1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Copyright (c) 1982, 1986, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 43 * $FreeBSD$ 44 */ 45 46 #include "opt_quota.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/conf.h> 53 #include <sys/file.h> 54 #include <sys/filedesc.h> 55 #include <sys/proc.h> 56 #include <sys/vnode.h> 57 #include <sys/mount.h> 58 #include <sys/kernel.h> 59 #include <sys/stdint.h> 60 #include <sys/sysctl.h> 61 #include <sys/syslog.h> 62 63 #include <ufs/ufs/extattr.h> 64 #include <ufs/ufs/quota.h> 65 #include <ufs/ufs/inode.h> 66 #include <ufs/ufs/ufs_extern.h> 67 #include <ufs/ufs/ufsmount.h> 68 69 #include <ufs/ffs/fs.h> 70 #include <ufs/ffs/ffs_extern.h> 71 72 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref, 73 int size); 74 75 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int); 76 static ufs2_daddr_t 77 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t); 78 #ifdef DIAGNOSTIC 79 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 80 #endif 81 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int); 82 static ino_t ffs_dirpref(struct inode *); 83 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int); 84 static void ffs_fserr(struct fs *, ino_t, char *); 85 static ufs2_daddr_t ffs_hashalloc 86 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *); 87 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int); 88 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 89 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 90 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 91 92 /* 93 * Allocate a block in the filesystem. 94 * 95 * The size of the requested block is given, which must be some 96 * multiple of fs_fsize and <= fs_bsize. 97 * A preference may be optionally specified. If a preference is given 98 * the following hierarchy is used to allocate a block: 99 * 1) allocate the requested block. 100 * 2) allocate a rotationally optimal block in the same cylinder. 101 * 3) allocate a block in the same cylinder group. 102 * 4) quadradically rehash into other cylinder groups, until an 103 * available block is located. 104 * If no block preference is given the following heirarchy is used 105 * to allocate a block: 106 * 1) allocate a block in the cylinder group that contains the 107 * inode for the file. 108 * 2) quadradically rehash into other cylinder groups, until an 109 * available block is located. 110 */ 111 int 112 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 113 struct inode *ip; 114 ufs2_daddr_t lbn, bpref; 115 int size; 116 struct ucred *cred; 117 ufs2_daddr_t *bnp; 118 { 119 struct fs *fs; 120 ufs2_daddr_t bno; 121 int cg, reclaimed; 122 #ifdef QUOTA 123 int error; 124 #endif 125 126 *bnp = 0; 127 fs = ip->i_fs; 128 #ifdef DIAGNOSTIC 129 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 130 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 131 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 132 fs->fs_fsmnt); 133 panic("ffs_alloc: bad size"); 134 } 135 if (cred == NOCRED) 136 panic("ffs_alloc: missing credential"); 137 #endif /* DIAGNOSTIC */ 138 reclaimed = 0; 139 retry: 140 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 141 goto nospace; 142 if (suser_cred(cred, PRISON_ROOT) && 143 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 144 goto nospace; 145 #ifdef QUOTA 146 error = chkdq(ip, btodb(size), cred, 0); 147 if (error) 148 return (error); 149 #endif 150 if (bpref >= fs->fs_size) 151 bpref = 0; 152 if (bpref == 0) 153 cg = ino_to_cg(fs, ip->i_number); 154 else 155 cg = dtog(fs, bpref); 156 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 157 if (bno > 0) { 158 DIP(ip, i_blocks) += btodb(size); 159 ip->i_flag |= IN_CHANGE | IN_UPDATE; 160 *bnp = bno; 161 return (0); 162 } 163 #ifdef QUOTA 164 /* 165 * Restore user's disk quota because allocation failed. 166 */ 167 (void) chkdq(ip, -btodb(size), cred, FORCE); 168 #endif 169 nospace: 170 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 171 reclaimed = 1; 172 softdep_request_cleanup(fs, ITOV(ip)); 173 goto retry; 174 } 175 ffs_fserr(fs, ip->i_number, "filesystem full"); 176 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); 177 return (ENOSPC); 178 } 179 180 /* 181 * Reallocate a fragment to a bigger size 182 * 183 * The number and size of the old block is given, and a preference 184 * and new size is also specified. The allocator attempts to extend 185 * the original block. Failing that, the regular block allocator is 186 * invoked to get an appropriate block. 187 */ 188 int 189 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp) 190 struct inode *ip; 191 ufs2_daddr_t lbprev; 192 ufs2_daddr_t bprev; 193 ufs2_daddr_t bpref; 194 int osize, nsize; 195 struct ucred *cred; 196 struct buf **bpp; 197 { 198 struct vnode *vp; 199 struct fs *fs; 200 struct buf *bp; 201 int cg, request, error, reclaimed; 202 ufs2_daddr_t bno; 203 204 *bpp = 0; 205 vp = ITOV(ip); 206 fs = ip->i_fs; 207 #ifdef DIAGNOSTIC 208 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 209 panic("ffs_realloccg: allocation on suspended filesystem"); 210 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 211 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 212 printf( 213 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 214 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 215 nsize, fs->fs_fsmnt); 216 panic("ffs_realloccg: bad size"); 217 } 218 if (cred == NOCRED) 219 panic("ffs_realloccg: missing credential"); 220 #endif /* DIAGNOSTIC */ 221 reclaimed = 0; 222 retry: 223 if (suser_cred(cred, PRISON_ROOT) && 224 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) 225 goto nospace; 226 if (bprev == 0) { 227 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 228 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 229 fs->fs_fsmnt); 230 panic("ffs_realloccg: bad bprev"); 231 } 232 /* 233 * Allocate the extra space in the buffer. 234 */ 235 error = bread(vp, lbprev, osize, NOCRED, &bp); 236 if (error) { 237 brelse(bp); 238 return (error); 239 } 240 241 if (bp->b_blkno == bp->b_lblkno) { 242 if (lbprev >= NDADDR) 243 panic("ffs_realloccg: lbprev out of range"); 244 bp->b_blkno = fsbtodb(fs, bprev); 245 } 246 247 #ifdef QUOTA 248 error = chkdq(ip, btodb(nsize - osize), cred, 0); 249 if (error) { 250 brelse(bp); 251 return (error); 252 } 253 #endif 254 /* 255 * Check for extension in the existing location. 256 */ 257 cg = dtog(fs, bprev); 258 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 259 if (bno) { 260 if (bp->b_blkno != fsbtodb(fs, bno)) 261 panic("ffs_realloccg: bad blockno"); 262 DIP(ip, i_blocks) += btodb(nsize - osize); 263 ip->i_flag |= IN_CHANGE | IN_UPDATE; 264 allocbuf(bp, nsize); 265 bp->b_flags |= B_DONE; 266 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 267 *bpp = bp; 268 return (0); 269 } 270 /* 271 * Allocate a new disk location. 272 */ 273 if (bpref >= fs->fs_size) 274 bpref = 0; 275 switch ((int)fs->fs_optim) { 276 case FS_OPTSPACE: 277 /* 278 * Allocate an exact sized fragment. Although this makes 279 * best use of space, we will waste time relocating it if 280 * the file continues to grow. If the fragmentation is 281 * less than half of the minimum free reserve, we choose 282 * to begin optimizing for time. 283 */ 284 request = nsize; 285 if (fs->fs_minfree <= 5 || 286 fs->fs_cstotal.cs_nffree > 287 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 288 break; 289 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 290 fs->fs_fsmnt); 291 fs->fs_optim = FS_OPTTIME; 292 break; 293 case FS_OPTTIME: 294 /* 295 * At this point we have discovered a file that is trying to 296 * grow a small fragment to a larger fragment. To save time, 297 * we allocate a full sized block, then free the unused portion. 298 * If the file continues to grow, the `ffs_fragextend' call 299 * above will be able to grow it in place without further 300 * copying. If aberrant programs cause disk fragmentation to 301 * grow within 2% of the free reserve, we choose to begin 302 * optimizing for space. 303 */ 304 request = fs->fs_bsize; 305 if (fs->fs_cstotal.cs_nffree < 306 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 307 break; 308 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 309 fs->fs_fsmnt); 310 fs->fs_optim = FS_OPTSPACE; 311 break; 312 default: 313 printf("dev = %s, optim = %ld, fs = %s\n", 314 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 315 panic("ffs_realloccg: bad optim"); 316 /* NOTREACHED */ 317 } 318 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 319 if (bno > 0) { 320 bp->b_blkno = fsbtodb(fs, bno); 321 if (!DOINGSOFTDEP(vp)) 322 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize, 323 ip->i_number); 324 if (nsize < request) 325 ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize), 326 (long)(request - nsize), ip->i_number); 327 DIP(ip, i_blocks) += btodb(nsize - osize); 328 ip->i_flag |= IN_CHANGE | IN_UPDATE; 329 allocbuf(bp, nsize); 330 bp->b_flags |= B_DONE; 331 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 332 *bpp = bp; 333 return (0); 334 } 335 #ifdef QUOTA 336 /* 337 * Restore user's disk quota because allocation failed. 338 */ 339 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 340 #endif 341 brelse(bp); 342 nospace: 343 /* 344 * no space available 345 */ 346 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 347 reclaimed = 1; 348 softdep_request_cleanup(fs, vp); 349 goto retry; 350 } 351 ffs_fserr(fs, ip->i_number, "filesystem full"); 352 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); 353 return (ENOSPC); 354 } 355 356 /* 357 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 358 * 359 * The vnode and an array of buffer pointers for a range of sequential 360 * logical blocks to be made contiguous is given. The allocator attempts 361 * to find a range of sequential blocks starting as close as possible 362 * from the end of the allocation for the logical block immediately 363 * preceding the current range. If successful, the physical block numbers 364 * in the buffer pointers and in the inode are changed to reflect the new 365 * allocation. If unsuccessful, the allocation is left unchanged. The 366 * success in doing the reallocation is returned. Note that the error 367 * return is not reflected back to the user. Rather the previous block 368 * allocation will be used. 369 */ 370 371 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 372 373 static int doasyncfree = 1; 374 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 375 376 static int doreallocblks = 1; 377 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 378 379 #ifdef DEBUG 380 static volatile int prtrealloc = 0; 381 #endif 382 383 int 384 ffs_reallocblks(ap) 385 struct vop_reallocblks_args /* { 386 struct vnode *a_vp; 387 struct cluster_save *a_buflist; 388 } */ *ap; 389 { 390 391 if (doreallocblks == 0) 392 return (ENOSPC); 393 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 394 return (ffs_reallocblks_ufs1(ap)); 395 return (ffs_reallocblks_ufs2(ap)); 396 } 397 398 static int 399 ffs_reallocblks_ufs1(ap) 400 struct vop_reallocblks_args /* { 401 struct vnode *a_vp; 402 struct cluster_save *a_buflist; 403 } */ *ap; 404 { 405 struct fs *fs; 406 struct inode *ip; 407 struct vnode *vp; 408 struct buf *sbp, *ebp; 409 ufs1_daddr_t *bap, *sbap, *ebap = 0; 410 struct cluster_save *buflist; 411 ufs_lbn_t start_lbn, end_lbn; 412 ufs1_daddr_t soff, newblk, blkno; 413 ufs2_daddr_t pref; 414 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 415 int i, len, start_lvl, end_lvl, ssize; 416 417 vp = ap->a_vp; 418 ip = VTOI(vp); 419 fs = ip->i_fs; 420 if (fs->fs_contigsumsize <= 0) 421 return (ENOSPC); 422 buflist = ap->a_buflist; 423 len = buflist->bs_nchildren; 424 start_lbn = buflist->bs_children[0]->b_lblkno; 425 end_lbn = start_lbn + len - 1; 426 #ifdef DIAGNOSTIC 427 for (i = 0; i < len; i++) 428 if (!ffs_checkblk(ip, 429 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 430 panic("ffs_reallocblks: unallocated block 1"); 431 for (i = 1; i < len; i++) 432 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 433 panic("ffs_reallocblks: non-logical cluster"); 434 blkno = buflist->bs_children[0]->b_blkno; 435 ssize = fsbtodb(fs, fs->fs_frag); 436 for (i = 1; i < len - 1; i++) 437 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 438 panic("ffs_reallocblks: non-physical cluster %d", i); 439 #endif 440 /* 441 * If the latest allocation is in a new cylinder group, assume that 442 * the filesystem has decided to move and do not force it back to 443 * the previous cylinder group. 444 */ 445 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 446 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 447 return (ENOSPC); 448 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 449 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 450 return (ENOSPC); 451 /* 452 * Get the starting offset and block map for the first block. 453 */ 454 if (start_lvl == 0) { 455 sbap = &ip->i_din1->di_db[0]; 456 soff = start_lbn; 457 } else { 458 idp = &start_ap[start_lvl - 1]; 459 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 460 brelse(sbp); 461 return (ENOSPC); 462 } 463 sbap = (ufs1_daddr_t *)sbp->b_data; 464 soff = idp->in_off; 465 } 466 /* 467 * Find the preferred location for the cluster. 468 */ 469 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 470 /* 471 * If the block range spans two block maps, get the second map. 472 */ 473 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 474 ssize = len; 475 } else { 476 #ifdef DIAGNOSTIC 477 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 478 panic("ffs_reallocblk: start == end"); 479 #endif 480 ssize = len - (idp->in_off + 1); 481 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 482 goto fail; 483 ebap = (ufs1_daddr_t *)ebp->b_data; 484 } 485 /* 486 * Search the block map looking for an allocation of the desired size. 487 */ 488 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 489 len, ffs_clusteralloc)) == 0) 490 goto fail; 491 /* 492 * We have found a new contiguous block. 493 * 494 * First we have to replace the old block pointers with the new 495 * block pointers in the inode and indirect blocks associated 496 * with the file. 497 */ 498 #ifdef DEBUG 499 if (prtrealloc) 500 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 501 (intmax_t)start_lbn, (intmax_t)end_lbn); 502 #endif 503 blkno = newblk; 504 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 505 if (i == ssize) { 506 bap = ebap; 507 soff = -i; 508 } 509 #ifdef DIAGNOSTIC 510 if (!ffs_checkblk(ip, 511 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 512 panic("ffs_reallocblks: unallocated block 2"); 513 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 514 panic("ffs_reallocblks: alloc mismatch"); 515 #endif 516 #ifdef DEBUG 517 if (prtrealloc) 518 printf(" %d,", *bap); 519 #endif 520 if (DOINGSOFTDEP(vp)) { 521 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 522 softdep_setup_allocdirect(ip, start_lbn + i, 523 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 524 buflist->bs_children[i]); 525 else 526 softdep_setup_allocindir_page(ip, start_lbn + i, 527 i < ssize ? sbp : ebp, soff + i, blkno, 528 *bap, buflist->bs_children[i]); 529 } 530 *bap++ = blkno; 531 } 532 /* 533 * Next we must write out the modified inode and indirect blocks. 534 * For strict correctness, the writes should be synchronous since 535 * the old block values may have been written to disk. In practise 536 * they are almost never written, but if we are concerned about 537 * strict correctness, the `doasyncfree' flag should be set to zero. 538 * 539 * The test on `doasyncfree' should be changed to test a flag 540 * that shows whether the associated buffers and inodes have 541 * been written. The flag should be set when the cluster is 542 * started and cleared whenever the buffer or inode is flushed. 543 * We can then check below to see if it is set, and do the 544 * synchronous write only when it has been cleared. 545 */ 546 if (sbap != &ip->i_din1->di_db[0]) { 547 if (doasyncfree) 548 bdwrite(sbp); 549 else 550 bwrite(sbp); 551 } else { 552 ip->i_flag |= IN_CHANGE | IN_UPDATE; 553 if (!doasyncfree) 554 UFS_UPDATE(vp, 1); 555 } 556 if (ssize < len) { 557 if (doasyncfree) 558 bdwrite(ebp); 559 else 560 bwrite(ebp); 561 } 562 /* 563 * Last, free the old blocks and assign the new blocks to the buffers. 564 */ 565 #ifdef DEBUG 566 if (prtrealloc) 567 printf("\n\tnew:"); 568 #endif 569 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 570 if (!DOINGSOFTDEP(vp)) 571 ffs_blkfree(fs, ip->i_devvp, 572 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 573 fs->fs_bsize, ip->i_number); 574 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 575 #ifdef DIAGNOSTIC 576 if (!ffs_checkblk(ip, 577 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 578 panic("ffs_reallocblks: unallocated block 3"); 579 #endif 580 #ifdef DEBUG 581 if (prtrealloc) 582 printf(" %d,", blkno); 583 #endif 584 } 585 #ifdef DEBUG 586 if (prtrealloc) { 587 prtrealloc--; 588 printf("\n"); 589 } 590 #endif 591 return (0); 592 593 fail: 594 if (ssize < len) 595 brelse(ebp); 596 if (sbap != &ip->i_din1->di_db[0]) 597 brelse(sbp); 598 return (ENOSPC); 599 } 600 601 static int 602 ffs_reallocblks_ufs2(ap) 603 struct vop_reallocblks_args /* { 604 struct vnode *a_vp; 605 struct cluster_save *a_buflist; 606 } */ *ap; 607 { 608 struct fs *fs; 609 struct inode *ip; 610 struct vnode *vp; 611 struct buf *sbp, *ebp; 612 ufs2_daddr_t *bap, *sbap, *ebap = 0; 613 struct cluster_save *buflist; 614 ufs_lbn_t start_lbn, end_lbn; 615 ufs2_daddr_t soff, newblk, blkno, pref; 616 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 617 int i, len, start_lvl, end_lvl, ssize; 618 619 vp = ap->a_vp; 620 ip = VTOI(vp); 621 fs = ip->i_fs; 622 if (fs->fs_contigsumsize <= 0) 623 return (ENOSPC); 624 buflist = ap->a_buflist; 625 len = buflist->bs_nchildren; 626 start_lbn = buflist->bs_children[0]->b_lblkno; 627 end_lbn = start_lbn + len - 1; 628 #ifdef DIAGNOSTIC 629 for (i = 0; i < len; i++) 630 if (!ffs_checkblk(ip, 631 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 632 panic("ffs_reallocblks: unallocated block 1"); 633 for (i = 1; i < len; i++) 634 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 635 panic("ffs_reallocblks: non-logical cluster"); 636 blkno = buflist->bs_children[0]->b_blkno; 637 ssize = fsbtodb(fs, fs->fs_frag); 638 for (i = 1; i < len - 1; i++) 639 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 640 panic("ffs_reallocblks: non-physical cluster %d", i); 641 #endif 642 /* 643 * If the latest allocation is in a new cylinder group, assume that 644 * the filesystem has decided to move and do not force it back to 645 * the previous cylinder group. 646 */ 647 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 648 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 649 return (ENOSPC); 650 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 651 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 652 return (ENOSPC); 653 /* 654 * Get the starting offset and block map for the first block. 655 */ 656 if (start_lvl == 0) { 657 sbap = &ip->i_din2->di_db[0]; 658 soff = start_lbn; 659 } else { 660 idp = &start_ap[start_lvl - 1]; 661 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 662 brelse(sbp); 663 return (ENOSPC); 664 } 665 sbap = (ufs2_daddr_t *)sbp->b_data; 666 soff = idp->in_off; 667 } 668 /* 669 * Find the preferred location for the cluster. 670 */ 671 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 672 /* 673 * If the block range spans two block maps, get the second map. 674 */ 675 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 676 ssize = len; 677 } else { 678 #ifdef DIAGNOSTIC 679 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 680 panic("ffs_reallocblk: start == end"); 681 #endif 682 ssize = len - (idp->in_off + 1); 683 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 684 goto fail; 685 ebap = (ufs2_daddr_t *)ebp->b_data; 686 } 687 /* 688 * Search the block map looking for an allocation of the desired size. 689 */ 690 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 691 len, ffs_clusteralloc)) == 0) 692 goto fail; 693 /* 694 * We have found a new contiguous block. 695 * 696 * First we have to replace the old block pointers with the new 697 * block pointers in the inode and indirect blocks associated 698 * with the file. 699 */ 700 #ifdef DEBUG 701 if (prtrealloc) 702 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 703 (intmax_t)start_lbn, (intmax_t)end_lbn); 704 #endif 705 blkno = newblk; 706 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 707 if (i == ssize) { 708 bap = ebap; 709 soff = -i; 710 } 711 #ifdef DIAGNOSTIC 712 if (!ffs_checkblk(ip, 713 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 714 panic("ffs_reallocblks: unallocated block 2"); 715 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 716 panic("ffs_reallocblks: alloc mismatch"); 717 #endif 718 #ifdef DEBUG 719 if (prtrealloc) 720 printf(" %jd,", (intmax_t)*bap); 721 #endif 722 if (DOINGSOFTDEP(vp)) { 723 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 724 softdep_setup_allocdirect(ip, start_lbn + i, 725 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 726 buflist->bs_children[i]); 727 else 728 softdep_setup_allocindir_page(ip, start_lbn + i, 729 i < ssize ? sbp : ebp, soff + i, blkno, 730 *bap, buflist->bs_children[i]); 731 } 732 *bap++ = blkno; 733 } 734 /* 735 * Next we must write out the modified inode and indirect blocks. 736 * For strict correctness, the writes should be synchronous since 737 * the old block values may have been written to disk. In practise 738 * they are almost never written, but if we are concerned about 739 * strict correctness, the `doasyncfree' flag should be set to zero. 740 * 741 * The test on `doasyncfree' should be changed to test a flag 742 * that shows whether the associated buffers and inodes have 743 * been written. The flag should be set when the cluster is 744 * started and cleared whenever the buffer or inode is flushed. 745 * We can then check below to see if it is set, and do the 746 * synchronous write only when it has been cleared. 747 */ 748 if (sbap != &ip->i_din2->di_db[0]) { 749 if (doasyncfree) 750 bdwrite(sbp); 751 else 752 bwrite(sbp); 753 } else { 754 ip->i_flag |= IN_CHANGE | IN_UPDATE; 755 if (!doasyncfree) 756 UFS_UPDATE(vp, 1); 757 } 758 if (ssize < len) { 759 if (doasyncfree) 760 bdwrite(ebp); 761 else 762 bwrite(ebp); 763 } 764 /* 765 * Last, free the old blocks and assign the new blocks to the buffers. 766 */ 767 #ifdef DEBUG 768 if (prtrealloc) 769 printf("\n\tnew:"); 770 #endif 771 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 772 if (!DOINGSOFTDEP(vp)) 773 ffs_blkfree(fs, ip->i_devvp, 774 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 775 fs->fs_bsize, ip->i_number); 776 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 777 #ifdef DIAGNOSTIC 778 if (!ffs_checkblk(ip, 779 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 780 panic("ffs_reallocblks: unallocated block 3"); 781 #endif 782 #ifdef DEBUG 783 if (prtrealloc) 784 printf(" %jd,", (intmax_t)blkno); 785 #endif 786 } 787 #ifdef DEBUG 788 if (prtrealloc) { 789 prtrealloc--; 790 printf("\n"); 791 } 792 #endif 793 return (0); 794 795 fail: 796 if (ssize < len) 797 brelse(ebp); 798 if (sbap != &ip->i_din2->di_db[0]) 799 brelse(sbp); 800 return (ENOSPC); 801 } 802 803 /* 804 * Allocate an inode in the filesystem. 805 * 806 * If allocating a directory, use ffs_dirpref to select the inode. 807 * If allocating in a directory, the following hierarchy is followed: 808 * 1) allocate the preferred inode. 809 * 2) allocate an inode in the same cylinder group. 810 * 3) quadradically rehash into other cylinder groups, until an 811 * available inode is located. 812 * If no inode preference is given the following heirarchy is used 813 * to allocate an inode: 814 * 1) allocate an inode in cylinder group 0. 815 * 2) quadradically rehash into other cylinder groups, until an 816 * available inode is located. 817 */ 818 int 819 ffs_valloc(pvp, mode, cred, vpp) 820 struct vnode *pvp; 821 int mode; 822 struct ucred *cred; 823 struct vnode **vpp; 824 { 825 struct inode *pip; 826 struct fs *fs; 827 struct inode *ip; 828 struct timespec ts; 829 ino_t ino, ipref; 830 int cg, error; 831 832 *vpp = NULL; 833 pip = VTOI(pvp); 834 fs = pip->i_fs; 835 if (fs->fs_cstotal.cs_nifree == 0) 836 goto noinodes; 837 838 if ((mode & IFMT) == IFDIR) 839 ipref = ffs_dirpref(pip); 840 else 841 ipref = pip->i_number; 842 if (ipref >= fs->fs_ncg * fs->fs_ipg) 843 ipref = 0; 844 cg = ino_to_cg(fs, ipref); 845 /* 846 * Track number of dirs created one after another 847 * in a same cg without intervening by files. 848 */ 849 if ((mode & IFMT) == IFDIR) { 850 if (fs->fs_contigdirs[cg] < 255) 851 fs->fs_contigdirs[cg]++; 852 } else { 853 if (fs->fs_contigdirs[cg] > 0) 854 fs->fs_contigdirs[cg]--; 855 } 856 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 857 (allocfcn_t *)ffs_nodealloccg); 858 if (ino == 0) 859 goto noinodes; 860 error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 861 if (error) { 862 UFS_VFREE(pvp, ino, mode); 863 return (error); 864 } 865 ip = VTOI(*vpp); 866 if (ip->i_mode) { 867 printf("mode = 0%o, inum = %lu, fs = %s\n", 868 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 869 panic("ffs_valloc: dup alloc"); 870 } 871 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 872 printf("free inode %s/%lu had %ld blocks\n", 873 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 874 DIP(ip, i_blocks) = 0; 875 } 876 ip->i_flags = 0; 877 DIP(ip, i_flags) = 0; 878 /* 879 * Set up a new generation number for this inode. 880 */ 881 if (ip->i_gen == 0 || ++ip->i_gen == 0) 882 ip->i_gen = arc4random() / 2 + 1; 883 DIP(ip, i_gen) = ip->i_gen; 884 if (fs->fs_magic == FS_UFS2_MAGIC) { 885 vfs_timestamp(&ts); 886 ip->i_din2->di_birthtime = ts.tv_sec; 887 ip->i_din2->di_birthnsec = ts.tv_nsec; 888 } 889 return (0); 890 noinodes: 891 ffs_fserr(fs, pip->i_number, "out of inodes"); 892 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 893 return (ENOSPC); 894 } 895 896 /* 897 * Find a cylinder group to place a directory. 898 * 899 * The policy implemented by this algorithm is to allocate a 900 * directory inode in the same cylinder group as its parent 901 * directory, but also to reserve space for its files inodes 902 * and data. Restrict the number of directories which may be 903 * allocated one after another in the same cylinder group 904 * without intervening allocation of files. 905 * 906 * If we allocate a first level directory then force allocation 907 * in another cylinder group. 908 */ 909 static ino_t 910 ffs_dirpref(pip) 911 struct inode *pip; 912 { 913 struct fs *fs; 914 int cg, prefcg, dirsize, cgsize; 915 int avgifree, avgbfree, avgndir, curdirsize; 916 int minifree, minbfree, maxndir; 917 int mincg, minndir; 918 int maxcontigdirs; 919 920 fs = pip->i_fs; 921 922 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 923 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 924 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 925 926 /* 927 * Force allocation in another cg if creating a first level dir. 928 */ 929 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 930 if (ITOV(pip)->v_vflag & VV_ROOT) { 931 prefcg = arc4random() % fs->fs_ncg; 932 mincg = prefcg; 933 minndir = fs->fs_ipg; 934 for (cg = prefcg; cg < fs->fs_ncg; cg++) 935 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 936 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 937 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 938 mincg = cg; 939 minndir = fs->fs_cs(fs, cg).cs_ndir; 940 } 941 for (cg = 0; cg < prefcg; cg++) 942 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 943 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 944 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 945 mincg = cg; 946 minndir = fs->fs_cs(fs, cg).cs_ndir; 947 } 948 return ((ino_t)(fs->fs_ipg * mincg)); 949 } 950 951 /* 952 * Count various limits which used for 953 * optimal allocation of a directory inode. 954 */ 955 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 956 minifree = avgifree - fs->fs_ipg / 4; 957 if (minifree < 0) 958 minifree = 0; 959 minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4; 960 if (minbfree < 0) 961 minbfree = 0; 962 cgsize = fs->fs_fsize * fs->fs_fpg; 963 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 964 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 965 if (dirsize < curdirsize) 966 dirsize = curdirsize; 967 maxcontigdirs = min(cgsize / dirsize, 255); 968 if (fs->fs_avgfpdir > 0) 969 maxcontigdirs = min(maxcontigdirs, 970 fs->fs_ipg / fs->fs_avgfpdir); 971 if (maxcontigdirs == 0) 972 maxcontigdirs = 1; 973 974 /* 975 * Limit number of dirs in one cg and reserve space for 976 * regular files, but only if we have no deficit in 977 * inodes or space. 978 */ 979 prefcg = ino_to_cg(fs, pip->i_number); 980 for (cg = prefcg; cg < fs->fs_ncg; cg++) 981 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 982 fs->fs_cs(fs, cg).cs_nifree >= minifree && 983 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 984 if (fs->fs_contigdirs[cg] < maxcontigdirs) 985 return ((ino_t)(fs->fs_ipg * cg)); 986 } 987 for (cg = 0; cg < prefcg; cg++) 988 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 989 fs->fs_cs(fs, cg).cs_nifree >= minifree && 990 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 991 if (fs->fs_contigdirs[cg] < maxcontigdirs) 992 return ((ino_t)(fs->fs_ipg * cg)); 993 } 994 /* 995 * This is a backstop when we have deficit in space. 996 */ 997 for (cg = prefcg; cg < fs->fs_ncg; cg++) 998 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 999 return ((ino_t)(fs->fs_ipg * cg)); 1000 for (cg = 0; cg < prefcg; cg++) 1001 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1002 break; 1003 return ((ino_t)(fs->fs_ipg * cg)); 1004 } 1005 1006 /* 1007 * Select the desired position for the next block in a file. The file is 1008 * logically divided into sections. The first section is composed of the 1009 * direct blocks. Each additional section contains fs_maxbpg blocks. 1010 * 1011 * If no blocks have been allocated in the first section, the policy is to 1012 * request a block in the same cylinder group as the inode that describes 1013 * the file. If no blocks have been allocated in any other section, the 1014 * policy is to place the section in a cylinder group with a greater than 1015 * average number of free blocks. An appropriate cylinder group is found 1016 * by using a rotor that sweeps the cylinder groups. When a new group of 1017 * blocks is needed, the sweep begins in the cylinder group following the 1018 * cylinder group from which the previous allocation was made. The sweep 1019 * continues until a cylinder group with greater than the average number 1020 * of free blocks is found. If the allocation is for the first block in an 1021 * indirect block, the information on the previous allocation is unavailable; 1022 * here a best guess is made based upon the logical block number being 1023 * allocated. 1024 * 1025 * If a section is already partially allocated, the policy is to 1026 * contiguously allocate fs_maxcontig blocks. The end of one of these 1027 * contiguous blocks and the beginning of the next is laid out 1028 * contiguously if possible. 1029 */ 1030 ufs2_daddr_t 1031 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1032 struct inode *ip; 1033 ufs_lbn_t lbn; 1034 int indx; 1035 ufs1_daddr_t *bap; 1036 { 1037 struct fs *fs; 1038 int cg; 1039 int avgbfree, startcg; 1040 1041 fs = ip->i_fs; 1042 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1043 if (lbn < NDADDR + NINDIR(fs)) { 1044 cg = ino_to_cg(fs, ip->i_number); 1045 return (fs->fs_fpg * cg + fs->fs_frag); 1046 } 1047 /* 1048 * Find a cylinder with greater than average number of 1049 * unused data blocks. 1050 */ 1051 if (indx == 0 || bap[indx - 1] == 0) 1052 startcg = 1053 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1054 else 1055 startcg = dtog(fs, bap[indx - 1]) + 1; 1056 startcg %= fs->fs_ncg; 1057 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1058 for (cg = startcg; cg < fs->fs_ncg; cg++) 1059 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1060 fs->fs_cgrotor = cg; 1061 return (fs->fs_fpg * cg + fs->fs_frag); 1062 } 1063 for (cg = 0; cg <= startcg; cg++) 1064 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1065 fs->fs_cgrotor = cg; 1066 return (fs->fs_fpg * cg + fs->fs_frag); 1067 } 1068 return (0); 1069 } 1070 /* 1071 * We just always try to lay things out contiguously. 1072 */ 1073 return (bap[indx - 1] + fs->fs_frag); 1074 } 1075 1076 /* 1077 * Same as above, but for UFS2 1078 */ 1079 ufs2_daddr_t 1080 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1081 struct inode *ip; 1082 ufs_lbn_t lbn; 1083 int indx; 1084 ufs2_daddr_t *bap; 1085 { 1086 struct fs *fs; 1087 int cg; 1088 int avgbfree, startcg; 1089 1090 fs = ip->i_fs; 1091 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1092 if (lbn < NDADDR + NINDIR(fs)) { 1093 cg = ino_to_cg(fs, ip->i_number); 1094 return (fs->fs_fpg * cg + fs->fs_frag); 1095 } 1096 /* 1097 * Find a cylinder with greater than average number of 1098 * unused data blocks. 1099 */ 1100 if (indx == 0 || bap[indx - 1] == 0) 1101 startcg = 1102 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1103 else 1104 startcg = dtog(fs, bap[indx - 1]) + 1; 1105 startcg %= fs->fs_ncg; 1106 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1107 for (cg = startcg; cg < fs->fs_ncg; cg++) 1108 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1109 fs->fs_cgrotor = cg; 1110 return (fs->fs_fpg * cg + fs->fs_frag); 1111 } 1112 for (cg = 0; cg <= startcg; cg++) 1113 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1114 fs->fs_cgrotor = cg; 1115 return (fs->fs_fpg * cg + fs->fs_frag); 1116 } 1117 return (0); 1118 } 1119 /* 1120 * We just always try to lay things out contiguously. 1121 */ 1122 return (bap[indx - 1] + fs->fs_frag); 1123 } 1124 1125 /* 1126 * Implement the cylinder overflow algorithm. 1127 * 1128 * The policy implemented by this algorithm is: 1129 * 1) allocate the block in its requested cylinder group. 1130 * 2) quadradically rehash on the cylinder group number. 1131 * 3) brute force search for a free block. 1132 */ 1133 /*VARARGS5*/ 1134 static ufs2_daddr_t 1135 ffs_hashalloc(ip, cg, pref, size, allocator) 1136 struct inode *ip; 1137 int cg; 1138 ufs2_daddr_t pref; 1139 int size; /* size for data blocks, mode for inodes */ 1140 allocfcn_t *allocator; 1141 { 1142 struct fs *fs; 1143 ufs2_daddr_t result; 1144 int i, icg = cg; 1145 1146 #ifdef DIAGNOSTIC 1147 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1148 panic("ffs_hashalloc: allocation on suspended filesystem"); 1149 #endif 1150 fs = ip->i_fs; 1151 /* 1152 * 1: preferred cylinder group 1153 */ 1154 result = (*allocator)(ip, cg, pref, size); 1155 if (result) 1156 return (result); 1157 /* 1158 * 2: quadratic rehash 1159 */ 1160 for (i = 1; i < fs->fs_ncg; i *= 2) { 1161 cg += i; 1162 if (cg >= fs->fs_ncg) 1163 cg -= fs->fs_ncg; 1164 result = (*allocator)(ip, cg, 0, size); 1165 if (result) 1166 return (result); 1167 } 1168 /* 1169 * 3: brute force search 1170 * Note that we start at i == 2, since 0 was checked initially, 1171 * and 1 is always checked in the quadratic rehash. 1172 */ 1173 cg = (icg + 2) % fs->fs_ncg; 1174 for (i = 2; i < fs->fs_ncg; i++) { 1175 result = (*allocator)(ip, cg, 0, size); 1176 if (result) 1177 return (result); 1178 cg++; 1179 if (cg == fs->fs_ncg) 1180 cg = 0; 1181 } 1182 return (0); 1183 } 1184 1185 /* 1186 * Determine whether a fragment can be extended. 1187 * 1188 * Check to see if the necessary fragments are available, and 1189 * if they are, allocate them. 1190 */ 1191 static ufs2_daddr_t 1192 ffs_fragextend(ip, cg, bprev, osize, nsize) 1193 struct inode *ip; 1194 int cg; 1195 ufs2_daddr_t bprev; 1196 int osize, nsize; 1197 { 1198 struct fs *fs; 1199 struct cg *cgp; 1200 struct buf *bp; 1201 long bno; 1202 int frags, bbase; 1203 int i, error; 1204 u_int8_t *blksfree; 1205 1206 fs = ip->i_fs; 1207 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1208 return (0); 1209 frags = numfrags(fs, nsize); 1210 bbase = fragnum(fs, bprev); 1211 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1212 /* cannot extend across a block boundary */ 1213 return (0); 1214 } 1215 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1216 (int)fs->fs_cgsize, NOCRED, &bp); 1217 if (error) { 1218 brelse(bp); 1219 return (0); 1220 } 1221 cgp = (struct cg *)bp->b_data; 1222 if (!cg_chkmagic(cgp)) { 1223 brelse(bp); 1224 return (0); 1225 } 1226 bp->b_xflags |= BX_BKGRDWRITE; 1227 cgp->cg_old_time = cgp->cg_time = time_second; 1228 bno = dtogd(fs, bprev); 1229 blksfree = cg_blksfree(cgp); 1230 for (i = numfrags(fs, osize); i < frags; i++) 1231 if (isclr(blksfree, bno + i)) { 1232 brelse(bp); 1233 return (0); 1234 } 1235 /* 1236 * the current fragment can be extended 1237 * deduct the count on fragment being extended into 1238 * increase the count on the remaining fragment (if any) 1239 * allocate the extended piece 1240 */ 1241 for (i = frags; i < fs->fs_frag - bbase; i++) 1242 if (isclr(blksfree, bno + i)) 1243 break; 1244 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1245 if (i != frags) 1246 cgp->cg_frsum[i - frags]++; 1247 for (i = numfrags(fs, osize); i < frags; i++) { 1248 clrbit(blksfree, bno + i); 1249 cgp->cg_cs.cs_nffree--; 1250 fs->fs_cstotal.cs_nffree--; 1251 fs->fs_cs(fs, cg).cs_nffree--; 1252 } 1253 fs->fs_fmod = 1; 1254 if (DOINGSOFTDEP(ITOV(ip))) 1255 softdep_setup_blkmapdep(bp, fs, bprev); 1256 if (fs->fs_active != 0) 1257 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1258 bdwrite(bp); 1259 return (bprev); 1260 } 1261 1262 /* 1263 * Determine whether a block can be allocated. 1264 * 1265 * Check to see if a block of the appropriate size is available, 1266 * and if it is, allocate it. 1267 */ 1268 static ufs2_daddr_t 1269 ffs_alloccg(ip, cg, bpref, size) 1270 struct inode *ip; 1271 int cg; 1272 ufs2_daddr_t bpref; 1273 int size; 1274 { 1275 struct fs *fs; 1276 struct cg *cgp; 1277 struct buf *bp; 1278 ufs1_daddr_t bno; 1279 ufs2_daddr_t blkno; 1280 int i, allocsiz, error, frags; 1281 u_int8_t *blksfree; 1282 1283 fs = ip->i_fs; 1284 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1285 return (0); 1286 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1287 (int)fs->fs_cgsize, NOCRED, &bp); 1288 if (error) { 1289 brelse(bp); 1290 return (0); 1291 } 1292 cgp = (struct cg *)bp->b_data; 1293 if (!cg_chkmagic(cgp) || 1294 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 1295 brelse(bp); 1296 return (0); 1297 } 1298 bp->b_xflags |= BX_BKGRDWRITE; 1299 cgp->cg_old_time = cgp->cg_time = time_second; 1300 if (size == fs->fs_bsize) { 1301 blkno = ffs_alloccgblk(ip, bp, bpref); 1302 if (fs->fs_active != 0) 1303 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1304 bdwrite(bp); 1305 return (blkno); 1306 } 1307 /* 1308 * check to see if any fragments are already available 1309 * allocsiz is the size which will be allocated, hacking 1310 * it down to a smaller size if necessary 1311 */ 1312 blksfree = cg_blksfree(cgp); 1313 frags = numfrags(fs, size); 1314 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1315 if (cgp->cg_frsum[allocsiz] != 0) 1316 break; 1317 if (allocsiz == fs->fs_frag) { 1318 /* 1319 * no fragments were available, so a block will be 1320 * allocated, and hacked up 1321 */ 1322 if (cgp->cg_cs.cs_nbfree == 0) { 1323 brelse(bp); 1324 return (0); 1325 } 1326 blkno = ffs_alloccgblk(ip, bp, bpref); 1327 bno = dtogd(fs, blkno); 1328 for (i = frags; i < fs->fs_frag; i++) 1329 setbit(blksfree, bno + i); 1330 i = fs->fs_frag - frags; 1331 cgp->cg_cs.cs_nffree += i; 1332 fs->fs_cstotal.cs_nffree += i; 1333 fs->fs_cs(fs, cg).cs_nffree += i; 1334 fs->fs_fmod = 1; 1335 cgp->cg_frsum[i]++; 1336 if (fs->fs_active != 0) 1337 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1338 bdwrite(bp); 1339 return (blkno); 1340 } 1341 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1342 if (bno < 0) { 1343 brelse(bp); 1344 return (0); 1345 } 1346 for (i = 0; i < frags; i++) 1347 clrbit(blksfree, bno + i); 1348 cgp->cg_cs.cs_nffree -= frags; 1349 fs->fs_cstotal.cs_nffree -= frags; 1350 fs->fs_cs(fs, cg).cs_nffree -= frags; 1351 fs->fs_fmod = 1; 1352 cgp->cg_frsum[allocsiz]--; 1353 if (frags != allocsiz) 1354 cgp->cg_frsum[allocsiz - frags]++; 1355 blkno = cg * fs->fs_fpg + bno; 1356 if (DOINGSOFTDEP(ITOV(ip))) 1357 softdep_setup_blkmapdep(bp, fs, blkno); 1358 if (fs->fs_active != 0) 1359 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1360 bdwrite(bp); 1361 return (blkno); 1362 } 1363 1364 /* 1365 * Allocate a block in a cylinder group. 1366 * 1367 * This algorithm implements the following policy: 1368 * 1) allocate the requested block. 1369 * 2) allocate a rotationally optimal block in the same cylinder. 1370 * 3) allocate the next available block on the block rotor for the 1371 * specified cylinder group. 1372 * Note that this routine only allocates fs_bsize blocks; these 1373 * blocks may be fragmented by the routine that allocates them. 1374 */ 1375 static ufs2_daddr_t 1376 ffs_alloccgblk(ip, bp, bpref) 1377 struct inode *ip; 1378 struct buf *bp; 1379 ufs2_daddr_t bpref; 1380 { 1381 struct fs *fs; 1382 struct cg *cgp; 1383 ufs1_daddr_t bno; 1384 ufs2_daddr_t blkno; 1385 u_int8_t *blksfree; 1386 1387 fs = ip->i_fs; 1388 cgp = (struct cg *)bp->b_data; 1389 blksfree = cg_blksfree(cgp); 1390 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1391 bpref = cgp->cg_rotor; 1392 } else { 1393 bpref = blknum(fs, bpref); 1394 bno = dtogd(fs, bpref); 1395 /* 1396 * if the requested block is available, use it 1397 */ 1398 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1399 goto gotit; 1400 } 1401 /* 1402 * Take the next available block in this cylinder group. 1403 */ 1404 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1405 if (bno < 0) 1406 return (0); 1407 cgp->cg_rotor = bno; 1408 gotit: 1409 blkno = fragstoblks(fs, bno); 1410 ffs_clrblock(fs, blksfree, (long)blkno); 1411 ffs_clusteracct(fs, cgp, blkno, -1); 1412 cgp->cg_cs.cs_nbfree--; 1413 fs->fs_cstotal.cs_nbfree--; 1414 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1415 fs->fs_fmod = 1; 1416 blkno = cgp->cg_cgx * fs->fs_fpg + bno; 1417 if (DOINGSOFTDEP(ITOV(ip))) 1418 softdep_setup_blkmapdep(bp, fs, blkno); 1419 return (blkno); 1420 } 1421 1422 /* 1423 * Determine whether a cluster can be allocated. 1424 * 1425 * We do not currently check for optimal rotational layout if there 1426 * are multiple choices in the same cylinder group. Instead we just 1427 * take the first one that we find following bpref. 1428 */ 1429 static ufs2_daddr_t 1430 ffs_clusteralloc(ip, cg, bpref, len) 1431 struct inode *ip; 1432 int cg; 1433 ufs2_daddr_t bpref; 1434 int len; 1435 { 1436 struct fs *fs; 1437 struct cg *cgp; 1438 struct buf *bp; 1439 int i, run, bit, map, got; 1440 ufs2_daddr_t bno; 1441 u_char *mapp; 1442 int32_t *lp; 1443 u_int8_t *blksfree; 1444 1445 fs = ip->i_fs; 1446 if (fs->fs_maxcluster[cg] < len) 1447 return (0); 1448 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1449 NOCRED, &bp)) 1450 goto fail; 1451 cgp = (struct cg *)bp->b_data; 1452 if (!cg_chkmagic(cgp)) 1453 goto fail; 1454 bp->b_xflags |= BX_BKGRDWRITE; 1455 /* 1456 * Check to see if a cluster of the needed size (or bigger) is 1457 * available in this cylinder group. 1458 */ 1459 lp = &cg_clustersum(cgp)[len]; 1460 for (i = len; i <= fs->fs_contigsumsize; i++) 1461 if (*lp++ > 0) 1462 break; 1463 if (i > fs->fs_contigsumsize) { 1464 /* 1465 * This is the first time looking for a cluster in this 1466 * cylinder group. Update the cluster summary information 1467 * to reflect the true maximum sized cluster so that 1468 * future cluster allocation requests can avoid reading 1469 * the cylinder group map only to find no clusters. 1470 */ 1471 lp = &cg_clustersum(cgp)[len - 1]; 1472 for (i = len - 1; i > 0; i--) 1473 if (*lp-- > 0) 1474 break; 1475 fs->fs_maxcluster[cg] = i; 1476 goto fail; 1477 } 1478 /* 1479 * Search the cluster map to find a big enough cluster. 1480 * We take the first one that we find, even if it is larger 1481 * than we need as we prefer to get one close to the previous 1482 * block allocation. We do not search before the current 1483 * preference point as we do not want to allocate a block 1484 * that is allocated before the previous one (as we will 1485 * then have to wait for another pass of the elevator 1486 * algorithm before it will be read). We prefer to fail and 1487 * be recalled to try an allocation in the next cylinder group. 1488 */ 1489 if (dtog(fs, bpref) != cg) 1490 bpref = 0; 1491 else 1492 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1493 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1494 map = *mapp++; 1495 bit = 1 << (bpref % NBBY); 1496 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1497 if ((map & bit) == 0) { 1498 run = 0; 1499 } else { 1500 run++; 1501 if (run == len) 1502 break; 1503 } 1504 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1505 bit <<= 1; 1506 } else { 1507 map = *mapp++; 1508 bit = 1; 1509 } 1510 } 1511 if (got >= cgp->cg_nclusterblks) 1512 goto fail; 1513 /* 1514 * Allocate the cluster that we have found. 1515 */ 1516 blksfree = cg_blksfree(cgp); 1517 for (i = 1; i <= len; i++) 1518 if (!ffs_isblock(fs, blksfree, got - run + i)) 1519 panic("ffs_clusteralloc: map mismatch"); 1520 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1); 1521 if (dtog(fs, bno) != cg) 1522 panic("ffs_clusteralloc: allocated out of group"); 1523 len = blkstofrags(fs, len); 1524 for (i = 0; i < len; i += fs->fs_frag) 1525 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1526 panic("ffs_clusteralloc: lost block"); 1527 if (fs->fs_active != 0) 1528 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1529 bdwrite(bp); 1530 return (bno); 1531 1532 fail: 1533 brelse(bp); 1534 return (0); 1535 } 1536 1537 /* 1538 * Determine whether an inode can be allocated. 1539 * 1540 * Check to see if an inode is available, and if it is, 1541 * allocate it using the following policy: 1542 * 1) allocate the requested inode. 1543 * 2) allocate the next available inode after the requested 1544 * inode in the specified cylinder group. 1545 */ 1546 static ufs2_daddr_t 1547 ffs_nodealloccg(ip, cg, ipref, mode) 1548 struct inode *ip; 1549 int cg; 1550 ufs2_daddr_t ipref; 1551 int mode; 1552 { 1553 struct fs *fs; 1554 struct cg *cgp; 1555 struct buf *bp, *ibp; 1556 u_int8_t *inosused; 1557 struct ufs2_dinode *dp2; 1558 int error, start, len, loc, map, i; 1559 1560 fs = ip->i_fs; 1561 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1562 return (0); 1563 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1564 (int)fs->fs_cgsize, NOCRED, &bp); 1565 if (error) { 1566 brelse(bp); 1567 return (0); 1568 } 1569 cgp = (struct cg *)bp->b_data; 1570 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1571 brelse(bp); 1572 return (0); 1573 } 1574 bp->b_xflags |= BX_BKGRDWRITE; 1575 cgp->cg_old_time = cgp->cg_time = time_second; 1576 inosused = cg_inosused(cgp); 1577 if (ipref) { 1578 ipref %= fs->fs_ipg; 1579 if (isclr(inosused, ipref)) 1580 goto gotit; 1581 } 1582 start = cgp->cg_irotor / NBBY; 1583 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1584 loc = skpc(0xff, len, &inosused[start]); 1585 if (loc == 0) { 1586 len = start + 1; 1587 start = 0; 1588 loc = skpc(0xff, len, &inosused[0]); 1589 if (loc == 0) { 1590 printf("cg = %d, irotor = %ld, fs = %s\n", 1591 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1592 panic("ffs_nodealloccg: map corrupted"); 1593 /* NOTREACHED */ 1594 } 1595 } 1596 i = start + len - loc; 1597 map = inosused[i]; 1598 ipref = i * NBBY; 1599 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1600 if ((map & i) == 0) { 1601 cgp->cg_irotor = ipref; 1602 goto gotit; 1603 } 1604 } 1605 printf("fs = %s\n", fs->fs_fsmnt); 1606 panic("ffs_nodealloccg: block not in map"); 1607 /* NOTREACHED */ 1608 gotit: 1609 if (DOINGSOFTDEP(ITOV(ip))) 1610 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1611 setbit(inosused, ipref); 1612 cgp->cg_cs.cs_nifree--; 1613 fs->fs_cstotal.cs_nifree--; 1614 fs->fs_cs(fs, cg).cs_nifree--; 1615 fs->fs_fmod = 1; 1616 if ((mode & IFMT) == IFDIR) { 1617 cgp->cg_cs.cs_ndir++; 1618 fs->fs_cstotal.cs_ndir++; 1619 fs->fs_cs(fs, cg).cs_ndir++; 1620 } 1621 /* 1622 * Check to see if we need to initialize more inodes. 1623 */ 1624 if (fs->fs_magic == FS_UFS2_MAGIC && 1625 ipref + INOPB(fs) > cgp->cg_initediblk && 1626 cgp->cg_initediblk < cgp->cg_niblk) { 1627 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1628 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1629 (int)fs->fs_bsize, 0, 0); 1630 bzero(ibp->b_data, (int)fs->fs_bsize); 1631 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1632 for (i = 0; i < INOPB(fs); i++) { 1633 dp2->di_gen = arc4random() / 2 + 1; 1634 dp2++; 1635 } 1636 bawrite(ibp); 1637 cgp->cg_initediblk += INOPB(fs); 1638 } 1639 if (fs->fs_active != 0) 1640 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1641 bdwrite(bp); 1642 return (cg * fs->fs_ipg + ipref); 1643 } 1644 1645 /* 1646 * check if a block is free 1647 */ 1648 static int 1649 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 1650 { 1651 1652 switch ((int)fs->fs_frag) { 1653 case 8: 1654 return (cp[h] == 0); 1655 case 4: 1656 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 1657 case 2: 1658 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 1659 case 1: 1660 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 1661 default: 1662 panic("ffs_isfreeblock"); 1663 } 1664 return (0); 1665 } 1666 1667 /* 1668 * Free a block or fragment. 1669 * 1670 * The specified block or fragment is placed back in the 1671 * free map. If a fragment is deallocated, a possible 1672 * block reassembly is checked. 1673 */ 1674 void 1675 ffs_blkfree(fs, devvp, bno, size, inum) 1676 struct fs *fs; 1677 struct vnode *devvp; 1678 ufs2_daddr_t bno; 1679 long size; 1680 ino_t inum; 1681 { 1682 struct cg *cgp; 1683 struct buf *bp; 1684 ufs1_daddr_t fragno, cgbno; 1685 ufs2_daddr_t cgblkno; 1686 int i, error, cg, blk, frags, bbase; 1687 u_int8_t *blksfree; 1688 dev_t dev; 1689 1690 cg = dtog(fs, bno); 1691 if (devvp->v_type != VCHR) { 1692 /* devvp is a snapshot */ 1693 dev = VTOI(devvp)->i_devvp->v_rdev; 1694 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1695 } else { 1696 /* devvp is a normal disk device */ 1697 dev = devvp->v_rdev; 1698 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1699 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1700 if ((devvp->v_vflag & VV_COPYONWRITE) && 1701 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1702 return; 1703 VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size); 1704 } 1705 #ifdef DIAGNOSTIC 1706 if (dev->si_mountpoint && 1707 (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED)) 1708 panic("ffs_blkfree: deallocation on suspended filesystem"); 1709 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1710 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1711 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1712 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1713 size, fs->fs_fsmnt); 1714 panic("ffs_blkfree: bad size"); 1715 } 1716 #endif 1717 if ((u_int)bno >= fs->fs_size) { 1718 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1719 (u_long)inum); 1720 ffs_fserr(fs, inum, "bad block"); 1721 return; 1722 } 1723 if ((error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp))) { 1724 brelse(bp); 1725 return; 1726 } 1727 cgp = (struct cg *)bp->b_data; 1728 if (!cg_chkmagic(cgp)) { 1729 brelse(bp); 1730 return; 1731 } 1732 bp->b_xflags |= BX_BKGRDWRITE; 1733 cgp->cg_old_time = cgp->cg_time = time_second; 1734 cgbno = dtogd(fs, bno); 1735 blksfree = cg_blksfree(cgp); 1736 if (size == fs->fs_bsize) { 1737 fragno = fragstoblks(fs, cgbno); 1738 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1739 if (devvp->v_type != VCHR) { 1740 /* devvp is a snapshot */ 1741 brelse(bp); 1742 return; 1743 } 1744 printf("dev = %s, block = %jd, fs = %s\n", 1745 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1746 panic("ffs_blkfree: freeing free block"); 1747 } 1748 ffs_setblock(fs, blksfree, fragno); 1749 ffs_clusteracct(fs, cgp, fragno, 1); 1750 cgp->cg_cs.cs_nbfree++; 1751 fs->fs_cstotal.cs_nbfree++; 1752 fs->fs_cs(fs, cg).cs_nbfree++; 1753 } else { 1754 bbase = cgbno - fragnum(fs, cgbno); 1755 /* 1756 * decrement the counts associated with the old frags 1757 */ 1758 blk = blkmap(fs, blksfree, bbase); 1759 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1760 /* 1761 * deallocate the fragment 1762 */ 1763 frags = numfrags(fs, size); 1764 for (i = 0; i < frags; i++) { 1765 if (isset(blksfree, cgbno + i)) { 1766 printf("dev = %s, block = %jd, fs = %s\n", 1767 devtoname(dev), (intmax_t)(bno + i), 1768 fs->fs_fsmnt); 1769 panic("ffs_blkfree: freeing free frag"); 1770 } 1771 setbit(blksfree, cgbno + i); 1772 } 1773 cgp->cg_cs.cs_nffree += i; 1774 fs->fs_cstotal.cs_nffree += i; 1775 fs->fs_cs(fs, cg).cs_nffree += i; 1776 /* 1777 * add back in counts associated with the new frags 1778 */ 1779 blk = blkmap(fs, blksfree, bbase); 1780 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1781 /* 1782 * if a complete block has been reassembled, account for it 1783 */ 1784 fragno = fragstoblks(fs, bbase); 1785 if (ffs_isblock(fs, blksfree, fragno)) { 1786 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1787 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1788 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1789 ffs_clusteracct(fs, cgp, fragno, 1); 1790 cgp->cg_cs.cs_nbfree++; 1791 fs->fs_cstotal.cs_nbfree++; 1792 fs->fs_cs(fs, cg).cs_nbfree++; 1793 } 1794 } 1795 fs->fs_fmod = 1; 1796 if (fs->fs_active != 0) 1797 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1798 bdwrite(bp); 1799 } 1800 1801 #ifdef DIAGNOSTIC 1802 /* 1803 * Verify allocation of a block or fragment. Returns true if block or 1804 * fragment is allocated, false if it is free. 1805 */ 1806 static int 1807 ffs_checkblk(ip, bno, size) 1808 struct inode *ip; 1809 ufs2_daddr_t bno; 1810 long size; 1811 { 1812 struct fs *fs; 1813 struct cg *cgp; 1814 struct buf *bp; 1815 ufs1_daddr_t cgbno; 1816 int i, error, frags, free; 1817 u_int8_t *blksfree; 1818 1819 fs = ip->i_fs; 1820 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1821 printf("bsize = %ld, size = %ld, fs = %s\n", 1822 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1823 panic("ffs_checkblk: bad size"); 1824 } 1825 if ((u_int)bno >= fs->fs_size) 1826 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 1827 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1828 (int)fs->fs_cgsize, NOCRED, &bp); 1829 if (error) 1830 panic("ffs_checkblk: cg bread failed"); 1831 cgp = (struct cg *)bp->b_data; 1832 if (!cg_chkmagic(cgp)) 1833 panic("ffs_checkblk: cg magic mismatch"); 1834 bp->b_xflags |= BX_BKGRDWRITE; 1835 blksfree = cg_blksfree(cgp); 1836 cgbno = dtogd(fs, bno); 1837 if (size == fs->fs_bsize) { 1838 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 1839 } else { 1840 frags = numfrags(fs, size); 1841 for (free = 0, i = 0; i < frags; i++) 1842 if (isset(blksfree, cgbno + i)) 1843 free++; 1844 if (free != 0 && free != frags) 1845 panic("ffs_checkblk: partially free fragment"); 1846 } 1847 brelse(bp); 1848 return (!free); 1849 } 1850 #endif /* DIAGNOSTIC */ 1851 1852 /* 1853 * Free an inode. 1854 */ 1855 int 1856 ffs_vfree(pvp, ino, mode) 1857 struct vnode *pvp; 1858 ino_t ino; 1859 int mode; 1860 { 1861 if (DOINGSOFTDEP(pvp)) { 1862 softdep_freefile(pvp, ino, mode); 1863 return (0); 1864 } 1865 return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode)); 1866 } 1867 1868 /* 1869 * Do the actual free operation. 1870 * The specified inode is placed back in the free map. 1871 */ 1872 int 1873 ffs_freefile(fs, devvp, ino, mode) 1874 struct fs *fs; 1875 struct vnode *devvp; 1876 ino_t ino; 1877 int mode; 1878 { 1879 struct cg *cgp; 1880 struct buf *bp; 1881 ufs2_daddr_t cgbno; 1882 int error, cg; 1883 u_int8_t *inosused; 1884 dev_t dev; 1885 1886 cg = ino_to_cg(fs, ino); 1887 if (devvp->v_type != VCHR) { 1888 /* devvp is a snapshot */ 1889 dev = VTOI(devvp)->i_devvp->v_rdev; 1890 cgbno = fragstoblks(fs, cgtod(fs, cg)); 1891 } else { 1892 /* devvp is a normal disk device */ 1893 dev = devvp->v_rdev; 1894 cgbno = fsbtodb(fs, cgtod(fs, cg)); 1895 } 1896 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1897 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 1898 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 1899 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 1900 brelse(bp); 1901 return (error); 1902 } 1903 cgp = (struct cg *)bp->b_data; 1904 if (!cg_chkmagic(cgp)) { 1905 brelse(bp); 1906 return (0); 1907 } 1908 bp->b_xflags |= BX_BKGRDWRITE; 1909 cgp->cg_old_time = cgp->cg_time = time_second; 1910 inosused = cg_inosused(cgp); 1911 ino %= fs->fs_ipg; 1912 if (isclr(inosused, ino)) { 1913 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev), 1914 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt); 1915 if (fs->fs_ronly == 0) 1916 panic("ffs_freefile: freeing free inode"); 1917 } 1918 clrbit(inosused, ino); 1919 if (ino < cgp->cg_irotor) 1920 cgp->cg_irotor = ino; 1921 cgp->cg_cs.cs_nifree++; 1922 fs->fs_cstotal.cs_nifree++; 1923 fs->fs_cs(fs, cg).cs_nifree++; 1924 if ((mode & IFMT) == IFDIR) { 1925 cgp->cg_cs.cs_ndir--; 1926 fs->fs_cstotal.cs_ndir--; 1927 fs->fs_cs(fs, cg).cs_ndir--; 1928 } 1929 fs->fs_fmod = 1; 1930 if (fs->fs_active != 0) 1931 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1932 bdwrite(bp); 1933 return (0); 1934 } 1935 1936 /* 1937 * Check to see if a file is free. 1938 */ 1939 int 1940 ffs_checkfreefile(fs, devvp, ino) 1941 struct fs *fs; 1942 struct vnode *devvp; 1943 ino_t ino; 1944 { 1945 struct cg *cgp; 1946 struct buf *bp; 1947 ufs2_daddr_t cgbno; 1948 int error, ret, cg; 1949 u_int8_t *inosused; 1950 1951 cg = ino_to_cg(fs, ino); 1952 if (devvp->v_type != VCHR) { 1953 /* devvp is a snapshot */ 1954 cgbno = fragstoblks(fs, cgtod(fs, cg)); 1955 } else { 1956 /* devvp is a normal disk device */ 1957 cgbno = fsbtodb(fs, cgtod(fs, cg)); 1958 } 1959 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1960 return (1); 1961 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 1962 brelse(bp); 1963 return (1); 1964 } 1965 cgp = (struct cg *)bp->b_data; 1966 if (!cg_chkmagic(cgp)) { 1967 brelse(bp); 1968 return (1); 1969 } 1970 inosused = cg_inosused(cgp); 1971 ino %= fs->fs_ipg; 1972 ret = isclr(inosused, ino); 1973 brelse(bp); 1974 return (ret); 1975 } 1976 1977 /* 1978 * Find a block of the specified size in the specified cylinder group. 1979 * 1980 * It is a panic if a request is made to find a block if none are 1981 * available. 1982 */ 1983 static ufs1_daddr_t 1984 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1985 struct fs *fs; 1986 struct cg *cgp; 1987 ufs2_daddr_t bpref; 1988 int allocsiz; 1989 { 1990 ufs1_daddr_t bno; 1991 int start, len, loc, i; 1992 int blk, field, subfield, pos; 1993 u_int8_t *blksfree; 1994 1995 /* 1996 * find the fragment by searching through the free block 1997 * map for an appropriate bit pattern 1998 */ 1999 if (bpref) 2000 start = dtogd(fs, bpref) / NBBY; 2001 else 2002 start = cgp->cg_frotor / NBBY; 2003 blksfree = cg_blksfree(cgp); 2004 len = howmany(fs->fs_fpg, NBBY) - start; 2005 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2006 (u_char *)fragtbl[fs->fs_frag], 2007 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2008 if (loc == 0) { 2009 len = start + 1; 2010 start = 0; 2011 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2012 (u_char *)fragtbl[fs->fs_frag], 2013 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2014 if (loc == 0) { 2015 printf("start = %d, len = %d, fs = %s\n", 2016 start, len, fs->fs_fsmnt); 2017 panic("ffs_alloccg: map corrupted"); 2018 /* NOTREACHED */ 2019 } 2020 } 2021 bno = (start + len - loc) * NBBY; 2022 cgp->cg_frotor = bno; 2023 /* 2024 * found the byte in the map 2025 * sift through the bits to find the selected frag 2026 */ 2027 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2028 blk = blkmap(fs, blksfree, bno); 2029 blk <<= 1; 2030 field = around[allocsiz]; 2031 subfield = inside[allocsiz]; 2032 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2033 if ((blk & field) == subfield) 2034 return (bno + pos); 2035 field <<= 1; 2036 subfield <<= 1; 2037 } 2038 } 2039 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2040 panic("ffs_alloccg: block not in map"); 2041 return (-1); 2042 } 2043 2044 /* 2045 * Update the cluster map because of an allocation or free. 2046 * 2047 * Cnt == 1 means free; cnt == -1 means allocating. 2048 */ 2049 void 2050 ffs_clusteracct(fs, cgp, blkno, cnt) 2051 struct fs *fs; 2052 struct cg *cgp; 2053 ufs1_daddr_t blkno; 2054 int cnt; 2055 { 2056 int32_t *sump; 2057 int32_t *lp; 2058 u_char *freemapp, *mapp; 2059 int i, start, end, forw, back, map, bit; 2060 2061 if (fs->fs_contigsumsize <= 0) 2062 return; 2063 freemapp = cg_clustersfree(cgp); 2064 sump = cg_clustersum(cgp); 2065 /* 2066 * Allocate or clear the actual block. 2067 */ 2068 if (cnt > 0) 2069 setbit(freemapp, blkno); 2070 else 2071 clrbit(freemapp, blkno); 2072 /* 2073 * Find the size of the cluster going forward. 2074 */ 2075 start = blkno + 1; 2076 end = start + fs->fs_contigsumsize; 2077 if (end >= cgp->cg_nclusterblks) 2078 end = cgp->cg_nclusterblks; 2079 mapp = &freemapp[start / NBBY]; 2080 map = *mapp++; 2081 bit = 1 << (start % NBBY); 2082 for (i = start; i < end; i++) { 2083 if ((map & bit) == 0) 2084 break; 2085 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2086 bit <<= 1; 2087 } else { 2088 map = *mapp++; 2089 bit = 1; 2090 } 2091 } 2092 forw = i - start; 2093 /* 2094 * Find the size of the cluster going backward. 2095 */ 2096 start = blkno - 1; 2097 end = start - fs->fs_contigsumsize; 2098 if (end < 0) 2099 end = -1; 2100 mapp = &freemapp[start / NBBY]; 2101 map = *mapp--; 2102 bit = 1 << (start % NBBY); 2103 for (i = start; i > end; i--) { 2104 if ((map & bit) == 0) 2105 break; 2106 if ((i & (NBBY - 1)) != 0) { 2107 bit >>= 1; 2108 } else { 2109 map = *mapp--; 2110 bit = 1 << (NBBY - 1); 2111 } 2112 } 2113 back = start - i; 2114 /* 2115 * Account for old cluster and the possibly new forward and 2116 * back clusters. 2117 */ 2118 i = back + forw + 1; 2119 if (i > fs->fs_contigsumsize) 2120 i = fs->fs_contigsumsize; 2121 sump[i] += cnt; 2122 if (back > 0) 2123 sump[back] -= cnt; 2124 if (forw > 0) 2125 sump[forw] -= cnt; 2126 /* 2127 * Update cluster summary information. 2128 */ 2129 lp = &sump[fs->fs_contigsumsize]; 2130 for (i = fs->fs_contigsumsize; i > 0; i--) 2131 if (*lp-- > 0) 2132 break; 2133 fs->fs_maxcluster[cgp->cg_cgx] = i; 2134 } 2135 2136 /* 2137 * Fserr prints the name of a filesystem with an error diagnostic. 2138 * 2139 * The form of the error message is: 2140 * fs: error message 2141 */ 2142 static void 2143 ffs_fserr(fs, inum, cp) 2144 struct fs *fs; 2145 ino_t inum; 2146 char *cp; 2147 { 2148 struct proc *p = curproc; /* XXX */ 2149 2150 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2151 p ? p->p_pid : -1, p ? p->p_comm : "-", 2152 p ? p->p_ucred->cr_uid : 0, inum, fs->fs_fsmnt, cp); 2153 } 2154 2155 /* 2156 * This function provides the capability for the fsck program to 2157 * update an active filesystem. Six operations are provided: 2158 * 2159 * adjrefcnt(inode, amt) - adjusts the reference count on the 2160 * specified inode by the specified amount. Under normal 2161 * operation the count should always go down. Decrementing 2162 * the count to zero will cause the inode to be freed. 2163 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2164 * by the specifed amount. 2165 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2166 * are marked as free. Inodes should never have to be marked 2167 * as in use. 2168 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2169 * are marked as free. Inodes should never have to be marked 2170 * as in use. 2171 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2172 * are marked as free. Blocks should never have to be marked 2173 * as in use. 2174 * setflags(flags, set/clear) - the fs_flags field has the specified 2175 * flags set (second parameter +1) or cleared (second parameter -1). 2176 */ 2177 2178 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2179 2180 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2181 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2182 2183 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2184 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2185 2186 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2187 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2188 2189 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2190 sysctl_ffs_fsck, "Free Range of File Inodes"); 2191 2192 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2193 sysctl_ffs_fsck, "Free Range of Blocks"); 2194 2195 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2196 sysctl_ffs_fsck, "Change Filesystem Flags"); 2197 2198 #ifdef DEBUG 2199 static int fsckcmds = 0; 2200 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2201 #endif /* DEBUG */ 2202 2203 static int 2204 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2205 { 2206 struct fsck_cmd cmd; 2207 struct ufsmount *ump; 2208 struct vnode *vp; 2209 struct inode *ip; 2210 struct mount *mp; 2211 struct fs *fs; 2212 ufs2_daddr_t blkno; 2213 long blkcnt, blksize; 2214 struct file *fp; 2215 int filetype, error; 2216 2217 if (req->newlen > sizeof cmd) 2218 return (EBADRPC); 2219 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2220 return (error); 2221 if (cmd.version != FFS_CMD_VERSION) 2222 return (ERPCMISMATCH); 2223 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2224 return (error); 2225 vn_start_write(fp->f_data, &mp, V_WAIT); 2226 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2227 vn_finished_write(mp); 2228 fdrop(fp, curthread); 2229 return (EINVAL); 2230 } 2231 if (mp->mnt_flag & MNT_RDONLY) { 2232 vn_finished_write(mp); 2233 fdrop(fp, curthread); 2234 return (EROFS); 2235 } 2236 ump = VFSTOUFS(mp); 2237 fs = ump->um_fs; 2238 filetype = IFREG; 2239 2240 switch (oidp->oid_number) { 2241 2242 case FFS_SET_FLAGS: 2243 #ifdef DEBUG 2244 if (fsckcmds) 2245 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2246 cmd.size > 0 ? "set" : "clear"); 2247 #endif /* DEBUG */ 2248 if (cmd.size > 0) 2249 fs->fs_flags |= (long)cmd.value; 2250 else 2251 fs->fs_flags &= ~(long)cmd.value; 2252 break; 2253 2254 case FFS_ADJ_REFCNT: 2255 #ifdef DEBUG 2256 if (fsckcmds) { 2257 printf("%s: adjust inode %jd count by %jd\n", 2258 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2259 (intmax_t)cmd.size); 2260 } 2261 #endif /* DEBUG */ 2262 if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2263 break; 2264 ip = VTOI(vp); 2265 ip->i_nlink += cmd.size; 2266 DIP(ip, i_nlink) = ip->i_nlink; 2267 ip->i_effnlink += cmd.size; 2268 ip->i_flag |= IN_CHANGE; 2269 if (DOINGSOFTDEP(vp)) 2270 softdep_change_linkcnt(ip); 2271 vput(vp); 2272 break; 2273 2274 case FFS_ADJ_BLKCNT: 2275 #ifdef DEBUG 2276 if (fsckcmds) { 2277 printf("%s: adjust inode %jd block count by %jd\n", 2278 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2279 (intmax_t)cmd.size); 2280 } 2281 #endif /* DEBUG */ 2282 if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2283 break; 2284 ip = VTOI(vp); 2285 DIP(ip, i_blocks) += cmd.size; 2286 ip->i_flag |= IN_CHANGE; 2287 vput(vp); 2288 break; 2289 2290 case FFS_DIR_FREE: 2291 filetype = IFDIR; 2292 /* fall through */ 2293 2294 case FFS_FILE_FREE: 2295 #ifdef DEBUG 2296 if (fsckcmds) { 2297 if (cmd.size == 1) 2298 printf("%s: free %s inode %d\n", 2299 mp->mnt_stat.f_mntonname, 2300 filetype == IFDIR ? "directory" : "file", 2301 (ino_t)cmd.value); 2302 else 2303 printf("%s: free %s inodes %d-%d\n", 2304 mp->mnt_stat.f_mntonname, 2305 filetype == IFDIR ? "directory" : "file", 2306 (ino_t)cmd.value, 2307 (ino_t)(cmd.value + cmd.size - 1)); 2308 } 2309 #endif /* DEBUG */ 2310 while (cmd.size > 0) { 2311 if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value, 2312 filetype))) 2313 break; 2314 cmd.size -= 1; 2315 cmd.value += 1; 2316 } 2317 break; 2318 2319 case FFS_BLK_FREE: 2320 #ifdef DEBUG 2321 if (fsckcmds) { 2322 if (cmd.size == 1) 2323 printf("%s: free block %jd\n", 2324 mp->mnt_stat.f_mntonname, 2325 (intmax_t)cmd.value); 2326 else 2327 printf("%s: free blocks %jd-%jd\n", 2328 mp->mnt_stat.f_mntonname, 2329 (intmax_t)cmd.value, 2330 (intmax_t)cmd.value + cmd.size - 1); 2331 } 2332 #endif /* DEBUG */ 2333 blkno = cmd.value; 2334 blkcnt = cmd.size; 2335 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2336 while (blkcnt > 0) { 2337 if (blksize > blkcnt) 2338 blksize = blkcnt; 2339 ffs_blkfree(fs, ump->um_devvp, blkno, 2340 blksize * fs->fs_fsize, ROOTINO); 2341 blkno += blksize; 2342 blkcnt -= blksize; 2343 blksize = fs->fs_frag; 2344 } 2345 break; 2346 2347 default: 2348 #ifdef DEBUG 2349 if (fsckcmds) { 2350 printf("Invalid request %d from fsck\n", 2351 oidp->oid_number); 2352 } 2353 #endif /* DEBUG */ 2354 error = EINVAL; 2355 break; 2356 2357 } 2358 fdrop(fp, curthread); 2359 vn_finished_write(mp); 2360 return (error); 2361 } 2362