1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_ufs.h" 36 #include "opt_quota.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bio.h> 41 #include <sys/buf.h> 42 #include <sys/malloc.h> 43 #include <sys/mount.h> 44 #include <sys/proc.h> 45 #include <sys/racct.h> 46 #include <sys/random.h> 47 #include <sys/resourcevar.h> 48 #include <sys/rwlock.h> 49 #include <sys/stat.h> 50 #include <sys/vmmeter.h> 51 #include <sys/vnode.h> 52 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_object.h> 56 57 #include <ufs/ufs/extattr.h> 58 #include <ufs/ufs/quota.h> 59 #include <ufs/ufs/ufsmount.h> 60 #include <ufs/ufs/inode.h> 61 #include <ufs/ufs/dir.h> 62 #ifdef UFS_DIRHASH 63 #include <ufs/ufs/dirhash.h> 64 #endif 65 #include <ufs/ufs/ufs_extern.h> 66 67 #include <ufs/ffs/fs.h> 68 #include <ufs/ffs/ffs_extern.h> 69 70 static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t, 71 ufs2_daddr_t, int, ufs2_daddr_t *); 72 73 static void 74 ffs_inode_bwrite(struct vnode *vp, struct buf *bp, int flags) 75 { 76 if ((flags & IO_SYNC) != 0) 77 bwrite(bp); 78 else if (DOINGASYNC(vp)) 79 bdwrite(bp); 80 else 81 bawrite(bp); 82 } 83 84 /* 85 * Update the access, modified, and inode change times as specified by the 86 * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode 87 * to disk if the IN_MODIFIED flag is set (it may be set initially, or by 88 * the timestamp update). The IN_LAZYMOD flag is set to force a write 89 * later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs 90 * is currently being suspended (or is suspended) and vnode has been accessed. 91 * If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to 92 * reflect the presumably successful write, and if waitfor is set, then wait 93 * for the write to complete. 94 */ 95 int 96 ffs_update(struct vnode *vp, int waitfor) 97 { 98 struct fs *fs; 99 struct buf *bp; 100 struct inode *ip; 101 daddr_t bn; 102 int flags, error; 103 104 ASSERT_VOP_ELOCKED(vp, "ffs_update"); 105 ufs_itimes(vp); 106 ip = VTOI(vp); 107 if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0) 108 return (0); 109 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 110 /* 111 * The IN_SIZEMOD and IN_IBLKDATA flags indicate changes to the 112 * file size and block pointer fields in the inode. When these 113 * fields have been changed, the fsync() and fsyncdata() system 114 * calls must write the inode to ensure their semantics that the 115 * file is on stable store. 116 * 117 * The IN_SIZEMOD and IN_IBLKDATA flags cannot be cleared until 118 * a synchronous write of the inode is done. If they are cleared 119 * on an asynchronous write, then the inode may not yet have been 120 * written to the disk when an fsync() or fsyncdata() call is done. 121 * Absent these flags, these calls would not know that they needed 122 * to write the inode. Thus, these flags only can be cleared on 123 * synchronous writes of the inode. Since the inode will be locked 124 * for the duration of the I/O that writes it to disk, no fsync() 125 * or fsyncdata() will be able to run before the on-disk inode 126 * is complete. 127 */ 128 if (waitfor) 129 ip->i_flag &= ~(IN_SIZEMOD | IN_IBLKDATA); 130 fs = ITOFS(ip); 131 if (fs->fs_ronly) 132 return (0); 133 /* 134 * If we are updating a snapshot and another process is currently 135 * writing the buffer containing the inode for this snapshot then 136 * a deadlock can occur when it tries to check the snapshot to see 137 * if that block needs to be copied. Thus when updating a snapshot 138 * we check to see if the buffer is already locked, and if it is 139 * we drop the snapshot lock until the buffer has been written 140 * and is available to us. We have to grab a reference to the 141 * snapshot vnode to prevent it from being removed while we are 142 * waiting for the buffer. 143 */ 144 loop: 145 flags = 0; 146 if (IS_SNAPSHOT(ip)) 147 flags = GB_LOCK_NOWAIT; 148 bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 149 error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn, 150 (int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp); 151 if (error != 0) { 152 /* 153 * If EBUSY was returned without GB_LOCK_NOWAIT (which 154 * requests trylock for buffer lock), it is for some 155 * other reason and we should not handle it specially. 156 */ 157 if (error != EBUSY || (flags & GB_LOCK_NOWAIT) == 0) 158 return (error); 159 160 /* 161 * Wait for our inode block to become available. 162 * 163 * Hold a reference to the vnode to protect against 164 * ffs_snapgone(). Since we hold a reference, it can only 165 * get reclaimed (VIRF_DOOMED flag) in a forcible downgrade 166 * or unmount. For an unmount, the entire filesystem will be 167 * gone, so we cannot attempt to touch anything associated 168 * with it while the vnode is unlocked; all we can do is 169 * pause briefly and try again. If when we relock the vnode 170 * we discover that it has been reclaimed, updating it is no 171 * longer necessary and we can just return an error. 172 */ 173 vref(vp); 174 VOP_UNLOCK(vp); 175 pause("ffsupd", 1); 176 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 177 vrele(vp); 178 if (!IS_UFS(vp)) 179 return (ENOENT); 180 181 /* 182 * Recalculate flags, because the vnode was relocked and 183 * could no longer be a snapshot. 184 */ 185 goto loop; 186 } 187 if (DOINGSOFTDEP(vp)) 188 softdep_update_inodeblock(ip, bp, waitfor); 189 else if (ip->i_effnlink != ip->i_nlink) 190 panic("ffs_update: bad link cnt"); 191 if (I_IS_UFS1(ip)) { 192 *((struct ufs1_dinode *)bp->b_data + 193 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 194 /* 195 * XXX: FIX? The entropy here is desirable, 196 * but the harvesting may be expensive 197 */ 198 random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME); 199 } else { 200 ffs_update_dinode_ckhash(fs, ip->i_din2); 201 *((struct ufs2_dinode *)bp->b_data + 202 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 203 /* 204 * XXX: FIX? The entropy here is desirable, 205 * but the harvesting may be expensive 206 */ 207 random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME); 208 } 209 if (waitfor) { 210 error = bwrite(bp); 211 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 212 error = 0; 213 } else if (vm_page_count_severe() || buf_dirty_count_severe()) { 214 bawrite(bp); 215 error = 0; 216 } else { 217 if (bp->b_bufsize == fs->fs_bsize) 218 bp->b_flags |= B_CLUSTEROK; 219 bdwrite(bp); 220 error = 0; 221 } 222 return (error); 223 } 224 225 #define SINGLE 0 /* index of single indirect block */ 226 #define DOUBLE 1 /* index of double indirect block */ 227 #define TRIPLE 2 /* index of triple indirect block */ 228 /* 229 * Truncate the inode ip to at most length size, freeing the 230 * disk blocks. 231 */ 232 int 233 ffs_truncate(struct vnode *vp, 234 off_t length, 235 int flags, 236 struct ucred *cred) 237 { 238 struct inode *ip; 239 ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR]; 240 ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR]; 241 ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR]; 242 ufs2_daddr_t count, blocksreleased = 0, blkno; 243 struct bufobj *bo __diagused; 244 struct fs *fs; 245 struct buf *bp; 246 struct ufsmount *ump; 247 int softdeptrunc, journaltrunc; 248 int needextclean, extblocks; 249 int offset, size, level, nblocks; 250 int i, error, allerror, indiroff, waitforupdate; 251 uint64_t key; 252 off_t osize; 253 254 ip = VTOI(vp); 255 ump = VFSTOUFS(vp->v_mount); 256 fs = ump->um_fs; 257 bo = &vp->v_bufobj; 258 259 ASSERT_VOP_LOCKED(vp, "ffs_truncate"); 260 261 if (length < 0) 262 return (EINVAL); 263 if (length > fs->fs_maxfilesize) 264 return (EFBIG); 265 #ifdef QUOTA 266 error = getinoquota(ip); 267 if (error) 268 return (error); 269 #endif 270 /* 271 * Historically clients did not have to specify which data 272 * they were truncating. So, if not specified, we assume 273 * traditional behavior, e.g., just the normal data. 274 */ 275 if ((flags & (IO_EXT | IO_NORMAL)) == 0) 276 flags |= IO_NORMAL; 277 if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp)) 278 flags |= IO_SYNC; 279 waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp); 280 /* 281 * If we are truncating the extended-attributes, and cannot 282 * do it with soft updates, then do it slowly here. If we are 283 * truncating both the extended attributes and the file contents 284 * (e.g., the file is being unlinked), then pick it off with 285 * soft updates below. 286 */ 287 allerror = 0; 288 needextclean = 0; 289 softdeptrunc = 0; 290 journaltrunc = DOINGSUJ(vp); 291 journaltrunc = 0; /* XXX temp patch until bug found */ 292 if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0) 293 softdeptrunc = !softdep_slowdown(vp); 294 extblocks = 0; 295 if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) { 296 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 297 } 298 if ((flags & IO_EXT) && extblocks > 0) { 299 if (length != 0) 300 panic("ffs_truncate: partial trunc of extdata"); 301 if (softdeptrunc || journaltrunc) { 302 if ((flags & IO_NORMAL) == 0) 303 goto extclean; 304 needextclean = 1; 305 } else { 306 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 307 return (error); 308 #ifdef QUOTA 309 (void) chkdq(ip, -extblocks, NOCRED, FORCE); 310 #endif 311 vinvalbuf(vp, V_ALT, 0, 0); 312 vn_pages_remove(vp, 313 OFF_TO_IDX(lblktosize(fs, -extblocks)), 0); 314 osize = ip->i_din2->di_extsize; 315 ip->i_din2->di_blocks -= extblocks; 316 ip->i_din2->di_extsize = 0; 317 for (i = 0; i < UFS_NXADDR; i++) { 318 oldblks[i] = ip->i_din2->di_extb[i]; 319 ip->i_din2->di_extb[i] = 0; 320 } 321 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 322 if ((error = ffs_update(vp, waitforupdate))) 323 return (error); 324 for (i = 0; i < UFS_NXADDR; i++) { 325 if (oldblks[i] == 0) 326 continue; 327 ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i], 328 sblksize(fs, osize, i), ip->i_number, 329 vp->v_type, NULL, SINGLETON_KEY); 330 } 331 } 332 } 333 if ((flags & IO_NORMAL) == 0) 334 return (0); 335 if (vp->v_type == VLNK && ip->i_size < ump->um_maxsymlinklen) { 336 #ifdef INVARIANTS 337 if (length != 0) 338 panic("ffs_truncate: partial truncate of symlink"); 339 #endif 340 bzero(DIP(ip, i_shortlink), (uint64_t)ip->i_size); 341 ip->i_size = 0; 342 DIP_SET(ip, i_size, 0); 343 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 344 if (needextclean) 345 goto extclean; 346 return (ffs_update(vp, waitforupdate)); 347 } 348 if (ip->i_size == length) { 349 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 350 if (needextclean) 351 goto extclean; 352 return (ffs_update(vp, 0)); 353 } 354 if (fs->fs_ronly) 355 panic("ffs_truncate: read-only filesystem"); 356 if (IS_SNAPSHOT(ip)) 357 ffs_snapremove(vp); 358 cluster_init_vn(&ip->i_clusterw); 359 osize = ip->i_size; 360 /* 361 * Lengthen the size of the file. We must ensure that the 362 * last byte of the file is allocated. Since the smallest 363 * value of osize is 0, length will be at least 1. 364 */ 365 if (osize < length) { 366 vnode_pager_setsize(vp, length); 367 flags |= BA_CLRBUF; 368 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 369 if (error) { 370 vnode_pager_setsize(vp, osize); 371 return (error); 372 } 373 ip->i_size = length; 374 DIP_SET(ip, i_size, length); 375 if (bp->b_bufsize == fs->fs_bsize) 376 bp->b_flags |= B_CLUSTEROK; 377 ffs_inode_bwrite(vp, bp, flags); 378 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 379 return (ffs_update(vp, waitforupdate)); 380 } 381 /* 382 * Lookup block number for a given offset. Zero length files 383 * have no blocks, so return a blkno of -1. 384 */ 385 lbn = lblkno(fs, length - 1); 386 if (length == 0) { 387 blkno = -1; 388 } else if (lbn < UFS_NDADDR) { 389 blkno = DIP(ip, i_db[lbn]); 390 } else { 391 error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize, 392 cred, BA_METAONLY, &bp); 393 if (error) 394 return (error); 395 indiroff = (lbn - UFS_NDADDR) % NINDIR(fs); 396 if (I_IS_UFS1(ip)) 397 blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff]; 398 else 399 blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff]; 400 /* 401 * If the block number is non-zero, then the indirect block 402 * must have been previously allocated and need not be written. 403 * If the block number is zero, then we may have allocated 404 * the indirect block and hence need to write it out. 405 */ 406 if (blkno != 0) 407 brelse(bp); 408 else if (flags & IO_SYNC) 409 bwrite(bp); 410 else 411 bdwrite(bp); 412 } 413 /* 414 * If the block number at the new end of the file is zero, 415 * then we must allocate it to ensure that the last block of 416 * the file is allocated. Soft updates does not handle this 417 * case, so here we have to clean up the soft updates data 418 * structures describing the allocation past the truncation 419 * point. Finding and deallocating those structures is a lot of 420 * work. Since partial truncation with a hole at the end occurs 421 * rarely, we solve the problem by syncing the file so that it 422 * will have no soft updates data structures left. 423 */ 424 if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 425 return (error); 426 if (blkno != 0 && DOINGSOFTDEP(vp)) { 427 if (softdeptrunc == 0 && journaltrunc == 0) { 428 /* 429 * If soft updates cannot handle this truncation, 430 * clean up soft dependency data structures and 431 * fall through to the synchronous truncation. 432 */ 433 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 434 return (error); 435 } else { 436 flags = IO_NORMAL | (needextclean ? IO_EXT: 0); 437 if (journaltrunc) 438 softdep_journal_freeblocks(ip, cred, length, 439 flags); 440 else 441 softdep_setup_freeblocks(ip, length, flags); 442 ASSERT_VOP_LOCKED(vp, "ffs_truncate1"); 443 if (journaltrunc == 0) { 444 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 445 error = ffs_update(vp, 0); 446 } 447 return (error); 448 } 449 } 450 /* 451 * Shorten the size of the file. If the last block of the 452 * shortened file is unallocated, we must allocate it. 453 * Additionally, if the file is not being truncated to a 454 * block boundary, the contents of the partial block 455 * following the end of the file must be zero'ed in 456 * case it ever becomes accessible again because of 457 * subsequent file growth. Directories however are not 458 * zero'ed as they should grow back initialized to empty. 459 */ 460 offset = blkoff(fs, length); 461 if (blkno != 0 && offset == 0) { 462 ip->i_size = length; 463 DIP_SET(ip, i_size, length); 464 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 465 #ifdef UFS_DIRHASH 466 if (vp->v_type == VDIR && ip->i_dirhash != NULL) 467 ufsdirhash_dirtrunc(ip, length); 468 #endif 469 } else { 470 lbn = lblkno(fs, length); 471 flags |= BA_CLRBUF; 472 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 473 if (error) 474 return (error); 475 ffs_inode_bwrite(vp, bp, flags); 476 477 /* 478 * When we are doing soft updates and the UFS_BALLOC 479 * above fills in a direct block hole with a full sized 480 * block that will be truncated down to a fragment below, 481 * we must flush out the block dependency with an FSYNC 482 * so that we do not get a soft updates inconsistency 483 * when we create the fragment below. 484 */ 485 if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR && 486 fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize && 487 (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 488 return (error); 489 490 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 491 if (error) 492 return (error); 493 ip->i_size = length; 494 DIP_SET(ip, i_size, length); 495 #ifdef UFS_DIRHASH 496 if (vp->v_type == VDIR && ip->i_dirhash != NULL) 497 ufsdirhash_dirtrunc(ip, length); 498 #endif 499 size = blksize(fs, ip, lbn); 500 if (vp->v_type != VDIR && offset != 0) 501 bzero((char *)bp->b_data + offset, 502 (uint64_t)(size - offset)); 503 /* Kirk's code has reallocbuf(bp, size, 1) here */ 504 allocbuf(bp, size); 505 if (bp->b_bufsize == fs->fs_bsize) 506 bp->b_flags |= B_CLUSTEROK; 507 ffs_inode_bwrite(vp, bp, flags); 508 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 509 } 510 /* 511 * Calculate index into inode's block list of 512 * last direct and indirect blocks (if any) 513 * which we want to keep. Lastblock is -1 when 514 * the file is truncated to 0. 515 */ 516 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; 517 lastiblock[SINGLE] = lastblock - UFS_NDADDR; 518 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); 519 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); 520 nblocks = btodb(fs->fs_bsize); 521 /* 522 * Update file and block pointers on disk before we start freeing 523 * blocks. If we crash before free'ing blocks below, the blocks 524 * will be returned to the free list. lastiblock values are also 525 * normalized to -1 for calls to ffs_indirtrunc below. 526 */ 527 for (level = TRIPLE; level >= SINGLE; level--) { 528 oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]); 529 if (lastiblock[level] < 0) { 530 DIP_SET(ip, i_ib[level], 0); 531 lastiblock[level] = -1; 532 } 533 } 534 for (i = 0; i < UFS_NDADDR; i++) { 535 oldblks[i] = DIP(ip, i_db[i]); 536 if (i > lastblock) 537 DIP_SET(ip, i_db[i], 0); 538 } 539 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 540 allerror = ffs_update(vp, waitforupdate); 541 542 /* 543 * Having written the new inode to disk, save its new configuration 544 * and put back the old block pointers long enough to process them. 545 * Note that we save the new block configuration so we can check it 546 * when we are done. 547 */ 548 for (i = 0; i < UFS_NDADDR; i++) { 549 newblks[i] = DIP(ip, i_db[i]); 550 DIP_SET(ip, i_db[i], oldblks[i]); 551 } 552 for (i = 0; i < UFS_NIADDR; i++) { 553 newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]); 554 DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]); 555 } 556 ip->i_size = osize; 557 DIP_SET(ip, i_size, osize); 558 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 559 560 error = vtruncbuf(vp, length, fs->fs_bsize); 561 if (error && (allerror == 0)) 562 allerror = error; 563 564 /* 565 * Indirect blocks first. 566 */ 567 indir_lbn[SINGLE] = -UFS_NDADDR; 568 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; 569 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; 570 for (level = TRIPLE; level >= SINGLE; level--) { 571 bn = DIP(ip, i_ib[level]); 572 if (bn != 0) { 573 error = ffs_indirtrunc(ip, indir_lbn[level], 574 fsbtodb(fs, bn), lastiblock[level], level, &count); 575 if (error) 576 allerror = error; 577 blocksreleased += count; 578 if (lastiblock[level] < 0) { 579 DIP_SET(ip, i_ib[level], 0); 580 ffs_blkfree(ump, fs, ump->um_devvp, bn, 581 fs->fs_bsize, ip->i_number, 582 vp->v_type, NULL, SINGLETON_KEY); 583 blocksreleased += nblocks; 584 } 585 } 586 if (lastiblock[level] >= 0) 587 goto done; 588 } 589 590 /* 591 * All whole direct blocks or frags. 592 */ 593 key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number); 594 for (i = UFS_NDADDR - 1; i > lastblock; i--) { 595 long bsize; 596 597 bn = DIP(ip, i_db[i]); 598 if (bn == 0) 599 continue; 600 DIP_SET(ip, i_db[i], 0); 601 bsize = blksize(fs, ip, i); 602 ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number, 603 vp->v_type, NULL, key); 604 blocksreleased += btodb(bsize); 605 } 606 ffs_blkrelease_finish(ump, key); 607 if (lastblock < 0) 608 goto done; 609 610 /* 611 * Finally, look for a change in size of the 612 * last direct block; release any frags. 613 */ 614 bn = DIP(ip, i_db[lastblock]); 615 if (bn != 0) { 616 long oldspace, newspace; 617 618 /* 619 * Calculate amount of space we're giving 620 * back as old block size minus new block size. 621 */ 622 oldspace = blksize(fs, ip, lastblock); 623 ip->i_size = length; 624 DIP_SET(ip, i_size, length); 625 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 626 newspace = blksize(fs, ip, lastblock); 627 if (newspace == 0) 628 panic("ffs_truncate: newspace"); 629 if (oldspace - newspace > 0) { 630 /* 631 * Block number of space to be free'd is 632 * the old block # plus the number of frags 633 * required for the storage we're keeping. 634 */ 635 bn += numfrags(fs, newspace); 636 ffs_blkfree(ump, fs, ump->um_devvp, bn, 637 oldspace - newspace, ip->i_number, vp->v_type, 638 NULL, SINGLETON_KEY); 639 blocksreleased += btodb(oldspace - newspace); 640 } 641 } 642 done: 643 #ifdef INVARIANTS 644 for (level = SINGLE; level <= TRIPLE; level++) 645 if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level])) 646 panic("ffs_truncate1: level %d newblks %jd != i_ib %jd", 647 level, (intmax_t)newblks[UFS_NDADDR + level], 648 (intmax_t)DIP(ip, i_ib[level])); 649 for (i = 0; i < UFS_NDADDR; i++) 650 if (newblks[i] != DIP(ip, i_db[i])) 651 panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd", 652 i, (intmax_t)newblks[UFS_NDADDR + level], 653 (intmax_t)DIP(ip, i_ib[level])); 654 BO_LOCK(bo); 655 if (length == 0 && 656 (fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) && 657 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 658 panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d", 659 vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt); 660 BO_UNLOCK(bo); 661 #endif /* INVARIANTS */ 662 /* 663 * Put back the real size. 664 */ 665 ip->i_size = length; 666 DIP_SET(ip, i_size, length); 667 if (DIP(ip, i_blocks) >= blocksreleased) 668 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased); 669 else /* sanity */ 670 DIP_SET(ip, i_blocks, 0); 671 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 672 #ifdef QUOTA 673 (void) chkdq(ip, -blocksreleased, NOCRED, FORCE); 674 #endif 675 return (allerror); 676 677 extclean: 678 if (journaltrunc) 679 softdep_journal_freeblocks(ip, cred, length, IO_EXT); 680 else 681 softdep_setup_freeblocks(ip, length, IO_EXT); 682 return (ffs_update(vp, waitforupdate)); 683 } 684 685 /* 686 * Release blocks associated with the inode ip and stored in the indirect 687 * block bn. Blocks are free'd in LIFO order up to (but not including) 688 * lastbn. If level is greater than SINGLE, the block is an indirect block 689 * and recursive calls to indirtrunc must be used to cleanse other indirect 690 * blocks. 691 */ 692 static int 693 ffs_indirtrunc(struct inode *ip, 694 ufs2_daddr_t lbn, 695 ufs2_daddr_t dbn, 696 ufs2_daddr_t lastbn, 697 int level, 698 ufs2_daddr_t *countp) 699 { 700 struct buf *bp; 701 struct fs *fs; 702 struct ufsmount *ump; 703 struct vnode *vp; 704 caddr_t copy = NULL; 705 uint64_t key; 706 int i, nblocks, error = 0, allerror = 0; 707 ufs2_daddr_t nb, nlbn, last; 708 ufs2_daddr_t blkcount, factor, blocksreleased = 0; 709 ufs1_daddr_t *bap1 = NULL; 710 ufs2_daddr_t *bap2 = NULL; 711 #define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i]) 712 713 fs = ITOFS(ip); 714 ump = ITOUMP(ip); 715 716 /* 717 * Calculate index in current block of last 718 * block to be kept. -1 indicates the entire 719 * block so we need not calculate the index. 720 */ 721 factor = lbn_offset(fs, level); 722 last = lastbn; 723 if (lastbn > 0) 724 last /= factor; 725 nblocks = btodb(fs->fs_bsize); 726 /* 727 * Get buffer of block pointers, zero those entries corresponding 728 * to blocks to be free'd, and update on disk copy first. Since 729 * double(triple) indirect before single(double) indirect, calls 730 * to VOP_BMAP() on these blocks will fail. However, we already 731 * have the on-disk address, so we just pass it to bread() instead 732 * of having bread() attempt to calculate it using VOP_BMAP(). 733 */ 734 vp = ITOV(ip); 735 error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, 736 NOCRED, 0, NULL, &bp); 737 if (error) { 738 *countp = 0; 739 return (error); 740 } 741 742 if (I_IS_UFS1(ip)) 743 bap1 = (ufs1_daddr_t *)bp->b_data; 744 else 745 bap2 = (ufs2_daddr_t *)bp->b_data; 746 if (lastbn != -1) { 747 copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK); 748 bcopy((caddr_t)bp->b_data, copy, (uint64_t)fs->fs_bsize); 749 for (i = last + 1; i < NINDIR(fs); i++) 750 if (I_IS_UFS1(ip)) 751 bap1[i] = 0; 752 else 753 bap2[i] = 0; 754 if (DOINGASYNC(vp)) { 755 bdwrite(bp); 756 } else { 757 error = bwrite(bp); 758 if (error) 759 allerror = error; 760 } 761 if (I_IS_UFS1(ip)) 762 bap1 = (ufs1_daddr_t *)copy; 763 else 764 bap2 = (ufs2_daddr_t *)copy; 765 } 766 767 /* 768 * Recursively free totally unused blocks. 769 */ 770 key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number); 771 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; 772 i--, nlbn += factor) { 773 nb = BAP(ip, i); 774 if (nb == 0) 775 continue; 776 if (level > SINGLE) { 777 if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 778 (ufs2_daddr_t)-1, level - 1, &blkcount)) != 0) 779 allerror = error; 780 blocksreleased += blkcount; 781 } 782 ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize, 783 ip->i_number, vp->v_type, NULL, key); 784 blocksreleased += nblocks; 785 } 786 ffs_blkrelease_finish(ump, key); 787 788 /* 789 * Recursively free last partial block. 790 */ 791 if (level > SINGLE && lastbn >= 0) { 792 last = lastbn % factor; 793 nb = BAP(ip, i); 794 if (nb != 0) { 795 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 796 last, level - 1, &blkcount); 797 if (error) 798 allerror = error; 799 blocksreleased += blkcount; 800 } 801 } 802 if (copy != NULL) { 803 free(copy, M_TEMP); 804 } else { 805 bp->b_flags |= B_INVAL | B_NOCACHE; 806 brelse(bp); 807 } 808 809 *countp = blocksreleased; 810 return (allerror); 811 } 812 813 int 814 ffs_rdonly(struct inode *ip) 815 { 816 817 return (ITOFS(ip)->fs_ronly != 0); 818 } 819