1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ufs.h" 38 #include "opt_quota.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/bio.h> 43 #include <sys/buf.h> 44 #include <sys/malloc.h> 45 #include <sys/mount.h> 46 #include <sys/proc.h> 47 #include <sys/racct.h> 48 #include <sys/random.h> 49 #include <sys/resourcevar.h> 50 #include <sys/rwlock.h> 51 #include <sys/stat.h> 52 #include <sys/vmmeter.h> 53 #include <sys/vnode.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_object.h> 58 59 #include <ufs/ufs/extattr.h> 60 #include <ufs/ufs/quota.h> 61 #include <ufs/ufs/ufsmount.h> 62 #include <ufs/ufs/inode.h> 63 #include <ufs/ufs/dir.h> 64 #ifdef UFS_DIRHASH 65 #include <ufs/ufs/dirhash.h> 66 #endif 67 #include <ufs/ufs/ufs_extern.h> 68 69 #include <ufs/ffs/fs.h> 70 #include <ufs/ffs/ffs_extern.h> 71 72 static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t, 73 ufs2_daddr_t, int, ufs2_daddr_t *); 74 75 static void 76 ffs_inode_bwrite(struct vnode *vp, struct buf *bp, int flags) 77 { 78 if ((flags & IO_SYNC) != 0) 79 bwrite(bp); 80 else if (DOINGASYNC(vp)) 81 bdwrite(bp); 82 else 83 bawrite(bp); 84 } 85 86 /* 87 * Update the access, modified, and inode change times as specified by the 88 * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode 89 * to disk if the IN_MODIFIED flag is set (it may be set initially, or by 90 * the timestamp update). The IN_LAZYMOD flag is set to force a write 91 * later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs 92 * is currently being suspended (or is suspended) and vnode has been accessed. 93 * If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to 94 * reflect the presumably successful write, and if waitfor is set, then wait 95 * for the write to complete. 96 */ 97 int 98 ffs_update(vp, waitfor) 99 struct vnode *vp; 100 int waitfor; 101 { 102 struct fs *fs; 103 struct buf *bp; 104 struct inode *ip; 105 daddr_t bn; 106 int flags, error; 107 108 ASSERT_VOP_ELOCKED(vp, "ffs_update"); 109 ufs_itimes(vp); 110 ip = VTOI(vp); 111 if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0) 112 return (0); 113 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 114 /* 115 * The IN_SIZEMOD and IN_IBLKDATA flags indicate changes to the 116 * file size and block pointer fields in the inode. When these 117 * fields have been changed, the fsync() and fsyncdata() system 118 * calls must write the inode to ensure their semantics that the 119 * file is on stable store. 120 * 121 * The IN_SIZEMOD and IN_IBLKDATA flags cannot be cleared until 122 * a synchronous write of the inode is done. If they are cleared 123 * on an asynchronous write, then the inode may not yet have been 124 * written to the disk when an fsync() or fsyncdata() call is done. 125 * Absent these flags, these calls would not know that they needed 126 * to write the inode. Thus, these flags only can be cleared on 127 * synchronous writes of the inode. Since the inode will be locked 128 * for the duration of the I/O that writes it to disk, no fsync() 129 * or fsyncdata() will be able to run before the on-disk inode 130 * is complete. 131 */ 132 if (waitfor) 133 ip->i_flag &= ~(IN_SIZEMOD | IN_IBLKDATA); 134 fs = ITOFS(ip); 135 if (fs->fs_ronly) 136 return (0); 137 /* 138 * If we are updating a snapshot and another process is currently 139 * writing the buffer containing the inode for this snapshot then 140 * a deadlock can occur when it tries to check the snapshot to see 141 * if that block needs to be copied. Thus when updating a snapshot 142 * we check to see if the buffer is already locked, and if it is 143 * we drop the snapshot lock until the buffer has been written 144 * and is available to us. We have to grab a reference to the 145 * snapshot vnode to prevent it from being removed while we are 146 * waiting for the buffer. 147 */ 148 loop: 149 flags = 0; 150 if (IS_SNAPSHOT(ip)) 151 flags = GB_LOCK_NOWAIT; 152 bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 153 error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn, 154 (int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp); 155 if (error != 0) { 156 /* 157 * If EBUSY was returned without GB_LOCK_NOWAIT (which 158 * requests trylock for buffer lock), it is for some 159 * other reason and we should not handle it specially. 160 */ 161 if (error != EBUSY || (flags & GB_LOCK_NOWAIT) == 0) 162 return (error); 163 164 /* 165 * Wait for our inode block to become available. 166 * 167 * Hold a reference to the vnode to protect against 168 * ffs_snapgone(). Since we hold a reference, it can only 169 * get reclaimed (VIRF_DOOMED flag) in a forcible downgrade 170 * or unmount. For an unmount, the entire filesystem will be 171 * gone, so we cannot attempt to touch anything associated 172 * with it while the vnode is unlocked; all we can do is 173 * pause briefly and try again. If when we relock the vnode 174 * we discover that it has been reclaimed, updating it is no 175 * longer necessary and we can just return an error. 176 */ 177 vref(vp); 178 VOP_UNLOCK(vp); 179 pause("ffsupd", 1); 180 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 181 vrele(vp); 182 if (VN_IS_DOOMED(vp)) 183 return (ENOENT); 184 185 /* 186 * Recalculate flags, because the vnode was relocked and 187 * could no longer be a snapshot. 188 */ 189 goto loop; 190 } 191 if (DOINGSOFTDEP(vp)) 192 softdep_update_inodeblock(ip, bp, waitfor); 193 else if (ip->i_effnlink != ip->i_nlink) 194 panic("ffs_update: bad link cnt"); 195 if (I_IS_UFS1(ip)) { 196 *((struct ufs1_dinode *)bp->b_data + 197 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 198 /* 199 * XXX: FIX? The entropy here is desirable, 200 * but the harvesting may be expensive 201 */ 202 random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME); 203 } else { 204 ffs_update_dinode_ckhash(fs, ip->i_din2); 205 *((struct ufs2_dinode *)bp->b_data + 206 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 207 /* 208 * XXX: FIX? The entropy here is desirable, 209 * but the harvesting may be expensive 210 */ 211 random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME); 212 } 213 if (waitfor) { 214 error = bwrite(bp); 215 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 216 error = 0; 217 } else if (vm_page_count_severe() || buf_dirty_count_severe()) { 218 bawrite(bp); 219 error = 0; 220 } else { 221 if (bp->b_bufsize == fs->fs_bsize) 222 bp->b_flags |= B_CLUSTEROK; 223 bdwrite(bp); 224 error = 0; 225 } 226 return (error); 227 } 228 229 #define SINGLE 0 /* index of single indirect block */ 230 #define DOUBLE 1 /* index of double indirect block */ 231 #define TRIPLE 2 /* index of triple indirect block */ 232 /* 233 * Truncate the inode ip to at most length size, freeing the 234 * disk blocks. 235 */ 236 int 237 ffs_truncate(vp, length, flags, cred) 238 struct vnode *vp; 239 off_t length; 240 int flags; 241 struct ucred *cred; 242 { 243 struct inode *ip; 244 ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR]; 245 ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR]; 246 ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR]; 247 ufs2_daddr_t count, blocksreleased = 0, blkno; 248 struct bufobj *bo __diagused; 249 struct fs *fs; 250 struct buf *bp; 251 struct ufsmount *ump; 252 int softdeptrunc, journaltrunc; 253 int needextclean, extblocks; 254 int offset, size, level, nblocks; 255 int i, error, allerror, indiroff, waitforupdate; 256 u_long key; 257 off_t osize; 258 259 ip = VTOI(vp); 260 ump = VFSTOUFS(vp->v_mount); 261 fs = ump->um_fs; 262 bo = &vp->v_bufobj; 263 264 ASSERT_VOP_LOCKED(vp, "ffs_truncate"); 265 266 if (length < 0) 267 return (EINVAL); 268 if (length > fs->fs_maxfilesize) 269 return (EFBIG); 270 #ifdef QUOTA 271 error = getinoquota(ip); 272 if (error) 273 return (error); 274 #endif 275 /* 276 * Historically clients did not have to specify which data 277 * they were truncating. So, if not specified, we assume 278 * traditional behavior, e.g., just the normal data. 279 */ 280 if ((flags & (IO_EXT | IO_NORMAL)) == 0) 281 flags |= IO_NORMAL; 282 if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp)) 283 flags |= IO_SYNC; 284 waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp); 285 /* 286 * If we are truncating the extended-attributes, and cannot 287 * do it with soft updates, then do it slowly here. If we are 288 * truncating both the extended attributes and the file contents 289 * (e.g., the file is being unlinked), then pick it off with 290 * soft updates below. 291 */ 292 allerror = 0; 293 needextclean = 0; 294 softdeptrunc = 0; 295 journaltrunc = DOINGSUJ(vp); 296 journaltrunc = 0; /* XXX temp patch until bug found */ 297 if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0) 298 softdeptrunc = !softdep_slowdown(vp); 299 extblocks = 0; 300 if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) { 301 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 302 } 303 if ((flags & IO_EXT) && extblocks > 0) { 304 if (length != 0) 305 panic("ffs_truncate: partial trunc of extdata"); 306 if (softdeptrunc || journaltrunc) { 307 if ((flags & IO_NORMAL) == 0) 308 goto extclean; 309 needextclean = 1; 310 } else { 311 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 312 return (error); 313 #ifdef QUOTA 314 (void) chkdq(ip, -extblocks, NOCRED, FORCE); 315 #endif 316 vinvalbuf(vp, V_ALT, 0, 0); 317 vn_pages_remove(vp, 318 OFF_TO_IDX(lblktosize(fs, -extblocks)), 0); 319 osize = ip->i_din2->di_extsize; 320 ip->i_din2->di_blocks -= extblocks; 321 ip->i_din2->di_extsize = 0; 322 for (i = 0; i < UFS_NXADDR; i++) { 323 oldblks[i] = ip->i_din2->di_extb[i]; 324 ip->i_din2->di_extb[i] = 0; 325 } 326 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 327 if ((error = ffs_update(vp, waitforupdate))) 328 return (error); 329 for (i = 0; i < UFS_NXADDR; i++) { 330 if (oldblks[i] == 0) 331 continue; 332 ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i], 333 sblksize(fs, osize, i), ip->i_number, 334 vp->v_type, NULL, SINGLETON_KEY); 335 } 336 } 337 } 338 if ((flags & IO_NORMAL) == 0) 339 return (0); 340 if (vp->v_type == VLNK && ip->i_size < ump->um_maxsymlinklen) { 341 #ifdef INVARIANTS 342 if (length != 0) 343 panic("ffs_truncate: partial truncate of symlink"); 344 #endif 345 bzero(SHORTLINK(ip), (u_int)ip->i_size); 346 ip->i_size = 0; 347 DIP_SET(ip, i_size, 0); 348 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 349 if (needextclean) 350 goto extclean; 351 return (ffs_update(vp, waitforupdate)); 352 } 353 if (ip->i_size == length) { 354 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 355 if (needextclean) 356 goto extclean; 357 return (ffs_update(vp, 0)); 358 } 359 if (fs->fs_ronly) 360 panic("ffs_truncate: read-only filesystem"); 361 if (IS_SNAPSHOT(ip)) 362 ffs_snapremove(vp); 363 cluster_init_vn(&ip->i_clusterw); 364 osize = ip->i_size; 365 /* 366 * Lengthen the size of the file. We must ensure that the 367 * last byte of the file is allocated. Since the smallest 368 * value of osize is 0, length will be at least 1. 369 */ 370 if (osize < length) { 371 vnode_pager_setsize(vp, length); 372 flags |= BA_CLRBUF; 373 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 374 if (error) { 375 vnode_pager_setsize(vp, osize); 376 return (error); 377 } 378 ip->i_size = length; 379 DIP_SET(ip, i_size, length); 380 if (bp->b_bufsize == fs->fs_bsize) 381 bp->b_flags |= B_CLUSTEROK; 382 ffs_inode_bwrite(vp, bp, flags); 383 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 384 return (ffs_update(vp, waitforupdate)); 385 } 386 /* 387 * Lookup block number for a given offset. Zero length files 388 * have no blocks, so return a blkno of -1. 389 */ 390 lbn = lblkno(fs, length - 1); 391 if (length == 0) { 392 blkno = -1; 393 } else if (lbn < UFS_NDADDR) { 394 blkno = DIP(ip, i_db[lbn]); 395 } else { 396 error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize, 397 cred, BA_METAONLY, &bp); 398 if (error) 399 return (error); 400 indiroff = (lbn - UFS_NDADDR) % NINDIR(fs); 401 if (I_IS_UFS1(ip)) 402 blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff]; 403 else 404 blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff]; 405 /* 406 * If the block number is non-zero, then the indirect block 407 * must have been previously allocated and need not be written. 408 * If the block number is zero, then we may have allocated 409 * the indirect block and hence need to write it out. 410 */ 411 if (blkno != 0) 412 brelse(bp); 413 else if (flags & IO_SYNC) 414 bwrite(bp); 415 else 416 bdwrite(bp); 417 } 418 /* 419 * If the block number at the new end of the file is zero, 420 * then we must allocate it to ensure that the last block of 421 * the file is allocated. Soft updates does not handle this 422 * case, so here we have to clean up the soft updates data 423 * structures describing the allocation past the truncation 424 * point. Finding and deallocating those structures is a lot of 425 * work. Since partial truncation with a hole at the end occurs 426 * rarely, we solve the problem by syncing the file so that it 427 * will have no soft updates data structures left. 428 */ 429 if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 430 return (error); 431 if (blkno != 0 && DOINGSOFTDEP(vp)) { 432 if (softdeptrunc == 0 && journaltrunc == 0) { 433 /* 434 * If soft updates cannot handle this truncation, 435 * clean up soft dependency data structures and 436 * fall through to the synchronous truncation. 437 */ 438 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 439 return (error); 440 } else { 441 flags = IO_NORMAL | (needextclean ? IO_EXT: 0); 442 if (journaltrunc) 443 softdep_journal_freeblocks(ip, cred, length, 444 flags); 445 else 446 softdep_setup_freeblocks(ip, length, flags); 447 ASSERT_VOP_LOCKED(vp, "ffs_truncate1"); 448 if (journaltrunc == 0) { 449 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 450 error = ffs_update(vp, 0); 451 } 452 return (error); 453 } 454 } 455 /* 456 * Shorten the size of the file. If the last block of the 457 * shortened file is unallocated, we must allocate it. 458 * Additionally, if the file is not being truncated to a 459 * block boundary, the contents of the partial block 460 * following the end of the file must be zero'ed in 461 * case it ever becomes accessible again because of 462 * subsequent file growth. Directories however are not 463 * zero'ed as they should grow back initialized to empty. 464 */ 465 offset = blkoff(fs, length); 466 if (blkno != 0 && offset == 0) { 467 ip->i_size = length; 468 DIP_SET(ip, i_size, length); 469 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 470 #ifdef UFS_DIRHASH 471 if (vp->v_type == VDIR && ip->i_dirhash != NULL) 472 ufsdirhash_dirtrunc(ip, length); 473 #endif 474 } else { 475 lbn = lblkno(fs, length); 476 flags |= BA_CLRBUF; 477 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 478 if (error) 479 return (error); 480 ffs_inode_bwrite(vp, bp, flags); 481 482 /* 483 * When we are doing soft updates and the UFS_BALLOC 484 * above fills in a direct block hole with a full sized 485 * block that will be truncated down to a fragment below, 486 * we must flush out the block dependency with an FSYNC 487 * so that we do not get a soft updates inconsistency 488 * when we create the fragment below. 489 */ 490 if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR && 491 fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize && 492 (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 493 return (error); 494 495 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 496 if (error) 497 return (error); 498 ip->i_size = length; 499 DIP_SET(ip, i_size, length); 500 #ifdef UFS_DIRHASH 501 if (vp->v_type == VDIR && ip->i_dirhash != NULL) 502 ufsdirhash_dirtrunc(ip, length); 503 #endif 504 size = blksize(fs, ip, lbn); 505 if (vp->v_type != VDIR && offset != 0) 506 bzero((char *)bp->b_data + offset, 507 (u_int)(size - offset)); 508 /* Kirk's code has reallocbuf(bp, size, 1) here */ 509 allocbuf(bp, size); 510 if (bp->b_bufsize == fs->fs_bsize) 511 bp->b_flags |= B_CLUSTEROK; 512 ffs_inode_bwrite(vp, bp, flags); 513 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 514 } 515 /* 516 * Calculate index into inode's block list of 517 * last direct and indirect blocks (if any) 518 * which we want to keep. Lastblock is -1 when 519 * the file is truncated to 0. 520 */ 521 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; 522 lastiblock[SINGLE] = lastblock - UFS_NDADDR; 523 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); 524 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); 525 nblocks = btodb(fs->fs_bsize); 526 /* 527 * Update file and block pointers on disk before we start freeing 528 * blocks. If we crash before free'ing blocks below, the blocks 529 * will be returned to the free list. lastiblock values are also 530 * normalized to -1 for calls to ffs_indirtrunc below. 531 */ 532 for (level = TRIPLE; level >= SINGLE; level--) { 533 oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]); 534 if (lastiblock[level] < 0) { 535 DIP_SET(ip, i_ib[level], 0); 536 lastiblock[level] = -1; 537 } 538 } 539 for (i = 0; i < UFS_NDADDR; i++) { 540 oldblks[i] = DIP(ip, i_db[i]); 541 if (i > lastblock) 542 DIP_SET(ip, i_db[i], 0); 543 } 544 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 545 allerror = ffs_update(vp, waitforupdate); 546 547 /* 548 * Having written the new inode to disk, save its new configuration 549 * and put back the old block pointers long enough to process them. 550 * Note that we save the new block configuration so we can check it 551 * when we are done. 552 */ 553 for (i = 0; i < UFS_NDADDR; i++) { 554 newblks[i] = DIP(ip, i_db[i]); 555 DIP_SET(ip, i_db[i], oldblks[i]); 556 } 557 for (i = 0; i < UFS_NIADDR; i++) { 558 newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]); 559 DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]); 560 } 561 ip->i_size = osize; 562 DIP_SET(ip, i_size, osize); 563 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 564 565 error = vtruncbuf(vp, length, fs->fs_bsize); 566 if (error && (allerror == 0)) 567 allerror = error; 568 569 /* 570 * Indirect blocks first. 571 */ 572 indir_lbn[SINGLE] = -UFS_NDADDR; 573 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; 574 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; 575 for (level = TRIPLE; level >= SINGLE; level--) { 576 bn = DIP(ip, i_ib[level]); 577 if (bn != 0) { 578 error = ffs_indirtrunc(ip, indir_lbn[level], 579 fsbtodb(fs, bn), lastiblock[level], level, &count); 580 if (error) 581 allerror = error; 582 blocksreleased += count; 583 if (lastiblock[level] < 0) { 584 DIP_SET(ip, i_ib[level], 0); 585 ffs_blkfree(ump, fs, ump->um_devvp, bn, 586 fs->fs_bsize, ip->i_number, 587 vp->v_type, NULL, SINGLETON_KEY); 588 blocksreleased += nblocks; 589 } 590 } 591 if (lastiblock[level] >= 0) 592 goto done; 593 } 594 595 /* 596 * All whole direct blocks or frags. 597 */ 598 key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number); 599 for (i = UFS_NDADDR - 1; i > lastblock; i--) { 600 long bsize; 601 602 bn = DIP(ip, i_db[i]); 603 if (bn == 0) 604 continue; 605 DIP_SET(ip, i_db[i], 0); 606 bsize = blksize(fs, ip, i); 607 ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number, 608 vp->v_type, NULL, key); 609 blocksreleased += btodb(bsize); 610 } 611 ffs_blkrelease_finish(ump, key); 612 if (lastblock < 0) 613 goto done; 614 615 /* 616 * Finally, look for a change in size of the 617 * last direct block; release any frags. 618 */ 619 bn = DIP(ip, i_db[lastblock]); 620 if (bn != 0) { 621 long oldspace, newspace; 622 623 /* 624 * Calculate amount of space we're giving 625 * back as old block size minus new block size. 626 */ 627 oldspace = blksize(fs, ip, lastblock); 628 ip->i_size = length; 629 DIP_SET(ip, i_size, length); 630 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 631 newspace = blksize(fs, ip, lastblock); 632 if (newspace == 0) 633 panic("ffs_truncate: newspace"); 634 if (oldspace - newspace > 0) { 635 /* 636 * Block number of space to be free'd is 637 * the old block # plus the number of frags 638 * required for the storage we're keeping. 639 */ 640 bn += numfrags(fs, newspace); 641 ffs_blkfree(ump, fs, ump->um_devvp, bn, 642 oldspace - newspace, ip->i_number, vp->v_type, 643 NULL, SINGLETON_KEY); 644 blocksreleased += btodb(oldspace - newspace); 645 } 646 } 647 done: 648 #ifdef INVARIANTS 649 for (level = SINGLE; level <= TRIPLE; level++) 650 if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level])) 651 panic("ffs_truncate1: level %d newblks %jd != i_ib %jd", 652 level, (intmax_t)newblks[UFS_NDADDR + level], 653 (intmax_t)DIP(ip, i_ib[level])); 654 for (i = 0; i < UFS_NDADDR; i++) 655 if (newblks[i] != DIP(ip, i_db[i])) 656 panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd", 657 i, (intmax_t)newblks[UFS_NDADDR + level], 658 (intmax_t)DIP(ip, i_ib[level])); 659 BO_LOCK(bo); 660 if (length == 0 && 661 (fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) && 662 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 663 panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d", 664 vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt); 665 BO_UNLOCK(bo); 666 #endif /* INVARIANTS */ 667 /* 668 * Put back the real size. 669 */ 670 ip->i_size = length; 671 DIP_SET(ip, i_size, length); 672 if (DIP(ip, i_blocks) >= blocksreleased) 673 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased); 674 else /* sanity */ 675 DIP_SET(ip, i_blocks, 0); 676 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 677 #ifdef QUOTA 678 (void) chkdq(ip, -blocksreleased, NOCRED, FORCE); 679 #endif 680 return (allerror); 681 682 extclean: 683 if (journaltrunc) 684 softdep_journal_freeblocks(ip, cred, length, IO_EXT); 685 else 686 softdep_setup_freeblocks(ip, length, IO_EXT); 687 return (ffs_update(vp, waitforupdate)); 688 } 689 690 /* 691 * Release blocks associated with the inode ip and stored in the indirect 692 * block bn. Blocks are free'd in LIFO order up to (but not including) 693 * lastbn. If level is greater than SINGLE, the block is an indirect block 694 * and recursive calls to indirtrunc must be used to cleanse other indirect 695 * blocks. 696 */ 697 static int 698 ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp) 699 struct inode *ip; 700 ufs2_daddr_t lbn, lastbn; 701 ufs2_daddr_t dbn; 702 int level; 703 ufs2_daddr_t *countp; 704 { 705 struct buf *bp; 706 struct fs *fs; 707 struct ufsmount *ump; 708 struct vnode *vp; 709 caddr_t copy = NULL; 710 u_long key; 711 int i, nblocks, error = 0, allerror = 0; 712 ufs2_daddr_t nb, nlbn, last; 713 ufs2_daddr_t blkcount, factor, blocksreleased = 0; 714 ufs1_daddr_t *bap1 = NULL; 715 ufs2_daddr_t *bap2 = NULL; 716 #define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i]) 717 718 fs = ITOFS(ip); 719 ump = ITOUMP(ip); 720 721 /* 722 * Calculate index in current block of last 723 * block to be kept. -1 indicates the entire 724 * block so we need not calculate the index. 725 */ 726 factor = lbn_offset(fs, level); 727 last = lastbn; 728 if (lastbn > 0) 729 last /= factor; 730 nblocks = btodb(fs->fs_bsize); 731 /* 732 * Get buffer of block pointers, zero those entries corresponding 733 * to blocks to be free'd, and update on disk copy first. Since 734 * double(triple) indirect before single(double) indirect, calls 735 * to VOP_BMAP() on these blocks will fail. However, we already 736 * have the on-disk address, so we just pass it to bread() instead 737 * of having bread() attempt to calculate it using VOP_BMAP(). 738 */ 739 vp = ITOV(ip); 740 error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, 741 NOCRED, 0, NULL, &bp); 742 if (error) { 743 *countp = 0; 744 return (error); 745 } 746 747 if (I_IS_UFS1(ip)) 748 bap1 = (ufs1_daddr_t *)bp->b_data; 749 else 750 bap2 = (ufs2_daddr_t *)bp->b_data; 751 if (lastbn != -1) { 752 copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK); 753 bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize); 754 for (i = last + 1; i < NINDIR(fs); i++) 755 if (I_IS_UFS1(ip)) 756 bap1[i] = 0; 757 else 758 bap2[i] = 0; 759 if (DOINGASYNC(vp)) { 760 bdwrite(bp); 761 } else { 762 error = bwrite(bp); 763 if (error) 764 allerror = error; 765 } 766 if (I_IS_UFS1(ip)) 767 bap1 = (ufs1_daddr_t *)copy; 768 else 769 bap2 = (ufs2_daddr_t *)copy; 770 } 771 772 /* 773 * Recursively free totally unused blocks. 774 */ 775 key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number); 776 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; 777 i--, nlbn += factor) { 778 nb = BAP(ip, i); 779 if (nb == 0) 780 continue; 781 if (level > SINGLE) { 782 if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 783 (ufs2_daddr_t)-1, level - 1, &blkcount)) != 0) 784 allerror = error; 785 blocksreleased += blkcount; 786 } 787 ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize, 788 ip->i_number, vp->v_type, NULL, key); 789 blocksreleased += nblocks; 790 } 791 ffs_blkrelease_finish(ump, key); 792 793 /* 794 * Recursively free last partial block. 795 */ 796 if (level > SINGLE && lastbn >= 0) { 797 last = lastbn % factor; 798 nb = BAP(ip, i); 799 if (nb != 0) { 800 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 801 last, level - 1, &blkcount); 802 if (error) 803 allerror = error; 804 blocksreleased += blkcount; 805 } 806 } 807 if (copy != NULL) { 808 free(copy, M_TEMP); 809 } else { 810 bp->b_flags |= B_INVAL | B_NOCACHE; 811 brelse(bp); 812 } 813 814 *countp = blocksreleased; 815 return (allerror); 816 } 817 818 int 819 ffs_rdonly(struct inode *ip) 820 { 821 822 return (ITOFS(ip)->fs_ronly != 0); 823 } 824