1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_ufs.h" 36 #include "opt_quota.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bio.h> 41 #include <sys/buf.h> 42 #include <sys/malloc.h> 43 #include <sys/mount.h> 44 #include <sys/proc.h> 45 #include <sys/racct.h> 46 #include <sys/random.h> 47 #include <sys/resourcevar.h> 48 #include <sys/rwlock.h> 49 #include <sys/stat.h> 50 #include <sys/vmmeter.h> 51 #include <sys/vnode.h> 52 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_object.h> 56 57 #include <ufs/ufs/extattr.h> 58 #include <ufs/ufs/quota.h> 59 #include <ufs/ufs/ufsmount.h> 60 #include <ufs/ufs/inode.h> 61 #include <ufs/ufs/dir.h> 62 #ifdef UFS_DIRHASH 63 #include <ufs/ufs/dirhash.h> 64 #endif 65 #include <ufs/ufs/ufs_extern.h> 66 67 #include <ufs/ffs/fs.h> 68 #include <ufs/ffs/ffs_extern.h> 69 70 static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t, 71 ufs2_daddr_t, int, ufs2_daddr_t *); 72 73 static void 74 ffs_inode_bwrite(struct vnode *vp, struct buf *bp, int flags) 75 { 76 if ((flags & IO_SYNC) != 0) 77 bwrite(bp); 78 else if (DOINGASYNC(vp)) 79 bdwrite(bp); 80 else 81 bawrite(bp); 82 } 83 84 /* 85 * Update the access, modified, and inode change times as specified by the 86 * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode 87 * to disk if the IN_MODIFIED flag is set (it may be set initially, or by 88 * the timestamp update). The IN_LAZYMOD flag is set to force a write 89 * later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs 90 * is currently being suspended (or is suspended) and vnode has been accessed. 91 * If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to 92 * reflect the presumably successful write, and if waitfor is set, then wait 93 * for the write to complete. 94 */ 95 int 96 ffs_update(struct vnode *vp, int waitfor) 97 { 98 struct fs *fs; 99 struct buf *bp; 100 struct inode *ip; 101 daddr_t bn; 102 int flags, error; 103 104 ASSERT_VOP_ELOCKED(vp, "ffs_update"); 105 ufs_itimes(vp); 106 ip = VTOI(vp); 107 if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0) 108 return (0); 109 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 110 /* 111 * The IN_SIZEMOD and IN_IBLKDATA flags indicate changes to the 112 * file size and block pointer fields in the inode. When these 113 * fields have been changed, the fsync() and fsyncdata() system 114 * calls must write the inode to ensure their semantics that the 115 * file is on stable store. 116 * 117 * The IN_SIZEMOD and IN_IBLKDATA flags cannot be cleared until 118 * a synchronous write of the inode is done. If they are cleared 119 * on an asynchronous write, then the inode may not yet have been 120 * written to the disk when an fsync() or fsyncdata() call is done. 121 * Absent these flags, these calls would not know that they needed 122 * to write the inode. Thus, these flags only can be cleared on 123 * synchronous writes of the inode. Since the inode will be locked 124 * for the duration of the I/O that writes it to disk, no fsync() 125 * or fsyncdata() will be able to run before the on-disk inode 126 * is complete. 127 */ 128 if (waitfor) 129 ip->i_flag &= ~(IN_SIZEMOD | IN_IBLKDATA); 130 fs = ITOFS(ip); 131 if (fs->fs_ronly) 132 return (0); 133 /* 134 * If we are updating a snapshot and another process is currently 135 * writing the buffer containing the inode for this snapshot then 136 * a deadlock can occur when it tries to check the snapshot to see 137 * if that block needs to be copied. Thus when updating a snapshot 138 * we check to see if the buffer is already locked, and if it is 139 * we drop the snapshot lock until the buffer has been written 140 * and is available to us. We have to grab a reference to the 141 * snapshot vnode to prevent it from being removed while we are 142 * waiting for the buffer. 143 */ 144 loop: 145 flags = 0; 146 if (IS_SNAPSHOT(ip)) 147 flags = GB_LOCK_NOWAIT; 148 bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 149 error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn, 150 (int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp); 151 if (error != 0) { 152 /* 153 * If EBUSY was returned without GB_LOCK_NOWAIT (which 154 * requests trylock for buffer lock), it is for some 155 * other reason and we should not handle it specially. 156 */ 157 if (error != EBUSY || (flags & GB_LOCK_NOWAIT) == 0) 158 return (error); 159 160 /* 161 * Wait for our inode block to become available. 162 * 163 * Hold a reference to the vnode to protect against 164 * ffs_snapgone(). Since we hold a reference, it can only 165 * get reclaimed (VIRF_DOOMED flag) in a forcible downgrade 166 * or unmount. For an unmount, the entire filesystem will be 167 * gone, so we cannot attempt to touch anything associated 168 * with it while the vnode is unlocked; all we can do is 169 * pause briefly and try again. If when we relock the vnode 170 * we discover that it has been reclaimed, updating it is no 171 * longer necessary and we can just return an error. 172 */ 173 vref(vp); 174 VOP_UNLOCK(vp); 175 pause("ffsupd", 1); 176 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 177 vrele(vp); 178 if (!IS_UFS(vp)) 179 return (ENOENT); 180 181 /* 182 * Recalculate flags, because the vnode was relocked and 183 * could no longer be a snapshot. 184 */ 185 goto loop; 186 } 187 if (DOINGSOFTDEP(vp)) 188 softdep_update_inodeblock(ip, bp, waitfor); 189 else if (ip->i_effnlink != ip->i_nlink) 190 panic("ffs_update: bad link cnt"); 191 if (I_IS_UFS1(ip)) { 192 *((struct ufs1_dinode *)bp->b_data + 193 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 194 /* 195 * XXX: FIX? The entropy here is desirable, 196 * but the harvesting may be expensive 197 */ 198 random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME); 199 } else { 200 ffs_update_dinode_ckhash(fs, ip->i_din2); 201 *((struct ufs2_dinode *)bp->b_data + 202 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 203 /* 204 * XXX: FIX? The entropy here is desirable, 205 * but the harvesting may be expensive 206 */ 207 random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME); 208 } 209 if (waitfor) { 210 error = bwrite(bp); 211 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 212 error = 0; 213 } else if (vm_page_count_severe() || buf_dirty_count_severe()) { 214 bawrite(bp); 215 error = 0; 216 } else { 217 if (bp->b_bufsize == fs->fs_bsize) 218 bp->b_flags |= B_CLUSTEROK; 219 bdwrite(bp); 220 error = 0; 221 } 222 return (error); 223 } 224 225 #define SINGLE 0 /* index of single indirect block */ 226 #define DOUBLE 1 /* index of double indirect block */ 227 #define TRIPLE 2 /* index of triple indirect block */ 228 /* 229 * Truncate the inode ip to at most length size, freeing the 230 * disk blocks. 231 */ 232 int 233 ffs_truncate(struct vnode *vp, 234 off_t length, 235 int flags, 236 struct ucred *cred) 237 { 238 struct inode *ip; 239 ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR]; 240 ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR]; 241 #ifdef INVARIANTS 242 ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR]; 243 #endif 244 ufs2_daddr_t count, blocksreleased = 0, blkno; 245 struct bufobj *bo __diagused; 246 struct fs *fs; 247 struct buf *bp; 248 struct ufsmount *ump; 249 int softdeptrunc, journaltrunc; 250 int needextclean, extblocks; 251 int offset, size, level, nblocks; 252 int i, error, allerror, indiroff, waitforupdate; 253 uint64_t key; 254 off_t osize; 255 256 ip = VTOI(vp); 257 ump = VFSTOUFS(vp->v_mount); 258 fs = ump->um_fs; 259 bo = &vp->v_bufobj; 260 261 ASSERT_VOP_LOCKED(vp, "ffs_truncate"); 262 263 if (length < 0) 264 return (EINVAL); 265 if (length > fs->fs_maxfilesize) 266 return (EFBIG); 267 #ifdef QUOTA 268 error = getinoquota(ip); 269 if (error) 270 return (error); 271 #endif 272 /* 273 * Historically clients did not have to specify which data 274 * they were truncating. So, if not specified, we assume 275 * traditional behavior, e.g., just the normal data. 276 */ 277 if ((flags & (IO_EXT | IO_NORMAL)) == 0) 278 flags |= IO_NORMAL; 279 if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp)) 280 flags |= IO_SYNC; 281 waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp); 282 /* 283 * If we are truncating the extended-attributes, and cannot 284 * do it with soft updates, then do it slowly here. If we are 285 * truncating both the extended attributes and the file contents 286 * (e.g., the file is being unlinked), then pick it off with 287 * soft updates below. 288 */ 289 allerror = 0; 290 needextclean = 0; 291 softdeptrunc = 0; 292 journaltrunc = DOINGSUJ(vp); 293 journaltrunc = 0; /* XXX temp patch until bug found */ 294 if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0) 295 softdeptrunc = !softdep_slowdown(vp); 296 extblocks = 0; 297 if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) { 298 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 299 } 300 if ((flags & IO_EXT) && extblocks > 0) { 301 if (length != 0) 302 panic("ffs_truncate: partial trunc of extdata"); 303 if (softdeptrunc || journaltrunc) { 304 if ((flags & IO_NORMAL) == 0) 305 goto extclean; 306 needextclean = 1; 307 } else { 308 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 309 return (error); 310 #ifdef QUOTA 311 (void) chkdq(ip, -extblocks, NOCRED, FORCE); 312 #endif 313 vinvalbuf(vp, V_ALT, 0, 0); 314 vn_pages_remove(vp, 315 OFF_TO_IDX(lblktosize(fs, -extblocks)), 0); 316 osize = ip->i_din2->di_extsize; 317 ip->i_din2->di_blocks -= extblocks; 318 ip->i_din2->di_extsize = 0; 319 for (i = 0; i < UFS_NXADDR; i++) { 320 oldblks[i] = ip->i_din2->di_extb[i]; 321 ip->i_din2->di_extb[i] = 0; 322 } 323 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 324 if ((error = ffs_update(vp, waitforupdate))) 325 return (error); 326 for (i = 0; i < UFS_NXADDR; i++) { 327 if (oldblks[i] == 0) 328 continue; 329 ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i], 330 sblksize(fs, osize, i), ip->i_number, 331 vp->v_type, NULL, SINGLETON_KEY); 332 } 333 } 334 } 335 if ((flags & IO_NORMAL) == 0) 336 return (0); 337 if (vp->v_type == VLNK && ip->i_size < ump->um_maxsymlinklen) { 338 #ifdef INVARIANTS 339 if (length != 0) 340 panic("ffs_truncate: partial truncate of symlink"); 341 #endif 342 bzero(DIP(ip, i_shortlink), (uint64_t)ip->i_size); 343 ip->i_size = 0; 344 DIP_SET(ip, i_size, 0); 345 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 346 if (needextclean) 347 goto extclean; 348 return (ffs_update(vp, waitforupdate)); 349 } 350 if (ip->i_size == length) { 351 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 352 if (needextclean) 353 goto extclean; 354 return (ffs_update(vp, 0)); 355 } 356 if (fs->fs_ronly) 357 panic("ffs_truncate: read-only filesystem"); 358 if (IS_SNAPSHOT(ip)) 359 ffs_snapremove(vp); 360 cluster_init_vn(&ip->i_clusterw); 361 osize = ip->i_size; 362 /* 363 * Lengthen the size of the file. We must ensure that the 364 * last byte of the file is allocated. Since the smallest 365 * value of osize is 0, length will be at least 1. 366 */ 367 if (osize < length) { 368 vnode_pager_setsize(vp, length); 369 flags |= BA_CLRBUF; 370 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 371 if (error) { 372 vnode_pager_setsize(vp, osize); 373 return (error); 374 } 375 ip->i_size = length; 376 DIP_SET(ip, i_size, length); 377 if (bp->b_bufsize == fs->fs_bsize) 378 bp->b_flags |= B_CLUSTEROK; 379 ffs_inode_bwrite(vp, bp, flags); 380 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 381 return (ffs_update(vp, waitforupdate)); 382 } 383 /* 384 * Lookup block number for a given offset. Zero length files 385 * have no blocks, so return a blkno of -1. 386 */ 387 lbn = lblkno(fs, length - 1); 388 if (length == 0) { 389 blkno = -1; 390 } else if (lbn < UFS_NDADDR) { 391 blkno = DIP(ip, i_db[lbn]); 392 } else { 393 error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize, 394 cred, BA_METAONLY, &bp); 395 if (error) 396 return (error); 397 indiroff = (lbn - UFS_NDADDR) % NINDIR(fs); 398 if (I_IS_UFS1(ip)) 399 blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff]; 400 else 401 blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff]; 402 /* 403 * If the block number is non-zero, then the indirect block 404 * must have been previously allocated and need not be written. 405 * If the block number is zero, then we may have allocated 406 * the indirect block and hence need to write it out. 407 */ 408 if (blkno != 0) 409 brelse(bp); 410 else if (flags & IO_SYNC) 411 bwrite(bp); 412 else 413 bdwrite(bp); 414 } 415 /* 416 * If the block number at the new end of the file is zero, 417 * then we must allocate it to ensure that the last block of 418 * the file is allocated. Soft updates does not handle this 419 * case, so here we have to clean up the soft updates data 420 * structures describing the allocation past the truncation 421 * point. Finding and deallocating those structures is a lot of 422 * work. Since partial truncation with a hole at the end occurs 423 * rarely, we solve the problem by syncing the file so that it 424 * will have no soft updates data structures left. 425 */ 426 if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 427 return (error); 428 if (blkno != 0 && DOINGSOFTDEP(vp)) { 429 if (softdeptrunc == 0 && journaltrunc == 0) { 430 /* 431 * If soft updates cannot handle this truncation, 432 * clean up soft dependency data structures and 433 * fall through to the synchronous truncation. 434 */ 435 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 436 return (error); 437 } else { 438 flags = IO_NORMAL | (needextclean ? IO_EXT: 0); 439 if (journaltrunc) 440 softdep_journal_freeblocks(ip, cred, length, 441 flags); 442 else 443 softdep_setup_freeblocks(ip, length, flags); 444 ASSERT_VOP_LOCKED(vp, "ffs_truncate1"); 445 if (journaltrunc == 0) { 446 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 447 error = ffs_update(vp, 0); 448 } 449 return (error); 450 } 451 } 452 /* 453 * Shorten the size of the file. If the last block of the 454 * shortened file is unallocated, we must allocate it. 455 * Additionally, if the file is not being truncated to a 456 * block boundary, the contents of the partial block 457 * following the end of the file must be zero'ed in 458 * case it ever becomes accessible again because of 459 * subsequent file growth. Directories however are not 460 * zero'ed as they should grow back initialized to empty. 461 */ 462 offset = blkoff(fs, length); 463 if (blkno != 0 && offset == 0) { 464 ip->i_size = length; 465 DIP_SET(ip, i_size, length); 466 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 467 #ifdef UFS_DIRHASH 468 if (vp->v_type == VDIR && ip->i_dirhash != NULL) 469 ufsdirhash_dirtrunc(ip, length); 470 #endif 471 } else { 472 lbn = lblkno(fs, length); 473 flags |= BA_CLRBUF; 474 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 475 if (error) 476 return (error); 477 ffs_inode_bwrite(vp, bp, flags); 478 479 /* 480 * When we are doing soft updates and the UFS_BALLOC 481 * above fills in a direct block hole with a full sized 482 * block that will be truncated down to a fragment below, 483 * we must flush out the block dependency with an FSYNC 484 * so that we do not get a soft updates inconsistency 485 * when we create the fragment below. 486 */ 487 if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR && 488 fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize && 489 (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) 490 return (error); 491 492 error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); 493 if (error) 494 return (error); 495 ip->i_size = length; 496 DIP_SET(ip, i_size, length); 497 #ifdef UFS_DIRHASH 498 if (vp->v_type == VDIR && ip->i_dirhash != NULL) 499 ufsdirhash_dirtrunc(ip, length); 500 #endif 501 size = blksize(fs, ip, lbn); 502 if (vp->v_type != VDIR && offset != 0) 503 bzero((char *)bp->b_data + offset, 504 (uint64_t)(size - offset)); 505 /* Kirk's code has reallocbuf(bp, size, 1) here */ 506 allocbuf(bp, size); 507 if (bp->b_bufsize == fs->fs_bsize) 508 bp->b_flags |= B_CLUSTEROK; 509 ffs_inode_bwrite(vp, bp, flags); 510 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 511 } 512 /* 513 * Calculate index into inode's block list of 514 * last direct and indirect blocks (if any) 515 * which we want to keep. Lastblock is -1 when 516 * the file is truncated to 0. 517 */ 518 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; 519 lastiblock[SINGLE] = lastblock - UFS_NDADDR; 520 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); 521 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); 522 nblocks = btodb(fs->fs_bsize); 523 /* 524 * Update file and block pointers on disk before we start freeing 525 * blocks. If we crash before free'ing blocks below, the blocks 526 * will be returned to the free list. lastiblock values are also 527 * normalized to -1 for calls to ffs_indirtrunc below. 528 */ 529 for (level = TRIPLE; level >= SINGLE; level--) { 530 oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]); 531 if (lastiblock[level] < 0) { 532 DIP_SET(ip, i_ib[level], 0); 533 lastiblock[level] = -1; 534 } 535 } 536 for (i = 0; i < UFS_NDADDR; i++) { 537 oldblks[i] = DIP(ip, i_db[i]); 538 if (i > lastblock) 539 DIP_SET(ip, i_db[i], 0); 540 } 541 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 542 allerror = ffs_update(vp, waitforupdate); 543 544 /* 545 * Having written the new inode to disk, save its new configuration 546 * and put back the old block pointers long enough to process them. 547 * Note that we save the new block configuration so we can check it 548 * when we are done. 549 */ 550 for (i = 0; i < UFS_NDADDR; i++) { 551 #ifdef INVARIANTS 552 newblks[i] = DIP(ip, i_db[i]); 553 #endif 554 DIP_SET(ip, i_db[i], oldblks[i]); 555 } 556 for (i = 0; i < UFS_NIADDR; i++) { 557 #ifdef INVARIANTS 558 newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]); 559 #endif 560 DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]); 561 } 562 ip->i_size = osize; 563 DIP_SET(ip, i_size, osize); 564 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 565 566 error = vtruncbuf(vp, length, fs->fs_bsize); 567 if (error && (allerror == 0)) 568 allerror = error; 569 570 /* 571 * Indirect blocks first. 572 */ 573 indir_lbn[SINGLE] = -UFS_NDADDR; 574 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; 575 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; 576 for (level = TRIPLE; level >= SINGLE; level--) { 577 bn = DIP(ip, i_ib[level]); 578 if (bn != 0) { 579 error = ffs_indirtrunc(ip, indir_lbn[level], 580 fsbtodb(fs, bn), lastiblock[level], level, &count); 581 if (error) 582 allerror = error; 583 blocksreleased += count; 584 if (lastiblock[level] < 0) { 585 DIP_SET(ip, i_ib[level], 0); 586 ffs_blkfree(ump, fs, ump->um_devvp, bn, 587 fs->fs_bsize, ip->i_number, 588 vp->v_type, NULL, SINGLETON_KEY); 589 blocksreleased += nblocks; 590 } 591 } 592 if (lastiblock[level] >= 0) 593 goto done; 594 } 595 596 /* 597 * All whole direct blocks or frags. 598 */ 599 key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number); 600 for (i = UFS_NDADDR - 1; i > lastblock; i--) { 601 long bsize; 602 603 bn = DIP(ip, i_db[i]); 604 if (bn == 0) 605 continue; 606 DIP_SET(ip, i_db[i], 0); 607 bsize = blksize(fs, ip, i); 608 ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number, 609 vp->v_type, NULL, key); 610 blocksreleased += btodb(bsize); 611 } 612 ffs_blkrelease_finish(ump, key); 613 if (lastblock < 0) 614 goto done; 615 616 /* 617 * Finally, look for a change in size of the 618 * last direct block; release any frags. 619 */ 620 bn = DIP(ip, i_db[lastblock]); 621 if (bn != 0) { 622 long oldspace, newspace; 623 624 /* 625 * Calculate amount of space we're giving 626 * back as old block size minus new block size. 627 */ 628 oldspace = blksize(fs, ip, lastblock); 629 ip->i_size = length; 630 DIP_SET(ip, i_size, length); 631 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 632 newspace = blksize(fs, ip, lastblock); 633 if (newspace == 0) 634 panic("ffs_truncate: newspace"); 635 if (oldspace - newspace > 0) { 636 /* 637 * Block number of space to be free'd is 638 * the old block # plus the number of frags 639 * required for the storage we're keeping. 640 */ 641 bn += numfrags(fs, newspace); 642 ffs_blkfree(ump, fs, ump->um_devvp, bn, 643 oldspace - newspace, ip->i_number, vp->v_type, 644 NULL, SINGLETON_KEY); 645 blocksreleased += btodb(oldspace - newspace); 646 } 647 } 648 done: 649 #ifdef INVARIANTS 650 for (level = SINGLE; level <= TRIPLE; level++) 651 if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level])) 652 panic("ffs_truncate1: level %d newblks %jd != i_ib %jd", 653 level, (intmax_t)newblks[UFS_NDADDR + level], 654 (intmax_t)DIP(ip, i_ib[level])); 655 for (i = 0; i < UFS_NDADDR; i++) 656 if (newblks[i] != DIP(ip, i_db[i])) 657 panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd", 658 i, (intmax_t)newblks[UFS_NDADDR + level], 659 (intmax_t)DIP(ip, i_ib[level])); 660 BO_LOCK(bo); 661 if (length == 0 && 662 (fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) && 663 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 664 panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d", 665 vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt); 666 BO_UNLOCK(bo); 667 #endif /* INVARIANTS */ 668 /* 669 * Put back the real size. 670 */ 671 ip->i_size = length; 672 DIP_SET(ip, i_size, length); 673 if (DIP(ip, i_blocks) >= blocksreleased) 674 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased); 675 else /* sanity */ 676 DIP_SET(ip, i_blocks, 0); 677 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 678 #ifdef QUOTA 679 (void) chkdq(ip, -blocksreleased, NOCRED, FORCE); 680 #endif 681 return (allerror); 682 683 extclean: 684 if (journaltrunc) 685 softdep_journal_freeblocks(ip, cred, length, IO_EXT); 686 else 687 softdep_setup_freeblocks(ip, length, IO_EXT); 688 return (ffs_update(vp, waitforupdate)); 689 } 690 691 /* 692 * Release blocks associated with the inode ip and stored in the indirect 693 * block bn. Blocks are free'd in LIFO order up to (but not including) 694 * lastbn. If level is greater than SINGLE, the block is an indirect block 695 * and recursive calls to indirtrunc must be used to cleanse other indirect 696 * blocks. 697 */ 698 static int 699 ffs_indirtrunc(struct inode *ip, 700 ufs2_daddr_t lbn, 701 ufs2_daddr_t dbn, 702 ufs2_daddr_t lastbn, 703 int level, 704 ufs2_daddr_t *countp) 705 { 706 struct buf *bp; 707 struct fs *fs; 708 struct ufsmount *ump; 709 struct vnode *vp; 710 caddr_t copy = NULL; 711 uint64_t key; 712 int i, nblocks, error = 0, allerror = 0; 713 ufs2_daddr_t nb, nlbn, last; 714 ufs2_daddr_t blkcount, factor, blocksreleased = 0; 715 ufs1_daddr_t *bap1 = NULL; 716 ufs2_daddr_t *bap2 = NULL; 717 #define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i]) 718 719 fs = ITOFS(ip); 720 ump = ITOUMP(ip); 721 722 /* 723 * Calculate index in current block of last 724 * block to be kept. -1 indicates the entire 725 * block so we need not calculate the index. 726 */ 727 factor = lbn_offset(fs, level); 728 last = lastbn; 729 if (lastbn > 0) 730 last /= factor; 731 nblocks = btodb(fs->fs_bsize); 732 /* 733 * Get buffer of block pointers, zero those entries corresponding 734 * to blocks to be free'd, and update on disk copy first. Since 735 * double(triple) indirect before single(double) indirect, calls 736 * to VOP_BMAP() on these blocks will fail. However, we already 737 * have the on-disk address, so we just pass it to bread() instead 738 * of having bread() attempt to calculate it using VOP_BMAP(). 739 */ 740 vp = ITOV(ip); 741 error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, 742 NOCRED, 0, NULL, &bp); 743 if (error) { 744 *countp = 0; 745 return (error); 746 } 747 748 if (I_IS_UFS1(ip)) 749 bap1 = (ufs1_daddr_t *)bp->b_data; 750 else 751 bap2 = (ufs2_daddr_t *)bp->b_data; 752 if (lastbn != -1) { 753 copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK); 754 bcopy((caddr_t)bp->b_data, copy, (uint64_t)fs->fs_bsize); 755 for (i = last + 1; i < NINDIR(fs); i++) 756 if (I_IS_UFS1(ip)) 757 bap1[i] = 0; 758 else 759 bap2[i] = 0; 760 if (DOINGASYNC(vp)) { 761 bdwrite(bp); 762 } else { 763 error = bwrite(bp); 764 if (error) 765 allerror = error; 766 } 767 if (I_IS_UFS1(ip)) 768 bap1 = (ufs1_daddr_t *)copy; 769 else 770 bap2 = (ufs2_daddr_t *)copy; 771 } 772 773 /* 774 * Recursively free totally unused blocks. 775 */ 776 key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number); 777 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; 778 i--, nlbn += factor) { 779 nb = BAP(ip, i); 780 if (nb == 0) 781 continue; 782 if (level > SINGLE) { 783 if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 784 (ufs2_daddr_t)-1, level - 1, &blkcount)) != 0) 785 allerror = error; 786 blocksreleased += blkcount; 787 } 788 ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize, 789 ip->i_number, vp->v_type, NULL, key); 790 blocksreleased += nblocks; 791 } 792 ffs_blkrelease_finish(ump, key); 793 794 /* 795 * Recursively free last partial block. 796 */ 797 if (level > SINGLE && lastbn >= 0) { 798 last = lastbn % factor; 799 nb = BAP(ip, i); 800 if (nb != 0) { 801 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 802 last, level - 1, &blkcount); 803 if (error) 804 allerror = error; 805 blocksreleased += blkcount; 806 } 807 } 808 if (copy != NULL) { 809 free(copy, M_TEMP); 810 } else { 811 bp->b_flags |= B_INVAL | B_NOCACHE; 812 brelse(bp); 813 } 814 815 *countp = blocksreleased; 816 return (allerror); 817 } 818 819 int 820 ffs_rdonly(struct inode *ip) 821 { 822 823 return (ITOFS(ip)->fs_ronly != 0); 824 } 825