xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision ec09ef4ff8d0a377fd86c0c2e96a807a538fce4b)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_quota.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bio.h>
42 #include <sys/buf.h>
43 #include <sys/conf.h>
44 #include <sys/file.h>
45 #include <sys/proc.h>
46 #include <sys/vnode.h>
47 #include <sys/mount.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 
52 #include <ufs/ufs/extattr.h>
53 #include <ufs/ufs/quota.h>
54 #include <ufs/ufs/inode.h>
55 #include <ufs/ufs/ufs_extern.h>
56 #include <ufs/ufs/ufsmount.h>
57 
58 #include <ufs/ffs/fs.h>
59 #include <ufs/ffs/ffs_extern.h>
60 
61 typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
62 				  int size));
63 
64 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 static ufs_daddr_t
66 	      ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
67 #ifdef DIAGNOSTIC
68 static int	ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
69 #endif
70 static void	ffs_clusteracct	__P((struct fs *, struct cg *, ufs_daddr_t,
71 				     int));
72 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
73 	    int));
74 static ino_t	ffs_dirpref __P((struct inode *));
75 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
76 static void	ffs_fserr __P((struct fs *, u_int, char *));
77 static u_long	ffs_hashalloc
78 		    __P((struct inode *, int, long, int, allocfcn_t *));
79 static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
80 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
81 	    int));
82 
83 /*
84  * Allocate a block in the file system.
85  *
86  * The size of the requested block is given, which must be some
87  * multiple of fs_fsize and <= fs_bsize.
88  * A preference may be optionally specified. If a preference is given
89  * the following hierarchy is used to allocate a block:
90  *   1) allocate the requested block.
91  *   2) allocate a rotationally optimal block in the same cylinder.
92  *   3) allocate a block in the same cylinder group.
93  *   4) quadradically rehash into other cylinder groups, until an
94  *      available block is located.
95  * If no block preference is given the following heirarchy is used
96  * to allocate a block:
97  *   1) allocate a block in the cylinder group that contains the
98  *      inode for the file.
99  *   2) quadradically rehash into other cylinder groups, until an
100  *      available block is located.
101  */
102 int
103 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
104 	register struct inode *ip;
105 	ufs_daddr_t lbn, bpref;
106 	int size;
107 	struct ucred *cred;
108 	ufs_daddr_t *bnp;
109 {
110 	register struct fs *fs;
111 	ufs_daddr_t bno;
112 	int cg;
113 #ifdef QUOTA
114 	int error;
115 #endif
116 
117 	*bnp = 0;
118 	fs = ip->i_fs;
119 #ifdef DIAGNOSTIC
120 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
121 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
122 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
123 		    fs->fs_fsmnt);
124 		panic("ffs_alloc: bad size");
125 	}
126 	if (cred == NOCRED)
127 		panic("ffs_alloc: missing credential");
128 #endif /* DIAGNOSTIC */
129 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
130 		goto nospace;
131 	if (cred->cr_uid != 0 &&
132 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
133 		goto nospace;
134 #ifdef QUOTA
135 	error = chkdq(ip, (long)btodb(size), cred, 0);
136 	if (error)
137 		return (error);
138 #endif
139 	if (bpref >= fs->fs_size)
140 		bpref = 0;
141 	if (bpref == 0)
142 		cg = ino_to_cg(fs, ip->i_number);
143 	else
144 		cg = dtog(fs, bpref);
145 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
146 					 ffs_alloccg);
147 	if (bno > 0) {
148 		ip->i_blocks += btodb(size);
149 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
150 		*bnp = bno;
151 		return (0);
152 	}
153 #ifdef QUOTA
154 	/*
155 	 * Restore user's disk quota because allocation failed.
156 	 */
157 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
158 #endif
159 nospace:
160 	ffs_fserr(fs, cred->cr_uid, "file system full");
161 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
162 	return (ENOSPC);
163 }
164 
165 /*
166  * Reallocate a fragment to a bigger size
167  *
168  * The number and size of the old block is given, and a preference
169  * and new size is also specified. The allocator attempts to extend
170  * the original block. Failing that, the regular block allocator is
171  * invoked to get an appropriate block.
172  */
173 int
174 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
175 	register struct inode *ip;
176 	ufs_daddr_t lbprev;
177 	ufs_daddr_t bpref;
178 	int osize, nsize;
179 	struct ucred *cred;
180 	struct buf **bpp;
181 {
182 	register struct fs *fs;
183 	struct buf *bp;
184 	int cg, request, error;
185 	ufs_daddr_t bprev, bno;
186 
187 	*bpp = 0;
188 	fs = ip->i_fs;
189 #ifdef DIAGNOSTIC
190 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
191 		panic("ffs_realloccg: allocation on suspended filesystem");
192 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
193 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
194 		printf(
195 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
196 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
197 		    nsize, fs->fs_fsmnt);
198 		panic("ffs_realloccg: bad size");
199 	}
200 	if (cred == NOCRED)
201 		panic("ffs_realloccg: missing credential");
202 #endif /* DIAGNOSTIC */
203 	if (cred->cr_uid != 0 &&
204 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
205 		goto nospace;
206 	if ((bprev = ip->i_db[lbprev]) == 0) {
207 		printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
208 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
209 		    fs->fs_fsmnt);
210 		panic("ffs_realloccg: bad bprev");
211 	}
212 	/*
213 	 * Allocate the extra space in the buffer.
214 	 */
215 	error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
216 	if (error) {
217 		brelse(bp);
218 		return (error);
219 	}
220 
221 	if( bp->b_blkno == bp->b_lblkno) {
222 		if( lbprev >= NDADDR)
223 			panic("ffs_realloccg: lbprev out of range");
224 		bp->b_blkno = fsbtodb(fs, bprev);
225 	}
226 
227 #ifdef QUOTA
228 	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
229 	if (error) {
230 		brelse(bp);
231 		return (error);
232 	}
233 #endif
234 	/*
235 	 * Check for extension in the existing location.
236 	 */
237 	cg = dtog(fs, bprev);
238 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
239 	if (bno) {
240 		if (bp->b_blkno != fsbtodb(fs, bno))
241 			panic("ffs_realloccg: bad blockno");
242 		ip->i_blocks += btodb(nsize - osize);
243 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
244 		allocbuf(bp, nsize);
245 		bp->b_flags |= B_DONE;
246 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
247 		*bpp = bp;
248 		return (0);
249 	}
250 	/*
251 	 * Allocate a new disk location.
252 	 */
253 	if (bpref >= fs->fs_size)
254 		bpref = 0;
255 	switch ((int)fs->fs_optim) {
256 	case FS_OPTSPACE:
257 		/*
258 		 * Allocate an exact sized fragment. Although this makes
259 		 * best use of space, we will waste time relocating it if
260 		 * the file continues to grow. If the fragmentation is
261 		 * less than half of the minimum free reserve, we choose
262 		 * to begin optimizing for time.
263 		 */
264 		request = nsize;
265 		if (fs->fs_minfree <= 5 ||
266 		    fs->fs_cstotal.cs_nffree >
267 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
268 			break;
269 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
270 			fs->fs_fsmnt);
271 		fs->fs_optim = FS_OPTTIME;
272 		break;
273 	case FS_OPTTIME:
274 		/*
275 		 * At this point we have discovered a file that is trying to
276 		 * grow a small fragment to a larger fragment. To save time,
277 		 * we allocate a full sized block, then free the unused portion.
278 		 * If the file continues to grow, the `ffs_fragextend' call
279 		 * above will be able to grow it in place without further
280 		 * copying. If aberrant programs cause disk fragmentation to
281 		 * grow within 2% of the free reserve, we choose to begin
282 		 * optimizing for space.
283 		 */
284 		request = fs->fs_bsize;
285 		if (fs->fs_cstotal.cs_nffree <
286 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
287 			break;
288 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
289 			fs->fs_fsmnt);
290 		fs->fs_optim = FS_OPTSPACE;
291 		break;
292 	default:
293 		printf("dev = %s, optim = %ld, fs = %s\n",
294 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
295 		panic("ffs_realloccg: bad optim");
296 		/* NOTREACHED */
297 	}
298 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
299 					 ffs_alloccg);
300 	if (bno > 0) {
301 		bp->b_blkno = fsbtodb(fs, bno);
302 		if (!DOINGSOFTDEP(ITOV(ip)))
303 			ffs_blkfree(ip, bprev, (long)osize);
304 		if (nsize < request)
305 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
306 			    (long)(request - nsize));
307 		ip->i_blocks += btodb(nsize - osize);
308 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
309 		allocbuf(bp, nsize);
310 		bp->b_flags |= B_DONE;
311 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
312 		*bpp = bp;
313 		return (0);
314 	}
315 #ifdef QUOTA
316 	/*
317 	 * Restore user's disk quota because allocation failed.
318 	 */
319 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
320 #endif
321 	brelse(bp);
322 nospace:
323 	/*
324 	 * no space available
325 	 */
326 	ffs_fserr(fs, cred->cr_uid, "file system full");
327 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
328 	return (ENOSPC);
329 }
330 
331 /*
332  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
333  *
334  * The vnode and an array of buffer pointers for a range of sequential
335  * logical blocks to be made contiguous is given. The allocator attempts
336  * to find a range of sequential blocks starting as close as possible to
337  * an fs_rotdelay offset from the end of the allocation for the logical
338  * block immediately preceding the current range. If successful, the
339  * physical block numbers in the buffer pointers and in the inode are
340  * changed to reflect the new allocation. If unsuccessful, the allocation
341  * is left unchanged. The success in doing the reallocation is returned.
342  * Note that the error return is not reflected back to the user. Rather
343  * the previous block allocation will be used.
344  */
345 
346 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
347 
348 static int doasyncfree = 1;
349 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
350 
351 static int doreallocblks = 1;
352 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
353 
354 #ifdef DEBUG
355 static volatile int prtrealloc = 0;
356 #endif
357 
358 int
359 ffs_reallocblks(ap)
360 	struct vop_reallocblks_args /* {
361 		struct vnode *a_vp;
362 		struct cluster_save *a_buflist;
363 	} */ *ap;
364 {
365 	struct fs *fs;
366 	struct inode *ip;
367 	struct vnode *vp;
368 	struct buf *sbp, *ebp;
369 	ufs_daddr_t *bap, *sbap, *ebap = 0;
370 	struct cluster_save *buflist;
371 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
372 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
373 	int i, len, start_lvl, end_lvl, pref, ssize;
374 
375 	if (doreallocblks == 0)
376 		return (ENOSPC);
377 	vp = ap->a_vp;
378 	ip = VTOI(vp);
379 	fs = ip->i_fs;
380 	if (fs->fs_contigsumsize <= 0)
381 		return (ENOSPC);
382 	buflist = ap->a_buflist;
383 	len = buflist->bs_nchildren;
384 	start_lbn = buflist->bs_children[0]->b_lblkno;
385 	end_lbn = start_lbn + len - 1;
386 #ifdef DIAGNOSTIC
387 	for (i = 0; i < len; i++)
388 		if (!ffs_checkblk(ip,
389 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
390 			panic("ffs_reallocblks: unallocated block 1");
391 	for (i = 1; i < len; i++)
392 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
393 			panic("ffs_reallocblks: non-logical cluster");
394 	blkno = buflist->bs_children[0]->b_blkno;
395 	ssize = fsbtodb(fs, fs->fs_frag);
396 	for (i = 1; i < len - 1; i++)
397 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
398 			panic("ffs_reallocblks: non-physical cluster %d", i);
399 #endif
400 	/*
401 	 * If the latest allocation is in a new cylinder group, assume that
402 	 * the filesystem has decided to move and do not force it back to
403 	 * the previous cylinder group.
404 	 */
405 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
406 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
407 		return (ENOSPC);
408 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
409 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
410 		return (ENOSPC);
411 	/*
412 	 * Get the starting offset and block map for the first block.
413 	 */
414 	if (start_lvl == 0) {
415 		sbap = &ip->i_db[0];
416 		soff = start_lbn;
417 	} else {
418 		idp = &start_ap[start_lvl - 1];
419 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
420 			brelse(sbp);
421 			return (ENOSPC);
422 		}
423 		sbap = (ufs_daddr_t *)sbp->b_data;
424 		soff = idp->in_off;
425 	}
426 	/*
427 	 * Find the preferred location for the cluster.
428 	 */
429 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
430 	/*
431 	 * If the block range spans two block maps, get the second map.
432 	 */
433 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
434 		ssize = len;
435 	} else {
436 #ifdef DIAGNOSTIC
437 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
438 			panic("ffs_reallocblk: start == end");
439 #endif
440 		ssize = len - (idp->in_off + 1);
441 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
442 			goto fail;
443 		ebap = (ufs_daddr_t *)ebp->b_data;
444 	}
445 	/*
446 	 * Search the block map looking for an allocation of the desired size.
447 	 */
448 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
449 	    len, ffs_clusteralloc)) == 0)
450 		goto fail;
451 	/*
452 	 * We have found a new contiguous block.
453 	 *
454 	 * First we have to replace the old block pointers with the new
455 	 * block pointers in the inode and indirect blocks associated
456 	 * with the file.
457 	 */
458 #ifdef DEBUG
459 	if (prtrealloc)
460 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
461 		    start_lbn, end_lbn);
462 #endif
463 	blkno = newblk;
464 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
465 		if (i == ssize) {
466 			bap = ebap;
467 			soff = -i;
468 		}
469 #ifdef DIAGNOSTIC
470 		if (!ffs_checkblk(ip,
471 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
472 			panic("ffs_reallocblks: unallocated block 2");
473 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
474 			panic("ffs_reallocblks: alloc mismatch");
475 #endif
476 #ifdef DEBUG
477 		if (prtrealloc)
478 			printf(" %d,", *bap);
479 #endif
480 		if (DOINGSOFTDEP(vp)) {
481 			if (sbap == &ip->i_db[0] && i < ssize)
482 				softdep_setup_allocdirect(ip, start_lbn + i,
483 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
484 				    buflist->bs_children[i]);
485 			else
486 				softdep_setup_allocindir_page(ip, start_lbn + i,
487 				    i < ssize ? sbp : ebp, soff + i, blkno,
488 				    *bap, buflist->bs_children[i]);
489 		}
490 		*bap++ = blkno;
491 	}
492 	/*
493 	 * Next we must write out the modified inode and indirect blocks.
494 	 * For strict correctness, the writes should be synchronous since
495 	 * the old block values may have been written to disk. In practise
496 	 * they are almost never written, but if we are concerned about
497 	 * strict correctness, the `doasyncfree' flag should be set to zero.
498 	 *
499 	 * The test on `doasyncfree' should be changed to test a flag
500 	 * that shows whether the associated buffers and inodes have
501 	 * been written. The flag should be set when the cluster is
502 	 * started and cleared whenever the buffer or inode is flushed.
503 	 * We can then check below to see if it is set, and do the
504 	 * synchronous write only when it has been cleared.
505 	 */
506 	if (sbap != &ip->i_db[0]) {
507 		if (doasyncfree)
508 			bdwrite(sbp);
509 		else
510 			bwrite(sbp);
511 	} else {
512 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
513 		if (!doasyncfree)
514 			UFS_UPDATE(vp, 1);
515 	}
516 	if (ssize < len) {
517 		if (doasyncfree)
518 			bdwrite(ebp);
519 		else
520 			bwrite(ebp);
521 	}
522 	/*
523 	 * Last, free the old blocks and assign the new blocks to the buffers.
524 	 */
525 #ifdef DEBUG
526 	if (prtrealloc)
527 		printf("\n\tnew:");
528 #endif
529 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
530 		if (!DOINGSOFTDEP(vp))
531 			ffs_blkfree(ip,
532 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
533 			    fs->fs_bsize);
534 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
535 #ifdef DIAGNOSTIC
536 		if (!ffs_checkblk(ip,
537 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
538 			panic("ffs_reallocblks: unallocated block 3");
539 #endif
540 #ifdef DEBUG
541 		if (prtrealloc)
542 			printf(" %d,", blkno);
543 #endif
544 	}
545 #ifdef DEBUG
546 	if (prtrealloc) {
547 		prtrealloc--;
548 		printf("\n");
549 	}
550 #endif
551 	return (0);
552 
553 fail:
554 	if (ssize < len)
555 		brelse(ebp);
556 	if (sbap != &ip->i_db[0])
557 		brelse(sbp);
558 	return (ENOSPC);
559 }
560 
561 /*
562  * Allocate an inode in the file system.
563  *
564  * If allocating a directory, use ffs_dirpref to select the inode.
565  * If allocating in a directory, the following hierarchy is followed:
566  *   1) allocate the preferred inode.
567  *   2) allocate an inode in the same cylinder group.
568  *   3) quadradically rehash into other cylinder groups, until an
569  *      available inode is located.
570  * If no inode preference is given the following heirarchy is used
571  * to allocate an inode:
572  *   1) allocate an inode in cylinder group 0.
573  *   2) quadradically rehash into other cylinder groups, until an
574  *      available inode is located.
575  */
576 int
577 ffs_valloc(pvp, mode, cred, vpp)
578 	struct vnode *pvp;
579 	int mode;
580 	struct ucred *cred;
581 	struct vnode **vpp;
582 {
583 	register struct inode *pip;
584 	register struct fs *fs;
585 	register struct inode *ip;
586 	ino_t ino, ipref;
587 	int cg, error;
588 
589 	*vpp = NULL;
590 	pip = VTOI(pvp);
591 	fs = pip->i_fs;
592 	if (fs->fs_cstotal.cs_nifree == 0)
593 		goto noinodes;
594 
595 	if ((mode & IFMT) == IFDIR)
596 		ipref = ffs_dirpref(pip);
597 	else
598 		ipref = pip->i_number;
599 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
600 		ipref = 0;
601 	cg = ino_to_cg(fs, ipref);
602 	/*
603 	 * Track number of dirs created one after another
604 	 * in a same cg without intervening by files.
605 	 */
606 	if ((mode & IFMT) == IFDIR) {
607 		if (fs->fs_contigdirs[cg] < 255)
608 			fs->fs_contigdirs[cg]++;
609 	} else {
610 		if (fs->fs_contigdirs[cg] > 0)
611 			fs->fs_contigdirs[cg]--;
612 	}
613 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
614 					(allocfcn_t *)ffs_nodealloccg);
615 	if (ino == 0)
616 		goto noinodes;
617 	error = VFS_VGET(pvp->v_mount, ino, vpp);
618 	if (error) {
619 		UFS_VFREE(pvp, ino, mode);
620 		return (error);
621 	}
622 	ip = VTOI(*vpp);
623 	if (ip->i_mode) {
624 		printf("mode = 0%o, inum = %lu, fs = %s\n",
625 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
626 		panic("ffs_valloc: dup alloc");
627 	}
628 	if (ip->i_blocks && (fs->fs_flags & FS_UNCLEAN) == 0) {	    /* XXX */
629 		printf("free inode %s/%lu had %ld blocks\n",
630 		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
631 		ip->i_blocks = 0;
632 	}
633 	ip->i_flags = 0;
634 	/*
635 	 * Set up a new generation number for this inode.
636 	 */
637 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
638 		ip->i_gen = random() / 2 + 1;
639 	return (0);
640 noinodes:
641 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
642 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
643 	return (ENOSPC);
644 }
645 
646 /*
647  * Find a cylinder group to place a directory.
648  *
649  * The policy implemented by this algorithm is to allocate a
650  * directory inode in the same cylinder group as its parent
651  * directory, but also to reserve space for its files inodes
652  * and data. Restrict the number of directories which may be
653  * allocated one after another in the same cylinder group
654  * without intervening allocation of files.
655  *
656  * If we allocate a first level directory then force allocation
657  * in another cylinder group.
658  */
659 static ino_t
660 ffs_dirpref(pip)
661 	struct inode *pip;
662 {
663 	register struct fs *fs;
664 	int cg, prefcg, dirsize, cgsize;
665 	int avgifree, avgbfree, avgndir, curdirsize;
666 	int minifree, minbfree, maxndir;
667 	int mincg, minndir;
668 	int maxcontigdirs;
669 
670 	fs = pip->i_fs;
671 
672 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
673 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
674 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
675 
676 	/*
677 	 * Force allocation in another cg if creating a first level dir.
678 	 */
679 	if (ITOV(pip)->v_flag & VROOT) {
680 		prefcg = arc4random() % fs->fs_ncg;
681 		mincg = prefcg;
682 		minndir = fs->fs_ipg;
683 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
684 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
685 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
686 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
687 				mincg = cg;
688 				minndir = fs->fs_cs(fs, cg).cs_ndir;
689 			}
690 		for (cg = 0; cg < prefcg; cg++)
691 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
692 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
693 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
694 				mincg = cg;
695 				minndir = fs->fs_cs(fs, cg).cs_ndir;
696 			}
697 		return ((ino_t)(fs->fs_ipg * mincg));
698 	}
699 
700 	/*
701 	 * Count various limits which used for
702 	 * optimal allocation of a directory inode.
703 	 */
704 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
705 	minifree = avgifree - fs->fs_ipg / 4;
706 	if (minifree < 0)
707 		minifree = 0;
708 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
709 	if (minbfree < 0)
710 		minbfree = 0;
711 	cgsize = fs->fs_fsize * fs->fs_fpg;
712 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
713 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
714 	if (dirsize < curdirsize)
715 		dirsize = curdirsize;
716 	maxcontigdirs = min(cgsize / dirsize, 255);
717 	if (fs->fs_avgfpdir > 0)
718 		maxcontigdirs = min(maxcontigdirs,
719 				    fs->fs_ipg / fs->fs_avgfpdir);
720 	if (maxcontigdirs == 0)
721 		maxcontigdirs = 1;
722 
723 	/*
724 	 * Limit number of dirs in one cg and reserve space for
725 	 * regular files, but only if we have no deficit in
726 	 * inodes or space.
727 	 */
728 	prefcg = ino_to_cg(fs, pip->i_number);
729 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
730 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
731 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
732 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
733 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
734 				return ((ino_t)(fs->fs_ipg * cg));
735 		}
736 	for (cg = 0; cg < prefcg; cg++)
737 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
738 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
739 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
740 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
741 				return ((ino_t)(fs->fs_ipg * cg));
742 		}
743 	/*
744 	 * This is a backstop when we have deficit in space.
745 	 */
746 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
747 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
748 			return ((ino_t)(fs->fs_ipg * cg));
749 	for (cg = 0; cg < prefcg; cg++)
750 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
751 			break;
752 	return ((ino_t)(fs->fs_ipg * cg));
753 }
754 
755 /*
756  * Select the desired position for the next block in a file.  The file is
757  * logically divided into sections. The first section is composed of the
758  * direct blocks. Each additional section contains fs_maxbpg blocks.
759  *
760  * If no blocks have been allocated in the first section, the policy is to
761  * request a block in the same cylinder group as the inode that describes
762  * the file. If no blocks have been allocated in any other section, the
763  * policy is to place the section in a cylinder group with a greater than
764  * average number of free blocks.  An appropriate cylinder group is found
765  * by using a rotor that sweeps the cylinder groups. When a new group of
766  * blocks is needed, the sweep begins in the cylinder group following the
767  * cylinder group from which the previous allocation was made. The sweep
768  * continues until a cylinder group with greater than the average number
769  * of free blocks is found. If the allocation is for the first block in an
770  * indirect block, the information on the previous allocation is unavailable;
771  * here a best guess is made based upon the logical block number being
772  * allocated.
773  *
774  * If a section is already partially allocated, the policy is to
775  * contiguously allocate fs_maxcontig blocks.  The end of one of these
776  * contiguous blocks and the beginning of the next is physically separated
777  * so that the disk head will be in transit between them for at least
778  * fs_rotdelay milliseconds.  This is to allow time for the processor to
779  * schedule another I/O transfer.
780  */
781 ufs_daddr_t
782 ffs_blkpref(ip, lbn, indx, bap)
783 	struct inode *ip;
784 	ufs_daddr_t lbn;
785 	int indx;
786 	ufs_daddr_t *bap;
787 {
788 	register struct fs *fs;
789 	register int cg;
790 	int avgbfree, startcg;
791 	ufs_daddr_t nextblk;
792 
793 	fs = ip->i_fs;
794 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
795 		if (lbn < NDADDR + NINDIR(fs)) {
796 			cg = ino_to_cg(fs, ip->i_number);
797 			return (fs->fs_fpg * cg + fs->fs_frag);
798 		}
799 		/*
800 		 * Find a cylinder with greater than average number of
801 		 * unused data blocks.
802 		 */
803 		if (indx == 0 || bap[indx - 1] == 0)
804 			startcg =
805 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
806 		else
807 			startcg = dtog(fs, bap[indx - 1]) + 1;
808 		startcg %= fs->fs_ncg;
809 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
810 		for (cg = startcg; cg < fs->fs_ncg; cg++)
811 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
812 				fs->fs_cgrotor = cg;
813 				return (fs->fs_fpg * cg + fs->fs_frag);
814 			}
815 		for (cg = 0; cg <= startcg; cg++)
816 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
817 				fs->fs_cgrotor = cg;
818 				return (fs->fs_fpg * cg + fs->fs_frag);
819 			}
820 		return (0);
821 	}
822 	/*
823 	 * One or more previous blocks have been laid out. If less
824 	 * than fs_maxcontig previous blocks are contiguous, the
825 	 * next block is requested contiguously, otherwise it is
826 	 * requested rotationally delayed by fs_rotdelay milliseconds.
827 	 */
828 	nextblk = bap[indx - 1] + fs->fs_frag;
829 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
830 	    bap[indx - fs->fs_maxcontig] +
831 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
832 		return (nextblk);
833 	/*
834 	 * Here we convert ms of delay to frags as:
835 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
836 	 *	((sect/frag) * (ms/sec))
837 	 * then round up to the next block.
838 	 */
839 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
840 	    (NSPF(fs) * 1000), fs->fs_frag);
841 	return (nextblk);
842 }
843 
844 /*
845  * Implement the cylinder overflow algorithm.
846  *
847  * The policy implemented by this algorithm is:
848  *   1) allocate the block in its requested cylinder group.
849  *   2) quadradically rehash on the cylinder group number.
850  *   3) brute force search for a free block.
851  */
852 /*VARARGS5*/
853 static u_long
854 ffs_hashalloc(ip, cg, pref, size, allocator)
855 	struct inode *ip;
856 	int cg;
857 	long pref;
858 	int size;	/* size for data blocks, mode for inodes */
859 	allocfcn_t *allocator;
860 {
861 	register struct fs *fs;
862 	long result;	/* XXX why not same type as we return? */
863 	int i, icg = cg;
864 
865 #ifdef DIAGNOSTIC
866 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
867 		panic("ffs_hashalloc: allocation on suspended filesystem");
868 #endif
869 	fs = ip->i_fs;
870 	/*
871 	 * 1: preferred cylinder group
872 	 */
873 	result = (*allocator)(ip, cg, pref, size);
874 	if (result)
875 		return (result);
876 	/*
877 	 * 2: quadratic rehash
878 	 */
879 	for (i = 1; i < fs->fs_ncg; i *= 2) {
880 		cg += i;
881 		if (cg >= fs->fs_ncg)
882 			cg -= fs->fs_ncg;
883 		result = (*allocator)(ip, cg, 0, size);
884 		if (result)
885 			return (result);
886 	}
887 	/*
888 	 * 3: brute force search
889 	 * Note that we start at i == 2, since 0 was checked initially,
890 	 * and 1 is always checked in the quadratic rehash.
891 	 */
892 	cg = (icg + 2) % fs->fs_ncg;
893 	for (i = 2; i < fs->fs_ncg; i++) {
894 		result = (*allocator)(ip, cg, 0, size);
895 		if (result)
896 			return (result);
897 		cg++;
898 		if (cg == fs->fs_ncg)
899 			cg = 0;
900 	}
901 	return (0);
902 }
903 
904 /*
905  * Determine whether a fragment can be extended.
906  *
907  * Check to see if the necessary fragments are available, and
908  * if they are, allocate them.
909  */
910 static ufs_daddr_t
911 ffs_fragextend(ip, cg, bprev, osize, nsize)
912 	struct inode *ip;
913 	int cg;
914 	long bprev;
915 	int osize, nsize;
916 {
917 	register struct fs *fs;
918 	register struct cg *cgp;
919 	struct buf *bp;
920 	long bno;
921 	int frags, bbase;
922 	int i, error;
923 	u_int8_t *blksfree;
924 
925 	fs = ip->i_fs;
926 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
927 		return (0);
928 	frags = numfrags(fs, nsize);
929 	bbase = fragnum(fs, bprev);
930 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
931 		/* cannot extend across a block boundary */
932 		return (0);
933 	}
934 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
935 		(int)fs->fs_cgsize, NOCRED, &bp);
936 	if (error) {
937 		brelse(bp);
938 		return (0);
939 	}
940 	cgp = (struct cg *)bp->b_data;
941 	if (!cg_chkmagic(cgp)) {
942 		brelse(bp);
943 		return (0);
944 	}
945 	bp->b_xflags |= BX_BKGRDWRITE;
946 	cgp->cg_time = time_second;
947 	bno = dtogd(fs, bprev);
948 	blksfree = cg_blksfree(cgp);
949 	for (i = numfrags(fs, osize); i < frags; i++)
950 		if (isclr(blksfree, bno + i)) {
951 			brelse(bp);
952 			return (0);
953 		}
954 	/*
955 	 * the current fragment can be extended
956 	 * deduct the count on fragment being extended into
957 	 * increase the count on the remaining fragment (if any)
958 	 * allocate the extended piece
959 	 */
960 	for (i = frags; i < fs->fs_frag - bbase; i++)
961 		if (isclr(blksfree, bno + i))
962 			break;
963 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
964 	if (i != frags)
965 		cgp->cg_frsum[i - frags]++;
966 	for (i = numfrags(fs, osize); i < frags; i++) {
967 		clrbit(blksfree, bno + i);
968 		cgp->cg_cs.cs_nffree--;
969 		fs->fs_cstotal.cs_nffree--;
970 		fs->fs_cs(fs, cg).cs_nffree--;
971 	}
972 	fs->fs_fmod = 1;
973 	if (DOINGSOFTDEP(ITOV(ip)))
974 		softdep_setup_blkmapdep(bp, fs, bprev);
975 	bdwrite(bp);
976 	return (bprev);
977 }
978 
979 /*
980  * Determine whether a block can be allocated.
981  *
982  * Check to see if a block of the appropriate size is available,
983  * and if it is, allocate it.
984  */
985 static ufs_daddr_t
986 ffs_alloccg(ip, cg, bpref, size)
987 	struct inode *ip;
988 	int cg;
989 	ufs_daddr_t bpref;
990 	int size;
991 {
992 	register struct fs *fs;
993 	register struct cg *cgp;
994 	struct buf *bp;
995 	register int i;
996 	ufs_daddr_t bno, blkno;
997 	int allocsiz, error, frags;
998 	u_int8_t *blksfree;
999 
1000 	fs = ip->i_fs;
1001 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1002 		return (0);
1003 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1004 		(int)fs->fs_cgsize, NOCRED, &bp);
1005 	if (error) {
1006 		brelse(bp);
1007 		return (0);
1008 	}
1009 	cgp = (struct cg *)bp->b_data;
1010 	if (!cg_chkmagic(cgp) ||
1011 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1012 		brelse(bp);
1013 		return (0);
1014 	}
1015 	bp->b_xflags |= BX_BKGRDWRITE;
1016 	cgp->cg_time = time_second;
1017 	if (size == fs->fs_bsize) {
1018 		bno = ffs_alloccgblk(ip, bp, bpref);
1019 		bdwrite(bp);
1020 		return (bno);
1021 	}
1022 	/*
1023 	 * check to see if any fragments are already available
1024 	 * allocsiz is the size which will be allocated, hacking
1025 	 * it down to a smaller size if necessary
1026 	 */
1027 	blksfree = cg_blksfree(cgp);
1028 	frags = numfrags(fs, size);
1029 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1030 		if (cgp->cg_frsum[allocsiz] != 0)
1031 			break;
1032 	if (allocsiz == fs->fs_frag) {
1033 		/*
1034 		 * no fragments were available, so a block will be
1035 		 * allocated, and hacked up
1036 		 */
1037 		if (cgp->cg_cs.cs_nbfree == 0) {
1038 			brelse(bp);
1039 			return (0);
1040 		}
1041 		bno = ffs_alloccgblk(ip, bp, bpref);
1042 		bpref = dtogd(fs, bno);
1043 		for (i = frags; i < fs->fs_frag; i++)
1044 			setbit(blksfree, bpref + i);
1045 		i = fs->fs_frag - frags;
1046 		cgp->cg_cs.cs_nffree += i;
1047 		fs->fs_cstotal.cs_nffree += i;
1048 		fs->fs_cs(fs, cg).cs_nffree += i;
1049 		fs->fs_fmod = 1;
1050 		cgp->cg_frsum[i]++;
1051 		bdwrite(bp);
1052 		return (bno);
1053 	}
1054 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1055 	if (bno < 0) {
1056 		brelse(bp);
1057 		return (0);
1058 	}
1059 	for (i = 0; i < frags; i++)
1060 		clrbit(blksfree, bno + i);
1061 	cgp->cg_cs.cs_nffree -= frags;
1062 	fs->fs_cstotal.cs_nffree -= frags;
1063 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1064 	fs->fs_fmod = 1;
1065 	cgp->cg_frsum[allocsiz]--;
1066 	if (frags != allocsiz)
1067 		cgp->cg_frsum[allocsiz - frags]++;
1068 	blkno = cg * fs->fs_fpg + bno;
1069 	if (DOINGSOFTDEP(ITOV(ip)))
1070 		softdep_setup_blkmapdep(bp, fs, blkno);
1071 	bdwrite(bp);
1072 	return ((u_long)blkno);
1073 }
1074 
1075 /*
1076  * Allocate a block in a cylinder group.
1077  *
1078  * This algorithm implements the following policy:
1079  *   1) allocate the requested block.
1080  *   2) allocate a rotationally optimal block in the same cylinder.
1081  *   3) allocate the next available block on the block rotor for the
1082  *      specified cylinder group.
1083  * Note that this routine only allocates fs_bsize blocks; these
1084  * blocks may be fragmented by the routine that allocates them.
1085  */
1086 static ufs_daddr_t
1087 ffs_alloccgblk(ip, bp, bpref)
1088 	struct inode *ip;
1089 	struct buf *bp;
1090 	ufs_daddr_t bpref;
1091 {
1092 	struct fs *fs;
1093 	struct cg *cgp;
1094 	ufs_daddr_t bno, blkno;
1095 	int cylno, pos, delta;
1096 	short *cylbp;
1097 	register int i;
1098 	u_int8_t *blksfree;
1099 
1100 	fs = ip->i_fs;
1101 	cgp = (struct cg *)bp->b_data;
1102 	blksfree = cg_blksfree(cgp);
1103 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1104 		bpref = cgp->cg_rotor;
1105 		goto norot;
1106 	}
1107 	bpref = blknum(fs, bpref);
1108 	bpref = dtogd(fs, bpref);
1109 	/*
1110 	 * if the requested block is available, use it
1111 	 */
1112 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1113 		bno = bpref;
1114 		goto gotit;
1115 	}
1116 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1117 		/*
1118 		 * Block layout information is not available.
1119 		 * Leaving bpref unchanged means we take the
1120 		 * next available free block following the one
1121 		 * we just allocated. Hopefully this will at
1122 		 * least hit a track cache on drives of unknown
1123 		 * geometry (e.g. SCSI).
1124 		 */
1125 		goto norot;
1126 	}
1127 	/*
1128 	 * check for a block available on the same cylinder
1129 	 */
1130 	cylno = cbtocylno(fs, bpref);
1131 	if (cg_blktot(cgp)[cylno] == 0)
1132 		goto norot;
1133 	/*
1134 	 * check the summary information to see if a block is
1135 	 * available in the requested cylinder starting at the
1136 	 * requested rotational position and proceeding around.
1137 	 */
1138 	cylbp = cg_blks(fs, cgp, cylno);
1139 	pos = cbtorpos(fs, bpref);
1140 	for (i = pos; i < fs->fs_nrpos; i++)
1141 		if (cylbp[i] > 0)
1142 			break;
1143 	if (i == fs->fs_nrpos)
1144 		for (i = 0; i < pos; i++)
1145 			if (cylbp[i] > 0)
1146 				break;
1147 	if (cylbp[i] > 0) {
1148 		/*
1149 		 * found a rotational position, now find the actual
1150 		 * block. A panic if none is actually there.
1151 		 */
1152 		pos = cylno % fs->fs_cpc;
1153 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1154 		if (fs_postbl(fs, pos)[i] == -1) {
1155 			printf("pos = %d, i = %d, fs = %s\n",
1156 			    pos, i, fs->fs_fsmnt);
1157 			panic("ffs_alloccgblk: cyl groups corrupted");
1158 		}
1159 		for (i = fs_postbl(fs, pos)[i];; ) {
1160 			if (ffs_isblock(fs, blksfree, bno + i)) {
1161 				bno = blkstofrags(fs, (bno + i));
1162 				goto gotit;
1163 			}
1164 			delta = fs_rotbl(fs)[i];
1165 			if (delta <= 0 ||
1166 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1167 				break;
1168 			i += delta;
1169 		}
1170 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1171 		panic("ffs_alloccgblk: can't find blk in cyl");
1172 	}
1173 norot:
1174 	/*
1175 	 * no blocks in the requested cylinder, so take next
1176 	 * available one in this cylinder group.
1177 	 */
1178 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1179 	if (bno < 0)
1180 		return (0);
1181 	cgp->cg_rotor = bno;
1182 gotit:
1183 	blkno = fragstoblks(fs, bno);
1184 	ffs_clrblock(fs, blksfree, (long)blkno);
1185 	ffs_clusteracct(fs, cgp, blkno, -1);
1186 	cgp->cg_cs.cs_nbfree--;
1187 	fs->fs_cstotal.cs_nbfree--;
1188 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1189 	cylno = cbtocylno(fs, bno);
1190 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1191 	cg_blktot(cgp)[cylno]--;
1192 	fs->fs_fmod = 1;
1193 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1194 	if (DOINGSOFTDEP(ITOV(ip)))
1195 		softdep_setup_blkmapdep(bp, fs, blkno);
1196 	return (blkno);
1197 }
1198 
1199 /*
1200  * Determine whether a cluster can be allocated.
1201  *
1202  * We do not currently check for optimal rotational layout if there
1203  * are multiple choices in the same cylinder group. Instead we just
1204  * take the first one that we find following bpref.
1205  */
1206 static ufs_daddr_t
1207 ffs_clusteralloc(ip, cg, bpref, len)
1208 	struct inode *ip;
1209 	int cg;
1210 	ufs_daddr_t bpref;
1211 	int len;
1212 {
1213 	register struct fs *fs;
1214 	register struct cg *cgp;
1215 	struct buf *bp;
1216 	int i, got, run, bno, bit, map;
1217 	u_char *mapp;
1218 	int32_t *lp;
1219 	u_int8_t *blksfree;
1220 
1221 	fs = ip->i_fs;
1222 	if (fs->fs_maxcluster[cg] < len)
1223 		return (0);
1224 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1225 	    NOCRED, &bp))
1226 		goto fail;
1227 	cgp = (struct cg *)bp->b_data;
1228 	if (!cg_chkmagic(cgp))
1229 		goto fail;
1230 	bp->b_xflags |= BX_BKGRDWRITE;
1231 	/*
1232 	 * Check to see if a cluster of the needed size (or bigger) is
1233 	 * available in this cylinder group.
1234 	 */
1235 	lp = &cg_clustersum(cgp)[len];
1236 	for (i = len; i <= fs->fs_contigsumsize; i++)
1237 		if (*lp++ > 0)
1238 			break;
1239 	if (i > fs->fs_contigsumsize) {
1240 		/*
1241 		 * This is the first time looking for a cluster in this
1242 		 * cylinder group. Update the cluster summary information
1243 		 * to reflect the true maximum sized cluster so that
1244 		 * future cluster allocation requests can avoid reading
1245 		 * the cylinder group map only to find no clusters.
1246 		 */
1247 		lp = &cg_clustersum(cgp)[len - 1];
1248 		for (i = len - 1; i > 0; i--)
1249 			if (*lp-- > 0)
1250 				break;
1251 		fs->fs_maxcluster[cg] = i;
1252 		goto fail;
1253 	}
1254 	/*
1255 	 * Search the cluster map to find a big enough cluster.
1256 	 * We take the first one that we find, even if it is larger
1257 	 * than we need as we prefer to get one close to the previous
1258 	 * block allocation. We do not search before the current
1259 	 * preference point as we do not want to allocate a block
1260 	 * that is allocated before the previous one (as we will
1261 	 * then have to wait for another pass of the elevator
1262 	 * algorithm before it will be read). We prefer to fail and
1263 	 * be recalled to try an allocation in the next cylinder group.
1264 	 */
1265 	if (dtog(fs, bpref) != cg)
1266 		bpref = 0;
1267 	else
1268 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1269 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1270 	map = *mapp++;
1271 	bit = 1 << (bpref % NBBY);
1272 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1273 		if ((map & bit) == 0) {
1274 			run = 0;
1275 		} else {
1276 			run++;
1277 			if (run == len)
1278 				break;
1279 		}
1280 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1281 			bit <<= 1;
1282 		} else {
1283 			map = *mapp++;
1284 			bit = 1;
1285 		}
1286 	}
1287 	if (got >= cgp->cg_nclusterblks)
1288 		goto fail;
1289 	/*
1290 	 * Allocate the cluster that we have found.
1291 	 */
1292 	blksfree = cg_blksfree(cgp);
1293 	for (i = 1; i <= len; i++)
1294 		if (!ffs_isblock(fs, blksfree, got - run + i))
1295 			panic("ffs_clusteralloc: map mismatch");
1296 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1297 	if (dtog(fs, bno) != cg)
1298 		panic("ffs_clusteralloc: allocated out of group");
1299 	len = blkstofrags(fs, len);
1300 	for (i = 0; i < len; i += fs->fs_frag)
1301 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1302 			panic("ffs_clusteralloc: lost block");
1303 	bdwrite(bp);
1304 	return (bno);
1305 
1306 fail:
1307 	brelse(bp);
1308 	return (0);
1309 }
1310 
1311 /*
1312  * Determine whether an inode can be allocated.
1313  *
1314  * Check to see if an inode is available, and if it is,
1315  * allocate it using the following policy:
1316  *   1) allocate the requested inode.
1317  *   2) allocate the next available inode after the requested
1318  *      inode in the specified cylinder group.
1319  */
1320 static ino_t
1321 ffs_nodealloccg(ip, cg, ipref, mode)
1322 	struct inode *ip;
1323 	int cg;
1324 	ufs_daddr_t ipref;
1325 	int mode;
1326 {
1327 	register struct fs *fs;
1328 	register struct cg *cgp;
1329 	struct buf *bp;
1330 	u_int8_t *inosused;
1331 	int error, start, len, loc, map, i;
1332 
1333 	fs = ip->i_fs;
1334 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1335 		return (0);
1336 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1337 		(int)fs->fs_cgsize, NOCRED, &bp);
1338 	if (error) {
1339 		brelse(bp);
1340 		return (0);
1341 	}
1342 	cgp = (struct cg *)bp->b_data;
1343 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1344 		brelse(bp);
1345 		return (0);
1346 	}
1347 	bp->b_xflags |= BX_BKGRDWRITE;
1348 	cgp->cg_time = time_second;
1349 	inosused = cg_inosused(cgp);
1350 	if (ipref) {
1351 		ipref %= fs->fs_ipg;
1352 		if (isclr(inosused, ipref))
1353 			goto gotit;
1354 	}
1355 	start = cgp->cg_irotor / NBBY;
1356 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1357 	loc = skpc(0xff, len, &inosused[start]);
1358 	if (loc == 0) {
1359 		len = start + 1;
1360 		start = 0;
1361 		loc = skpc(0xff, len, &inosused[0]);
1362 		if (loc == 0) {
1363 			printf("cg = %d, irotor = %ld, fs = %s\n",
1364 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1365 			panic("ffs_nodealloccg: map corrupted");
1366 			/* NOTREACHED */
1367 		}
1368 	}
1369 	i = start + len - loc;
1370 	map = inosused[i];
1371 	ipref = i * NBBY;
1372 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1373 		if ((map & i) == 0) {
1374 			cgp->cg_irotor = ipref;
1375 			goto gotit;
1376 		}
1377 	}
1378 	printf("fs = %s\n", fs->fs_fsmnt);
1379 	panic("ffs_nodealloccg: block not in map");
1380 	/* NOTREACHED */
1381 gotit:
1382 	if (DOINGSOFTDEP(ITOV(ip)))
1383 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1384 	setbit(inosused, ipref);
1385 	cgp->cg_cs.cs_nifree--;
1386 	fs->fs_cstotal.cs_nifree--;
1387 	fs->fs_cs(fs, cg).cs_nifree--;
1388 	fs->fs_fmod = 1;
1389 	if ((mode & IFMT) == IFDIR) {
1390 		cgp->cg_cs.cs_ndir++;
1391 		fs->fs_cstotal.cs_ndir++;
1392 		fs->fs_cs(fs, cg).cs_ndir++;
1393 	}
1394 	bdwrite(bp);
1395 	return (cg * fs->fs_ipg + ipref);
1396 }
1397 
1398 /*
1399  * Free a block or fragment.
1400  *
1401  * The specified block or fragment is placed back in the
1402  * free map. If a fragment is deallocated, a possible
1403  * block reassembly is checked.
1404  */
1405 void
1406 ffs_blkfree(ip, bno, size)
1407 	register struct inode *ip;
1408 	ufs_daddr_t bno;
1409 	long size;
1410 {
1411 	register struct fs *fs;
1412 	register struct cg *cgp;
1413 	struct buf *bp;
1414 	ufs_daddr_t fragno, cgbno;
1415 	int i, error, cg, blk, frags, bbase;
1416 	u_int8_t *blksfree;
1417 #ifdef DIAGNOSTIC
1418 	struct vnode *vp;
1419 #endif
1420 
1421 	fs = ip->i_fs;
1422 #ifdef DIAGNOSTIC
1423 	if ((vp = ITOV(ip)) != NULL && vp->v_mount != NULL &&
1424 	    (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED))
1425 		panic("ffs_blkfree: deallocation on suspended filesystem");
1426 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1427 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1428 		printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1429 		    devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1430 		    fs->fs_fsmnt);
1431 		panic("ffs_blkfree: bad size");
1432 	}
1433 #endif
1434 	if ((ip->i_devvp->v_flag & VCOPYONWRITE) &&
1435 	    ffs_snapblkfree(ip, bno, size))
1436 		return;
1437 	VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size);
1438 	cg = dtog(fs, bno);
1439 	if ((u_int)bno >= fs->fs_size) {
1440 		printf("bad block %ld, ino %lu\n",
1441 		    (long)bno, (u_long)ip->i_number);
1442 		ffs_fserr(fs, ip->i_uid, "bad block");
1443 		return;
1444 	}
1445 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1446 		(int)fs->fs_cgsize, NOCRED, &bp);
1447 	if (error) {
1448 		brelse(bp);
1449 		return;
1450 	}
1451 	cgp = (struct cg *)bp->b_data;
1452 	if (!cg_chkmagic(cgp)) {
1453 		brelse(bp);
1454 		return;
1455 	}
1456 	bp->b_xflags |= BX_BKGRDWRITE;
1457 	cgp->cg_time = time_second;
1458 	cgbno = dtogd(fs, bno);
1459 	blksfree = cg_blksfree(cgp);
1460 	if (size == fs->fs_bsize) {
1461 		fragno = fragstoblks(fs, cgbno);
1462 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1463 			printf("dev = %s, block = %ld, fs = %s\n",
1464 			    devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1465 			panic("ffs_blkfree: freeing free block");
1466 		}
1467 		ffs_setblock(fs, blksfree, fragno);
1468 		ffs_clusteracct(fs, cgp, fragno, 1);
1469 		cgp->cg_cs.cs_nbfree++;
1470 		fs->fs_cstotal.cs_nbfree++;
1471 		fs->fs_cs(fs, cg).cs_nbfree++;
1472 		i = cbtocylno(fs, cgbno);
1473 		cg_blks(fs, cgp, i)[cbtorpos(fs, cgbno)]++;
1474 		cg_blktot(cgp)[i]++;
1475 	} else {
1476 		bbase = cgbno - fragnum(fs, cgbno);
1477 		/*
1478 		 * decrement the counts associated with the old frags
1479 		 */
1480 		blk = blkmap(fs, blksfree, bbase);
1481 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1482 		/*
1483 		 * deallocate the fragment
1484 		 */
1485 		frags = numfrags(fs, size);
1486 		for (i = 0; i < frags; i++) {
1487 			if (isset(blksfree, cgbno + i)) {
1488 				printf("dev = %s, block = %ld, fs = %s\n",
1489 				    devtoname(ip->i_dev), (long)(bno + i),
1490 				    fs->fs_fsmnt);
1491 				panic("ffs_blkfree: freeing free frag");
1492 			}
1493 			setbit(blksfree, cgbno + i);
1494 		}
1495 		cgp->cg_cs.cs_nffree += i;
1496 		fs->fs_cstotal.cs_nffree += i;
1497 		fs->fs_cs(fs, cg).cs_nffree += i;
1498 		/*
1499 		 * add back in counts associated with the new frags
1500 		 */
1501 		blk = blkmap(fs, blksfree, bbase);
1502 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1503 		/*
1504 		 * if a complete block has been reassembled, account for it
1505 		 */
1506 		fragno = fragstoblks(fs, bbase);
1507 		if (ffs_isblock(fs, blksfree, fragno)) {
1508 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1509 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1510 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1511 			ffs_clusteracct(fs, cgp, fragno, 1);
1512 			cgp->cg_cs.cs_nbfree++;
1513 			fs->fs_cstotal.cs_nbfree++;
1514 			fs->fs_cs(fs, cg).cs_nbfree++;
1515 			i = cbtocylno(fs, bbase);
1516 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1517 			cg_blktot(cgp)[i]++;
1518 		}
1519 	}
1520 	fs->fs_fmod = 1;
1521 	bdwrite(bp);
1522 }
1523 
1524 #ifdef DIAGNOSTIC
1525 /*
1526  * Verify allocation of a block or fragment. Returns true if block or
1527  * fragment is allocated, false if it is free.
1528  */
1529 static int
1530 ffs_checkblk(ip, bno, size)
1531 	struct inode *ip;
1532 	ufs_daddr_t bno;
1533 	long size;
1534 {
1535 	struct fs *fs;
1536 	struct cg *cgp;
1537 	struct buf *bp;
1538 	int i, error, frags, free;
1539 	u_int8_t *blksfree;
1540 
1541 	fs = ip->i_fs;
1542 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1543 		printf("bsize = %ld, size = %ld, fs = %s\n",
1544 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1545 		panic("ffs_checkblk: bad size");
1546 	}
1547 	if ((u_int)bno >= fs->fs_size)
1548 		panic("ffs_checkblk: bad block %d", bno);
1549 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1550 		(int)fs->fs_cgsize, NOCRED, &bp);
1551 	if (error)
1552 		panic("ffs_checkblk: cg bread failed");
1553 	cgp = (struct cg *)bp->b_data;
1554 	if (!cg_chkmagic(cgp))
1555 		panic("ffs_checkblk: cg magic mismatch");
1556 	bp->b_xflags |= BX_BKGRDWRITE;
1557 	blksfree = cg_blksfree(cgp);
1558 	bno = dtogd(fs, bno);
1559 	if (size == fs->fs_bsize) {
1560 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1561 	} else {
1562 		frags = numfrags(fs, size);
1563 		for (free = 0, i = 0; i < frags; i++)
1564 			if (isset(blksfree, bno + i))
1565 				free++;
1566 		if (free != 0 && free != frags)
1567 			panic("ffs_checkblk: partially free fragment");
1568 	}
1569 	brelse(bp);
1570 	return (!free);
1571 }
1572 #endif /* DIAGNOSTIC */
1573 
1574 /*
1575  * Free an inode.
1576  */
1577 int
1578 ffs_vfree(pvp, ino, mode)
1579 	struct vnode *pvp;
1580 	ino_t ino;
1581 	int mode;
1582 {
1583 	if (DOINGSOFTDEP(pvp)) {
1584 		softdep_freefile(pvp, ino, mode);
1585 		return (0);
1586 	}
1587 	return (ffs_freefile(VTOI(pvp), ino, mode));
1588 }
1589 
1590 /*
1591  * Do the actual free operation.
1592  * The specified inode is placed back in the free map.
1593  */
1594 int
1595 ffs_freefile(pip, ino, mode)
1596 	struct inode *pip;
1597 	ino_t ino;
1598 	int mode;
1599 {
1600 	register struct fs *fs;
1601 	register struct cg *cgp;
1602 	struct buf *bp;
1603 	int error, cg;
1604 	u_int8_t *inosused;
1605 
1606 	fs = pip->i_fs;
1607 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1608 		panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s",
1609 		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1610 	cg = ino_to_cg(fs, ino);
1611 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1612 		(int)fs->fs_cgsize, NOCRED, &bp);
1613 	if (error) {
1614 		brelse(bp);
1615 		return (error);
1616 	}
1617 	cgp = (struct cg *)bp->b_data;
1618 	if (!cg_chkmagic(cgp)) {
1619 		brelse(bp);
1620 		return (0);
1621 	}
1622 	bp->b_xflags |= BX_BKGRDWRITE;
1623 	cgp->cg_time = time_second;
1624 	inosused = cg_inosused(cgp);
1625 	ino %= fs->fs_ipg;
1626 	if (isclr(inosused, ino)) {
1627 		printf("dev = %s, ino = %lu, fs = %s\n", devtoname(pip->i_dev),
1628 		    (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1629 		if (fs->fs_ronly == 0)
1630 			panic("ffs_vfree: freeing free inode");
1631 	}
1632 	clrbit(inosused, ino);
1633 	if (ino < cgp->cg_irotor)
1634 		cgp->cg_irotor = ino;
1635 	cgp->cg_cs.cs_nifree++;
1636 	fs->fs_cstotal.cs_nifree++;
1637 	fs->fs_cs(fs, cg).cs_nifree++;
1638 	if ((mode & IFMT) == IFDIR) {
1639 		cgp->cg_cs.cs_ndir--;
1640 		fs->fs_cstotal.cs_ndir--;
1641 		fs->fs_cs(fs, cg).cs_ndir--;
1642 	}
1643 	fs->fs_fmod = 1;
1644 	bdwrite(bp);
1645 	return (0);
1646 }
1647 
1648 /*
1649  * Find a block of the specified size in the specified cylinder group.
1650  *
1651  * It is a panic if a request is made to find a block if none are
1652  * available.
1653  */
1654 static ufs_daddr_t
1655 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1656 	register struct fs *fs;
1657 	register struct cg *cgp;
1658 	ufs_daddr_t bpref;
1659 	int allocsiz;
1660 {
1661 	ufs_daddr_t bno;
1662 	int start, len, loc, i;
1663 	int blk, field, subfield, pos;
1664 	u_int8_t *blksfree;
1665 
1666 	/*
1667 	 * find the fragment by searching through the free block
1668 	 * map for an appropriate bit pattern
1669 	 */
1670 	if (bpref)
1671 		start = dtogd(fs, bpref) / NBBY;
1672 	else
1673 		start = cgp->cg_frotor / NBBY;
1674 	blksfree = cg_blksfree(cgp);
1675 	len = howmany(fs->fs_fpg, NBBY) - start;
1676 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
1677 		(u_char *)fragtbl[fs->fs_frag],
1678 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1679 	if (loc == 0) {
1680 		len = start + 1;
1681 		start = 0;
1682 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
1683 			(u_char *)fragtbl[fs->fs_frag],
1684 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1685 		if (loc == 0) {
1686 			printf("start = %d, len = %d, fs = %s\n",
1687 			    start, len, fs->fs_fsmnt);
1688 			panic("ffs_alloccg: map corrupted");
1689 			/* NOTREACHED */
1690 		}
1691 	}
1692 	bno = (start + len - loc) * NBBY;
1693 	cgp->cg_frotor = bno;
1694 	/*
1695 	 * found the byte in the map
1696 	 * sift through the bits to find the selected frag
1697 	 */
1698 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1699 		blk = blkmap(fs, blksfree, bno);
1700 		blk <<= 1;
1701 		field = around[allocsiz];
1702 		subfield = inside[allocsiz];
1703 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1704 			if ((blk & field) == subfield)
1705 				return (bno + pos);
1706 			field <<= 1;
1707 			subfield <<= 1;
1708 		}
1709 	}
1710 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1711 	panic("ffs_alloccg: block not in map");
1712 	return (-1);
1713 }
1714 
1715 /*
1716  * Update the cluster map because of an allocation or free.
1717  *
1718  * Cnt == 1 means free; cnt == -1 means allocating.
1719  */
1720 static void
1721 ffs_clusteracct(fs, cgp, blkno, cnt)
1722 	struct fs *fs;
1723 	struct cg *cgp;
1724 	ufs_daddr_t blkno;
1725 	int cnt;
1726 {
1727 	int32_t *sump;
1728 	int32_t *lp;
1729 	u_char *freemapp, *mapp;
1730 	int i, start, end, forw, back, map, bit;
1731 
1732 	if (fs->fs_contigsumsize <= 0)
1733 		return;
1734 	freemapp = cg_clustersfree(cgp);
1735 	sump = cg_clustersum(cgp);
1736 	/*
1737 	 * Allocate or clear the actual block.
1738 	 */
1739 	if (cnt > 0)
1740 		setbit(freemapp, blkno);
1741 	else
1742 		clrbit(freemapp, blkno);
1743 	/*
1744 	 * Find the size of the cluster going forward.
1745 	 */
1746 	start = blkno + 1;
1747 	end = start + fs->fs_contigsumsize;
1748 	if (end >= cgp->cg_nclusterblks)
1749 		end = cgp->cg_nclusterblks;
1750 	mapp = &freemapp[start / NBBY];
1751 	map = *mapp++;
1752 	bit = 1 << (start % NBBY);
1753 	for (i = start; i < end; i++) {
1754 		if ((map & bit) == 0)
1755 			break;
1756 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1757 			bit <<= 1;
1758 		} else {
1759 			map = *mapp++;
1760 			bit = 1;
1761 		}
1762 	}
1763 	forw = i - start;
1764 	/*
1765 	 * Find the size of the cluster going backward.
1766 	 */
1767 	start = blkno - 1;
1768 	end = start - fs->fs_contigsumsize;
1769 	if (end < 0)
1770 		end = -1;
1771 	mapp = &freemapp[start / NBBY];
1772 	map = *mapp--;
1773 	bit = 1 << (start % NBBY);
1774 	for (i = start; i > end; i--) {
1775 		if ((map & bit) == 0)
1776 			break;
1777 		if ((i & (NBBY - 1)) != 0) {
1778 			bit >>= 1;
1779 		} else {
1780 			map = *mapp--;
1781 			bit = 1 << (NBBY - 1);
1782 		}
1783 	}
1784 	back = start - i;
1785 	/*
1786 	 * Account for old cluster and the possibly new forward and
1787 	 * back clusters.
1788 	 */
1789 	i = back + forw + 1;
1790 	if (i > fs->fs_contigsumsize)
1791 		i = fs->fs_contigsumsize;
1792 	sump[i] += cnt;
1793 	if (back > 0)
1794 		sump[back] -= cnt;
1795 	if (forw > 0)
1796 		sump[forw] -= cnt;
1797 	/*
1798 	 * Update cluster summary information.
1799 	 */
1800 	lp = &sump[fs->fs_contigsumsize];
1801 	for (i = fs->fs_contigsumsize; i > 0; i--)
1802 		if (*lp-- > 0)
1803 			break;
1804 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1805 }
1806 
1807 /*
1808  * Fserr prints the name of a file system with an error diagnostic.
1809  *
1810  * The form of the error message is:
1811  *	fs: error message
1812  */
1813 static void
1814 ffs_fserr(fs, uid, cp)
1815 	struct fs *fs;
1816 	u_int uid;
1817 	char *cp;
1818 {
1819 	struct proc *p = curproc;	/* XXX */
1820 
1821 	log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1822 			p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1823 }
1824 
1825 /*
1826  * This function provides the capability for the fsck program to
1827  * update an active filesystem. Six operations are provided:
1828  *
1829  * adjrefcnt(inode, amt) - adjusts the reference count on the
1830  *	specified inode by the specified amount. Under normal
1831  *	operation the count should always go down. Decrementing
1832  *	the count to zero will cause the inode to be freed.
1833  * adjblkcnt(inode, amt) - adjust the number of blocks used to
1834  *	by the specifed amount.
1835  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
1836  *	are marked as free. Inodes should never have to be marked
1837  *	as in use.
1838  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
1839  *	are marked as free. Inodes should never have to be marked
1840  *	as in use.
1841  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
1842  *	are marked as free. Blocks should never have to be marked
1843  *	as in use.
1844  * setflags(flags, set/clear) - the fs_flags field has the specified
1845  *	flags set (second parameter +1) or cleared (second parameter -1).
1846  */
1847 
1848 static int sysctl_ffs_fsck __P((SYSCTL_HANDLER_ARGS));
1849 
1850 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
1851 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
1852 
1853 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
1854 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
1855 
1856 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
1857 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
1858 
1859 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
1860 	sysctl_ffs_fsck, "Free Range of File Inodes");
1861 
1862 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
1863 	sysctl_ffs_fsck, "Free Range of Blocks");
1864 
1865 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
1866 	sysctl_ffs_fsck, "Change Filesystem Flags");
1867 
1868 #ifdef DEBUG
1869 static int fsckcmds = 0;
1870 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
1871 #endif /* DEBUG */
1872 
1873 static int
1874 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
1875 {
1876 	struct fsck_cmd cmd;
1877 	struct inode tip;
1878 	struct ufsmount *ump;
1879 	struct vnode *vp;
1880 	struct inode *ip;
1881 	struct mount *mp;
1882 	struct fs *fs;
1883 	ufs_daddr_t blkno;
1884 	long blkcnt, blksize;
1885 	struct file *fp;
1886 	int filetype, error;
1887 
1888 	if (req->newlen > sizeof cmd)
1889 		return (EBADRPC);
1890 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
1891 		return (error);
1892 	if (cmd.version != FFS_CMD_VERSION)
1893 		return (ERPCMISMATCH);
1894 	if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
1895 		return (error);
1896 	vn_start_write((struct vnode *)fp->f_data, &mp, V_WAIT);
1897 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
1898 		vn_finished_write(mp);
1899 		return (EINVAL);
1900 	}
1901 	if (mp->mnt_flag & MNT_RDONLY) {
1902 		vn_finished_write(mp);
1903 		return (EROFS);
1904 	}
1905 	ump = VFSTOUFS(mp);
1906 	fs = ump->um_fs;
1907 	filetype = IFREG;
1908 
1909 	switch (oidp->oid_number) {
1910 
1911 	case FFS_SET_FLAGS:
1912 #ifdef DEBUG
1913 		if (fsckcmds)
1914 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
1915 			    cmd.size > 0 ? "set" : "clear");
1916 #endif /* DEBUG */
1917 		if (cmd.size > 0)
1918 			fs->fs_flags |= (long)cmd.value;
1919 		else
1920 			fs->fs_flags &= ~(long)cmd.value;
1921 		break;
1922 
1923 	case FFS_ADJ_REFCNT:
1924 #ifdef DEBUG
1925 		if (fsckcmds) {
1926 			printf("%s: adjust inode %d count by %ld\n",
1927 			    mp->mnt_stat.f_mntonname, (ino_t)cmd.value,
1928 			    cmd.size);
1929 		}
1930 #endif /* DEBUG */
1931 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, &vp)) != 0)
1932 			break;
1933 		ip = VTOI(vp);
1934 		ip->i_nlink += cmd.size;
1935 		ip->i_effnlink += cmd.size;
1936 		ip->i_flag |= IN_CHANGE;
1937 		if (DOINGSOFTDEP(vp))
1938 			softdep_change_linkcnt(ip);
1939 		vput(vp);
1940 		break;
1941 
1942 	case FFS_ADJ_BLKCNT:
1943 #ifdef DEBUG
1944 		if (fsckcmds) {
1945 			printf("%s: adjust inode %d block count by %ld\n",
1946 			    mp->mnt_stat.f_mntonname, (ino_t)cmd.value,
1947 			    cmd.size);
1948 		}
1949 #endif /* DEBUG */
1950 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, &vp)) != 0)
1951 			break;
1952 		ip = VTOI(vp);
1953 		ip->i_blocks += cmd.size;
1954 		ip->i_flag |= IN_CHANGE;
1955 		vput(vp);
1956 		break;
1957 
1958 	case FFS_DIR_FREE:
1959 		filetype = IFDIR;
1960 		/* fall through */
1961 
1962 	case FFS_FILE_FREE:
1963 #ifdef DEBUG
1964 		if (fsckcmds) {
1965 			if (cmd.size == 1)
1966 				printf("%s: free %s inode %d\n",
1967 				    mp->mnt_stat.f_mntonname,
1968 				    filetype == IFDIR ? "directory" : "file",
1969 				    (ino_t)cmd.value);
1970 			else
1971 				printf("%s: free %s inodes %d-%d\n",
1972 				    mp->mnt_stat.f_mntonname,
1973 				    filetype == IFDIR ? "directory" : "file",
1974 				    (ino_t)cmd.value,
1975 				    (ino_t)cmd.value + cmd.size - 1);
1976 		}
1977 #endif /* DEBUG */
1978 		tip.i_devvp = ump->um_devvp;
1979 		tip.i_dev = ump->um_dev;
1980 		tip.i_fs = fs;
1981 		while (cmd.size > 0) {
1982 			if ((error = ffs_freefile(&tip, cmd.value, filetype)))
1983 				break;
1984 			cmd.size -= 1;
1985 			cmd.value += 1;
1986 		}
1987 		break;
1988 
1989 	case FFS_BLK_FREE:
1990 #ifdef DEBUG
1991 		if (fsckcmds) {
1992 			if (cmd.size == 1)
1993 				printf("%s: free block %d\n",
1994 				    mp->mnt_stat.f_mntonname,
1995 				    (ufs_daddr_t)cmd.value);
1996 			else
1997 				printf("%s: free blocks %d-%ld\n",
1998 				    mp->mnt_stat.f_mntonname,
1999 				    (ufs_daddr_t)cmd.value,
2000 				    (ufs_daddr_t)cmd.value + cmd.size - 1);
2001 		}
2002 #endif /* DEBUG */
2003 		tip.i_number = ROOTINO;
2004 		tip.i_devvp = ump->um_devvp;
2005 		tip.i_dev = ump->um_dev;
2006 		tip.i_fs = fs;
2007 		tip.i_size = cmd.size * fs->fs_fsize;
2008 		tip.i_uid = 0;
2009 		tip.i_vnode = NULL;
2010 		blkno = (ufs_daddr_t)cmd.value;
2011 		blkcnt = cmd.size;
2012 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2013 		while (blkcnt > 0) {
2014 			if (blksize > blkcnt)
2015 				blksize = blkcnt;
2016 			ffs_blkfree(&tip, blkno, blksize * fs->fs_fsize);
2017 			blkno += blksize;
2018 			blkcnt -= blksize;
2019 			blksize = fs->fs_frag;
2020 		}
2021 		break;
2022 
2023 	default:
2024 #ifdef DEBUG
2025 		if (fsckcmds) {
2026 			printf("Invalid request %d from fsck\n",
2027 			    oidp->oid_number);
2028 		}
2029 #endif /* DEBUG */
2030 		error = EINVAL;
2031 		break;
2032 
2033 	}
2034 	vn_finished_write(mp);
2035 	return (error);
2036 }
2037