xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision f0157ce528a128e2abb181a5c766033a2ce49a5f)
1 /*-
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * Copyright (c) 1982, 1986, 1989, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 4. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_quota.h"
66 
67 #include <sys/param.h>
68 #include <sys/capability.h>
69 #include <sys/systm.h>
70 #include <sys/bio.h>
71 #include <sys/buf.h>
72 #include <sys/conf.h>
73 #include <sys/fcntl.h>
74 #include <sys/file.h>
75 #include <sys/filedesc.h>
76 #include <sys/priv.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/syscallsubr.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/taskqueue.h>
85 
86 #include <security/audit/audit.h>
87 
88 #include <geom/geom.h>
89 
90 #include <ufs/ufs/dir.h>
91 #include <ufs/ufs/extattr.h>
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/ufs_extern.h>
95 #include <ufs/ufs/ufsmount.h>
96 
97 #include <ufs/ffs/fs.h>
98 #include <ufs/ffs/ffs_extern.h>
99 #include <ufs/ffs/softdep.h>
100 
101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
102 				  int size, int rsize);
103 
104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
105 static ufs2_daddr_t
106 	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
107 static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
108 		    struct vnode *, ufs2_daddr_t, long, ino_t,
109 		    struct workhead *);
110 static void	ffs_blkfree_trim_completed(struct bio *);
111 static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
112 #ifdef INVARIANTS
113 static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
114 #endif
115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int,
116 		    int);
117 static ino_t	ffs_dirpref(struct inode *);
118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
119 		    int, int);
120 static ufs2_daddr_t	ffs_hashalloc
121 		(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
123 		    int);
124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
125 static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
126 static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
127 
128 /*
129  * Allocate a block in the filesystem.
130  *
131  * The size of the requested block is given, which must be some
132  * multiple of fs_fsize and <= fs_bsize.
133  * A preference may be optionally specified. If a preference is given
134  * the following hierarchy is used to allocate a block:
135  *   1) allocate the requested block.
136  *   2) allocate a rotationally optimal block in the same cylinder.
137  *   3) allocate a block in the same cylinder group.
138  *   4) quadradically rehash into other cylinder groups, until an
139  *      available block is located.
140  * If no block preference is given the following hierarchy is used
141  * to allocate a block:
142  *   1) allocate a block in the cylinder group that contains the
143  *      inode for the file.
144  *   2) quadradically rehash into other cylinder groups, until an
145  *      available block is located.
146  */
147 int
148 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
149 	struct inode *ip;
150 	ufs2_daddr_t lbn, bpref;
151 	int size, flags;
152 	struct ucred *cred;
153 	ufs2_daddr_t *bnp;
154 {
155 	struct fs *fs;
156 	struct ufsmount *ump;
157 	ufs2_daddr_t bno;
158 	u_int cg, reclaimed;
159 	static struct timeval lastfail;
160 	static int curfail;
161 	int64_t delta;
162 #ifdef QUOTA
163 	int error;
164 #endif
165 
166 	*bnp = 0;
167 	fs = ip->i_fs;
168 	ump = ip->i_ump;
169 	mtx_assert(UFS_MTX(ump), MA_OWNED);
170 #ifdef INVARIANTS
171 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
172 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
173 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
174 		    fs->fs_fsmnt);
175 		panic("ffs_alloc: bad size");
176 	}
177 	if (cred == NOCRED)
178 		panic("ffs_alloc: missing credential");
179 #endif /* INVARIANTS */
180 	reclaimed = 0;
181 retry:
182 #ifdef QUOTA
183 	UFS_UNLOCK(ump);
184 	error = chkdq(ip, btodb(size), cred, 0);
185 	if (error)
186 		return (error);
187 	UFS_LOCK(ump);
188 #endif
189 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
190 		goto nospace;
191 	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
192 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
193 		goto nospace;
194 	if (bpref >= fs->fs_size)
195 		bpref = 0;
196 	if (bpref == 0)
197 		cg = ino_to_cg(fs, ip->i_number);
198 	else
199 		cg = dtog(fs, bpref);
200 	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
201 	if (bno > 0) {
202 		delta = btodb(size);
203 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
204 		if (flags & IO_EXT)
205 			ip->i_flag |= IN_CHANGE;
206 		else
207 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
208 		*bnp = bno;
209 		return (0);
210 	}
211 nospace:
212 #ifdef QUOTA
213 	UFS_UNLOCK(ump);
214 	/*
215 	 * Restore user's disk quota because allocation failed.
216 	 */
217 	(void) chkdq(ip, -btodb(size), cred, FORCE);
218 	UFS_LOCK(ump);
219 #endif
220 	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
221 		reclaimed = 1;
222 		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
223 		goto retry;
224 	}
225 	UFS_UNLOCK(ump);
226 	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
227 		ffs_fserr(fs, ip->i_number, "filesystem full");
228 		uprintf("\n%s: write failed, filesystem is full\n",
229 		    fs->fs_fsmnt);
230 	}
231 	return (ENOSPC);
232 }
233 
234 /*
235  * Reallocate a fragment to a bigger size
236  *
237  * The number and size of the old block is given, and a preference
238  * and new size is also specified. The allocator attempts to extend
239  * the original block. Failing that, the regular block allocator is
240  * invoked to get an appropriate block.
241  */
242 int
243 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
244 	struct inode *ip;
245 	ufs2_daddr_t lbprev;
246 	ufs2_daddr_t bprev;
247 	ufs2_daddr_t bpref;
248 	int osize, nsize, flags;
249 	struct ucred *cred;
250 	struct buf **bpp;
251 {
252 	struct vnode *vp;
253 	struct fs *fs;
254 	struct buf *bp;
255 	struct ufsmount *ump;
256 	u_int cg, request, reclaimed;
257 	int error, gbflags;
258 	ufs2_daddr_t bno;
259 	static struct timeval lastfail;
260 	static int curfail;
261 	int64_t delta;
262 
263 	*bpp = 0;
264 	vp = ITOV(ip);
265 	fs = ip->i_fs;
266 	bp = NULL;
267 	ump = ip->i_ump;
268 	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
269 
270 	mtx_assert(UFS_MTX(ump), MA_OWNED);
271 #ifdef INVARIANTS
272 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
273 		panic("ffs_realloccg: allocation on suspended filesystem");
274 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
275 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
276 		printf(
277 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
278 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
279 		    nsize, fs->fs_fsmnt);
280 		panic("ffs_realloccg: bad size");
281 	}
282 	if (cred == NOCRED)
283 		panic("ffs_realloccg: missing credential");
284 #endif /* INVARIANTS */
285 	reclaimed = 0;
286 retry:
287 	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
288 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
289 		goto nospace;
290 	}
291 	if (bprev == 0) {
292 		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
293 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
294 		    fs->fs_fsmnt);
295 		panic("ffs_realloccg: bad bprev");
296 	}
297 	UFS_UNLOCK(ump);
298 	/*
299 	 * Allocate the extra space in the buffer.
300 	 */
301 	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
302 	if (error) {
303 		brelse(bp);
304 		return (error);
305 	}
306 
307 	if (bp->b_blkno == bp->b_lblkno) {
308 		if (lbprev >= NDADDR)
309 			panic("ffs_realloccg: lbprev out of range");
310 		bp->b_blkno = fsbtodb(fs, bprev);
311 	}
312 
313 #ifdef QUOTA
314 	error = chkdq(ip, btodb(nsize - osize), cred, 0);
315 	if (error) {
316 		brelse(bp);
317 		return (error);
318 	}
319 #endif
320 	/*
321 	 * Check for extension in the existing location.
322 	 */
323 	cg = dtog(fs, bprev);
324 	UFS_LOCK(ump);
325 	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
326 	if (bno) {
327 		if (bp->b_blkno != fsbtodb(fs, bno))
328 			panic("ffs_realloccg: bad blockno");
329 		delta = btodb(nsize - osize);
330 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
331 		if (flags & IO_EXT)
332 			ip->i_flag |= IN_CHANGE;
333 		else
334 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
335 		allocbuf(bp, nsize);
336 		bp->b_flags |= B_DONE;
337 		vfs_bio_bzero_buf(bp, osize, nsize - osize);
338 		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
339 			vfs_bio_set_valid(bp, osize, nsize - osize);
340 		*bpp = bp;
341 		return (0);
342 	}
343 	/*
344 	 * Allocate a new disk location.
345 	 */
346 	if (bpref >= fs->fs_size)
347 		bpref = 0;
348 	switch ((int)fs->fs_optim) {
349 	case FS_OPTSPACE:
350 		/*
351 		 * Allocate an exact sized fragment. Although this makes
352 		 * best use of space, we will waste time relocating it if
353 		 * the file continues to grow. If the fragmentation is
354 		 * less than half of the minimum free reserve, we choose
355 		 * to begin optimizing for time.
356 		 */
357 		request = nsize;
358 		if (fs->fs_minfree <= 5 ||
359 		    fs->fs_cstotal.cs_nffree >
360 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
361 			break;
362 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
363 			fs->fs_fsmnt);
364 		fs->fs_optim = FS_OPTTIME;
365 		break;
366 	case FS_OPTTIME:
367 		/*
368 		 * At this point we have discovered a file that is trying to
369 		 * grow a small fragment to a larger fragment. To save time,
370 		 * we allocate a full sized block, then free the unused portion.
371 		 * If the file continues to grow, the `ffs_fragextend' call
372 		 * above will be able to grow it in place without further
373 		 * copying. If aberrant programs cause disk fragmentation to
374 		 * grow within 2% of the free reserve, we choose to begin
375 		 * optimizing for space.
376 		 */
377 		request = fs->fs_bsize;
378 		if (fs->fs_cstotal.cs_nffree <
379 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
380 			break;
381 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
382 			fs->fs_fsmnt);
383 		fs->fs_optim = FS_OPTSPACE;
384 		break;
385 	default:
386 		printf("dev = %s, optim = %ld, fs = %s\n",
387 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
388 		panic("ffs_realloccg: bad optim");
389 		/* NOTREACHED */
390 	}
391 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
392 	if (bno > 0) {
393 		bp->b_blkno = fsbtodb(fs, bno);
394 		if (!DOINGSOFTDEP(vp))
395 			ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
396 			    ip->i_number, vp->v_type, NULL);
397 		delta = btodb(nsize - osize);
398 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
399 		if (flags & IO_EXT)
400 			ip->i_flag |= IN_CHANGE;
401 		else
402 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
403 		allocbuf(bp, nsize);
404 		bp->b_flags |= B_DONE;
405 		vfs_bio_bzero_buf(bp, osize, nsize - osize);
406 		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
407 			vfs_bio_set_valid(bp, osize, nsize - osize);
408 		*bpp = bp;
409 		return (0);
410 	}
411 #ifdef QUOTA
412 	UFS_UNLOCK(ump);
413 	/*
414 	 * Restore user's disk quota because allocation failed.
415 	 */
416 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
417 	UFS_LOCK(ump);
418 #endif
419 nospace:
420 	/*
421 	 * no space available
422 	 */
423 	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
424 		reclaimed = 1;
425 		UFS_UNLOCK(ump);
426 		if (bp) {
427 			brelse(bp);
428 			bp = NULL;
429 		}
430 		UFS_LOCK(ump);
431 		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
432 		goto retry;
433 	}
434 	UFS_UNLOCK(ump);
435 	if (bp)
436 		brelse(bp);
437 	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
438 		ffs_fserr(fs, ip->i_number, "filesystem full");
439 		uprintf("\n%s: write failed, filesystem is full\n",
440 		    fs->fs_fsmnt);
441 	}
442 	return (ENOSPC);
443 }
444 
445 /*
446  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
447  *
448  * The vnode and an array of buffer pointers for a range of sequential
449  * logical blocks to be made contiguous is given. The allocator attempts
450  * to find a range of sequential blocks starting as close as possible
451  * from the end of the allocation for the logical block immediately
452  * preceding the current range. If successful, the physical block numbers
453  * in the buffer pointers and in the inode are changed to reflect the new
454  * allocation. If unsuccessful, the allocation is left unchanged. The
455  * success in doing the reallocation is returned. Note that the error
456  * return is not reflected back to the user. Rather the previous block
457  * allocation will be used.
458  */
459 
460 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
461 
462 static int doasyncfree = 1;
463 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
464 
465 static int doreallocblks = 1;
466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
467 
468 #ifdef DEBUG
469 static volatile int prtrealloc = 0;
470 #endif
471 
472 int
473 ffs_reallocblks(ap)
474 	struct vop_reallocblks_args /* {
475 		struct vnode *a_vp;
476 		struct cluster_save *a_buflist;
477 	} */ *ap;
478 {
479 
480 	if (doreallocblks == 0)
481 		return (ENOSPC);
482 	/*
483 	 * We can't wait in softdep prealloc as it may fsync and recurse
484 	 * here.  Instead we simply fail to reallocate blocks if this
485 	 * rare condition arises.
486 	 */
487 	if (DOINGSOFTDEP(ap->a_vp))
488 		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
489 			return (ENOSPC);
490 	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
491 		return (ffs_reallocblks_ufs1(ap));
492 	return (ffs_reallocblks_ufs2(ap));
493 }
494 
495 static int
496 ffs_reallocblks_ufs1(ap)
497 	struct vop_reallocblks_args /* {
498 		struct vnode *a_vp;
499 		struct cluster_save *a_buflist;
500 	} */ *ap;
501 {
502 	struct fs *fs;
503 	struct inode *ip;
504 	struct vnode *vp;
505 	struct buf *sbp, *ebp;
506 	ufs1_daddr_t *bap, *sbap, *ebap = 0;
507 	struct cluster_save *buflist;
508 	struct ufsmount *ump;
509 	ufs_lbn_t start_lbn, end_lbn;
510 	ufs1_daddr_t soff, newblk, blkno;
511 	ufs2_daddr_t pref;
512 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
513 	int i, len, start_lvl, end_lvl, ssize;
514 
515 	vp = ap->a_vp;
516 	ip = VTOI(vp);
517 	fs = ip->i_fs;
518 	ump = ip->i_ump;
519 	if (fs->fs_contigsumsize <= 0)
520 		return (ENOSPC);
521 	buflist = ap->a_buflist;
522 	len = buflist->bs_nchildren;
523 	start_lbn = buflist->bs_children[0]->b_lblkno;
524 	end_lbn = start_lbn + len - 1;
525 #ifdef INVARIANTS
526 	for (i = 0; i < len; i++)
527 		if (!ffs_checkblk(ip,
528 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
529 			panic("ffs_reallocblks: unallocated block 1");
530 	for (i = 1; i < len; i++)
531 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
532 			panic("ffs_reallocblks: non-logical cluster");
533 	blkno = buflist->bs_children[0]->b_blkno;
534 	ssize = fsbtodb(fs, fs->fs_frag);
535 	for (i = 1; i < len - 1; i++)
536 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
537 			panic("ffs_reallocblks: non-physical cluster %d", i);
538 #endif
539 	/*
540 	 * If the cluster crosses the boundary for the first indirect
541 	 * block, leave space for the indirect block. Indirect blocks
542 	 * are initially laid out in a position after the last direct
543 	 * block. Block reallocation would usually destroy locality by
544 	 * moving the indirect block out of the way to make room for
545 	 * data blocks if we didn't compensate here. We should also do
546 	 * this for other indirect block boundaries, but it is only
547 	 * important for the first one.
548 	 */
549 	if (start_lbn < NDADDR && end_lbn >= NDADDR)
550 		return (ENOSPC);
551 	/*
552 	 * If the latest allocation is in a new cylinder group, assume that
553 	 * the filesystem has decided to move and do not force it back to
554 	 * the previous cylinder group.
555 	 */
556 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
557 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
558 		return (ENOSPC);
559 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
560 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
561 		return (ENOSPC);
562 	/*
563 	 * Get the starting offset and block map for the first block.
564 	 */
565 	if (start_lvl == 0) {
566 		sbap = &ip->i_din1->di_db[0];
567 		soff = start_lbn;
568 	} else {
569 		idp = &start_ap[start_lvl - 1];
570 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
571 			brelse(sbp);
572 			return (ENOSPC);
573 		}
574 		sbap = (ufs1_daddr_t *)sbp->b_data;
575 		soff = idp->in_off;
576 	}
577 	/*
578 	 * If the block range spans two block maps, get the second map.
579 	 */
580 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
581 		ssize = len;
582 	} else {
583 #ifdef INVARIANTS
584 		if (start_lvl > 0 &&
585 		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
586 			panic("ffs_reallocblk: start == end");
587 #endif
588 		ssize = len - (idp->in_off + 1);
589 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
590 			goto fail;
591 		ebap = (ufs1_daddr_t *)ebp->b_data;
592 	}
593 	/*
594 	 * Find the preferred location for the cluster.
595 	 */
596 	UFS_LOCK(ump);
597 	pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
598 	/*
599 	 * Search the block map looking for an allocation of the desired size.
600 	 */
601 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
602 	    len, len, ffs_clusteralloc)) == 0) {
603 		UFS_UNLOCK(ump);
604 		goto fail;
605 	}
606 	/*
607 	 * We have found a new contiguous block.
608 	 *
609 	 * First we have to replace the old block pointers with the new
610 	 * block pointers in the inode and indirect blocks associated
611 	 * with the file.
612 	 */
613 #ifdef DEBUG
614 	if (prtrealloc)
615 		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
616 		    (uintmax_t)ip->i_number,
617 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
618 #endif
619 	blkno = newblk;
620 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
621 		if (i == ssize) {
622 			bap = ebap;
623 			soff = -i;
624 		}
625 #ifdef INVARIANTS
626 		if (!ffs_checkblk(ip,
627 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
628 			panic("ffs_reallocblks: unallocated block 2");
629 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
630 			panic("ffs_reallocblks: alloc mismatch");
631 #endif
632 #ifdef DEBUG
633 		if (prtrealloc)
634 			printf(" %d,", *bap);
635 #endif
636 		if (DOINGSOFTDEP(vp)) {
637 			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
638 				softdep_setup_allocdirect(ip, start_lbn + i,
639 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
640 				    buflist->bs_children[i]);
641 			else
642 				softdep_setup_allocindir_page(ip, start_lbn + i,
643 				    i < ssize ? sbp : ebp, soff + i, blkno,
644 				    *bap, buflist->bs_children[i]);
645 		}
646 		*bap++ = blkno;
647 	}
648 	/*
649 	 * Next we must write out the modified inode and indirect blocks.
650 	 * For strict correctness, the writes should be synchronous since
651 	 * the old block values may have been written to disk. In practise
652 	 * they are almost never written, but if we are concerned about
653 	 * strict correctness, the `doasyncfree' flag should be set to zero.
654 	 *
655 	 * The test on `doasyncfree' should be changed to test a flag
656 	 * that shows whether the associated buffers and inodes have
657 	 * been written. The flag should be set when the cluster is
658 	 * started and cleared whenever the buffer or inode is flushed.
659 	 * We can then check below to see if it is set, and do the
660 	 * synchronous write only when it has been cleared.
661 	 */
662 	if (sbap != &ip->i_din1->di_db[0]) {
663 		if (doasyncfree)
664 			bdwrite(sbp);
665 		else
666 			bwrite(sbp);
667 	} else {
668 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
669 		if (!doasyncfree)
670 			ffs_update(vp, 1);
671 	}
672 	if (ssize < len) {
673 		if (doasyncfree)
674 			bdwrite(ebp);
675 		else
676 			bwrite(ebp);
677 	}
678 	/*
679 	 * Last, free the old blocks and assign the new blocks to the buffers.
680 	 */
681 #ifdef DEBUG
682 	if (prtrealloc)
683 		printf("\n\tnew:");
684 #endif
685 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
686 		if (!DOINGSOFTDEP(vp))
687 			ffs_blkfree(ump, fs, ip->i_devvp,
688 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
689 			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
690 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
691 #ifdef INVARIANTS
692 		if (!ffs_checkblk(ip,
693 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
694 			panic("ffs_reallocblks: unallocated block 3");
695 #endif
696 #ifdef DEBUG
697 		if (prtrealloc)
698 			printf(" %d,", blkno);
699 #endif
700 	}
701 #ifdef DEBUG
702 	if (prtrealloc) {
703 		prtrealloc--;
704 		printf("\n");
705 	}
706 #endif
707 	return (0);
708 
709 fail:
710 	if (ssize < len)
711 		brelse(ebp);
712 	if (sbap != &ip->i_din1->di_db[0])
713 		brelse(sbp);
714 	return (ENOSPC);
715 }
716 
717 static int
718 ffs_reallocblks_ufs2(ap)
719 	struct vop_reallocblks_args /* {
720 		struct vnode *a_vp;
721 		struct cluster_save *a_buflist;
722 	} */ *ap;
723 {
724 	struct fs *fs;
725 	struct inode *ip;
726 	struct vnode *vp;
727 	struct buf *sbp, *ebp;
728 	ufs2_daddr_t *bap, *sbap, *ebap = 0;
729 	struct cluster_save *buflist;
730 	struct ufsmount *ump;
731 	ufs_lbn_t start_lbn, end_lbn;
732 	ufs2_daddr_t soff, newblk, blkno, pref;
733 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
734 	int i, len, start_lvl, end_lvl, ssize;
735 
736 	vp = ap->a_vp;
737 	ip = VTOI(vp);
738 	fs = ip->i_fs;
739 	ump = ip->i_ump;
740 	if (fs->fs_contigsumsize <= 0)
741 		return (ENOSPC);
742 	buflist = ap->a_buflist;
743 	len = buflist->bs_nchildren;
744 	start_lbn = buflist->bs_children[0]->b_lblkno;
745 	end_lbn = start_lbn + len - 1;
746 #ifdef INVARIANTS
747 	for (i = 0; i < len; i++)
748 		if (!ffs_checkblk(ip,
749 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
750 			panic("ffs_reallocblks: unallocated block 1");
751 	for (i = 1; i < len; i++)
752 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
753 			panic("ffs_reallocblks: non-logical cluster");
754 	blkno = buflist->bs_children[0]->b_blkno;
755 	ssize = fsbtodb(fs, fs->fs_frag);
756 	for (i = 1; i < len - 1; i++)
757 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
758 			panic("ffs_reallocblks: non-physical cluster %d", i);
759 #endif
760 	/*
761 	 * If the cluster crosses the boundary for the first indirect
762 	 * block, do not move anything in it. Indirect blocks are
763 	 * usually initially laid out in a position between the data
764 	 * blocks. Block reallocation would usually destroy locality by
765 	 * moving the indirect block out of the way to make room for
766 	 * data blocks if we didn't compensate here. We should also do
767 	 * this for other indirect block boundaries, but it is only
768 	 * important for the first one.
769 	 */
770 	if (start_lbn < NDADDR && end_lbn >= NDADDR)
771 		return (ENOSPC);
772 	/*
773 	 * If the latest allocation is in a new cylinder group, assume that
774 	 * the filesystem has decided to move and do not force it back to
775 	 * the previous cylinder group.
776 	 */
777 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
778 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
779 		return (ENOSPC);
780 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
781 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
782 		return (ENOSPC);
783 	/*
784 	 * Get the starting offset and block map for the first block.
785 	 */
786 	if (start_lvl == 0) {
787 		sbap = &ip->i_din2->di_db[0];
788 		soff = start_lbn;
789 	} else {
790 		idp = &start_ap[start_lvl - 1];
791 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
792 			brelse(sbp);
793 			return (ENOSPC);
794 		}
795 		sbap = (ufs2_daddr_t *)sbp->b_data;
796 		soff = idp->in_off;
797 	}
798 	/*
799 	 * If the block range spans two block maps, get the second map.
800 	 */
801 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
802 		ssize = len;
803 	} else {
804 #ifdef INVARIANTS
805 		if (start_lvl > 0 &&
806 		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
807 			panic("ffs_reallocblk: start == end");
808 #endif
809 		ssize = len - (idp->in_off + 1);
810 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
811 			goto fail;
812 		ebap = (ufs2_daddr_t *)ebp->b_data;
813 	}
814 	/*
815 	 * Find the preferred location for the cluster.
816 	 */
817 	UFS_LOCK(ump);
818 	pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
819 	/*
820 	 * Search the block map looking for an allocation of the desired size.
821 	 */
822 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
823 	    len, len, ffs_clusteralloc)) == 0) {
824 		UFS_UNLOCK(ump);
825 		goto fail;
826 	}
827 	/*
828 	 * We have found a new contiguous block.
829 	 *
830 	 * First we have to replace the old block pointers with the new
831 	 * block pointers in the inode and indirect blocks associated
832 	 * with the file.
833 	 */
834 #ifdef DEBUG
835 	if (prtrealloc)
836 		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
837 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
838 #endif
839 	blkno = newblk;
840 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
841 		if (i == ssize) {
842 			bap = ebap;
843 			soff = -i;
844 		}
845 #ifdef INVARIANTS
846 		if (!ffs_checkblk(ip,
847 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
848 			panic("ffs_reallocblks: unallocated block 2");
849 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
850 			panic("ffs_reallocblks: alloc mismatch");
851 #endif
852 #ifdef DEBUG
853 		if (prtrealloc)
854 			printf(" %jd,", (intmax_t)*bap);
855 #endif
856 		if (DOINGSOFTDEP(vp)) {
857 			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
858 				softdep_setup_allocdirect(ip, start_lbn + i,
859 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
860 				    buflist->bs_children[i]);
861 			else
862 				softdep_setup_allocindir_page(ip, start_lbn + i,
863 				    i < ssize ? sbp : ebp, soff + i, blkno,
864 				    *bap, buflist->bs_children[i]);
865 		}
866 		*bap++ = blkno;
867 	}
868 	/*
869 	 * Next we must write out the modified inode and indirect blocks.
870 	 * For strict correctness, the writes should be synchronous since
871 	 * the old block values may have been written to disk. In practise
872 	 * they are almost never written, but if we are concerned about
873 	 * strict correctness, the `doasyncfree' flag should be set to zero.
874 	 *
875 	 * The test on `doasyncfree' should be changed to test a flag
876 	 * that shows whether the associated buffers and inodes have
877 	 * been written. The flag should be set when the cluster is
878 	 * started and cleared whenever the buffer or inode is flushed.
879 	 * We can then check below to see if it is set, and do the
880 	 * synchronous write only when it has been cleared.
881 	 */
882 	if (sbap != &ip->i_din2->di_db[0]) {
883 		if (doasyncfree)
884 			bdwrite(sbp);
885 		else
886 			bwrite(sbp);
887 	} else {
888 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
889 		if (!doasyncfree)
890 			ffs_update(vp, 1);
891 	}
892 	if (ssize < len) {
893 		if (doasyncfree)
894 			bdwrite(ebp);
895 		else
896 			bwrite(ebp);
897 	}
898 	/*
899 	 * Last, free the old blocks and assign the new blocks to the buffers.
900 	 */
901 #ifdef DEBUG
902 	if (prtrealloc)
903 		printf("\n\tnew:");
904 #endif
905 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
906 		if (!DOINGSOFTDEP(vp))
907 			ffs_blkfree(ump, fs, ip->i_devvp,
908 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
909 			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
910 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
911 #ifdef INVARIANTS
912 		if (!ffs_checkblk(ip,
913 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
914 			panic("ffs_reallocblks: unallocated block 3");
915 #endif
916 #ifdef DEBUG
917 		if (prtrealloc)
918 			printf(" %jd,", (intmax_t)blkno);
919 #endif
920 	}
921 #ifdef DEBUG
922 	if (prtrealloc) {
923 		prtrealloc--;
924 		printf("\n");
925 	}
926 #endif
927 	return (0);
928 
929 fail:
930 	if (ssize < len)
931 		brelse(ebp);
932 	if (sbap != &ip->i_din2->di_db[0])
933 		brelse(sbp);
934 	return (ENOSPC);
935 }
936 
937 /*
938  * Allocate an inode in the filesystem.
939  *
940  * If allocating a directory, use ffs_dirpref to select the inode.
941  * If allocating in a directory, the following hierarchy is followed:
942  *   1) allocate the preferred inode.
943  *   2) allocate an inode in the same cylinder group.
944  *   3) quadradically rehash into other cylinder groups, until an
945  *      available inode is located.
946  * If no inode preference is given the following hierarchy is used
947  * to allocate an inode:
948  *   1) allocate an inode in cylinder group 0.
949  *   2) quadradically rehash into other cylinder groups, until an
950  *      available inode is located.
951  */
952 int
953 ffs_valloc(pvp, mode, cred, vpp)
954 	struct vnode *pvp;
955 	int mode;
956 	struct ucred *cred;
957 	struct vnode **vpp;
958 {
959 	struct inode *pip;
960 	struct fs *fs;
961 	struct inode *ip;
962 	struct timespec ts;
963 	struct ufsmount *ump;
964 	ino_t ino, ipref;
965 	u_int cg;
966 	int error, error1, reclaimed;
967 	static struct timeval lastfail;
968 	static int curfail;
969 
970 	*vpp = NULL;
971 	pip = VTOI(pvp);
972 	fs = pip->i_fs;
973 	ump = pip->i_ump;
974 
975 	UFS_LOCK(ump);
976 	reclaimed = 0;
977 retry:
978 	if (fs->fs_cstotal.cs_nifree == 0)
979 		goto noinodes;
980 
981 	if ((mode & IFMT) == IFDIR)
982 		ipref = ffs_dirpref(pip);
983 	else
984 		ipref = pip->i_number;
985 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
986 		ipref = 0;
987 	cg = ino_to_cg(fs, ipref);
988 	/*
989 	 * Track number of dirs created one after another
990 	 * in a same cg without intervening by files.
991 	 */
992 	if ((mode & IFMT) == IFDIR) {
993 		if (fs->fs_contigdirs[cg] < 255)
994 			fs->fs_contigdirs[cg]++;
995 	} else {
996 		if (fs->fs_contigdirs[cg] > 0)
997 			fs->fs_contigdirs[cg]--;
998 	}
999 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1000 					(allocfcn_t *)ffs_nodealloccg);
1001 	if (ino == 0)
1002 		goto noinodes;
1003 	error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1004 	if (error) {
1005 		error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1006 		    FFSV_FORCEINSMQ);
1007 		ffs_vfree(pvp, ino, mode);
1008 		if (error1 == 0) {
1009 			ip = VTOI(*vpp);
1010 			if (ip->i_mode)
1011 				goto dup_alloc;
1012 			ip->i_flag |= IN_MODIFIED;
1013 			vput(*vpp);
1014 		}
1015 		return (error);
1016 	}
1017 	ip = VTOI(*vpp);
1018 	if (ip->i_mode) {
1019 dup_alloc:
1020 		printf("mode = 0%o, inum = %lu, fs = %s\n",
1021 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
1022 		panic("ffs_valloc: dup alloc");
1023 	}
1024 	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1025 		printf("free inode %s/%lu had %ld blocks\n",
1026 		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1027 		DIP_SET(ip, i_blocks, 0);
1028 	}
1029 	ip->i_flags = 0;
1030 	DIP_SET(ip, i_flags, 0);
1031 	/*
1032 	 * Set up a new generation number for this inode.
1033 	 */
1034 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
1035 		ip->i_gen = arc4random() / 2 + 1;
1036 	DIP_SET(ip, i_gen, ip->i_gen);
1037 	if (fs->fs_magic == FS_UFS2_MAGIC) {
1038 		vfs_timestamp(&ts);
1039 		ip->i_din2->di_birthtime = ts.tv_sec;
1040 		ip->i_din2->di_birthnsec = ts.tv_nsec;
1041 	}
1042 	ufs_prepare_reclaim(*vpp);
1043 	ip->i_flag = 0;
1044 	(*vpp)->v_vflag = 0;
1045 	(*vpp)->v_type = VNON;
1046 	if (fs->fs_magic == FS_UFS2_MAGIC)
1047 		(*vpp)->v_op = &ffs_vnodeops2;
1048 	else
1049 		(*vpp)->v_op = &ffs_vnodeops1;
1050 	return (0);
1051 noinodes:
1052 	if (reclaimed == 0) {
1053 		reclaimed = 1;
1054 		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1055 		goto retry;
1056 	}
1057 	UFS_UNLOCK(ump);
1058 	if (ppsratecheck(&lastfail, &curfail, 1)) {
1059 		ffs_fserr(fs, pip->i_number, "out of inodes");
1060 		uprintf("\n%s: create/symlink failed, no inodes free\n",
1061 		    fs->fs_fsmnt);
1062 	}
1063 	return (ENOSPC);
1064 }
1065 
1066 /*
1067  * Find a cylinder group to place a directory.
1068  *
1069  * The policy implemented by this algorithm is to allocate a
1070  * directory inode in the same cylinder group as its parent
1071  * directory, but also to reserve space for its files inodes
1072  * and data. Restrict the number of directories which may be
1073  * allocated one after another in the same cylinder group
1074  * without intervening allocation of files.
1075  *
1076  * If we allocate a first level directory then force allocation
1077  * in another cylinder group.
1078  */
1079 static ino_t
1080 ffs_dirpref(pip)
1081 	struct inode *pip;
1082 {
1083 	struct fs *fs;
1084 	int cg, prefcg, dirsize, cgsize;
1085 	u_int avgifree, avgbfree, avgndir, curdirsize;
1086 	u_int minifree, minbfree, maxndir;
1087 	u_int mincg, minndir;
1088 	u_int maxcontigdirs;
1089 
1090 	mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
1091 	fs = pip->i_fs;
1092 
1093 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1094 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1095 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1096 
1097 	/*
1098 	 * Force allocation in another cg if creating a first level dir.
1099 	 */
1100 	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1101 	if (ITOV(pip)->v_vflag & VV_ROOT) {
1102 		prefcg = arc4random() % fs->fs_ncg;
1103 		mincg = prefcg;
1104 		minndir = fs->fs_ipg;
1105 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1106 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1107 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1108 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1109 				mincg = cg;
1110 				minndir = fs->fs_cs(fs, cg).cs_ndir;
1111 			}
1112 		for (cg = 0; cg < prefcg; cg++)
1113 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1114 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1115 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1116 				mincg = cg;
1117 				minndir = fs->fs_cs(fs, cg).cs_ndir;
1118 			}
1119 		return ((ino_t)(fs->fs_ipg * mincg));
1120 	}
1121 
1122 	/*
1123 	 * Count various limits which used for
1124 	 * optimal allocation of a directory inode.
1125 	 */
1126 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1127 	minifree = avgifree - avgifree / 4;
1128 	if (minifree < 1)
1129 		minifree = 1;
1130 	minbfree = avgbfree - avgbfree / 4;
1131 	if (minbfree < 1)
1132 		minbfree = 1;
1133 	cgsize = fs->fs_fsize * fs->fs_fpg;
1134 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1135 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1136 	if (dirsize < curdirsize)
1137 		dirsize = curdirsize;
1138 	if (dirsize <= 0)
1139 		maxcontigdirs = 0;		/* dirsize overflowed */
1140 	else
1141 		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1142 	if (fs->fs_avgfpdir > 0)
1143 		maxcontigdirs = min(maxcontigdirs,
1144 				    fs->fs_ipg / fs->fs_avgfpdir);
1145 	if (maxcontigdirs == 0)
1146 		maxcontigdirs = 1;
1147 
1148 	/*
1149 	 * Limit number of dirs in one cg and reserve space for
1150 	 * regular files, but only if we have no deficit in
1151 	 * inodes or space.
1152 	 *
1153 	 * We are trying to find a suitable cylinder group nearby
1154 	 * our preferred cylinder group to place a new directory.
1155 	 * We scan from our preferred cylinder group forward looking
1156 	 * for a cylinder group that meets our criterion. If we get
1157 	 * to the final cylinder group and do not find anything,
1158 	 * we start scanning backwards from our preferred cylinder
1159 	 * group. The ideal would be to alternate looking forward
1160 	 * and backward, but that is just too complex to code for
1161 	 * the gain it would get. The most likely place where the
1162 	 * backward scan would take effect is when we start near
1163 	 * the end of the filesystem and do not find anything from
1164 	 * where we are to the end. In that case, scanning backward
1165 	 * will likely find us a suitable cylinder group much closer
1166 	 * to our desired location than if we were to start scanning
1167 	 * forward from the beginning of the filesystem.
1168 	 */
1169 	prefcg = ino_to_cg(fs, pip->i_number);
1170 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1171 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1172 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1173 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1174 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1175 				return ((ino_t)(fs->fs_ipg * cg));
1176 		}
1177 	for (cg = prefcg - 1; cg >= 0; cg--)
1178 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1179 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1180 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1181 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1182 				return ((ino_t)(fs->fs_ipg * cg));
1183 		}
1184 	/*
1185 	 * This is a backstop when we have deficit in space.
1186 	 */
1187 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1188 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1189 			return ((ino_t)(fs->fs_ipg * cg));
1190 	for (cg = prefcg - 1; cg >= 0; cg--)
1191 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1192 			break;
1193 	return ((ino_t)(fs->fs_ipg * cg));
1194 }
1195 
1196 /*
1197  * Select the desired position for the next block in a file.  The file is
1198  * logically divided into sections. The first section is composed of the
1199  * direct blocks. Each additional section contains fs_maxbpg blocks.
1200  *
1201  * If no blocks have been allocated in the first section, the policy is to
1202  * request a block in the same cylinder group as the inode that describes
1203  * the file. The first indirect is allocated immediately following the last
1204  * direct block and the data blocks for the first indirect immediately
1205  * follow it.
1206  *
1207  * If no blocks have been allocated in any other section, the indirect
1208  * block(s) are allocated in the same cylinder group as its inode in an
1209  * area reserved immediately following the inode blocks. The policy for
1210  * the data blocks is to place them in a cylinder group with a greater than
1211  * average number of free blocks. An appropriate cylinder group is found
1212  * by using a rotor that sweeps the cylinder groups. When a new group of
1213  * blocks is needed, the sweep begins in the cylinder group following the
1214  * cylinder group from which the previous allocation was made. The sweep
1215  * continues until a cylinder group with greater than the average number
1216  * of free blocks is found. If the allocation is for the first block in an
1217  * indirect block, the information on the previous allocation is unavailable;
1218  * here a best guess is made based upon the logical block number being
1219  * allocated.
1220  *
1221  * If a section is already partially allocated, the policy is to
1222  * contiguously allocate fs_maxcontig blocks. The end of one of these
1223  * contiguous blocks and the beginning of the next is laid out
1224  * contiguously if possible.
1225  */
1226 ufs2_daddr_t
1227 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1228 	struct inode *ip;
1229 	ufs_lbn_t lbn;
1230 	int indx;
1231 	ufs1_daddr_t *bap;
1232 {
1233 	struct fs *fs;
1234 	u_int cg, inocg;
1235 	u_int avgbfree, startcg;
1236 	ufs2_daddr_t pref;
1237 
1238 	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1239 	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1240 	fs = ip->i_fs;
1241 	/*
1242 	 * Allocation of indirect blocks is indicated by passing negative
1243 	 * values in indx: -1 for single indirect, -2 for double indirect,
1244 	 * -3 for triple indirect. As noted below, we attempt to allocate
1245 	 * the first indirect inline with the file data. For all later
1246 	 * indirect blocks, the data is often allocated in other cylinder
1247 	 * groups. However to speed random file access and to speed up
1248 	 * fsck, the filesystem reserves the first fs_metaspace blocks
1249 	 * (typically half of fs_minfree) of the data area of each cylinder
1250 	 * group to hold these later indirect blocks.
1251 	 */
1252 	inocg = ino_to_cg(fs, ip->i_number);
1253 	if (indx < 0) {
1254 		/*
1255 		 * Our preference for indirect blocks is the zone at the
1256 		 * beginning of the inode's cylinder group data area that
1257 		 * we try to reserve for indirect blocks.
1258 		 */
1259 		pref = cgmeta(fs, inocg);
1260 		/*
1261 		 * If we are allocating the first indirect block, try to
1262 		 * place it immediately following the last direct block.
1263 		 */
1264 		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1265 		    ip->i_din1->di_db[NDADDR - 1] != 0)
1266 			pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
1267 		return (pref);
1268 	}
1269 	/*
1270 	 * If we are allocating the first data block in the first indirect
1271 	 * block and the indirect has been allocated in the data block area,
1272 	 * try to place it immediately following the indirect block.
1273 	 */
1274 	if (lbn == NDADDR) {
1275 		pref = ip->i_din1->di_ib[0];
1276 		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1277 		    pref < cgbase(fs, inocg + 1))
1278 			return (pref + fs->fs_frag);
1279 	}
1280 	/*
1281 	 * If we are at the beginning of a file, or we have already allocated
1282 	 * the maximum number of blocks per cylinder group, or we do not
1283 	 * have a block allocated immediately preceeding us, then we need
1284 	 * to decide where to start allocating new blocks.
1285 	 */
1286 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1287 		/*
1288 		 * If we are allocating a directory data block, we want
1289 		 * to place it in the metadata area.
1290 		 */
1291 		if ((ip->i_mode & IFMT) == IFDIR)
1292 			return (cgmeta(fs, inocg));
1293 		/*
1294 		 * Until we fill all the direct and all the first indirect's
1295 		 * blocks, we try to allocate in the data area of the inode's
1296 		 * cylinder group.
1297 		 */
1298 		if (lbn < NDADDR + NINDIR(fs))
1299 			return (cgdata(fs, inocg));
1300 		/*
1301 		 * Find a cylinder with greater than average number of
1302 		 * unused data blocks.
1303 		 */
1304 		if (indx == 0 || bap[indx - 1] == 0)
1305 			startcg = inocg + lbn / fs->fs_maxbpg;
1306 		else
1307 			startcg = dtog(fs, bap[indx - 1]) + 1;
1308 		startcg %= fs->fs_ncg;
1309 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1310 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1311 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1312 				fs->fs_cgrotor = cg;
1313 				return (cgdata(fs, cg));
1314 			}
1315 		for (cg = 0; cg <= startcg; cg++)
1316 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1317 				fs->fs_cgrotor = cg;
1318 				return (cgdata(fs, cg));
1319 			}
1320 		return (0);
1321 	}
1322 	/*
1323 	 * Otherwise, we just always try to lay things out contiguously.
1324 	 */
1325 	return (bap[indx - 1] + fs->fs_frag);
1326 }
1327 
1328 /*
1329  * Same as above, but for UFS2
1330  */
1331 ufs2_daddr_t
1332 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1333 	struct inode *ip;
1334 	ufs_lbn_t lbn;
1335 	int indx;
1336 	ufs2_daddr_t *bap;
1337 {
1338 	struct fs *fs;
1339 	u_int cg, inocg;
1340 	u_int avgbfree, startcg;
1341 	ufs2_daddr_t pref;
1342 
1343 	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1344 	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1345 	fs = ip->i_fs;
1346 	/*
1347 	 * Allocation of indirect blocks is indicated by passing negative
1348 	 * values in indx: -1 for single indirect, -2 for double indirect,
1349 	 * -3 for triple indirect. As noted below, we attempt to allocate
1350 	 * the first indirect inline with the file data. For all later
1351 	 * indirect blocks, the data is often allocated in other cylinder
1352 	 * groups. However to speed random file access and to speed up
1353 	 * fsck, the filesystem reserves the first fs_metaspace blocks
1354 	 * (typically half of fs_minfree) of the data area of each cylinder
1355 	 * group to hold these later indirect blocks.
1356 	 */
1357 	inocg = ino_to_cg(fs, ip->i_number);
1358 	if (indx < 0) {
1359 		/*
1360 		 * Our preference for indirect blocks is the zone at the
1361 		 * beginning of the inode's cylinder group data area that
1362 		 * we try to reserve for indirect blocks.
1363 		 */
1364 		pref = cgmeta(fs, inocg);
1365 		/*
1366 		 * If we are allocating the first indirect block, try to
1367 		 * place it immediately following the last direct block.
1368 		 */
1369 		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1370 		    ip->i_din2->di_db[NDADDR - 1] != 0)
1371 			pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
1372 		return (pref);
1373 	}
1374 	/*
1375 	 * If we are allocating the first data block in the first indirect
1376 	 * block and the indirect has been allocated in the data block area,
1377 	 * try to place it immediately following the indirect block.
1378 	 */
1379 	if (lbn == NDADDR) {
1380 		pref = ip->i_din2->di_ib[0];
1381 		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1382 		    pref < cgbase(fs, inocg + 1))
1383 			return (pref + fs->fs_frag);
1384 	}
1385 	/*
1386 	 * If we are at the beginning of a file, or we have already allocated
1387 	 * the maximum number of blocks per cylinder group, or we do not
1388 	 * have a block allocated immediately preceeding us, then we need
1389 	 * to decide where to start allocating new blocks.
1390 	 */
1391 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1392 		/*
1393 		 * If we are allocating a directory data block, we want
1394 		 * to place it in the metadata area.
1395 		 */
1396 		if ((ip->i_mode & IFMT) == IFDIR)
1397 			return (cgmeta(fs, inocg));
1398 		/*
1399 		 * Until we fill all the direct and all the first indirect's
1400 		 * blocks, we try to allocate in the data area of the inode's
1401 		 * cylinder group.
1402 		 */
1403 		if (lbn < NDADDR + NINDIR(fs))
1404 			return (cgdata(fs, inocg));
1405 		/*
1406 		 * Find a cylinder with greater than average number of
1407 		 * unused data blocks.
1408 		 */
1409 		if (indx == 0 || bap[indx - 1] == 0)
1410 			startcg = inocg + lbn / fs->fs_maxbpg;
1411 		else
1412 			startcg = dtog(fs, bap[indx - 1]) + 1;
1413 		startcg %= fs->fs_ncg;
1414 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1415 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1416 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1417 				fs->fs_cgrotor = cg;
1418 				return (cgdata(fs, cg));
1419 			}
1420 		for (cg = 0; cg <= startcg; cg++)
1421 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1422 				fs->fs_cgrotor = cg;
1423 				return (cgdata(fs, cg));
1424 			}
1425 		return (0);
1426 	}
1427 	/*
1428 	 * Otherwise, we just always try to lay things out contiguously.
1429 	 */
1430 	return (bap[indx - 1] + fs->fs_frag);
1431 }
1432 
1433 /*
1434  * Implement the cylinder overflow algorithm.
1435  *
1436  * The policy implemented by this algorithm is:
1437  *   1) allocate the block in its requested cylinder group.
1438  *   2) quadradically rehash on the cylinder group number.
1439  *   3) brute force search for a free block.
1440  *
1441  * Must be called with the UFS lock held.  Will release the lock on success
1442  * and return with it held on failure.
1443  */
1444 /*VARARGS5*/
1445 static ufs2_daddr_t
1446 ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1447 	struct inode *ip;
1448 	u_int cg;
1449 	ufs2_daddr_t pref;
1450 	int size;	/* Search size for data blocks, mode for inodes */
1451 	int rsize;	/* Real allocated size. */
1452 	allocfcn_t *allocator;
1453 {
1454 	struct fs *fs;
1455 	ufs2_daddr_t result;
1456 	u_int i, icg = cg;
1457 
1458 	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1459 #ifdef INVARIANTS
1460 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1461 		panic("ffs_hashalloc: allocation on suspended filesystem");
1462 #endif
1463 	fs = ip->i_fs;
1464 	/*
1465 	 * 1: preferred cylinder group
1466 	 */
1467 	result = (*allocator)(ip, cg, pref, size, rsize);
1468 	if (result)
1469 		return (result);
1470 	/*
1471 	 * 2: quadratic rehash
1472 	 */
1473 	for (i = 1; i < fs->fs_ncg; i *= 2) {
1474 		cg += i;
1475 		if (cg >= fs->fs_ncg)
1476 			cg -= fs->fs_ncg;
1477 		result = (*allocator)(ip, cg, 0, size, rsize);
1478 		if (result)
1479 			return (result);
1480 	}
1481 	/*
1482 	 * 3: brute force search
1483 	 * Note that we start at i == 2, since 0 was checked initially,
1484 	 * and 1 is always checked in the quadratic rehash.
1485 	 */
1486 	cg = (icg + 2) % fs->fs_ncg;
1487 	for (i = 2; i < fs->fs_ncg; i++) {
1488 		result = (*allocator)(ip, cg, 0, size, rsize);
1489 		if (result)
1490 			return (result);
1491 		cg++;
1492 		if (cg == fs->fs_ncg)
1493 			cg = 0;
1494 	}
1495 	return (0);
1496 }
1497 
1498 /*
1499  * Determine whether a fragment can be extended.
1500  *
1501  * Check to see if the necessary fragments are available, and
1502  * if they are, allocate them.
1503  */
1504 static ufs2_daddr_t
1505 ffs_fragextend(ip, cg, bprev, osize, nsize)
1506 	struct inode *ip;
1507 	u_int cg;
1508 	ufs2_daddr_t bprev;
1509 	int osize, nsize;
1510 {
1511 	struct fs *fs;
1512 	struct cg *cgp;
1513 	struct buf *bp;
1514 	struct ufsmount *ump;
1515 	int nffree;
1516 	long bno;
1517 	int frags, bbase;
1518 	int i, error;
1519 	u_int8_t *blksfree;
1520 
1521 	ump = ip->i_ump;
1522 	fs = ip->i_fs;
1523 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1524 		return (0);
1525 	frags = numfrags(fs, nsize);
1526 	bbase = fragnum(fs, bprev);
1527 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1528 		/* cannot extend across a block boundary */
1529 		return (0);
1530 	}
1531 	UFS_UNLOCK(ump);
1532 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1533 		(int)fs->fs_cgsize, NOCRED, &bp);
1534 	if (error)
1535 		goto fail;
1536 	cgp = (struct cg *)bp->b_data;
1537 	if (!cg_chkmagic(cgp))
1538 		goto fail;
1539 	bp->b_xflags |= BX_BKGRDWRITE;
1540 	cgp->cg_old_time = cgp->cg_time = time_second;
1541 	bno = dtogd(fs, bprev);
1542 	blksfree = cg_blksfree(cgp);
1543 	for (i = numfrags(fs, osize); i < frags; i++)
1544 		if (isclr(blksfree, bno + i))
1545 			goto fail;
1546 	/*
1547 	 * the current fragment can be extended
1548 	 * deduct the count on fragment being extended into
1549 	 * increase the count on the remaining fragment (if any)
1550 	 * allocate the extended piece
1551 	 */
1552 	for (i = frags; i < fs->fs_frag - bbase; i++)
1553 		if (isclr(blksfree, bno + i))
1554 			break;
1555 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1556 	if (i != frags)
1557 		cgp->cg_frsum[i - frags]++;
1558 	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1559 		clrbit(blksfree, bno + i);
1560 		cgp->cg_cs.cs_nffree--;
1561 		nffree++;
1562 	}
1563 	UFS_LOCK(ump);
1564 	fs->fs_cstotal.cs_nffree -= nffree;
1565 	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1566 	fs->fs_fmod = 1;
1567 	ACTIVECLEAR(fs, cg);
1568 	UFS_UNLOCK(ump);
1569 	if (DOINGSOFTDEP(ITOV(ip)))
1570 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1571 		    frags, numfrags(fs, osize));
1572 	bdwrite(bp);
1573 	return (bprev);
1574 
1575 fail:
1576 	brelse(bp);
1577 	UFS_LOCK(ump);
1578 	return (0);
1579 
1580 }
1581 
1582 /*
1583  * Determine whether a block can be allocated.
1584  *
1585  * Check to see if a block of the appropriate size is available,
1586  * and if it is, allocate it.
1587  */
1588 static ufs2_daddr_t
1589 ffs_alloccg(ip, cg, bpref, size, rsize)
1590 	struct inode *ip;
1591 	u_int cg;
1592 	ufs2_daddr_t bpref;
1593 	int size;
1594 	int rsize;
1595 {
1596 	struct fs *fs;
1597 	struct cg *cgp;
1598 	struct buf *bp;
1599 	struct ufsmount *ump;
1600 	ufs1_daddr_t bno;
1601 	ufs2_daddr_t blkno;
1602 	int i, allocsiz, error, frags;
1603 	u_int8_t *blksfree;
1604 
1605 	ump = ip->i_ump;
1606 	fs = ip->i_fs;
1607 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1608 		return (0);
1609 	UFS_UNLOCK(ump);
1610 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1611 		(int)fs->fs_cgsize, NOCRED, &bp);
1612 	if (error)
1613 		goto fail;
1614 	cgp = (struct cg *)bp->b_data;
1615 	if (!cg_chkmagic(cgp) ||
1616 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1617 		goto fail;
1618 	bp->b_xflags |= BX_BKGRDWRITE;
1619 	cgp->cg_old_time = cgp->cg_time = time_second;
1620 	if (size == fs->fs_bsize) {
1621 		UFS_LOCK(ump);
1622 		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1623 		ACTIVECLEAR(fs, cg);
1624 		UFS_UNLOCK(ump);
1625 		bdwrite(bp);
1626 		return (blkno);
1627 	}
1628 	/*
1629 	 * check to see if any fragments are already available
1630 	 * allocsiz is the size which will be allocated, hacking
1631 	 * it down to a smaller size if necessary
1632 	 */
1633 	blksfree = cg_blksfree(cgp);
1634 	frags = numfrags(fs, size);
1635 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1636 		if (cgp->cg_frsum[allocsiz] != 0)
1637 			break;
1638 	if (allocsiz == fs->fs_frag) {
1639 		/*
1640 		 * no fragments were available, so a block will be
1641 		 * allocated, and hacked up
1642 		 */
1643 		if (cgp->cg_cs.cs_nbfree == 0)
1644 			goto fail;
1645 		UFS_LOCK(ump);
1646 		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1647 		ACTIVECLEAR(fs, cg);
1648 		UFS_UNLOCK(ump);
1649 		bdwrite(bp);
1650 		return (blkno);
1651 	}
1652 	KASSERT(size == rsize,
1653 	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1654 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1655 	if (bno < 0)
1656 		goto fail;
1657 	for (i = 0; i < frags; i++)
1658 		clrbit(blksfree, bno + i);
1659 	cgp->cg_cs.cs_nffree -= frags;
1660 	cgp->cg_frsum[allocsiz]--;
1661 	if (frags != allocsiz)
1662 		cgp->cg_frsum[allocsiz - frags]++;
1663 	UFS_LOCK(ump);
1664 	fs->fs_cstotal.cs_nffree -= frags;
1665 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1666 	fs->fs_fmod = 1;
1667 	blkno = cgbase(fs, cg) + bno;
1668 	ACTIVECLEAR(fs, cg);
1669 	UFS_UNLOCK(ump);
1670 	if (DOINGSOFTDEP(ITOV(ip)))
1671 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1672 	bdwrite(bp);
1673 	return (blkno);
1674 
1675 fail:
1676 	brelse(bp);
1677 	UFS_LOCK(ump);
1678 	return (0);
1679 }
1680 
1681 /*
1682  * Allocate a block in a cylinder group.
1683  *
1684  * This algorithm implements the following policy:
1685  *   1) allocate the requested block.
1686  *   2) allocate a rotationally optimal block in the same cylinder.
1687  *   3) allocate the next available block on the block rotor for the
1688  *      specified cylinder group.
1689  * Note that this routine only allocates fs_bsize blocks; these
1690  * blocks may be fragmented by the routine that allocates them.
1691  */
1692 static ufs2_daddr_t
1693 ffs_alloccgblk(ip, bp, bpref, size)
1694 	struct inode *ip;
1695 	struct buf *bp;
1696 	ufs2_daddr_t bpref;
1697 	int size;
1698 {
1699 	struct fs *fs;
1700 	struct cg *cgp;
1701 	struct ufsmount *ump;
1702 	ufs1_daddr_t bno;
1703 	ufs2_daddr_t blkno;
1704 	u_int8_t *blksfree;
1705 	int i, cgbpref;
1706 
1707 	fs = ip->i_fs;
1708 	ump = ip->i_ump;
1709 	mtx_assert(UFS_MTX(ump), MA_OWNED);
1710 	cgp = (struct cg *)bp->b_data;
1711 	blksfree = cg_blksfree(cgp);
1712 	if (bpref == 0) {
1713 		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1714 	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1715 		/* map bpref to correct zone in this cg */
1716 		if (bpref < cgdata(fs, cgbpref))
1717 			bpref = cgmeta(fs, cgp->cg_cgx);
1718 		else
1719 			bpref = cgdata(fs, cgp->cg_cgx);
1720 	}
1721 	/*
1722 	 * if the requested block is available, use it
1723 	 */
1724 	bno = dtogd(fs, blknum(fs, bpref));
1725 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1726 		goto gotit;
1727 	/*
1728 	 * Take the next available block in this cylinder group.
1729 	 */
1730 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1731 	if (bno < 0)
1732 		return (0);
1733 	/* Update cg_rotor only if allocated from the data zone */
1734 	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1735 		cgp->cg_rotor = bno;
1736 gotit:
1737 	blkno = fragstoblks(fs, bno);
1738 	ffs_clrblock(fs, blksfree, (long)blkno);
1739 	ffs_clusteracct(fs, cgp, blkno, -1);
1740 	cgp->cg_cs.cs_nbfree--;
1741 	fs->fs_cstotal.cs_nbfree--;
1742 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1743 	fs->fs_fmod = 1;
1744 	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1745 	/*
1746 	 * If the caller didn't want the whole block free the frags here.
1747 	 */
1748 	size = numfrags(fs, size);
1749 	if (size != fs->fs_frag) {
1750 		bno = dtogd(fs, blkno);
1751 		for (i = size; i < fs->fs_frag; i++)
1752 			setbit(blksfree, bno + i);
1753 		i = fs->fs_frag - size;
1754 		cgp->cg_cs.cs_nffree += i;
1755 		fs->fs_cstotal.cs_nffree += i;
1756 		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1757 		fs->fs_fmod = 1;
1758 		cgp->cg_frsum[i]++;
1759 	}
1760 	/* XXX Fixme. */
1761 	UFS_UNLOCK(ump);
1762 	if (DOINGSOFTDEP(ITOV(ip)))
1763 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
1764 		    size, 0);
1765 	UFS_LOCK(ump);
1766 	return (blkno);
1767 }
1768 
1769 /*
1770  * Determine whether a cluster can be allocated.
1771  *
1772  * We do not currently check for optimal rotational layout if there
1773  * are multiple choices in the same cylinder group. Instead we just
1774  * take the first one that we find following bpref.
1775  */
1776 static ufs2_daddr_t
1777 ffs_clusteralloc(ip, cg, bpref, len, unused)
1778 	struct inode *ip;
1779 	u_int cg;
1780 	ufs2_daddr_t bpref;
1781 	int len;
1782 	int unused;
1783 {
1784 	struct fs *fs;
1785 	struct cg *cgp;
1786 	struct buf *bp;
1787 	struct ufsmount *ump;
1788 	int i, run, bit, map, got;
1789 	ufs2_daddr_t bno;
1790 	u_char *mapp;
1791 	int32_t *lp;
1792 	u_int8_t *blksfree;
1793 
1794 	fs = ip->i_fs;
1795 	ump = ip->i_ump;
1796 	if (fs->fs_maxcluster[cg] < len)
1797 		return (0);
1798 	UFS_UNLOCK(ump);
1799 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1800 	    NOCRED, &bp))
1801 		goto fail_lock;
1802 	cgp = (struct cg *)bp->b_data;
1803 	if (!cg_chkmagic(cgp))
1804 		goto fail_lock;
1805 	bp->b_xflags |= BX_BKGRDWRITE;
1806 	/*
1807 	 * Check to see if a cluster of the needed size (or bigger) is
1808 	 * available in this cylinder group.
1809 	 */
1810 	lp = &cg_clustersum(cgp)[len];
1811 	for (i = len; i <= fs->fs_contigsumsize; i++)
1812 		if (*lp++ > 0)
1813 			break;
1814 	if (i > fs->fs_contigsumsize) {
1815 		/*
1816 		 * This is the first time looking for a cluster in this
1817 		 * cylinder group. Update the cluster summary information
1818 		 * to reflect the true maximum sized cluster so that
1819 		 * future cluster allocation requests can avoid reading
1820 		 * the cylinder group map only to find no clusters.
1821 		 */
1822 		lp = &cg_clustersum(cgp)[len - 1];
1823 		for (i = len - 1; i > 0; i--)
1824 			if (*lp-- > 0)
1825 				break;
1826 		UFS_LOCK(ump);
1827 		fs->fs_maxcluster[cg] = i;
1828 		goto fail;
1829 	}
1830 	/*
1831 	 * Search the cluster map to find a big enough cluster.
1832 	 * We take the first one that we find, even if it is larger
1833 	 * than we need as we prefer to get one close to the previous
1834 	 * block allocation. We do not search before the current
1835 	 * preference point as we do not want to allocate a block
1836 	 * that is allocated before the previous one (as we will
1837 	 * then have to wait for another pass of the elevator
1838 	 * algorithm before it will be read). We prefer to fail and
1839 	 * be recalled to try an allocation in the next cylinder group.
1840 	 */
1841 	if (dtog(fs, bpref) != cg)
1842 		bpref = cgdata(fs, cg);
1843 	else
1844 		bpref = blknum(fs, bpref);
1845 	bpref = fragstoblks(fs, dtogd(fs, bpref));
1846 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1847 	map = *mapp++;
1848 	bit = 1 << (bpref % NBBY);
1849 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1850 		if ((map & bit) == 0) {
1851 			run = 0;
1852 		} else {
1853 			run++;
1854 			if (run == len)
1855 				break;
1856 		}
1857 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1858 			bit <<= 1;
1859 		} else {
1860 			map = *mapp++;
1861 			bit = 1;
1862 		}
1863 	}
1864 	if (got >= cgp->cg_nclusterblks)
1865 		goto fail_lock;
1866 	/*
1867 	 * Allocate the cluster that we have found.
1868 	 */
1869 	blksfree = cg_blksfree(cgp);
1870 	for (i = 1; i <= len; i++)
1871 		if (!ffs_isblock(fs, blksfree, got - run + i))
1872 			panic("ffs_clusteralloc: map mismatch");
1873 	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1874 	if (dtog(fs, bno) != cg)
1875 		panic("ffs_clusteralloc: allocated out of group");
1876 	len = blkstofrags(fs, len);
1877 	UFS_LOCK(ump);
1878 	for (i = 0; i < len; i += fs->fs_frag)
1879 		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
1880 			panic("ffs_clusteralloc: lost block");
1881 	ACTIVECLEAR(fs, cg);
1882 	UFS_UNLOCK(ump);
1883 	bdwrite(bp);
1884 	return (bno);
1885 
1886 fail_lock:
1887 	UFS_LOCK(ump);
1888 fail:
1889 	brelse(bp);
1890 	return (0);
1891 }
1892 
1893 static inline struct buf *
1894 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
1895 {
1896 	struct fs *fs;
1897 
1898 	fs = ip->i_fs;
1899 	return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs,
1900 	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
1901 	    gbflags));
1902 }
1903 
1904 /*
1905  * Determine whether an inode can be allocated.
1906  *
1907  * Check to see if an inode is available, and if it is,
1908  * allocate it using the following policy:
1909  *   1) allocate the requested inode.
1910  *   2) allocate the next available inode after the requested
1911  *      inode in the specified cylinder group.
1912  */
1913 static ufs2_daddr_t
1914 ffs_nodealloccg(ip, cg, ipref, mode, unused)
1915 	struct inode *ip;
1916 	u_int cg;
1917 	ufs2_daddr_t ipref;
1918 	int mode;
1919 	int unused;
1920 {
1921 	struct fs *fs;
1922 	struct cg *cgp;
1923 	struct buf *bp, *ibp;
1924 	struct ufsmount *ump;
1925 	u_int8_t *inosused, *loc;
1926 	struct ufs2_dinode *dp2;
1927 	int error, start, len, i;
1928 	u_int32_t old_initediblk;
1929 
1930 	fs = ip->i_fs;
1931 	ump = ip->i_ump;
1932 check_nifree:
1933 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1934 		return (0);
1935 	UFS_UNLOCK(ump);
1936 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1937 		(int)fs->fs_cgsize, NOCRED, &bp);
1938 	if (error) {
1939 		brelse(bp);
1940 		UFS_LOCK(ump);
1941 		return (0);
1942 	}
1943 	cgp = (struct cg *)bp->b_data;
1944 restart:
1945 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1946 		brelse(bp);
1947 		UFS_LOCK(ump);
1948 		return (0);
1949 	}
1950 	bp->b_xflags |= BX_BKGRDWRITE;
1951 	inosused = cg_inosused(cgp);
1952 	if (ipref) {
1953 		ipref %= fs->fs_ipg;
1954 		if (isclr(inosused, ipref))
1955 			goto gotit;
1956 	}
1957 	start = cgp->cg_irotor / NBBY;
1958 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1959 	loc = memcchr(&inosused[start], 0xff, len);
1960 	if (loc == NULL) {
1961 		len = start + 1;
1962 		start = 0;
1963 		loc = memcchr(&inosused[start], 0xff, len);
1964 		if (loc == NULL) {
1965 			printf("cg = %d, irotor = %ld, fs = %s\n",
1966 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1967 			panic("ffs_nodealloccg: map corrupted");
1968 			/* NOTREACHED */
1969 		}
1970 	}
1971 	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
1972 gotit:
1973 	/*
1974 	 * Check to see if we need to initialize more inodes.
1975 	 */
1976 	if (fs->fs_magic == FS_UFS2_MAGIC &&
1977 	    ipref + INOPB(fs) > cgp->cg_initediblk &&
1978 	    cgp->cg_initediblk < cgp->cg_niblk) {
1979 		old_initediblk = cgp->cg_initediblk;
1980 
1981 		/*
1982 		 * Free the cylinder group lock before writing the
1983 		 * initialized inode block.  Entering the
1984 		 * babarrierwrite() with the cylinder group lock
1985 		 * causes lock order violation between the lock and
1986 		 * snaplk.
1987 		 *
1988 		 * Another thread can decide to initialize the same
1989 		 * inode block, but whichever thread first gets the
1990 		 * cylinder group lock after writing the newly
1991 		 * allocated inode block will update it and the other
1992 		 * will realize that it has lost and leave the
1993 		 * cylinder group unchanged.
1994 		 */
1995 		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
1996 		brelse(bp);
1997 		if (ibp == NULL) {
1998 			/*
1999 			 * The inode block buffer is already owned by
2000 			 * another thread, which must initialize it.
2001 			 * Wait on the buffer to allow another thread
2002 			 * to finish the updates, with dropped cg
2003 			 * buffer lock, then retry.
2004 			 */
2005 			ibp = getinobuf(ip, cg, old_initediblk, 0);
2006 			brelse(ibp);
2007 			UFS_LOCK(ump);
2008 			goto check_nifree;
2009 		}
2010 		bzero(ibp->b_data, (int)fs->fs_bsize);
2011 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2012 		for (i = 0; i < INOPB(fs); i++) {
2013 			dp2->di_gen = arc4random() / 2 + 1;
2014 			dp2++;
2015 		}
2016 		/*
2017 		 * Rather than adding a soft updates dependency to ensure
2018 		 * that the new inode block is written before it is claimed
2019 		 * by the cylinder group map, we just do a barrier write
2020 		 * here. The barrier write will ensure that the inode block
2021 		 * gets written before the updated cylinder group map can be
2022 		 * written. The barrier write should only slow down bulk
2023 		 * loading of newly created filesystems.
2024 		 */
2025 		babarrierwrite(ibp);
2026 
2027 		/*
2028 		 * After the inode block is written, try to update the
2029 		 * cg initediblk pointer.  If another thread beat us
2030 		 * to it, then leave it unchanged as the other thread
2031 		 * has already set it correctly.
2032 		 */
2033 		error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
2034 		    (int)fs->fs_cgsize, NOCRED, &bp);
2035 		UFS_LOCK(ump);
2036 		ACTIVECLEAR(fs, cg);
2037 		UFS_UNLOCK(ump);
2038 		if (error != 0) {
2039 			brelse(bp);
2040 			return (error);
2041 		}
2042 		cgp = (struct cg *)bp->b_data;
2043 		if (cgp->cg_initediblk == old_initediblk)
2044 			cgp->cg_initediblk += INOPB(fs);
2045 		goto restart;
2046 	}
2047 	cgp->cg_old_time = cgp->cg_time = time_second;
2048 	cgp->cg_irotor = ipref;
2049 	UFS_LOCK(ump);
2050 	ACTIVECLEAR(fs, cg);
2051 	setbit(inosused, ipref);
2052 	cgp->cg_cs.cs_nifree--;
2053 	fs->fs_cstotal.cs_nifree--;
2054 	fs->fs_cs(fs, cg).cs_nifree--;
2055 	fs->fs_fmod = 1;
2056 	if ((mode & IFMT) == IFDIR) {
2057 		cgp->cg_cs.cs_ndir++;
2058 		fs->fs_cstotal.cs_ndir++;
2059 		fs->fs_cs(fs, cg).cs_ndir++;
2060 	}
2061 	UFS_UNLOCK(ump);
2062 	if (DOINGSOFTDEP(ITOV(ip)))
2063 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2064 	bdwrite(bp);
2065 	return ((ino_t)(cg * fs->fs_ipg + ipref));
2066 }
2067 
2068 /*
2069  * Free a block or fragment.
2070  *
2071  * The specified block or fragment is placed back in the
2072  * free map. If a fragment is deallocated, a possible
2073  * block reassembly is checked.
2074  */
2075 static void
2076 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2077 	struct ufsmount *ump;
2078 	struct fs *fs;
2079 	struct vnode *devvp;
2080 	ufs2_daddr_t bno;
2081 	long size;
2082 	ino_t inum;
2083 	struct workhead *dephd;
2084 {
2085 	struct mount *mp;
2086 	struct cg *cgp;
2087 	struct buf *bp;
2088 	ufs1_daddr_t fragno, cgbno;
2089 	ufs2_daddr_t cgblkno;
2090 	int i, blk, frags, bbase;
2091 	u_int cg;
2092 	u_int8_t *blksfree;
2093 	struct cdev *dev;
2094 
2095 	cg = dtog(fs, bno);
2096 	if (devvp->v_type == VREG) {
2097 		/* devvp is a snapshot */
2098 		dev = VTOI(devvp)->i_devvp->v_rdev;
2099 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
2100 	} else {
2101 		/* devvp is a normal disk device */
2102 		dev = devvp->v_rdev;
2103 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
2104 		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2105 	}
2106 #ifdef INVARIANTS
2107 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2108 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2109 		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2110 		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2111 		    size, fs->fs_fsmnt);
2112 		panic("ffs_blkfree_cg: bad size");
2113 	}
2114 #endif
2115 	if ((u_int)bno >= fs->fs_size) {
2116 		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2117 		    (u_long)inum);
2118 		ffs_fserr(fs, inum, "bad block");
2119 		return;
2120 	}
2121 	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2122 		brelse(bp);
2123 		return;
2124 	}
2125 	cgp = (struct cg *)bp->b_data;
2126 	if (!cg_chkmagic(cgp)) {
2127 		brelse(bp);
2128 		return;
2129 	}
2130 	bp->b_xflags |= BX_BKGRDWRITE;
2131 	cgp->cg_old_time = cgp->cg_time = time_second;
2132 	cgbno = dtogd(fs, bno);
2133 	blksfree = cg_blksfree(cgp);
2134 	UFS_LOCK(ump);
2135 	if (size == fs->fs_bsize) {
2136 		fragno = fragstoblks(fs, cgbno);
2137 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2138 			if (devvp->v_type == VREG) {
2139 				UFS_UNLOCK(ump);
2140 				/* devvp is a snapshot */
2141 				brelse(bp);
2142 				return;
2143 			}
2144 			printf("dev = %s, block = %jd, fs = %s\n",
2145 			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2146 			panic("ffs_blkfree_cg: freeing free block");
2147 		}
2148 		ffs_setblock(fs, blksfree, fragno);
2149 		ffs_clusteracct(fs, cgp, fragno, 1);
2150 		cgp->cg_cs.cs_nbfree++;
2151 		fs->fs_cstotal.cs_nbfree++;
2152 		fs->fs_cs(fs, cg).cs_nbfree++;
2153 	} else {
2154 		bbase = cgbno - fragnum(fs, cgbno);
2155 		/*
2156 		 * decrement the counts associated with the old frags
2157 		 */
2158 		blk = blkmap(fs, blksfree, bbase);
2159 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2160 		/*
2161 		 * deallocate the fragment
2162 		 */
2163 		frags = numfrags(fs, size);
2164 		for (i = 0; i < frags; i++) {
2165 			if (isset(blksfree, cgbno + i)) {
2166 				printf("dev = %s, block = %jd, fs = %s\n",
2167 				    devtoname(dev), (intmax_t)(bno + i),
2168 				    fs->fs_fsmnt);
2169 				panic("ffs_blkfree_cg: freeing free frag");
2170 			}
2171 			setbit(blksfree, cgbno + i);
2172 		}
2173 		cgp->cg_cs.cs_nffree += i;
2174 		fs->fs_cstotal.cs_nffree += i;
2175 		fs->fs_cs(fs, cg).cs_nffree += i;
2176 		/*
2177 		 * add back in counts associated with the new frags
2178 		 */
2179 		blk = blkmap(fs, blksfree, bbase);
2180 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2181 		/*
2182 		 * if a complete block has been reassembled, account for it
2183 		 */
2184 		fragno = fragstoblks(fs, bbase);
2185 		if (ffs_isblock(fs, blksfree, fragno)) {
2186 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2187 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2188 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2189 			ffs_clusteracct(fs, cgp, fragno, 1);
2190 			cgp->cg_cs.cs_nbfree++;
2191 			fs->fs_cstotal.cs_nbfree++;
2192 			fs->fs_cs(fs, cg).cs_nbfree++;
2193 		}
2194 	}
2195 	fs->fs_fmod = 1;
2196 	ACTIVECLEAR(fs, cg);
2197 	UFS_UNLOCK(ump);
2198 	mp = UFSTOVFS(ump);
2199 	if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG)
2200 		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2201 		    numfrags(fs, size), dephd);
2202 	bdwrite(bp);
2203 }
2204 
2205 TASKQUEUE_DEFINE_THREAD(ffs_trim);
2206 
2207 struct ffs_blkfree_trim_params {
2208 	struct task task;
2209 	struct ufsmount *ump;
2210 	struct vnode *devvp;
2211 	ufs2_daddr_t bno;
2212 	long size;
2213 	ino_t inum;
2214 	struct workhead *pdephd;
2215 	struct workhead dephd;
2216 };
2217 
2218 static void
2219 ffs_blkfree_trim_task(ctx, pending)
2220 	void *ctx;
2221 	int pending;
2222 {
2223 	struct ffs_blkfree_trim_params *tp;
2224 
2225 	tp = ctx;
2226 	ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
2227 	    tp->inum, tp->pdephd);
2228 	vn_finished_secondary_write(UFSTOVFS(tp->ump));
2229 	free(tp, M_TEMP);
2230 }
2231 
2232 static void
2233 ffs_blkfree_trim_completed(bip)
2234 	struct bio *bip;
2235 {
2236 	struct ffs_blkfree_trim_params *tp;
2237 
2238 	tp = bip->bio_caller2;
2239 	g_destroy_bio(bip);
2240 	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2241 	taskqueue_enqueue(taskqueue_ffs_trim, &tp->task);
2242 }
2243 
2244 void
2245 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
2246 	struct ufsmount *ump;
2247 	struct fs *fs;
2248 	struct vnode *devvp;
2249 	ufs2_daddr_t bno;
2250 	long size;
2251 	ino_t inum;
2252 	enum vtype vtype;
2253 	struct workhead *dephd;
2254 {
2255 	struct mount *mp;
2256 	struct bio *bip;
2257 	struct ffs_blkfree_trim_params *tp;
2258 
2259 	/*
2260 	 * Check to see if a snapshot wants to claim the block.
2261 	 * Check that devvp is a normal disk device, not a snapshot,
2262 	 * it has a snapshot(s) associated with it, and one of the
2263 	 * snapshots wants to claim the block.
2264 	 */
2265 	if (devvp->v_type != VREG &&
2266 	    (devvp->v_vflag & VV_COPYONWRITE) &&
2267 	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2268 		return;
2269 	}
2270 	/*
2271 	 * Nothing to delay if TRIM is disabled, or the operation is
2272 	 * performed on the snapshot.
2273 	 */
2274 	if (!ump->um_candelete || devvp->v_type == VREG) {
2275 		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2276 		return;
2277 	}
2278 
2279 	/*
2280 	 * Postpone the set of the free bit in the cg bitmap until the
2281 	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2282 	 * reordering, TRIM might be issued after we reuse the block
2283 	 * and write some new data into it.
2284 	 */
2285 	tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
2286 	tp->ump = ump;
2287 	tp->devvp = devvp;
2288 	tp->bno = bno;
2289 	tp->size = size;
2290 	tp->inum = inum;
2291 	if (dephd != NULL) {
2292 		LIST_INIT(&tp->dephd);
2293 		LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
2294 		tp->pdephd = &tp->dephd;
2295 	} else
2296 		tp->pdephd = NULL;
2297 
2298 	bip = g_alloc_bio();
2299 	bip->bio_cmd = BIO_DELETE;
2300 	bip->bio_offset = dbtob(fsbtodb(fs, bno));
2301 	bip->bio_done = ffs_blkfree_trim_completed;
2302 	bip->bio_length = size;
2303 	bip->bio_caller2 = tp;
2304 
2305 	mp = UFSTOVFS(ump);
2306 	vn_start_secondary_write(NULL, &mp, 0);
2307 	g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
2308 }
2309 
2310 #ifdef INVARIANTS
2311 /*
2312  * Verify allocation of a block or fragment. Returns true if block or
2313  * fragment is allocated, false if it is free.
2314  */
2315 static int
2316 ffs_checkblk(ip, bno, size)
2317 	struct inode *ip;
2318 	ufs2_daddr_t bno;
2319 	long size;
2320 {
2321 	struct fs *fs;
2322 	struct cg *cgp;
2323 	struct buf *bp;
2324 	ufs1_daddr_t cgbno;
2325 	int i, error, frags, free;
2326 	u_int8_t *blksfree;
2327 
2328 	fs = ip->i_fs;
2329 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2330 		printf("bsize = %ld, size = %ld, fs = %s\n",
2331 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2332 		panic("ffs_checkblk: bad size");
2333 	}
2334 	if ((u_int)bno >= fs->fs_size)
2335 		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2336 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2337 		(int)fs->fs_cgsize, NOCRED, &bp);
2338 	if (error)
2339 		panic("ffs_checkblk: cg bread failed");
2340 	cgp = (struct cg *)bp->b_data;
2341 	if (!cg_chkmagic(cgp))
2342 		panic("ffs_checkblk: cg magic mismatch");
2343 	bp->b_xflags |= BX_BKGRDWRITE;
2344 	blksfree = cg_blksfree(cgp);
2345 	cgbno = dtogd(fs, bno);
2346 	if (size == fs->fs_bsize) {
2347 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2348 	} else {
2349 		frags = numfrags(fs, size);
2350 		for (free = 0, i = 0; i < frags; i++)
2351 			if (isset(blksfree, cgbno + i))
2352 				free++;
2353 		if (free != 0 && free != frags)
2354 			panic("ffs_checkblk: partially free fragment");
2355 	}
2356 	brelse(bp);
2357 	return (!free);
2358 }
2359 #endif /* INVARIANTS */
2360 
2361 /*
2362  * Free an inode.
2363  */
2364 int
2365 ffs_vfree(pvp, ino, mode)
2366 	struct vnode *pvp;
2367 	ino_t ino;
2368 	int mode;
2369 {
2370 	struct inode *ip;
2371 
2372 	if (DOINGSOFTDEP(pvp)) {
2373 		softdep_freefile(pvp, ino, mode);
2374 		return (0);
2375 	}
2376 	ip = VTOI(pvp);
2377 	return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode,
2378 	    NULL));
2379 }
2380 
2381 /*
2382  * Do the actual free operation.
2383  * The specified inode is placed back in the free map.
2384  */
2385 int
2386 ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2387 	struct ufsmount *ump;
2388 	struct fs *fs;
2389 	struct vnode *devvp;
2390 	ino_t ino;
2391 	int mode;
2392 	struct workhead *wkhd;
2393 {
2394 	struct cg *cgp;
2395 	struct buf *bp;
2396 	ufs2_daddr_t cgbno;
2397 	int error;
2398 	u_int cg;
2399 	u_int8_t *inosused;
2400 	struct cdev *dev;
2401 
2402 	cg = ino_to_cg(fs, ino);
2403 	if (devvp->v_type == VREG) {
2404 		/* devvp is a snapshot */
2405 		dev = VTOI(devvp)->i_devvp->v_rdev;
2406 		cgbno = fragstoblks(fs, cgtod(fs, cg));
2407 	} else {
2408 		/* devvp is a normal disk device */
2409 		dev = devvp->v_rdev;
2410 		cgbno = fsbtodb(fs, cgtod(fs, cg));
2411 	}
2412 	if (ino >= fs->fs_ipg * fs->fs_ncg)
2413 		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2414 		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2415 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2416 		brelse(bp);
2417 		return (error);
2418 	}
2419 	cgp = (struct cg *)bp->b_data;
2420 	if (!cg_chkmagic(cgp)) {
2421 		brelse(bp);
2422 		return (0);
2423 	}
2424 	bp->b_xflags |= BX_BKGRDWRITE;
2425 	cgp->cg_old_time = cgp->cg_time = time_second;
2426 	inosused = cg_inosused(cgp);
2427 	ino %= fs->fs_ipg;
2428 	if (isclr(inosused, ino)) {
2429 		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2430 		    (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2431 		if (fs->fs_ronly == 0)
2432 			panic("ffs_freefile: freeing free inode");
2433 	}
2434 	clrbit(inosused, ino);
2435 	if (ino < cgp->cg_irotor)
2436 		cgp->cg_irotor = ino;
2437 	cgp->cg_cs.cs_nifree++;
2438 	UFS_LOCK(ump);
2439 	fs->fs_cstotal.cs_nifree++;
2440 	fs->fs_cs(fs, cg).cs_nifree++;
2441 	if ((mode & IFMT) == IFDIR) {
2442 		cgp->cg_cs.cs_ndir--;
2443 		fs->fs_cstotal.cs_ndir--;
2444 		fs->fs_cs(fs, cg).cs_ndir--;
2445 	}
2446 	fs->fs_fmod = 1;
2447 	ACTIVECLEAR(fs, cg);
2448 	UFS_UNLOCK(ump);
2449 	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG)
2450 		softdep_setup_inofree(UFSTOVFS(ump), bp,
2451 		    ino + cg * fs->fs_ipg, wkhd);
2452 	bdwrite(bp);
2453 	return (0);
2454 }
2455 
2456 /*
2457  * Check to see if a file is free.
2458  */
2459 int
2460 ffs_checkfreefile(fs, devvp, ino)
2461 	struct fs *fs;
2462 	struct vnode *devvp;
2463 	ino_t ino;
2464 {
2465 	struct cg *cgp;
2466 	struct buf *bp;
2467 	ufs2_daddr_t cgbno;
2468 	int ret;
2469 	u_int cg;
2470 	u_int8_t *inosused;
2471 
2472 	cg = ino_to_cg(fs, ino);
2473 	if (devvp->v_type == VREG) {
2474 		/* devvp is a snapshot */
2475 		cgbno = fragstoblks(fs, cgtod(fs, cg));
2476 	} else {
2477 		/* devvp is a normal disk device */
2478 		cgbno = fsbtodb(fs, cgtod(fs, cg));
2479 	}
2480 	if (ino >= fs->fs_ipg * fs->fs_ncg)
2481 		return (1);
2482 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2483 		brelse(bp);
2484 		return (1);
2485 	}
2486 	cgp = (struct cg *)bp->b_data;
2487 	if (!cg_chkmagic(cgp)) {
2488 		brelse(bp);
2489 		return (1);
2490 	}
2491 	inosused = cg_inosused(cgp);
2492 	ino %= fs->fs_ipg;
2493 	ret = isclr(inosused, ino);
2494 	brelse(bp);
2495 	return (ret);
2496 }
2497 
2498 /*
2499  * Find a block of the specified size in the specified cylinder group.
2500  *
2501  * It is a panic if a request is made to find a block if none are
2502  * available.
2503  */
2504 static ufs1_daddr_t
2505 ffs_mapsearch(fs, cgp, bpref, allocsiz)
2506 	struct fs *fs;
2507 	struct cg *cgp;
2508 	ufs2_daddr_t bpref;
2509 	int allocsiz;
2510 {
2511 	ufs1_daddr_t bno;
2512 	int start, len, loc, i;
2513 	int blk, field, subfield, pos;
2514 	u_int8_t *blksfree;
2515 
2516 	/*
2517 	 * find the fragment by searching through the free block
2518 	 * map for an appropriate bit pattern
2519 	 */
2520 	if (bpref)
2521 		start = dtogd(fs, bpref) / NBBY;
2522 	else
2523 		start = cgp->cg_frotor / NBBY;
2524 	blksfree = cg_blksfree(cgp);
2525 	len = howmany(fs->fs_fpg, NBBY) - start;
2526 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2527 		fragtbl[fs->fs_frag],
2528 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2529 	if (loc == 0) {
2530 		len = start + 1;
2531 		start = 0;
2532 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2533 			fragtbl[fs->fs_frag],
2534 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2535 		if (loc == 0) {
2536 			printf("start = %d, len = %d, fs = %s\n",
2537 			    start, len, fs->fs_fsmnt);
2538 			panic("ffs_alloccg: map corrupted");
2539 			/* NOTREACHED */
2540 		}
2541 	}
2542 	bno = (start + len - loc) * NBBY;
2543 	cgp->cg_frotor = bno;
2544 	/*
2545 	 * found the byte in the map
2546 	 * sift through the bits to find the selected frag
2547 	 */
2548 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2549 		blk = blkmap(fs, blksfree, bno);
2550 		blk <<= 1;
2551 		field = around[allocsiz];
2552 		subfield = inside[allocsiz];
2553 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2554 			if ((blk & field) == subfield)
2555 				return (bno + pos);
2556 			field <<= 1;
2557 			subfield <<= 1;
2558 		}
2559 	}
2560 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2561 	panic("ffs_alloccg: block not in map");
2562 	return (-1);
2563 }
2564 
2565 /*
2566  * Fserr prints the name of a filesystem with an error diagnostic.
2567  *
2568  * The form of the error message is:
2569  *	fs: error message
2570  */
2571 void
2572 ffs_fserr(fs, inum, cp)
2573 	struct fs *fs;
2574 	ino_t inum;
2575 	char *cp;
2576 {
2577 	struct thread *td = curthread;	/* XXX */
2578 	struct proc *p = td->td_proc;
2579 
2580 	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
2581 	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
2582 	    fs->fs_fsmnt, cp);
2583 }
2584 
2585 /*
2586  * This function provides the capability for the fsck program to
2587  * update an active filesystem. Fourteen operations are provided:
2588  *
2589  * adjrefcnt(inode, amt) - adjusts the reference count on the
2590  *	specified inode by the specified amount. Under normal
2591  *	operation the count should always go down. Decrementing
2592  *	the count to zero will cause the inode to be freed.
2593  * adjblkcnt(inode, amt) - adjust the number of blocks used by the
2594  *	inode by the specified amount.
2595  * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2596  *	adjust the superblock summary.
2597  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2598  *	are marked as free. Inodes should never have to be marked
2599  *	as in use.
2600  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2601  *	are marked as free. Inodes should never have to be marked
2602  *	as in use.
2603  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2604  *	are marked as free. Blocks should never have to be marked
2605  *	as in use.
2606  * setflags(flags, set/clear) - the fs_flags field has the specified
2607  *	flags set (second parameter +1) or cleared (second parameter -1).
2608  * setcwd(dirinode) - set the current directory to dirinode in the
2609  *	filesystem associated with the snapshot.
2610  * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
2611  *	in the current directory is oldvalue then change it to newvalue.
2612  * unlink(nameptr, oldvalue) - Verify that the inode number associated
2613  *	with nameptr in the current directory is oldvalue then unlink it.
2614  *
2615  * The following functions may only be used on a quiescent filesystem
2616  * by the soft updates journal. They are not safe to be run on an active
2617  * filesystem.
2618  *
2619  * setinode(inode, dip) - the specified disk inode is replaced with the
2620  *	contents pointed to by dip.
2621  * setbufoutput(fd, flags) - output associated with the specified file
2622  *	descriptor (which must reference the character device supporting
2623  *	the filesystem) switches from using physio to running through the
2624  *	buffer cache when flags is set to 1. The descriptor reverts to
2625  *	physio for output when flags is set to zero.
2626  */
2627 
2628 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2629 
2630 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2631 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2632 
2633 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2634 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2635 
2636 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2637 	sysctl_ffs_fsck, "Adjust number of directories");
2638 
2639 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2640 	sysctl_ffs_fsck, "Adjust number of free blocks");
2641 
2642 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2643 	sysctl_ffs_fsck, "Adjust number of free inodes");
2644 
2645 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2646 	sysctl_ffs_fsck, "Adjust number of free frags");
2647 
2648 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2649 	sysctl_ffs_fsck, "Adjust number of free clusters");
2650 
2651 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2652 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2653 
2654 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2655 	sysctl_ffs_fsck, "Free Range of File Inodes");
2656 
2657 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2658 	sysctl_ffs_fsck, "Free Range of Blocks");
2659 
2660 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2661 	sysctl_ffs_fsck, "Change Filesystem Flags");
2662 
2663 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
2664 	sysctl_ffs_fsck, "Set Current Working Directory");
2665 
2666 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
2667 	sysctl_ffs_fsck, "Change Value of .. Entry");
2668 
2669 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
2670 	sysctl_ffs_fsck, "Unlink a Duplicate Name");
2671 
2672 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
2673 	sysctl_ffs_fsck, "Update an On-Disk Inode");
2674 
2675 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
2676 	sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
2677 
2678 #define DEBUG 1
2679 #ifdef DEBUG
2680 static int fsckcmds = 0;
2681 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2682 #endif /* DEBUG */
2683 
2684 static int buffered_write(struct file *, struct uio *, struct ucred *,
2685 	int, struct thread *);
2686 
2687 static int
2688 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2689 {
2690 	struct thread *td = curthread;
2691 	struct fsck_cmd cmd;
2692 	struct ufsmount *ump;
2693 	struct vnode *vp, *vpold, *dvp, *fdvp;
2694 	struct inode *ip, *dp;
2695 	struct mount *mp;
2696 	struct fs *fs;
2697 	ufs2_daddr_t blkno;
2698 	long blkcnt, blksize;
2699 	struct filedesc *fdp;
2700 	struct file *fp, *vfp;
2701 	int filetype, error;
2702 	static struct fileops *origops, bufferedops;
2703 
2704 	if (req->newlen > sizeof cmd)
2705 		return (EBADRPC);
2706 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2707 		return (error);
2708 	if (cmd.version != FFS_CMD_VERSION)
2709 		return (ERPCMISMATCH);
2710 	if ((error = getvnode(td->td_proc->p_fd, cmd.handle, CAP_FSCK,
2711 	     &fp)) != 0)
2712 		return (error);
2713 	vp = fp->f_data;
2714 	if (vp->v_type != VREG && vp->v_type != VDIR) {
2715 		fdrop(fp, td);
2716 		return (EINVAL);
2717 	}
2718 	vn_start_write(vp, &mp, V_WAIT);
2719 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2720 		vn_finished_write(mp);
2721 		fdrop(fp, td);
2722 		return (EINVAL);
2723 	}
2724 	ump = VFSTOUFS(mp);
2725 	if ((mp->mnt_flag & MNT_RDONLY) &&
2726 	    ump->um_fsckpid != td->td_proc->p_pid) {
2727 		vn_finished_write(mp);
2728 		fdrop(fp, td);
2729 		return (EROFS);
2730 	}
2731 	fs = ump->um_fs;
2732 	filetype = IFREG;
2733 
2734 	switch (oidp->oid_number) {
2735 
2736 	case FFS_SET_FLAGS:
2737 #ifdef DEBUG
2738 		if (fsckcmds)
2739 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2740 			    cmd.size > 0 ? "set" : "clear");
2741 #endif /* DEBUG */
2742 		if (cmd.size > 0)
2743 			fs->fs_flags |= (long)cmd.value;
2744 		else
2745 			fs->fs_flags &= ~(long)cmd.value;
2746 		break;
2747 
2748 	case FFS_ADJ_REFCNT:
2749 #ifdef DEBUG
2750 		if (fsckcmds) {
2751 			printf("%s: adjust inode %jd link count by %jd\n",
2752 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2753 			    (intmax_t)cmd.size);
2754 		}
2755 #endif /* DEBUG */
2756 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2757 			break;
2758 		ip = VTOI(vp);
2759 		ip->i_nlink += cmd.size;
2760 		DIP_SET(ip, i_nlink, ip->i_nlink);
2761 		ip->i_effnlink += cmd.size;
2762 		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2763 		error = ffs_update(vp, 1);
2764 		if (DOINGSOFTDEP(vp))
2765 			softdep_change_linkcnt(ip);
2766 		vput(vp);
2767 		break;
2768 
2769 	case FFS_ADJ_BLKCNT:
2770 #ifdef DEBUG
2771 		if (fsckcmds) {
2772 			printf("%s: adjust inode %jd block count by %jd\n",
2773 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2774 			    (intmax_t)cmd.size);
2775 		}
2776 #endif /* DEBUG */
2777 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2778 			break;
2779 		ip = VTOI(vp);
2780 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2781 		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2782 		error = ffs_update(vp, 1);
2783 		vput(vp);
2784 		break;
2785 
2786 	case FFS_DIR_FREE:
2787 		filetype = IFDIR;
2788 		/* fall through */
2789 
2790 	case FFS_FILE_FREE:
2791 #ifdef DEBUG
2792 		if (fsckcmds) {
2793 			if (cmd.size == 1)
2794 				printf("%s: free %s inode %ju\n",
2795 				    mp->mnt_stat.f_mntonname,
2796 				    filetype == IFDIR ? "directory" : "file",
2797 				    (uintmax_t)cmd.value);
2798 			else
2799 				printf("%s: free %s inodes %ju-%ju\n",
2800 				    mp->mnt_stat.f_mntonname,
2801 				    filetype == IFDIR ? "directory" : "file",
2802 				    (uintmax_t)cmd.value,
2803 				    (uintmax_t)(cmd.value + cmd.size - 1));
2804 		}
2805 #endif /* DEBUG */
2806 		while (cmd.size > 0) {
2807 			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2808 			    cmd.value, filetype, NULL)))
2809 				break;
2810 			cmd.size -= 1;
2811 			cmd.value += 1;
2812 		}
2813 		break;
2814 
2815 	case FFS_BLK_FREE:
2816 #ifdef DEBUG
2817 		if (fsckcmds) {
2818 			if (cmd.size == 1)
2819 				printf("%s: free block %jd\n",
2820 				    mp->mnt_stat.f_mntonname,
2821 				    (intmax_t)cmd.value);
2822 			else
2823 				printf("%s: free blocks %jd-%jd\n",
2824 				    mp->mnt_stat.f_mntonname,
2825 				    (intmax_t)cmd.value,
2826 				    (intmax_t)cmd.value + cmd.size - 1);
2827 		}
2828 #endif /* DEBUG */
2829 		blkno = cmd.value;
2830 		blkcnt = cmd.size;
2831 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2832 		while (blkcnt > 0) {
2833 			if (blksize > blkcnt)
2834 				blksize = blkcnt;
2835 			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2836 			    blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
2837 			blkno += blksize;
2838 			blkcnt -= blksize;
2839 			blksize = fs->fs_frag;
2840 		}
2841 		break;
2842 
2843 	/*
2844 	 * Adjust superblock summaries.  fsck(8) is expected to
2845 	 * submit deltas when necessary.
2846 	 */
2847 	case FFS_ADJ_NDIR:
2848 #ifdef DEBUG
2849 		if (fsckcmds) {
2850 			printf("%s: adjust number of directories by %jd\n",
2851 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2852 		}
2853 #endif /* DEBUG */
2854 		fs->fs_cstotal.cs_ndir += cmd.value;
2855 		break;
2856 
2857 	case FFS_ADJ_NBFREE:
2858 #ifdef DEBUG
2859 		if (fsckcmds) {
2860 			printf("%s: adjust number of free blocks by %+jd\n",
2861 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2862 		}
2863 #endif /* DEBUG */
2864 		fs->fs_cstotal.cs_nbfree += cmd.value;
2865 		break;
2866 
2867 	case FFS_ADJ_NIFREE:
2868 #ifdef DEBUG
2869 		if (fsckcmds) {
2870 			printf("%s: adjust number of free inodes by %+jd\n",
2871 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2872 		}
2873 #endif /* DEBUG */
2874 		fs->fs_cstotal.cs_nifree += cmd.value;
2875 		break;
2876 
2877 	case FFS_ADJ_NFFREE:
2878 #ifdef DEBUG
2879 		if (fsckcmds) {
2880 			printf("%s: adjust number of free frags by %+jd\n",
2881 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2882 		}
2883 #endif /* DEBUG */
2884 		fs->fs_cstotal.cs_nffree += cmd.value;
2885 		break;
2886 
2887 	case FFS_ADJ_NUMCLUSTERS:
2888 #ifdef DEBUG
2889 		if (fsckcmds) {
2890 			printf("%s: adjust number of free clusters by %+jd\n",
2891 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2892 		}
2893 #endif /* DEBUG */
2894 		fs->fs_cstotal.cs_numclusters += cmd.value;
2895 		break;
2896 
2897 	case FFS_SET_CWD:
2898 #ifdef DEBUG
2899 		if (fsckcmds) {
2900 			printf("%s: set current directory to inode %jd\n",
2901 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2902 		}
2903 #endif /* DEBUG */
2904 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
2905 			break;
2906 		AUDIT_ARG_VNODE1(vp);
2907 		if ((error = change_dir(vp, td)) != 0) {
2908 			vput(vp);
2909 			break;
2910 		}
2911 		VOP_UNLOCK(vp, 0);
2912 		fdp = td->td_proc->p_fd;
2913 		FILEDESC_XLOCK(fdp);
2914 		vpold = fdp->fd_cdir;
2915 		fdp->fd_cdir = vp;
2916 		FILEDESC_XUNLOCK(fdp);
2917 		vrele(vpold);
2918 		break;
2919 
2920 	case FFS_SET_DOTDOT:
2921 #ifdef DEBUG
2922 		if (fsckcmds) {
2923 			printf("%s: change .. in cwd from %jd to %jd\n",
2924 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2925 			    (intmax_t)cmd.size);
2926 		}
2927 #endif /* DEBUG */
2928 		/*
2929 		 * First we have to get and lock the parent directory
2930 		 * to which ".." points.
2931 		 */
2932 		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
2933 		if (error)
2934 			break;
2935 		/*
2936 		 * Now we get and lock the child directory containing "..".
2937 		 */
2938 		FILEDESC_SLOCK(td->td_proc->p_fd);
2939 		dvp = td->td_proc->p_fd->fd_cdir;
2940 		FILEDESC_SUNLOCK(td->td_proc->p_fd);
2941 		if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
2942 			vput(fdvp);
2943 			break;
2944 		}
2945 		dp = VTOI(dvp);
2946 		dp->i_offset = 12;	/* XXX mastertemplate.dot_reclen */
2947 		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
2948 		    DT_DIR, 0);
2949 		cache_purge(fdvp);
2950 		cache_purge(dvp);
2951 		vput(dvp);
2952 		vput(fdvp);
2953 		break;
2954 
2955 	case FFS_UNLINK:
2956 #ifdef DEBUG
2957 		if (fsckcmds) {
2958 			char buf[32];
2959 
2960 			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
2961 				strncpy(buf, "Name_too_long", 32);
2962 			printf("%s: unlink %s (inode %jd)\n",
2963 			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
2964 		}
2965 #endif /* DEBUG */
2966 		/*
2967 		 * kern_unlinkat will do its own start/finish writes and
2968 		 * they do not nest, so drop ours here. Setting mp == NULL
2969 		 * indicates that vn_finished_write is not needed down below.
2970 		 */
2971 		vn_finished_write(mp);
2972 		mp = NULL;
2973 		error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
2974 		    UIO_USERSPACE, (ino_t)cmd.size);
2975 		break;
2976 
2977 	case FFS_SET_INODE:
2978 		if (ump->um_fsckpid != td->td_proc->p_pid) {
2979 			error = EPERM;
2980 			break;
2981 		}
2982 #ifdef DEBUG
2983 		if (fsckcmds) {
2984 			printf("%s: update inode %jd\n",
2985 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2986 		}
2987 #endif /* DEBUG */
2988 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2989 			break;
2990 		AUDIT_ARG_VNODE1(vp);
2991 		ip = VTOI(vp);
2992 		if (ip->i_ump->um_fstype == UFS1)
2993 			error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
2994 			    sizeof(struct ufs1_dinode));
2995 		else
2996 			error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
2997 			    sizeof(struct ufs2_dinode));
2998 		if (error) {
2999 			vput(vp);
3000 			break;
3001 		}
3002 		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3003 		error = ffs_update(vp, 1);
3004 		vput(vp);
3005 		break;
3006 
3007 	case FFS_SET_BUFOUTPUT:
3008 		if (ump->um_fsckpid != td->td_proc->p_pid) {
3009 			error = EPERM;
3010 			break;
3011 		}
3012 		if (VTOI(vp)->i_ump != ump) {
3013 			error = EINVAL;
3014 			break;
3015 		}
3016 #ifdef DEBUG
3017 		if (fsckcmds) {
3018 			printf("%s: %s buffered output for descriptor %jd\n",
3019 			    mp->mnt_stat.f_mntonname,
3020 			    cmd.size == 1 ? "enable" : "disable",
3021 			    (intmax_t)cmd.value);
3022 		}
3023 #endif /* DEBUG */
3024 		if ((error = getvnode(td->td_proc->p_fd, cmd.value,
3025 		    CAP_FSCK, &vfp)) != 0)
3026 			break;
3027 		if (vfp->f_vnode->v_type != VCHR) {
3028 			fdrop(vfp, td);
3029 			error = EINVAL;
3030 			break;
3031 		}
3032 		if (origops == NULL) {
3033 			origops = vfp->f_ops;
3034 			bcopy((void *)origops, (void *)&bufferedops,
3035 			    sizeof(bufferedops));
3036 			bufferedops.fo_write = buffered_write;
3037 		}
3038 		if (cmd.size == 1)
3039 			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3040 			    (uintptr_t)&bufferedops);
3041 		else
3042 			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3043 			    (uintptr_t)origops);
3044 		fdrop(vfp, td);
3045 		break;
3046 
3047 	default:
3048 #ifdef DEBUG
3049 		if (fsckcmds) {
3050 			printf("Invalid request %d from fsck\n",
3051 			    oidp->oid_number);
3052 		}
3053 #endif /* DEBUG */
3054 		error = EINVAL;
3055 		break;
3056 
3057 	}
3058 	fdrop(fp, td);
3059 	vn_finished_write(mp);
3060 	return (error);
3061 }
3062 
3063 /*
3064  * Function to switch a descriptor to use the buffer cache to stage
3065  * its I/O. This is needed so that writes to the filesystem device
3066  * will give snapshots a chance to copy modified blocks for which it
3067  * needs to retain copies.
3068  */
3069 static int
3070 buffered_write(fp, uio, active_cred, flags, td)
3071 	struct file *fp;
3072 	struct uio *uio;
3073 	struct ucred *active_cred;
3074 	int flags;
3075 	struct thread *td;
3076 {
3077 	struct vnode *devvp, *vp;
3078 	struct inode *ip;
3079 	struct buf *bp;
3080 	struct fs *fs;
3081 	struct filedesc *fdp;
3082 	int error;
3083 	daddr_t lbn;
3084 
3085 	/*
3086 	 * The devvp is associated with the /dev filesystem. To discover
3087 	 * the filesystem with which the device is associated, we depend
3088 	 * on the application setting the current directory to a location
3089 	 * within the filesystem being written. Yes, this is an ugly hack.
3090 	 */
3091 	devvp = fp->f_vnode;
3092 	if (!vn_isdisk(devvp, NULL))
3093 		return (EINVAL);
3094 	fdp = td->td_proc->p_fd;
3095 	FILEDESC_SLOCK(fdp);
3096 	vp = fdp->fd_cdir;
3097 	vref(vp);
3098 	FILEDESC_SUNLOCK(fdp);
3099 	vn_lock(vp, LK_SHARED | LK_RETRY);
3100 	/*
3101 	 * Check that the current directory vnode indeed belongs to
3102 	 * UFS before trying to dereference UFS-specific v_data fields.
3103 	 */
3104 	if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3105 		vput(vp);
3106 		return (EINVAL);
3107 	}
3108 	ip = VTOI(vp);
3109 	if (ip->i_devvp != devvp) {
3110 		vput(vp);
3111 		return (EINVAL);
3112 	}
3113 	fs = ip->i_fs;
3114 	vput(vp);
3115 	foffset_lock_uio(fp, uio, flags);
3116 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3117 #ifdef DEBUG
3118 	if (fsckcmds) {
3119 		printf("%s: buffered write for block %jd\n",
3120 		    fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3121 	}
3122 #endif /* DEBUG */
3123 	/*
3124 	 * All I/O must be contained within a filesystem block, start on
3125 	 * a fragment boundary, and be a multiple of fragments in length.
3126 	 */
3127 	if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3128 	    fragoff(fs, uio->uio_offset) != 0 ||
3129 	    fragoff(fs, uio->uio_resid) != 0) {
3130 		error = EINVAL;
3131 		goto out;
3132 	}
3133 	lbn = numfrags(fs, uio->uio_offset);
3134 	bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3135 	bp->b_flags |= B_RELBUF;
3136 	if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3137 		brelse(bp);
3138 		goto out;
3139 	}
3140 	error = bwrite(bp);
3141 out:
3142 	VOP_UNLOCK(devvp, 0);
3143 	foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3144 	return (error);
3145 }
3146