies. 5802 * 5803 * The same dependencies that exist for a direct block also exist when 5804 * a new block is allocated and pointed to by an entry in a block of 5805 * indirect pointers. The undo/redo states described above are also 5806 * used here. Because an indirect block contains many pointers that 5807 * may have dependencies, a second copy of the entire in-memory indirect 5808 * block is kept. The buffer cache copy is always completely up-to-date. 5809 * The second copy, which is used only as a source for disk writes, 5810 * contains only the safe pointers (i.e., those that have no remaining 5811 * update dependencies). The second copy is freed when all pointers 5812 * are safe. The cache is not allowed to replace indirect blocks with 5813 * pending update dependencies. If a buffer containing an indirect 5814 * block with dependencies is written, these routines will mark it 5815 * dirty again. It can only be successfully written once all the 5816 * dependencies are removed. The ffs_fsync routine in conjunction with 5817 * softdep_sync_metadata work together to get all the dependencies 5818 * removed so that a file can be successfully written to disk. Three 5819 * procedures are used when setting up indirect block pointer 5820 * dependencies. The division is necessary because of the organization 5821 * of the "balloc" routine and because of the distinction between file 5822 * pages and file metadata blocks. 5823 */ 5824 5825 /* 5826 * Allocate a new allocindir structure. 5827 */ 5828 static struct allocindir * 5829 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5830 struct inode *ip; /* inode for file being extended */ 5831 int ptrno; /* offset of pointer in indirect block */ 5832 ufs2_daddr_t newblkno; /* disk block number being added */ 5833 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5834 ufs_lbn_t lbn; 5835 { 5836 struct newblk *newblk; 5837 struct allocindir *aip; 5838 struct freefrag *freefrag; 5839 struct jnewblk *jnewblk; 5840 5841 if (oldblkno) 5842 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 5843 SINGLETON_KEY); 5844 else 5845 freefrag = NULL; 5846 ACQUIRE_LOCK(ITOUMP(ip)); 5847 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5848 panic("new_allocindir: lost block"); 5849 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5850 ("newallocindir: newblk already initialized")); 5851 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5852 newblk->nb_freefrag = freefrag; 5853 aip = (struct allocindir *)newblk; 5854 aip->ai_offset = ptrno; 5855 aip->ai_oldblkno = oldblkno; 5856 aip->ai_lbn = lbn; 5857 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5858 jnewblk->jn_ino = ip->i_number; 5859 jnewblk->jn_lbn = lbn; 5860 add_to_journal(&jnewblk->jn_list); 5861 } 5862 if (freefrag && freefrag->ff_jdep != NULL && 5863 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5864 add_to_journal(freefrag->ff_jdep); 5865 return (aip); 5866 } 5867 5868 /* 5869 * Called just before setting an indirect block pointer 5870 * to a newly allocated file page. 5871 */ 5872 void 5873 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5874 struct inode *ip; /* inode for file being extended */ 5875 ufs_lbn_t lbn; /* allocated block number within file */ 5876 struct buf *bp; /* buffer with indirect blk referencing page */ 5877 int ptrno; /* offset of pointer in indirect block */ 5878 ufs2_daddr_t newblkno; /* disk block number being added */ 5879 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5880 struct buf *nbp; /* buffer holding allocated page */ 5881 { 5882 struct inodedep *inodedep; 5883 struct freefrag *freefrag; 5884 struct allocindir *aip; 5885 struct pagedep *pagedep; 5886 struct mount *mp; 5887 struct ufsmount *ump; 5888 5889 mp = ITOVFS(ip); 5890 ump = VFSTOUFS(mp); 5891 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5892 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5893 KASSERT(lbn == nbp->b_lblkno, 5894 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5895 lbn, bp->b_lblkno)); 5896 CTR4(KTR_SUJ, 5897 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5898 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5899 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5900 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5901 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5902 /* 5903 * If we are allocating a directory page, then we must 5904 * allocate an associated pagedep to track additions and 5905 * deletions. 5906 */ 5907 if ((ip->i_mode & IFMT) == IFDIR) 5908 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5909 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5910 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5911 FREE_LOCK(ump); 5912 if (freefrag) 5913 handle_workitem_freefrag(freefrag); 5914 } 5915 5916 /* 5917 * Called just before setting an indirect block pointer to a 5918 * newly allocated indirect block. 5919 */ 5920 void 5921 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5922 struct buf *nbp; /* newly allocated indirect block */ 5923 struct inode *ip; /* inode for file being extended */ 5924 struct buf *bp; /* indirect block referencing allocated block */ 5925 int ptrno; /* offset of pointer in indirect block */ 5926 ufs2_daddr_t newblkno; /* disk block number being added */ 5927 { 5928 struct inodedep *inodedep; 5929 struct allocindir *aip; 5930 struct ufsmount *ump; 5931 ufs_lbn_t lbn; 5932 5933 ump = ITOUMP(ip); 5934 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5935 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5936 CTR3(KTR_SUJ, 5937 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5938 ip->i_number, newblkno, ptrno); 5939 lbn = nbp->b_lblkno; 5940 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5941 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5942 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5943 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5944 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5945 panic("softdep_setup_allocindir_meta: Block already existed"); 5946 FREE_LOCK(ump); 5947 } 5948 5949 static void 5950 indirdep_complete(indirdep) 5951 struct indirdep *indirdep; 5952 { 5953 struct allocindir *aip; 5954 5955 LIST_REMOVE(indirdep, ir_next); 5956 indirdep->ir_state |= DEPCOMPLETE; 5957 5958 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5959 LIST_REMOVE(aip, ai_next); 5960 free_newblk(&aip->ai_block); 5961 } 5962 /* 5963 * If this indirdep is not attached to a buf it was simply waiting 5964 * on completion to clear completehd. free_indirdep() asserts 5965 * that nothing is dangling. 5966 */ 5967 if ((indirdep->ir_state & ONWORKLIST) == 0) 5968 free_indirdep(indirdep); 5969 } 5970 5971 static struct indirdep * 5972 indirdep_lookup(mp, ip, bp) 5973 struct mount *mp; 5974 struct inode *ip; 5975 struct buf *bp; 5976 { 5977 struct indirdep *indirdep, *newindirdep; 5978 struct newblk *newblk; 5979 struct ufsmount *ump; 5980 struct worklist *wk; 5981 struct fs *fs; 5982 ufs2_daddr_t blkno; 5983 5984 ump = VFSTOUFS(mp); 5985 LOCK_OWNED(ump); 5986 indirdep = NULL; 5987 newindirdep = NULL; 5988 fs = ump->um_fs; 5989 for (;;) { 5990 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5991 if (wk->wk_type != D_INDIRDEP) 5992 continue; 5993 indirdep = WK_INDIRDEP(wk); 5994 break; 5995 } 5996 /* Found on the buffer worklist, no new structure to free. */ 5997 if (indirdep != NULL && newindirdep == NULL) 5998 return (indirdep); 5999 if (indirdep != NULL && newindirdep != NULL) 6000 panic("indirdep_lookup: simultaneous create"); 6001 /* None found on the buffer and a new structure is ready. */ 6002 if (indirdep == NULL && newindirdep != NULL) 6003 break; 6004 /* None found and no new structure available. */ 6005 FREE_LOCK(ump); 6006 newindirdep = malloc(sizeof(struct indirdep), 6007 M_INDIRDEP, M_SOFTDEP_FLAGS); 6008 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6009 newindirdep->ir_state = ATTACHED; 6010 if (I_IS_UFS1(ip)) 6011 newindirdep->ir_state |= UFS1FMT; 6012 TAILQ_INIT(&newindirdep->ir_trunc); 6013 newindirdep->ir_saveddata = NULL; 6014 LIST_INIT(&newindirdep->ir_deplisthd); 6015 LIST_INIT(&newindirdep->ir_donehd); 6016 LIST_INIT(&newindirdep->ir_writehd); 6017 LIST_INIT(&newindirdep->ir_completehd); 6018 if (bp->b_blkno == bp->b_lblkno) { 6019 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6020 NULL, NULL); 6021 bp->b_blkno = blkno; 6022 } 6023 newindirdep->ir_freeblks = NULL; 6024 newindirdep->ir_savebp = 6025 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6026 newindirdep->ir_bp = bp; 6027 BUF_KERNPROC(newindirdep->ir_savebp); 6028 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6029 ACQUIRE_LOCK(ump); 6030 } 6031 indirdep = newindirdep; 6032 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6033 /* 6034 * If the block is not yet allocated we don't set DEPCOMPLETE so 6035 * that we don't free dependencies until the pointers are valid. 6036 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6037 * than using the hash. 6038 */ 6039 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6040 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6041 else 6042 indirdep->ir_state |= DEPCOMPLETE; 6043 return (indirdep); 6044 } 6045 6046 /* 6047 * Called to finish the allocation of the "aip" allocated 6048 * by one of the two routines above. 6049 */ 6050 static struct freefrag * 6051 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6052 struct buf *bp; /* in-memory copy of the indirect block */ 6053 struct inode *ip; /* inode for file being extended */ 6054 struct inodedep *inodedep; /* Inodedep for ip */ 6055 struct allocindir *aip; /* allocindir allocated by the above routines */ 6056 ufs_lbn_t lbn; /* Logical block number for this block. */ 6057 { 6058 struct fs *fs; 6059 struct indirdep *indirdep; 6060 struct allocindir *oldaip; 6061 struct freefrag *freefrag; 6062 struct mount *mp; 6063 struct ufsmount *ump; 6064 6065 mp = ITOVFS(ip); 6066 ump = VFSTOUFS(mp); 6067 LOCK_OWNED(ump); 6068 fs = ump->um_fs; 6069 if (bp->b_lblkno >= 0) 6070 panic("setup_allocindir_phase2: not indir blk"); 6071 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6072 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6073 indirdep = indirdep_lookup(mp, ip, bp); 6074 KASSERT(indirdep->ir_savebp != NULL, 6075 ("setup_allocindir_phase2 NULL ir_savebp")); 6076 aip->ai_indirdep = indirdep; 6077 /* 6078 * Check for an unwritten dependency for this indirect offset. If 6079 * there is, merge the old dependency into the new one. This happens 6080 * as a result of reallocblk only. 6081 */ 6082 freefrag = NULL; 6083 if (aip->ai_oldblkno != 0) { 6084 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6085 if (oldaip->ai_offset == aip->ai_offset) { 6086 freefrag = allocindir_merge(aip, oldaip); 6087 goto done; 6088 } 6089 } 6090 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6091 if (oldaip->ai_offset == aip->ai_offset) { 6092 freefrag = allocindir_merge(aip, oldaip); 6093 goto done; 6094 } 6095 } 6096 } 6097 done: 6098 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6099 return (freefrag); 6100 } 6101 6102 /* 6103 * Merge two allocindirs which refer to the same block. Move newblock 6104 * dependencies and setup the freefrags appropriately. 6105 */ 6106 static struct freefrag * 6107 allocindir_merge(aip, oldaip) 6108 struct allocindir *aip; 6109 struct allocindir *oldaip; 6110 { 6111 struct freefrag *freefrag; 6112 struct worklist *wk; 6113 6114 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6115 panic("allocindir_merge: blkno"); 6116 aip->ai_oldblkno = oldaip->ai_oldblkno; 6117 freefrag = aip->ai_freefrag; 6118 aip->ai_freefrag = oldaip->ai_freefrag; 6119 oldaip->ai_freefrag = NULL; 6120 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6121 /* 6122 * If we are tracking a new directory-block allocation, 6123 * move it from the old allocindir to the new allocindir. 6124 */ 6125 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6126 WORKLIST_REMOVE(wk); 6127 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6128 panic("allocindir_merge: extra newdirblk"); 6129 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6130 } 6131 /* 6132 * We can skip journaling for this freefrag and just complete 6133 * any pending journal work for the allocindir that is being 6134 * removed after the freefrag completes. 6135 */ 6136 if (freefrag->ff_jdep) 6137 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6138 LIST_REMOVE(oldaip, ai_next); 6139 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6140 &freefrag->ff_list, &freefrag->ff_jwork); 6141 free_newblk(&oldaip->ai_block); 6142 6143 return (freefrag); 6144 } 6145 6146 static inline void 6147 setup_freedirect(freeblks, ip, i, needj) 6148 struct freeblks *freeblks; 6149 struct inode *ip; 6150 int i; 6151 int needj; 6152 { 6153 struct ufsmount *ump; 6154 ufs2_daddr_t blkno; 6155 int frags; 6156 6157 blkno = DIP(ip, i_db[i]); 6158 if (blkno == 0) 6159 return; 6160 DIP_SET(ip, i_db[i], 0); 6161 ump = ITOUMP(ip); 6162 frags = sblksize(ump->um_fs, ip->i_size, i); 6163 frags = numfrags(ump->um_fs, frags); 6164 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6165 } 6166 6167 static inline void 6168 setup_freeext(freeblks, ip, i, needj) 6169 struct freeblks *freeblks; 6170 struct inode *ip; 6171 int i; 6172 int needj; 6173 { 6174 struct ufsmount *ump; 6175 ufs2_daddr_t blkno; 6176 int frags; 6177 6178 blkno = ip->i_din2->di_extb[i]; 6179 if (blkno == 0) 6180 return; 6181 ip->i_din2->di_extb[i] = 0; 6182 ump = ITOUMP(ip); 6183 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6184 frags = numfrags(ump->um_fs, frags); 6185 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6186 } 6187 6188 static inline void 6189 setup_freeindir(freeblks, ip, i, lbn, needj) 6190 struct freeblks *freeblks; 6191 struct inode *ip; 6192 int i; 6193 ufs_lbn_t lbn; 6194 int needj; 6195 { 6196 struct ufsmount *ump; 6197 ufs2_daddr_t blkno; 6198 6199 blkno = DIP(ip, i_ib[i]); 6200 if (blkno == 0) 6201 return; 6202 DIP_SET(ip, i_ib[i], 0); 6203 ump = ITOUMP(ip); 6204 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6205 0, needj); 6206 } 6207 6208 static inline struct freeblks * 6209 newfreeblks(mp, ip) 6210 struct mount *mp; 6211 struct inode *ip; 6212 { 6213 struct freeblks *freeblks; 6214 6215 freeblks = malloc(sizeof(struct freeblks), 6216 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6217 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6218 LIST_INIT(&freeblks->fb_jblkdephd); 6219 LIST_INIT(&freeblks->fb_jwork); 6220 freeblks->fb_ref = 0; 6221 freeblks->fb_cgwait = 0; 6222 freeblks->fb_state = ATTACHED; 6223 freeblks->fb_uid = ip->i_uid; 6224 freeblks->fb_inum = ip->i_number; 6225 freeblks->fb_vtype = ITOV(ip)->v_type; 6226 freeblks->fb_modrev = DIP(ip, i_modrev); 6227 freeblks->fb_devvp = ITODEVVP(ip); 6228 freeblks->fb_chkcnt = 0; 6229 freeblks->fb_len = 0; 6230 6231 return (freeblks); 6232 } 6233 6234 static void 6235 trunc_indirdep(indirdep, freeblks, bp, off) 6236 struct indirdep *indirdep; 6237 struct freeblks *freeblks; 6238 struct buf *bp; 6239 int off; 6240 { 6241 struct allocindir *aip, *aipn; 6242 6243 /* 6244 * The first set of allocindirs won't be in savedbp. 6245 */ 6246 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6247 if (aip->ai_offset > off) 6248 cancel_allocindir(aip, bp, freeblks, 1); 6249 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6250 if (aip->ai_offset > off) 6251 cancel_allocindir(aip, bp, freeblks, 1); 6252 /* 6253 * These will exist in savedbp. 6254 */ 6255 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6256 if (aip->ai_offset > off) 6257 cancel_allocindir(aip, NULL, freeblks, 0); 6258 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6259 if (aip->ai_offset > off) 6260 cancel_allocindir(aip, NULL, freeblks, 0); 6261 } 6262 6263 /* 6264 * Follow the chain of indirects down to lastlbn creating a freework 6265 * structure for each. This will be used to start indir_trunc() at 6266 * the right offset and create the journal records for the parrtial 6267 * truncation. A second step will handle the truncated dependencies. 6268 */ 6269 static int 6270 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6271 struct freeblks *freeblks; 6272 struct inode *ip; 6273 ufs_lbn_t lbn; 6274 ufs_lbn_t lastlbn; 6275 ufs2_daddr_t blkno; 6276 { 6277 struct indirdep *indirdep; 6278 struct indirdep *indirn; 6279 struct freework *freework; 6280 struct newblk *newblk; 6281 struct mount *mp; 6282 struct ufsmount *ump; 6283 struct buf *bp; 6284 uint8_t *start; 6285 uint8_t *end; 6286 ufs_lbn_t lbnadd; 6287 int level; 6288 int error; 6289 int off; 6290 6291 6292 freework = NULL; 6293 if (blkno == 0) 6294 return (0); 6295 mp = freeblks->fb_list.wk_mp; 6296 ump = VFSTOUFS(mp); 6297 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6298 if ((bp->b_flags & B_CACHE) == 0) { 6299 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6300 bp->b_iocmd = BIO_READ; 6301 bp->b_flags &= ~B_INVAL; 6302 bp->b_ioflags &= ~BIO_ERROR; 6303 vfs_busy_pages(bp, 0); 6304 bp->b_iooffset = dbtob(bp->b_blkno); 6305 bstrategy(bp); 6306 #ifdef RACCT 6307 if (racct_enable) { 6308 PROC_LOCK(curproc); 6309 racct_add_buf(curproc, bp, 0); 6310 PROC_UNLOCK(curproc); 6311 } 6312 #endif /* RACCT */ 6313 curthread->td_ru.ru_inblock++; 6314 error = bufwait(bp); 6315 if (error) { 6316 brelse(bp); 6317 return (error); 6318 } 6319 } 6320 level = lbn_level(lbn); 6321 lbnadd = lbn_offset(ump->um_fs, level); 6322 /* 6323 * Compute the offset of the last block we want to keep. Store 6324 * in the freework the first block we want to completely free. 6325 */ 6326 off = (lastlbn - -(lbn + level)) / lbnadd; 6327 if (off + 1 == NINDIR(ump->um_fs)) 6328 goto nowork; 6329 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6330 /* 6331 * Link the freework into the indirdep. This will prevent any new 6332 * allocations from proceeding until we are finished with the 6333 * truncate and the block is written. 6334 */ 6335 ACQUIRE_LOCK(ump); 6336 indirdep = indirdep_lookup(mp, ip, bp); 6337 if (indirdep->ir_freeblks) 6338 panic("setup_trunc_indir: indirdep already truncated."); 6339 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6340 freework->fw_indir = indirdep; 6341 /* 6342 * Cancel any allocindirs that will not make it to disk. 6343 * We have to do this for all copies of the indirdep that 6344 * live on this newblk. 6345 */ 6346 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6347 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6348 &newblk) == 0) 6349 panic("setup_trunc_indir: lost block"); 6350 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6351 trunc_indirdep(indirn, freeblks, bp, off); 6352 } else 6353 trunc_indirdep(indirdep, freeblks, bp, off); 6354 FREE_LOCK(ump); 6355 /* 6356 * Creation is protected by the buf lock. The saveddata is only 6357 * needed if a full truncation follows a partial truncation but it 6358 * is difficult to allocate in that case so we fetch it anyway. 6359 */ 6360 if (indirdep->ir_saveddata == NULL) 6361 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6362 M_SOFTDEP_FLAGS); 6363 nowork: 6364 /* Fetch the blkno of the child and the zero start offset. */ 6365 if (I_IS_UFS1(ip)) { 6366 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6367 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6368 } else { 6369 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6370 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6371 } 6372 if (freework) { 6373 /* Zero the truncated pointers. */ 6374 end = bp->b_data + bp->b_bcount; 6375 bzero(start, end - start); 6376 bdwrite(bp); 6377 } else 6378 bqrelse(bp); 6379 if (level == 0) 6380 return (0); 6381 lbn++; /* adjust level */ 6382 lbn -= (off * lbnadd); 6383 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6384 } 6385 6386 /* 6387 * Complete the partial truncation of an indirect block setup by 6388 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6389 * copy and writes them to disk before the freeblks is allowed to complete. 6390 */ 6391 static void 6392 complete_trunc_indir(freework) 6393 struct freework *freework; 6394 { 6395 struct freework *fwn; 6396 struct indirdep *indirdep; 6397 struct ufsmount *ump; 6398 struct buf *bp; 6399 uintptr_t start; 6400 int count; 6401 6402 ump = VFSTOUFS(freework->fw_list.wk_mp); 6403 LOCK_OWNED(ump); 6404 indirdep = freework->fw_indir; 6405 for (;;) { 6406 bp = indirdep->ir_bp; 6407 /* See if the block was discarded. */ 6408 if (bp == NULL) 6409 break; 6410 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6411 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6412 break; 6413 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6414 LOCK_PTR(ump)) == 0) 6415 BUF_UNLOCK(bp); 6416 ACQUIRE_LOCK(ump); 6417 } 6418 freework->fw_state |= DEPCOMPLETE; 6419 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6420 /* 6421 * Zero the pointers in the saved copy. 6422 */ 6423 if (indirdep->ir_state & UFS1FMT) 6424 start = sizeof(ufs1_daddr_t); 6425 else 6426 start = sizeof(ufs2_daddr_t); 6427 start *= freework->fw_start; 6428 count = indirdep->ir_savebp->b_bcount - start; 6429 start += (uintptr_t)indirdep->ir_savebp->b_data; 6430 bzero((char *)start, count); 6431 /* 6432 * We need to start the next truncation in the list if it has not 6433 * been started yet. 6434 */ 6435 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6436 if (fwn != NULL) { 6437 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6438 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6439 if ((fwn->fw_state & ONWORKLIST) == 0) 6440 freework_enqueue(fwn); 6441 } 6442 /* 6443 * If bp is NULL the block was fully truncated, restore 6444 * the saved block list otherwise free it if it is no 6445 * longer needed. 6446 */ 6447 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6448 if (bp == NULL) 6449 bcopy(indirdep->ir_saveddata, 6450 indirdep->ir_savebp->b_data, 6451 indirdep->ir_savebp->b_bcount); 6452 free(indirdep->ir_saveddata, M_INDIRDEP); 6453 indirdep->ir_saveddata = NULL; 6454 } 6455 /* 6456 * When bp is NULL there is a full truncation pending. We 6457 * must wait for this full truncation to be journaled before 6458 * we can release this freework because the disk pointers will 6459 * never be written as zero. 6460 */ 6461 if (bp == NULL) { 6462 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6463 handle_written_freework(freework); 6464 else 6465 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6466 &freework->fw_list); 6467 } else { 6468 /* Complete when the real copy is written. */ 6469 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6470 BUF_UNLOCK(bp); 6471 } 6472 } 6473 6474 /* 6475 * Calculate the number of blocks we are going to release where datablocks 6476 * is the current total and length is the new file size. 6477 */ 6478 static ufs2_daddr_t 6479 blkcount(fs, datablocks, length) 6480 struct fs *fs; 6481 ufs2_daddr_t datablocks; 6482 off_t length; 6483 { 6484 off_t totblks, numblks; 6485 6486 totblks = 0; 6487 numblks = howmany(length, fs->fs_bsize); 6488 if (numblks <= UFS_NDADDR) { 6489 totblks = howmany(length, fs->fs_fsize); 6490 goto out; 6491 } 6492 totblks = blkstofrags(fs, numblks); 6493 numblks -= UFS_NDADDR; 6494 /* 6495 * Count all single, then double, then triple indirects required. 6496 * Subtracting one indirects worth of blocks for each pass 6497 * acknowledges one of each pointed to by the inode. 6498 */ 6499 for (;;) { 6500 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6501 numblks -= NINDIR(fs); 6502 if (numblks <= 0) 6503 break; 6504 numblks = howmany(numblks, NINDIR(fs)); 6505 } 6506 out: 6507 totblks = fsbtodb(fs, totblks); 6508 /* 6509 * Handle sparse files. We can't reclaim more blocks than the inode 6510 * references. We will correct it later in handle_complete_freeblks() 6511 * when we know the real count. 6512 */ 6513 if (totblks > datablocks) 6514 return (0); 6515 return (datablocks - totblks); 6516 } 6517 6518 /* 6519 * Handle freeblocks for journaled softupdate filesystems. 6520 * 6521 * Contrary to normal softupdates, we must preserve the block pointers in 6522 * indirects until their subordinates are free. This is to avoid journaling 6523 * every block that is freed which may consume more space than the journal 6524 * itself. The recovery program will see the free block journals at the 6525 * base of the truncated area and traverse them to reclaim space. The 6526 * pointers in the inode may be cleared immediately after the journal 6527 * records are written because each direct and indirect pointer in the 6528 * inode is recorded in a journal. This permits full truncation to proceed 6529 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6530 * 6531 * The algorithm is as follows: 6532 * 1) Traverse the in-memory state and create journal entries to release 6533 * the relevant blocks and full indirect trees. 6534 * 2) Traverse the indirect block chain adding partial truncation freework 6535 * records to indirects in the path to lastlbn. The freework will 6536 * prevent new allocation dependencies from being satisfied in this 6537 * indirect until the truncation completes. 6538 * 3) Read and lock the inode block, performing an update with the new size 6539 * and pointers. This prevents truncated data from becoming valid on 6540 * disk through step 4. 6541 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6542 * eliminate journal work for those records that do not require it. 6543 * 5) Schedule the journal records to be written followed by the inode block. 6544 * 6) Allocate any necessary frags for the end of file. 6545 * 7) Zero any partially truncated blocks. 6546 * 6547 * From this truncation proceeds asynchronously using the freework and 6548 * indir_trunc machinery. The file will not be extended again into a 6549 * partially truncated indirect block until all work is completed but 6550 * the normal dependency mechanism ensures that it is rolled back/forward 6551 * as appropriate. Further truncation may occur without delay and is 6552 * serialized in indir_trunc(). 6553 */ 6554 void 6555 softdep_journal_freeblocks(ip, cred, length, flags) 6556 struct inode *ip; /* The inode whose length is to be reduced */ 6557 struct ucred *cred; 6558 off_t length; /* The new length for the file */ 6559 int flags; /* IO_EXT and/or IO_NORMAL */ 6560 { 6561 struct freeblks *freeblks, *fbn; 6562 struct worklist *wk, *wkn; 6563 struct inodedep *inodedep; 6564 struct jblkdep *jblkdep; 6565 struct allocdirect *adp, *adpn; 6566 struct ufsmount *ump; 6567 struct fs *fs; 6568 struct buf *bp; 6569 struct vnode *vp; 6570 struct mount *mp; 6571 ufs2_daddr_t extblocks, datablocks; 6572 ufs_lbn_t tmpval, lbn, lastlbn; 6573 int frags, lastoff, iboff, allocblock, needj, error, i; 6574 6575 ump = ITOUMP(ip); 6576 mp = UFSTOVFS(ump); 6577 fs = ump->um_fs; 6578 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6579 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6580 vp = ITOV(ip); 6581 needj = 1; 6582 iboff = -1; 6583 allocblock = 0; 6584 extblocks = 0; 6585 datablocks = 0; 6586 frags = 0; 6587 freeblks = newfreeblks(mp, ip); 6588 ACQUIRE_LOCK(ump); 6589 /* 6590 * If we're truncating a removed file that will never be written 6591 * we don't need to journal the block frees. The canceled journals 6592 * for the allocations will suffice. 6593 */ 6594 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6595 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6596 length == 0) 6597 needj = 0; 6598 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6599 ip->i_number, length, needj); 6600 FREE_LOCK(ump); 6601 /* 6602 * Calculate the lbn that we are truncating to. This results in -1 6603 * if we're truncating the 0 bytes. So it is the last lbn we want 6604 * to keep, not the first lbn we want to truncate. 6605 */ 6606 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6607 lastoff = blkoff(fs, length); 6608 /* 6609 * Compute frags we are keeping in lastlbn. 0 means all. 6610 */ 6611 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6612 frags = fragroundup(fs, lastoff); 6613 /* adp offset of last valid allocdirect. */ 6614 iboff = lastlbn; 6615 } else if (lastlbn > 0) 6616 iboff = UFS_NDADDR; 6617 if (fs->fs_magic == FS_UFS2_MAGIC) 6618 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6619 /* 6620 * Handle normal data blocks and indirects. This section saves 6621 * values used after the inode update to complete frag and indirect 6622 * truncation. 6623 */ 6624 if ((flags & IO_NORMAL) != 0) { 6625 /* 6626 * Handle truncation of whole direct and indirect blocks. 6627 */ 6628 for (i = iboff + 1; i < UFS_NDADDR; i++) 6629 setup_freedirect(freeblks, ip, i, needj); 6630 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6631 i < UFS_NIADDR; 6632 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6633 /* Release a whole indirect tree. */ 6634 if (lbn > lastlbn) { 6635 setup_freeindir(freeblks, ip, i, -lbn -i, 6636 needj); 6637 continue; 6638 } 6639 iboff = i + UFS_NDADDR; 6640 /* 6641 * Traverse partially truncated indirect tree. 6642 */ 6643 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6644 setup_trunc_indir(freeblks, ip, -lbn - i, 6645 lastlbn, DIP(ip, i_ib[i])); 6646 } 6647 /* 6648 * Handle partial truncation to a frag boundary. 6649 */ 6650 if (frags) { 6651 ufs2_daddr_t blkno; 6652 long oldfrags; 6653 6654 oldfrags = blksize(fs, ip, lastlbn); 6655 blkno = DIP(ip, i_db[lastlbn]); 6656 if (blkno && oldfrags != frags) { 6657 oldfrags -= frags; 6658 oldfrags = numfrags(fs, oldfrags); 6659 blkno += numfrags(fs, frags); 6660 newfreework(ump, freeblks, NULL, lastlbn, 6661 blkno, oldfrags, 0, needj); 6662 if (needj) 6663 adjust_newfreework(freeblks, 6664 numfrags(fs, frags)); 6665 } else if (blkno == 0) 6666 allocblock = 1; 6667 } 6668 /* 6669 * Add a journal record for partial truncate if we are 6670 * handling indirect blocks. Non-indirects need no extra 6671 * journaling. 6672 */ 6673 if (length != 0 && lastlbn >= UFS_NDADDR) { 6674 ip->i_flag |= IN_TRUNCATED; 6675 newjtrunc(freeblks, length, 0); 6676 } 6677 ip->i_size = length; 6678 DIP_SET(ip, i_size, ip->i_size); 6679 datablocks = DIP(ip, i_blocks) - extblocks; 6680 if (length != 0) 6681 datablocks = blkcount(fs, datablocks, length); 6682 freeblks->fb_len = length; 6683 } 6684 if ((flags & IO_EXT) != 0) { 6685 for (i = 0; i < UFS_NXADDR; i++) 6686 setup_freeext(freeblks, ip, i, needj); 6687 ip->i_din2->di_extsize = 0; 6688 datablocks += extblocks; 6689 } 6690 #ifdef QUOTA 6691 /* Reference the quotas in case the block count is wrong in the end. */ 6692 quotaref(vp, freeblks->fb_quota); 6693 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6694 #endif 6695 freeblks->fb_chkcnt = -datablocks; 6696 UFS_LOCK(ump); 6697 fs->fs_pendingblocks += datablocks; 6698 UFS_UNLOCK(ump); 6699 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6700 /* 6701 * Handle truncation of incomplete alloc direct dependencies. We 6702 * hold the inode block locked to prevent incomplete dependencies 6703 * from reaching the disk while we are eliminating those that 6704 * have been truncated. This is a partially inlined ffs_update(). 6705 */ 6706 ufs_itimes(vp); 6707 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6708 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6709 (int)fs->fs_bsize, cred, &bp); 6710 if (error) { 6711 softdep_error("softdep_journal_freeblocks", error); 6712 return; 6713 } 6714 if (bp->b_bufsize == fs->fs_bsize) 6715 bp->b_flags |= B_CLUSTEROK; 6716 softdep_update_inodeblock(ip, bp, 0); 6717 if (ump->um_fstype == UFS1) { 6718 *((struct ufs1_dinode *)bp->b_data + 6719 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6720 } else { 6721 ffs_update_dinode_ckhash(fs, ip->i_din2); 6722 *((struct ufs2_dinode *)bp->b_data + 6723 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6724 } 6725 ACQUIRE_LOCK(ump); 6726 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6727 if ((inodedep->id_state & IOSTARTED) != 0) 6728 panic("softdep_setup_freeblocks: inode busy"); 6729 /* 6730 * Add the freeblks structure to the list of operations that 6731 * must await the zero'ed inode being written to disk. If we 6732 * still have a bitmap dependency (needj), then the inode 6733 * has never been written to disk, so we can process the 6734 * freeblks below once we have deleted the dependencies. 6735 */ 6736 if (needj) 6737 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6738 else 6739 freeblks->fb_state |= COMPLETE; 6740 if ((flags & IO_NORMAL) != 0) { 6741 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6742 if (adp->ad_offset > iboff) 6743 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6744 freeblks); 6745 /* 6746 * Truncate the allocdirect. We could eliminate 6747 * or modify journal records as well. 6748 */ 6749 else if (adp->ad_offset == iboff && frags) 6750 adp->ad_newsize = frags; 6751 } 6752 } 6753 if ((flags & IO_EXT) != 0) 6754 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6755 cancel_allocdirect(&inodedep->id_extupdt, adp, 6756 freeblks); 6757 /* 6758 * Scan the bufwait list for newblock dependencies that will never 6759 * make it to disk. 6760 */ 6761 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6762 if (wk->wk_type != D_ALLOCDIRECT) 6763 continue; 6764 adp = WK_ALLOCDIRECT(wk); 6765 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6766 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6767 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6768 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6769 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6770 } 6771 } 6772 /* 6773 * Add journal work. 6774 */ 6775 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6776 add_to_journal(&jblkdep->jb_list); 6777 FREE_LOCK(ump); 6778 bdwrite(bp); 6779 /* 6780 * Truncate dependency structures beyond length. 6781 */ 6782 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6783 /* 6784 * This is only set when we need to allocate a fragment because 6785 * none existed at the end of a frag-sized file. It handles only 6786 * allocating a new, zero filled block. 6787 */ 6788 if (allocblock) { 6789 ip->i_size = length - lastoff; 6790 DIP_SET(ip, i_size, ip->i_size); 6791 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6792 if (error != 0) { 6793 softdep_error("softdep_journal_freeblks", error); 6794 return; 6795 } 6796 ip->i_size = length; 6797 DIP_SET(ip, i_size, length); 6798 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6799 allocbuf(bp, frags); 6800 ffs_update(vp, 0); 6801 bawrite(bp); 6802 } else if (lastoff != 0 && vp->v_type != VDIR) { 6803 int size; 6804 6805 /* 6806 * Zero the end of a truncated frag or block. 6807 */ 6808 size = sblksize(fs, length, lastlbn); 6809 error = bread(vp, lastlbn, size, cred, &bp); 6810 if (error) { 6811 softdep_error("softdep_journal_freeblks", error); 6812 return; 6813 } 6814 bzero((char *)bp->b_data + lastoff, size - lastoff); 6815 bawrite(bp); 6816 6817 } 6818 ACQUIRE_LOCK(ump); 6819 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6820 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6821 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6822 /* 6823 * We zero earlier truncations so they don't erroneously 6824 * update i_blocks. 6825 */ 6826 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6827 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6828 fbn->fb_len = 0; 6829 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6830 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6831 freeblks->fb_state |= INPROGRESS; 6832 else 6833 freeblks = NULL; 6834 FREE_LOCK(ump); 6835 if (freeblks) 6836 handle_workitem_freeblocks(freeblks, 0); 6837 trunc_pages(ip, length, extblocks, flags); 6838 6839 } 6840 6841 /* 6842 * Flush a JOP_SYNC to the journal. 6843 */ 6844 void 6845 softdep_journal_fsync(ip) 6846 struct inode *ip; 6847 { 6848 struct jfsync *jfsync; 6849 struct ufsmount *ump; 6850 6851 ump = ITOUMP(ip); 6852 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6853 ("softdep_journal_fsync called on non-softdep filesystem")); 6854 if ((ip->i_flag & IN_TRUNCATED) == 0) 6855 return; 6856 ip->i_flag &= ~IN_TRUNCATED; 6857 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6858 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6859 jfsync->jfs_size = ip->i_size; 6860 jfsync->jfs_ino = ip->i_number; 6861 ACQUIRE_LOCK(ump); 6862 add_to_journal(&jfsync->jfs_list); 6863 jwait(&jfsync->jfs_list, MNT_WAIT); 6864 FREE_LOCK(ump); 6865 } 6866 6867 /* 6868 * Block de-allocation dependencies. 6869 * 6870 * When blocks are de-allocated, the on-disk pointers must be nullified before 6871 * the blocks are made available for use by other files. (The true 6872 * requirement is that old pointers must be nullified before new on-disk 6873 * pointers are set. We chose this slightly more stringent requirement to 6874 * reduce complexity.) Our implementation handles this dependency by updating 6875 * the inode (or indirect block) appropriately but delaying the actual block 6876 * de-allocation (i.e., freemap and free space count manipulation) until 6877 * after the updated versions reach stable storage. After the disk is 6878 * updated, the blocks can be safely de-allocated whenever it is convenient. 6879 * This implementation handles only the common case of reducing a file's 6880 * length to zero. Other cases are handled by the conventional synchronous 6881 * write approach. 6882 * 6883 * The ffs implementation with which we worked double-checks 6884 * the state of the block pointers and file size as it reduces 6885 * a file's length. Some of this code is replicated here in our 6886 * soft updates implementation. The freeblks->fb_chkcnt field is 6887 * used to transfer a part of this information to the procedure 6888 * that eventually de-allocates the blocks. 6889 * 6890 * This routine should be called from the routine that shortens 6891 * a file's length, before the inode's size or block pointers 6892 * are modified. It will save the block pointer information for 6893 * later release and zero the inode so that the calling routine 6894 * can release it. 6895 */ 6896 void 6897 softdep_setup_freeblocks(ip, length, flags) 6898 struct inode *ip; /* The inode whose length is to be reduced */ 6899 off_t length; /* The new length for the file */ 6900 int flags; /* IO_EXT and/or IO_NORMAL */ 6901 { 6902 struct ufs1_dinode *dp1; 6903 struct ufs2_dinode *dp2; 6904 struct freeblks *freeblks; 6905 struct inodedep *inodedep; 6906 struct allocdirect *adp; 6907 struct ufsmount *ump; 6908 struct buf *bp; 6909 struct fs *fs; 6910 ufs2_daddr_t extblocks, datablocks; 6911 struct mount *mp; 6912 int i, delay, error; 6913 ufs_lbn_t tmpval; 6914 ufs_lbn_t lbn; 6915 6916 ump = ITOUMP(ip); 6917 mp = UFSTOVFS(ump); 6918 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6919 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6920 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6921 ip->i_number, length); 6922 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6923 fs = ump->um_fs; 6924 if ((error = bread(ump->um_devvp, 6925 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6926 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6927 brelse(bp); 6928 softdep_error("softdep_setup_freeblocks", error); 6929 return; 6930 } 6931 freeblks = newfreeblks(mp, ip); 6932 extblocks = 0; 6933 datablocks = 0; 6934 if (fs->fs_magic == FS_UFS2_MAGIC) 6935 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6936 if ((flags & IO_NORMAL) != 0) { 6937 for (i = 0; i < UFS_NDADDR; i++) 6938 setup_freedirect(freeblks, ip, i, 0); 6939 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6940 i < UFS_NIADDR; 6941 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6942 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6943 ip->i_size = 0; 6944 DIP_SET(ip, i_size, 0); 6945 datablocks = DIP(ip, i_blocks) - extblocks; 6946 } 6947 if ((flags & IO_EXT) != 0) { 6948 for (i = 0; i < UFS_NXADDR; i++) 6949 setup_freeext(freeblks, ip, i, 0); 6950 ip->i_din2->di_extsize = 0; 6951 datablocks += extblocks; 6952 } 6953 #ifdef QUOTA 6954 /* Reference the quotas in case the block count is wrong in the end. */ 6955 quotaref(ITOV(ip), freeblks->fb_quota); 6956 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6957 #endif 6958 freeblks->fb_chkcnt = -datablocks; 6959 UFS_LOCK(ump); 6960 fs->fs_pendingblocks += datablocks; 6961 UFS_UNLOCK(ump); 6962 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6963 /* 6964 * Push the zero'ed inode to its disk buffer so that we are free 6965 * to delete its dependencies below. Once the dependencies are gone 6966 * the buffer can be safely released. 6967 */ 6968 if (ump->um_fstype == UFS1) { 6969 dp1 = ((struct ufs1_dinode *)bp->b_data + 6970 ino_to_fsbo(fs, ip->i_number)); 6971 ip->i_din1->di_freelink = dp1->di_freelink; 6972 *dp1 = *ip->i_din1; 6973 } else { 6974 dp2 = ((struct ufs2_dinode *)bp->b_data + 6975 ino_to_fsbo(fs, ip->i_number)); 6976 ip->i_din2->di_freelink = dp2->di_freelink; 6977 ffs_update_dinode_ckhash(fs, ip->i_din2); 6978 *dp2 = *ip->i_din2; 6979 } 6980 /* 6981 * Find and eliminate any inode dependencies. 6982 */ 6983 ACQUIRE_LOCK(ump); 6984 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6985 if ((inodedep->id_state & IOSTARTED) != 0) 6986 panic("softdep_setup_freeblocks: inode busy"); 6987 /* 6988 * Add the freeblks structure to the list of operations that 6989 * must await the zero'ed inode being written to disk. If we 6990 * still have a bitmap dependency (delay == 0), then the inode 6991 * has never been written to disk, so we can process the 6992 * freeblks below once we have deleted the dependencies. 6993 */ 6994 delay = (inodedep->id_state & DEPCOMPLETE); 6995 if (delay) 6996 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6997 else 6998 freeblks->fb_state |= COMPLETE; 6999 /* 7000 * Because the file length has been truncated to zero, any 7001 * pending block allocation dependency structures associated 7002 * with this inode are obsolete and can simply be de-allocated. 7003 * We must first merge the two dependency lists to get rid of 7004 * any duplicate freefrag structures, then purge the merged list. 7005 * If we still have a bitmap dependency, then the inode has never 7006 * been written to disk, so we can free any fragments without delay. 7007 */ 7008 if (flags & IO_NORMAL) { 7009 merge_inode_lists(&inodedep->id_newinoupdt, 7010 &inodedep->id_inoupdt); 7011 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7012 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7013 freeblks); 7014 } 7015 if (flags & IO_EXT) { 7016 merge_inode_lists(&inodedep->id_newextupdt, 7017 &inodedep->id_extupdt); 7018 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7019 cancel_allocdirect(&inodedep->id_extupdt, adp, 7020 freeblks); 7021 } 7022 FREE_LOCK(ump); 7023 bdwrite(bp); 7024 trunc_dependencies(ip, freeblks, -1, 0, flags); 7025 ACQUIRE_LOCK(ump); 7026 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7027 (void) free_inodedep(inodedep); 7028 freeblks->fb_state |= DEPCOMPLETE; 7029 /* 7030 * If the inode with zeroed block pointers is now on disk 7031 * we can start freeing blocks. 7032 */ 7033 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7034 freeblks->fb_state |= INPROGRESS; 7035 else 7036 freeblks = NULL; 7037 FREE_LOCK(ump); 7038 if (freeblks) 7039 handle_workitem_freeblocks(freeblks, 0); 7040 trunc_pages(ip, length, extblocks, flags); 7041 } 7042 7043 /* 7044 * Eliminate pages from the page cache that back parts of this inode and 7045 * adjust the vnode pager's idea of our size. This prevents stale data 7046 * from hanging around in the page cache. 7047 */ 7048 static void 7049 trunc_pages(ip, length, extblocks, flags) 7050 struct inode *ip; 7051 off_t length; 7052 ufs2_daddr_t extblocks; 7053 int flags; 7054 { 7055 struct vnode *vp; 7056 struct fs *fs; 7057 ufs_lbn_t lbn; 7058 off_t end, extend; 7059 7060 vp = ITOV(ip); 7061 fs = ITOFS(ip); 7062 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7063 if ((flags & IO_EXT) != 0) 7064 vn_pages_remove(vp, extend, 0); 7065 if ((flags & IO_NORMAL) == 0) 7066 return; 7067 BO_LOCK(&vp->v_bufobj); 7068 drain_output(vp); 7069 BO_UNLOCK(&vp->v_bufobj); 7070 /* 7071 * The vnode pager eliminates file pages we eliminate indirects 7072 * below. 7073 */ 7074 vnode_pager_setsize(vp, length); 7075 /* 7076 * Calculate the end based on the last indirect we want to keep. If 7077 * the block extends into indirects we can just use the negative of 7078 * its lbn. Doubles and triples exist at lower numbers so we must 7079 * be careful not to remove those, if they exist. double and triple 7080 * indirect lbns do not overlap with others so it is not important 7081 * to verify how many levels are required. 7082 */ 7083 lbn = lblkno(fs, length); 7084 if (lbn >= UFS_NDADDR) { 7085 /* Calculate the virtual lbn of the triple indirect. */ 7086 lbn = -lbn - (UFS_NIADDR - 1); 7087 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7088 } else 7089 end = extend; 7090 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7091 } 7092 7093 /* 7094 * See if the buf bp is in the range eliminated by truncation. 7095 */ 7096 static int 7097 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7098 struct buf *bp; 7099 int *blkoffp; 7100 ufs_lbn_t lastlbn; 7101 int lastoff; 7102 int flags; 7103 { 7104 ufs_lbn_t lbn; 7105 7106 *blkoffp = 0; 7107 /* Only match ext/normal blocks as appropriate. */ 7108 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7109 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7110 return (0); 7111 /* ALTDATA is always a full truncation. */ 7112 if ((bp->b_xflags & BX_ALTDATA) != 0) 7113 return (1); 7114 /* -1 is full truncation. */ 7115 if (lastlbn == -1) 7116 return (1); 7117 /* 7118 * If this is a partial truncate we only want those 7119 * blocks and indirect blocks that cover the range 7120 * we're after. 7121 */ 7122 lbn = bp->b_lblkno; 7123 if (lbn < 0) 7124 lbn = -(lbn + lbn_level(lbn)); 7125 if (lbn < lastlbn) 7126 return (0); 7127 /* Here we only truncate lblkno if it's partial. */ 7128 if (lbn == lastlbn) { 7129 if (lastoff == 0) 7130 return (0); 7131 *blkoffp = lastoff; 7132 } 7133 return (1); 7134 } 7135 7136 /* 7137 * Eliminate any dependencies that exist in memory beyond lblkno:off 7138 */ 7139 static void 7140 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7141 struct inode *ip; 7142 struct freeblks *freeblks; 7143 ufs_lbn_t lastlbn; 7144 int lastoff; 7145 int flags; 7146 { 7147 struct bufobj *bo; 7148 struct vnode *vp; 7149 struct buf *bp; 7150 int blkoff; 7151 7152 /* 7153 * We must wait for any I/O in progress to finish so that 7154 * all potential buffers on the dirty list will be visible. 7155 * Once they are all there, walk the list and get rid of 7156 * any dependencies. 7157 */ 7158 vp = ITOV(ip); 7159 bo = &vp->v_bufobj; 7160 BO_LOCK(bo); 7161 drain_output(vp); 7162 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7163 bp->b_vflags &= ~BV_SCANNED; 7164 restart: 7165 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7166 if (bp->b_vflags & BV_SCANNED) 7167 continue; 7168 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7169 bp->b_vflags |= BV_SCANNED; 7170 continue; 7171 } 7172 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7173 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7174 goto restart; 7175 BO_UNLOCK(bo); 7176 if (deallocate_dependencies(bp, freeblks, blkoff)) 7177 bqrelse(bp); 7178 else 7179 brelse(bp); 7180 BO_LOCK(bo); 7181 goto restart; 7182 } 7183 /* 7184 * Now do the work of vtruncbuf while also matching indirect blocks. 7185 */ 7186 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7187 bp->b_vflags &= ~BV_SCANNED; 7188 cleanrestart: 7189 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7190 if (bp->b_vflags & BV_SCANNED) 7191 continue; 7192 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7193 bp->b_vflags |= BV_SCANNED; 7194 continue; 7195 } 7196 if (BUF_LOCK(bp, 7197 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7198 BO_LOCKPTR(bo)) == ENOLCK) { 7199 BO_LOCK(bo); 7200 goto cleanrestart; 7201 } 7202 bp->b_vflags |= BV_SCANNED; 7203 bremfree(bp); 7204 if (blkoff != 0) { 7205 allocbuf(bp, blkoff); 7206 bqrelse(bp); 7207 } else { 7208 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7209 brelse(bp); 7210 } 7211 BO_LOCK(bo); 7212 goto cleanrestart; 7213 } 7214 drain_output(vp); 7215 BO_UNLOCK(bo); 7216 } 7217 7218 static int 7219 cancel_pagedep(pagedep, freeblks, blkoff) 7220 struct pagedep *pagedep; 7221 struct freeblks *freeblks; 7222 int blkoff; 7223 { 7224 struct jremref *jremref; 7225 struct jmvref *jmvref; 7226 struct dirrem *dirrem, *tmp; 7227 int i; 7228 7229 /* 7230 * Copy any directory remove dependencies to the list 7231 * to be processed after the freeblks proceeds. If 7232 * directory entry never made it to disk they 7233 * can be dumped directly onto the work list. 7234 */ 7235 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7236 /* Skip this directory removal if it is intended to remain. */ 7237 if (dirrem->dm_offset < blkoff) 7238 continue; 7239 /* 7240 * If there are any dirrems we wait for the journal write 7241 * to complete and then restart the buf scan as the lock 7242 * has been dropped. 7243 */ 7244 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7245 jwait(&jremref->jr_list, MNT_WAIT); 7246 return (ERESTART); 7247 } 7248 LIST_REMOVE(dirrem, dm_next); 7249 dirrem->dm_dirinum = pagedep->pd_ino; 7250 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7251 } 7252 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7253 jwait(&jmvref->jm_list, MNT_WAIT); 7254 return (ERESTART); 7255 } 7256 /* 7257 * When we're partially truncating a pagedep we just want to flush 7258 * journal entries and return. There can not be any adds in the 7259 * truncated portion of the directory and newblk must remain if 7260 * part of the block remains. 7261 */ 7262 if (blkoff != 0) { 7263 struct diradd *dap; 7264 7265 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7266 if (dap->da_offset > blkoff) 7267 panic("cancel_pagedep: diradd %p off %d > %d", 7268 dap, dap->da_offset, blkoff); 7269 for (i = 0; i < DAHASHSZ; i++) 7270 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7271 if (dap->da_offset > blkoff) 7272 panic("cancel_pagedep: diradd %p off %d > %d", 7273 dap, dap->da_offset, blkoff); 7274 return (0); 7275 } 7276 /* 7277 * There should be no directory add dependencies present 7278 * as the directory could not be truncated until all 7279 * children were removed. 7280 */ 7281 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7282 ("deallocate_dependencies: pendinghd != NULL")); 7283 for (i = 0; i < DAHASHSZ; i++) 7284 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7285 ("deallocate_dependencies: diraddhd != NULL")); 7286 if ((pagedep->pd_state & NEWBLOCK) != 0) 7287 free_newdirblk(pagedep->pd_newdirblk); 7288 if (free_pagedep(pagedep) == 0) 7289 panic("Failed to free pagedep %p", pagedep); 7290 return (0); 7291 } 7292 7293 /* 7294 * Reclaim any dependency structures from a buffer that is about to 7295 * be reallocated to a new vnode. The buffer must be locked, thus, 7296 * no I/O completion operations can occur while we are manipulating 7297 * its associated dependencies. The mutex is held so that other I/O's 7298 * associated with related dependencies do not occur. 7299 */ 7300 static int 7301 deallocate_dependencies(bp, freeblks, off) 7302 struct buf *bp; 7303 struct freeblks *freeblks; 7304 int off; 7305 { 7306 struct indirdep *indirdep; 7307 struct pagedep *pagedep; 7308 struct worklist *wk, *wkn; 7309 struct ufsmount *ump; 7310 7311 ump = softdep_bp_to_mp(bp); 7312 if (ump == NULL) 7313 goto done; 7314 ACQUIRE_LOCK(ump); 7315 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7316 switch (wk->wk_type) { 7317 case D_INDIRDEP: 7318 indirdep = WK_INDIRDEP(wk); 7319 if (bp->b_lblkno >= 0 || 7320 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7321 panic("deallocate_dependencies: not indir"); 7322 cancel_indirdep(indirdep, bp, freeblks); 7323 continue; 7324 7325 case D_PAGEDEP: 7326 pagedep = WK_PAGEDEP(wk); 7327 if (cancel_pagedep(pagedep, freeblks, off)) { 7328 FREE_LOCK(ump); 7329 return (ERESTART); 7330 } 7331 continue; 7332 7333 case D_ALLOCINDIR: 7334 /* 7335 * Simply remove the allocindir, we'll find it via 7336 * the indirdep where we can clear pointers if 7337 * needed. 7338 */ 7339 WORKLIST_REMOVE(wk); 7340 continue; 7341 7342 case D_FREEWORK: 7343 /* 7344 * A truncation is waiting for the zero'd pointers 7345 * to be written. It can be freed when the freeblks 7346 * is journaled. 7347 */ 7348 WORKLIST_REMOVE(wk); 7349 wk->wk_state |= ONDEPLIST; 7350 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7351 break; 7352 7353 case D_ALLOCDIRECT: 7354 if (off != 0) 7355 continue; 7356 /* FALLTHROUGH */ 7357 default: 7358 panic("deallocate_dependencies: Unexpected type %s", 7359 TYPENAME(wk->wk_type)); 7360 /* NOTREACHED */ 7361 } 7362 } 7363 FREE_LOCK(ump); 7364 done: 7365 /* 7366 * Don't throw away this buf, we were partially truncating and 7367 * some deps may always remain. 7368 */ 7369 if (off) { 7370 allocbuf(bp, off); 7371 bp->b_vflags |= BV_SCANNED; 7372 return (EBUSY); 7373 } 7374 bp->b_flags |= B_INVAL | B_NOCACHE; 7375 7376 return (0); 7377 } 7378 7379 /* 7380 * An allocdirect is being canceled due to a truncate. We must make sure 7381 * the journal entry is released in concert with the blkfree that releases 7382 * the storage. Completed journal entries must not be released until the 7383 * space is no longer pointed to by the inode or in the bitmap. 7384 */ 7385 static void 7386 cancel_allocdirect(adphead, adp, freeblks) 7387 struct allocdirectlst *adphead; 7388 struct allocdirect *adp; 7389 struct freeblks *freeblks; 7390 { 7391 struct freework *freework; 7392 struct newblk *newblk; 7393 struct worklist *wk; 7394 7395 TAILQ_REMOVE(adphead, adp, ad_next); 7396 newblk = (struct newblk *)adp; 7397 freework = NULL; 7398 /* 7399 * Find the correct freework structure. 7400 */ 7401 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7402 if (wk->wk_type != D_FREEWORK) 7403 continue; 7404 freework = WK_FREEWORK(wk); 7405 if (freework->fw_blkno == newblk->nb_newblkno) 7406 break; 7407 } 7408 if (freework == NULL) 7409 panic("cancel_allocdirect: Freework not found"); 7410 /* 7411 * If a newblk exists at all we still have the journal entry that 7412 * initiated the allocation so we do not need to journal the free. 7413 */ 7414 cancel_jfreeblk(freeblks, freework->fw_blkno); 7415 /* 7416 * If the journal hasn't been written the jnewblk must be passed 7417 * to the call to ffs_blkfree that reclaims the space. We accomplish 7418 * this by linking the journal dependency into the freework to be 7419 * freed when freework_freeblock() is called. If the journal has 7420 * been written we can simply reclaim the journal space when the 7421 * freeblks work is complete. 7422 */ 7423 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7424 &freeblks->fb_jwork); 7425 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7426 } 7427 7428 7429 /* 7430 * Cancel a new block allocation. May be an indirect or direct block. We 7431 * remove it from various lists and return any journal record that needs to 7432 * be resolved by the caller. 7433 * 7434 * A special consideration is made for indirects which were never pointed 7435 * at on disk and will never be found once this block is released. 7436 */ 7437 static struct jnewblk * 7438 cancel_newblk(newblk, wk, wkhd) 7439 struct newblk *newblk; 7440 struct worklist *wk; 7441 struct workhead *wkhd; 7442 { 7443 struct jnewblk *jnewblk; 7444 7445 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7446 7447 newblk->nb_state |= GOINGAWAY; 7448 /* 7449 * Previously we traversed the completedhd on each indirdep 7450 * attached to this newblk to cancel them and gather journal 7451 * work. Since we need only the oldest journal segment and 7452 * the lowest point on the tree will always have the oldest 7453 * journal segment we are free to release the segments 7454 * of any subordinates and may leave the indirdep list to 7455 * indirdep_complete() when this newblk is freed. 7456 */ 7457 if (newblk->nb_state & ONDEPLIST) { 7458 newblk->nb_state &= ~ONDEPLIST; 7459 LIST_REMOVE(newblk, nb_deps); 7460 } 7461 if (newblk->nb_state & ONWORKLIST) 7462 WORKLIST_REMOVE(&newblk->nb_list); 7463 /* 7464 * If the journal entry hasn't been written we save a pointer to 7465 * the dependency that frees it until it is written or the 7466 * superseding operation completes. 7467 */ 7468 jnewblk = newblk->nb_jnewblk; 7469 if (jnewblk != NULL && wk != NULL) { 7470 newblk->nb_jnewblk = NULL; 7471 jnewblk->jn_dep = wk; 7472 } 7473 if (!LIST_EMPTY(&newblk->nb_jwork)) 7474 jwork_move(wkhd, &newblk->nb_jwork); 7475 /* 7476 * When truncating we must free the newdirblk early to remove 7477 * the pagedep from the hash before returning. 7478 */ 7479 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7480 free_newdirblk(WK_NEWDIRBLK(wk)); 7481 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7482 panic("cancel_newblk: extra newdirblk"); 7483 7484 return (jnewblk); 7485 } 7486 7487 /* 7488 * Schedule the freefrag associated with a newblk to be released once 7489 * the pointers are written and the previous block is no longer needed. 7490 */ 7491 static void 7492 newblk_freefrag(newblk) 7493 struct newblk *newblk; 7494 { 7495 struct freefrag *freefrag; 7496 7497 if (newblk->nb_freefrag == NULL) 7498 return; 7499 freefrag = newblk->nb_freefrag; 7500 newblk->nb_freefrag = NULL; 7501 freefrag->ff_state |= COMPLETE; 7502 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7503 add_to_worklist(&freefrag->ff_list, 0); 7504 } 7505 7506 /* 7507 * Free a newblk. Generate a new freefrag work request if appropriate. 7508 * This must be called after the inode pointer and any direct block pointers 7509 * are valid or fully removed via truncate or frag extension. 7510 */ 7511 static void 7512 free_newblk(newblk) 7513 struct newblk *newblk; 7514 { 7515 struct indirdep *indirdep; 7516 struct worklist *wk; 7517 7518 KASSERT(newblk->nb_jnewblk == NULL, 7519 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7520 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7521 ("free_newblk: unclaimed newblk")); 7522 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7523 newblk_freefrag(newblk); 7524 if (newblk->nb_state & ONDEPLIST) 7525 LIST_REMOVE(newblk, nb_deps); 7526 if (newblk->nb_state & ONWORKLIST) 7527 WORKLIST_REMOVE(&newblk->nb_list); 7528 LIST_REMOVE(newblk, nb_hash); 7529 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7530 free_newdirblk(WK_NEWDIRBLK(wk)); 7531 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7532 panic("free_newblk: extra newdirblk"); 7533 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7534 indirdep_complete(indirdep); 7535 handle_jwork(&newblk->nb_jwork); 7536 WORKITEM_FREE(newblk, D_NEWBLK); 7537 } 7538 7539 /* 7540 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7541 */ 7542 static void 7543 free_newdirblk(newdirblk) 7544 struct newdirblk *newdirblk; 7545 { 7546 struct pagedep *pagedep; 7547 struct diradd *dap; 7548 struct worklist *wk; 7549 7550 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7551 WORKLIST_REMOVE(&newdirblk->db_list); 7552 /* 7553 * If the pagedep is still linked onto the directory buffer 7554 * dependency chain, then some of the entries on the 7555 * pd_pendinghd list may not be committed to disk yet. In 7556 * this case, we will simply clear the NEWBLOCK flag and 7557 * let the pd_pendinghd list be processed when the pagedep 7558 * is next written. If the pagedep is no longer on the buffer 7559 * dependency chain, then all the entries on the pd_pending 7560 * list are committed to disk and we can free them here. 7561 */ 7562 pagedep = newdirblk->db_pagedep; 7563 pagedep->pd_state &= ~NEWBLOCK; 7564 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7565 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7566 free_diradd(dap, NULL); 7567 /* 7568 * If no dependencies remain, the pagedep will be freed. 7569 */ 7570 free_pagedep(pagedep); 7571 } 7572 /* Should only ever be one item in the list. */ 7573 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7574 WORKLIST_REMOVE(wk); 7575 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7576 } 7577 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7578 } 7579 7580 /* 7581 * Prepare an inode to be freed. The actual free operation is not 7582 * done until the zero'ed inode has been written to disk. 7583 */ 7584 void 7585 softdep_freefile(pvp, ino, mode) 7586 struct vnode *pvp; 7587 ino_t ino; 7588 int mode; 7589 { 7590 struct inode *ip = VTOI(pvp); 7591 struct inodedep *inodedep; 7592 struct freefile *freefile; 7593 struct freeblks *freeblks; 7594 struct ufsmount *ump; 7595 7596 ump = ITOUMP(ip); 7597 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7598 ("softdep_freefile called on non-softdep filesystem")); 7599 /* 7600 * This sets up the inode de-allocation dependency. 7601 */ 7602 freefile = malloc(sizeof(struct freefile), 7603 M_FREEFILE, M_SOFTDEP_FLAGS); 7604 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7605 freefile->fx_mode = mode; 7606 freefile->fx_oldinum = ino; 7607 freefile->fx_devvp = ump->um_devvp; 7608 LIST_INIT(&freefile->fx_jwork); 7609 UFS_LOCK(ump); 7610 ump->um_fs->fs_pendinginodes += 1; 7611 UFS_UNLOCK(ump); 7612 7613 /* 7614 * If the inodedep does not exist, then the zero'ed inode has 7615 * been written to disk. If the allocated inode has never been 7616 * written to disk, then the on-disk inode is zero'ed. In either 7617 * case we can free the file immediately. If the journal was 7618 * canceled before being written the inode will never make it to 7619 * disk and we must send the canceled journal entrys to 7620 * ffs_freefile() to be cleared in conjunction with the bitmap. 7621 * Any blocks waiting on the inode to write can be safely freed 7622 * here as it will never been written. 7623 */ 7624 ACQUIRE_LOCK(ump); 7625 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7626 if (inodedep) { 7627 /* 7628 * Clear out freeblks that no longer need to reference 7629 * this inode. 7630 */ 7631 while ((freeblks = 7632 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7633 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7634 fb_next); 7635 freeblks->fb_state &= ~ONDEPLIST; 7636 } 7637 /* 7638 * Remove this inode from the unlinked list. 7639 */ 7640 if (inodedep->id_state & UNLINKED) { 7641 /* 7642 * Save the journal work to be freed with the bitmap 7643 * before we clear UNLINKED. Otherwise it can be lost 7644 * if the inode block is written. 7645 */ 7646 handle_bufwait(inodedep, &freefile->fx_jwork); 7647 clear_unlinked_inodedep(inodedep); 7648 /* 7649 * Re-acquire inodedep as we've dropped the 7650 * per-filesystem lock in clear_unlinked_inodedep(). 7651 */ 7652 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7653 } 7654 } 7655 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7656 FREE_LOCK(ump); 7657 handle_workitem_freefile(freefile); 7658 return; 7659 } 7660 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7661 inodedep->id_state |= GOINGAWAY; 7662 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7663 FREE_LOCK(ump); 7664 if (ip->i_number == ino) 7665 ip->i_flag |= IN_MODIFIED; 7666 } 7667 7668 /* 7669 * Check to see if an inode has never been written to disk. If 7670 * so free the inodedep and return success, otherwise return failure. 7671 * 7672 * If we still have a bitmap dependency, then the inode has never 7673 * been written to disk. Drop the dependency as it is no longer 7674 * necessary since the inode is being deallocated. We set the 7675 * ALLCOMPLETE flags since the bitmap now properly shows that the 7676 * inode is not allocated. Even if the inode is actively being 7677 * written, it has been rolled back to its zero'ed state, so we 7678 * are ensured that a zero inode is what is on the disk. For short 7679 * lived files, this change will usually result in removing all the 7680 * dependencies from the inode so that it can be freed immediately. 7681 */ 7682 static int 7683 check_inode_unwritten(inodedep) 7684 struct inodedep *inodedep; 7685 { 7686 7687 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7688 7689 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7690 !LIST_EMPTY(&inodedep->id_dirremhd) || 7691 !LIST_EMPTY(&inodedep->id_pendinghd) || 7692 !LIST_EMPTY(&inodedep->id_bufwait) || 7693 !LIST_EMPTY(&inodedep->id_inowait) || 7694 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7695 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7696 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7697 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7698 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7699 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7700 inodedep->id_mkdiradd != NULL || 7701 inodedep->id_nlinkdelta != 0) 7702 return (0); 7703 /* 7704 * Another process might be in initiate_write_inodeblock_ufs[12] 7705 * trying to allocate memory without holding "Softdep Lock". 7706 */ 7707 if ((inodedep->id_state & IOSTARTED) != 0 && 7708 inodedep->id_savedino1 == NULL) 7709 return (0); 7710 7711 if (inodedep->id_state & ONDEPLIST) 7712 LIST_REMOVE(inodedep, id_deps); 7713 inodedep->id_state &= ~ONDEPLIST; 7714 inodedep->id_state |= ALLCOMPLETE; 7715 inodedep->id_bmsafemap = NULL; 7716 if (inodedep->id_state & ONWORKLIST) 7717 WORKLIST_REMOVE(&inodedep->id_list); 7718 if (inodedep->id_savedino1 != NULL) { 7719 free(inodedep->id_savedino1, M_SAVEDINO); 7720 inodedep->id_savedino1 = NULL; 7721 } 7722 if (free_inodedep(inodedep) == 0) 7723 panic("check_inode_unwritten: busy inode"); 7724 return (1); 7725 } 7726 7727 static int 7728 check_inodedep_free(inodedep) 7729 struct inodedep *inodedep; 7730 { 7731 7732 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7733 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7734 !LIST_EMPTY(&inodedep->id_dirremhd) || 7735 !LIST_EMPTY(&inodedep->id_pendinghd) || 7736 !LIST_EMPTY(&inodedep->id_bufwait) || 7737 !LIST_EMPTY(&inodedep->id_inowait) || 7738 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7739 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7740 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7741 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7742 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7743 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7744 inodedep->id_mkdiradd != NULL || 7745 inodedep->id_nlinkdelta != 0 || 7746 inodedep->id_savedino1 != NULL) 7747 return (0); 7748 return (1); 7749 } 7750 7751 /* 7752 * Try to free an inodedep structure. Return 1 if it could be freed. 7753 */ 7754 static int 7755 free_inodedep(inodedep) 7756 struct inodedep *inodedep; 7757 { 7758 7759 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7760 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7761 !check_inodedep_free(inodedep)) 7762 return (0); 7763 if (inodedep->id_state & ONDEPLIST) 7764 LIST_REMOVE(inodedep, id_deps); 7765 LIST_REMOVE(inodedep, id_hash); 7766 WORKITEM_FREE(inodedep, D_INODEDEP); 7767 return (1); 7768 } 7769 7770 /* 7771 * Free the block referenced by a freework structure. The parent freeblks 7772 * structure is released and completed when the final cg bitmap reaches 7773 * the disk. This routine may be freeing a jnewblk which never made it to 7774 * disk in which case we do not have to wait as the operation is undone 7775 * in memory immediately. 7776 */ 7777 static void 7778 freework_freeblock(freework, key) 7779 struct freework *freework; 7780 u_long key; 7781 { 7782 struct freeblks *freeblks; 7783 struct jnewblk *jnewblk; 7784 struct ufsmount *ump; 7785 struct workhead wkhd; 7786 struct fs *fs; 7787 int bsize; 7788 int needj; 7789 7790 ump = VFSTOUFS(freework->fw_list.wk_mp); 7791 LOCK_OWNED(ump); 7792 /* 7793 * Handle partial truncate separately. 7794 */ 7795 if (freework->fw_indir) { 7796 complete_trunc_indir(freework); 7797 return; 7798 } 7799 freeblks = freework->fw_freeblks; 7800 fs = ump->um_fs; 7801 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7802 bsize = lfragtosize(fs, freework->fw_frags); 7803 LIST_INIT(&wkhd); 7804 /* 7805 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7806 * on the indirblk hashtable and prevents premature freeing. 7807 */ 7808 freework->fw_state |= DEPCOMPLETE; 7809 /* 7810 * SUJ needs to wait for the segment referencing freed indirect 7811 * blocks to expire so that we know the checker will not confuse 7812 * a re-allocated indirect block with its old contents. 7813 */ 7814 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7815 indirblk_insert(freework); 7816 /* 7817 * If we are canceling an existing jnewblk pass it to the free 7818 * routine, otherwise pass the freeblk which will ultimately 7819 * release the freeblks. If we're not journaling, we can just 7820 * free the freeblks immediately. 7821 */ 7822 jnewblk = freework->fw_jnewblk; 7823 if (jnewblk != NULL) { 7824 cancel_jnewblk(jnewblk, &wkhd); 7825 needj = 0; 7826 } else if (needj) { 7827 freework->fw_state |= DELAYEDFREE; 7828 freeblks->fb_cgwait++; 7829 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7830 } 7831 FREE_LOCK(ump); 7832 freeblks_free(ump, freeblks, btodb(bsize)); 7833 CTR4(KTR_SUJ, 7834 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 7835 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7836 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7837 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 7838 ACQUIRE_LOCK(ump); 7839 /* 7840 * The jnewblk will be discarded and the bits in the map never 7841 * made it to disk. We can immediately free the freeblk. 7842 */ 7843 if (needj == 0) 7844 handle_written_freework(freework); 7845 } 7846 7847 /* 7848 * We enqueue freework items that need processing back on the freeblks and 7849 * add the freeblks to the worklist. This makes it easier to find all work 7850 * required to flush a truncation in process_truncates(). 7851 */ 7852 static void 7853 freework_enqueue(freework) 7854 struct freework *freework; 7855 { 7856 struct freeblks *freeblks; 7857 7858 freeblks = freework->fw_freeblks; 7859 if ((freework->fw_state & INPROGRESS) == 0) 7860 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7861 if ((freeblks->fb_state & 7862 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7863 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7864 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7865 } 7866 7867 /* 7868 * Start, continue, or finish the process of freeing an indirect block tree. 7869 * The free operation may be paused at any point with fw_off containing the 7870 * offset to restart from. This enables us to implement some flow control 7871 * for large truncates which may fan out and generate a huge number of 7872 * dependencies. 7873 */ 7874 static void 7875 handle_workitem_indirblk(freework) 7876 struct freework *freework; 7877 { 7878 struct freeblks *freeblks; 7879 struct ufsmount *ump; 7880 struct fs *fs; 7881 7882 freeblks = freework->fw_freeblks; 7883 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7884 fs = ump->um_fs; 7885 if (freework->fw_state & DEPCOMPLETE) { 7886 handle_written_freework(freework); 7887 return; 7888 } 7889 if (freework->fw_off == NINDIR(fs)) { 7890 freework_freeblock(freework, SINGLETON_KEY); 7891 return; 7892 } 7893 freework->fw_state |= INPROGRESS; 7894 FREE_LOCK(ump); 7895 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7896 freework->fw_lbn); 7897 ACQUIRE_LOCK(ump); 7898 } 7899 7900 /* 7901 * Called when a freework structure attached to a cg buf is written. The 7902 * ref on either the parent or the freeblks structure is released and 7903 * the freeblks is added back to the worklist if there is more work to do. 7904 */ 7905 static void 7906 handle_written_freework(freework) 7907 struct freework *freework; 7908 { 7909 struct freeblks *freeblks; 7910 struct freework *parent; 7911 7912 freeblks = freework->fw_freeblks; 7913 parent = freework->fw_parent; 7914 if (freework->fw_state & DELAYEDFREE) 7915 freeblks->fb_cgwait--; 7916 freework->fw_state |= COMPLETE; 7917 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7918 WORKITEM_FREE(freework, D_FREEWORK); 7919 if (parent) { 7920 if (--parent->fw_ref == 0) 7921 freework_enqueue(parent); 7922 return; 7923 } 7924 if (--freeblks->fb_ref != 0) 7925 return; 7926 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7927 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7928 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7929 } 7930 7931 /* 7932 * This workitem routine performs the block de-allocation. 7933 * The workitem is added to the pending list after the updated 7934 * inode block has been written to disk. As mentioned above, 7935 * checks regarding the number of blocks de-allocated (compared 7936 * to the number of blocks allocated for the file) are also 7937 * performed in this function. 7938 */ 7939 static int 7940 handle_workitem_freeblocks(freeblks, flags) 7941 struct freeblks *freeblks; 7942 int flags; 7943 { 7944 struct freework *freework; 7945 struct newblk *newblk; 7946 struct allocindir *aip; 7947 struct ufsmount *ump; 7948 struct worklist *wk; 7949 u_long key; 7950 7951 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7952 ("handle_workitem_freeblocks: Journal entries not written.")); 7953 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7954 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 7955 ACQUIRE_LOCK(ump); 7956 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7957 WORKLIST_REMOVE(wk); 7958 switch (wk->wk_type) { 7959 case D_DIRREM: 7960 wk->wk_state |= COMPLETE; 7961 add_to_worklist(wk, 0); 7962 continue; 7963 7964 case D_ALLOCDIRECT: 7965 free_newblk(WK_NEWBLK(wk)); 7966 continue; 7967 7968 case D_ALLOCINDIR: 7969 aip = WK_ALLOCINDIR(wk); 7970 freework = NULL; 7971 if (aip->ai_state & DELAYEDFREE) { 7972 FREE_LOCK(ump); 7973 freework = newfreework(ump, freeblks, NULL, 7974 aip->ai_lbn, aip->ai_newblkno, 7975 ump->um_fs->fs_frag, 0, 0); 7976 ACQUIRE_LOCK(ump); 7977 } 7978 newblk = WK_NEWBLK(wk); 7979 if (newblk->nb_jnewblk) { 7980 freework->fw_jnewblk = newblk->nb_jnewblk; 7981 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7982 newblk->nb_jnewblk = NULL; 7983 } 7984 free_newblk(newblk); 7985 continue; 7986 7987 case D_FREEWORK: 7988 freework = WK_FREEWORK(wk); 7989 if (freework->fw_lbn <= -UFS_NDADDR) 7990 handle_workitem_indirblk(freework); 7991 else 7992 freework_freeblock(freework, key); 7993 continue; 7994 default: 7995 panic("handle_workitem_freeblocks: Unknown type %s", 7996 TYPENAME(wk->wk_type)); 7997 } 7998 } 7999 if (freeblks->fb_ref != 0) { 8000 freeblks->fb_state &= ~INPROGRESS; 8001 wake_worklist(&freeblks->fb_list); 8002 freeblks = NULL; 8003 } 8004 FREE_LOCK(ump); 8005 ffs_blkrelease_finish(ump, key); 8006 if (freeblks) 8007 return handle_complete_freeblocks(freeblks, flags); 8008 return (0); 8009 } 8010 8011 /* 8012 * Handle completion of block free via truncate. This allows fs_pending 8013 * to track the actual free block count more closely than if we only updated 8014 * it at the end. We must be careful to handle cases where the block count 8015 * on free was incorrect. 8016 */ 8017 static void 8018 freeblks_free(ump, freeblks, blocks) 8019 struct ufsmount *ump; 8020 struct freeblks *freeblks; 8021 int blocks; 8022 { 8023 struct fs *fs; 8024 ufs2_daddr_t remain; 8025 8026 UFS_LOCK(ump); 8027 remain = -freeblks->fb_chkcnt; 8028 freeblks->fb_chkcnt += blocks; 8029 if (remain > 0) { 8030 if (remain < blocks) 8031 blocks = remain; 8032 fs = ump->um_fs; 8033 fs->fs_pendingblocks -= blocks; 8034 } 8035 UFS_UNLOCK(ump); 8036 } 8037 8038 /* 8039 * Once all of the freework workitems are complete we can retire the 8040 * freeblocks dependency and any journal work awaiting completion. This 8041 * can not be called until all other dependencies are stable on disk. 8042 */ 8043 static int 8044 handle_complete_freeblocks(freeblks, flags) 8045 struct freeblks *freeblks; 8046 int flags; 8047 { 8048 struct inodedep *inodedep; 8049 struct inode *ip; 8050 struct vnode *vp; 8051 struct fs *fs; 8052 struct ufsmount *ump; 8053 ufs2_daddr_t spare; 8054 8055 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8056 fs = ump->um_fs; 8057 flags = LK_EXCLUSIVE | flags; 8058 spare = freeblks->fb_chkcnt; 8059 8060 /* 8061 * If we did not release the expected number of blocks we may have 8062 * to adjust the inode block count here. Only do so if it wasn't 8063 * a truncation to zero and the modrev still matches. 8064 */ 8065 if (spare && freeblks->fb_len != 0) { 8066 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8067 flags, &vp, FFSV_FORCEINSMQ) != 0) 8068 return (EBUSY); 8069 ip = VTOI(vp); 8070 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8071 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8072 ip->i_flag |= IN_CHANGE; 8073 /* 8074 * We must wait so this happens before the 8075 * journal is reclaimed. 8076 */ 8077 ffs_update(vp, 1); 8078 } 8079 vput(vp); 8080 } 8081 if (spare < 0) { 8082 UFS_LOCK(ump); 8083 fs->fs_pendingblocks += spare; 8084 UFS_UNLOCK(ump); 8085 } 8086 #ifdef QUOTA 8087 /* Handle spare. */ 8088 if (spare) 8089 quotaadj(freeblks->fb_quota, ump, -spare); 8090 quotarele(freeblks->fb_quota); 8091 #endif 8092 ACQUIRE_LOCK(ump); 8093 if (freeblks->fb_state & ONDEPLIST) { 8094 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8095 0, &inodedep); 8096 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8097 freeblks->fb_state &= ~ONDEPLIST; 8098 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8099 free_inodedep(inodedep); 8100 } 8101 /* 8102 * All of the freeblock deps must be complete prior to this call 8103 * so it's now safe to complete earlier outstanding journal entries. 8104 */ 8105 handle_jwork(&freeblks->fb_jwork); 8106 WORKITEM_FREE(freeblks, D_FREEBLKS); 8107 FREE_LOCK(ump); 8108 return (0); 8109 } 8110 8111 /* 8112 * Release blocks associated with the freeblks and stored in the indirect 8113 * block dbn. If level is greater than SINGLE, the block is an indirect block 8114 * and recursive calls to indirtrunc must be used to cleanse other indirect 8115 * blocks. 8116 * 8117 * This handles partial and complete truncation of blocks. Partial is noted 8118 * with goingaway == 0. In this case the freework is completed after the 8119 * zero'd indirects are written to disk. For full truncation the freework 8120 * is completed after the block is freed. 8121 */ 8122 static void 8123 indir_trunc(freework, dbn, lbn) 8124 struct freework *freework; 8125 ufs2_daddr_t dbn; 8126 ufs_lbn_t lbn; 8127 { 8128 struct freework *nfreework; 8129 struct workhead wkhd; 8130 struct freeblks *freeblks; 8131 struct buf *bp; 8132 struct fs *fs; 8133 struct indirdep *indirdep; 8134 struct mount *mp; 8135 struct ufsmount *ump; 8136 ufs1_daddr_t *bap1; 8137 ufs2_daddr_t nb, nnb, *bap2; 8138 ufs_lbn_t lbnadd, nlbn; 8139 u_long key; 8140 int nblocks, ufs1fmt, freedblocks; 8141 int goingaway, freedeps, needj, level, cnt, i; 8142 8143 freeblks = freework->fw_freeblks; 8144 mp = freeblks->fb_list.wk_mp; 8145 ump = VFSTOUFS(mp); 8146 fs = ump->um_fs; 8147 /* 8148 * Get buffer of block pointers to be freed. There are three cases: 8149 * 8150 * 1) Partial truncate caches the indirdep pointer in the freework 8151 * which provides us a back copy to the save bp which holds the 8152 * pointers we want to clear. When this completes the zero 8153 * pointers are written to the real copy. 8154 * 2) The indirect is being completely truncated, cancel_indirdep() 8155 * eliminated the real copy and placed the indirdep on the saved 8156 * copy. The indirdep and buf are discarded when this completes. 8157 * 3) The indirect was not in memory, we read a copy off of the disk 8158 * using the devvp and drop and invalidate the buffer when we're 8159 * done. 8160 */ 8161 goingaway = 1; 8162 indirdep = NULL; 8163 if (freework->fw_indir != NULL) { 8164 goingaway = 0; 8165 indirdep = freework->fw_indir; 8166 bp = indirdep->ir_savebp; 8167 if (bp == NULL || bp->b_blkno != dbn) 8168 panic("indir_trunc: Bad saved buf %p blkno %jd", 8169 bp, (intmax_t)dbn); 8170 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8171 /* 8172 * The lock prevents the buf dep list from changing and 8173 * indirects on devvp should only ever have one dependency. 8174 */ 8175 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8176 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8177 panic("indir_trunc: Bad indirdep %p from buf %p", 8178 indirdep, bp); 8179 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8180 NOCRED, &bp) != 0) { 8181 brelse(bp); 8182 return; 8183 } 8184 ACQUIRE_LOCK(ump); 8185 /* Protects against a race with complete_trunc_indir(). */ 8186 freework->fw_state &= ~INPROGRESS; 8187 /* 8188 * If we have an indirdep we need to enforce the truncation order 8189 * and discard it when it is complete. 8190 */ 8191 if (indirdep) { 8192 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8193 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8194 /* 8195 * Add the complete truncate to the list on the 8196 * indirdep to enforce in-order processing. 8197 */ 8198 if (freework->fw_indir == NULL) 8199 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8200 freework, fw_next); 8201 FREE_LOCK(ump); 8202 return; 8203 } 8204 /* 8205 * If we're goingaway, free the indirdep. Otherwise it will 8206 * linger until the write completes. 8207 */ 8208 if (goingaway) 8209 free_indirdep(indirdep); 8210 } 8211 FREE_LOCK(ump); 8212 /* Initialize pointers depending on block size. */ 8213 if (ump->um_fstype == UFS1) { 8214 bap1 = (ufs1_daddr_t *)bp->b_data; 8215 nb = bap1[freework->fw_off]; 8216 ufs1fmt = 1; 8217 bap2 = NULL; 8218 } else { 8219 bap2 = (ufs2_daddr_t *)bp->b_data; 8220 nb = bap2[freework->fw_off]; 8221 ufs1fmt = 0; 8222 bap1 = NULL; 8223 } 8224 level = lbn_level(lbn); 8225 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8226 lbnadd = lbn_offset(fs, level); 8227 nblocks = btodb(fs->fs_bsize); 8228 nfreework = freework; 8229 freedeps = 0; 8230 cnt = 0; 8231 /* 8232 * Reclaim blocks. Traverses into nested indirect levels and 8233 * arranges for the current level to be freed when subordinates 8234 * are free when journaling. 8235 */ 8236 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8237 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8238 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8239 fs->fs_bsize) != 0) 8240 nb = 0; 8241 if (i != NINDIR(fs) - 1) { 8242 if (ufs1fmt) 8243 nnb = bap1[i+1]; 8244 else 8245 nnb = bap2[i+1]; 8246 } else 8247 nnb = 0; 8248 if (nb == 0) 8249 continue; 8250 cnt++; 8251 if (level != 0) { 8252 nlbn = (lbn + 1) - (i * lbnadd); 8253 if (needj != 0) { 8254 nfreework = newfreework(ump, freeblks, freework, 8255 nlbn, nb, fs->fs_frag, 0, 0); 8256 freedeps++; 8257 } 8258 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8259 } else { 8260 struct freedep *freedep; 8261 8262 /* 8263 * Attempt to aggregate freedep dependencies for 8264 * all blocks being released to the same CG. 8265 */ 8266 LIST_INIT(&wkhd); 8267 if (needj != 0 && 8268 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8269 freedep = newfreedep(freework); 8270 WORKLIST_INSERT_UNLOCKED(&wkhd, 8271 &freedep->fd_list); 8272 freedeps++; 8273 } 8274 CTR3(KTR_SUJ, 8275 "indir_trunc: ino %jd blkno %jd size %d", 8276 freeblks->fb_inum, nb, fs->fs_bsize); 8277 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8278 fs->fs_bsize, freeblks->fb_inum, 8279 freeblks->fb_vtype, &wkhd, key); 8280 } 8281 } 8282 ffs_blkrelease_finish(ump, key); 8283 if (goingaway) { 8284 bp->b_flags |= B_INVAL | B_NOCACHE; 8285 brelse(bp); 8286 } 8287 freedblocks = 0; 8288 if (level == 0) 8289 freedblocks = (nblocks * cnt); 8290 if (needj == 0) 8291 freedblocks += nblocks; 8292 freeblks_free(ump, freeblks, freedblocks); 8293 /* 8294 * If we are journaling set up the ref counts and offset so this 8295 * indirect can be completed when its children are free. 8296 */ 8297 if (needj) { 8298 ACQUIRE_LOCK(ump); 8299 freework->fw_off = i; 8300 freework->fw_ref += freedeps; 8301 freework->fw_ref -= NINDIR(fs) + 1; 8302 if (level == 0) 8303 freeblks->fb_cgwait += freedeps; 8304 if (freework->fw_ref == 0) 8305 freework_freeblock(freework, SINGLETON_KEY); 8306 FREE_LOCK(ump); 8307 return; 8308 } 8309 /* 8310 * If we're not journaling we can free the indirect now. 8311 */ 8312 dbn = dbtofsb(fs, dbn); 8313 CTR3(KTR_SUJ, 8314 "indir_trunc 2: ino %jd blkno %jd size %d", 8315 freeblks->fb_inum, dbn, fs->fs_bsize); 8316 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8317 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8318 /* Non SUJ softdep does single-threaded truncations. */ 8319 if (freework->fw_blkno == dbn) { 8320 freework->fw_state |= ALLCOMPLETE; 8321 ACQUIRE_LOCK(ump); 8322 handle_written_freework(freework); 8323 FREE_LOCK(ump); 8324 } 8325 return; 8326 } 8327 8328 /* 8329 * Cancel an allocindir when it is removed via truncation. When bp is not 8330 * NULL the indirect never appeared on disk and is scheduled to be freed 8331 * independently of the indir so we can more easily track journal work. 8332 */ 8333 static void 8334 cancel_allocindir(aip, bp, freeblks, trunc) 8335 struct allocindir *aip; 8336 struct buf *bp; 8337 struct freeblks *freeblks; 8338 int trunc; 8339 { 8340 struct indirdep *indirdep; 8341 struct freefrag *freefrag; 8342 struct newblk *newblk; 8343 8344 newblk = (struct newblk *)aip; 8345 LIST_REMOVE(aip, ai_next); 8346 /* 8347 * We must eliminate the pointer in bp if it must be freed on its 8348 * own due to partial truncate or pending journal work. 8349 */ 8350 if (bp && (trunc || newblk->nb_jnewblk)) { 8351 /* 8352 * Clear the pointer and mark the aip to be freed 8353 * directly if it never existed on disk. 8354 */ 8355 aip->ai_state |= DELAYEDFREE; 8356 indirdep = aip->ai_indirdep; 8357 if (indirdep->ir_state & UFS1FMT) 8358 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8359 else 8360 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8361 } 8362 /* 8363 * When truncating the previous pointer will be freed via 8364 * savedbp. Eliminate the freefrag which would dup free. 8365 */ 8366 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8367 newblk->nb_freefrag = NULL; 8368 if (freefrag->ff_jdep) 8369 cancel_jfreefrag( 8370 WK_JFREEFRAG(freefrag->ff_jdep)); 8371 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8372 WORKITEM_FREE(freefrag, D_FREEFRAG); 8373 } 8374 /* 8375 * If the journal hasn't been written the jnewblk must be passed 8376 * to the call to ffs_blkfree that reclaims the space. We accomplish 8377 * this by leaving the journal dependency on the newblk to be freed 8378 * when a freework is created in handle_workitem_freeblocks(). 8379 */ 8380 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8381 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8382 } 8383 8384 /* 8385 * Create the mkdir dependencies for . and .. in a new directory. Link them 8386 * in to a newdirblk so any subsequent additions are tracked properly. The 8387 * caller is responsible for adding the mkdir1 dependency to the journal 8388 * and updating id_mkdiradd. This function returns with the per-filesystem 8389 * lock held. 8390 */ 8391 static struct mkdir * 8392 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8393 struct diradd *dap; 8394 ino_t newinum; 8395 ino_t dinum; 8396 struct buf *newdirbp; 8397 struct mkdir **mkdirp; 8398 { 8399 struct newblk *newblk; 8400 struct pagedep *pagedep; 8401 struct inodedep *inodedep; 8402 struct newdirblk *newdirblk; 8403 struct mkdir *mkdir1, *mkdir2; 8404 struct worklist *wk; 8405 struct jaddref *jaddref; 8406 struct ufsmount *ump; 8407 struct mount *mp; 8408 8409 mp = dap->da_list.wk_mp; 8410 ump = VFSTOUFS(mp); 8411 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8412 M_SOFTDEP_FLAGS); 8413 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8414 LIST_INIT(&newdirblk->db_mkdir); 8415 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8416 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8417 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8418 mkdir1->md_diradd = dap; 8419 mkdir1->md_jaddref = NULL; 8420 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8421 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8422 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8423 mkdir2->md_diradd = dap; 8424 mkdir2->md_jaddref = NULL; 8425 if (MOUNTEDSUJ(mp) == 0) { 8426 mkdir1->md_state |= DEPCOMPLETE; 8427 mkdir2->md_state |= DEPCOMPLETE; 8428 } 8429 /* 8430 * Dependency on "." and ".." being written to disk. 8431 */ 8432 mkdir1->md_buf = newdirbp; 8433 ACQUIRE_LOCK(VFSTOUFS(mp)); 8434 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8435 /* 8436 * We must link the pagedep, allocdirect, and newdirblk for 8437 * the initial file page so the pointer to the new directory 8438 * is not written until the directory contents are live and 8439 * any subsequent additions are not marked live until the 8440 * block is reachable via the inode. 8441 */ 8442 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8443 panic("setup_newdir: lost pagedep"); 8444 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8445 if (wk->wk_type == D_ALLOCDIRECT) 8446 break; 8447 if (wk == NULL) 8448 panic("setup_newdir: lost allocdirect"); 8449 if (pagedep->pd_state & NEWBLOCK) 8450 panic("setup_newdir: NEWBLOCK already set"); 8451 newblk = WK_NEWBLK(wk); 8452 pagedep->pd_state |= NEWBLOCK; 8453 pagedep->pd_newdirblk = newdirblk; 8454 newdirblk->db_pagedep = pagedep; 8455 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8456 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8457 /* 8458 * Look up the inodedep for the parent directory so that we 8459 * can link mkdir2 into the pending dotdot jaddref or 8460 * the inode write if there is none. If the inode is 8461 * ALLCOMPLETE and no jaddref is present all dependencies have 8462 * been satisfied and mkdir2 can be freed. 8463 */ 8464 inodedep_lookup(mp, dinum, 0, &inodedep); 8465 if (MOUNTEDSUJ(mp)) { 8466 if (inodedep == NULL) 8467 panic("setup_newdir: Lost parent."); 8468 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8469 inoreflst); 8470 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8471 (jaddref->ja_state & MKDIR_PARENT), 8472 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8473 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8474 mkdir2->md_jaddref = jaddref; 8475 jaddref->ja_mkdir = mkdir2; 8476 } else if (inodedep == NULL || 8477 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8478 dap->da_state &= ~MKDIR_PARENT; 8479 WORKITEM_FREE(mkdir2, D_MKDIR); 8480 mkdir2 = NULL; 8481 } else { 8482 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8483 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8484 } 8485 *mkdirp = mkdir2; 8486 8487 return (mkdir1); 8488 } 8489 8490 /* 8491 * Directory entry addition dependencies. 8492 * 8493 * When adding a new directory entry, the inode (with its incremented link 8494 * count) must be written to disk before the directory entry's pointer to it. 8495 * Also, if the inode is newly allocated, the corresponding freemap must be 8496 * updated (on disk) before the directory entry's pointer. These requirements 8497 * are met via undo/redo on the directory entry's pointer, which consists 8498 * simply of the inode number. 8499 * 8500 * As directory entries are added and deleted, the free space within a 8501 * directory block can become fragmented. The ufs filesystem will compact 8502 * a fragmented directory block to make space for a new entry. When this 8503 * occurs, the offsets of previously added entries change. Any "diradd" 8504 * dependency structures corresponding to these entries must be updated with 8505 * the new offsets. 8506 */ 8507 8508 /* 8509 * This routine is called after the in-memory inode's link 8510 * count has been incremented, but before the directory entry's 8511 * pointer to the inode has been set. 8512 */ 8513 int 8514 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8515 struct buf *bp; /* buffer containing directory block */ 8516 struct inode *dp; /* inode for directory */ 8517 off_t diroffset; /* offset of new entry in directory */ 8518 ino_t newinum; /* inode referenced by new directory entry */ 8519 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8520 int isnewblk; /* entry is in a newly allocated block */ 8521 { 8522 int offset; /* offset of new entry within directory block */ 8523 ufs_lbn_t lbn; /* block in directory containing new entry */ 8524 struct fs *fs; 8525 struct diradd *dap; 8526 struct newblk *newblk; 8527 struct pagedep *pagedep; 8528 struct inodedep *inodedep; 8529 struct newdirblk *newdirblk; 8530 struct mkdir *mkdir1, *mkdir2; 8531 struct jaddref *jaddref; 8532 struct ufsmount *ump; 8533 struct mount *mp; 8534 int isindir; 8535 8536 mp = ITOVFS(dp); 8537 ump = VFSTOUFS(mp); 8538 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8539 ("softdep_setup_directory_add called on non-softdep filesystem")); 8540 /* 8541 * Whiteouts have no dependencies. 8542 */ 8543 if (newinum == UFS_WINO) { 8544 if (newdirbp != NULL) 8545 bdwrite(newdirbp); 8546 return (0); 8547 } 8548 jaddref = NULL; 8549 mkdir1 = mkdir2 = NULL; 8550 fs = ump->um_fs; 8551 lbn = lblkno(fs, diroffset); 8552 offset = blkoff(fs, diroffset); 8553 dap = malloc(sizeof(struct diradd), M_DIRADD, 8554 M_SOFTDEP_FLAGS|M_ZERO); 8555 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8556 dap->da_offset = offset; 8557 dap->da_newinum = newinum; 8558 dap->da_state = ATTACHED; 8559 LIST_INIT(&dap->da_jwork); 8560 isindir = bp->b_lblkno >= UFS_NDADDR; 8561 newdirblk = NULL; 8562 if (isnewblk && 8563 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8564 newdirblk = malloc(sizeof(struct newdirblk), 8565 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8566 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8567 LIST_INIT(&newdirblk->db_mkdir); 8568 } 8569 /* 8570 * If we're creating a new directory setup the dependencies and set 8571 * the dap state to wait for them. Otherwise it's COMPLETE and 8572 * we can move on. 8573 */ 8574 if (newdirbp == NULL) { 8575 dap->da_state |= DEPCOMPLETE; 8576 ACQUIRE_LOCK(ump); 8577 } else { 8578 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8579 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8580 &mkdir2); 8581 } 8582 /* 8583 * Link into parent directory pagedep to await its being written. 8584 */ 8585 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8586 #ifdef INVARIANTS 8587 if (diradd_lookup(pagedep, offset) != NULL) 8588 panic("softdep_setup_directory_add: %p already at off %d\n", 8589 diradd_lookup(pagedep, offset), offset); 8590 #endif 8591 dap->da_pagedep = pagedep; 8592 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8593 da_pdlist); 8594 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8595 /* 8596 * If we're journaling, link the diradd into the jaddref so it 8597 * may be completed after the journal entry is written. Otherwise, 8598 * link the diradd into its inodedep. If the inode is not yet 8599 * written place it on the bufwait list, otherwise do the post-inode 8600 * write processing to put it on the id_pendinghd list. 8601 */ 8602 if (MOUNTEDSUJ(mp)) { 8603 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8604 inoreflst); 8605 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8606 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8607 jaddref->ja_diroff = diroffset; 8608 jaddref->ja_diradd = dap; 8609 add_to_journal(&jaddref->ja_list); 8610 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8611 diradd_inode_written(dap, inodedep); 8612 else 8613 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8614 /* 8615 * Add the journal entries for . and .. links now that the primary 8616 * link is written. 8617 */ 8618 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8619 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8620 inoreflst, if_deps); 8621 KASSERT(jaddref != NULL && 8622 jaddref->ja_ino == jaddref->ja_parent && 8623 (jaddref->ja_state & MKDIR_BODY), 8624 ("softdep_setup_directory_add: bad dot jaddref %p", 8625 jaddref)); 8626 mkdir1->md_jaddref = jaddref; 8627 jaddref->ja_mkdir = mkdir1; 8628 /* 8629 * It is important that the dotdot journal entry 8630 * is added prior to the dot entry since dot writes 8631 * both the dot and dotdot links. These both must 8632 * be added after the primary link for the journal 8633 * to remain consistent. 8634 */ 8635 add_to_journal(&mkdir2->md_jaddref->ja_list); 8636 add_to_journal(&jaddref->ja_list); 8637 } 8638 /* 8639 * If we are adding a new directory remember this diradd so that if 8640 * we rename it we can keep the dot and dotdot dependencies. If 8641 * we are adding a new name for an inode that has a mkdiradd we 8642 * must be in rename and we have to move the dot and dotdot 8643 * dependencies to this new name. The old name is being orphaned 8644 * soon. 8645 */ 8646 if (mkdir1 != NULL) { 8647 if (inodedep->id_mkdiradd != NULL) 8648 panic("softdep_setup_directory_add: Existing mkdir"); 8649 inodedep->id_mkdiradd = dap; 8650 } else if (inodedep->id_mkdiradd) 8651 merge_diradd(inodedep, dap); 8652 if (newdirblk != NULL) { 8653 /* 8654 * There is nothing to do if we are already tracking 8655 * this block. 8656 */ 8657 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8658 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8659 FREE_LOCK(ump); 8660 return (0); 8661 } 8662 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8663 == 0) 8664 panic("softdep_setup_directory_add: lost entry"); 8665 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8666 pagedep->pd_state |= NEWBLOCK; 8667 pagedep->pd_newdirblk = newdirblk; 8668 newdirblk->db_pagedep = pagedep; 8669 FREE_LOCK(ump); 8670 /* 8671 * If we extended into an indirect signal direnter to sync. 8672 */ 8673 if (isindir) 8674 return (1); 8675 return (0); 8676 } 8677 FREE_LOCK(ump); 8678 return (0); 8679 } 8680 8681 /* 8682 * This procedure is called to change the offset of a directory 8683 * entry when compacting a directory block which must be owned 8684 * exclusively by the caller. Note that the actual entry movement 8685 * must be done in this procedure to ensure that no I/O completions 8686 * occur while the move is in progress. 8687 */ 8688 void 8689 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8690 struct buf *bp; /* Buffer holding directory block. */ 8691 struct inode *dp; /* inode for directory */ 8692 caddr_t base; /* address of dp->i_offset */ 8693 caddr_t oldloc; /* address of old directory location */ 8694 caddr_t newloc; /* address of new directory location */ 8695 int entrysize; /* size of directory entry */ 8696 { 8697 int offset, oldoffset, newoffset; 8698 struct pagedep *pagedep; 8699 struct jmvref *jmvref; 8700 struct diradd *dap; 8701 struct direct *de; 8702 struct mount *mp; 8703 struct ufsmount *ump; 8704 ufs_lbn_t lbn; 8705 int flags; 8706 8707 mp = ITOVFS(dp); 8708 ump = VFSTOUFS(mp); 8709 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8710 ("softdep_change_directoryentry_offset called on " 8711 "non-softdep filesystem")); 8712 de = (struct direct *)oldloc; 8713 jmvref = NULL; 8714 flags = 0; 8715 /* 8716 * Moves are always journaled as it would be too complex to 8717 * determine if any affected adds or removes are present in the 8718 * journal. 8719 */ 8720 if (MOUNTEDSUJ(mp)) { 8721 flags = DEPALLOC; 8722 jmvref = newjmvref(dp, de->d_ino, 8723 dp->i_offset + (oldloc - base), 8724 dp->i_offset + (newloc - base)); 8725 } 8726 lbn = lblkno(ump->um_fs, dp->i_offset); 8727 offset = blkoff(ump->um_fs, dp->i_offset); 8728 oldoffset = offset + (oldloc - base); 8729 newoffset = offset + (newloc - base); 8730 ACQUIRE_LOCK(ump); 8731 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8732 goto done; 8733 dap = diradd_lookup(pagedep, oldoffset); 8734 if (dap) { 8735 dap->da_offset = newoffset; 8736 newoffset = DIRADDHASH(newoffset); 8737 oldoffset = DIRADDHASH(oldoffset); 8738 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8739 newoffset != oldoffset) { 8740 LIST_REMOVE(dap, da_pdlist); 8741 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8742 dap, da_pdlist); 8743 } 8744 } 8745 done: 8746 if (jmvref) { 8747 jmvref->jm_pagedep = pagedep; 8748 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8749 add_to_journal(&jmvref->jm_list); 8750 } 8751 bcopy(oldloc, newloc, entrysize); 8752 FREE_LOCK(ump); 8753 } 8754 8755 /* 8756 * Move the mkdir dependencies and journal work from one diradd to another 8757 * when renaming a directory. The new name must depend on the mkdir deps 8758 * completing as the old name did. Directories can only have one valid link 8759 * at a time so one must be canonical. 8760 */ 8761 static void 8762 merge_diradd(inodedep, newdap) 8763 struct inodedep *inodedep; 8764 struct diradd *newdap; 8765 { 8766 struct diradd *olddap; 8767 struct mkdir *mkdir, *nextmd; 8768 struct ufsmount *ump; 8769 short state; 8770 8771 olddap = inodedep->id_mkdiradd; 8772 inodedep->id_mkdiradd = newdap; 8773 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8774 newdap->da_state &= ~DEPCOMPLETE; 8775 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8776 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8777 mkdir = nextmd) { 8778 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8779 if (mkdir->md_diradd != olddap) 8780 continue; 8781 mkdir->md_diradd = newdap; 8782 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8783 newdap->da_state |= state; 8784 olddap->da_state &= ~state; 8785 if ((olddap->da_state & 8786 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8787 break; 8788 } 8789 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8790 panic("merge_diradd: unfound ref"); 8791 } 8792 /* 8793 * Any mkdir related journal items are not safe to be freed until 8794 * the new name is stable. 8795 */ 8796 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8797 olddap->da_state |= DEPCOMPLETE; 8798 complete_diradd(olddap); 8799 } 8800 8801 /* 8802 * Move the diradd to the pending list when all diradd dependencies are 8803 * complete. 8804 */ 8805 static void 8806 complete_diradd(dap) 8807 struct diradd *dap; 8808 { 8809 struct pagedep *pagedep; 8810 8811 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8812 if (dap->da_state & DIRCHG) 8813 pagedep = dap->da_previous->dm_pagedep; 8814 else 8815 pagedep = dap->da_pagedep; 8816 LIST_REMOVE(dap, da_pdlist); 8817 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8818 } 8819 } 8820 8821 /* 8822 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8823 * add entries and conditonally journal the remove. 8824 */ 8825 static void 8826 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8827 struct diradd *dap; 8828 struct dirrem *dirrem; 8829 struct jremref *jremref; 8830 struct jremref *dotremref; 8831 struct jremref *dotdotremref; 8832 { 8833 struct inodedep *inodedep; 8834 struct jaddref *jaddref; 8835 struct inoref *inoref; 8836 struct ufsmount *ump; 8837 struct mkdir *mkdir; 8838 8839 /* 8840 * If no remove references were allocated we're on a non-journaled 8841 * filesystem and can skip the cancel step. 8842 */ 8843 if (jremref == NULL) { 8844 free_diradd(dap, NULL); 8845 return; 8846 } 8847 /* 8848 * Cancel the primary name an free it if it does not require 8849 * journaling. 8850 */ 8851 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8852 0, &inodedep) != 0) { 8853 /* Abort the addref that reference this diradd. */ 8854 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8855 if (inoref->if_list.wk_type != D_JADDREF) 8856 continue; 8857 jaddref = (struct jaddref *)inoref; 8858 if (jaddref->ja_diradd != dap) 8859 continue; 8860 if (cancel_jaddref(jaddref, inodedep, 8861 &dirrem->dm_jwork) == 0) { 8862 free_jremref(jremref); 8863 jremref = NULL; 8864 } 8865 break; 8866 } 8867 } 8868 /* 8869 * Cancel subordinate names and free them if they do not require 8870 * journaling. 8871 */ 8872 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8873 ump = VFSTOUFS(dap->da_list.wk_mp); 8874 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8875 if (mkdir->md_diradd != dap) 8876 continue; 8877 if ((jaddref = mkdir->md_jaddref) == NULL) 8878 continue; 8879 mkdir->md_jaddref = NULL; 8880 if (mkdir->md_state & MKDIR_PARENT) { 8881 if (cancel_jaddref(jaddref, NULL, 8882 &dirrem->dm_jwork) == 0) { 8883 free_jremref(dotdotremref); 8884 dotdotremref = NULL; 8885 } 8886 } else { 8887 if (cancel_jaddref(jaddref, inodedep, 8888 &dirrem->dm_jwork) == 0) { 8889 free_jremref(dotremref); 8890 dotremref = NULL; 8891 } 8892 } 8893 } 8894 } 8895 8896 if (jremref) 8897 journal_jremref(dirrem, jremref, inodedep); 8898 if (dotremref) 8899 journal_jremref(dirrem, dotremref, inodedep); 8900 if (dotdotremref) 8901 journal_jremref(dirrem, dotdotremref, NULL); 8902 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8903 free_diradd(dap, &dirrem->dm_jwork); 8904 } 8905 8906 /* 8907 * Free a diradd dependency structure. 8908 */ 8909 static void 8910 free_diradd(dap, wkhd) 8911 struct diradd *dap; 8912 struct workhead *wkhd; 8913 { 8914 struct dirrem *dirrem; 8915 struct pagedep *pagedep; 8916 struct inodedep *inodedep; 8917 struct mkdir *mkdir, *nextmd; 8918 struct ufsmount *ump; 8919 8920 ump = VFSTOUFS(dap->da_list.wk_mp); 8921 LOCK_OWNED(ump); 8922 LIST_REMOVE(dap, da_pdlist); 8923 if (dap->da_state & ONWORKLIST) 8924 WORKLIST_REMOVE(&dap->da_list); 8925 if ((dap->da_state & DIRCHG) == 0) { 8926 pagedep = dap->da_pagedep; 8927 } else { 8928 dirrem = dap->da_previous; 8929 pagedep = dirrem->dm_pagedep; 8930 dirrem->dm_dirinum = pagedep->pd_ino; 8931 dirrem->dm_state |= COMPLETE; 8932 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8933 add_to_worklist(&dirrem->dm_list, 0); 8934 } 8935 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8936 0, &inodedep) != 0) 8937 if (inodedep->id_mkdiradd == dap) 8938 inodedep->id_mkdiradd = NULL; 8939 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8940 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8941 mkdir = nextmd) { 8942 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8943 if (mkdir->md_diradd != dap) 8944 continue; 8945 dap->da_state &= 8946 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8947 LIST_REMOVE(mkdir, md_mkdirs); 8948 if (mkdir->md_state & ONWORKLIST) 8949 WORKLIST_REMOVE(&mkdir->md_list); 8950 if (mkdir->md_jaddref != NULL) 8951 panic("free_diradd: Unexpected jaddref"); 8952 WORKITEM_FREE(mkdir, D_MKDIR); 8953 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8954 break; 8955 } 8956 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8957 panic("free_diradd: unfound ref"); 8958 } 8959 if (inodedep) 8960 free_inodedep(inodedep); 8961 /* 8962 * Free any journal segments waiting for the directory write. 8963 */ 8964 handle_jwork(&dap->da_jwork); 8965 WORKITEM_FREE(dap, D_DIRADD); 8966 } 8967 8968 /* 8969 * Directory entry removal dependencies. 8970 * 8971 * When removing a directory entry, the entry's inode pointer must be 8972 * zero'ed on disk before the corresponding inode's link count is decremented 8973 * (possibly freeing the inode for re-use). This dependency is handled by 8974 * updating the directory entry but delaying the inode count reduction until 8975 * after the directory block has been written to disk. After this point, the 8976 * inode count can be decremented whenever it is convenient. 8977 */ 8978 8979 /* 8980 * This routine should be called immediately after removing 8981 * a directory entry. The inode's link count should not be 8982 * decremented by the calling procedure -- the soft updates 8983 * code will do this task when it is safe. 8984 */ 8985 void 8986 softdep_setup_remove(bp, dp, ip, isrmdir) 8987 struct buf *bp; /* buffer containing directory block */ 8988 struct inode *dp; /* inode for the directory being modified */ 8989 struct inode *ip; /* inode for directory entry being removed */ 8990 int isrmdir; /* indicates if doing RMDIR */ 8991 { 8992 struct dirrem *dirrem, *prevdirrem; 8993 struct inodedep *inodedep; 8994 struct ufsmount *ump; 8995 int direct; 8996 8997 ump = ITOUMP(ip); 8998 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 8999 ("softdep_setup_remove called on non-softdep filesystem")); 9000 /* 9001 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9002 * newdirrem() to setup the full directory remove which requires 9003 * isrmdir > 1. 9004 */ 9005 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9006 /* 9007 * Add the dirrem to the inodedep's pending remove list for quick 9008 * discovery later. 9009 */ 9010 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9011 panic("softdep_setup_remove: Lost inodedep."); 9012 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9013 dirrem->dm_state |= ONDEPLIST; 9014 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9015 9016 /* 9017 * If the COMPLETE flag is clear, then there were no active 9018 * entries and we want to roll back to a zeroed entry until 9019 * the new inode is committed to disk. If the COMPLETE flag is 9020 * set then we have deleted an entry that never made it to 9021 * disk. If the entry we deleted resulted from a name change, 9022 * then the old name still resides on disk. We cannot delete 9023 * its inode (returned to us in prevdirrem) until the zeroed 9024 * directory entry gets to disk. The new inode has never been 9025 * referenced on the disk, so can be deleted immediately. 9026 */ 9027 if ((dirrem->dm_state & COMPLETE) == 0) { 9028 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9029 dm_next); 9030 FREE_LOCK(ump); 9031 } else { 9032 if (prevdirrem != NULL) 9033 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9034 prevdirrem, dm_next); 9035 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9036 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9037 FREE_LOCK(ump); 9038 if (direct) 9039 handle_workitem_remove(dirrem, 0); 9040 } 9041 } 9042 9043 /* 9044 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9045 * pd_pendinghd list of a pagedep. 9046 */ 9047 static struct diradd * 9048 diradd_lookup(pagedep, offset) 9049 struct pagedep *pagedep; 9050 int offset; 9051 { 9052 struct diradd *dap; 9053 9054 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9055 if (dap->da_offset == offset) 9056 return (dap); 9057 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9058 if (dap->da_offset == offset) 9059 return (dap); 9060 return (NULL); 9061 } 9062 9063 /* 9064 * Search for a .. diradd dependency in a directory that is being removed. 9065 * If the directory was renamed to a new parent we have a diradd rather 9066 * than a mkdir for the .. entry. We need to cancel it now before 9067 * it is found in truncate(). 9068 */ 9069 static struct jremref * 9070 cancel_diradd_dotdot(ip, dirrem, jremref) 9071 struct inode *ip; 9072 struct dirrem *dirrem; 9073 struct jremref *jremref; 9074 { 9075 struct pagedep *pagedep; 9076 struct diradd *dap; 9077 struct worklist *wk; 9078 9079 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9080 return (jremref); 9081 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9082 if (dap == NULL) 9083 return (jremref); 9084 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9085 /* 9086 * Mark any journal work as belonging to the parent so it is freed 9087 * with the .. reference. 9088 */ 9089 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9090 wk->wk_state |= MKDIR_PARENT; 9091 return (NULL); 9092 } 9093 9094 /* 9095 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9096 * replace it with a dirrem/diradd pair as a result of re-parenting a 9097 * directory. This ensures that we don't simultaneously have a mkdir and 9098 * a diradd for the same .. entry. 9099 */ 9100 static struct jremref * 9101 cancel_mkdir_dotdot(ip, dirrem, jremref) 9102 struct inode *ip; 9103 struct dirrem *dirrem; 9104 struct jremref *jremref; 9105 { 9106 struct inodedep *inodedep; 9107 struct jaddref *jaddref; 9108 struct ufsmount *ump; 9109 struct mkdir *mkdir; 9110 struct diradd *dap; 9111 struct mount *mp; 9112 9113 mp = ITOVFS(ip); 9114 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9115 return (jremref); 9116 dap = inodedep->id_mkdiradd; 9117 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9118 return (jremref); 9119 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9120 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9121 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9122 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9123 break; 9124 if (mkdir == NULL) 9125 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9126 if ((jaddref = mkdir->md_jaddref) != NULL) { 9127 mkdir->md_jaddref = NULL; 9128 jaddref->ja_state &= ~MKDIR_PARENT; 9129 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9130 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9131 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9132 journal_jremref(dirrem, jremref, inodedep); 9133 jremref = NULL; 9134 } 9135 } 9136 if (mkdir->md_state & ONWORKLIST) 9137 WORKLIST_REMOVE(&mkdir->md_list); 9138 mkdir->md_state |= ALLCOMPLETE; 9139 complete_mkdir(mkdir); 9140 return (jremref); 9141 } 9142 9143 static void 9144 journal_jremref(dirrem, jremref, inodedep) 9145 struct dirrem *dirrem; 9146 struct jremref *jremref; 9147 struct inodedep *inodedep; 9148 { 9149 9150 if (inodedep == NULL) 9151 if (inodedep_lookup(jremref->jr_list.wk_mp, 9152 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9153 panic("journal_jremref: Lost inodedep"); 9154 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9155 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9156 add_to_journal(&jremref->jr_list); 9157 } 9158 9159 static void 9160 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9161 struct dirrem *dirrem; 9162 struct jremref *jremref; 9163 struct jremref *dotremref; 9164 struct jremref *dotdotremref; 9165 { 9166 struct inodedep *inodedep; 9167 9168 9169 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9170 &inodedep) == 0) 9171 panic("dirrem_journal: Lost inodedep"); 9172 journal_jremref(dirrem, jremref, inodedep); 9173 if (dotremref) 9174 journal_jremref(dirrem, dotremref, inodedep); 9175 if (dotdotremref) 9176 journal_jremref(dirrem, dotdotremref, NULL); 9177 } 9178 9179 /* 9180 * Allocate a new dirrem if appropriate and return it along with 9181 * its associated pagedep. Called without a lock, returns with lock. 9182 */ 9183 static struct dirrem * 9184 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9185 struct buf *bp; /* buffer containing directory block */ 9186 struct inode *dp; /* inode for the directory being modified */ 9187 struct inode *ip; /* inode for directory entry being removed */ 9188 int isrmdir; /* indicates if doing RMDIR */ 9189 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9190 { 9191 int offset; 9192 ufs_lbn_t lbn; 9193 struct diradd *dap; 9194 struct dirrem *dirrem; 9195 struct pagedep *pagedep; 9196 struct jremref *jremref; 9197 struct jremref *dotremref; 9198 struct jremref *dotdotremref; 9199 struct vnode *dvp; 9200 struct ufsmount *ump; 9201 9202 /* 9203 * Whiteouts have no deletion dependencies. 9204 */ 9205 if (ip == NULL) 9206 panic("newdirrem: whiteout"); 9207 dvp = ITOV(dp); 9208 ump = ITOUMP(dp); 9209 9210 /* 9211 * If the system is over its limit and our filesystem is 9212 * responsible for more than our share of that usage and 9213 * we are not a snapshot, request some inodedep cleanup. 9214 * Limiting the number of dirrem structures will also limit 9215 * the number of freefile and freeblks structures. 9216 */ 9217 ACQUIRE_LOCK(ump); 9218 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9219 schedule_cleanup(UFSTOVFS(ump)); 9220 else 9221 FREE_LOCK(ump); 9222 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9223 M_ZERO); 9224 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9225 LIST_INIT(&dirrem->dm_jremrefhd); 9226 LIST_INIT(&dirrem->dm_jwork); 9227 dirrem->dm_state = isrmdir ? RMDIR : 0; 9228 dirrem->dm_oldinum = ip->i_number; 9229 *prevdirremp = NULL; 9230 /* 9231 * Allocate remove reference structures to track journal write 9232 * dependencies. We will always have one for the link and 9233 * when doing directories we will always have one more for dot. 9234 * When renaming a directory we skip the dotdot link change so 9235 * this is not needed. 9236 */ 9237 jremref = dotremref = dotdotremref = NULL; 9238 if (DOINGSUJ(dvp)) { 9239 if (isrmdir) { 9240 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9241 ip->i_effnlink + 2); 9242 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9243 ip->i_effnlink + 1); 9244 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9245 dp->i_effnlink + 1); 9246 dotdotremref->jr_state |= MKDIR_PARENT; 9247 } else 9248 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9249 ip->i_effnlink + 1); 9250 } 9251 ACQUIRE_LOCK(ump); 9252 lbn = lblkno(ump->um_fs, dp->i_offset); 9253 offset = blkoff(ump->um_fs, dp->i_offset); 9254 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9255 &pagedep); 9256 dirrem->dm_pagedep = pagedep; 9257 dirrem->dm_offset = offset; 9258 /* 9259 * If we're renaming a .. link to a new directory, cancel any 9260 * existing MKDIR_PARENT mkdir. If it has already been canceled 9261 * the jremref is preserved for any potential diradd in this 9262 * location. This can not coincide with a rmdir. 9263 */ 9264 if (dp->i_offset == DOTDOT_OFFSET) { 9265 if (isrmdir) 9266 panic("newdirrem: .. directory change during remove?"); 9267 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9268 } 9269 /* 9270 * If we're removing a directory search for the .. dependency now and 9271 * cancel it. Any pending journal work will be added to the dirrem 9272 * to be completed when the workitem remove completes. 9273 */ 9274 if (isrmdir) 9275 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9276 /* 9277 * Check for a diradd dependency for the same directory entry. 9278 * If present, then both dependencies become obsolete and can 9279 * be de-allocated. 9280 */ 9281 dap = diradd_lookup(pagedep, offset); 9282 if (dap == NULL) { 9283 /* 9284 * Link the jremref structures into the dirrem so they are 9285 * written prior to the pagedep. 9286 */ 9287 if (jremref) 9288 dirrem_journal(dirrem, jremref, dotremref, 9289 dotdotremref); 9290 return (dirrem); 9291 } 9292 /* 9293 * Must be ATTACHED at this point. 9294 */ 9295 if ((dap->da_state & ATTACHED) == 0) 9296 panic("newdirrem: not ATTACHED"); 9297 if (dap->da_newinum != ip->i_number) 9298 panic("newdirrem: inum %ju should be %ju", 9299 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9300 /* 9301 * If we are deleting a changed name that never made it to disk, 9302 * then return the dirrem describing the previous inode (which 9303 * represents the inode currently referenced from this entry on disk). 9304 */ 9305 if ((dap->da_state & DIRCHG) != 0) { 9306 *prevdirremp = dap->da_previous; 9307 dap->da_state &= ~DIRCHG; 9308 dap->da_pagedep = pagedep; 9309 } 9310 /* 9311 * We are deleting an entry that never made it to disk. 9312 * Mark it COMPLETE so we can delete its inode immediately. 9313 */ 9314 dirrem->dm_state |= COMPLETE; 9315 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9316 #ifdef INVARIANTS 9317 if (isrmdir == 0) { 9318 struct worklist *wk; 9319 9320 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9321 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9322 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9323 } 9324 #endif 9325 9326 return (dirrem); 9327 } 9328 9329 /* 9330 * Directory entry change dependencies. 9331 * 9332 * Changing an existing directory entry requires that an add operation 9333 * be completed first followed by a deletion. The semantics for the addition 9334 * are identical to the description of adding a new entry above except 9335 * that the rollback is to the old inode number rather than zero. Once 9336 * the addition dependency is completed, the removal is done as described 9337 * in the removal routine above. 9338 */ 9339 9340 /* 9341 * This routine should be called immediately after changing 9342 * a directory entry. The inode's link count should not be 9343 * decremented by the calling procedure -- the soft updates 9344 * code will perform this task when it is safe. 9345 */ 9346 void 9347 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9348 struct buf *bp; /* buffer containing directory block */ 9349 struct inode *dp; /* inode for the directory being modified */ 9350 struct inode *ip; /* inode for directory entry being removed */ 9351 ino_t newinum; /* new inode number for changed entry */ 9352 int isrmdir; /* indicates if doing RMDIR */ 9353 { 9354 int offset; 9355 struct diradd *dap = NULL; 9356 struct dirrem *dirrem, *prevdirrem; 9357 struct pagedep *pagedep; 9358 struct inodedep *inodedep; 9359 struct jaddref *jaddref; 9360 struct mount *mp; 9361 struct ufsmount *ump; 9362 9363 mp = ITOVFS(dp); 9364 ump = VFSTOUFS(mp); 9365 offset = blkoff(ump->um_fs, dp->i_offset); 9366 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9367 ("softdep_setup_directory_change called on non-softdep filesystem")); 9368 9369 /* 9370 * Whiteouts do not need diradd dependencies. 9371 */ 9372 if (newinum != UFS_WINO) { 9373 dap = malloc(sizeof(struct diradd), 9374 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9375 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9376 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9377 dap->da_offset = offset; 9378 dap->da_newinum = newinum; 9379 LIST_INIT(&dap->da_jwork); 9380 } 9381 9382 /* 9383 * Allocate a new dirrem and ACQUIRE_LOCK. 9384 */ 9385 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9386 pagedep = dirrem->dm_pagedep; 9387 /* 9388 * The possible values for isrmdir: 9389 * 0 - non-directory file rename 9390 * 1 - directory rename within same directory 9391 * inum - directory rename to new directory of given inode number 9392 * When renaming to a new directory, we are both deleting and 9393 * creating a new directory entry, so the link count on the new 9394 * directory should not change. Thus we do not need the followup 9395 * dirrem which is usually done in handle_workitem_remove. We set 9396 * the DIRCHG flag to tell handle_workitem_remove to skip the 9397 * followup dirrem. 9398 */ 9399 if (isrmdir > 1) 9400 dirrem->dm_state |= DIRCHG; 9401 9402 /* 9403 * Whiteouts have no additional dependencies, 9404 * so just put the dirrem on the correct list. 9405 */ 9406 if (newinum == UFS_WINO) { 9407 if ((dirrem->dm_state & COMPLETE) == 0) { 9408 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9409 dm_next); 9410 } else { 9411 dirrem->dm_dirinum = pagedep->pd_ino; 9412 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9413 add_to_worklist(&dirrem->dm_list, 0); 9414 } 9415 FREE_LOCK(ump); 9416 return; 9417 } 9418 /* 9419 * Add the dirrem to the inodedep's pending remove list for quick 9420 * discovery later. A valid nlinkdelta ensures that this lookup 9421 * will not fail. 9422 */ 9423 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9424 panic("softdep_setup_directory_change: Lost inodedep."); 9425 dirrem->dm_state |= ONDEPLIST; 9426 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9427 9428 /* 9429 * If the COMPLETE flag is clear, then there were no active 9430 * entries and we want to roll back to the previous inode until 9431 * the new inode is committed to disk. If the COMPLETE flag is 9432 * set, then we have deleted an entry that never made it to disk. 9433 * If the entry we deleted resulted from a name change, then the old 9434 * inode reference still resides on disk. Any rollback that we do 9435 * needs to be to that old inode (returned to us in prevdirrem). If 9436 * the entry we deleted resulted from a create, then there is 9437 * no entry on the disk, so we want to roll back to zero rather 9438 * than the uncommitted inode. In either of the COMPLETE cases we 9439 * want to immediately free the unwritten and unreferenced inode. 9440 */ 9441 if ((dirrem->dm_state & COMPLETE) == 0) { 9442 dap->da_previous = dirrem; 9443 } else { 9444 if (prevdirrem != NULL) { 9445 dap->da_previous = prevdirrem; 9446 } else { 9447 dap->da_state &= ~DIRCHG; 9448 dap->da_pagedep = pagedep; 9449 } 9450 dirrem->dm_dirinum = pagedep->pd_ino; 9451 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9452 add_to_worklist(&dirrem->dm_list, 0); 9453 } 9454 /* 9455 * Lookup the jaddref for this journal entry. We must finish 9456 * initializing it and make the diradd write dependent on it. 9457 * If we're not journaling, put it on the id_bufwait list if the 9458 * inode is not yet written. If it is written, do the post-inode 9459 * write processing to put it on the id_pendinghd list. 9460 */ 9461 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9462 if (MOUNTEDSUJ(mp)) { 9463 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9464 inoreflst); 9465 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9466 ("softdep_setup_directory_change: bad jaddref %p", 9467 jaddref)); 9468 jaddref->ja_diroff = dp->i_offset; 9469 jaddref->ja_diradd = dap; 9470 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9471 dap, da_pdlist); 9472 add_to_journal(&jaddref->ja_list); 9473 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9474 dap->da_state |= COMPLETE; 9475 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9476 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9477 } else { 9478 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9479 dap, da_pdlist); 9480 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9481 } 9482 /* 9483 * If we're making a new name for a directory that has not been 9484 * committed when need to move the dot and dotdot references to 9485 * this new name. 9486 */ 9487 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9488 merge_diradd(inodedep, dap); 9489 FREE_LOCK(ump); 9490 } 9491 9492 /* 9493 * Called whenever the link count on an inode is changed. 9494 * It creates an inode dependency so that the new reference(s) 9495 * to the inode cannot be committed to disk until the updated 9496 * inode has been written. 9497 */ 9498 void 9499 softdep_change_linkcnt(ip) 9500 struct inode *ip; /* the inode with the increased link count */ 9501 { 9502 struct inodedep *inodedep; 9503 struct ufsmount *ump; 9504 9505 ump = ITOUMP(ip); 9506 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9507 ("softdep_change_linkcnt called on non-softdep filesystem")); 9508 ACQUIRE_LOCK(ump); 9509 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9510 if (ip->i_nlink < ip->i_effnlink) 9511 panic("softdep_change_linkcnt: bad delta"); 9512 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9513 FREE_LOCK(ump); 9514 } 9515 9516 /* 9517 * Attach a sbdep dependency to the superblock buf so that we can keep 9518 * track of the head of the linked list of referenced but unlinked inodes. 9519 */ 9520 void 9521 softdep_setup_sbupdate(ump, fs, bp) 9522 struct ufsmount *ump; 9523 struct fs *fs; 9524 struct buf *bp; 9525 { 9526 struct sbdep *sbdep; 9527 struct worklist *wk; 9528 9529 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9530 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9531 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9532 if (wk->wk_type == D_SBDEP) 9533 break; 9534 if (wk != NULL) 9535 return; 9536 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9537 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9538 sbdep->sb_fs = fs; 9539 sbdep->sb_ump = ump; 9540 ACQUIRE_LOCK(ump); 9541 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9542 FREE_LOCK(ump); 9543 } 9544 9545 /* 9546 * Return the first unlinked inodedep which is ready to be the head of the 9547 * list. The inodedep and all those after it must have valid next pointers. 9548 */ 9549 static struct inodedep * 9550 first_unlinked_inodedep(ump) 9551 struct ufsmount *ump; 9552 { 9553 struct inodedep *inodedep; 9554 struct inodedep *idp; 9555 9556 LOCK_OWNED(ump); 9557 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9558 inodedep; inodedep = idp) { 9559 if ((inodedep->id_state & UNLINKNEXT) == 0) 9560 return (NULL); 9561 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9562 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9563 break; 9564 if ((inodedep->id_state & UNLINKPREV) == 0) 9565 break; 9566 } 9567 return (inodedep); 9568 } 9569 9570 /* 9571 * Set the sujfree unlinked head pointer prior to writing a superblock. 9572 */ 9573 static void 9574 initiate_write_sbdep(sbdep) 9575 struct sbdep *sbdep; 9576 { 9577 struct inodedep *inodedep; 9578 struct fs *bpfs; 9579 struct fs *fs; 9580 9581 bpfs = sbdep->sb_fs; 9582 fs = sbdep->sb_ump->um_fs; 9583 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9584 if (inodedep) { 9585 fs->fs_sujfree = inodedep->id_ino; 9586 inodedep->id_state |= UNLINKPREV; 9587 } else 9588 fs->fs_sujfree = 0; 9589 bpfs->fs_sujfree = fs->fs_sujfree; 9590 } 9591 9592 /* 9593 * After a superblock is written determine whether it must be written again 9594 * due to a changing unlinked list head. 9595 */ 9596 static int 9597 handle_written_sbdep(sbdep, bp) 9598 struct sbdep *sbdep; 9599 struct buf *bp; 9600 { 9601 struct inodedep *inodedep; 9602 struct fs *fs; 9603 9604 LOCK_OWNED(sbdep->sb_ump); 9605 fs = sbdep->sb_fs; 9606 /* 9607 * If the superblock doesn't match the in-memory list start over. 9608 */ 9609 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9610 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9611 (inodedep == NULL && fs->fs_sujfree != 0)) { 9612 bdirty(bp); 9613 return (1); 9614 } 9615 WORKITEM_FREE(sbdep, D_SBDEP); 9616 if (fs->fs_sujfree == 0) 9617 return (0); 9618 /* 9619 * Now that we have a record of this inode in stable store allow it 9620 * to be written to free up pending work. Inodes may see a lot of 9621 * write activity after they are unlinked which we must not hold up. 9622 */ 9623 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9624 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9625 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9626 inodedep, inodedep->id_state); 9627 if (inodedep->id_state & UNLINKONLIST) 9628 break; 9629 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9630 } 9631 9632 return (0); 9633 } 9634 9635 /* 9636 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9637 */ 9638 static void 9639 unlinked_inodedep(mp, inodedep) 9640 struct mount *mp; 9641 struct inodedep *inodedep; 9642 { 9643 struct ufsmount *ump; 9644 9645 ump = VFSTOUFS(mp); 9646 LOCK_OWNED(ump); 9647 if (MOUNTEDSUJ(mp) == 0) 9648 return; 9649 ump->um_fs->fs_fmod = 1; 9650 if (inodedep->id_state & UNLINKED) 9651 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9652 inodedep->id_state |= UNLINKED; 9653 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9654 } 9655 9656 /* 9657 * Remove an inodedep from the unlinked inodedep list. This may require 9658 * disk writes if the inode has made it that far. 9659 */ 9660 static void 9661 clear_unlinked_inodedep(inodedep) 9662 struct inodedep *inodedep; 9663 { 9664 struct ufs2_dinode *dip; 9665 struct ufsmount *ump; 9666 struct inodedep *idp; 9667 struct inodedep *idn; 9668 struct fs *fs; 9669 struct buf *bp; 9670 ino_t ino; 9671 ino_t nino; 9672 ino_t pino; 9673 int error; 9674 9675 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9676 fs = ump->um_fs; 9677 ino = inodedep->id_ino; 9678 error = 0; 9679 for (;;) { 9680 LOCK_OWNED(ump); 9681 KASSERT((inodedep->id_state & UNLINKED) != 0, 9682 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9683 inodedep)); 9684 /* 9685 * If nothing has yet been written simply remove us from 9686 * the in memory list and return. This is the most common 9687 * case where handle_workitem_remove() loses the final 9688 * reference. 9689 */ 9690 if ((inodedep->id_state & UNLINKLINKS) == 0) 9691 break; 9692 /* 9693 * If we have a NEXT pointer and no PREV pointer we can simply 9694 * clear NEXT's PREV and remove ourselves from the list. Be 9695 * careful not to clear PREV if the superblock points at 9696 * next as well. 9697 */ 9698 idn = TAILQ_NEXT(inodedep, id_unlinked); 9699 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9700 if (idn && fs->fs_sujfree != idn->id_ino) 9701 idn->id_state &= ~UNLINKPREV; 9702 break; 9703 } 9704 /* 9705 * Here we have an inodedep which is actually linked into 9706 * the list. We must remove it by forcing a write to the 9707 * link before us, whether it be the superblock or an inode. 9708 * Unfortunately the list may change while we're waiting 9709 * on the buf lock for either resource so we must loop until 9710 * we lock the right one. If both the superblock and an 9711 * inode point to this inode we must clear the inode first 9712 * followed by the superblock. 9713 */ 9714 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9715 pino = 0; 9716 if (idp && (idp->id_state & UNLINKNEXT)) 9717 pino = idp->id_ino; 9718 FREE_LOCK(ump); 9719 if (pino == 0) { 9720 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9721 (int)fs->fs_sbsize, 0, 0, 0); 9722 } else { 9723 error = bread(ump->um_devvp, 9724 fsbtodb(fs, ino_to_fsba(fs, pino)), 9725 (int)fs->fs_bsize, NOCRED, &bp); 9726 if (error) 9727 brelse(bp); 9728 } 9729 ACQUIRE_LOCK(ump); 9730 if (error) 9731 break; 9732 /* If the list has changed restart the loop. */ 9733 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9734 nino = 0; 9735 if (idp && (idp->id_state & UNLINKNEXT)) 9736 nino = idp->id_ino; 9737 if (nino != pino || 9738 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9739 FREE_LOCK(ump); 9740 brelse(bp); 9741 ACQUIRE_LOCK(ump); 9742 continue; 9743 } 9744 nino = 0; 9745 idn = TAILQ_NEXT(inodedep, id_unlinked); 9746 if (idn) 9747 nino = idn->id_ino; 9748 /* 9749 * Remove us from the in memory list. After this we cannot 9750 * access the inodedep. 9751 */ 9752 KASSERT((inodedep->id_state & UNLINKED) != 0, 9753 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9754 inodedep)); 9755 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9756 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9757 FREE_LOCK(ump); 9758 /* 9759 * The predecessor's next pointer is manually updated here 9760 * so that the NEXT flag is never cleared for an element 9761 * that is in the list. 9762 */ 9763 if (pino == 0) { 9764 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9765 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9766 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9767 bp); 9768 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 9769 ((struct ufs1_dinode *)bp->b_data + 9770 ino_to_fsbo(fs, pino))->di_freelink = nino; 9771 } else { 9772 dip = (struct ufs2_dinode *)bp->b_data + 9773 ino_to_fsbo(fs, pino); 9774 dip->di_freelink = nino; 9775 ffs_update_dinode_ckhash(fs, dip); 9776 } 9777 /* 9778 * If the bwrite fails we have no recourse to recover. The 9779 * filesystem is corrupted already. 9780 */ 9781 bwrite(bp); 9782 ACQUIRE_LOCK(ump); 9783 /* 9784 * If the superblock pointer still needs to be cleared force 9785 * a write here. 9786 */ 9787 if (fs->fs_sujfree == ino) { 9788 FREE_LOCK(ump); 9789 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9790 (int)fs->fs_sbsize, 0, 0, 0); 9791 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9792 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9793 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9794 bp); 9795 bwrite(bp); 9796 ACQUIRE_LOCK(ump); 9797 } 9798 9799 if (fs->fs_sujfree != ino) 9800 return; 9801 panic("clear_unlinked_inodedep: Failed to clear free head"); 9802 } 9803 if (inodedep->id_ino == fs->fs_sujfree) 9804 panic("clear_unlinked_inodedep: Freeing head of free list"); 9805 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9806 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9807 return; 9808 } 9809 9810 /* 9811 * This workitem decrements the inode's link count. 9812 * If the link count reaches zero, the file is removed. 9813 */ 9814 static int 9815 handle_workitem_remove(dirrem, flags) 9816 struct dirrem *dirrem; 9817 int flags; 9818 { 9819 struct inodedep *inodedep; 9820 struct workhead dotdotwk; 9821 struct worklist *wk; 9822 struct ufsmount *ump; 9823 struct mount *mp; 9824 struct vnode *vp; 9825 struct inode *ip; 9826 ino_t oldinum; 9827 9828 if (dirrem->dm_state & ONWORKLIST) 9829 panic("handle_workitem_remove: dirrem %p still on worklist", 9830 dirrem); 9831 oldinum = dirrem->dm_oldinum; 9832 mp = dirrem->dm_list.wk_mp; 9833 ump = VFSTOUFS(mp); 9834 flags |= LK_EXCLUSIVE; 9835 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9836 return (EBUSY); 9837 ip = VTOI(vp); 9838 ACQUIRE_LOCK(ump); 9839 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9840 panic("handle_workitem_remove: lost inodedep"); 9841 if (dirrem->dm_state & ONDEPLIST) 9842 LIST_REMOVE(dirrem, dm_inonext); 9843 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9844 ("handle_workitem_remove: Journal entries not written.")); 9845 9846 /* 9847 * Move all dependencies waiting on the remove to complete 9848 * from the dirrem to the inode inowait list to be completed 9849 * after the inode has been updated and written to disk. Any 9850 * marked MKDIR_PARENT are saved to be completed when the .. ref 9851 * is removed. 9852 */ 9853 LIST_INIT(&dotdotwk); 9854 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9855 WORKLIST_REMOVE(wk); 9856 if (wk->wk_state & MKDIR_PARENT) { 9857 wk->wk_state &= ~MKDIR_PARENT; 9858 WORKLIST_INSERT(&dotdotwk, wk); 9859 continue; 9860 } 9861 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9862 } 9863 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9864 /* 9865 * Normal file deletion. 9866 */ 9867 if ((dirrem->dm_state & RMDIR) == 0) { 9868 ip->i_nlink--; 9869 DIP_SET(ip, i_nlink, ip->i_nlink); 9870 ip->i_flag |= IN_CHANGE; 9871 if (ip->i_nlink < ip->i_effnlink) 9872 panic("handle_workitem_remove: bad file delta"); 9873 if (ip->i_nlink == 0) 9874 unlinked_inodedep(mp, inodedep); 9875 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9876 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9877 ("handle_workitem_remove: worklist not empty. %s", 9878 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9879 WORKITEM_FREE(dirrem, D_DIRREM); 9880 FREE_LOCK(ump); 9881 goto out; 9882 } 9883 /* 9884 * Directory deletion. Decrement reference count for both the 9885 * just deleted parent directory entry and the reference for ".". 9886 * Arrange to have the reference count on the parent decremented 9887 * to account for the loss of "..". 9888 */ 9889 ip->i_nlink -= 2; 9890 DIP_SET(ip, i_nlink, ip->i_nlink); 9891 ip->i_flag |= IN_CHANGE; 9892 if (ip->i_nlink < ip->i_effnlink) 9893 panic("handle_workitem_remove: bad dir delta"); 9894 if (ip->i_nlink == 0) 9895 unlinked_inodedep(mp, inodedep); 9896 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9897 /* 9898 * Rename a directory to a new parent. Since, we are both deleting 9899 * and creating a new directory entry, the link count on the new 9900 * directory should not change. Thus we skip the followup dirrem. 9901 */ 9902 if (dirrem->dm_state & DIRCHG) { 9903 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9904 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9905 WORKITEM_FREE(dirrem, D_DIRREM); 9906 FREE_LOCK(ump); 9907 goto out; 9908 } 9909 dirrem->dm_state = ONDEPLIST; 9910 dirrem->dm_oldinum = dirrem->dm_dirinum; 9911 /* 9912 * Place the dirrem on the parent's diremhd list. 9913 */ 9914 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9915 panic("handle_workitem_remove: lost dir inodedep"); 9916 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9917 /* 9918 * If the allocated inode has never been written to disk, then 9919 * the on-disk inode is zero'ed and we can remove the file 9920 * immediately. When journaling if the inode has been marked 9921 * unlinked and not DEPCOMPLETE we know it can never be written. 9922 */ 9923 inodedep_lookup(mp, oldinum, 0, &inodedep); 9924 if (inodedep == NULL || 9925 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9926 check_inode_unwritten(inodedep)) { 9927 FREE_LOCK(ump); 9928 vput(vp); 9929 return handle_workitem_remove(dirrem, flags); 9930 } 9931 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9932 FREE_LOCK(ump); 9933 ip->i_flag |= IN_CHANGE; 9934 out: 9935 ffs_update(vp, 0); 9936 vput(vp); 9937 return (0); 9938 } 9939 9940 /* 9941 * Inode de-allocation dependencies. 9942 * 9943 * When an inode's link count is reduced to zero, it can be de-allocated. We 9944 * found it convenient to postpone de-allocation until after the inode is 9945 * written to disk with its new link count (zero). At this point, all of the 9946 * on-disk inode's block pointers are nullified and, with careful dependency 9947 * list ordering, all dependencies related to the inode will be satisfied and 9948 * the corresponding dependency structures de-allocated. So, if/when the 9949 * inode is reused, there will be no mixing of old dependencies with new 9950 * ones. This artificial dependency is set up by the block de-allocation 9951 * procedure above (softdep_setup_freeblocks) and completed by the 9952 * following procedure. 9953 */ 9954 static void 9955 handle_workitem_freefile(freefile) 9956 struct freefile *freefile; 9957 { 9958 struct workhead wkhd; 9959 struct fs *fs; 9960 struct ufsmount *ump; 9961 int error; 9962 #ifdef INVARIANTS 9963 struct inodedep *idp; 9964 #endif 9965 9966 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9967 fs = ump->um_fs; 9968 #ifdef INVARIANTS 9969 ACQUIRE_LOCK(ump); 9970 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9971 FREE_LOCK(ump); 9972 if (error) 9973 panic("handle_workitem_freefile: inodedep %p survived", idp); 9974 #endif 9975 UFS_LOCK(ump); 9976 fs->fs_pendinginodes -= 1; 9977 UFS_UNLOCK(ump); 9978 LIST_INIT(&wkhd); 9979 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9980 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9981 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9982 softdep_error("handle_workitem_freefile", error); 9983 ACQUIRE_LOCK(ump); 9984 WORKITEM_FREE(freefile, D_FREEFILE); 9985 FREE_LOCK(ump); 9986 } 9987 9988 9989 /* 9990 * Helper function which unlinks marker element from work list and returns 9991 * the next element on the list. 9992 */ 9993 static __inline struct worklist * 9994 markernext(struct worklist *marker) 9995 { 9996 struct worklist *next; 9997 9998 next = LIST_NEXT(marker, wk_list); 9999 LIST_REMOVE(marker, wk_list); 10000 return next; 10001 } 10002 10003 /* 10004 * Disk writes. 10005 * 10006 * The dependency structures constructed above are most actively used when file 10007 * system blocks are written to disk. No constraints are placed on when a 10008 * block can be written, but unsatisfied update dependencies are made safe by 10009 * modifying (or replacing) the source memory for the duration of the disk 10010 * write. When the disk write completes, the memory block is again brought 10011 * up-to-date. 10012 * 10013 * In-core inode structure reclamation. 10014 * 10015 * Because there are a finite number of "in-core" inode structures, they are 10016 * reused regularly. By transferring all inode-related dependencies to the 10017 * in-memory inode block and indexing them separately (via "inodedep"s), we 10018 * can allow "in-core" inode structures to be reused at any time and avoid 10019 * any increase in contention. 10020 * 10021 * Called just before entering the device driver to initiate a new disk I/O. 10022 * The buffer must be locked, thus, no I/O completion operations can occur 10023 * while we are manipulating its associated dependencies. 10024 */ 10025 static void 10026 softdep_disk_io_initiation(bp) 10027 struct buf *bp; /* structure describing disk write to occur */ 10028 { 10029 struct worklist *wk; 10030 struct worklist marker; 10031 struct inodedep *inodedep; 10032 struct freeblks *freeblks; 10033 struct jblkdep *jblkdep; 10034 struct newblk *newblk; 10035 struct ufsmount *ump; 10036 10037 /* 10038 * We only care about write operations. There should never 10039 * be dependencies for reads. 10040 */ 10041 if (bp->b_iocmd != BIO_WRITE) 10042 panic("softdep_disk_io_initiation: not write"); 10043 10044 if (bp->b_vflags & BV_BKGRDINPROG) 10045 panic("softdep_disk_io_initiation: Writing buffer with " 10046 "background write in progress: %p", bp); 10047 10048 ump = softdep_bp_to_mp(bp); 10049 if (ump == NULL) 10050 return; 10051 10052 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10053 PHOLD(curproc); /* Don't swap out kernel stack */ 10054 ACQUIRE_LOCK(ump); 10055 /* 10056 * Do any necessary pre-I/O processing. 10057 */ 10058 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10059 wk = markernext(&marker)) { 10060 LIST_INSERT_AFTER(wk, &marker, wk_list); 10061 switch (wk->wk_type) { 10062 10063 case D_PAGEDEP: 10064 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10065 continue; 10066 10067 case D_INODEDEP: 10068 inodedep = WK_INODEDEP(wk); 10069 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10070 initiate_write_inodeblock_ufs1(inodedep, bp); 10071 else 10072 initiate_write_inodeblock_ufs2(inodedep, bp); 10073 continue; 10074 10075 case D_INDIRDEP: 10076 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10077 continue; 10078 10079 case D_BMSAFEMAP: 10080 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10081 continue; 10082 10083 case D_JSEG: 10084 WK_JSEG(wk)->js_buf = NULL; 10085 continue; 10086 10087 case D_FREEBLKS: 10088 freeblks = WK_FREEBLKS(wk); 10089 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10090 /* 10091 * We have to wait for the freeblks to be journaled 10092 * before we can write an inodeblock with updated 10093 * pointers. Be careful to arrange the marker so 10094 * we revisit the freeblks if it's not removed by 10095 * the first jwait(). 10096 */ 10097 if (jblkdep != NULL) { 10098 LIST_REMOVE(&marker, wk_list); 10099 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10100 jwait(&jblkdep->jb_list, MNT_WAIT); 10101 } 10102 continue; 10103 case D_ALLOCDIRECT: 10104 case D_ALLOCINDIR: 10105 /* 10106 * We have to wait for the jnewblk to be journaled 10107 * before we can write to a block if the contents 10108 * may be confused with an earlier file's indirect 10109 * at recovery time. Handle the marker as described 10110 * above. 10111 */ 10112 newblk = WK_NEWBLK(wk); 10113 if (newblk->nb_jnewblk != NULL && 10114 indirblk_lookup(newblk->nb_list.wk_mp, 10115 newblk->nb_newblkno)) { 10116 LIST_REMOVE(&marker, wk_list); 10117 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10118 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10119 } 10120 continue; 10121 10122 case D_SBDEP: 10123 initiate_write_sbdep(WK_SBDEP(wk)); 10124 continue; 10125 10126 case D_MKDIR: 10127 case D_FREEWORK: 10128 case D_FREEDEP: 10129 case D_JSEGDEP: 10130 continue; 10131 10132 default: 10133 panic("handle_disk_io_initiation: Unexpected type %s", 10134 TYPENAME(wk->wk_type)); 10135 /* NOTREACHED */ 10136 } 10137 } 10138 FREE_LOCK(ump); 10139 PRELE(curproc); /* Allow swapout of kernel stack */ 10140 } 10141 10142 /* 10143 * Called from within the procedure above to deal with unsatisfied 10144 * allocation dependencies in a directory. The buffer must be locked, 10145 * thus, no I/O completion operations can occur while we are 10146 * manipulating its associated dependencies. 10147 */ 10148 static void 10149 initiate_write_filepage(pagedep, bp) 10150 struct pagedep *pagedep; 10151 struct buf *bp; 10152 { 10153 struct jremref *jremref; 10154 struct jmvref *jmvref; 10155 struct dirrem *dirrem; 10156 struct diradd *dap; 10157 struct direct *ep; 10158 int i; 10159 10160 if (pagedep->pd_state & IOSTARTED) { 10161 /* 10162 * This can only happen if there is a driver that does not 10163 * understand chaining. Here biodone will reissue the call 10164 * to strategy for the incomplete buffers. 10165 */ 10166 printf("initiate_write_filepage: already started\n"); 10167 return; 10168 } 10169 pagedep->pd_state |= IOSTARTED; 10170 /* 10171 * Wait for all journal remove dependencies to hit the disk. 10172 * We can not allow any potentially conflicting directory adds 10173 * to be visible before removes and rollback is too difficult. 10174 * The per-filesystem lock may be dropped and re-acquired, however 10175 * we hold the buf locked so the dependency can not go away. 10176 */ 10177 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10178 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10179 jwait(&jremref->jr_list, MNT_WAIT); 10180 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10181 jwait(&jmvref->jm_list, MNT_WAIT); 10182 for (i = 0; i < DAHASHSZ; i++) { 10183 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10184 ep = (struct direct *) 10185 ((char *)bp->b_data + dap->da_offset); 10186 if (ep->d_ino != dap->da_newinum) 10187 panic("%s: dir inum %ju != new %ju", 10188 "initiate_write_filepage", 10189 (uintmax_t)ep->d_ino, 10190 (uintmax_t)dap->da_newinum); 10191 if (dap->da_state & DIRCHG) 10192 ep->d_ino = dap->da_previous->dm_oldinum; 10193 else 10194 ep->d_ino = 0; 10195 dap->da_state &= ~ATTACHED; 10196 dap->da_state |= UNDONE; 10197 } 10198 } 10199 } 10200 10201 /* 10202 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10203 * Note that any bug fixes made to this routine must be done in the 10204 * version found below. 10205 * 10206 * Called from within the procedure above to deal with unsatisfied 10207 * allocation dependencies in an inodeblock. The buffer must be 10208 * locked, thus, no I/O completion operations can occur while we 10209 * are manipulating its associated dependencies. 10210 */ 10211 static void 10212 initiate_write_inodeblock_ufs1(inodedep, bp) 10213 struct inodedep *inodedep; 10214 struct buf *bp; /* The inode block */ 10215 { 10216 struct allocdirect *adp, *lastadp; 10217 struct ufs1_dinode *dp; 10218 struct ufs1_dinode *sip; 10219 struct inoref *inoref; 10220 struct ufsmount *ump; 10221 struct fs *fs; 10222 ufs_lbn_t i; 10223 #ifdef INVARIANTS 10224 ufs_lbn_t prevlbn = 0; 10225 #endif 10226 int deplist; 10227 10228 if (inodedep->id_state & IOSTARTED) 10229 panic("initiate_write_inodeblock_ufs1: already started"); 10230 inodedep->id_state |= IOSTARTED; 10231 fs = inodedep->id_fs; 10232 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10233 LOCK_OWNED(ump); 10234 dp = (struct ufs1_dinode *)bp->b_data + 10235 ino_to_fsbo(fs, inodedep->id_ino); 10236 10237 /* 10238 * If we're on the unlinked list but have not yet written our 10239 * next pointer initialize it here. 10240 */ 10241 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10242 struct inodedep *inon; 10243 10244 inon = TAILQ_NEXT(inodedep, id_unlinked); 10245 dp->di_freelink = inon ? inon->id_ino : 0; 10246 } 10247 /* 10248 * If the bitmap is not yet written, then the allocated 10249 * inode cannot be written to disk. 10250 */ 10251 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10252 if (inodedep->id_savedino1 != NULL) 10253 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10254 FREE_LOCK(ump); 10255 sip = malloc(sizeof(struct ufs1_dinode), 10256 M_SAVEDINO, M_SOFTDEP_FLAGS); 10257 ACQUIRE_LOCK(ump); 10258 inodedep->id_savedino1 = sip; 10259 *inodedep->id_savedino1 = *dp; 10260 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10261 dp->di_gen = inodedep->id_savedino1->di_gen; 10262 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10263 return; 10264 } 10265 /* 10266 * If no dependencies, then there is nothing to roll back. 10267 */ 10268 inodedep->id_savedsize = dp->di_size; 10269 inodedep->id_savedextsize = 0; 10270 inodedep->id_savednlink = dp->di_nlink; 10271 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10272 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10273 return; 10274 /* 10275 * Revert the link count to that of the first unwritten journal entry. 10276 */ 10277 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10278 if (inoref) 10279 dp->di_nlink = inoref->if_nlink; 10280 /* 10281 * Set the dependencies to busy. 10282 */ 10283 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10284 adp = TAILQ_NEXT(adp, ad_next)) { 10285 #ifdef INVARIANTS 10286 if (deplist != 0 && prevlbn >= adp->ad_offset) 10287 panic("softdep_write_inodeblock: lbn order"); 10288 prevlbn = adp->ad_offset; 10289 if (adp->ad_offset < UFS_NDADDR && 10290 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10291 panic("initiate_write_inodeblock_ufs1: " 10292 "direct pointer #%jd mismatch %d != %jd", 10293 (intmax_t)adp->ad_offset, 10294 dp->di_db[adp->ad_offset], 10295 (intmax_t)adp->ad_newblkno); 10296 if (adp->ad_offset >= UFS_NDADDR && 10297 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10298 panic("initiate_write_inodeblock_ufs1: " 10299 "indirect pointer #%jd mismatch %d != %jd", 10300 (intmax_t)adp->ad_offset - UFS_NDADDR, 10301 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10302 (intmax_t)adp->ad_newblkno); 10303 deplist |= 1 << adp->ad_offset; 10304 if ((adp->ad_state & ATTACHED) == 0) 10305 panic("initiate_write_inodeblock_ufs1: " 10306 "Unknown state 0x%x", adp->ad_state); 10307 #endif /* INVARIANTS */ 10308 adp->ad_state &= ~ATTACHED; 10309 adp->ad_state |= UNDONE; 10310 } 10311 /* 10312 * The on-disk inode cannot claim to be any larger than the last 10313 * fragment that has been written. Otherwise, the on-disk inode 10314 * might have fragments that were not the last block in the file 10315 * which would corrupt the filesystem. 10316 */ 10317 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10318 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10319 if (adp->ad_offset >= UFS_NDADDR) 10320 break; 10321 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10322 /* keep going until hitting a rollback to a frag */ 10323 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10324 continue; 10325 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10326 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10327 #ifdef INVARIANTS 10328 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10329 panic("initiate_write_inodeblock_ufs1: " 10330 "lost dep1"); 10331 #endif /* INVARIANTS */ 10332 dp->di_db[i] = 0; 10333 } 10334 for (i = 0; i < UFS_NIADDR; i++) { 10335 #ifdef INVARIANTS 10336 if (dp->di_ib[i] != 0 && 10337 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10338 panic("initiate_write_inodeblock_ufs1: " 10339 "lost dep2"); 10340 #endif /* INVARIANTS */ 10341 dp->di_ib[i] = 0; 10342 } 10343 return; 10344 } 10345 /* 10346 * If we have zero'ed out the last allocated block of the file, 10347 * roll back the size to the last currently allocated block. 10348 * We know that this last allocated block is a full-sized as 10349 * we already checked for fragments in the loop above. 10350 */ 10351 if (lastadp != NULL && 10352 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10353 for (i = lastadp->ad_offset; i >= 0; i--) 10354 if (dp->di_db[i] != 0) 10355 break; 10356 dp->di_size = (i + 1) * fs->fs_bsize; 10357 } 10358 /* 10359 * The only dependencies are for indirect blocks. 10360 * 10361 * The file size for indirect block additions is not guaranteed. 10362 * Such a guarantee would be non-trivial to achieve. The conventional 10363 * synchronous write implementation also does not make this guarantee. 10364 * Fsck should catch and fix discrepancies. Arguably, the file size 10365 * can be over-estimated without destroying integrity when the file 10366 * moves into the indirect blocks (i.e., is large). If we want to 10367 * postpone fsck, we are stuck with this argument. 10368 */ 10369 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10370 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10371 } 10372 10373 /* 10374 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10375 * Note that any bug fixes made to this routine must be done in the 10376 * version found above. 10377 * 10378 * Called from within the procedure above to deal with unsatisfied 10379 * allocation dependencies in an inodeblock. The buffer must be 10380 * locked, thus, no I/O completion operations can occur while we 10381 * are manipulating its associated dependencies. 10382 */ 10383 static void 10384 initiate_write_inodeblock_ufs2(inodedep, bp) 10385 struct inodedep *inodedep; 10386 struct buf *bp; /* The inode block */ 10387 { 10388 struct allocdirect *adp, *lastadp; 10389 struct ufs2_dinode *dp; 10390 struct ufs2_dinode *sip; 10391 struct inoref *inoref; 10392 struct ufsmount *ump; 10393 struct fs *fs; 10394 ufs_lbn_t i; 10395 #ifdef INVARIANTS 10396 ufs_lbn_t prevlbn = 0; 10397 #endif 10398 int deplist; 10399 10400 if (inodedep->id_state & IOSTARTED) 10401 panic("initiate_write_inodeblock_ufs2: already started"); 10402 inodedep->id_state |= IOSTARTED; 10403 fs = inodedep->id_fs; 10404 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10405 LOCK_OWNED(ump); 10406 dp = (struct ufs2_dinode *)bp->b_data + 10407 ino_to_fsbo(fs, inodedep->id_ino); 10408 10409 /* 10410 * If we're on the unlinked list but have not yet written our 10411 * next pointer initialize it here. 10412 */ 10413 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10414 struct inodedep *inon; 10415 10416 inon = TAILQ_NEXT(inodedep, id_unlinked); 10417 dp->di_freelink = inon ? inon->id_ino : 0; 10418 ffs_update_dinode_ckhash(fs, dp); 10419 } 10420 /* 10421 * If the bitmap is not yet written, then the allocated 10422 * inode cannot be written to disk. 10423 */ 10424 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10425 if (inodedep->id_savedino2 != NULL) 10426 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10427 FREE_LOCK(ump); 10428 sip = malloc(sizeof(struct ufs2_dinode), 10429 M_SAVEDINO, M_SOFTDEP_FLAGS); 10430 ACQUIRE_LOCK(ump); 10431 inodedep->id_savedino2 = sip; 10432 *inodedep->id_savedino2 = *dp; 10433 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10434 dp->di_gen = inodedep->id_savedino2->di_gen; 10435 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10436 return; 10437 } 10438 /* 10439 * If no dependencies, then there is nothing to roll back. 10440 */ 10441 inodedep->id_savedsize = dp->di_size; 10442 inodedep->id_savedextsize = dp->di_extsize; 10443 inodedep->id_savednlink = dp->di_nlink; 10444 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10445 TAILQ_EMPTY(&inodedep->id_extupdt) && 10446 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10447 return; 10448 /* 10449 * Revert the link count to that of the first unwritten journal entry. 10450 */ 10451 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10452 if (inoref) 10453 dp->di_nlink = inoref->if_nlink; 10454 10455 /* 10456 * Set the ext data dependencies to busy. 10457 */ 10458 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10459 adp = TAILQ_NEXT(adp, ad_next)) { 10460 #ifdef INVARIANTS 10461 if (deplist != 0 && prevlbn >= adp->ad_offset) 10462 panic("initiate_write_inodeblock_ufs2: lbn order"); 10463 prevlbn = adp->ad_offset; 10464 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10465 panic("initiate_write_inodeblock_ufs2: " 10466 "ext pointer #%jd mismatch %jd != %jd", 10467 (intmax_t)adp->ad_offset, 10468 (intmax_t)dp->di_extb[adp->ad_offset], 10469 (intmax_t)adp->ad_newblkno); 10470 deplist |= 1 << adp->ad_offset; 10471 if ((adp->ad_state & ATTACHED) == 0) 10472 panic("initiate_write_inodeblock_ufs2: Unknown " 10473 "state 0x%x", adp->ad_state); 10474 #endif /* INVARIANTS */ 10475 adp->ad_state &= ~ATTACHED; 10476 adp->ad_state |= UNDONE; 10477 } 10478 /* 10479 * The on-disk inode cannot claim to be any larger than the last 10480 * fragment that has been written. Otherwise, the on-disk inode 10481 * might have fragments that were not the last block in the ext 10482 * data which would corrupt the filesystem. 10483 */ 10484 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10485 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10486 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10487 /* keep going until hitting a rollback to a frag */ 10488 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10489 continue; 10490 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10491 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10492 #ifdef INVARIANTS 10493 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10494 panic("initiate_write_inodeblock_ufs2: " 10495 "lost dep1"); 10496 #endif /* INVARIANTS */ 10497 dp->di_extb[i] = 0; 10498 } 10499 lastadp = NULL; 10500 break; 10501 } 10502 /* 10503 * If we have zero'ed out the last allocated block of the ext 10504 * data, roll back the size to the last currently allocated block. 10505 * We know that this last allocated block is a full-sized as 10506 * we already checked for fragments in the loop above. 10507 */ 10508 if (lastadp != NULL && 10509 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10510 for (i = lastadp->ad_offset; i >= 0; i--) 10511 if (dp->di_extb[i] != 0) 10512 break; 10513 dp->di_extsize = (i + 1) * fs->fs_bsize; 10514 } 10515 /* 10516 * Set the file data dependencies to busy. 10517 */ 10518 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10519 adp = TAILQ_NEXT(adp, ad_next)) { 10520 #ifdef INVARIANTS 10521 if (deplist != 0 && prevlbn >= adp->ad_offset) 10522 panic("softdep_write_inodeblock: lbn order"); 10523 if ((adp->ad_state & ATTACHED) == 0) 10524 panic("inodedep %p and adp %p not attached", inodedep, adp); 10525 prevlbn = adp->ad_offset; 10526 if (adp->ad_offset < UFS_NDADDR && 10527 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10528 panic("initiate_write_inodeblock_ufs2: " 10529 "direct pointer #%jd mismatch %jd != %jd", 10530 (intmax_t)adp->ad_offset, 10531 (intmax_t)dp->di_db[adp->ad_offset], 10532 (intmax_t)adp->ad_newblkno); 10533 if (adp->ad_offset >= UFS_NDADDR && 10534 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10535 panic("initiate_write_inodeblock_ufs2: " 10536 "indirect pointer #%jd mismatch %jd != %jd", 10537 (intmax_t)adp->ad_offset - UFS_NDADDR, 10538 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10539 (intmax_t)adp->ad_newblkno); 10540 deplist |= 1 << adp->ad_offset; 10541 if ((adp->ad_state & ATTACHED) == 0) 10542 panic("initiate_write_inodeblock_ufs2: Unknown " 10543 "state 0x%x", adp->ad_state); 10544 #endif /* INVARIANTS */ 10545 adp->ad_state &= ~ATTACHED; 10546 adp->ad_state |= UNDONE; 10547 } 10548 /* 10549 * The on-disk inode cannot claim to be any larger than the last 10550 * fragment that has been written. Otherwise, the on-disk inode 10551 * might have fragments that were not the last block in the file 10552 * which would corrupt the filesystem. 10553 */ 10554 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10555 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10556 if (adp->ad_offset >= UFS_NDADDR) 10557 break; 10558 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10559 /* keep going until hitting a rollback to a frag */ 10560 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10561 continue; 10562 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10563 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10564 #ifdef INVARIANTS 10565 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10566 panic("initiate_write_inodeblock_ufs2: " 10567 "lost dep2"); 10568 #endif /* INVARIANTS */ 10569 dp->di_db[i] = 0; 10570 } 10571 for (i = 0; i < UFS_NIADDR; i++) { 10572 #ifdef INVARIANTS 10573 if (dp->di_ib[i] != 0 && 10574 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10575 panic("initiate_write_inodeblock_ufs2: " 10576 "lost dep3"); 10577 #endif /* INVARIANTS */ 10578 dp->di_ib[i] = 0; 10579 } 10580 ffs_update_dinode_ckhash(fs, dp); 10581 return; 10582 } 10583 /* 10584 * If we have zero'ed out the last allocated block of the file, 10585 * roll back the size to the last currently allocated block. 10586 * We know that this last allocated block is a full-sized as 10587 * we already checked for fragments in the loop above. 10588 */ 10589 if (lastadp != NULL && 10590 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10591 for (i = lastadp->ad_offset; i >= 0; i--) 10592 if (dp->di_db[i] != 0) 10593 break; 10594 dp->di_size = (i + 1) * fs->fs_bsize; 10595 } 10596 /* 10597 * The only dependencies are for indirect blocks. 10598 * 10599 * The file size for indirect block additions is not guaranteed. 10600 * Such a guarantee would be non-trivial to achieve. The conventional 10601 * synchronous write implementation also does not make this guarantee. 10602 * Fsck should catch and fix discrepancies. Arguably, the file size 10603 * can be over-estimated without destroying integrity when the file 10604 * moves into the indirect blocks (i.e., is large). If we want to 10605 * postpone fsck, we are stuck with this argument. 10606 */ 10607 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10608 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10609 ffs_update_dinode_ckhash(fs, dp); 10610 } 10611 10612 /* 10613 * Cancel an indirdep as a result of truncation. Release all of the 10614 * children allocindirs and place their journal work on the appropriate 10615 * list. 10616 */ 10617 static void 10618 cancel_indirdep(indirdep, bp, freeblks) 10619 struct indirdep *indirdep; 10620 struct buf *bp; 10621 struct freeblks *freeblks; 10622 { 10623 struct allocindir *aip; 10624 10625 /* 10626 * None of the indirect pointers will ever be visible, 10627 * so they can simply be tossed. GOINGAWAY ensures 10628 * that allocated pointers will be saved in the buffer 10629 * cache until they are freed. Note that they will 10630 * only be able to be found by their physical address 10631 * since the inode mapping the logical address will 10632 * be gone. The save buffer used for the safe copy 10633 * was allocated in setup_allocindir_phase2 using 10634 * the physical address so it could be used for this 10635 * purpose. Hence we swap the safe copy with the real 10636 * copy, allowing the safe copy to be freed and holding 10637 * on to the real copy for later use in indir_trunc. 10638 */ 10639 if (indirdep->ir_state & GOINGAWAY) 10640 panic("cancel_indirdep: already gone"); 10641 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10642 indirdep->ir_state |= DEPCOMPLETE; 10643 LIST_REMOVE(indirdep, ir_next); 10644 } 10645 indirdep->ir_state |= GOINGAWAY; 10646 /* 10647 * Pass in bp for blocks still have journal writes 10648 * pending so we can cancel them on their own. 10649 */ 10650 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10651 cancel_allocindir(aip, bp, freeblks, 0); 10652 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10653 cancel_allocindir(aip, NULL, freeblks, 0); 10654 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10655 cancel_allocindir(aip, NULL, freeblks, 0); 10656 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10657 cancel_allocindir(aip, NULL, freeblks, 0); 10658 /* 10659 * If there are pending partial truncations we need to keep the 10660 * old block copy around until they complete. This is because 10661 * the current b_data is not a perfect superset of the available 10662 * blocks. 10663 */ 10664 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10665 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10666 else 10667 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10668 WORKLIST_REMOVE(&indirdep->ir_list); 10669 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10670 indirdep->ir_bp = NULL; 10671 indirdep->ir_freeblks = freeblks; 10672 } 10673 10674 /* 10675 * Free an indirdep once it no longer has new pointers to track. 10676 */ 10677 static void 10678 free_indirdep(indirdep) 10679 struct indirdep *indirdep; 10680 { 10681 10682 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10683 ("free_indirdep: Indir trunc list not empty.")); 10684 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10685 ("free_indirdep: Complete head not empty.")); 10686 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10687 ("free_indirdep: write head not empty.")); 10688 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10689 ("free_indirdep: done head not empty.")); 10690 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10691 ("free_indirdep: deplist head not empty.")); 10692 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10693 ("free_indirdep: %p still on newblk list.", indirdep)); 10694 KASSERT(indirdep->ir_saveddata == NULL, 10695 ("free_indirdep: %p still has saved data.", indirdep)); 10696 if (indirdep->ir_state & ONWORKLIST) 10697 WORKLIST_REMOVE(&indirdep->ir_list); 10698 WORKITEM_FREE(indirdep, D_INDIRDEP); 10699 } 10700 10701 /* 10702 * Called before a write to an indirdep. This routine is responsible for 10703 * rolling back pointers to a safe state which includes only those 10704 * allocindirs which have been completed. 10705 */ 10706 static void 10707 initiate_write_indirdep(indirdep, bp) 10708 struct indirdep *indirdep; 10709 struct buf *bp; 10710 { 10711 struct ufsmount *ump; 10712 10713 indirdep->ir_state |= IOSTARTED; 10714 if (indirdep->ir_state & GOINGAWAY) 10715 panic("disk_io_initiation: indirdep gone"); 10716 /* 10717 * If there are no remaining dependencies, this will be writing 10718 * the real pointers. 10719 */ 10720 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10721 TAILQ_EMPTY(&indirdep->ir_trunc)) 10722 return; 10723 /* 10724 * Replace up-to-date version with safe version. 10725 */ 10726 if (indirdep->ir_saveddata == NULL) { 10727 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10728 LOCK_OWNED(ump); 10729 FREE_LOCK(ump); 10730 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10731 M_SOFTDEP_FLAGS); 10732 ACQUIRE_LOCK(ump); 10733 } 10734 indirdep->ir_state &= ~ATTACHED; 10735 indirdep->ir_state |= UNDONE; 10736 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10737 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10738 bp->b_bcount); 10739 } 10740 10741 /* 10742 * Called when an inode has been cleared in a cg bitmap. This finally 10743 * eliminates any canceled jaddrefs 10744 */ 10745 void 10746 softdep_setup_inofree(mp, bp, ino, wkhd) 10747 struct mount *mp; 10748 struct buf *bp; 10749 ino_t ino; 10750 struct workhead *wkhd; 10751 { 10752 struct worklist *wk, *wkn; 10753 struct inodedep *inodedep; 10754 struct ufsmount *ump; 10755 uint8_t *inosused; 10756 struct cg *cgp; 10757 struct fs *fs; 10758 10759 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10760 ("softdep_setup_inofree called on non-softdep filesystem")); 10761 ump = VFSTOUFS(mp); 10762 ACQUIRE_LOCK(ump); 10763 fs = ump->um_fs; 10764 cgp = (struct cg *)bp->b_data; 10765 inosused = cg_inosused(cgp); 10766 if (isset(inosused, ino % fs->fs_ipg)) 10767 panic("softdep_setup_inofree: inode %ju not freed.", 10768 (uintmax_t)ino); 10769 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10770 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10771 (uintmax_t)ino, inodedep); 10772 if (wkhd) { 10773 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10774 if (wk->wk_type != D_JADDREF) 10775 continue; 10776 WORKLIST_REMOVE(wk); 10777 /* 10778 * We can free immediately even if the jaddref 10779 * isn't attached in a background write as now 10780 * the bitmaps are reconciled. 10781 */ 10782 wk->wk_state |= COMPLETE | ATTACHED; 10783 free_jaddref(WK_JADDREF(wk)); 10784 } 10785 jwork_move(&bp->b_dep, wkhd); 10786 } 10787 FREE_LOCK(ump); 10788 } 10789 10790 10791 /* 10792 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10793 * map. Any dependencies waiting for the write to clear are added to the 10794 * buf's list and any jnewblks that are being canceled are discarded 10795 * immediately. 10796 */ 10797 void 10798 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10799 struct mount *mp; 10800 struct buf *bp; 10801 ufs2_daddr_t blkno; 10802 int frags; 10803 struct workhead *wkhd; 10804 { 10805 struct bmsafemap *bmsafemap; 10806 struct jnewblk *jnewblk; 10807 struct ufsmount *ump; 10808 struct worklist *wk; 10809 struct fs *fs; 10810 #ifdef INVARIANTS 10811 uint8_t *blksfree; 10812 struct cg *cgp; 10813 ufs2_daddr_t jstart; 10814 ufs2_daddr_t jend; 10815 ufs2_daddr_t end; 10816 long bno; 10817 int i; 10818 #endif 10819 10820 CTR3(KTR_SUJ, 10821 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10822 blkno, frags, wkhd); 10823 10824 ump = VFSTOUFS(mp); 10825 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10826 ("softdep_setup_blkfree called on non-softdep filesystem")); 10827 ACQUIRE_LOCK(ump); 10828 /* Lookup the bmsafemap so we track when it is dirty. */ 10829 fs = ump->um_fs; 10830 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10831 /* 10832 * Detach any jnewblks which have been canceled. They must linger 10833 * until the bitmap is cleared again by ffs_blkfree() to prevent 10834 * an unjournaled allocation from hitting the disk. 10835 */ 10836 if (wkhd) { 10837 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10838 CTR2(KTR_SUJ, 10839 "softdep_setup_blkfree: blkno %jd wk type %d", 10840 blkno, wk->wk_type); 10841 WORKLIST_REMOVE(wk); 10842 if (wk->wk_type != D_JNEWBLK) { 10843 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10844 continue; 10845 } 10846 jnewblk = WK_JNEWBLK(wk); 10847 KASSERT(jnewblk->jn_state & GOINGAWAY, 10848 ("softdep_setup_blkfree: jnewblk not canceled.")); 10849 #ifdef INVARIANTS 10850 /* 10851 * Assert that this block is free in the bitmap 10852 * before we discard the jnewblk. 10853 */ 10854 cgp = (struct cg *)bp->b_data; 10855 blksfree = cg_blksfree(cgp); 10856 bno = dtogd(fs, jnewblk->jn_blkno); 10857 for (i = jnewblk->jn_oldfrags; 10858 i < jnewblk->jn_frags; i++) { 10859 if (isset(blksfree, bno + i)) 10860 continue; 10861 panic("softdep_setup_blkfree: not free"); 10862 } 10863 #endif 10864 /* 10865 * Even if it's not attached we can free immediately 10866 * as the new bitmap is correct. 10867 */ 10868 wk->wk_state |= COMPLETE | ATTACHED; 10869 free_jnewblk(jnewblk); 10870 } 10871 } 10872 10873 #ifdef INVARIANTS 10874 /* 10875 * Assert that we are not freeing a block which has an outstanding 10876 * allocation dependency. 10877 */ 10878 fs = VFSTOUFS(mp)->um_fs; 10879 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10880 end = blkno + frags; 10881 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10882 /* 10883 * Don't match against blocks that will be freed when the 10884 * background write is done. 10885 */ 10886 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10887 (COMPLETE | DEPCOMPLETE)) 10888 continue; 10889 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10890 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10891 if ((blkno >= jstart && blkno < jend) || 10892 (end > jstart && end <= jend)) { 10893 printf("state 0x%X %jd - %d %d dep %p\n", 10894 jnewblk->jn_state, jnewblk->jn_blkno, 10895 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10896 jnewblk->jn_dep); 10897 panic("softdep_setup_blkfree: " 10898 "%jd-%jd(%d) overlaps with %jd-%jd", 10899 blkno, end, frags, jstart, jend); 10900 } 10901 } 10902 #endif 10903 FREE_LOCK(ump); 10904 } 10905 10906 /* 10907 * Revert a block allocation when the journal record that describes it 10908 * is not yet written. 10909 */ 10910 static int 10911 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10912 struct jnewblk *jnewblk; 10913 struct fs *fs; 10914 struct cg *cgp; 10915 uint8_t *blksfree; 10916 { 10917 ufs1_daddr_t fragno; 10918 long cgbno, bbase; 10919 int frags, blk; 10920 int i; 10921 10922 frags = 0; 10923 cgbno = dtogd(fs, jnewblk->jn_blkno); 10924 /* 10925 * We have to test which frags need to be rolled back. We may 10926 * be operating on a stale copy when doing background writes. 10927 */ 10928 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10929 if (isclr(blksfree, cgbno + i)) 10930 frags++; 10931 if (frags == 0) 10932 return (0); 10933 /* 10934 * This is mostly ffs_blkfree() sans some validation and 10935 * superblock updates. 10936 */ 10937 if (frags == fs->fs_frag) { 10938 fragno = fragstoblks(fs, cgbno); 10939 ffs_setblock(fs, blksfree, fragno); 10940 ffs_clusteracct(fs, cgp, fragno, 1); 10941 cgp->cg_cs.cs_nbfree++; 10942 } else { 10943 cgbno += jnewblk->jn_oldfrags; 10944 bbase = cgbno - fragnum(fs, cgbno); 10945 /* Decrement the old frags. */ 10946 blk = blkmap(fs, blksfree, bbase); 10947 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10948 /* Deallocate the fragment */ 10949 for (i = 0; i < frags; i++) 10950 setbit(blksfree, cgbno + i); 10951 cgp->cg_cs.cs_nffree += frags; 10952 /* Add back in counts associated with the new frags */ 10953 blk = blkmap(fs, blksfree, bbase); 10954 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10955 /* If a complete block has been reassembled, account for it. */ 10956 fragno = fragstoblks(fs, bbase); 10957 if (ffs_isblock(fs, blksfree, fragno)) { 10958 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10959 ffs_clusteracct(fs, cgp, fragno, 1); 10960 cgp->cg_cs.cs_nbfree++; 10961 } 10962 } 10963 stat_jnewblk++; 10964 jnewblk->jn_state &= ~ATTACHED; 10965 jnewblk->jn_state |= UNDONE; 10966 10967 return (frags); 10968 } 10969 10970 static void 10971 initiate_write_bmsafemap(bmsafemap, bp) 10972 struct bmsafemap *bmsafemap; 10973 struct buf *bp; /* The cg block. */ 10974 { 10975 struct jaddref *jaddref; 10976 struct jnewblk *jnewblk; 10977 uint8_t *inosused; 10978 uint8_t *blksfree; 10979 struct cg *cgp; 10980 struct fs *fs; 10981 ino_t ino; 10982 10983 /* 10984 * If this is a background write, we did this at the time that 10985 * the copy was made, so do not need to do it again. 10986 */ 10987 if (bmsafemap->sm_state & IOSTARTED) 10988 return; 10989 bmsafemap->sm_state |= IOSTARTED; 10990 /* 10991 * Clear any inode allocations which are pending journal writes. 10992 */ 10993 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10994 cgp = (struct cg *)bp->b_data; 10995 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10996 inosused = cg_inosused(cgp); 10997 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10998 ino = jaddref->ja_ino % fs->fs_ipg; 10999 if (isset(inosused, ino)) { 11000 if ((jaddref->ja_mode & IFMT) == IFDIR) 11001 cgp->cg_cs.cs_ndir--; 11002 cgp->cg_cs.cs_nifree++; 11003 clrbit(inosused, ino); 11004 jaddref->ja_state &= ~ATTACHED; 11005 jaddref->ja_state |= UNDONE; 11006 stat_jaddref++; 11007 } else 11008 panic("initiate_write_bmsafemap: inode %ju " 11009 "marked free", (uintmax_t)jaddref->ja_ino); 11010 } 11011 } 11012 /* 11013 * Clear any block allocations which are pending journal writes. 11014 */ 11015 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11016 cgp = (struct cg *)bp->b_data; 11017 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11018 blksfree = cg_blksfree(cgp); 11019 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11020 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11021 continue; 11022 panic("initiate_write_bmsafemap: block %jd " 11023 "marked free", jnewblk->jn_blkno); 11024 } 11025 } 11026 /* 11027 * Move allocation lists to the written lists so they can be 11028 * cleared once the block write is complete. 11029 */ 11030 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11031 inodedep, id_deps); 11032 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11033 newblk, nb_deps); 11034 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11035 wk_list); 11036 } 11037 11038 /* 11039 * This routine is called during the completion interrupt 11040 * service routine for a disk write (from the procedure called 11041 * by the device driver to inform the filesystem caches of 11042 * a request completion). It should be called early in this 11043 * procedure, before the block is made available to other 11044 * processes or other routines are called. 11045 * 11046 */ 11047 static void 11048 softdep_disk_write_complete(bp) 11049 struct buf *bp; /* describes the completed disk write */ 11050 { 11051 struct worklist *wk; 11052 struct worklist *owk; 11053 struct ufsmount *ump; 11054 struct workhead reattach; 11055 struct freeblks *freeblks; 11056 struct buf *sbp; 11057 11058 ump = softdep_bp_to_mp(bp); 11059 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11060 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11061 "with outstanding dependencies for buffer %p", bp)); 11062 if (ump == NULL) 11063 return; 11064 /* 11065 * If an error occurred while doing the write, then the data 11066 * has not hit the disk and the dependencies cannot be processed. 11067 * But we do have to go through and roll forward any dependencies 11068 * that were rolled back before the disk write. 11069 */ 11070 sbp = NULL; 11071 ACQUIRE_LOCK(ump); 11072 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11073 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11074 switch (wk->wk_type) { 11075 11076 case D_PAGEDEP: 11077 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11078 continue; 11079 11080 case D_INODEDEP: 11081 handle_written_inodeblock(WK_INODEDEP(wk), 11082 bp, 0); 11083 continue; 11084 11085 case D_BMSAFEMAP: 11086 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11087 bp, 0); 11088 continue; 11089 11090 case D_INDIRDEP: 11091 handle_written_indirdep(WK_INDIRDEP(wk), 11092 bp, &sbp, 0); 11093 continue; 11094 default: 11095 /* nothing to roll forward */ 11096 continue; 11097 } 11098 } 11099 FREE_LOCK(ump); 11100 if (sbp) 11101 brelse(sbp); 11102 return; 11103 } 11104 LIST_INIT(&reattach); 11105 11106 /* 11107 * Ump SU lock must not be released anywhere in this code segment. 11108 */ 11109 owk = NULL; 11110 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11111 WORKLIST_REMOVE(wk); 11112 atomic_add_long(&dep_write[wk->wk_type], 1); 11113 if (wk == owk) 11114 panic("duplicate worklist: %p\n", wk); 11115 owk = wk; 11116 switch (wk->wk_type) { 11117 11118 case D_PAGEDEP: 11119 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11120 WRITESUCCEEDED)) 11121 WORKLIST_INSERT(&reattach, wk); 11122 continue; 11123 11124 case D_INODEDEP: 11125 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11126 WRITESUCCEEDED)) 11127 WORKLIST_INSERT(&reattach, wk); 11128 continue; 11129 11130 case D_BMSAFEMAP: 11131 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11132 WRITESUCCEEDED)) 11133 WORKLIST_INSERT(&reattach, wk); 11134 continue; 11135 11136 case D_MKDIR: 11137 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11138 continue; 11139 11140 case D_ALLOCDIRECT: 11141 wk->wk_state |= COMPLETE; 11142 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11143 continue; 11144 11145 case D_ALLOCINDIR: 11146 wk->wk_state |= COMPLETE; 11147 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11148 continue; 11149 11150 case D_INDIRDEP: 11151 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11152 WRITESUCCEEDED)) 11153 WORKLIST_INSERT(&reattach, wk); 11154 continue; 11155 11156 case D_FREEBLKS: 11157 wk->wk_state |= COMPLETE; 11158 freeblks = WK_FREEBLKS(wk); 11159 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11160 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11161 add_to_worklist(wk, WK_NODELAY); 11162 continue; 11163 11164 case D_FREEWORK: 11165 handle_written_freework(WK_FREEWORK(wk)); 11166 break; 11167 11168 case D_JSEGDEP: 11169 free_jsegdep(WK_JSEGDEP(wk)); 11170 continue; 11171 11172 case D_JSEG: 11173 handle_written_jseg(WK_JSEG(wk), bp); 11174 continue; 11175 11176 case D_SBDEP: 11177 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11178 WORKLIST_INSERT(&reattach, wk); 11179 continue; 11180 11181 case D_FREEDEP: 11182 free_freedep(WK_FREEDEP(wk)); 11183 continue; 11184 11185 default: 11186 panic("handle_disk_write_complete: Unknown type %s", 11187 TYPENAME(wk->wk_type)); 11188 /* NOTREACHED */ 11189 } 11190 } 11191 /* 11192 * Reattach any requests that must be redone. 11193 */ 11194 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11195 WORKLIST_REMOVE(wk); 11196 WORKLIST_INSERT(&bp->b_dep, wk); 11197 } 11198 FREE_LOCK(ump); 11199 if (sbp) 11200 brelse(sbp); 11201 } 11202 11203 /* 11204 * Called from within softdep_disk_write_complete above. 11205 */ 11206 static void 11207 handle_allocdirect_partdone(adp, wkhd) 11208 struct allocdirect *adp; /* the completed allocdirect */ 11209 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11210 { 11211 struct allocdirectlst *listhead; 11212 struct allocdirect *listadp; 11213 struct inodedep *inodedep; 11214 long bsize; 11215 11216 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11217 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11218 return; 11219 /* 11220 * The on-disk inode cannot claim to be any larger than the last 11221 * fragment that has been written. Otherwise, the on-disk inode 11222 * might have fragments that were not the last block in the file 11223 * which would corrupt the filesystem. Thus, we cannot free any 11224 * allocdirects after one whose ad_oldblkno claims a fragment as 11225 * these blocks must be rolled back to zero before writing the inode. 11226 * We check the currently active set of allocdirects in id_inoupdt 11227 * or id_extupdt as appropriate. 11228 */ 11229 inodedep = adp->ad_inodedep; 11230 bsize = inodedep->id_fs->fs_bsize; 11231 if (adp->ad_state & EXTDATA) 11232 listhead = &inodedep->id_extupdt; 11233 else 11234 listhead = &inodedep->id_inoupdt; 11235 TAILQ_FOREACH(listadp, listhead, ad_next) { 11236 /* found our block */ 11237 if (listadp == adp) 11238 break; 11239 /* continue if ad_oldlbn is not a fragment */ 11240 if (listadp->ad_oldsize == 0 || 11241 listadp->ad_oldsize == bsize) 11242 continue; 11243 /* hit a fragment */ 11244 return; 11245 } 11246 /* 11247 * If we have reached the end of the current list without 11248 * finding the just finished dependency, then it must be 11249 * on the future dependency list. Future dependencies cannot 11250 * be freed until they are moved to the current list. 11251 */ 11252 if (listadp == NULL) { 11253 #ifdef INVARIANTS 11254 if (adp->ad_state & EXTDATA) 11255 listhead = &inodedep->id_newextupdt; 11256 else 11257 listhead = &inodedep->id_newinoupdt; 11258 TAILQ_FOREACH(listadp, listhead, ad_next) 11259 /* found our block */ 11260 if (listadp == adp) 11261 break; 11262 if (listadp == NULL) 11263 panic("handle_allocdirect_partdone: lost dep"); 11264 #endif /* INVARIANTS */ 11265 return; 11266 } 11267 /* 11268 * If we have found the just finished dependency, then queue 11269 * it along with anything that follows it that is complete. 11270 * Since the pointer has not yet been written in the inode 11271 * as the dependency prevents it, place the allocdirect on the 11272 * bufwait list where it will be freed once the pointer is 11273 * valid. 11274 */ 11275 if (wkhd == NULL) 11276 wkhd = &inodedep->id_bufwait; 11277 for (; adp; adp = listadp) { 11278 listadp = TAILQ_NEXT(adp, ad_next); 11279 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11280 return; 11281 TAILQ_REMOVE(listhead, adp, ad_next); 11282 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11283 } 11284 } 11285 11286 /* 11287 * Called from within softdep_disk_write_complete above. This routine 11288 * completes successfully written allocindirs. 11289 */ 11290 static void 11291 handle_allocindir_partdone(aip) 11292 struct allocindir *aip; /* the completed allocindir */ 11293 { 11294 struct indirdep *indirdep; 11295 11296 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11297 return; 11298 indirdep = aip->ai_indirdep; 11299 LIST_REMOVE(aip, ai_next); 11300 /* 11301 * Don't set a pointer while the buffer is undergoing IO or while 11302 * we have active truncations. 11303 */ 11304 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11305 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11306 return; 11307 } 11308 if (indirdep->ir_state & UFS1FMT) 11309 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11310 aip->ai_newblkno; 11311 else 11312 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11313 aip->ai_newblkno; 11314 /* 11315 * Await the pointer write before freeing the allocindir. 11316 */ 11317 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11318 } 11319 11320 /* 11321 * Release segments held on a jwork list. 11322 */ 11323 static void 11324 handle_jwork(wkhd) 11325 struct workhead *wkhd; 11326 { 11327 struct worklist *wk; 11328 11329 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11330 WORKLIST_REMOVE(wk); 11331 switch (wk->wk_type) { 11332 case D_JSEGDEP: 11333 free_jsegdep(WK_JSEGDEP(wk)); 11334 continue; 11335 case D_FREEDEP: 11336 free_freedep(WK_FREEDEP(wk)); 11337 continue; 11338 case D_FREEFRAG: 11339 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11340 WORKITEM_FREE(wk, D_FREEFRAG); 11341 continue; 11342 case D_FREEWORK: 11343 handle_written_freework(WK_FREEWORK(wk)); 11344 continue; 11345 default: 11346 panic("handle_jwork: Unknown type %s\n", 11347 TYPENAME(wk->wk_type)); 11348 } 11349 } 11350 } 11351 11352 /* 11353 * Handle the bufwait list on an inode when it is safe to release items 11354 * held there. This normally happens after an inode block is written but 11355 * may be delayed and handled later if there are pending journal items that 11356 * are not yet safe to be released. 11357 */ 11358 static struct freefile * 11359 handle_bufwait(inodedep, refhd) 11360 struct inodedep *inodedep; 11361 struct workhead *refhd; 11362 { 11363 struct jaddref *jaddref; 11364 struct freefile *freefile; 11365 struct worklist *wk; 11366 11367 freefile = NULL; 11368 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11369 WORKLIST_REMOVE(wk); 11370 switch (wk->wk_type) { 11371 case D_FREEFILE: 11372 /* 11373 * We defer adding freefile to the worklist 11374 * until all other additions have been made to 11375 * ensure that it will be done after all the 11376 * old blocks have been freed. 11377 */ 11378 if (freefile != NULL) 11379 panic("handle_bufwait: freefile"); 11380 freefile = WK_FREEFILE(wk); 11381 continue; 11382 11383 case D_MKDIR: 11384 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11385 continue; 11386 11387 case D_DIRADD: 11388 diradd_inode_written(WK_DIRADD(wk), inodedep); 11389 continue; 11390 11391 case D_FREEFRAG: 11392 wk->wk_state |= COMPLETE; 11393 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11394 add_to_worklist(wk, 0); 11395 continue; 11396 11397 case D_DIRREM: 11398 wk->wk_state |= COMPLETE; 11399 add_to_worklist(wk, 0); 11400 continue; 11401 11402 case D_ALLOCDIRECT: 11403 case D_ALLOCINDIR: 11404 free_newblk(WK_NEWBLK(wk)); 11405 continue; 11406 11407 case D_JNEWBLK: 11408 wk->wk_state |= COMPLETE; 11409 free_jnewblk(WK_JNEWBLK(wk)); 11410 continue; 11411 11412 /* 11413 * Save freed journal segments and add references on 11414 * the supplied list which will delay their release 11415 * until the cg bitmap is cleared on disk. 11416 */ 11417 case D_JSEGDEP: 11418 if (refhd == NULL) 11419 free_jsegdep(WK_JSEGDEP(wk)); 11420 else 11421 WORKLIST_INSERT(refhd, wk); 11422 continue; 11423 11424 case D_JADDREF: 11425 jaddref = WK_JADDREF(wk); 11426 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11427 if_deps); 11428 /* 11429 * Transfer any jaddrefs to the list to be freed with 11430 * the bitmap if we're handling a removed file. 11431 */ 11432 if (refhd == NULL) { 11433 wk->wk_state |= COMPLETE; 11434 free_jaddref(jaddref); 11435 } else 11436 WORKLIST_INSERT(refhd, wk); 11437 continue; 11438 11439 default: 11440 panic("handle_bufwait: Unknown type %p(%s)", 11441 wk, TYPENAME(wk->wk_type)); 11442 /* NOTREACHED */ 11443 } 11444 } 11445 return (freefile); 11446 } 11447 /* 11448 * Called from within softdep_disk_write_complete above to restore 11449 * in-memory inode block contents to their most up-to-date state. Note 11450 * that this routine is always called from interrupt level with further 11451 * interrupts from this device blocked. 11452 * 11453 * If the write did not succeed, we will do all the roll-forward 11454 * operations, but we will not take the actions that will allow its 11455 * dependencies to be processed. 11456 */ 11457 static int 11458 handle_written_inodeblock(inodedep, bp, flags) 11459 struct inodedep *inodedep; 11460 struct buf *bp; /* buffer containing the inode block */ 11461 int flags; 11462 { 11463 struct freefile *freefile; 11464 struct allocdirect *adp, *nextadp; 11465 struct ufs1_dinode *dp1 = NULL; 11466 struct ufs2_dinode *dp2 = NULL; 11467 struct workhead wkhd; 11468 int hadchanges, fstype; 11469 ino_t freelink; 11470 11471 LIST_INIT(&wkhd); 11472 hadchanges = 0; 11473 freefile = NULL; 11474 if ((inodedep->id_state & IOSTARTED) == 0) 11475 panic("handle_written_inodeblock: not started"); 11476 inodedep->id_state &= ~IOSTARTED; 11477 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11478 fstype = UFS1; 11479 dp1 = (struct ufs1_dinode *)bp->b_data + 11480 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11481 freelink = dp1->di_freelink; 11482 } else { 11483 fstype = UFS2; 11484 dp2 = (struct ufs2_dinode *)bp->b_data + 11485 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11486 freelink = dp2->di_freelink; 11487 } 11488 /* 11489 * Leave this inodeblock dirty until it's in the list. 11490 */ 11491 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11492 (flags & WRITESUCCEEDED)) { 11493 struct inodedep *inon; 11494 11495 inon = TAILQ_NEXT(inodedep, id_unlinked); 11496 if ((inon == NULL && freelink == 0) || 11497 (inon && inon->id_ino == freelink)) { 11498 if (inon) 11499 inon->id_state |= UNLINKPREV; 11500 inodedep->id_state |= UNLINKNEXT; 11501 } 11502 hadchanges = 1; 11503 } 11504 /* 11505 * If we had to rollback the inode allocation because of 11506 * bitmaps being incomplete, then simply restore it. 11507 * Keep the block dirty so that it will not be reclaimed until 11508 * all associated dependencies have been cleared and the 11509 * corresponding updates written to disk. 11510 */ 11511 if (inodedep->id_savedino1 != NULL) { 11512 hadchanges = 1; 11513 if (fstype == UFS1) 11514 *dp1 = *inodedep->id_savedino1; 11515 else 11516 *dp2 = *inodedep->id_savedino2; 11517 free(inodedep->id_savedino1, M_SAVEDINO); 11518 inodedep->id_savedino1 = NULL; 11519 if ((bp->b_flags & B_DELWRI) == 0) 11520 stat_inode_bitmap++; 11521 bdirty(bp); 11522 /* 11523 * If the inode is clear here and GOINGAWAY it will never 11524 * be written. Process the bufwait and clear any pending 11525 * work which may include the freefile. 11526 */ 11527 if (inodedep->id_state & GOINGAWAY) 11528 goto bufwait; 11529 return (1); 11530 } 11531 if (flags & WRITESUCCEEDED) 11532 inodedep->id_state |= COMPLETE; 11533 /* 11534 * Roll forward anything that had to be rolled back before 11535 * the inode could be updated. 11536 */ 11537 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11538 nextadp = TAILQ_NEXT(adp, ad_next); 11539 if (adp->ad_state & ATTACHED) 11540 panic("handle_written_inodeblock: new entry"); 11541 if (fstype == UFS1) { 11542 if (adp->ad_offset < UFS_NDADDR) { 11543 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11544 panic("%s %s #%jd mismatch %d != %jd", 11545 "handle_written_inodeblock:", 11546 "direct pointer", 11547 (intmax_t)adp->ad_offset, 11548 dp1->di_db[adp->ad_offset], 11549 (intmax_t)adp->ad_oldblkno); 11550 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11551 } else { 11552 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11553 0) 11554 panic("%s: %s #%jd allocated as %d", 11555 "handle_written_inodeblock", 11556 "indirect pointer", 11557 (intmax_t)adp->ad_offset - 11558 UFS_NDADDR, 11559 dp1->di_ib[adp->ad_offset - 11560 UFS_NDADDR]); 11561 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11562 adp->ad_newblkno; 11563 } 11564 } else { 11565 if (adp->ad_offset < UFS_NDADDR) { 11566 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11567 panic("%s: %s #%jd %s %jd != %jd", 11568 "handle_written_inodeblock", 11569 "direct pointer", 11570 (intmax_t)adp->ad_offset, "mismatch", 11571 (intmax_t)dp2->di_db[adp->ad_offset], 11572 (intmax_t)adp->ad_oldblkno); 11573 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11574 } else { 11575 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11576 0) 11577 panic("%s: %s #%jd allocated as %jd", 11578 "handle_written_inodeblock", 11579 "indirect pointer", 11580 (intmax_t)adp->ad_offset - 11581 UFS_NDADDR, 11582 (intmax_t) 11583 dp2->di_ib[adp->ad_offset - 11584 UFS_NDADDR]); 11585 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11586 adp->ad_newblkno; 11587 } 11588 } 11589 adp->ad_state &= ~UNDONE; 11590 adp->ad_state |= ATTACHED; 11591 hadchanges = 1; 11592 } 11593 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11594 nextadp = TAILQ_NEXT(adp, ad_next); 11595 if (adp->ad_state & ATTACHED) 11596 panic("handle_written_inodeblock: new entry"); 11597 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11598 panic("%s: direct pointers #%jd %s %jd != %jd", 11599 "handle_written_inodeblock", 11600 (intmax_t)adp->ad_offset, "mismatch", 11601 (intmax_t)dp2->di_extb[adp->ad_offset], 11602 (intmax_t)adp->ad_oldblkno); 11603 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11604 adp->ad_state &= ~UNDONE; 11605 adp->ad_state |= ATTACHED; 11606 hadchanges = 1; 11607 } 11608 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11609 stat_direct_blk_ptrs++; 11610 /* 11611 * Reset the file size to its most up-to-date value. 11612 */ 11613 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11614 panic("handle_written_inodeblock: bad size"); 11615 if (inodedep->id_savednlink > UFS_LINK_MAX) 11616 panic("handle_written_inodeblock: Invalid link count " 11617 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11618 inodedep); 11619 if (fstype == UFS1) { 11620 if (dp1->di_nlink != inodedep->id_savednlink) { 11621 dp1->di_nlink = inodedep->id_savednlink; 11622 hadchanges = 1; 11623 } 11624 if (dp1->di_size != inodedep->id_savedsize) { 11625 dp1->di_size = inodedep->id_savedsize; 11626 hadchanges = 1; 11627 } 11628 } else { 11629 if (dp2->di_nlink != inodedep->id_savednlink) { 11630 dp2->di_nlink = inodedep->id_savednlink; 11631 hadchanges = 1; 11632 } 11633 if (dp2->di_size != inodedep->id_savedsize) { 11634 dp2->di_size = inodedep->id_savedsize; 11635 hadchanges = 1; 11636 } 11637 if (dp2->di_extsize != inodedep->id_savedextsize) { 11638 dp2->di_extsize = inodedep->id_savedextsize; 11639 hadchanges = 1; 11640 } 11641 } 11642 inodedep->id_savedsize = -1; 11643 inodedep->id_savedextsize = -1; 11644 inodedep->id_savednlink = -1; 11645 /* 11646 * If there were any rollbacks in the inode block, then it must be 11647 * marked dirty so that its will eventually get written back in 11648 * its correct form. 11649 */ 11650 if (hadchanges) { 11651 if (fstype == UFS2) 11652 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 11653 bdirty(bp); 11654 } 11655 bufwait: 11656 /* 11657 * If the write did not succeed, we have done all the roll-forward 11658 * operations, but we cannot take the actions that will allow its 11659 * dependencies to be processed. 11660 */ 11661 if ((flags & WRITESUCCEEDED) == 0) 11662 return (hadchanges); 11663 /* 11664 * Process any allocdirects that completed during the update. 11665 */ 11666 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11667 handle_allocdirect_partdone(adp, &wkhd); 11668 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11669 handle_allocdirect_partdone(adp, &wkhd); 11670 /* 11671 * Process deallocations that were held pending until the 11672 * inode had been written to disk. Freeing of the inode 11673 * is delayed until after all blocks have been freed to 11674 * avoid creation of new <vfsid, inum, lbn> triples 11675 * before the old ones have been deleted. Completely 11676 * unlinked inodes are not processed until the unlinked 11677 * inode list is written or the last reference is removed. 11678 */ 11679 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11680 freefile = handle_bufwait(inodedep, NULL); 11681 if (freefile && !LIST_EMPTY(&wkhd)) { 11682 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11683 freefile = NULL; 11684 } 11685 } 11686 /* 11687 * Move rolled forward dependency completions to the bufwait list 11688 * now that those that were already written have been processed. 11689 */ 11690 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11691 panic("handle_written_inodeblock: bufwait but no changes"); 11692 jwork_move(&inodedep->id_bufwait, &wkhd); 11693 11694 if (freefile != NULL) { 11695 /* 11696 * If the inode is goingaway it was never written. Fake up 11697 * the state here so free_inodedep() can succeed. 11698 */ 11699 if (inodedep->id_state & GOINGAWAY) 11700 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11701 if (free_inodedep(inodedep) == 0) 11702 panic("handle_written_inodeblock: live inodedep %p", 11703 inodedep); 11704 add_to_worklist(&freefile->fx_list, 0); 11705 return (0); 11706 } 11707 11708 /* 11709 * If no outstanding dependencies, free it. 11710 */ 11711 if (free_inodedep(inodedep) || 11712 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11713 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11714 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11715 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11716 return (0); 11717 return (hadchanges); 11718 } 11719 11720 /* 11721 * Perform needed roll-forwards and kick off any dependencies that 11722 * can now be processed. 11723 * 11724 * If the write did not succeed, we will do all the roll-forward 11725 * operations, but we will not take the actions that will allow its 11726 * dependencies to be processed. 11727 */ 11728 static int 11729 handle_written_indirdep(indirdep, bp, bpp, flags) 11730 struct indirdep *indirdep; 11731 struct buf *bp; 11732 struct buf **bpp; 11733 int flags; 11734 { 11735 struct allocindir *aip; 11736 struct buf *sbp; 11737 int chgs; 11738 11739 if (indirdep->ir_state & GOINGAWAY) 11740 panic("handle_written_indirdep: indirdep gone"); 11741 if ((indirdep->ir_state & IOSTARTED) == 0) 11742 panic("handle_written_indirdep: IO not started"); 11743 chgs = 0; 11744 /* 11745 * If there were rollbacks revert them here. 11746 */ 11747 if (indirdep->ir_saveddata) { 11748 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11749 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11750 free(indirdep->ir_saveddata, M_INDIRDEP); 11751 indirdep->ir_saveddata = NULL; 11752 } 11753 chgs = 1; 11754 } 11755 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11756 indirdep->ir_state |= ATTACHED; 11757 /* 11758 * If the write did not succeed, we have done all the roll-forward 11759 * operations, but we cannot take the actions that will allow its 11760 * dependencies to be processed. 11761 */ 11762 if ((flags & WRITESUCCEEDED) == 0) { 11763 stat_indir_blk_ptrs++; 11764 bdirty(bp); 11765 return (1); 11766 } 11767 /* 11768 * Move allocindirs with written pointers to the completehd if 11769 * the indirdep's pointer is not yet written. Otherwise 11770 * free them here. 11771 */ 11772 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11773 LIST_REMOVE(aip, ai_next); 11774 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11775 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11776 ai_next); 11777 newblk_freefrag(&aip->ai_block); 11778 continue; 11779 } 11780 free_newblk(&aip->ai_block); 11781 } 11782 /* 11783 * Move allocindirs that have finished dependency processing from 11784 * the done list to the write list after updating the pointers. 11785 */ 11786 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11787 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11788 handle_allocindir_partdone(aip); 11789 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11790 panic("disk_write_complete: not gone"); 11791 chgs = 1; 11792 } 11793 } 11794 /* 11795 * Preserve the indirdep if there were any changes or if it is not 11796 * yet valid on disk. 11797 */ 11798 if (chgs) { 11799 stat_indir_blk_ptrs++; 11800 bdirty(bp); 11801 return (1); 11802 } 11803 /* 11804 * If there were no changes we can discard the savedbp and detach 11805 * ourselves from the buf. We are only carrying completed pointers 11806 * in this case. 11807 */ 11808 sbp = indirdep->ir_savebp; 11809 sbp->b_flags |= B_INVAL | B_NOCACHE; 11810 indirdep->ir_savebp = NULL; 11811 indirdep->ir_bp = NULL; 11812 if (*bpp != NULL) 11813 panic("handle_written_indirdep: bp already exists."); 11814 *bpp = sbp; 11815 /* 11816 * The indirdep may not be freed until its parent points at it. 11817 */ 11818 if (indirdep->ir_state & DEPCOMPLETE) 11819 free_indirdep(indirdep); 11820 11821 return (0); 11822 } 11823 11824 /* 11825 * Process a diradd entry after its dependent inode has been written. 11826 */ 11827 static void 11828 diradd_inode_written(dap, inodedep) 11829 struct diradd *dap; 11830 struct inodedep *inodedep; 11831 { 11832 11833 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 11834 dap->da_state |= COMPLETE; 11835 complete_diradd(dap); 11836 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11837 } 11838 11839 /* 11840 * Returns true if the bmsafemap will have rollbacks when written. Must only 11841 * be called with the per-filesystem lock and the buf lock on the cg held. 11842 */ 11843 static int 11844 bmsafemap_backgroundwrite(bmsafemap, bp) 11845 struct bmsafemap *bmsafemap; 11846 struct buf *bp; 11847 { 11848 int dirty; 11849 11850 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11851 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11852 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11853 /* 11854 * If we're initiating a background write we need to process the 11855 * rollbacks as they exist now, not as they exist when IO starts. 11856 * No other consumers will look at the contents of the shadowed 11857 * buf so this is safe to do here. 11858 */ 11859 if (bp->b_xflags & BX_BKGRDMARKER) 11860 initiate_write_bmsafemap(bmsafemap, bp); 11861 11862 return (dirty); 11863 } 11864 11865 /* 11866 * Re-apply an allocation when a cg write is complete. 11867 */ 11868 static int 11869 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11870 struct jnewblk *jnewblk; 11871 struct fs *fs; 11872 struct cg *cgp; 11873 uint8_t *blksfree; 11874 { 11875 ufs1_daddr_t fragno; 11876 ufs2_daddr_t blkno; 11877 long cgbno, bbase; 11878 int frags, blk; 11879 int i; 11880 11881 frags = 0; 11882 cgbno = dtogd(fs, jnewblk->jn_blkno); 11883 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11884 if (isclr(blksfree, cgbno + i)) 11885 panic("jnewblk_rollforward: re-allocated fragment"); 11886 frags++; 11887 } 11888 if (frags == fs->fs_frag) { 11889 blkno = fragstoblks(fs, cgbno); 11890 ffs_clrblock(fs, blksfree, (long)blkno); 11891 ffs_clusteracct(fs, cgp, blkno, -1); 11892 cgp->cg_cs.cs_nbfree--; 11893 } else { 11894 bbase = cgbno - fragnum(fs, cgbno); 11895 cgbno += jnewblk->jn_oldfrags; 11896 /* If a complete block had been reassembled, account for it. */ 11897 fragno = fragstoblks(fs, bbase); 11898 if (ffs_isblock(fs, blksfree, fragno)) { 11899 cgp->cg_cs.cs_nffree += fs->fs_frag; 11900 ffs_clusteracct(fs, cgp, fragno, -1); 11901 cgp->cg_cs.cs_nbfree--; 11902 } 11903 /* Decrement the old frags. */ 11904 blk = blkmap(fs, blksfree, bbase); 11905 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11906 /* Allocate the fragment */ 11907 for (i = 0; i < frags; i++) 11908 clrbit(blksfree, cgbno + i); 11909 cgp->cg_cs.cs_nffree -= frags; 11910 /* Add back in counts associated with the new frags */ 11911 blk = blkmap(fs, blksfree, bbase); 11912 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11913 } 11914 return (frags); 11915 } 11916 11917 /* 11918 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11919 * changes if it's not a background write. Set all written dependencies 11920 * to DEPCOMPLETE and free the structure if possible. 11921 * 11922 * If the write did not succeed, we will do all the roll-forward 11923 * operations, but we will not take the actions that will allow its 11924 * dependencies to be processed. 11925 */ 11926 static int 11927 handle_written_bmsafemap(bmsafemap, bp, flags) 11928 struct bmsafemap *bmsafemap; 11929 struct buf *bp; 11930 int flags; 11931 { 11932 struct newblk *newblk; 11933 struct inodedep *inodedep; 11934 struct jaddref *jaddref, *jatmp; 11935 struct jnewblk *jnewblk, *jntmp; 11936 struct ufsmount *ump; 11937 uint8_t *inosused; 11938 uint8_t *blksfree; 11939 struct cg *cgp; 11940 struct fs *fs; 11941 ino_t ino; 11942 int foreground; 11943 int chgs; 11944 11945 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11946 panic("handle_written_bmsafemap: Not started\n"); 11947 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11948 chgs = 0; 11949 bmsafemap->sm_state &= ~IOSTARTED; 11950 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11951 /* 11952 * If write was successful, release journal work that was waiting 11953 * on the write. Otherwise move the work back. 11954 */ 11955 if (flags & WRITESUCCEEDED) 11956 handle_jwork(&bmsafemap->sm_freewr); 11957 else 11958 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11959 worklist, wk_list); 11960 11961 /* 11962 * Restore unwritten inode allocation pending jaddref writes. 11963 */ 11964 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11965 cgp = (struct cg *)bp->b_data; 11966 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11967 inosused = cg_inosused(cgp); 11968 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11969 ja_bmdeps, jatmp) { 11970 if ((jaddref->ja_state & UNDONE) == 0) 11971 continue; 11972 ino = jaddref->ja_ino % fs->fs_ipg; 11973 if (isset(inosused, ino)) 11974 panic("handle_written_bmsafemap: " 11975 "re-allocated inode"); 11976 /* Do the roll-forward only if it's a real copy. */ 11977 if (foreground) { 11978 if ((jaddref->ja_mode & IFMT) == IFDIR) 11979 cgp->cg_cs.cs_ndir++; 11980 cgp->cg_cs.cs_nifree--; 11981 setbit(inosused, ino); 11982 chgs = 1; 11983 } 11984 jaddref->ja_state &= ~UNDONE; 11985 jaddref->ja_state |= ATTACHED; 11986 free_jaddref(jaddref); 11987 } 11988 } 11989 /* 11990 * Restore any block allocations which are pending journal writes. 11991 */ 11992 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11993 cgp = (struct cg *)bp->b_data; 11994 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11995 blksfree = cg_blksfree(cgp); 11996 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11997 jntmp) { 11998 if ((jnewblk->jn_state & UNDONE) == 0) 11999 continue; 12000 /* Do the roll-forward only if it's a real copy. */ 12001 if (foreground && 12002 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12003 chgs = 1; 12004 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12005 jnewblk->jn_state |= ATTACHED; 12006 free_jnewblk(jnewblk); 12007 } 12008 } 12009 /* 12010 * If the write did not succeed, we have done all the roll-forward 12011 * operations, but we cannot take the actions that will allow its 12012 * dependencies to be processed. 12013 */ 12014 if ((flags & WRITESUCCEEDED) == 0) { 12015 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12016 newblk, nb_deps); 12017 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12018 worklist, wk_list); 12019 if (foreground) 12020 bdirty(bp); 12021 return (1); 12022 } 12023 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12024 newblk->nb_state |= DEPCOMPLETE; 12025 newblk->nb_state &= ~ONDEPLIST; 12026 newblk->nb_bmsafemap = NULL; 12027 LIST_REMOVE(newblk, nb_deps); 12028 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12029 handle_allocdirect_partdone( 12030 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12031 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12032 handle_allocindir_partdone( 12033 WK_ALLOCINDIR(&newblk->nb_list)); 12034 else if (newblk->nb_list.wk_type != D_NEWBLK) 12035 panic("handle_written_bmsafemap: Unexpected type: %s", 12036 TYPENAME(newblk->nb_list.wk_type)); 12037 } 12038 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12039 inodedep->id_state |= DEPCOMPLETE; 12040 inodedep->id_state &= ~ONDEPLIST; 12041 LIST_REMOVE(inodedep, id_deps); 12042 inodedep->id_bmsafemap = NULL; 12043 } 12044 LIST_REMOVE(bmsafemap, sm_next); 12045 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12046 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12047 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12048 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12049 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12050 LIST_REMOVE(bmsafemap, sm_hash); 12051 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12052 return (0); 12053 } 12054 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12055 if (foreground) 12056 bdirty(bp); 12057 return (1); 12058 } 12059 12060 /* 12061 * Try to free a mkdir dependency. 12062 */ 12063 static void 12064 complete_mkdir(mkdir) 12065 struct mkdir *mkdir; 12066 { 12067 struct diradd *dap; 12068 12069 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12070 return; 12071 LIST_REMOVE(mkdir, md_mkdirs); 12072 dap = mkdir->md_diradd; 12073 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12074 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12075 dap->da_state |= DEPCOMPLETE; 12076 complete_diradd(dap); 12077 } 12078 WORKITEM_FREE(mkdir, D_MKDIR); 12079 } 12080 12081 /* 12082 * Handle the completion of a mkdir dependency. 12083 */ 12084 static void 12085 handle_written_mkdir(mkdir, type) 12086 struct mkdir *mkdir; 12087 int type; 12088 { 12089 12090 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12091 panic("handle_written_mkdir: bad type"); 12092 mkdir->md_state |= COMPLETE; 12093 complete_mkdir(mkdir); 12094 } 12095 12096 static int 12097 free_pagedep(pagedep) 12098 struct pagedep *pagedep; 12099 { 12100 int i; 12101 12102 if (pagedep->pd_state & NEWBLOCK) 12103 return (0); 12104 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12105 return (0); 12106 for (i = 0; i < DAHASHSZ; i++) 12107 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12108 return (0); 12109 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12110 return (0); 12111 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12112 return (0); 12113 if (pagedep->pd_state & ONWORKLIST) 12114 WORKLIST_REMOVE(&pagedep->pd_list); 12115 LIST_REMOVE(pagedep, pd_hash); 12116 WORKITEM_FREE(pagedep, D_PAGEDEP); 12117 12118 return (1); 12119 } 12120 12121 /* 12122 * Called from within softdep_disk_write_complete above. 12123 * A write operation was just completed. Removed inodes can 12124 * now be freed and associated block pointers may be committed. 12125 * Note that this routine is always called from interrupt level 12126 * with further interrupts from this device blocked. 12127 * 12128 * If the write did not succeed, we will do all the roll-forward 12129 * operations, but we will not take the actions that will allow its 12130 * dependencies to be processed. 12131 */ 12132 static int 12133 handle_written_filepage(pagedep, bp, flags) 12134 struct pagedep *pagedep; 12135 struct buf *bp; /* buffer containing the written page */ 12136 int flags; 12137 { 12138 struct dirrem *dirrem; 12139 struct diradd *dap, *nextdap; 12140 struct direct *ep; 12141 int i, chgs; 12142 12143 if ((pagedep->pd_state & IOSTARTED) == 0) 12144 panic("handle_written_filepage: not started"); 12145 pagedep->pd_state &= ~IOSTARTED; 12146 if ((flags & WRITESUCCEEDED) == 0) 12147 goto rollforward; 12148 /* 12149 * Process any directory removals that have been committed. 12150 */ 12151 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12152 LIST_REMOVE(dirrem, dm_next); 12153 dirrem->dm_state |= COMPLETE; 12154 dirrem->dm_dirinum = pagedep->pd_ino; 12155 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12156 ("handle_written_filepage: Journal entries not written.")); 12157 add_to_worklist(&dirrem->dm_list, 0); 12158 } 12159 /* 12160 * Free any directory additions that have been committed. 12161 * If it is a newly allocated block, we have to wait until 12162 * the on-disk directory inode claims the new block. 12163 */ 12164 if ((pagedep->pd_state & NEWBLOCK) == 0) 12165 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12166 free_diradd(dap, NULL); 12167 rollforward: 12168 /* 12169 * Uncommitted directory entries must be restored. 12170 */ 12171 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12172 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12173 dap = nextdap) { 12174 nextdap = LIST_NEXT(dap, da_pdlist); 12175 if (dap->da_state & ATTACHED) 12176 panic("handle_written_filepage: attached"); 12177 ep = (struct direct *) 12178 ((char *)bp->b_data + dap->da_offset); 12179 ep->d_ino = dap->da_newinum; 12180 dap->da_state &= ~UNDONE; 12181 dap->da_state |= ATTACHED; 12182 chgs = 1; 12183 /* 12184 * If the inode referenced by the directory has 12185 * been written out, then the dependency can be 12186 * moved to the pending list. 12187 */ 12188 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12189 LIST_REMOVE(dap, da_pdlist); 12190 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12191 da_pdlist); 12192 } 12193 } 12194 } 12195 /* 12196 * If there were any rollbacks in the directory, then it must be 12197 * marked dirty so that its will eventually get written back in 12198 * its correct form. 12199 */ 12200 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12201 if ((bp->b_flags & B_DELWRI) == 0) 12202 stat_dir_entry++; 12203 bdirty(bp); 12204 return (1); 12205 } 12206 /* 12207 * If we are not waiting for a new directory block to be 12208 * claimed by its inode, then the pagedep will be freed. 12209 * Otherwise it will remain to track any new entries on 12210 * the page in case they are fsync'ed. 12211 */ 12212 free_pagedep(pagedep); 12213 return (0); 12214 } 12215 12216 /* 12217 * Writing back in-core inode structures. 12218 * 12219 * The filesystem only accesses an inode's contents when it occupies an 12220 * "in-core" inode structure. These "in-core" structures are separate from 12221 * the page frames used to cache inode blocks. Only the latter are 12222 * transferred to/from the disk. So, when the updated contents of the 12223 * "in-core" inode structure are copied to the corresponding in-memory inode 12224 * block, the dependencies are also transferred. The following procedure is 12225 * called when copying a dirty "in-core" inode to a cached inode block. 12226 */ 12227 12228 /* 12229 * Called when an inode is loaded from disk. If the effective link count 12230 * differed from the actual link count when it was last flushed, then we 12231 * need to ensure that the correct effective link count is put back. 12232 */ 12233 void 12234 softdep_load_inodeblock(ip) 12235 struct inode *ip; /* the "in_core" copy of the inode */ 12236 { 12237 struct inodedep *inodedep; 12238 struct ufsmount *ump; 12239 12240 ump = ITOUMP(ip); 12241 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12242 ("softdep_load_inodeblock called on non-softdep filesystem")); 12243 /* 12244 * Check for alternate nlink count. 12245 */ 12246 ip->i_effnlink = ip->i_nlink; 12247 ACQUIRE_LOCK(ump); 12248 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12249 FREE_LOCK(ump); 12250 return; 12251 } 12252 ip->i_effnlink -= inodedep->id_nlinkdelta; 12253 FREE_LOCK(ump); 12254 } 12255 12256 /* 12257 * This routine is called just before the "in-core" inode 12258 * information is to be copied to the in-memory inode block. 12259 * Recall that an inode block contains several inodes. If 12260 * the force flag is set, then the dependencies will be 12261 * cleared so that the update can always be made. Note that 12262 * the buffer is locked when this routine is called, so we 12263 * will never be in the middle of writing the inode block 12264 * to disk. 12265 */ 12266 void 12267 softdep_update_inodeblock(ip, bp, waitfor) 12268 struct inode *ip; /* the "in_core" copy of the inode */ 12269 struct buf *bp; /* the buffer containing the inode block */ 12270 int waitfor; /* nonzero => update must be allowed */ 12271 { 12272 struct inodedep *inodedep; 12273 struct inoref *inoref; 12274 struct ufsmount *ump; 12275 struct worklist *wk; 12276 struct mount *mp; 12277 struct buf *ibp; 12278 struct fs *fs; 12279 int error; 12280 12281 ump = ITOUMP(ip); 12282 mp = UFSTOVFS(ump); 12283 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12284 ("softdep_update_inodeblock called on non-softdep filesystem")); 12285 fs = ump->um_fs; 12286 /* 12287 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12288 * does not have access to the in-core ip so must write directly into 12289 * the inode block buffer when setting freelink. 12290 */ 12291 if (fs->fs_magic == FS_UFS1_MAGIC) 12292 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12293 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12294 else 12295 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12296 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12297 /* 12298 * If the effective link count is not equal to the actual link 12299 * count, then we must track the difference in an inodedep while 12300 * the inode is (potentially) tossed out of the cache. Otherwise, 12301 * if there is no existing inodedep, then there are no dependencies 12302 * to track. 12303 */ 12304 ACQUIRE_LOCK(ump); 12305 again: 12306 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12307 FREE_LOCK(ump); 12308 if (ip->i_effnlink != ip->i_nlink) 12309 panic("softdep_update_inodeblock: bad link count"); 12310 return; 12311 } 12312 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12313 panic("softdep_update_inodeblock: bad delta"); 12314 /* 12315 * If we're flushing all dependencies we must also move any waiting 12316 * for journal writes onto the bufwait list prior to I/O. 12317 */ 12318 if (waitfor) { 12319 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12320 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12321 == DEPCOMPLETE) { 12322 jwait(&inoref->if_list, MNT_WAIT); 12323 goto again; 12324 } 12325 } 12326 } 12327 /* 12328 * Changes have been initiated. Anything depending on these 12329 * changes cannot occur until this inode has been written. 12330 */ 12331 inodedep->id_state &= ~COMPLETE; 12332 if ((inodedep->id_state & ONWORKLIST) == 0) 12333 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12334 /* 12335 * Any new dependencies associated with the incore inode must 12336 * now be moved to the list associated with the buffer holding 12337 * the in-memory copy of the inode. Once merged process any 12338 * allocdirects that are completed by the merger. 12339 */ 12340 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12341 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12342 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12343 NULL); 12344 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12345 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12346 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12347 NULL); 12348 /* 12349 * Now that the inode has been pushed into the buffer, the 12350 * operations dependent on the inode being written to disk 12351 * can be moved to the id_bufwait so that they will be 12352 * processed when the buffer I/O completes. 12353 */ 12354 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12355 WORKLIST_REMOVE(wk); 12356 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12357 } 12358 /* 12359 * Newly allocated inodes cannot be written until the bitmap 12360 * that allocates them have been written (indicated by 12361 * DEPCOMPLETE being set in id_state). If we are doing a 12362 * forced sync (e.g., an fsync on a file), we force the bitmap 12363 * to be written so that the update can be done. 12364 */ 12365 if (waitfor == 0) { 12366 FREE_LOCK(ump); 12367 return; 12368 } 12369 retry: 12370 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12371 FREE_LOCK(ump); 12372 return; 12373 } 12374 ibp = inodedep->id_bmsafemap->sm_buf; 12375 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12376 if (ibp == NULL) { 12377 /* 12378 * If ibp came back as NULL, the dependency could have been 12379 * freed while we slept. Look it up again, and check to see 12380 * that it has completed. 12381 */ 12382 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12383 goto retry; 12384 FREE_LOCK(ump); 12385 return; 12386 } 12387 FREE_LOCK(ump); 12388 if ((error = bwrite(ibp)) != 0) 12389 softdep_error("softdep_update_inodeblock: bwrite", error); 12390 } 12391 12392 /* 12393 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12394 * old inode dependency list (such as id_inoupdt). 12395 */ 12396 static void 12397 merge_inode_lists(newlisthead, oldlisthead) 12398 struct allocdirectlst *newlisthead; 12399 struct allocdirectlst *oldlisthead; 12400 { 12401 struct allocdirect *listadp, *newadp; 12402 12403 newadp = TAILQ_FIRST(newlisthead); 12404 if (newadp != NULL) 12405 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12406 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12407 if (listadp->ad_offset < newadp->ad_offset) { 12408 listadp = TAILQ_NEXT(listadp, ad_next); 12409 continue; 12410 } 12411 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12412 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12413 if (listadp->ad_offset == newadp->ad_offset) { 12414 allocdirect_merge(oldlisthead, newadp, 12415 listadp); 12416 listadp = newadp; 12417 } 12418 newadp = TAILQ_FIRST(newlisthead); 12419 } 12420 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12421 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12422 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12423 } 12424 } 12425 12426 /* 12427 * If we are doing an fsync, then we must ensure that any directory 12428 * entries for the inode have been written after the inode gets to disk. 12429 */ 12430 int 12431 softdep_fsync(vp) 12432 struct vnode *vp; /* the "in_core" copy of the inode */ 12433 { 12434 struct inodedep *inodedep; 12435 struct pagedep *pagedep; 12436 struct inoref *inoref; 12437 struct ufsmount *ump; 12438 struct worklist *wk; 12439 struct diradd *dap; 12440 struct mount *mp; 12441 struct vnode *pvp; 12442 struct inode *ip; 12443 struct buf *bp; 12444 struct fs *fs; 12445 struct thread *td = curthread; 12446 int error, flushparent, pagedep_new_block; 12447 ino_t parentino; 12448 ufs_lbn_t lbn; 12449 12450 ip = VTOI(vp); 12451 mp = vp->v_mount; 12452 ump = VFSTOUFS(mp); 12453 fs = ump->um_fs; 12454 if (MOUNTEDSOFTDEP(mp) == 0) 12455 return (0); 12456 ACQUIRE_LOCK(ump); 12457 restart: 12458 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12459 FREE_LOCK(ump); 12460 return (0); 12461 } 12462 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12463 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12464 == DEPCOMPLETE) { 12465 jwait(&inoref->if_list, MNT_WAIT); 12466 goto restart; 12467 } 12468 } 12469 if (!LIST_EMPTY(&inodedep->id_inowait) || 12470 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12471 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12472 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12473 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12474 panic("softdep_fsync: pending ops %p", inodedep); 12475 for (error = 0, flushparent = 0; ; ) { 12476 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12477 break; 12478 if (wk->wk_type != D_DIRADD) 12479 panic("softdep_fsync: Unexpected type %s", 12480 TYPENAME(wk->wk_type)); 12481 dap = WK_DIRADD(wk); 12482 /* 12483 * Flush our parent if this directory entry has a MKDIR_PARENT 12484 * dependency or is contained in a newly allocated block. 12485 */ 12486 if (dap->da_state & DIRCHG) 12487 pagedep = dap->da_previous->dm_pagedep; 12488 else 12489 pagedep = dap->da_pagedep; 12490 parentino = pagedep->pd_ino; 12491 lbn = pagedep->pd_lbn; 12492 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12493 panic("softdep_fsync: dirty"); 12494 if ((dap->da_state & MKDIR_PARENT) || 12495 (pagedep->pd_state & NEWBLOCK)) 12496 flushparent = 1; 12497 else 12498 flushparent = 0; 12499 /* 12500 * If we are being fsync'ed as part of vgone'ing this vnode, 12501 * then we will not be able to release and recover the 12502 * vnode below, so we just have to give up on writing its 12503 * directory entry out. It will eventually be written, just 12504 * not now, but then the user was not asking to have it 12505 * written, so we are not breaking any promises. 12506 */ 12507 if (vp->v_iflag & VI_DOOMED) 12508 break; 12509 /* 12510 * We prevent deadlock by always fetching inodes from the 12511 * root, moving down the directory tree. Thus, when fetching 12512 * our parent directory, we first try to get the lock. If 12513 * that fails, we must unlock ourselves before requesting 12514 * the lock on our parent. See the comment in ufs_lookup 12515 * for details on possible races. 12516 */ 12517 FREE_LOCK(ump); 12518 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12519 FFSV_FORCEINSMQ)) { 12520 /* 12521 * Unmount cannot proceed after unlock because 12522 * caller must have called vn_start_write(). 12523 */ 12524 VOP_UNLOCK(vp, 0); 12525 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12526 &pvp, FFSV_FORCEINSMQ); 12527 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12528 if (vp->v_iflag & VI_DOOMED) { 12529 if (error == 0) 12530 vput(pvp); 12531 error = ENOENT; 12532 } 12533 if (error != 0) 12534 return (error); 12535 } 12536 /* 12537 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12538 * that are contained in direct blocks will be resolved by 12539 * doing a ffs_update. Pagedeps contained in indirect blocks 12540 * may require a complete sync'ing of the directory. So, we 12541 * try the cheap and fast ffs_update first, and if that fails, 12542 * then we do the slower ffs_syncvnode of the directory. 12543 */ 12544 if (flushparent) { 12545 int locked; 12546 12547 if ((error = ffs_update(pvp, 1)) != 0) { 12548 vput(pvp); 12549 return (error); 12550 } 12551 ACQUIRE_LOCK(ump); 12552 locked = 1; 12553 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12554 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12555 if (wk->wk_type != D_DIRADD) 12556 panic("softdep_fsync: Unexpected type %s", 12557 TYPENAME(wk->wk_type)); 12558 dap = WK_DIRADD(wk); 12559 if (dap->da_state & DIRCHG) 12560 pagedep = dap->da_previous->dm_pagedep; 12561 else 12562 pagedep = dap->da_pagedep; 12563 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12564 FREE_LOCK(ump); 12565 locked = 0; 12566 if (pagedep_new_block && (error = 12567 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12568 vput(pvp); 12569 return (error); 12570 } 12571 } 12572 } 12573 if (locked) 12574 FREE_LOCK(ump); 12575 } 12576 /* 12577 * Flush directory page containing the inode's name. 12578 */ 12579 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12580 &bp); 12581 if (error == 0) 12582 error = bwrite(bp); 12583 else 12584 brelse(bp); 12585 vput(pvp); 12586 if (error != 0) 12587 return (error); 12588 ACQUIRE_LOCK(ump); 12589 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12590 break; 12591 } 12592 FREE_LOCK(ump); 12593 return (0); 12594 } 12595 12596 /* 12597 * Flush all the dirty bitmaps associated with the block device 12598 * before flushing the rest of the dirty blocks so as to reduce 12599 * the number of dependencies that will have to be rolled back. 12600 * 12601 * XXX Unused? 12602 */ 12603 void 12604 softdep_fsync_mountdev(vp) 12605 struct vnode *vp; 12606 { 12607 struct buf *bp, *nbp; 12608 struct worklist *wk; 12609 struct bufobj *bo; 12610 12611 if (!vn_isdisk(vp, NULL)) 12612 panic("softdep_fsync_mountdev: vnode not a disk"); 12613 bo = &vp->v_bufobj; 12614 restart: 12615 BO_LOCK(bo); 12616 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12617 /* 12618 * If it is already scheduled, skip to the next buffer. 12619 */ 12620 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12621 continue; 12622 12623 if ((bp->b_flags & B_DELWRI) == 0) 12624 panic("softdep_fsync_mountdev: not dirty"); 12625 /* 12626 * We are only interested in bitmaps with outstanding 12627 * dependencies. 12628 */ 12629 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12630 wk->wk_type != D_BMSAFEMAP || 12631 (bp->b_vflags & BV_BKGRDINPROG)) { 12632 BUF_UNLOCK(bp); 12633 continue; 12634 } 12635 BO_UNLOCK(bo); 12636 bremfree(bp); 12637 (void) bawrite(bp); 12638 goto restart; 12639 } 12640 drain_output(vp); 12641 BO_UNLOCK(bo); 12642 } 12643 12644 /* 12645 * Sync all cylinder groups that were dirty at the time this function is 12646 * called. Newly dirtied cgs will be inserted before the sentinel. This 12647 * is used to flush freedep activity that may be holding up writes to a 12648 * indirect block. 12649 */ 12650 static int 12651 sync_cgs(mp, waitfor) 12652 struct mount *mp; 12653 int waitfor; 12654 { 12655 struct bmsafemap *bmsafemap; 12656 struct bmsafemap *sentinel; 12657 struct ufsmount *ump; 12658 struct buf *bp; 12659 int error; 12660 12661 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12662 sentinel->sm_cg = -1; 12663 ump = VFSTOUFS(mp); 12664 error = 0; 12665 ACQUIRE_LOCK(ump); 12666 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12667 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12668 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12669 /* Skip sentinels and cgs with no work to release. */ 12670 if (bmsafemap->sm_cg == -1 || 12671 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12672 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12673 LIST_REMOVE(sentinel, sm_next); 12674 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12675 continue; 12676 } 12677 /* 12678 * If we don't get the lock and we're waiting try again, if 12679 * not move on to the next buf and try to sync it. 12680 */ 12681 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12682 if (bp == NULL && waitfor == MNT_WAIT) 12683 continue; 12684 LIST_REMOVE(sentinel, sm_next); 12685 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12686 if (bp == NULL) 12687 continue; 12688 FREE_LOCK(ump); 12689 if (waitfor == MNT_NOWAIT) 12690 bawrite(bp); 12691 else 12692 error = bwrite(bp); 12693 ACQUIRE_LOCK(ump); 12694 if (error) 12695 break; 12696 } 12697 LIST_REMOVE(sentinel, sm_next); 12698 FREE_LOCK(ump); 12699 free(sentinel, M_BMSAFEMAP); 12700 return (error); 12701 } 12702 12703 /* 12704 * This routine is called when we are trying to synchronously flush a 12705 * file. This routine must eliminate any filesystem metadata dependencies 12706 * so that the syncing routine can succeed. 12707 */ 12708 int 12709 softdep_sync_metadata(struct vnode *vp) 12710 { 12711 struct inode *ip; 12712 int error; 12713 12714 ip = VTOI(vp); 12715 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12716 ("softdep_sync_metadata called on non-softdep filesystem")); 12717 /* 12718 * Ensure that any direct block dependencies have been cleared, 12719 * truncations are started, and inode references are journaled. 12720 */ 12721 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12722 /* 12723 * Write all journal records to prevent rollbacks on devvp. 12724 */ 12725 if (vp->v_type == VCHR) 12726 softdep_flushjournal(vp->v_mount); 12727 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12728 /* 12729 * Ensure that all truncates are written so we won't find deps on 12730 * indirect blocks. 12731 */ 12732 process_truncates(vp); 12733 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12734 12735 return (error); 12736 } 12737 12738 /* 12739 * This routine is called when we are attempting to sync a buf with 12740 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12741 * other IO it can but returns EBUSY if the buffer is not yet able to 12742 * be written. Dependencies which will not cause rollbacks will always 12743 * return 0. 12744 */ 12745 int 12746 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12747 { 12748 struct indirdep *indirdep; 12749 struct pagedep *pagedep; 12750 struct allocindir *aip; 12751 struct newblk *newblk; 12752 struct ufsmount *ump; 12753 struct buf *nbp; 12754 struct worklist *wk; 12755 int i, error; 12756 12757 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12758 ("softdep_sync_buf called on non-softdep filesystem")); 12759 /* 12760 * For VCHR we just don't want to force flush any dependencies that 12761 * will cause rollbacks. 12762 */ 12763 if (vp->v_type == VCHR) { 12764 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12765 return (EBUSY); 12766 return (0); 12767 } 12768 ump = VFSTOUFS(vp->v_mount); 12769 ACQUIRE_LOCK(ump); 12770 /* 12771 * As we hold the buffer locked, none of its dependencies 12772 * will disappear. 12773 */ 12774 error = 0; 12775 top: 12776 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12777 switch (wk->wk_type) { 12778 12779 case D_ALLOCDIRECT: 12780 case D_ALLOCINDIR: 12781 newblk = WK_NEWBLK(wk); 12782 if (newblk->nb_jnewblk != NULL) { 12783 if (waitfor == MNT_NOWAIT) { 12784 error = EBUSY; 12785 goto out_unlock; 12786 } 12787 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12788 goto top; 12789 } 12790 if (newblk->nb_state & DEPCOMPLETE || 12791 waitfor == MNT_NOWAIT) 12792 continue; 12793 nbp = newblk->nb_bmsafemap->sm_buf; 12794 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12795 if (nbp == NULL) 12796 goto top; 12797 FREE_LOCK(ump); 12798 if ((error = bwrite(nbp)) != 0) 12799 goto out; 12800 ACQUIRE_LOCK(ump); 12801 continue; 12802 12803 case D_INDIRDEP: 12804 indirdep = WK_INDIRDEP(wk); 12805 if (waitfor == MNT_NOWAIT) { 12806 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12807 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12808 error = EBUSY; 12809 goto out_unlock; 12810 } 12811 } 12812 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12813 panic("softdep_sync_buf: truncation pending."); 12814 restart: 12815 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12816 newblk = (struct newblk *)aip; 12817 if (newblk->nb_jnewblk != NULL) { 12818 jwait(&newblk->nb_jnewblk->jn_list, 12819 waitfor); 12820 goto restart; 12821 } 12822 if (newblk->nb_state & DEPCOMPLETE) 12823 continue; 12824 nbp = newblk->nb_bmsafemap->sm_buf; 12825 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12826 if (nbp == NULL) 12827 goto restart; 12828 FREE_LOCK(ump); 12829 if ((error = bwrite(nbp)) != 0) 12830 goto out; 12831 ACQUIRE_LOCK(ump); 12832 goto restart; 12833 } 12834 continue; 12835 12836 case D_PAGEDEP: 12837 /* 12838 * Only flush directory entries in synchronous passes. 12839 */ 12840 if (waitfor != MNT_WAIT) { 12841 error = EBUSY; 12842 goto out_unlock; 12843 } 12844 /* 12845 * While syncing snapshots, we must allow recursive 12846 * lookups. 12847 */ 12848 BUF_AREC(bp); 12849 /* 12850 * We are trying to sync a directory that may 12851 * have dependencies on both its own metadata 12852 * and/or dependencies on the inodes of any 12853 * recently allocated files. We walk its diradd 12854 * lists pushing out the associated inode. 12855 */ 12856 pagedep = WK_PAGEDEP(wk); 12857 for (i = 0; i < DAHASHSZ; i++) { 12858 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12859 continue; 12860 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12861 &pagedep->pd_diraddhd[i]))) { 12862 BUF_NOREC(bp); 12863 goto out_unlock; 12864 } 12865 } 12866 BUF_NOREC(bp); 12867 continue; 12868 12869 case D_FREEWORK: 12870 case D_FREEDEP: 12871 case D_JSEGDEP: 12872 case D_JNEWBLK: 12873 continue; 12874 12875 default: 12876 panic("softdep_sync_buf: Unknown type %s", 12877 TYPENAME(wk->wk_type)); 12878 /* NOTREACHED */ 12879 } 12880 } 12881 out_unlock: 12882 FREE_LOCK(ump); 12883 out: 12884 return (error); 12885 } 12886 12887 /* 12888 * Flush the dependencies associated with an inodedep. 12889 */ 12890 static int 12891 flush_inodedep_deps(vp, mp, ino) 12892 struct vnode *vp; 12893 struct mount *mp; 12894 ino_t ino; 12895 { 12896 struct inodedep *inodedep; 12897 struct inoref *inoref; 12898 struct ufsmount *ump; 12899 int error, waitfor; 12900 12901 /* 12902 * This work is done in two passes. The first pass grabs most 12903 * of the buffers and begins asynchronously writing them. The 12904 * only way to wait for these asynchronous writes is to sleep 12905 * on the filesystem vnode which may stay busy for a long time 12906 * if the filesystem is active. So, instead, we make a second 12907 * pass over the dependencies blocking on each write. In the 12908 * usual case we will be blocking against a write that we 12909 * initiated, so when it is done the dependency will have been 12910 * resolved. Thus the second pass is expected to end quickly. 12911 * We give a brief window at the top of the loop to allow 12912 * any pending I/O to complete. 12913 */ 12914 ump = VFSTOUFS(mp); 12915 LOCK_OWNED(ump); 12916 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12917 if (error) 12918 return (error); 12919 FREE_LOCK(ump); 12920 ACQUIRE_LOCK(ump); 12921 restart: 12922 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12923 return (0); 12924 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12925 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12926 == DEPCOMPLETE) { 12927 jwait(&inoref->if_list, MNT_WAIT); 12928 goto restart; 12929 } 12930 } 12931 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12932 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12933 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12934 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12935 continue; 12936 /* 12937 * If pass2, we are done, otherwise do pass 2. 12938 */ 12939 if (waitfor == MNT_WAIT) 12940 break; 12941 waitfor = MNT_WAIT; 12942 } 12943 /* 12944 * Try freeing inodedep in case all dependencies have been removed. 12945 */ 12946 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12947 (void) free_inodedep(inodedep); 12948 return (0); 12949 } 12950 12951 /* 12952 * Flush an inode dependency list. 12953 */ 12954 static int 12955 flush_deplist(listhead, waitfor, errorp) 12956 struct allocdirectlst *listhead; 12957 int waitfor; 12958 int *errorp; 12959 { 12960 struct allocdirect *adp; 12961 struct newblk *newblk; 12962 struct ufsmount *ump; 12963 struct buf *bp; 12964 12965 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12966 return (0); 12967 ump = VFSTOUFS(adp->ad_list.wk_mp); 12968 LOCK_OWNED(ump); 12969 TAILQ_FOREACH(adp, listhead, ad_next) { 12970 newblk = (struct newblk *)adp; 12971 if (newblk->nb_jnewblk != NULL) { 12972 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12973 return (1); 12974 } 12975 if (newblk->nb_state & DEPCOMPLETE) 12976 continue; 12977 bp = newblk->nb_bmsafemap->sm_buf; 12978 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12979 if (bp == NULL) { 12980 if (waitfor == MNT_NOWAIT) 12981 continue; 12982 return (1); 12983 } 12984 FREE_LOCK(ump); 12985 if (waitfor == MNT_NOWAIT) 12986 bawrite(bp); 12987 else 12988 *errorp = bwrite(bp); 12989 ACQUIRE_LOCK(ump); 12990 return (1); 12991 } 12992 return (0); 12993 } 12994 12995 /* 12996 * Flush dependencies associated with an allocdirect block. 12997 */ 12998 static int 12999 flush_newblk_dep(vp, mp, lbn) 13000 struct vnode *vp; 13001 struct mount *mp; 13002 ufs_lbn_t lbn; 13003 { 13004 struct newblk *newblk; 13005 struct ufsmount *ump; 13006 struct bufobj *bo; 13007 struct inode *ip; 13008 struct buf *bp; 13009 ufs2_daddr_t blkno; 13010 int error; 13011 13012 error = 0; 13013 bo = &vp->v_bufobj; 13014 ip = VTOI(vp); 13015 blkno = DIP(ip, i_db[lbn]); 13016 if (blkno == 0) 13017 panic("flush_newblk_dep: Missing block"); 13018 ump = VFSTOUFS(mp); 13019 ACQUIRE_LOCK(ump); 13020 /* 13021 * Loop until all dependencies related to this block are satisfied. 13022 * We must be careful to restart after each sleep in case a write 13023 * completes some part of this process for us. 13024 */ 13025 for (;;) { 13026 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13027 FREE_LOCK(ump); 13028 break; 13029 } 13030 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13031 panic("flush_newblk_dep: Bad newblk %p", newblk); 13032 /* 13033 * Flush the journal. 13034 */ 13035 if (newblk->nb_jnewblk != NULL) { 13036 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13037 continue; 13038 } 13039 /* 13040 * Write the bitmap dependency. 13041 */ 13042 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13043 bp = newblk->nb_bmsafemap->sm_buf; 13044 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13045 if (bp == NULL) 13046 continue; 13047 FREE_LOCK(ump); 13048 error = bwrite(bp); 13049 if (error) 13050 break; 13051 ACQUIRE_LOCK(ump); 13052 continue; 13053 } 13054 /* 13055 * Write the buffer. 13056 */ 13057 FREE_LOCK(ump); 13058 BO_LOCK(bo); 13059 bp = gbincore(bo, lbn); 13060 if (bp != NULL) { 13061 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13062 LK_INTERLOCK, BO_LOCKPTR(bo)); 13063 if (error == ENOLCK) { 13064 ACQUIRE_LOCK(ump); 13065 error = 0; 13066 continue; /* Slept, retry */ 13067 } 13068 if (error != 0) 13069 break; /* Failed */ 13070 if (bp->b_flags & B_DELWRI) { 13071 bremfree(bp); 13072 error = bwrite(bp); 13073 if (error) 13074 break; 13075 } else 13076 BUF_UNLOCK(bp); 13077 } else 13078 BO_UNLOCK(bo); 13079 /* 13080 * We have to wait for the direct pointers to 13081 * point at the newdirblk before the dependency 13082 * will go away. 13083 */ 13084 error = ffs_update(vp, 1); 13085 if (error) 13086 break; 13087 ACQUIRE_LOCK(ump); 13088 } 13089 return (error); 13090 } 13091 13092 /* 13093 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13094 */ 13095 static int 13096 flush_pagedep_deps(pvp, mp, diraddhdp) 13097 struct vnode *pvp; 13098 struct mount *mp; 13099 struct diraddhd *diraddhdp; 13100 { 13101 struct inodedep *inodedep; 13102 struct inoref *inoref; 13103 struct ufsmount *ump; 13104 struct diradd *dap; 13105 struct vnode *vp; 13106 int error = 0; 13107 struct buf *bp; 13108 ino_t inum; 13109 struct diraddhd unfinished; 13110 13111 LIST_INIT(&unfinished); 13112 ump = VFSTOUFS(mp); 13113 LOCK_OWNED(ump); 13114 restart: 13115 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13116 /* 13117 * Flush ourselves if this directory entry 13118 * has a MKDIR_PARENT dependency. 13119 */ 13120 if (dap->da_state & MKDIR_PARENT) { 13121 FREE_LOCK(ump); 13122 if ((error = ffs_update(pvp, 1)) != 0) 13123 break; 13124 ACQUIRE_LOCK(ump); 13125 /* 13126 * If that cleared dependencies, go on to next. 13127 */ 13128 if (dap != LIST_FIRST(diraddhdp)) 13129 continue; 13130 /* 13131 * All MKDIR_PARENT dependencies and all the 13132 * NEWBLOCK pagedeps that are contained in direct 13133 * blocks were resolved by doing above ffs_update. 13134 * Pagedeps contained in indirect blocks may 13135 * require a complete sync'ing of the directory. 13136 * We are in the midst of doing a complete sync, 13137 * so if they are not resolved in this pass we 13138 * defer them for now as they will be sync'ed by 13139 * our caller shortly. 13140 */ 13141 LIST_REMOVE(dap, da_pdlist); 13142 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13143 continue; 13144 } 13145 /* 13146 * A newly allocated directory must have its "." and 13147 * ".." entries written out before its name can be 13148 * committed in its parent. 13149 */ 13150 inum = dap->da_newinum; 13151 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13152 panic("flush_pagedep_deps: lost inode1"); 13153 /* 13154 * Wait for any pending journal adds to complete so we don't 13155 * cause rollbacks while syncing. 13156 */ 13157 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13158 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13159 == DEPCOMPLETE) { 13160 jwait(&inoref->if_list, MNT_WAIT); 13161 goto restart; 13162 } 13163 } 13164 if (dap->da_state & MKDIR_BODY) { 13165 FREE_LOCK(ump); 13166 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13167 FFSV_FORCEINSMQ))) 13168 break; 13169 error = flush_newblk_dep(vp, mp, 0); 13170 /* 13171 * If we still have the dependency we might need to 13172 * update the vnode to sync the new link count to 13173 * disk. 13174 */ 13175 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13176 error = ffs_update(vp, 1); 13177 vput(vp); 13178 if (error != 0) 13179 break; 13180 ACQUIRE_LOCK(ump); 13181 /* 13182 * If that cleared dependencies, go on to next. 13183 */ 13184 if (dap != LIST_FIRST(diraddhdp)) 13185 continue; 13186 if (dap->da_state & MKDIR_BODY) { 13187 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13188 &inodedep); 13189 panic("flush_pagedep_deps: MKDIR_BODY " 13190 "inodedep %p dap %p vp %p", 13191 inodedep, dap, vp); 13192 } 13193 } 13194 /* 13195 * Flush the inode on which the directory entry depends. 13196 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13197 * the only remaining dependency is that the updated inode 13198 * count must get pushed to disk. The inode has already 13199 * been pushed into its inode buffer (via VOP_UPDATE) at 13200 * the time of the reference count change. So we need only 13201 * locate that buffer, ensure that there will be no rollback 13202 * caused by a bitmap dependency, then write the inode buffer. 13203 */ 13204 retry: 13205 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13206 panic("flush_pagedep_deps: lost inode"); 13207 /* 13208 * If the inode still has bitmap dependencies, 13209 * push them to disk. 13210 */ 13211 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13212 bp = inodedep->id_bmsafemap->sm_buf; 13213 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13214 if (bp == NULL) 13215 goto retry; 13216 FREE_LOCK(ump); 13217 if ((error = bwrite(bp)) != 0) 13218 break; 13219 ACQUIRE_LOCK(ump); 13220 if (dap != LIST_FIRST(diraddhdp)) 13221 continue; 13222 } 13223 /* 13224 * If the inode is still sitting in a buffer waiting 13225 * to be written or waiting for the link count to be 13226 * adjusted update it here to flush it to disk. 13227 */ 13228 if (dap == LIST_FIRST(diraddhdp)) { 13229 FREE_LOCK(ump); 13230 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13231 FFSV_FORCEINSMQ))) 13232 break; 13233 error = ffs_update(vp, 1); 13234 vput(vp); 13235 if (error) 13236 break; 13237 ACQUIRE_LOCK(ump); 13238 } 13239 /* 13240 * If we have failed to get rid of all the dependencies 13241 * then something is seriously wrong. 13242 */ 13243 if (dap == LIST_FIRST(diraddhdp)) { 13244 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13245 panic("flush_pagedep_deps: failed to flush " 13246 "inodedep %p ino %ju dap %p", 13247 inodedep, (uintmax_t)inum, dap); 13248 } 13249 } 13250 if (error) 13251 ACQUIRE_LOCK(ump); 13252 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13253 LIST_REMOVE(dap, da_pdlist); 13254 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13255 } 13256 return (error); 13257 } 13258 13259 /* 13260 * A large burst of file addition or deletion activity can drive the 13261 * memory load excessively high. First attempt to slow things down 13262 * using the techniques below. If that fails, this routine requests 13263 * the offending operations to fall back to running synchronously 13264 * until the memory load returns to a reasonable level. 13265 */ 13266 int 13267 softdep_slowdown(vp) 13268 struct vnode *vp; 13269 { 13270 struct ufsmount *ump; 13271 int jlow; 13272 int max_softdeps_hard; 13273 13274 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13275 ("softdep_slowdown called on non-softdep filesystem")); 13276 ump = VFSTOUFS(vp->v_mount); 13277 ACQUIRE_LOCK(ump); 13278 jlow = 0; 13279 /* 13280 * Check for journal space if needed. 13281 */ 13282 if (DOINGSUJ(vp)) { 13283 if (journal_space(ump, 0) == 0) 13284 jlow = 1; 13285 } 13286 /* 13287 * If the system is under its limits and our filesystem is 13288 * not responsible for more than our share of the usage and 13289 * we are not low on journal space, then no need to slow down. 13290 */ 13291 max_softdeps_hard = max_softdeps * 11 / 10; 13292 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13293 dep_current[D_INODEDEP] < max_softdeps_hard && 13294 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13295 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13296 ump->softdep_curdeps[D_DIRREM] < 13297 (max_softdeps_hard / 2) / stat_flush_threads && 13298 ump->softdep_curdeps[D_INODEDEP] < 13299 max_softdeps_hard / stat_flush_threads && 13300 ump->softdep_curdeps[D_INDIRDEP] < 13301 (max_softdeps_hard / 1000) / stat_flush_threads && 13302 ump->softdep_curdeps[D_FREEBLKS] < 13303 max_softdeps_hard / stat_flush_threads) { 13304 FREE_LOCK(ump); 13305 return (0); 13306 } 13307 /* 13308 * If the journal is low or our filesystem is over its limit 13309 * then speedup the cleanup. 13310 */ 13311 if (ump->softdep_curdeps[D_INDIRDEP] < 13312 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13313 softdep_speedup(ump); 13314 stat_sync_limit_hit += 1; 13315 FREE_LOCK(ump); 13316 /* 13317 * We only slow down the rate at which new dependencies are 13318 * generated if we are not using journaling. With journaling, 13319 * the cleanup should always be sufficient to keep things 13320 * under control. 13321 */ 13322 if (DOINGSUJ(vp)) 13323 return (0); 13324 return (1); 13325 } 13326 13327 /* 13328 * Called by the allocation routines when they are about to fail 13329 * in the hope that we can free up the requested resource (inodes 13330 * or disk space). 13331 * 13332 * First check to see if the work list has anything on it. If it has, 13333 * clean up entries until we successfully free the requested resource. 13334 * Because this process holds inodes locked, we cannot handle any remove 13335 * requests that might block on a locked inode as that could lead to 13336 * deadlock. If the worklist yields none of the requested resource, 13337 * start syncing out vnodes to free up the needed space. 13338 */ 13339 int 13340 softdep_request_cleanup(fs, vp, cred, resource) 13341 struct fs *fs; 13342 struct vnode *vp; 13343 struct ucred *cred; 13344 int resource; 13345 { 13346 struct ufsmount *ump; 13347 struct mount *mp; 13348 long starttime; 13349 ufs2_daddr_t needed; 13350 int error, failed_vnode; 13351 13352 /* 13353 * If we are being called because of a process doing a 13354 * copy-on-write, then it is not safe to process any 13355 * worklist items as we will recurse into the copyonwrite 13356 * routine. This will result in an incoherent snapshot. 13357 * If the vnode that we hold is a snapshot, we must avoid 13358 * handling other resources that could cause deadlock. 13359 */ 13360 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13361 return (0); 13362 13363 if (resource == FLUSH_BLOCKS_WAIT) 13364 stat_cleanup_blkrequests += 1; 13365 else 13366 stat_cleanup_inorequests += 1; 13367 13368 mp = vp->v_mount; 13369 ump = VFSTOUFS(mp); 13370 mtx_assert(UFS_MTX(ump), MA_OWNED); 13371 UFS_UNLOCK(ump); 13372 error = ffs_update(vp, 1); 13373 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13374 UFS_LOCK(ump); 13375 return (0); 13376 } 13377 /* 13378 * If we are in need of resources, start by cleaning up 13379 * any block removals associated with our inode. 13380 */ 13381 ACQUIRE_LOCK(ump); 13382 process_removes(vp); 13383 process_truncates(vp); 13384 FREE_LOCK(ump); 13385 /* 13386 * Now clean up at least as many resources as we will need. 13387 * 13388 * When requested to clean up inodes, the number that are needed 13389 * is set by the number of simultaneous writers (mnt_writeopcount) 13390 * plus a bit of slop (2) in case some more writers show up while 13391 * we are cleaning. 13392 * 13393 * When requested to free up space, the amount of space that 13394 * we need is enough blocks to allocate a full-sized segment 13395 * (fs_contigsumsize). The number of such segments that will 13396 * be needed is set by the number of simultaneous writers 13397 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13398 * writers show up while we are cleaning. 13399 * 13400 * Additionally, if we are unpriviledged and allocating space, 13401 * we need to ensure that we clean up enough blocks to get the 13402 * needed number of blocks over the threshold of the minimum 13403 * number of blocks required to be kept free by the filesystem 13404 * (fs_minfree). 13405 */ 13406 if (resource == FLUSH_INODES_WAIT) { 13407 needed = vfs_mount_fetch_counter(vp->v_mount, 13408 MNT_COUNT_WRITEOPCOUNT) + 2; 13409 } else if (resource == FLUSH_BLOCKS_WAIT) { 13410 needed = (vfs_mount_fetch_counter(vp->v_mount, 13411 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13412 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13413 needed += fragstoblks(fs, 13414 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13415 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13416 } else { 13417 UFS_LOCK(ump); 13418 printf("softdep_request_cleanup: Unknown resource type %d\n", 13419 resource); 13420 return (0); 13421 } 13422 starttime = time_second; 13423 retry: 13424 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13425 fs->fs_cstotal.cs_nbfree <= needed) || 13426 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13427 fs->fs_cstotal.cs_nifree <= needed)) { 13428 ACQUIRE_LOCK(ump); 13429 if (ump->softdep_on_worklist > 0 && 13430 process_worklist_item(UFSTOVFS(ump), 13431 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13432 stat_worklist_push += 1; 13433 FREE_LOCK(ump); 13434 } 13435 /* 13436 * If we still need resources and there are no more worklist 13437 * entries to process to obtain them, we have to start flushing 13438 * the dirty vnodes to force the release of additional requests 13439 * to the worklist that we can then process to reap addition 13440 * resources. We walk the vnodes associated with the mount point 13441 * until we get the needed worklist requests that we can reap. 13442 * 13443 * If there are several threads all needing to clean the same 13444 * mount point, only one is allowed to walk the mount list. 13445 * When several threads all try to walk the same mount list, 13446 * they end up competing with each other and often end up in 13447 * livelock. This approach ensures that forward progress is 13448 * made at the cost of occational ENOSPC errors being returned 13449 * that might otherwise have been avoided. 13450 */ 13451 error = 1; 13452 if ((resource == FLUSH_BLOCKS_WAIT && 13453 fs->fs_cstotal.cs_nbfree <= needed) || 13454 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13455 fs->fs_cstotal.cs_nifree <= needed)) { 13456 ACQUIRE_LOCK(ump); 13457 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13458 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13459 FREE_LOCK(ump); 13460 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13461 ACQUIRE_LOCK(ump); 13462 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13463 FREE_LOCK(ump); 13464 if (ump->softdep_on_worklist > 0) { 13465 stat_cleanup_retries += 1; 13466 if (!failed_vnode) 13467 goto retry; 13468 } 13469 } else { 13470 FREE_LOCK(ump); 13471 error = 0; 13472 } 13473 stat_cleanup_failures += 1; 13474 } 13475 if (time_second - starttime > stat_cleanup_high_delay) 13476 stat_cleanup_high_delay = time_second - starttime; 13477 UFS_LOCK(ump); 13478 return (error); 13479 } 13480 13481 /* 13482 * Scan the vnodes for the specified mount point flushing out any 13483 * vnodes that can be locked without waiting. Finally, try to flush 13484 * the device associated with the mount point if it can be locked 13485 * without waiting. 13486 * 13487 * We return 0 if we were able to lock every vnode in our scan. 13488 * If we had to skip one or more vnodes, we return 1. 13489 */ 13490 static int 13491 softdep_request_cleanup_flush(mp, ump) 13492 struct mount *mp; 13493 struct ufsmount *ump; 13494 { 13495 struct thread *td; 13496 struct vnode *lvp, *mvp; 13497 int failed_vnode; 13498 13499 failed_vnode = 0; 13500 td = curthread; 13501 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13502 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13503 VI_UNLOCK(lvp); 13504 continue; 13505 } 13506 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13507 td) != 0) { 13508 failed_vnode = 1; 13509 continue; 13510 } 13511 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13512 vput(lvp); 13513 continue; 13514 } 13515 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13516 vput(lvp); 13517 } 13518 lvp = ump->um_devvp; 13519 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13520 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13521 VOP_UNLOCK(lvp, 0); 13522 } 13523 return (failed_vnode); 13524 } 13525 13526 static bool 13527 softdep_excess_items(struct ufsmount *ump, int item) 13528 { 13529 13530 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13531 return (dep_current[item] > max_softdeps && 13532 ump->softdep_curdeps[item] > max_softdeps / 13533 stat_flush_threads); 13534 } 13535 13536 static void 13537 schedule_cleanup(struct mount *mp) 13538 { 13539 struct ufsmount *ump; 13540 struct thread *td; 13541 13542 ump = VFSTOUFS(mp); 13543 LOCK_OWNED(ump); 13544 FREE_LOCK(ump); 13545 td = curthread; 13546 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13547 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13548 /* 13549 * No ast is delivered to kernel threads, so nobody 13550 * would deref the mp. Some kernel threads 13551 * explicitely check for AST, e.g. NFS daemon does 13552 * this in the serving loop. 13553 */ 13554 return; 13555 } 13556 if (td->td_su != NULL) 13557 vfs_rel(td->td_su); 13558 vfs_ref(mp); 13559 td->td_su = mp; 13560 thread_lock(td); 13561 td->td_flags |= TDF_ASTPENDING; 13562 thread_unlock(td); 13563 } 13564 13565 static void 13566 softdep_ast_cleanup_proc(struct thread *td) 13567 { 13568 struct mount *mp; 13569 struct ufsmount *ump; 13570 int error; 13571 bool req; 13572 13573 while ((mp = td->td_su) != NULL) { 13574 td->td_su = NULL; 13575 error = vfs_busy(mp, MBF_NOWAIT); 13576 vfs_rel(mp); 13577 if (error != 0) 13578 return; 13579 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13580 ump = VFSTOUFS(mp); 13581 for (;;) { 13582 req = false; 13583 ACQUIRE_LOCK(ump); 13584 if (softdep_excess_items(ump, D_INODEDEP)) { 13585 req = true; 13586 request_cleanup(mp, FLUSH_INODES); 13587 } 13588 if (softdep_excess_items(ump, D_DIRREM)) { 13589 req = true; 13590 request_cleanup(mp, FLUSH_BLOCKS); 13591 } 13592 FREE_LOCK(ump); 13593 if (softdep_excess_items(ump, D_NEWBLK) || 13594 softdep_excess_items(ump, D_ALLOCDIRECT) || 13595 softdep_excess_items(ump, D_ALLOCINDIR)) { 13596 error = vn_start_write(NULL, &mp, 13597 V_WAIT); 13598 if (error == 0) { 13599 req = true; 13600 VFS_SYNC(mp, MNT_WAIT); 13601 vn_finished_write(mp); 13602 } 13603 } 13604 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13605 break; 13606 } 13607 } 13608 vfs_unbusy(mp); 13609 } 13610 if ((mp = td->td_su) != NULL) { 13611 td->td_su = NULL; 13612 vfs_rel(mp); 13613 } 13614 } 13615 13616 /* 13617 * If memory utilization has gotten too high, deliberately slow things 13618 * down and speed up the I/O processing. 13619 */ 13620 static int 13621 request_cleanup(mp, resource) 13622 struct mount *mp; 13623 int resource; 13624 { 13625 struct thread *td = curthread; 13626 struct ufsmount *ump; 13627 13628 ump = VFSTOUFS(mp); 13629 LOCK_OWNED(ump); 13630 /* 13631 * We never hold up the filesystem syncer or buf daemon. 13632 */ 13633 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13634 return (0); 13635 /* 13636 * First check to see if the work list has gotten backlogged. 13637 * If it has, co-opt this process to help clean up two entries. 13638 * Because this process may hold inodes locked, we cannot 13639 * handle any remove requests that might block on a locked 13640 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13641 * to avoid recursively processing the worklist. 13642 */ 13643 if (ump->softdep_on_worklist > max_softdeps / 10) { 13644 td->td_pflags |= TDP_SOFTDEP; 13645 process_worklist_item(mp, 2, LK_NOWAIT); 13646 td->td_pflags &= ~TDP_SOFTDEP; 13647 stat_worklist_push += 2; 13648 return(1); 13649 } 13650 /* 13651 * Next, we attempt to speed up the syncer process. If that 13652 * is successful, then we allow the process to continue. 13653 */ 13654 if (softdep_speedup(ump) && 13655 resource != FLUSH_BLOCKS_WAIT && 13656 resource != FLUSH_INODES_WAIT) 13657 return(0); 13658 /* 13659 * If we are resource constrained on inode dependencies, try 13660 * flushing some dirty inodes. Otherwise, we are constrained 13661 * by file deletions, so try accelerating flushes of directories 13662 * with removal dependencies. We would like to do the cleanup 13663 * here, but we probably hold an inode locked at this point and 13664 * that might deadlock against one that we try to clean. So, 13665 * the best that we can do is request the syncer daemon to do 13666 * the cleanup for us. 13667 */ 13668 switch (resource) { 13669 13670 case FLUSH_INODES: 13671 case FLUSH_INODES_WAIT: 13672 ACQUIRE_GBLLOCK(&lk); 13673 stat_ino_limit_push += 1; 13674 req_clear_inodedeps += 1; 13675 FREE_GBLLOCK(&lk); 13676 stat_countp = &stat_ino_limit_hit; 13677 break; 13678 13679 case FLUSH_BLOCKS: 13680 case FLUSH_BLOCKS_WAIT: 13681 ACQUIRE_GBLLOCK(&lk); 13682 stat_blk_limit_push += 1; 13683 req_clear_remove += 1; 13684 FREE_GBLLOCK(&lk); 13685 stat_countp = &stat_blk_limit_hit; 13686 break; 13687 13688 default: 13689 panic("request_cleanup: unknown type"); 13690 } 13691 /* 13692 * Hopefully the syncer daemon will catch up and awaken us. 13693 * We wait at most tickdelay before proceeding in any case. 13694 */ 13695 ACQUIRE_GBLLOCK(&lk); 13696 FREE_LOCK(ump); 13697 proc_waiting += 1; 13698 if (callout_pending(&softdep_callout) == FALSE) 13699 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13700 pause_timer, 0); 13701 13702 if ((td->td_pflags & TDP_KTHREAD) == 0) 13703 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13704 proc_waiting -= 1; 13705 FREE_GBLLOCK(&lk); 13706 ACQUIRE_LOCK(ump); 13707 return (1); 13708 } 13709 13710 /* 13711 * Awaken processes pausing in request_cleanup and clear proc_waiting 13712 * to indicate that there is no longer a timer running. Pause_timer 13713 * will be called with the global softdep mutex (&lk) locked. 13714 */ 13715 static void 13716 pause_timer(arg) 13717 void *arg; 13718 { 13719 13720 GBLLOCK_OWNED(&lk); 13721 /* 13722 * The callout_ API has acquired mtx and will hold it around this 13723 * function call. 13724 */ 13725 *stat_countp += proc_waiting; 13726 wakeup(&proc_waiting); 13727 } 13728 13729 /* 13730 * If requested, try removing inode or removal dependencies. 13731 */ 13732 static void 13733 check_clear_deps(mp) 13734 struct mount *mp; 13735 { 13736 13737 /* 13738 * If we are suspended, it may be because of our using 13739 * too many inodedeps, so help clear them out. 13740 */ 13741 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13742 clear_inodedeps(mp); 13743 /* 13744 * General requests for cleanup of backed up dependencies 13745 */ 13746 ACQUIRE_GBLLOCK(&lk); 13747 if (req_clear_inodedeps) { 13748 req_clear_inodedeps -= 1; 13749 FREE_GBLLOCK(&lk); 13750 clear_inodedeps(mp); 13751 ACQUIRE_GBLLOCK(&lk); 13752 wakeup(&proc_waiting); 13753 } 13754 if (req_clear_remove) { 13755 req_clear_remove -= 1; 13756 FREE_GBLLOCK(&lk); 13757 clear_remove(mp); 13758 ACQUIRE_GBLLOCK(&lk); 13759 wakeup(&proc_waiting); 13760 } 13761 FREE_GBLLOCK(&lk); 13762 } 13763 13764 /* 13765 * Flush out a directory with at least one removal dependency in an effort to 13766 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13767 */ 13768 static void 13769 clear_remove(mp) 13770 struct mount *mp; 13771 { 13772 struct pagedep_hashhead *pagedephd; 13773 struct pagedep *pagedep; 13774 struct ufsmount *ump; 13775 struct vnode *vp; 13776 struct bufobj *bo; 13777 int error, cnt; 13778 ino_t ino; 13779 13780 ump = VFSTOUFS(mp); 13781 LOCK_OWNED(ump); 13782 13783 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13784 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13785 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13786 ump->pagedep_nextclean = 0; 13787 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13788 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13789 continue; 13790 ino = pagedep->pd_ino; 13791 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13792 continue; 13793 FREE_LOCK(ump); 13794 13795 /* 13796 * Let unmount clear deps 13797 */ 13798 error = vfs_busy(mp, MBF_NOWAIT); 13799 if (error != 0) 13800 goto finish_write; 13801 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13802 FFSV_FORCEINSMQ); 13803 vfs_unbusy(mp); 13804 if (error != 0) { 13805 softdep_error("clear_remove: vget", error); 13806 goto finish_write; 13807 } 13808 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13809 softdep_error("clear_remove: fsync", error); 13810 bo = &vp->v_bufobj; 13811 BO_LOCK(bo); 13812 drain_output(vp); 13813 BO_UNLOCK(bo); 13814 vput(vp); 13815 finish_write: 13816 vn_finished_write(mp); 13817 ACQUIRE_LOCK(ump); 13818 return; 13819 } 13820 } 13821 } 13822 13823 /* 13824 * Clear out a block of dirty inodes in an effort to reduce 13825 * the number of inodedep dependency structures. 13826 */ 13827 static void 13828 clear_inodedeps(mp) 13829 struct mount *mp; 13830 { 13831 struct inodedep_hashhead *inodedephd; 13832 struct inodedep *inodedep; 13833 struct ufsmount *ump; 13834 struct vnode *vp; 13835 struct fs *fs; 13836 int error, cnt; 13837 ino_t firstino, lastino, ino; 13838 13839 ump = VFSTOUFS(mp); 13840 fs = ump->um_fs; 13841 LOCK_OWNED(ump); 13842 /* 13843 * Pick a random inode dependency to be cleared. 13844 * We will then gather up all the inodes in its block 13845 * that have dependencies and flush them out. 13846 */ 13847 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13848 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13849 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13850 ump->inodedep_nextclean = 0; 13851 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13852 break; 13853 } 13854 if (inodedep == NULL) 13855 return; 13856 /* 13857 * Find the last inode in the block with dependencies. 13858 */ 13859 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13860 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13861 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13862 break; 13863 /* 13864 * Asynchronously push all but the last inode with dependencies. 13865 * Synchronously push the last inode with dependencies to ensure 13866 * that the inode block gets written to free up the inodedeps. 13867 */ 13868 for (ino = firstino; ino <= lastino; ino++) { 13869 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13870 continue; 13871 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13872 continue; 13873 FREE_LOCK(ump); 13874 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13875 if (error != 0) { 13876 vn_finished_write(mp); 13877 ACQUIRE_LOCK(ump); 13878 return; 13879 } 13880 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13881 FFSV_FORCEINSMQ)) != 0) { 13882 softdep_error("clear_inodedeps: vget", error); 13883 vfs_unbusy(mp); 13884 vn_finished_write(mp); 13885 ACQUIRE_LOCK(ump); 13886 return; 13887 } 13888 vfs_unbusy(mp); 13889 if (ino == lastino) { 13890 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13891 softdep_error("clear_inodedeps: fsync1", error); 13892 } else { 13893 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13894 softdep_error("clear_inodedeps: fsync2", error); 13895 BO_LOCK(&vp->v_bufobj); 13896 drain_output(vp); 13897 BO_UNLOCK(&vp->v_bufobj); 13898 } 13899 vput(vp); 13900 vn_finished_write(mp); 13901 ACQUIRE_LOCK(ump); 13902 } 13903 } 13904 13905 void 13906 softdep_buf_append(bp, wkhd) 13907 struct buf *bp; 13908 struct workhead *wkhd; 13909 { 13910 struct worklist *wk; 13911 struct ufsmount *ump; 13912 13913 if ((wk = LIST_FIRST(wkhd)) == NULL) 13914 return; 13915 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13916 ("softdep_buf_append called on non-softdep filesystem")); 13917 ump = VFSTOUFS(wk->wk_mp); 13918 ACQUIRE_LOCK(ump); 13919 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13920 WORKLIST_REMOVE(wk); 13921 WORKLIST_INSERT(&bp->b_dep, wk); 13922 } 13923 FREE_LOCK(ump); 13924 13925 } 13926 13927 void 13928 softdep_inode_append(ip, cred, wkhd) 13929 struct inode *ip; 13930 struct ucred *cred; 13931 struct workhead *wkhd; 13932 { 13933 struct buf *bp; 13934 struct fs *fs; 13935 struct ufsmount *ump; 13936 int error; 13937 13938 ump = ITOUMP(ip); 13939 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13940 ("softdep_inode_append called on non-softdep filesystem")); 13941 fs = ump->um_fs; 13942 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13943 (int)fs->fs_bsize, cred, &bp); 13944 if (error) { 13945 bqrelse(bp); 13946 softdep_freework(wkhd); 13947 return; 13948 } 13949 softdep_buf_append(bp, wkhd); 13950 bqrelse(bp); 13951 } 13952 13953 void 13954 softdep_freework(wkhd) 13955 struct workhead *wkhd; 13956 { 13957 struct worklist *wk; 13958 struct ufsmount *ump; 13959 13960 if ((wk = LIST_FIRST(wkhd)) == NULL) 13961 return; 13962 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13963 ("softdep_freework called on non-softdep filesystem")); 13964 ump = VFSTOUFS(wk->wk_mp); 13965 ACQUIRE_LOCK(ump); 13966 handle_jwork(wkhd); 13967 FREE_LOCK(ump); 13968 } 13969 13970 static struct ufsmount * 13971 softdep_bp_to_mp(bp) 13972 struct buf *bp; 13973 { 13974 struct mount *mp; 13975 struct vnode *vp; 13976 13977 if (LIST_EMPTY(&bp->b_dep)) 13978 return (NULL); 13979 vp = bp->b_vp; 13980 KASSERT(vp != NULL, 13981 ("%s, buffer with dependencies lacks vnode", __func__)); 13982 13983 /* 13984 * The ump mount point is stable after we get a correct 13985 * pointer, since bp is locked and this prevents unmount from 13986 * proceeding. But to get to it, we cannot dereference bp->b_dep 13987 * head wk_mp, because we do not yet own SU ump lock and 13988 * workitem might be freed while dereferenced. 13989 */ 13990 retry: 13991 switch (vp->v_type) { 13992 case VCHR: 13993 VI_LOCK(vp); 13994 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 13995 VI_UNLOCK(vp); 13996 if (mp == NULL) 13997 goto retry; 13998 break; 13999 case VREG: 14000 case VDIR: 14001 case VLNK: 14002 case VFIFO: 14003 case VSOCK: 14004 mp = vp->v_mount; 14005 break; 14006 case VBLK: 14007 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14008 /* FALLTHROUGH */ 14009 case VNON: 14010 case VBAD: 14011 case VMARKER: 14012 mp = NULL; 14013 break; 14014 default: 14015 vn_printf(vp, "unknown vnode type"); 14016 mp = NULL; 14017 break; 14018 } 14019 return (VFSTOUFS(mp)); 14020 } 14021 14022 /* 14023 * Function to determine if the buffer has outstanding dependencies 14024 * that will cause a roll-back if the buffer is written. If wantcount 14025 * is set, return number of dependencies, otherwise just yes or no. 14026 */ 14027 static int 14028 softdep_count_dependencies(bp, wantcount) 14029 struct buf *bp; 14030 int wantcount; 14031 { 14032 struct worklist *wk; 14033 struct ufsmount *ump; 14034 struct bmsafemap *bmsafemap; 14035 struct freework *freework; 14036 struct inodedep *inodedep; 14037 struct indirdep *indirdep; 14038 struct freeblks *freeblks; 14039 struct allocindir *aip; 14040 struct pagedep *pagedep; 14041 struct dirrem *dirrem; 14042 struct newblk *newblk; 14043 struct mkdir *mkdir; 14044 struct diradd *dap; 14045 int i, retval; 14046 14047 ump = softdep_bp_to_mp(bp); 14048 if (ump == NULL) 14049 return (0); 14050 retval = 0; 14051 ACQUIRE_LOCK(ump); 14052 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14053 switch (wk->wk_type) { 14054 14055 case D_INODEDEP: 14056 inodedep = WK_INODEDEP(wk); 14057 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14058 /* bitmap allocation dependency */ 14059 retval += 1; 14060 if (!wantcount) 14061 goto out; 14062 } 14063 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14064 /* direct block pointer dependency */ 14065 retval += 1; 14066 if (!wantcount) 14067 goto out; 14068 } 14069 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14070 /* direct block pointer dependency */ 14071 retval += 1; 14072 if (!wantcount) 14073 goto out; 14074 } 14075 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14076 /* Add reference dependency. */ 14077 retval += 1; 14078 if (!wantcount) 14079 goto out; 14080 } 14081 continue; 14082 14083 case D_INDIRDEP: 14084 indirdep = WK_INDIRDEP(wk); 14085 14086 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14087 /* indirect truncation dependency */ 14088 retval += 1; 14089 if (!wantcount) 14090 goto out; 14091 } 14092 14093 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14094 /* indirect block pointer dependency */ 14095 retval += 1; 14096 if (!wantcount) 14097 goto out; 14098 } 14099 continue; 14100 14101 case D_PAGEDEP: 14102 pagedep = WK_PAGEDEP(wk); 14103 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14104 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14105 /* Journal remove ref dependency. */ 14106 retval += 1; 14107 if (!wantcount) 14108 goto out; 14109 } 14110 } 14111 for (i = 0; i < DAHASHSZ; i++) { 14112 14113 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14114 /* directory entry dependency */ 14115 retval += 1; 14116 if (!wantcount) 14117 goto out; 14118 } 14119 } 14120 continue; 14121 14122 case D_BMSAFEMAP: 14123 bmsafemap = WK_BMSAFEMAP(wk); 14124 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14125 /* Add reference dependency. */ 14126 retval += 1; 14127 if (!wantcount) 14128 goto out; 14129 } 14130 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14131 /* Allocate block dependency. */ 14132 retval += 1; 14133 if (!wantcount) 14134 goto out; 14135 } 14136 continue; 14137 14138 case D_FREEBLKS: 14139 freeblks = WK_FREEBLKS(wk); 14140 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14141 /* Freeblk journal dependency. */ 14142 retval += 1; 14143 if (!wantcount) 14144 goto out; 14145 } 14146 continue; 14147 14148 case D_ALLOCDIRECT: 14149 case D_ALLOCINDIR: 14150 newblk = WK_NEWBLK(wk); 14151 if (newblk->nb_jnewblk) { 14152 /* Journal allocate dependency. */ 14153 retval += 1; 14154 if (!wantcount) 14155 goto out; 14156 } 14157 continue; 14158 14159 case D_MKDIR: 14160 mkdir = WK_MKDIR(wk); 14161 if (mkdir->md_jaddref) { 14162 /* Journal reference dependency. */ 14163 retval += 1; 14164 if (!wantcount) 14165 goto out; 14166 } 14167 continue; 14168 14169 case D_FREEWORK: 14170 case D_FREEDEP: 14171 case D_JSEGDEP: 14172 case D_JSEG: 14173 case D_SBDEP: 14174 /* never a dependency on these blocks */ 14175 continue; 14176 14177 default: 14178 panic("softdep_count_dependencies: Unexpected type %s", 14179 TYPENAME(wk->wk_type)); 14180 /* NOTREACHED */ 14181 } 14182 } 14183 out: 14184 FREE_LOCK(ump); 14185 return (retval); 14186 } 14187 14188 /* 14189 * Acquire exclusive access to a buffer. 14190 * Must be called with a locked mtx parameter. 14191 * Return acquired buffer or NULL on failure. 14192 */ 14193 static struct buf * 14194 getdirtybuf(bp, lock, waitfor) 14195 struct buf *bp; 14196 struct rwlock *lock; 14197 int waitfor; 14198 { 14199 int error; 14200 14201 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14202 if (waitfor != MNT_WAIT) 14203 return (NULL); 14204 error = BUF_LOCK(bp, 14205 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14206 /* 14207 * Even if we successfully acquire bp here, we have dropped 14208 * lock, which may violates our guarantee. 14209 */ 14210 if (error == 0) 14211 BUF_UNLOCK(bp); 14212 else if (error != ENOLCK) 14213 panic("getdirtybuf: inconsistent lock: %d", error); 14214 rw_wlock(lock); 14215 return (NULL); 14216 } 14217 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14218 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14219 rw_wunlock(lock); 14220 BO_LOCK(bp->b_bufobj); 14221 BUF_UNLOCK(bp); 14222 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14223 bp->b_vflags |= BV_BKGRDWAIT; 14224 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14225 PRIBIO | PDROP, "getbuf", 0); 14226 } else 14227 BO_UNLOCK(bp->b_bufobj); 14228 rw_wlock(lock); 14229 return (NULL); 14230 } 14231 BUF_UNLOCK(bp); 14232 if (waitfor != MNT_WAIT) 14233 return (NULL); 14234 #ifdef DEBUG_VFS_LOCKS 14235 if (bp->b_vp->v_type != VCHR) 14236 ASSERT_BO_WLOCKED(bp->b_bufobj); 14237 #endif 14238 bp->b_vflags |= BV_BKGRDWAIT; 14239 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14240 return (NULL); 14241 } 14242 if ((bp->b_flags & B_DELWRI) == 0) { 14243 BUF_UNLOCK(bp); 14244 return (NULL); 14245 } 14246 bremfree(bp); 14247 return (bp); 14248 } 14249 14250 14251 /* 14252 * Check if it is safe to suspend the file system now. On entry, 14253 * the vnode interlock for devvp should be held. Return 0 with 14254 * the mount interlock held if the file system can be suspended now, 14255 * otherwise return EAGAIN with the mount interlock held. 14256 */ 14257 int 14258 softdep_check_suspend(struct mount *mp, 14259 struct vnode *devvp, 14260 int softdep_depcnt, 14261 int softdep_accdepcnt, 14262 int secondary_writes, 14263 int secondary_accwrites) 14264 { 14265 struct bufobj *bo; 14266 struct ufsmount *ump; 14267 struct inodedep *inodedep; 14268 int error, unlinked; 14269 14270 bo = &devvp->v_bufobj; 14271 ASSERT_BO_WLOCKED(bo); 14272 14273 /* 14274 * If we are not running with soft updates, then we need only 14275 * deal with secondary writes as we try to suspend. 14276 */ 14277 if (MOUNTEDSOFTDEP(mp) == 0) { 14278 MNT_ILOCK(mp); 14279 while (mp->mnt_secondary_writes != 0) { 14280 BO_UNLOCK(bo); 14281 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14282 (PUSER - 1) | PDROP, "secwr", 0); 14283 BO_LOCK(bo); 14284 MNT_ILOCK(mp); 14285 } 14286 14287 /* 14288 * Reasons for needing more work before suspend: 14289 * - Dirty buffers on devvp. 14290 * - Secondary writes occurred after start of vnode sync loop 14291 */ 14292 error = 0; 14293 if (bo->bo_numoutput > 0 || 14294 bo->bo_dirty.bv_cnt > 0 || 14295 secondary_writes != 0 || 14296 mp->mnt_secondary_writes != 0 || 14297 secondary_accwrites != mp->mnt_secondary_accwrites) 14298 error = EAGAIN; 14299 BO_UNLOCK(bo); 14300 return (error); 14301 } 14302 14303 /* 14304 * If we are running with soft updates, then we need to coordinate 14305 * with them as we try to suspend. 14306 */ 14307 ump = VFSTOUFS(mp); 14308 for (;;) { 14309 if (!TRY_ACQUIRE_LOCK(ump)) { 14310 BO_UNLOCK(bo); 14311 ACQUIRE_LOCK(ump); 14312 FREE_LOCK(ump); 14313 BO_LOCK(bo); 14314 continue; 14315 } 14316 MNT_ILOCK(mp); 14317 if (mp->mnt_secondary_writes != 0) { 14318 FREE_LOCK(ump); 14319 BO_UNLOCK(bo); 14320 msleep(&mp->mnt_secondary_writes, 14321 MNT_MTX(mp), 14322 (PUSER - 1) | PDROP, "secwr", 0); 14323 BO_LOCK(bo); 14324 continue; 14325 } 14326 break; 14327 } 14328 14329 unlinked = 0; 14330 if (MOUNTEDSUJ(mp)) { 14331 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14332 inodedep != NULL; 14333 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14334 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14335 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14336 UNLINKONLIST) || 14337 !check_inodedep_free(inodedep)) 14338 continue; 14339 unlinked++; 14340 } 14341 } 14342 14343 /* 14344 * Reasons for needing more work before suspend: 14345 * - Dirty buffers on devvp. 14346 * - Softdep activity occurred after start of vnode sync loop 14347 * - Secondary writes occurred after start of vnode sync loop 14348 */ 14349 error = 0; 14350 if (bo->bo_numoutput > 0 || 14351 bo->bo_dirty.bv_cnt > 0 || 14352 softdep_depcnt != unlinked || 14353 ump->softdep_deps != unlinked || 14354 softdep_accdepcnt != ump->softdep_accdeps || 14355 secondary_writes != 0 || 14356 mp->mnt_secondary_writes != 0 || 14357 secondary_accwrites != mp->mnt_secondary_accwrites) 14358 error = EAGAIN; 14359 FREE_LOCK(ump); 14360 BO_UNLOCK(bo); 14361 return (error); 14362 } 14363 14364 14365 /* 14366 * Get the number of dependency structures for the file system, both 14367 * the current number and the total number allocated. These will 14368 * later be used to detect that softdep processing has occurred. 14369 */ 14370 void 14371 softdep_get_depcounts(struct mount *mp, 14372 int *softdep_depsp, 14373 int *softdep_accdepsp) 14374 { 14375 struct ufsmount *ump; 14376 14377 if (MOUNTEDSOFTDEP(mp) == 0) { 14378 *softdep_depsp = 0; 14379 *softdep_accdepsp = 0; 14380 return; 14381 } 14382 ump = VFSTOUFS(mp); 14383 ACQUIRE_LOCK(ump); 14384 *softdep_depsp = ump->softdep_deps; 14385 *softdep_accdepsp = ump->softdep_accdeps; 14386 FREE_LOCK(ump); 14387 } 14388 14389 /* 14390 * Wait for pending output on a vnode to complete. 14391 */ 14392 static void 14393 drain_output(vp) 14394 struct vnode *vp; 14395 { 14396 14397 ASSERT_VOP_LOCKED(vp, "drain_output"); 14398 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14399 } 14400 14401 /* 14402 * Called whenever a buffer that is being invalidated or reallocated 14403 * contains dependencies. This should only happen if an I/O error has 14404 * occurred. The routine is called with the buffer locked. 14405 */ 14406 static void 14407 softdep_deallocate_dependencies(bp) 14408 struct buf *bp; 14409 { 14410 14411 if ((bp->b_ioflags & BIO_ERROR) == 0) 14412 panic("softdep_deallocate_dependencies: dangling deps"); 14413 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14414 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14415 else 14416 printf("softdep_deallocate_dependencies: " 14417 "got error %d while accessing filesystem\n", bp->b_error); 14418 if (bp->b_error != ENXIO) 14419 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14420 } 14421 14422 /* 14423 * Function to handle asynchronous write errors in the filesystem. 14424 */ 14425 static void 14426 softdep_error(func, error) 14427 char *func; 14428 int error; 14429 { 14430 14431 /* XXX should do something better! */ 14432 printf("%s: got error %d while accessing filesystem\n", func, error); 14433 } 14434 14435 #ifdef DDB 14436 14437 /* exported to ffs_vfsops.c */ 14438 extern void db_print_ffs(struct ufsmount *ump); 14439 void 14440 db_print_ffs(struct ufsmount *ump) 14441 { 14442 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14443 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14444 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14445 ump->um_fs, ump->softdep_on_worklist, 14446 ump->softdep_deps, ump->softdep_req); 14447 } 14448 14449 static void 14450 worklist_print(struct worklist *wk, int verbose) 14451 { 14452 14453 if (!verbose) { 14454 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14455 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14456 return; 14457 } 14458 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14459 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14460 LIST_NEXT(wk, wk_list)); 14461 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14462 } 14463 14464 static void 14465 inodedep_print(struct inodedep *inodedep, int verbose) 14466 { 14467 14468 worklist_print(&inodedep->id_list, 0); 14469 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14470 inodedep->id_fs, 14471 (intmax_t)inodedep->id_ino, 14472 (intmax_t)fsbtodb(inodedep->id_fs, 14473 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14474 (intmax_t)inodedep->id_nlinkdelta, 14475 (intmax_t)inodedep->id_savednlink); 14476 14477 if (verbose == 0) 14478 return; 14479 14480 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14481 inodedep->id_bmsafemap, 14482 inodedep->id_mkdiradd, 14483 TAILQ_FIRST(&inodedep->id_inoreflst)); 14484 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14485 LIST_FIRST(&inodedep->id_dirremhd), 14486 LIST_FIRST(&inodedep->id_pendinghd), 14487 LIST_FIRST(&inodedep->id_bufwait)); 14488 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14489 LIST_FIRST(&inodedep->id_inowait), 14490 TAILQ_FIRST(&inodedep->id_inoupdt), 14491 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14492 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14493 TAILQ_FIRST(&inodedep->id_extupdt), 14494 TAILQ_FIRST(&inodedep->id_newextupdt), 14495 TAILQ_FIRST(&inodedep->id_freeblklst)); 14496 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14497 inodedep->id_savedino1, 14498 (intmax_t)inodedep->id_savedsize, 14499 (intmax_t)inodedep->id_savedextsize); 14500 } 14501 14502 static void 14503 newblk_print(struct newblk *nbp) 14504 { 14505 14506 worklist_print(&nbp->nb_list, 0); 14507 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14508 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14509 &nbp->nb_jnewblk, 14510 &nbp->nb_bmsafemap, 14511 &nbp->nb_freefrag); 14512 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14513 LIST_FIRST(&nbp->nb_indirdeps), 14514 LIST_FIRST(&nbp->nb_newdirblk), 14515 LIST_FIRST(&nbp->nb_jwork)); 14516 } 14517 14518 static void 14519 allocdirect_print(struct allocdirect *adp) 14520 { 14521 14522 newblk_print(&adp->ad_block); 14523 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14524 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14525 db_printf(" offset %d, inodedep %p\n", 14526 adp->ad_offset, adp->ad_inodedep); 14527 } 14528 14529 static void 14530 allocindir_print(struct allocindir *aip) 14531 { 14532 14533 newblk_print(&aip->ai_block); 14534 db_printf(" oldblkno %jd, lbn %jd\n", 14535 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14536 db_printf(" offset %d, indirdep %p\n", 14537 aip->ai_offset, aip->ai_indirdep); 14538 } 14539 14540 static void 14541 mkdir_print(struct mkdir *mkdir) 14542 { 14543 14544 worklist_print(&mkdir->md_list, 0); 14545 db_printf(" diradd %p, jaddref %p, buf %p\n", 14546 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14547 } 14548 14549 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14550 { 14551 14552 if (have_addr == 0) { 14553 db_printf("inodedep address required\n"); 14554 return; 14555 } 14556 inodedep_print((struct inodedep*)addr, 1); 14557 } 14558 14559 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14560 { 14561 struct inodedep_hashhead *inodedephd; 14562 struct inodedep *inodedep; 14563 struct ufsmount *ump; 14564 int cnt; 14565 14566 if (have_addr == 0) { 14567 db_printf("ufsmount address required\n"); 14568 return; 14569 } 14570 ump = (struct ufsmount *)addr; 14571 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14572 inodedephd = &ump->inodedep_hashtbl[cnt]; 14573 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14574 inodedep_print(inodedep, 0); 14575 } 14576 } 14577 } 14578 14579 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 14580 { 14581 14582 if (have_addr == 0) { 14583 db_printf("worklist address required\n"); 14584 return; 14585 } 14586 worklist_print((struct worklist *)addr, 1); 14587 } 14588 14589 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 14590 { 14591 struct worklist *wk; 14592 struct workhead *wkhd; 14593 14594 if (have_addr == 0) { 14595 db_printf("worklist address required " 14596 "(for example value in bp->b_dep)\n"); 14597 return; 14598 } 14599 /* 14600 * We often do not have the address of the worklist head but 14601 * instead a pointer to its first entry (e.g., we have the 14602 * contents of bp->b_dep rather than &bp->b_dep). But the back 14603 * pointer of bp->b_dep will point at the head of the list, so 14604 * we cheat and use that instead. If we are in the middle of 14605 * a list we will still get the same result, so nothing 14606 * unexpected will result. 14607 */ 14608 wk = (struct worklist *)addr; 14609 if (wk == NULL) 14610 return; 14611 wkhd = (struct workhead *)wk->wk_list.le_prev; 14612 LIST_FOREACH(wk, wkhd, wk_list) { 14613 switch(wk->wk_type) { 14614 case D_INODEDEP: 14615 inodedep_print(WK_INODEDEP(wk), 0); 14616 continue; 14617 case D_ALLOCDIRECT: 14618 allocdirect_print(WK_ALLOCDIRECT(wk)); 14619 continue; 14620 case D_ALLOCINDIR: 14621 allocindir_print(WK_ALLOCINDIR(wk)); 14622 continue; 14623 case D_MKDIR: 14624 mkdir_print(WK_MKDIR(wk)); 14625 continue; 14626 default: 14627 worklist_print(wk, 0); 14628 continue; 14629 } 14630 } 14631 } 14632 14633 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 14634 { 14635 if (have_addr == 0) { 14636 db_printf("mkdir address required\n"); 14637 return; 14638 } 14639 mkdir_print((struct mkdir *)addr); 14640 } 14641 14642 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 14643 { 14644 struct mkdirlist *mkdirlisthd; 14645 struct mkdir *mkdir; 14646 14647 if (have_addr == 0) { 14648 db_printf("mkdir listhead address required\n"); 14649 return; 14650 } 14651 mkdirlisthd = (struct mkdirlist *)addr; 14652 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14653 mkdir_print(mkdir); 14654 if (mkdir->md_diradd != NULL) { 14655 db_printf(" "); 14656 worklist_print(&mkdir->md_diradd->da_list, 0); 14657 } 14658 if (mkdir->md_jaddref != NULL) { 14659 db_printf(" "); 14660 worklist_print(&mkdir->md_jaddref->ja_list, 0); 14661 } 14662 } 14663 } 14664 14665 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 14666 { 14667 if (have_addr == 0) { 14668 db_printf("allocdirect address required\n"); 14669 return; 14670 } 14671 allocdirect_print((struct allocdirect *)addr); 14672 } 14673 14674 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 14675 { 14676 if (have_addr == 0) { 14677 db_printf("allocindir address required\n"); 14678 return; 14679 } 14680 allocindir_print((struct allocindir *)addr); 14681 } 14682 14683 #endif /* DDB */ 14684 14685 #endif /* SOFTUPDATES */ 14686