1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_quota.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/bio.h> 42 #include <sys/buf.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/proc.h> 46 #include <sys/racct.h> 47 #include <sys/random.h> 48 #include <sys/resourcevar.h> 49 #include <sys/rwlock.h> 50 #include <sys/stat.h> 51 #include <sys/vmmeter.h> 52 #include <sys/vnode.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_object.h> 57 58 #include <ufs/ufs/extattr.h> 59 #include <ufs/ufs/quota.h> 60 #include <ufs/ufs/ufsmount.h> 61 #include <ufs/ufs/inode.h> 62 #include <ufs/ufs/ufs_extern.h> 63 64 #include <ufs/ffs/fs.h> 65 #include <ufs/ffs/ffs_extern.h> 66 67 static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t, 68 ufs2_daddr_t, int, ufs2_daddr_t *); 69 70 /* 71 * Update the access, modified, and inode change times as specified by the 72 * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode 73 * to disk if the IN_MODIFIED flag is set (it may be set initially, or by 74 * the timestamp update). The IN_LAZYMOD flag is set to force a write 75 * later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs 76 * is currently being suspended (or is suspended) and vnode has been accessed. 77 * If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to 78 * reflect the presumably successful write, and if waitfor is set, then wait 79 * for the write to complete. 80 */ 81 int 82 ffs_update(vp, waitfor) 83 struct vnode *vp; 84 int waitfor; 85 { 86 struct fs *fs; 87 struct buf *bp; 88 struct inode *ip; 89 int flags, error; 90 91 ASSERT_VOP_ELOCKED(vp, "ffs_update"); 92 ufs_itimes(vp); 93 ip = VTOI(vp); 94 if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0) 95 return (0); 96 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 97 fs = ITOFS(ip); 98 if (fs->fs_ronly && ITOUMP(ip)->um_fsckpid == 0) 99 return (0); 100 /* 101 * If we are updating a snapshot and another process is currently 102 * writing the buffer containing the inode for this snapshot then 103 * a deadlock can occur when it tries to check the snapshot to see 104 * if that block needs to be copied. Thus when updating a snapshot 105 * we check to see if the buffer is already locked, and if it is 106 * we drop the snapshot lock until the buffer has been written 107 * and is available to us. We have to grab a reference to the 108 * snapshot vnode to prevent it from being removed while we are 109 * waiting for the buffer. 110 */ 111 flags = 0; 112 if (IS_SNAPSHOT(ip)) 113 flags = GB_LOCK_NOWAIT; 114 loop: 115 error = bread_gb(ITODEVVP(ip), 116 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 117 (int) fs->fs_bsize, NOCRED, flags, &bp); 118 if (error != 0) { 119 if (error != EBUSY) 120 return (error); 121 KASSERT((IS_SNAPSHOT(ip)), ("EBUSY from non-snapshot")); 122 /* 123 * Wait for our inode block to become available. 124 * 125 * Hold a reference to the vnode to protect against 126 * ffs_snapgone(). Since we hold a reference, it can only 127 * get reclaimed (VI_DOOMED flag) in a forcible downgrade 128 * or unmount. For an unmount, the entire filesystem will be 129 * gone, so we cannot attempt to touch anything associated 130 * with it while the vnode is unlocked; all we can do is 131 * pause briefly and try again. If when we relock the vnode 132 * we discover that it has been reclaimed, updating it is no 133 * longer necessary and we can just return an error. 134 */ 135 vref(vp); 136 VOP_UNLOCK(vp, 0); 137 pause("ffsupd", 1); 138 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 139 vrele(vp); 140 if ((vp->v_iflag & VI_DOOMED) != 0) 141 return (ENOENT); 142 goto loop; 143 } 144 if (DOINGSOFTDEP(vp)) 145 softdep_update_inodeblock(ip, bp, waitfor); 146 else if (ip->i_effnlink != ip->i_nlink) 147 panic("ffs_update: bad link cnt"); 148 if (I_IS_UFS1(ip)) { 149 *((struct ufs1_dinode *)bp->b_data + 150 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 151 /* 152 * XXX: FIX? The entropy here is desirable, 153 * but the harvesting may be expensive 154 */ 155 random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME); 156 } else { 157 ffs_update_dinode_ckhash(fs, ip->i_din2); 158 *((struct ufs2_dinode *)bp->b_data + 159 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 160 /* 161 * XXX: FIX? The entropy here is desirable, 162 * but the harvesting may be expensive 163 */ 164 random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME); 165 } 166 if (waitfor) 167 error = bwrite(bp); 168 else if (vm_page_count_severe() || buf_dirty_count_severe()) { 169 bawrite(bp); 170 error = 0; 171 } else { 172 if (bp->b_bufsize == fs->fs_bsize) 173 bp->b_flags |= B_CLUSTEROK; 174 bdwrite(bp); 175 error = 0; 176 } 177 return (error); 178 } 179 180 #define SINGLE 0 /* index of single indirect block */ 181 #define DOUBLE 1 /* index of double indirect block */ 182 #define TRIPLE 2 /* index of triple indirect block */ 183 /* 184 * Truncate the inode ip to at most length size, freeing the 185 * disk blocks. 186 */ 187 int 188 ffs_truncate(vp, length, flags, cred) 189 struct vnode *vp; 190 off_t length; 191 int flags; 192 struct ucred *cred; 193 { 194 struct inode *ip; 195 ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR]; 196 ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR]; 197 ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR]; 198 ufs2_daddr_t count, blocksreleased = 0, datablocks, blkno; 199 struct bufobj *bo; 200 struct fs *fs; 201 struct buf *bp; 202 struct ufsmount *ump; 203 int softdeptrunc, journaltrunc; 204 int needextclean, extblocks; 205 int offset, size, level, nblocks; 206 int i, error, allerror, indiroff, waitforupdate; 207 u_long key; 208 off_t osize; 209 210 ip = VTOI(vp); 211 ump = VFSTOUFS(vp->v_mount); 212 fs = ump->um_fs; 213 bo = &vp->v_bufobj; 214 215 ASSERT_VOP_LOCKED(vp, "ffs_truncate"); 216 217 if (length < 0) 218 return (EINVAL); 219 if (length > fs->fs_maxfilesize) 220 return (EFBIG); 221 #ifdef QUOTA 222 error = getinoquota(ip); 223 if (error) 224 return (error); 225 #endif 226 /* 227 * Historically clients did not have to specify which data 228 * they were truncating. So, if not specified, we assume 229 * traditional behavior, e.g., just the normal data. 230 */ 231 if ((flags & (IO_EXT | IO_NORMAL)) == 0) 232 flags |= IO_NORMAL; 233 if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp)) 234 flags |= IO_SYNC; 235 waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp); 236 /* 237 * If we are truncating the extended-attributes, and cannot 238 * do it with soft updates, then do it slowly here. If we are 239 * truncating both the extended attributes and the file contents 240 * (e.g., the file is being unlinked), then pick it off with 241 * soft updates below. 242 */ 243 allerror = 0; 244 needextclean = 0; 245 softdeptrunc = 0; 246 journaltrunc = DOINGSUJ(vp); 247 if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0) 248 softdeptrunc = !softdep_slowdown(vp); 249 extblocks = 0; 250 datablocks = DIP(ip, i_blocks); 251 if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) { 252 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 253 datablocks -= extblocks; 254 } 255 if ((flags & IO_EXT) && extblocks > 0) { 256 if (length != 0) 257 panic("ffs_truncate: partial trunc of extdata"); 258 if (softdeptrunc || journaltrunc) { 259 if ((flags & IO_NORMAL) == 0) 260 goto extclean; 261 needextclean = 1; 262 } else { 263 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 264 return (error); 265 #ifdef QUOTA 266 (void) chkdq(ip, -extblocks, NOCRED, 0); 267 #endif 268 vinvalbuf(vp, V_ALT, 0, 0); 269 vn_pages_remove(vp, 270 OFF_TO_IDX(lblktosize(fs, -extblocks)), 0); 271 osize = ip->i_din2->di_extsize; 272 ip->i_din2->di_blocks -= extblocks; 273 ip->i_din2->di_extsize = 0; 274 for (i = 0; i < UFS_NXADDR; i++) { 275 oldblks[i] = ip->i_din2->di_extb[i]; 276 ip->i_din2->di_extb[i] = 0; 277 } 278 ip->i_flag |= IN_CHANGE; 279 if ((error = ffs_update(vp, waitforupdate))) 280 return (error); 281 for (i = 0; i < UFS_NXADDR; i++) { 282 if (oldblks[i] == 0) 283 continue; 284 ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i], 285 sblksize(fs, osize, i), ip->i_number, 286 vp->v_type, NULL, SINGLETON_KEY); 287 } 288 } 289 } 290 if ((flags & IO_NORMAL) == 0) 291 return (0); 292 if (vp->v_type == VLNK && 293 (ip->i_size < vp->v_mount->mnt_maxsymlinklen || 294 datablocks == 0)) { 295 #ifdef INVARIANTS 296 if (length != 0) 297 panic("ffs_truncate: partial truncate of symlink"); 298 #endif 299 bzero(SHORTLINK(ip), (u_int)ip->i_size); 300 ip->i_size = 0; 301 DIP_SET(ip, i_size, 0); 302 ip->i_flag |= IN_CHANGE | IN_UPDATE; 303 if (needextclean) 304 goto extclean; 305 return (ffs_update(vp, waitforupdate)); 306 } 307 if (ip->i_size == length) { 308 ip->i_flag |= IN_CHANGE | IN_UPDATE; 309 if (needextclean) 310 goto extclean; 311 return (ffs_update(vp, 0)); 312 } 313 if (fs->fs_ronly) 314 panic("ffs_truncate: read-only filesystem"); 315 if (IS_SNAPSHOT(ip)) 316 ffs_snapremove(vp); 317 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; 318 osize = ip->i_size; 319 /* 320 * Lengthen the size of the file. We must ensure that the 321 * last byte of the file is allocated. Since the smallest 322 * value of osize is 0, length will be at least 1. 323 */ 324 if (osize < length) { 325 vnode_pager_setsize(vp, length); 326 flags |= BA_CLRBUF; 327 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 328 if (error) { 329 vnode_pager_setsize(vp, osize); 330 return (error); 331 } 332 ip->i_size = length; 333 DIP_SET(ip, i_size, length); 334 if (bp->b_bufsize == fs->fs_bsize) 335 bp->b_flags |= B_CLUSTEROK; 336 if (flags & IO_SYNC) 337 bwrite(bp); 338 else if (DOINGASYNC(vp)) 339 bdwrite(bp); 340 else 341 bawrite(bp); 342 ip->i_flag |= IN_CHANGE | IN_UPDATE; 343 return (ffs_update(vp, waitforupdate)); 344 } 345 /* 346 * Lookup block number for a given offset. Zero length files 347 * have no blocks, so return a blkno of -1. 348 */ 349 lbn = lblkno(fs, length - 1); 350 if (length == 0) { 351 blkno = -1; 352 } else if (lbn < UFS_NDADDR) { 353 blkno = DIP(ip, i_db[lbn]); 354 } else { 355 error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize, 356 cred, BA_METAONLY, &bp); 357 if (error) 358 return (error); 359 indiroff = (lbn - UFS_NDADDR) % NINDIR(fs); 360 if (I_IS_UFS1(ip)) 361 blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff]; 362 else 363 blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff]; 364 /* 365 * If the block number is non-zero, then the indirect block 366 * must have been previously allocated and need not be written. 367 * If the block number is zero, then we may have allocated 368 * the indirect block and hence need to write it out. 369 */ 370 if (blkno != 0) 371 brelse(bp); 372 else if (flags & IO_SYNC) 373 bwrite(bp); 374 else 375 bdwrite(bp); 376 } 377 /* 378 * If the block number at the new end of the file is zero, 379 * then we must allocate it to ensure that the last block of 380 * the file is allocated. Soft updates does not handle this 381 * case, so here we have to clean up the soft updates data 382 * structures describing the allocation past the truncation 383 * point. Finding and deallocating those structures is a lot of 384 * work. Since partial truncation with a hole at the end occurs 385 * rarely, we solve the problem by syncing the file so that it 386 * will have no soft updates data structures left. 387 */ 388 if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 389 return (error); 390 if (blkno != 0 && DOINGSOFTDEP(vp)) { 391 if (softdeptrunc == 0 && journaltrunc == 0) { 392 /* 393 * If soft updates cannot handle this truncation, 394 * clean up soft dependency data structures and 395 * fall through to the synchronous truncation. 396 */ 397 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 398 return (error); 399 } else { 400 flags = IO_NORMAL | (needextclean ? IO_EXT: 0); 401 if (journaltrunc) 402 softdep_journal_freeblocks(ip, cred, length, 403 flags); 404 else 405 softdep_setup_freeblocks(ip, length, flags); 406 ASSERT_VOP_LOCKED(vp, "ffs_truncate1"); 407 if (journaltrunc == 0) { 408 ip->i_flag |= IN_CHANGE | IN_UPDATE; 409 error = ffs_update(vp, 0); 410 } 411 return (error); 412 } 413 } 414 /* 415 * Shorten the size of the file. If the last block of the 416 * shortened file is unallocated, we must allocate it. 417 * Additionally, if the file is not being truncated to a 418 * block boundary, the contents of the partial block 419 * following the end of the file must be zero'ed in 420 * case it ever becomes accessible again because of 421 * subsequent file growth. Directories however are not 422 * zero'ed as they should grow back initialized to empty. 423 */ 424 offset = blkoff(fs, length); 425 if (blkno != 0 && offset == 0) { 426 ip->i_size = length; 427 DIP_SET(ip, i_size, length); 428 } else { 429 lbn = lblkno(fs, length); 430 flags |= BA_CLRBUF; 431 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 432 if (error) 433 return (error); 434 /* 435 * When we are doing soft updates and the UFS_BALLOC 436 * above fills in a direct block hole with a full sized 437 * block that will be truncated down to a fragment below, 438 * we must flush out the block dependency with an FSYNC 439 * so that we do not get a soft updates inconsistency 440 * when we create the fragment below. 441 */ 442 if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR && 443 fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize && 444 (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 445 return (error); 446 ip->i_size = length; 447 DIP_SET(ip, i_size, length); 448 size = blksize(fs, ip, lbn); 449 if (vp->v_type != VDIR && offset != 0) 450 bzero((char *)bp->b_data + offset, 451 (u_int)(size - offset)); 452 /* Kirk's code has reallocbuf(bp, size, 1) here */ 453 allocbuf(bp, size); 454 if (bp->b_bufsize == fs->fs_bsize) 455 bp->b_flags |= B_CLUSTEROK; 456 if (flags & IO_SYNC) 457 bwrite(bp); 458 else if (DOINGASYNC(vp)) 459 bdwrite(bp); 460 else 461 bawrite(bp); 462 } 463 /* 464 * Calculate index into inode's block list of 465 * last direct and indirect blocks (if any) 466 * which we want to keep. Lastblock is -1 when 467 * the file is truncated to 0. 468 */ 469 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; 470 lastiblock[SINGLE] = lastblock - UFS_NDADDR; 471 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); 472 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); 473 nblocks = btodb(fs->fs_bsize); 474 /* 475 * Update file and block pointers on disk before we start freeing 476 * blocks. If we crash before free'ing blocks below, the blocks 477 * will be returned to the free list. lastiblock values are also 478 * normalized to -1 for calls to ffs_indirtrunc below. 479 */ 480 for (level = TRIPLE; level >= SINGLE; level--) { 481 oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]); 482 if (lastiblock[level] < 0) { 483 DIP_SET(ip, i_ib[level], 0); 484 lastiblock[level] = -1; 485 } 486 } 487 for (i = 0; i < UFS_NDADDR; i++) { 488 oldblks[i] = DIP(ip, i_db[i]); 489 if (i > lastblock) 490 DIP_SET(ip, i_db[i], 0); 491 } 492 ip->i_flag |= IN_CHANGE | IN_UPDATE; 493 allerror = ffs_update(vp, waitforupdate); 494 495 /* 496 * Having written the new inode to disk, save its new configuration 497 * and put back the old block pointers long enough to process them. 498 * Note that we save the new block configuration so we can check it 499 * when we are done. 500 */ 501 for (i = 0; i < UFS_NDADDR; i++) { 502 newblks[i] = DIP(ip, i_db[i]); 503 DIP_SET(ip, i_db[i], oldblks[i]); 504 } 505 for (i = 0; i < UFS_NIADDR; i++) { 506 newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]); 507 DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]); 508 } 509 ip->i_size = osize; 510 DIP_SET(ip, i_size, osize); 511 512 error = vtruncbuf(vp, cred, length, fs->fs_bsize); 513 if (error && (allerror == 0)) 514 allerror = error; 515 516 /* 517 * Indirect blocks first. 518 */ 519 indir_lbn[SINGLE] = -UFS_NDADDR; 520 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; 521 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; 522 for (level = TRIPLE; level >= SINGLE; level--) { 523 bn = DIP(ip, i_ib[level]); 524 if (bn != 0) { 525 error = ffs_indirtrunc(ip, indir_lbn[level], 526 fsbtodb(fs, bn), lastiblock[level], level, &count); 527 if (error) 528 allerror = error; 529 blocksreleased += count; 530 if (lastiblock[level] < 0) { 531 DIP_SET(ip, i_ib[level], 0); 532 ffs_blkfree(ump, fs, ump->um_devvp, bn, 533 fs->fs_bsize, ip->i_number, 534 vp->v_type, NULL, SINGLETON_KEY); 535 blocksreleased += nblocks; 536 } 537 } 538 if (lastiblock[level] >= 0) 539 goto done; 540 } 541 542 /* 543 * All whole direct blocks or frags. 544 */ 545 key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number); 546 for (i = UFS_NDADDR - 1; i > lastblock; i--) { 547 long bsize; 548 549 bn = DIP(ip, i_db[i]); 550 if (bn == 0) 551 continue; 552 DIP_SET(ip, i_db[i], 0); 553 bsize = blksize(fs, ip, i); 554 ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number, 555 vp->v_type, NULL, key); 556 blocksreleased += btodb(bsize); 557 } 558 ffs_blkrelease_finish(ump, key); 559 if (lastblock < 0) 560 goto done; 561 562 /* 563 * Finally, look for a change in size of the 564 * last direct block; release any frags. 565 */ 566 bn = DIP(ip, i_db[lastblock]); 567 if (bn != 0) { 568 long oldspace, newspace; 569 570 /* 571 * Calculate amount of space we're giving 572 * back as old block size minus new block size. 573 */ 574 oldspace = blksize(fs, ip, lastblock); 575 ip->i_size = length; 576 DIP_SET(ip, i_size, length); 577 newspace = blksize(fs, ip, lastblock); 578 if (newspace == 0) 579 panic("ffs_truncate: newspace"); 580 if (oldspace - newspace > 0) { 581 /* 582 * Block number of space to be free'd is 583 * the old block # plus the number of frags 584 * required for the storage we're keeping. 585 */ 586 bn += numfrags(fs, newspace); 587 ffs_blkfree(ump, fs, ump->um_devvp, bn, 588 oldspace - newspace, ip->i_number, vp->v_type, 589 NULL, SINGLETON_KEY); 590 blocksreleased += btodb(oldspace - newspace); 591 } 592 } 593 done: 594 #ifdef INVARIANTS 595 for (level = SINGLE; level <= TRIPLE; level++) 596 if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level])) 597 panic("ffs_truncate1: level %d newblks %jd != i_ib %jd", 598 level, (intmax_t)newblks[UFS_NDADDR + level], 599 (intmax_t)DIP(ip, i_ib[level])); 600 for (i = 0; i < UFS_NDADDR; i++) 601 if (newblks[i] != DIP(ip, i_db[i])) 602 panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd", 603 i, (intmax_t)newblks[UFS_NDADDR + level], 604 (intmax_t)DIP(ip, i_ib[level])); 605 BO_LOCK(bo); 606 if (length == 0 && 607 (fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) && 608 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 609 panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d", 610 vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt); 611 BO_UNLOCK(bo); 612 #endif /* INVARIANTS */ 613 /* 614 * Put back the real size. 615 */ 616 ip->i_size = length; 617 DIP_SET(ip, i_size, length); 618 if (DIP(ip, i_blocks) >= blocksreleased) 619 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased); 620 else /* sanity */ 621 DIP_SET(ip, i_blocks, 0); 622 ip->i_flag |= IN_CHANGE; 623 #ifdef QUOTA 624 (void) chkdq(ip, -blocksreleased, NOCRED, 0); 625 #endif 626 return (allerror); 627 628 extclean: 629 if (journaltrunc) 630 softdep_journal_freeblocks(ip, cred, length, IO_EXT); 631 else 632 softdep_setup_freeblocks(ip, length, IO_EXT); 633 return (ffs_update(vp, waitforupdate)); 634 } 635 636 /* 637 * Release blocks associated with the inode ip and stored in the indirect 638 * block bn. Blocks are free'd in LIFO order up to (but not including) 639 * lastbn. If level is greater than SINGLE, the block is an indirect block 640 * and recursive calls to indirtrunc must be used to cleanse other indirect 641 * blocks. 642 */ 643 static int 644 ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp) 645 struct inode *ip; 646 ufs2_daddr_t lbn, lastbn; 647 ufs2_daddr_t dbn; 648 int level; 649 ufs2_daddr_t *countp; 650 { 651 struct buf *bp; 652 struct fs *fs; 653 struct ufsmount *ump; 654 struct vnode *vp; 655 caddr_t copy = NULL; 656 u_long key; 657 int i, nblocks, error = 0, allerror = 0; 658 ufs2_daddr_t nb, nlbn, last; 659 ufs2_daddr_t blkcount, factor, blocksreleased = 0; 660 ufs1_daddr_t *bap1 = NULL; 661 ufs2_daddr_t *bap2 = NULL; 662 #define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i]) 663 664 fs = ITOFS(ip); 665 ump = ITOUMP(ip); 666 667 /* 668 * Calculate index in current block of last 669 * block to be kept. -1 indicates the entire 670 * block so we need not calculate the index. 671 */ 672 factor = lbn_offset(fs, level); 673 last = lastbn; 674 if (lastbn > 0) 675 last /= factor; 676 nblocks = btodb(fs->fs_bsize); 677 /* 678 * Get buffer of block pointers, zero those entries corresponding 679 * to blocks to be free'd, and update on disk copy first. Since 680 * double(triple) indirect before single(double) indirect, calls 681 * to bmap on these blocks will fail. However, we already have 682 * the on disk address, so we have to set the b_blkno field 683 * explicitly instead of letting bread do everything for us. 684 */ 685 vp = ITOV(ip); 686 bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0, 0); 687 if ((bp->b_flags & B_CACHE) == 0) { 688 #ifdef RACCT 689 if (racct_enable) { 690 PROC_LOCK(curproc); 691 racct_add_buf(curproc, bp, 0); 692 PROC_UNLOCK(curproc); 693 } 694 #endif /* RACCT */ 695 curthread->td_ru.ru_inblock++; /* pay for read */ 696 bp->b_iocmd = BIO_READ; 697 bp->b_flags &= ~B_INVAL; 698 bp->b_ioflags &= ~BIO_ERROR; 699 if (bp->b_bcount > bp->b_bufsize) 700 panic("ffs_indirtrunc: bad buffer size"); 701 bp->b_blkno = dbn; 702 vfs_busy_pages(bp, 0); 703 bp->b_iooffset = dbtob(bp->b_blkno); 704 bstrategy(bp); 705 error = bufwait(bp); 706 } 707 if (error) { 708 brelse(bp); 709 *countp = 0; 710 return (error); 711 } 712 713 if (I_IS_UFS1(ip)) 714 bap1 = (ufs1_daddr_t *)bp->b_data; 715 else 716 bap2 = (ufs2_daddr_t *)bp->b_data; 717 if (lastbn != -1) { 718 copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK); 719 bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize); 720 for (i = last + 1; i < NINDIR(fs); i++) 721 if (I_IS_UFS1(ip)) 722 bap1[i] = 0; 723 else 724 bap2[i] = 0; 725 if (DOINGASYNC(vp)) { 726 bdwrite(bp); 727 } else { 728 error = bwrite(bp); 729 if (error) 730 allerror = error; 731 } 732 if (I_IS_UFS1(ip)) 733 bap1 = (ufs1_daddr_t *)copy; 734 else 735 bap2 = (ufs2_daddr_t *)copy; 736 } 737 738 /* 739 * Recursively free totally unused blocks. 740 */ 741 key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number); 742 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; 743 i--, nlbn += factor) { 744 nb = BAP(ip, i); 745 if (nb == 0) 746 continue; 747 if (level > SINGLE) { 748 if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 749 (ufs2_daddr_t)-1, level - 1, &blkcount)) != 0) 750 allerror = error; 751 blocksreleased += blkcount; 752 } 753 ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize, 754 ip->i_number, vp->v_type, NULL, key); 755 blocksreleased += nblocks; 756 } 757 ffs_blkrelease_finish(ump, key); 758 759 /* 760 * Recursively free last partial block. 761 */ 762 if (level > SINGLE && lastbn >= 0) { 763 last = lastbn % factor; 764 nb = BAP(ip, i); 765 if (nb != 0) { 766 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 767 last, level - 1, &blkcount); 768 if (error) 769 allerror = error; 770 blocksreleased += blkcount; 771 } 772 } 773 if (copy != NULL) { 774 free(copy, M_TEMP); 775 } else { 776 bp->b_flags |= B_INVAL | B_NOCACHE; 777 brelse(bp); 778 } 779 780 *countp = blocksreleased; 781 return (allerror); 782 } 783 784 int 785 ffs_rdonly(struct inode *ip) 786 { 787 788 return (ITOFS(ip)->fs_ronly != 0); 789 } 790 791