xref: /freebsd/sys/ufs/ffs/ffs_inode.c (revision b4a58fbf640409a1e507d9f7b411c83a3f83a2f3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ffs_inode.c	8.13 (Berkeley) 4/21/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ufs.h"
38 #include "opt_quota.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bio.h>
43 #include <sys/buf.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/racct.h>
48 #include <sys/random.h>
49 #include <sys/resourcevar.h>
50 #include <sys/rwlock.h>
51 #include <sys/stat.h>
52 #include <sys/vmmeter.h>
53 #include <sys/vnode.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_extern.h>
57 #include <vm/vm_object.h>
58 
59 #include <ufs/ufs/extattr.h>
60 #include <ufs/ufs/quota.h>
61 #include <ufs/ufs/ufsmount.h>
62 #include <ufs/ufs/inode.h>
63 #include <ufs/ufs/dir.h>
64 #ifdef UFS_DIRHASH
65 #include <ufs/ufs/dirhash.h>
66 #endif
67 #include <ufs/ufs/ufs_extern.h>
68 
69 #include <ufs/ffs/fs.h>
70 #include <ufs/ffs/ffs_extern.h>
71 
72 static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t,
73 	    ufs2_daddr_t, int, ufs2_daddr_t *);
74 
75 static void
76 ffs_inode_bwrite(struct vnode *vp, struct buf *bp, int flags)
77 {
78 	if ((flags & IO_SYNC) != 0)
79 		bwrite(bp);
80 	else if (DOINGASYNC(vp))
81 		bdwrite(bp);
82 	else
83 		bawrite(bp);
84 }
85 
86 /*
87  * Update the access, modified, and inode change times as specified by the
88  * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.  Write the inode
89  * to disk if the IN_MODIFIED flag is set (it may be set initially, or by
90  * the timestamp update).  The IN_LAZYMOD flag is set to force a write
91  * later if not now.  The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs
92  * is currently being suspended (or is suspended) and vnode has been accessed.
93  * If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to
94  * reflect the presumably successful write, and if waitfor is set, then wait
95  * for the write to complete.
96  */
97 int
98 ffs_update(vp, waitfor)
99 	struct vnode *vp;
100 	int waitfor;
101 {
102 	struct fs *fs;
103 	struct buf *bp;
104 	struct inode *ip;
105 	daddr_t bn;
106 	int flags, error;
107 
108 	ASSERT_VOP_ELOCKED(vp, "ffs_update");
109 	ufs_itimes(vp);
110 	ip = VTOI(vp);
111 	if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
112 		return (0);
113 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
114 	/*
115 	 * The IN_SIZEMOD and IN_IBLKDATA flags indicate changes to the
116 	 * file size and block pointer fields in the inode. When these
117 	 * fields have been changed, the fsync() and fsyncdata() system
118 	 * calls must write the inode to ensure their semantics that the
119 	 * file is on stable store.
120 	 *
121 	 * The IN_SIZEMOD and IN_IBLKDATA flags cannot be cleared until
122 	 * a synchronous write of the inode is done. If they are cleared
123 	 * on an asynchronous write, then the inode may not yet have been
124 	 * written to the disk when an fsync() or fsyncdata() call is done.
125 	 * Absent these flags, these calls would not know that they needed
126 	 * to write the inode. Thus, these flags only can be cleared on
127 	 * synchronous writes of the inode. Since the inode will be locked
128 	 * for the duration of the I/O that writes it to disk, no fsync()
129 	 * or fsyncdata() will be able to run before the on-disk inode
130 	 * is complete.
131 	 */
132 	if (waitfor)
133 		ip->i_flag &= ~(IN_SIZEMOD | IN_IBLKDATA);
134 	fs = ITOFS(ip);
135 	if (fs->fs_ronly)
136 		return (0);
137 	/*
138 	 * If we are updating a snapshot and another process is currently
139 	 * writing the buffer containing the inode for this snapshot then
140 	 * a deadlock can occur when it tries to check the snapshot to see
141 	 * if that block needs to be copied. Thus when updating a snapshot
142 	 * we check to see if the buffer is already locked, and if it is
143 	 * we drop the snapshot lock until the buffer has been written
144 	 * and is available to us. We have to grab a reference to the
145 	 * snapshot vnode to prevent it from being removed while we are
146 	 * waiting for the buffer.
147 	 */
148 loop:
149 	flags = 0;
150 	if (IS_SNAPSHOT(ip))
151 		flags = GB_LOCK_NOWAIT;
152 	bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
153 	error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn,
154 	     (int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp);
155 	if (error != 0) {
156 		/*
157 		 * If EBUSY was returned without GB_LOCK_NOWAIT (which
158 		 * requests trylock for buffer lock), it is for some
159 		 * other reason and we should not handle it specially.
160 		 */
161 		if (error != EBUSY || (flags & GB_LOCK_NOWAIT) == 0)
162 			return (error);
163 
164 		/*
165 		 * Wait for our inode block to become available.
166 		 *
167 		 * Hold a reference to the vnode to protect against
168 		 * ffs_snapgone(). Since we hold a reference, it can only
169 		 * get reclaimed (VIRF_DOOMED flag) in a forcible downgrade
170 		 * or unmount. For an unmount, the entire filesystem will be
171 		 * gone, so we cannot attempt to touch anything associated
172 		 * with it while the vnode is unlocked; all we can do is
173 		 * pause briefly and try again. If when we relock the vnode
174 		 * we discover that it has been reclaimed, updating it is no
175 		 * longer necessary and we can just return an error.
176 		 */
177 		vref(vp);
178 		VOP_UNLOCK(vp);
179 		pause("ffsupd", 1);
180 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
181 		vrele(vp);
182 		if (VN_IS_DOOMED(vp))
183 			return (ENOENT);
184 
185 		/*
186 		 * Recalculate flags, because the vnode was relocked and
187 		 * could no longer be a snapshot.
188 		 */
189 		goto loop;
190 	}
191 	if (DOINGSOFTDEP(vp))
192 		softdep_update_inodeblock(ip, bp, waitfor);
193 	else if (ip->i_effnlink != ip->i_nlink)
194 		panic("ffs_update: bad link cnt");
195 	if (I_IS_UFS1(ip)) {
196 		*((struct ufs1_dinode *)bp->b_data +
197 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
198 		/*
199 		 * XXX: FIX? The entropy here is desirable,
200 		 * but the harvesting may be expensive
201 		 */
202 		random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME);
203 	} else {
204 		ffs_update_dinode_ckhash(fs, ip->i_din2);
205 		*((struct ufs2_dinode *)bp->b_data +
206 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
207 		/*
208 		 * XXX: FIX? The entropy here is desirable,
209 		 * but the harvesting may be expensive
210 		 */
211 		random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME);
212 	}
213 	if (waitfor) {
214 		error = bwrite(bp);
215 		if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error))
216 			error = 0;
217 	} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
218 		bawrite(bp);
219 		error = 0;
220 	} else {
221 		if (bp->b_bufsize == fs->fs_bsize)
222 			bp->b_flags |= B_CLUSTEROK;
223 		bdwrite(bp);
224 		error = 0;
225 	}
226 	return (error);
227 }
228 
229 #define	SINGLE	0	/* index of single indirect block */
230 #define	DOUBLE	1	/* index of double indirect block */
231 #define	TRIPLE	2	/* index of triple indirect block */
232 /*
233  * Truncate the inode ip to at most length size, freeing the
234  * disk blocks.
235  */
236 int
237 ffs_truncate(vp, length, flags, cred)
238 	struct vnode *vp;
239 	off_t length;
240 	int flags;
241 	struct ucred *cred;
242 {
243 	struct inode *ip;
244 	ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR];
245 	ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR];
246 	ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR];
247 	ufs2_daddr_t count, blocksreleased = 0, datablocks, blkno;
248 	struct bufobj *bo;
249 	struct fs *fs;
250 	struct buf *bp;
251 	struct ufsmount *ump;
252 	int softdeptrunc, journaltrunc;
253 	int needextclean, extblocks;
254 	int offset, size, level, nblocks;
255 	int i, error, allerror, indiroff, waitforupdate;
256 	u_long key;
257 	off_t osize;
258 
259 	ip = VTOI(vp);
260 	ump = VFSTOUFS(vp->v_mount);
261 	fs = ump->um_fs;
262 	bo = &vp->v_bufobj;
263 
264 	ASSERT_VOP_LOCKED(vp, "ffs_truncate");
265 
266 	if (length < 0)
267 		return (EINVAL);
268 	if (length > fs->fs_maxfilesize)
269 		return (EFBIG);
270 #ifdef QUOTA
271 	error = getinoquota(ip);
272 	if (error)
273 		return (error);
274 #endif
275 	/*
276 	 * Historically clients did not have to specify which data
277 	 * they were truncating. So, if not specified, we assume
278 	 * traditional behavior, e.g., just the normal data.
279 	 */
280 	if ((flags & (IO_EXT | IO_NORMAL)) == 0)
281 		flags |= IO_NORMAL;
282 	if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp))
283 		flags |= IO_SYNC;
284 	waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp);
285 	/*
286 	 * If we are truncating the extended-attributes, and cannot
287 	 * do it with soft updates, then do it slowly here. If we are
288 	 * truncating both the extended attributes and the file contents
289 	 * (e.g., the file is being unlinked), then pick it off with
290 	 * soft updates below.
291 	 */
292 	allerror = 0;
293 	needextclean = 0;
294 	softdeptrunc = 0;
295 	journaltrunc = DOINGSUJ(vp);
296 	journaltrunc = 0;	/* XXX temp patch until bug found */
297 	if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0)
298 		softdeptrunc = !softdep_slowdown(vp);
299 	extblocks = 0;
300 	datablocks = DIP(ip, i_blocks);
301 	if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) {
302 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
303 		datablocks -= extblocks;
304 	}
305 	if ((flags & IO_EXT) && extblocks > 0) {
306 		if (length != 0)
307 			panic("ffs_truncate: partial trunc of extdata");
308 		if (softdeptrunc || journaltrunc) {
309 			if ((flags & IO_NORMAL) == 0)
310 				goto extclean;
311 			needextclean = 1;
312 		} else {
313 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
314 				return (error);
315 #ifdef QUOTA
316 			(void) chkdq(ip, -extblocks, NOCRED, FORCE);
317 #endif
318 			vinvalbuf(vp, V_ALT, 0, 0);
319 			vn_pages_remove(vp,
320 			    OFF_TO_IDX(lblktosize(fs, -extblocks)), 0);
321 			osize = ip->i_din2->di_extsize;
322 			ip->i_din2->di_blocks -= extblocks;
323 			ip->i_din2->di_extsize = 0;
324 			for (i = 0; i < UFS_NXADDR; i++) {
325 				oldblks[i] = ip->i_din2->di_extb[i];
326 				ip->i_din2->di_extb[i] = 0;
327 			}
328 			UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
329 			if ((error = ffs_update(vp, waitforupdate)))
330 				return (error);
331 			for (i = 0; i < UFS_NXADDR; i++) {
332 				if (oldblks[i] == 0)
333 					continue;
334 				ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i],
335 				    sblksize(fs, osize, i), ip->i_number,
336 				    vp->v_type, NULL, SINGLETON_KEY);
337 			}
338 		}
339 	}
340 	if ((flags & IO_NORMAL) == 0)
341 		return (0);
342 	if (vp->v_type == VLNK && ip->i_size < ump->um_maxsymlinklen) {
343 #ifdef INVARIANTS
344 		if (length != 0)
345 			panic("ffs_truncate: partial truncate of symlink");
346 #endif
347 		bzero(SHORTLINK(ip), (u_int)ip->i_size);
348 		ip->i_size = 0;
349 		DIP_SET(ip, i_size, 0);
350 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
351 		if (needextclean)
352 			goto extclean;
353 		return (ffs_update(vp, waitforupdate));
354 	}
355 	if (ip->i_size == length) {
356 		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
357 		if (needextclean)
358 			goto extclean;
359 		return (ffs_update(vp, 0));
360 	}
361 	if (fs->fs_ronly)
362 		panic("ffs_truncate: read-only filesystem");
363 	if (IS_SNAPSHOT(ip))
364 		ffs_snapremove(vp);
365 	cluster_init_vn(&ip->i_clusterw);
366 	osize = ip->i_size;
367 	/*
368 	 * Lengthen the size of the file. We must ensure that the
369 	 * last byte of the file is allocated. Since the smallest
370 	 * value of osize is 0, length will be at least 1.
371 	 */
372 	if (osize < length) {
373 		vnode_pager_setsize(vp, length);
374 		flags |= BA_CLRBUF;
375 		error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
376 		if (error) {
377 			vnode_pager_setsize(vp, osize);
378 			return (error);
379 		}
380 		ip->i_size = length;
381 		DIP_SET(ip, i_size, length);
382 		if (bp->b_bufsize == fs->fs_bsize)
383 			bp->b_flags |= B_CLUSTEROK;
384 		ffs_inode_bwrite(vp, bp, flags);
385 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
386 		return (ffs_update(vp, waitforupdate));
387 	}
388 	/*
389 	 * Lookup block number for a given offset. Zero length files
390 	 * have no blocks, so return a blkno of -1.
391 	 */
392 	lbn = lblkno(fs, length - 1);
393 	if (length == 0) {
394 		blkno = -1;
395 	} else if (lbn < UFS_NDADDR) {
396 		blkno = DIP(ip, i_db[lbn]);
397 	} else {
398 		error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize,
399 		    cred, BA_METAONLY, &bp);
400 		if (error)
401 			return (error);
402 		indiroff = (lbn - UFS_NDADDR) % NINDIR(fs);
403 		if (I_IS_UFS1(ip))
404 			blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff];
405 		else
406 			blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff];
407 		/*
408 		 * If the block number is non-zero, then the indirect block
409 		 * must have been previously allocated and need not be written.
410 		 * If the block number is zero, then we may have allocated
411 		 * the indirect block and hence need to write it out.
412 		 */
413 		if (blkno != 0)
414 			brelse(bp);
415 		else if (flags & IO_SYNC)
416 			bwrite(bp);
417 		else
418 			bdwrite(bp);
419 	}
420 	/*
421 	 * If the block number at the new end of the file is zero,
422 	 * then we must allocate it to ensure that the last block of
423 	 * the file is allocated. Soft updates does not handle this
424 	 * case, so here we have to clean up the soft updates data
425 	 * structures describing the allocation past the truncation
426 	 * point. Finding and deallocating those structures is a lot of
427 	 * work. Since partial truncation with a hole at the end occurs
428 	 * rarely, we solve the problem by syncing the file so that it
429 	 * will have no soft updates data structures left.
430 	 */
431 	if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
432 		return (error);
433 	if (blkno != 0 && DOINGSOFTDEP(vp)) {
434 		if (softdeptrunc == 0 && journaltrunc == 0) {
435 			/*
436 			 * If soft updates cannot handle this truncation,
437 			 * clean up soft dependency data structures and
438 			 * fall through to the synchronous truncation.
439 			 */
440 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
441 				return (error);
442 		} else {
443 			flags = IO_NORMAL | (needextclean ? IO_EXT: 0);
444 			if (journaltrunc)
445 				softdep_journal_freeblocks(ip, cred, length,
446 				    flags);
447 			else
448 				softdep_setup_freeblocks(ip, length, flags);
449 			ASSERT_VOP_LOCKED(vp, "ffs_truncate1");
450 			if (journaltrunc == 0) {
451 				UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
452 				error = ffs_update(vp, 0);
453 			}
454 			return (error);
455 		}
456 	}
457 	/*
458 	 * Shorten the size of the file. If the last block of the
459 	 * shortened file is unallocated, we must allocate it.
460 	 * Additionally, if the file is not being truncated to a
461 	 * block boundary, the contents of the partial block
462 	 * following the end of the file must be zero'ed in
463 	 * case it ever becomes accessible again because of
464 	 * subsequent file growth. Directories however are not
465 	 * zero'ed as they should grow back initialized to empty.
466 	 */
467 	offset = blkoff(fs, length);
468 	if (blkno != 0 && offset == 0) {
469 		ip->i_size = length;
470 		DIP_SET(ip, i_size, length);
471 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
472 #ifdef UFS_DIRHASH
473 		if (vp->v_type == VDIR && ip->i_dirhash != NULL)
474 			ufsdirhash_dirtrunc(ip, length);
475 #endif
476 	} else {
477 		lbn = lblkno(fs, length);
478 		flags |= BA_CLRBUF;
479 		error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
480 		if (error)
481 			return (error);
482 		ffs_inode_bwrite(vp, bp, flags);
483 
484 		/*
485 		 * When we are doing soft updates and the UFS_BALLOC
486 		 * above fills in a direct block hole with a full sized
487 		 * block that will be truncated down to a fragment below,
488 		 * we must flush out the block dependency with an FSYNC
489 		 * so that we do not get a soft updates inconsistency
490 		 * when we create the fragment below.
491 		 */
492 		if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR &&
493 		    fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize &&
494 		    (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
495 			return (error);
496 
497 		error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
498 		if (error)
499 			return (error);
500 		ip->i_size = length;
501 		DIP_SET(ip, i_size, length);
502 #ifdef UFS_DIRHASH
503 		if (vp->v_type == VDIR && ip->i_dirhash != NULL)
504 			ufsdirhash_dirtrunc(ip, length);
505 #endif
506 		size = blksize(fs, ip, lbn);
507 		if (vp->v_type != VDIR && offset != 0)
508 			bzero((char *)bp->b_data + offset,
509 			    (u_int)(size - offset));
510 		/* Kirk's code has reallocbuf(bp, size, 1) here */
511 		allocbuf(bp, size);
512 		if (bp->b_bufsize == fs->fs_bsize)
513 			bp->b_flags |= B_CLUSTEROK;
514 		ffs_inode_bwrite(vp, bp, flags);
515 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
516 	}
517 	/*
518 	 * Calculate index into inode's block list of
519 	 * last direct and indirect blocks (if any)
520 	 * which we want to keep.  Lastblock is -1 when
521 	 * the file is truncated to 0.
522 	 */
523 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
524 	lastiblock[SINGLE] = lastblock - UFS_NDADDR;
525 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
526 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
527 	nblocks = btodb(fs->fs_bsize);
528 	/*
529 	 * Update file and block pointers on disk before we start freeing
530 	 * blocks.  If we crash before free'ing blocks below, the blocks
531 	 * will be returned to the free list.  lastiblock values are also
532 	 * normalized to -1 for calls to ffs_indirtrunc below.
533 	 */
534 	for (level = TRIPLE; level >= SINGLE; level--) {
535 		oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]);
536 		if (lastiblock[level] < 0) {
537 			DIP_SET(ip, i_ib[level], 0);
538 			lastiblock[level] = -1;
539 		}
540 	}
541 	for (i = 0; i < UFS_NDADDR; i++) {
542 		oldblks[i] = DIP(ip, i_db[i]);
543 		if (i > lastblock)
544 			DIP_SET(ip, i_db[i], 0);
545 	}
546 	UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
547 	allerror = ffs_update(vp, waitforupdate);
548 
549 	/*
550 	 * Having written the new inode to disk, save its new configuration
551 	 * and put back the old block pointers long enough to process them.
552 	 * Note that we save the new block configuration so we can check it
553 	 * when we are done.
554 	 */
555 	for (i = 0; i < UFS_NDADDR; i++) {
556 		newblks[i] = DIP(ip, i_db[i]);
557 		DIP_SET(ip, i_db[i], oldblks[i]);
558 	}
559 	for (i = 0; i < UFS_NIADDR; i++) {
560 		newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]);
561 		DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]);
562 	}
563 	ip->i_size = osize;
564 	DIP_SET(ip, i_size, osize);
565 	UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
566 
567 	error = vtruncbuf(vp, length, fs->fs_bsize);
568 	if (error && (allerror == 0))
569 		allerror = error;
570 
571 	/*
572 	 * Indirect blocks first.
573 	 */
574 	indir_lbn[SINGLE] = -UFS_NDADDR;
575 	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
576 	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
577 	for (level = TRIPLE; level >= SINGLE; level--) {
578 		bn = DIP(ip, i_ib[level]);
579 		if (bn != 0) {
580 			error = ffs_indirtrunc(ip, indir_lbn[level],
581 			    fsbtodb(fs, bn), lastiblock[level], level, &count);
582 			if (error)
583 				allerror = error;
584 			blocksreleased += count;
585 			if (lastiblock[level] < 0) {
586 				DIP_SET(ip, i_ib[level], 0);
587 				ffs_blkfree(ump, fs, ump->um_devvp, bn,
588 				    fs->fs_bsize, ip->i_number,
589 				    vp->v_type, NULL, SINGLETON_KEY);
590 				blocksreleased += nblocks;
591 			}
592 		}
593 		if (lastiblock[level] >= 0)
594 			goto done;
595 	}
596 
597 	/*
598 	 * All whole direct blocks or frags.
599 	 */
600 	key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number);
601 	for (i = UFS_NDADDR - 1; i > lastblock; i--) {
602 		long bsize;
603 
604 		bn = DIP(ip, i_db[i]);
605 		if (bn == 0)
606 			continue;
607 		DIP_SET(ip, i_db[i], 0);
608 		bsize = blksize(fs, ip, i);
609 		ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number,
610 		    vp->v_type, NULL, key);
611 		blocksreleased += btodb(bsize);
612 	}
613 	ffs_blkrelease_finish(ump, key);
614 	if (lastblock < 0)
615 		goto done;
616 
617 	/*
618 	 * Finally, look for a change in size of the
619 	 * last direct block; release any frags.
620 	 */
621 	bn = DIP(ip, i_db[lastblock]);
622 	if (bn != 0) {
623 		long oldspace, newspace;
624 
625 		/*
626 		 * Calculate amount of space we're giving
627 		 * back as old block size minus new block size.
628 		 */
629 		oldspace = blksize(fs, ip, lastblock);
630 		ip->i_size = length;
631 		DIP_SET(ip, i_size, length);
632 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
633 		newspace = blksize(fs, ip, lastblock);
634 		if (newspace == 0)
635 			panic("ffs_truncate: newspace");
636 		if (oldspace - newspace > 0) {
637 			/*
638 			 * Block number of space to be free'd is
639 			 * the old block # plus the number of frags
640 			 * required for the storage we're keeping.
641 			 */
642 			bn += numfrags(fs, newspace);
643 			ffs_blkfree(ump, fs, ump->um_devvp, bn,
644 			   oldspace - newspace, ip->i_number, vp->v_type,
645 			   NULL, SINGLETON_KEY);
646 			blocksreleased += btodb(oldspace - newspace);
647 		}
648 	}
649 done:
650 #ifdef INVARIANTS
651 	for (level = SINGLE; level <= TRIPLE; level++)
652 		if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level]))
653 			panic("ffs_truncate1: level %d newblks %jd != i_ib %jd",
654 			    level, (intmax_t)newblks[UFS_NDADDR + level],
655 			    (intmax_t)DIP(ip, i_ib[level]));
656 	for (i = 0; i < UFS_NDADDR; i++)
657 		if (newblks[i] != DIP(ip, i_db[i]))
658 			panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd",
659 			    i, (intmax_t)newblks[UFS_NDADDR + level],
660 			    (intmax_t)DIP(ip, i_ib[level]));
661 	BO_LOCK(bo);
662 	if (length == 0 &&
663 	    (fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) &&
664 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
665 		panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d",
666 			vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt);
667 	BO_UNLOCK(bo);
668 #endif /* INVARIANTS */
669 	/*
670 	 * Put back the real size.
671 	 */
672 	ip->i_size = length;
673 	DIP_SET(ip, i_size, length);
674 	if (DIP(ip, i_blocks) >= blocksreleased)
675 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased);
676 	else	/* sanity */
677 		DIP_SET(ip, i_blocks, 0);
678 	UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
679 #ifdef QUOTA
680 	(void) chkdq(ip, -blocksreleased, NOCRED, FORCE);
681 #endif
682 	return (allerror);
683 
684 extclean:
685 	if (journaltrunc)
686 		softdep_journal_freeblocks(ip, cred, length, IO_EXT);
687 	else
688 		softdep_setup_freeblocks(ip, length, IO_EXT);
689 	return (ffs_update(vp, waitforupdate));
690 }
691 
692 /*
693  * Release blocks associated with the inode ip and stored in the indirect
694  * block bn.  Blocks are free'd in LIFO order up to (but not including)
695  * lastbn.  If level is greater than SINGLE, the block is an indirect block
696  * and recursive calls to indirtrunc must be used to cleanse other indirect
697  * blocks.
698  */
699 static int
700 ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
701 	struct inode *ip;
702 	ufs2_daddr_t lbn, lastbn;
703 	ufs2_daddr_t dbn;
704 	int level;
705 	ufs2_daddr_t *countp;
706 {
707 	struct buf *bp;
708 	struct fs *fs;
709 	struct ufsmount *ump;
710 	struct vnode *vp;
711 	caddr_t copy = NULL;
712 	u_long key;
713 	int i, nblocks, error = 0, allerror = 0;
714 	ufs2_daddr_t nb, nlbn, last;
715 	ufs2_daddr_t blkcount, factor, blocksreleased = 0;
716 	ufs1_daddr_t *bap1 = NULL;
717 	ufs2_daddr_t *bap2 = NULL;
718 #define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i])
719 
720 	fs = ITOFS(ip);
721 	ump = ITOUMP(ip);
722 
723 	/*
724 	 * Calculate index in current block of last
725 	 * block to be kept.  -1 indicates the entire
726 	 * block so we need not calculate the index.
727 	 */
728 	factor = lbn_offset(fs, level);
729 	last = lastbn;
730 	if (lastbn > 0)
731 		last /= factor;
732 	nblocks = btodb(fs->fs_bsize);
733 	/*
734 	 * Get buffer of block pointers, zero those entries corresponding
735 	 * to blocks to be free'd, and update on disk copy first.  Since
736 	 * double(triple) indirect before single(double) indirect, calls
737 	 * to VOP_BMAP() on these blocks will fail.  However, we already
738 	 * have the on-disk address, so we just pass it to bread() instead
739 	 * of having bread() attempt to calculate it using VOP_BMAP().
740 	 */
741 	vp = ITOV(ip);
742 	error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0,
743 	    NOCRED, 0, NULL, &bp);
744 	if (error) {
745 		*countp = 0;
746 		return (error);
747 	}
748 
749 	if (I_IS_UFS1(ip))
750 		bap1 = (ufs1_daddr_t *)bp->b_data;
751 	else
752 		bap2 = (ufs2_daddr_t *)bp->b_data;
753 	if (lastbn != -1) {
754 		copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
755 		bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize);
756 		for (i = last + 1; i < NINDIR(fs); i++)
757 			if (I_IS_UFS1(ip))
758 				bap1[i] = 0;
759 			else
760 				bap2[i] = 0;
761 		if (DOINGASYNC(vp)) {
762 			bdwrite(bp);
763 		} else {
764 			error = bwrite(bp);
765 			if (error)
766 				allerror = error;
767 		}
768 		if (I_IS_UFS1(ip))
769 			bap1 = (ufs1_daddr_t *)copy;
770 		else
771 			bap2 = (ufs2_daddr_t *)copy;
772 	}
773 
774 	/*
775 	 * Recursively free totally unused blocks.
776 	 */
777 	key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number);
778 	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
779 	    i--, nlbn += factor) {
780 		nb = BAP(ip, i);
781 		if (nb == 0)
782 			continue;
783 		if (level > SINGLE) {
784 			if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
785 			    (ufs2_daddr_t)-1, level - 1, &blkcount)) != 0)
786 				allerror = error;
787 			blocksreleased += blkcount;
788 		}
789 		ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize,
790 		    ip->i_number, vp->v_type, NULL, key);
791 		blocksreleased += nblocks;
792 	}
793 	ffs_blkrelease_finish(ump, key);
794 
795 	/*
796 	 * Recursively free last partial block.
797 	 */
798 	if (level > SINGLE && lastbn >= 0) {
799 		last = lastbn % factor;
800 		nb = BAP(ip, i);
801 		if (nb != 0) {
802 			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
803 			    last, level - 1, &blkcount);
804 			if (error)
805 				allerror = error;
806 			blocksreleased += blkcount;
807 		}
808 	}
809 	if (copy != NULL) {
810 		free(copy, M_TEMP);
811 	} else {
812 		bp->b_flags |= B_INVAL | B_NOCACHE;
813 		brelse(bp);
814 	}
815 
816 	*countp = blocksreleased;
817 	return (allerror);
818 }
819 
820 int
821 ffs_rdonly(struct inode *ip)
822 {
823 
824 	return (ITOFS(ip)->fs_ronly != 0);
825 }
826