xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_quota.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bio.h>
42 #include <sys/buf.h>
43 #include <sys/conf.h>
44 #include <sys/file.h>
45 #include <sys/proc.h>
46 #include <sys/vnode.h>
47 #include <sys/mount.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 
52 #include <ufs/ufs/extattr.h>
53 #include <ufs/ufs/quota.h>
54 #include <ufs/ufs/inode.h>
55 #include <ufs/ufs/ufs_extern.h>
56 #include <ufs/ufs/ufsmount.h>
57 
58 #include <ufs/ffs/fs.h>
59 #include <ufs/ffs/ffs_extern.h>
60 
61 typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
62 				  int size));
63 
64 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 static ufs_daddr_t
66 	      ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
67 #ifdef DIAGNOSTIC
68 static int	ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
69 #endif
70 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
71 	    int));
72 static ino_t	ffs_dirpref __P((struct inode *));
73 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
74 static void	ffs_fserr __P((struct fs *, ino_t, char *));
75 static u_long	ffs_hashalloc
76 		    __P((struct inode *, int, long, int, allocfcn_t *));
77 static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
78 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
79 	    int));
80 
81 /*
82  * Allocate a block in the file system.
83  *
84  * The size of the requested block is given, which must be some
85  * multiple of fs_fsize and <= fs_bsize.
86  * A preference may be optionally specified. If a preference is given
87  * the following hierarchy is used to allocate a block:
88  *   1) allocate the requested block.
89  *   2) allocate a rotationally optimal block in the same cylinder.
90  *   3) allocate a block in the same cylinder group.
91  *   4) quadradically rehash into other cylinder groups, until an
92  *      available block is located.
93  * If no block preference is given the following heirarchy is used
94  * to allocate a block:
95  *   1) allocate a block in the cylinder group that contains the
96  *      inode for the file.
97  *   2) quadradically rehash into other cylinder groups, until an
98  *      available block is located.
99  */
100 int
101 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
102 	register struct inode *ip;
103 	ufs_daddr_t lbn, bpref;
104 	int size;
105 	struct ucred *cred;
106 	ufs_daddr_t *bnp;
107 {
108 	register struct fs *fs;
109 	ufs_daddr_t bno;
110 	int cg, reclaimed;
111 #ifdef QUOTA
112 	int error;
113 #endif
114 
115 	*bnp = 0;
116 	fs = ip->i_fs;
117 #ifdef DIAGNOSTIC
118 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
119 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
120 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
121 		    fs->fs_fsmnt);
122 		panic("ffs_alloc: bad size");
123 	}
124 	if (cred == NOCRED)
125 		panic("ffs_alloc: missing credential");
126 #endif /* DIAGNOSTIC */
127 	reclaimed = 0;
128 retry:
129 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
130 		goto nospace;
131 	if (suser_xxx(cred, NULL, PRISON_ROOT) &&
132 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
133 		goto nospace;
134 #ifdef QUOTA
135 	error = chkdq(ip, (long)btodb(size), cred, 0);
136 	if (error)
137 		return (error);
138 #endif
139 	if (bpref >= fs->fs_size)
140 		bpref = 0;
141 	if (bpref == 0)
142 		cg = ino_to_cg(fs, ip->i_number);
143 	else
144 		cg = dtog(fs, bpref);
145 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
146 					 ffs_alloccg);
147 	if (bno > 0) {
148 		ip->i_blocks += btodb(size);
149 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
150 		*bnp = bno;
151 		return (0);
152 	}
153 #ifdef QUOTA
154 	/*
155 	 * Restore user's disk quota because allocation failed.
156 	 */
157 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
158 #endif
159 nospace:
160 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
161 		reclaimed = 1;
162 		softdep_request_cleanup(fs, ITOV(ip));
163 		goto retry;
164 	}
165 	ffs_fserr(fs, ip->i_number, "file system full");
166 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
167 	return (ENOSPC);
168 }
169 
170 /*
171  * Reallocate a fragment to a bigger size
172  *
173  * The number and size of the old block is given, and a preference
174  * and new size is also specified. The allocator attempts to extend
175  * the original block. Failing that, the regular block allocator is
176  * invoked to get an appropriate block.
177  */
178 int
179 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
180 	register struct inode *ip;
181 	ufs_daddr_t lbprev;
182 	ufs_daddr_t bpref;
183 	int osize, nsize;
184 	struct ucred *cred;
185 	struct buf **bpp;
186 {
187 	struct vnode *vp;
188 	struct fs *fs;
189 	struct buf *bp;
190 	int cg, request, error, reclaimed;
191 	ufs_daddr_t bprev, bno;
192 
193 	*bpp = 0;
194 	vp = ITOV(ip);
195 	fs = ip->i_fs;
196 #ifdef DIAGNOSTIC
197 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
198 		panic("ffs_realloccg: allocation on suspended filesystem");
199 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
200 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
201 		printf(
202 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
203 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
204 		    nsize, fs->fs_fsmnt);
205 		panic("ffs_realloccg: bad size");
206 	}
207 	if (cred == NOCRED)
208 		panic("ffs_realloccg: missing credential");
209 #endif /* DIAGNOSTIC */
210 	reclaimed = 0;
211 retry:
212 	if (suser_xxx(cred, NULL, PRISON_ROOT) &&
213 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
214 		goto nospace;
215 	if ((bprev = ip->i_db[lbprev]) == 0) {
216 		printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
217 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
218 		    fs->fs_fsmnt);
219 		panic("ffs_realloccg: bad bprev");
220 	}
221 	/*
222 	 * Allocate the extra space in the buffer.
223 	 */
224 	error = bread(vp, lbprev, osize, NOCRED, &bp);
225 	if (error) {
226 		brelse(bp);
227 		return (error);
228 	}
229 
230 	if( bp->b_blkno == bp->b_lblkno) {
231 		if( lbprev >= NDADDR)
232 			panic("ffs_realloccg: lbprev out of range");
233 		bp->b_blkno = fsbtodb(fs, bprev);
234 	}
235 
236 #ifdef QUOTA
237 	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
238 	if (error) {
239 		brelse(bp);
240 		return (error);
241 	}
242 #endif
243 	/*
244 	 * Check for extension in the existing location.
245 	 */
246 	cg = dtog(fs, bprev);
247 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
248 	if (bno) {
249 		if (bp->b_blkno != fsbtodb(fs, bno))
250 			panic("ffs_realloccg: bad blockno");
251 		ip->i_blocks += btodb(nsize - osize);
252 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
253 		allocbuf(bp, nsize);
254 		bp->b_flags |= B_DONE;
255 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
256 		*bpp = bp;
257 		return (0);
258 	}
259 	/*
260 	 * Allocate a new disk location.
261 	 */
262 	if (bpref >= fs->fs_size)
263 		bpref = 0;
264 	switch ((int)fs->fs_optim) {
265 	case FS_OPTSPACE:
266 		/*
267 		 * Allocate an exact sized fragment. Although this makes
268 		 * best use of space, we will waste time relocating it if
269 		 * the file continues to grow. If the fragmentation is
270 		 * less than half of the minimum free reserve, we choose
271 		 * to begin optimizing for time.
272 		 */
273 		request = nsize;
274 		if (fs->fs_minfree <= 5 ||
275 		    fs->fs_cstotal.cs_nffree >
276 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
277 			break;
278 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
279 			fs->fs_fsmnt);
280 		fs->fs_optim = FS_OPTTIME;
281 		break;
282 	case FS_OPTTIME:
283 		/*
284 		 * At this point we have discovered a file that is trying to
285 		 * grow a small fragment to a larger fragment. To save time,
286 		 * we allocate a full sized block, then free the unused portion.
287 		 * If the file continues to grow, the `ffs_fragextend' call
288 		 * above will be able to grow it in place without further
289 		 * copying. If aberrant programs cause disk fragmentation to
290 		 * grow within 2% of the free reserve, we choose to begin
291 		 * optimizing for space.
292 		 */
293 		request = fs->fs_bsize;
294 		if (fs->fs_cstotal.cs_nffree <
295 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
296 			break;
297 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
298 			fs->fs_fsmnt);
299 		fs->fs_optim = FS_OPTSPACE;
300 		break;
301 	default:
302 		printf("dev = %s, optim = %ld, fs = %s\n",
303 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
304 		panic("ffs_realloccg: bad optim");
305 		/* NOTREACHED */
306 	}
307 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
308 					 ffs_alloccg);
309 	if (bno > 0) {
310 		bp->b_blkno = fsbtodb(fs, bno);
311 		if (!DOINGSOFTDEP(vp))
312 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
313 			    ip->i_number);
314 		if (nsize < request)
315 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
316 			    (long)(request - nsize), ip->i_number);
317 		ip->i_blocks += btodb(nsize - osize);
318 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
319 		allocbuf(bp, nsize);
320 		bp->b_flags |= B_DONE;
321 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
322 		*bpp = bp;
323 		return (0);
324 	}
325 #ifdef QUOTA
326 	/*
327 	 * Restore user's disk quota because allocation failed.
328 	 */
329 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
330 #endif
331 	brelse(bp);
332 nospace:
333 	/*
334 	 * no space available
335 	 */
336 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
337 		reclaimed = 1;
338 		softdep_request_cleanup(fs, vp);
339 		goto retry;
340 	}
341 	ffs_fserr(fs, ip->i_number, "file system full");
342 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
343 	return (ENOSPC);
344 }
345 
346 /*
347  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
348  *
349  * The vnode and an array of buffer pointers for a range of sequential
350  * logical blocks to be made contiguous is given. The allocator attempts
351  * to find a range of sequential blocks starting as close as possible to
352  * an fs_rotdelay offset from the end of the allocation for the logical
353  * block immediately preceding the current range. If successful, the
354  * physical block numbers in the buffer pointers and in the inode are
355  * changed to reflect the new allocation. If unsuccessful, the allocation
356  * is left unchanged. The success in doing the reallocation is returned.
357  * Note that the error return is not reflected back to the user. Rather
358  * the previous block allocation will be used.
359  */
360 
361 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
362 
363 static int doasyncfree = 1;
364 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
365 
366 static int doreallocblks = 1;
367 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
368 
369 #ifdef DEBUG
370 static volatile int prtrealloc = 0;
371 #endif
372 
373 int
374 ffs_reallocblks(ap)
375 	struct vop_reallocblks_args /* {
376 		struct vnode *a_vp;
377 		struct cluster_save *a_buflist;
378 	} */ *ap;
379 {
380 	struct fs *fs;
381 	struct inode *ip;
382 	struct vnode *vp;
383 	struct buf *sbp, *ebp;
384 	ufs_daddr_t *bap, *sbap, *ebap = 0;
385 	struct cluster_save *buflist;
386 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
387 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
388 	int i, len, start_lvl, end_lvl, pref, ssize;
389 
390 	if (doreallocblks == 0)
391 		return (ENOSPC);
392 	vp = ap->a_vp;
393 	ip = VTOI(vp);
394 	fs = ip->i_fs;
395 	if (fs->fs_contigsumsize <= 0)
396 		return (ENOSPC);
397 	buflist = ap->a_buflist;
398 	len = buflist->bs_nchildren;
399 	start_lbn = buflist->bs_children[0]->b_lblkno;
400 	end_lbn = start_lbn + len - 1;
401 #ifdef DIAGNOSTIC
402 	for (i = 0; i < len; i++)
403 		if (!ffs_checkblk(ip,
404 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
405 			panic("ffs_reallocblks: unallocated block 1");
406 	for (i = 1; i < len; i++)
407 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
408 			panic("ffs_reallocblks: non-logical cluster");
409 	blkno = buflist->bs_children[0]->b_blkno;
410 	ssize = fsbtodb(fs, fs->fs_frag);
411 	for (i = 1; i < len - 1; i++)
412 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
413 			panic("ffs_reallocblks: non-physical cluster %d", i);
414 #endif
415 	/*
416 	 * If the latest allocation is in a new cylinder group, assume that
417 	 * the filesystem has decided to move and do not force it back to
418 	 * the previous cylinder group.
419 	 */
420 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
421 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
422 		return (ENOSPC);
423 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
424 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
425 		return (ENOSPC);
426 	/*
427 	 * Get the starting offset and block map for the first block.
428 	 */
429 	if (start_lvl == 0) {
430 		sbap = &ip->i_db[0];
431 		soff = start_lbn;
432 	} else {
433 		idp = &start_ap[start_lvl - 1];
434 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
435 			brelse(sbp);
436 			return (ENOSPC);
437 		}
438 		sbap = (ufs_daddr_t *)sbp->b_data;
439 		soff = idp->in_off;
440 	}
441 	/*
442 	 * Find the preferred location for the cluster.
443 	 */
444 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
445 	/*
446 	 * If the block range spans two block maps, get the second map.
447 	 */
448 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
449 		ssize = len;
450 	} else {
451 #ifdef DIAGNOSTIC
452 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
453 			panic("ffs_reallocblk: start == end");
454 #endif
455 		ssize = len - (idp->in_off + 1);
456 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
457 			goto fail;
458 		ebap = (ufs_daddr_t *)ebp->b_data;
459 	}
460 	/*
461 	 * Search the block map looking for an allocation of the desired size.
462 	 */
463 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
464 	    len, ffs_clusteralloc)) == 0)
465 		goto fail;
466 	/*
467 	 * We have found a new contiguous block.
468 	 *
469 	 * First we have to replace the old block pointers with the new
470 	 * block pointers in the inode and indirect blocks associated
471 	 * with the file.
472 	 */
473 #ifdef DEBUG
474 	if (prtrealloc)
475 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
476 		    start_lbn, end_lbn);
477 #endif
478 	blkno = newblk;
479 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
480 		if (i == ssize) {
481 			bap = ebap;
482 			soff = -i;
483 		}
484 #ifdef DIAGNOSTIC
485 		if (!ffs_checkblk(ip,
486 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
487 			panic("ffs_reallocblks: unallocated block 2");
488 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
489 			panic("ffs_reallocblks: alloc mismatch");
490 #endif
491 #ifdef DEBUG
492 		if (prtrealloc)
493 			printf(" %d,", *bap);
494 #endif
495 		if (DOINGSOFTDEP(vp)) {
496 			if (sbap == &ip->i_db[0] && i < ssize)
497 				softdep_setup_allocdirect(ip, start_lbn + i,
498 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
499 				    buflist->bs_children[i]);
500 			else
501 				softdep_setup_allocindir_page(ip, start_lbn + i,
502 				    i < ssize ? sbp : ebp, soff + i, blkno,
503 				    *bap, buflist->bs_children[i]);
504 		}
505 		*bap++ = blkno;
506 	}
507 	/*
508 	 * Next we must write out the modified inode and indirect blocks.
509 	 * For strict correctness, the writes should be synchronous since
510 	 * the old block values may have been written to disk. In practise
511 	 * they are almost never written, but if we are concerned about
512 	 * strict correctness, the `doasyncfree' flag should be set to zero.
513 	 *
514 	 * The test on `doasyncfree' should be changed to test a flag
515 	 * that shows whether the associated buffers and inodes have
516 	 * been written. The flag should be set when the cluster is
517 	 * started and cleared whenever the buffer or inode is flushed.
518 	 * We can then check below to see if it is set, and do the
519 	 * synchronous write only when it has been cleared.
520 	 */
521 	if (sbap != &ip->i_db[0]) {
522 		if (doasyncfree)
523 			bdwrite(sbp);
524 		else
525 			bwrite(sbp);
526 	} else {
527 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
528 		if (!doasyncfree)
529 			UFS_UPDATE(vp, 1);
530 	}
531 	if (ssize < len) {
532 		if (doasyncfree)
533 			bdwrite(ebp);
534 		else
535 			bwrite(ebp);
536 	}
537 	/*
538 	 * Last, free the old blocks and assign the new blocks to the buffers.
539 	 */
540 #ifdef DEBUG
541 	if (prtrealloc)
542 		printf("\n\tnew:");
543 #endif
544 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
545 		if (!DOINGSOFTDEP(vp))
546 			ffs_blkfree(fs, ip->i_devvp,
547 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
548 			    fs->fs_bsize, ip->i_number);
549 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
550 #ifdef DIAGNOSTIC
551 		if (!ffs_checkblk(ip,
552 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
553 			panic("ffs_reallocblks: unallocated block 3");
554 #endif
555 #ifdef DEBUG
556 		if (prtrealloc)
557 			printf(" %d,", blkno);
558 #endif
559 	}
560 #ifdef DEBUG
561 	if (prtrealloc) {
562 		prtrealloc--;
563 		printf("\n");
564 	}
565 #endif
566 	return (0);
567 
568 fail:
569 	if (ssize < len)
570 		brelse(ebp);
571 	if (sbap != &ip->i_db[0])
572 		brelse(sbp);
573 	return (ENOSPC);
574 }
575 
576 /*
577  * Allocate an inode in the file system.
578  *
579  * If allocating a directory, use ffs_dirpref to select the inode.
580  * If allocating in a directory, the following hierarchy is followed:
581  *   1) allocate the preferred inode.
582  *   2) allocate an inode in the same cylinder group.
583  *   3) quadradically rehash into other cylinder groups, until an
584  *      available inode is located.
585  * If no inode preference is given the following heirarchy is used
586  * to allocate an inode:
587  *   1) allocate an inode in cylinder group 0.
588  *   2) quadradically rehash into other cylinder groups, until an
589  *      available inode is located.
590  */
591 int
592 ffs_valloc(pvp, mode, cred, vpp)
593 	struct vnode *pvp;
594 	int mode;
595 	struct ucred *cred;
596 	struct vnode **vpp;
597 {
598 	register struct inode *pip;
599 	register struct fs *fs;
600 	register struct inode *ip;
601 	ino_t ino, ipref;
602 	int cg, error;
603 
604 	*vpp = NULL;
605 	pip = VTOI(pvp);
606 	fs = pip->i_fs;
607 	if (fs->fs_cstotal.cs_nifree == 0)
608 		goto noinodes;
609 
610 	if ((mode & IFMT) == IFDIR)
611 		ipref = ffs_dirpref(pip);
612 	else
613 		ipref = pip->i_number;
614 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
615 		ipref = 0;
616 	cg = ino_to_cg(fs, ipref);
617 	/*
618 	 * Track number of dirs created one after another
619 	 * in a same cg without intervening by files.
620 	 */
621 	if ((mode & IFMT) == IFDIR) {
622 		if (fs->fs_contigdirs[cg] < 255)
623 			fs->fs_contigdirs[cg]++;
624 	} else {
625 		if (fs->fs_contigdirs[cg] > 0)
626 			fs->fs_contigdirs[cg]--;
627 	}
628 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
629 					(allocfcn_t *)ffs_nodealloccg);
630 	if (ino == 0)
631 		goto noinodes;
632 	error = VFS_VGET(pvp->v_mount, ino, vpp);
633 	if (error) {
634 		UFS_VFREE(pvp, ino, mode);
635 		return (error);
636 	}
637 	ip = VTOI(*vpp);
638 	if (ip->i_mode) {
639 		printf("mode = 0%o, inum = %lu, fs = %s\n",
640 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
641 		panic("ffs_valloc: dup alloc");
642 	}
643 	if (ip->i_blocks && (fs->fs_flags & FS_UNCLEAN) == 0) {	    /* XXX */
644 		printf("free inode %s/%lu had %ld blocks\n",
645 		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
646 		ip->i_blocks = 0;
647 	}
648 	ip->i_flags = 0;
649 	/*
650 	 * Set up a new generation number for this inode.
651 	 */
652 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
653 		ip->i_gen = random() / 2 + 1;
654 	return (0);
655 noinodes:
656 	ffs_fserr(fs, pip->i_number, "out of inodes");
657 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
658 	return (ENOSPC);
659 }
660 
661 /*
662  * Find a cylinder group to place a directory.
663  *
664  * The policy implemented by this algorithm is to allocate a
665  * directory inode in the same cylinder group as its parent
666  * directory, but also to reserve space for its files inodes
667  * and data. Restrict the number of directories which may be
668  * allocated one after another in the same cylinder group
669  * without intervening allocation of files.
670  *
671  * If we allocate a first level directory then force allocation
672  * in another cylinder group.
673  */
674 static ino_t
675 ffs_dirpref(pip)
676 	struct inode *pip;
677 {
678 	register struct fs *fs;
679 	int cg, prefcg, dirsize, cgsize;
680 	int avgifree, avgbfree, avgndir, curdirsize;
681 	int minifree, minbfree, maxndir;
682 	int mincg, minndir;
683 	int maxcontigdirs;
684 
685 	fs = pip->i_fs;
686 
687 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
688 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
689 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
690 
691 	/*
692 	 * Force allocation in another cg if creating a first level dir.
693 	 */
694 	if (ITOV(pip)->v_flag & VROOT) {
695 		prefcg = arc4random() % fs->fs_ncg;
696 		mincg = prefcg;
697 		minndir = fs->fs_ipg;
698 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
699 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
700 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
701 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
702 				mincg = cg;
703 				minndir = fs->fs_cs(fs, cg).cs_ndir;
704 			}
705 		for (cg = 0; cg < prefcg; cg++)
706 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
707 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
708 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
709 				mincg = cg;
710 				minndir = fs->fs_cs(fs, cg).cs_ndir;
711 			}
712 		return ((ino_t)(fs->fs_ipg * mincg));
713 	}
714 
715 	/*
716 	 * Count various limits which used for
717 	 * optimal allocation of a directory inode.
718 	 */
719 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
720 	minifree = avgifree - fs->fs_ipg / 4;
721 	if (minifree < 0)
722 		minifree = 0;
723 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
724 	if (minbfree < 0)
725 		minbfree = 0;
726 	cgsize = fs->fs_fsize * fs->fs_fpg;
727 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
728 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
729 	if (dirsize < curdirsize)
730 		dirsize = curdirsize;
731 	maxcontigdirs = min(cgsize / dirsize, 255);
732 	if (fs->fs_avgfpdir > 0)
733 		maxcontigdirs = min(maxcontigdirs,
734 				    fs->fs_ipg / fs->fs_avgfpdir);
735 	if (maxcontigdirs == 0)
736 		maxcontigdirs = 1;
737 
738 	/*
739 	 * Limit number of dirs in one cg and reserve space for
740 	 * regular files, but only if we have no deficit in
741 	 * inodes or space.
742 	 */
743 	prefcg = ino_to_cg(fs, pip->i_number);
744 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
745 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
746 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
747 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
748 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
749 				return ((ino_t)(fs->fs_ipg * cg));
750 		}
751 	for (cg = 0; cg < prefcg; cg++)
752 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
753 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
754 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
755 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
756 				return ((ino_t)(fs->fs_ipg * cg));
757 		}
758 	/*
759 	 * This is a backstop when we have deficit in space.
760 	 */
761 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
762 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
763 			return ((ino_t)(fs->fs_ipg * cg));
764 	for (cg = 0; cg < prefcg; cg++)
765 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
766 			break;
767 	return ((ino_t)(fs->fs_ipg * cg));
768 }
769 
770 /*
771  * Select the desired position for the next block in a file.  The file is
772  * logically divided into sections. The first section is composed of the
773  * direct blocks. Each additional section contains fs_maxbpg blocks.
774  *
775  * If no blocks have been allocated in the first section, the policy is to
776  * request a block in the same cylinder group as the inode that describes
777  * the file. If no blocks have been allocated in any other section, the
778  * policy is to place the section in a cylinder group with a greater than
779  * average number of free blocks.  An appropriate cylinder group is found
780  * by using a rotor that sweeps the cylinder groups. When a new group of
781  * blocks is needed, the sweep begins in the cylinder group following the
782  * cylinder group from which the previous allocation was made. The sweep
783  * continues until a cylinder group with greater than the average number
784  * of free blocks is found. If the allocation is for the first block in an
785  * indirect block, the information on the previous allocation is unavailable;
786  * here a best guess is made based upon the logical block number being
787  * allocated.
788  *
789  * If a section is already partially allocated, the policy is to
790  * contiguously allocate fs_maxcontig blocks.  The end of one of these
791  * contiguous blocks and the beginning of the next is physically separated
792  * so that the disk head will be in transit between them for at least
793  * fs_rotdelay milliseconds.  This is to allow time for the processor to
794  * schedule another I/O transfer.
795  */
796 ufs_daddr_t
797 ffs_blkpref(ip, lbn, indx, bap)
798 	struct inode *ip;
799 	ufs_daddr_t lbn;
800 	int indx;
801 	ufs_daddr_t *bap;
802 {
803 	register struct fs *fs;
804 	register int cg;
805 	int avgbfree, startcg;
806 	ufs_daddr_t nextblk;
807 
808 	fs = ip->i_fs;
809 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
810 		if (lbn < NDADDR + NINDIR(fs)) {
811 			cg = ino_to_cg(fs, ip->i_number);
812 			return (fs->fs_fpg * cg + fs->fs_frag);
813 		}
814 		/*
815 		 * Find a cylinder with greater than average number of
816 		 * unused data blocks.
817 		 */
818 		if (indx == 0 || bap[indx - 1] == 0)
819 			startcg =
820 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
821 		else
822 			startcg = dtog(fs, bap[indx - 1]) + 1;
823 		startcg %= fs->fs_ncg;
824 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
825 		for (cg = startcg; cg < fs->fs_ncg; cg++)
826 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
827 				fs->fs_cgrotor = cg;
828 				return (fs->fs_fpg * cg + fs->fs_frag);
829 			}
830 		for (cg = 0; cg <= startcg; cg++)
831 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
832 				fs->fs_cgrotor = cg;
833 				return (fs->fs_fpg * cg + fs->fs_frag);
834 			}
835 		return (0);
836 	}
837 	/*
838 	 * One or more previous blocks have been laid out. If less
839 	 * than fs_maxcontig previous blocks are contiguous, the
840 	 * next block is requested contiguously, otherwise it is
841 	 * requested rotationally delayed by fs_rotdelay milliseconds.
842 	 */
843 	nextblk = bap[indx - 1] + fs->fs_frag;
844 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
845 	    bap[indx - fs->fs_maxcontig] +
846 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
847 		return (nextblk);
848 	/*
849 	 * Here we convert ms of delay to frags as:
850 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
851 	 *	((sect/frag) * (ms/sec))
852 	 * then round up to the next block.
853 	 */
854 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
855 	    (NSPF(fs) * 1000), fs->fs_frag);
856 	return (nextblk);
857 }
858 
859 /*
860  * Implement the cylinder overflow algorithm.
861  *
862  * The policy implemented by this algorithm is:
863  *   1) allocate the block in its requested cylinder group.
864  *   2) quadradically rehash on the cylinder group number.
865  *   3) brute force search for a free block.
866  */
867 /*VARARGS5*/
868 static u_long
869 ffs_hashalloc(ip, cg, pref, size, allocator)
870 	struct inode *ip;
871 	int cg;
872 	long pref;
873 	int size;	/* size for data blocks, mode for inodes */
874 	allocfcn_t *allocator;
875 {
876 	register struct fs *fs;
877 	long result;	/* XXX why not same type as we return? */
878 	int i, icg = cg;
879 
880 #ifdef DIAGNOSTIC
881 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
882 		panic("ffs_hashalloc: allocation on suspended filesystem");
883 #endif
884 	fs = ip->i_fs;
885 	/*
886 	 * 1: preferred cylinder group
887 	 */
888 	result = (*allocator)(ip, cg, pref, size);
889 	if (result)
890 		return (result);
891 	/*
892 	 * 2: quadratic rehash
893 	 */
894 	for (i = 1; i < fs->fs_ncg; i *= 2) {
895 		cg += i;
896 		if (cg >= fs->fs_ncg)
897 			cg -= fs->fs_ncg;
898 		result = (*allocator)(ip, cg, 0, size);
899 		if (result)
900 			return (result);
901 	}
902 	/*
903 	 * 3: brute force search
904 	 * Note that we start at i == 2, since 0 was checked initially,
905 	 * and 1 is always checked in the quadratic rehash.
906 	 */
907 	cg = (icg + 2) % fs->fs_ncg;
908 	for (i = 2; i < fs->fs_ncg; i++) {
909 		result = (*allocator)(ip, cg, 0, size);
910 		if (result)
911 			return (result);
912 		cg++;
913 		if (cg == fs->fs_ncg)
914 			cg = 0;
915 	}
916 	return (0);
917 }
918 
919 /*
920  * Determine whether a fragment can be extended.
921  *
922  * Check to see if the necessary fragments are available, and
923  * if they are, allocate them.
924  */
925 static ufs_daddr_t
926 ffs_fragextend(ip, cg, bprev, osize, nsize)
927 	struct inode *ip;
928 	int cg;
929 	long bprev;
930 	int osize, nsize;
931 {
932 	register struct fs *fs;
933 	register struct cg *cgp;
934 	struct buf *bp;
935 	long bno;
936 	int frags, bbase;
937 	int i, error;
938 	u_int8_t *blksfree;
939 
940 	fs = ip->i_fs;
941 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
942 		return (0);
943 	frags = numfrags(fs, nsize);
944 	bbase = fragnum(fs, bprev);
945 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
946 		/* cannot extend across a block boundary */
947 		return (0);
948 	}
949 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
950 		(int)fs->fs_cgsize, NOCRED, &bp);
951 	if (error) {
952 		brelse(bp);
953 		return (0);
954 	}
955 	cgp = (struct cg *)bp->b_data;
956 	if (!cg_chkmagic(cgp)) {
957 		brelse(bp);
958 		return (0);
959 	}
960 	bp->b_xflags |= BX_BKGRDWRITE;
961 	cgp->cg_time = time_second;
962 	bno = dtogd(fs, bprev);
963 	blksfree = cg_blksfree(cgp);
964 	for (i = numfrags(fs, osize); i < frags; i++)
965 		if (isclr(blksfree, bno + i)) {
966 			brelse(bp);
967 			return (0);
968 		}
969 	/*
970 	 * the current fragment can be extended
971 	 * deduct the count on fragment being extended into
972 	 * increase the count on the remaining fragment (if any)
973 	 * allocate the extended piece
974 	 */
975 	for (i = frags; i < fs->fs_frag - bbase; i++)
976 		if (isclr(blksfree, bno + i))
977 			break;
978 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
979 	if (i != frags)
980 		cgp->cg_frsum[i - frags]++;
981 	for (i = numfrags(fs, osize); i < frags; i++) {
982 		clrbit(blksfree, bno + i);
983 		cgp->cg_cs.cs_nffree--;
984 		fs->fs_cstotal.cs_nffree--;
985 		fs->fs_cs(fs, cg).cs_nffree--;
986 	}
987 	fs->fs_fmod = 1;
988 	if (DOINGSOFTDEP(ITOV(ip)))
989 		softdep_setup_blkmapdep(bp, fs, bprev);
990 	if (fs->fs_active != 0)
991 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
992 	bdwrite(bp);
993 	return (bprev);
994 }
995 
996 /*
997  * Determine whether a block can be allocated.
998  *
999  * Check to see if a block of the appropriate size is available,
1000  * and if it is, allocate it.
1001  */
1002 static ufs_daddr_t
1003 ffs_alloccg(ip, cg, bpref, size)
1004 	struct inode *ip;
1005 	int cg;
1006 	ufs_daddr_t bpref;
1007 	int size;
1008 {
1009 	register struct fs *fs;
1010 	register struct cg *cgp;
1011 	struct buf *bp;
1012 	register int i;
1013 	ufs_daddr_t bno, blkno;
1014 	int allocsiz, error, frags;
1015 	u_int8_t *blksfree;
1016 
1017 	fs = ip->i_fs;
1018 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1019 		return (0);
1020 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1021 		(int)fs->fs_cgsize, NOCRED, &bp);
1022 	if (error) {
1023 		brelse(bp);
1024 		return (0);
1025 	}
1026 	cgp = (struct cg *)bp->b_data;
1027 	if (!cg_chkmagic(cgp) ||
1028 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1029 		brelse(bp);
1030 		return (0);
1031 	}
1032 	bp->b_xflags |= BX_BKGRDWRITE;
1033 	cgp->cg_time = time_second;
1034 	if (size == fs->fs_bsize) {
1035 		bno = ffs_alloccgblk(ip, bp, bpref);
1036 		if (fs->fs_active != 0)
1037 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1038 		bdwrite(bp);
1039 		return (bno);
1040 	}
1041 	/*
1042 	 * check to see if any fragments are already available
1043 	 * allocsiz is the size which will be allocated, hacking
1044 	 * it down to a smaller size if necessary
1045 	 */
1046 	blksfree = cg_blksfree(cgp);
1047 	frags = numfrags(fs, size);
1048 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1049 		if (cgp->cg_frsum[allocsiz] != 0)
1050 			break;
1051 	if (allocsiz == fs->fs_frag) {
1052 		/*
1053 		 * no fragments were available, so a block will be
1054 		 * allocated, and hacked up
1055 		 */
1056 		if (cgp->cg_cs.cs_nbfree == 0) {
1057 			brelse(bp);
1058 			return (0);
1059 		}
1060 		bno = ffs_alloccgblk(ip, bp, bpref);
1061 		bpref = dtogd(fs, bno);
1062 		for (i = frags; i < fs->fs_frag; i++)
1063 			setbit(blksfree, bpref + i);
1064 		i = fs->fs_frag - frags;
1065 		cgp->cg_cs.cs_nffree += i;
1066 		fs->fs_cstotal.cs_nffree += i;
1067 		fs->fs_cs(fs, cg).cs_nffree += i;
1068 		fs->fs_fmod = 1;
1069 		cgp->cg_frsum[i]++;
1070 		if (fs->fs_active != 0)
1071 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1072 		bdwrite(bp);
1073 		return (bno);
1074 	}
1075 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1076 	if (bno < 0) {
1077 		brelse(bp);
1078 		return (0);
1079 	}
1080 	for (i = 0; i < frags; i++)
1081 		clrbit(blksfree, bno + i);
1082 	cgp->cg_cs.cs_nffree -= frags;
1083 	fs->fs_cstotal.cs_nffree -= frags;
1084 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1085 	fs->fs_fmod = 1;
1086 	cgp->cg_frsum[allocsiz]--;
1087 	if (frags != allocsiz)
1088 		cgp->cg_frsum[allocsiz - frags]++;
1089 	blkno = cg * fs->fs_fpg + bno;
1090 	if (DOINGSOFTDEP(ITOV(ip)))
1091 		softdep_setup_blkmapdep(bp, fs, blkno);
1092 	if (fs->fs_active != 0)
1093 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1094 	bdwrite(bp);
1095 	return ((u_long)blkno);
1096 }
1097 
1098 /*
1099  * Allocate a block in a cylinder group.
1100  *
1101  * This algorithm implements the following policy:
1102  *   1) allocate the requested block.
1103  *   2) allocate a rotationally optimal block in the same cylinder.
1104  *   3) allocate the next available block on the block rotor for the
1105  *      specified cylinder group.
1106  * Note that this routine only allocates fs_bsize blocks; these
1107  * blocks may be fragmented by the routine that allocates them.
1108  */
1109 static ufs_daddr_t
1110 ffs_alloccgblk(ip, bp, bpref)
1111 	struct inode *ip;
1112 	struct buf *bp;
1113 	ufs_daddr_t bpref;
1114 {
1115 	struct fs *fs;
1116 	struct cg *cgp;
1117 	ufs_daddr_t bno, blkno;
1118 	int cylno, pos, delta;
1119 	short *cylbp;
1120 	register int i;
1121 	u_int8_t *blksfree;
1122 
1123 	fs = ip->i_fs;
1124 	cgp = (struct cg *)bp->b_data;
1125 	blksfree = cg_blksfree(cgp);
1126 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1127 		bpref = cgp->cg_rotor;
1128 		goto norot;
1129 	}
1130 	bpref = blknum(fs, bpref);
1131 	bpref = dtogd(fs, bpref);
1132 	/*
1133 	 * if the requested block is available, use it
1134 	 */
1135 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1136 		bno = bpref;
1137 		goto gotit;
1138 	}
1139 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1140 		/*
1141 		 * Block layout information is not available.
1142 		 * Leaving bpref unchanged means we take the
1143 		 * next available free block following the one
1144 		 * we just allocated. Hopefully this will at
1145 		 * least hit a track cache on drives of unknown
1146 		 * geometry (e.g. SCSI).
1147 		 */
1148 		goto norot;
1149 	}
1150 	/*
1151 	 * check for a block available on the same cylinder
1152 	 */
1153 	cylno = cbtocylno(fs, bpref);
1154 	if (cg_blktot(cgp)[cylno] == 0)
1155 		goto norot;
1156 	/*
1157 	 * check the summary information to see if a block is
1158 	 * available in the requested cylinder starting at the
1159 	 * requested rotational position and proceeding around.
1160 	 */
1161 	cylbp = cg_blks(fs, cgp, cylno);
1162 	pos = cbtorpos(fs, bpref);
1163 	for (i = pos; i < fs->fs_nrpos; i++)
1164 		if (cylbp[i] > 0)
1165 			break;
1166 	if (i == fs->fs_nrpos)
1167 		for (i = 0; i < pos; i++)
1168 			if (cylbp[i] > 0)
1169 				break;
1170 	if (cylbp[i] > 0) {
1171 		/*
1172 		 * found a rotational position, now find the actual
1173 		 * block. A panic if none is actually there.
1174 		 */
1175 		pos = cylno % fs->fs_cpc;
1176 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1177 		if (fs_postbl(fs, pos)[i] == -1) {
1178 			printf("pos = %d, i = %d, fs = %s\n",
1179 			    pos, i, fs->fs_fsmnt);
1180 			panic("ffs_alloccgblk: cyl groups corrupted");
1181 		}
1182 		for (i = fs_postbl(fs, pos)[i];; ) {
1183 			if (ffs_isblock(fs, blksfree, bno + i)) {
1184 				bno = blkstofrags(fs, (bno + i));
1185 				goto gotit;
1186 			}
1187 			delta = fs_rotbl(fs)[i];
1188 			if (delta <= 0 ||
1189 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1190 				break;
1191 			i += delta;
1192 		}
1193 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1194 		panic("ffs_alloccgblk: can't find blk in cyl");
1195 	}
1196 norot:
1197 	/*
1198 	 * no blocks in the requested cylinder, so take next
1199 	 * available one in this cylinder group.
1200 	 */
1201 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1202 	if (bno < 0)
1203 		return (0);
1204 	cgp->cg_rotor = bno;
1205 gotit:
1206 	blkno = fragstoblks(fs, bno);
1207 	ffs_clrblock(fs, blksfree, (long)blkno);
1208 	ffs_clusteracct(fs, cgp, blkno, -1);
1209 	cgp->cg_cs.cs_nbfree--;
1210 	fs->fs_cstotal.cs_nbfree--;
1211 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1212 	cylno = cbtocylno(fs, bno);
1213 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1214 	cg_blktot(cgp)[cylno]--;
1215 	fs->fs_fmod = 1;
1216 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1217 	if (DOINGSOFTDEP(ITOV(ip)))
1218 		softdep_setup_blkmapdep(bp, fs, blkno);
1219 	return (blkno);
1220 }
1221 
1222 /*
1223  * Determine whether a cluster can be allocated.
1224  *
1225  * We do not currently check for optimal rotational layout if there
1226  * are multiple choices in the same cylinder group. Instead we just
1227  * take the first one that we find following bpref.
1228  */
1229 static ufs_daddr_t
1230 ffs_clusteralloc(ip, cg, bpref, len)
1231 	struct inode *ip;
1232 	int cg;
1233 	ufs_daddr_t bpref;
1234 	int len;
1235 {
1236 	register struct fs *fs;
1237 	register struct cg *cgp;
1238 	struct buf *bp;
1239 	int i, got, run, bno, bit, map;
1240 	u_char *mapp;
1241 	int32_t *lp;
1242 	u_int8_t *blksfree;
1243 
1244 	fs = ip->i_fs;
1245 	if (fs->fs_maxcluster[cg] < len)
1246 		return (0);
1247 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1248 	    NOCRED, &bp))
1249 		goto fail;
1250 	cgp = (struct cg *)bp->b_data;
1251 	if (!cg_chkmagic(cgp))
1252 		goto fail;
1253 	bp->b_xflags |= BX_BKGRDWRITE;
1254 	/*
1255 	 * Check to see if a cluster of the needed size (or bigger) is
1256 	 * available in this cylinder group.
1257 	 */
1258 	lp = &cg_clustersum(cgp)[len];
1259 	for (i = len; i <= fs->fs_contigsumsize; i++)
1260 		if (*lp++ > 0)
1261 			break;
1262 	if (i > fs->fs_contigsumsize) {
1263 		/*
1264 		 * This is the first time looking for a cluster in this
1265 		 * cylinder group. Update the cluster summary information
1266 		 * to reflect the true maximum sized cluster so that
1267 		 * future cluster allocation requests can avoid reading
1268 		 * the cylinder group map only to find no clusters.
1269 		 */
1270 		lp = &cg_clustersum(cgp)[len - 1];
1271 		for (i = len - 1; i > 0; i--)
1272 			if (*lp-- > 0)
1273 				break;
1274 		fs->fs_maxcluster[cg] = i;
1275 		goto fail;
1276 	}
1277 	/*
1278 	 * Search the cluster map to find a big enough cluster.
1279 	 * We take the first one that we find, even if it is larger
1280 	 * than we need as we prefer to get one close to the previous
1281 	 * block allocation. We do not search before the current
1282 	 * preference point as we do not want to allocate a block
1283 	 * that is allocated before the previous one (as we will
1284 	 * then have to wait for another pass of the elevator
1285 	 * algorithm before it will be read). We prefer to fail and
1286 	 * be recalled to try an allocation in the next cylinder group.
1287 	 */
1288 	if (dtog(fs, bpref) != cg)
1289 		bpref = 0;
1290 	else
1291 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1292 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1293 	map = *mapp++;
1294 	bit = 1 << (bpref % NBBY);
1295 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1296 		if ((map & bit) == 0) {
1297 			run = 0;
1298 		} else {
1299 			run++;
1300 			if (run == len)
1301 				break;
1302 		}
1303 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1304 			bit <<= 1;
1305 		} else {
1306 			map = *mapp++;
1307 			bit = 1;
1308 		}
1309 	}
1310 	if (got >= cgp->cg_nclusterblks)
1311 		goto fail;
1312 	/*
1313 	 * Allocate the cluster that we have found.
1314 	 */
1315 	blksfree = cg_blksfree(cgp);
1316 	for (i = 1; i <= len; i++)
1317 		if (!ffs_isblock(fs, blksfree, got - run + i))
1318 			panic("ffs_clusteralloc: map mismatch");
1319 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1320 	if (dtog(fs, bno) != cg)
1321 		panic("ffs_clusteralloc: allocated out of group");
1322 	len = blkstofrags(fs, len);
1323 	for (i = 0; i < len; i += fs->fs_frag)
1324 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1325 			panic("ffs_clusteralloc: lost block");
1326 	if (fs->fs_active != 0)
1327 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1328 	bdwrite(bp);
1329 	return (bno);
1330 
1331 fail:
1332 	brelse(bp);
1333 	return (0);
1334 }
1335 
1336 /*
1337  * Determine whether an inode can be allocated.
1338  *
1339  * Check to see if an inode is available, and if it is,
1340  * allocate it using the following policy:
1341  *   1) allocate the requested inode.
1342  *   2) allocate the next available inode after the requested
1343  *      inode in the specified cylinder group.
1344  */
1345 static ino_t
1346 ffs_nodealloccg(ip, cg, ipref, mode)
1347 	struct inode *ip;
1348 	int cg;
1349 	ufs_daddr_t ipref;
1350 	int mode;
1351 {
1352 	register struct fs *fs;
1353 	register struct cg *cgp;
1354 	struct buf *bp;
1355 	u_int8_t *inosused;
1356 	int error, start, len, loc, map, i;
1357 
1358 	fs = ip->i_fs;
1359 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1360 		return (0);
1361 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1362 		(int)fs->fs_cgsize, NOCRED, &bp);
1363 	if (error) {
1364 		brelse(bp);
1365 		return (0);
1366 	}
1367 	cgp = (struct cg *)bp->b_data;
1368 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1369 		brelse(bp);
1370 		return (0);
1371 	}
1372 	bp->b_xflags |= BX_BKGRDWRITE;
1373 	cgp->cg_time = time_second;
1374 	inosused = cg_inosused(cgp);
1375 	if (ipref) {
1376 		ipref %= fs->fs_ipg;
1377 		if (isclr(inosused, ipref))
1378 			goto gotit;
1379 	}
1380 	start = cgp->cg_irotor / NBBY;
1381 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1382 	loc = skpc(0xff, len, &inosused[start]);
1383 	if (loc == 0) {
1384 		len = start + 1;
1385 		start = 0;
1386 		loc = skpc(0xff, len, &inosused[0]);
1387 		if (loc == 0) {
1388 			printf("cg = %d, irotor = %ld, fs = %s\n",
1389 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1390 			panic("ffs_nodealloccg: map corrupted");
1391 			/* NOTREACHED */
1392 		}
1393 	}
1394 	i = start + len - loc;
1395 	map = inosused[i];
1396 	ipref = i * NBBY;
1397 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1398 		if ((map & i) == 0) {
1399 			cgp->cg_irotor = ipref;
1400 			goto gotit;
1401 		}
1402 	}
1403 	printf("fs = %s\n", fs->fs_fsmnt);
1404 	panic("ffs_nodealloccg: block not in map");
1405 	/* NOTREACHED */
1406 gotit:
1407 	if (DOINGSOFTDEP(ITOV(ip)))
1408 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1409 	setbit(inosused, ipref);
1410 	cgp->cg_cs.cs_nifree--;
1411 	fs->fs_cstotal.cs_nifree--;
1412 	fs->fs_cs(fs, cg).cs_nifree--;
1413 	fs->fs_fmod = 1;
1414 	if ((mode & IFMT) == IFDIR) {
1415 		cgp->cg_cs.cs_ndir++;
1416 		fs->fs_cstotal.cs_ndir++;
1417 		fs->fs_cs(fs, cg).cs_ndir++;
1418 	}
1419 	if (fs->fs_active != 0)
1420 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1421 	bdwrite(bp);
1422 	return (cg * fs->fs_ipg + ipref);
1423 }
1424 
1425 /*
1426  * Free a block or fragment.
1427  *
1428  * The specified block or fragment is placed back in the
1429  * free map. If a fragment is deallocated, a possible
1430  * block reassembly is checked.
1431  */
1432 void
1433 ffs_blkfree(fs, devvp, bno, size, inum)
1434 	struct fs *fs;
1435 	struct vnode *devvp;
1436 	ufs_daddr_t bno;
1437 	long size;
1438 	ino_t inum;
1439 {
1440 	struct cg *cgp;
1441 	struct buf *bp;
1442 	ufs_daddr_t fragno, cgbno;
1443 	int i, error, cg, blk, frags, bbase;
1444 	u_int8_t *blksfree;
1445 	dev_t dev;
1446 
1447 	cg = dtog(fs, bno);
1448 	if (devvp->v_type != VCHR) {
1449 		/* devvp is a snapshot */
1450 		dev = VTOI(devvp)->i_devvp->v_rdev;
1451 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1452 	} else {
1453 		/* devvp is a normal disk device */
1454 		dev = devvp->v_rdev;
1455 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1456 		if ((devvp->v_flag & VCOPYONWRITE) &&
1457 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
1458 			return;
1459 		VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size);
1460 	}
1461 #ifdef DIAGNOSTIC
1462 	if (dev->si_mountpoint &&
1463 	    (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED))
1464 		panic("ffs_blkfree: deallocation on suspended filesystem");
1465 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1466 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1467 		printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1468 		    devtoname(dev), (long)bno, (long)fs->fs_bsize,
1469 		    size, fs->fs_fsmnt);
1470 		panic("ffs_blkfree: bad size");
1471 	}
1472 #endif
1473 	if ((u_int)bno >= fs->fs_size) {
1474 		printf("bad block %ld, ino %lu\n", (long)bno, (u_long)inum);
1475 		ffs_fserr(fs, inum, "bad block");
1476 		return;
1477 	}
1478 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1479 		brelse(bp);
1480 		return;
1481 	}
1482 	cgp = (struct cg *)bp->b_data;
1483 	if (!cg_chkmagic(cgp)) {
1484 		brelse(bp);
1485 		return;
1486 	}
1487 	bp->b_xflags |= BX_BKGRDWRITE;
1488 	cgp->cg_time = time_second;
1489 	cgbno = dtogd(fs, bno);
1490 	blksfree = cg_blksfree(cgp);
1491 	if (size == fs->fs_bsize) {
1492 		fragno = fragstoblks(fs, cgbno);
1493 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1494 			if (devvp->v_type != VCHR) {
1495 				/* devvp is a snapshot */
1496 				brelse(bp);
1497 				return;
1498 			}
1499 			printf("dev = %s, block = %ld, fs = %s\n",
1500 			    devtoname(dev), (long)bno, fs->fs_fsmnt);
1501 			panic("ffs_blkfree: freeing free block");
1502 		}
1503 		ffs_setblock(fs, blksfree, fragno);
1504 		ffs_clusteracct(fs, cgp, fragno, 1);
1505 		cgp->cg_cs.cs_nbfree++;
1506 		fs->fs_cstotal.cs_nbfree++;
1507 		fs->fs_cs(fs, cg).cs_nbfree++;
1508 		i = cbtocylno(fs, cgbno);
1509 		cg_blks(fs, cgp, i)[cbtorpos(fs, cgbno)]++;
1510 		cg_blktot(cgp)[i]++;
1511 	} else {
1512 		bbase = cgbno - fragnum(fs, cgbno);
1513 		/*
1514 		 * decrement the counts associated with the old frags
1515 		 */
1516 		blk = blkmap(fs, blksfree, bbase);
1517 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1518 		/*
1519 		 * deallocate the fragment
1520 		 */
1521 		frags = numfrags(fs, size);
1522 		for (i = 0; i < frags; i++) {
1523 			if (isset(blksfree, cgbno + i)) {
1524 				printf("dev = %s, block = %ld, fs = %s\n",
1525 				    devtoname(dev), (long)(bno + i),
1526 				    fs->fs_fsmnt);
1527 				panic("ffs_blkfree: freeing free frag");
1528 			}
1529 			setbit(blksfree, cgbno + i);
1530 		}
1531 		cgp->cg_cs.cs_nffree += i;
1532 		fs->fs_cstotal.cs_nffree += i;
1533 		fs->fs_cs(fs, cg).cs_nffree += i;
1534 		/*
1535 		 * add back in counts associated with the new frags
1536 		 */
1537 		blk = blkmap(fs, blksfree, bbase);
1538 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1539 		/*
1540 		 * if a complete block has been reassembled, account for it
1541 		 */
1542 		fragno = fragstoblks(fs, bbase);
1543 		if (ffs_isblock(fs, blksfree, fragno)) {
1544 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1545 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1546 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1547 			ffs_clusteracct(fs, cgp, fragno, 1);
1548 			cgp->cg_cs.cs_nbfree++;
1549 			fs->fs_cstotal.cs_nbfree++;
1550 			fs->fs_cs(fs, cg).cs_nbfree++;
1551 			i = cbtocylno(fs, bbase);
1552 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1553 			cg_blktot(cgp)[i]++;
1554 		}
1555 	}
1556 	fs->fs_fmod = 1;
1557 	if (fs->fs_active != 0)
1558 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1559 	bdwrite(bp);
1560 }
1561 
1562 #ifdef DIAGNOSTIC
1563 /*
1564  * Verify allocation of a block or fragment. Returns true if block or
1565  * fragment is allocated, false if it is free.
1566  */
1567 static int
1568 ffs_checkblk(ip, bno, size)
1569 	struct inode *ip;
1570 	ufs_daddr_t bno;
1571 	long size;
1572 {
1573 	struct fs *fs;
1574 	struct cg *cgp;
1575 	struct buf *bp;
1576 	int i, error, frags, free;
1577 	u_int8_t *blksfree;
1578 
1579 	fs = ip->i_fs;
1580 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1581 		printf("bsize = %ld, size = %ld, fs = %s\n",
1582 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1583 		panic("ffs_checkblk: bad size");
1584 	}
1585 	if ((u_int)bno >= fs->fs_size)
1586 		panic("ffs_checkblk: bad block %d", bno);
1587 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1588 		(int)fs->fs_cgsize, NOCRED, &bp);
1589 	if (error)
1590 		panic("ffs_checkblk: cg bread failed");
1591 	cgp = (struct cg *)bp->b_data;
1592 	if (!cg_chkmagic(cgp))
1593 		panic("ffs_checkblk: cg magic mismatch");
1594 	bp->b_xflags |= BX_BKGRDWRITE;
1595 	blksfree = cg_blksfree(cgp);
1596 	bno = dtogd(fs, bno);
1597 	if (size == fs->fs_bsize) {
1598 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1599 	} else {
1600 		frags = numfrags(fs, size);
1601 		for (free = 0, i = 0; i < frags; i++)
1602 			if (isset(blksfree, bno + i))
1603 				free++;
1604 		if (free != 0 && free != frags)
1605 			panic("ffs_checkblk: partially free fragment");
1606 	}
1607 	brelse(bp);
1608 	return (!free);
1609 }
1610 #endif /* DIAGNOSTIC */
1611 
1612 /*
1613  * Free an inode.
1614  */
1615 int
1616 ffs_vfree(pvp, ino, mode)
1617 	struct vnode *pvp;
1618 	ino_t ino;
1619 	int mode;
1620 {
1621 	if (DOINGSOFTDEP(pvp)) {
1622 		softdep_freefile(pvp, ino, mode);
1623 		return (0);
1624 	}
1625 	return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode));
1626 }
1627 
1628 /*
1629  * Do the actual free operation.
1630  * The specified inode is placed back in the free map.
1631  */
1632 int
1633 ffs_freefile(fs, devvp, ino, mode)
1634 	struct fs *fs;
1635 	struct vnode *devvp;
1636 	ino_t ino;
1637 	int mode;
1638 {
1639 	struct cg *cgp;
1640 	struct buf *bp;
1641 	int error, cgbno, cg;
1642 	u_int8_t *inosused;
1643 	dev_t dev;
1644 
1645 	cg = ino_to_cg(fs, ino);
1646 	if (devvp->v_type != VCHR) {
1647 		/* devvp is a snapshot */
1648 		dev = VTOI(devvp)->i_devvp->v_rdev;
1649 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1650 	} else {
1651 		/* devvp is a normal disk device */
1652 		dev = devvp->v_rdev;
1653 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1654 	}
1655 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1656 		panic("ffs_vfree: range: dev = %s, ino = %d, fs = %s",
1657 		    devtoname(dev), ino, fs->fs_fsmnt);
1658 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1659 		brelse(bp);
1660 		return (error);
1661 	}
1662 	cgp = (struct cg *)bp->b_data;
1663 	if (!cg_chkmagic(cgp)) {
1664 		brelse(bp);
1665 		return (0);
1666 	}
1667 	bp->b_xflags |= BX_BKGRDWRITE;
1668 	cgp->cg_time = time_second;
1669 	inosused = cg_inosused(cgp);
1670 	ino %= fs->fs_ipg;
1671 	if (isclr(inosused, ino)) {
1672 		printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
1673 		    (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1674 		if (fs->fs_ronly == 0)
1675 			panic("ffs_vfree: freeing free inode");
1676 	}
1677 	clrbit(inosused, ino);
1678 	if (ino < cgp->cg_irotor)
1679 		cgp->cg_irotor = ino;
1680 	cgp->cg_cs.cs_nifree++;
1681 	fs->fs_cstotal.cs_nifree++;
1682 	fs->fs_cs(fs, cg).cs_nifree++;
1683 	if ((mode & IFMT) == IFDIR) {
1684 		cgp->cg_cs.cs_ndir--;
1685 		fs->fs_cstotal.cs_ndir--;
1686 		fs->fs_cs(fs, cg).cs_ndir--;
1687 	}
1688 	fs->fs_fmod = 1;
1689 	if (fs->fs_active != 0)
1690 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1691 	bdwrite(bp);
1692 	return (0);
1693 }
1694 
1695 /*
1696  * Find a block of the specified size in the specified cylinder group.
1697  *
1698  * It is a panic if a request is made to find a block if none are
1699  * available.
1700  */
1701 static ufs_daddr_t
1702 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1703 	register struct fs *fs;
1704 	register struct cg *cgp;
1705 	ufs_daddr_t bpref;
1706 	int allocsiz;
1707 {
1708 	ufs_daddr_t bno;
1709 	int start, len, loc, i;
1710 	int blk, field, subfield, pos;
1711 	u_int8_t *blksfree;
1712 
1713 	/*
1714 	 * find the fragment by searching through the free block
1715 	 * map for an appropriate bit pattern
1716 	 */
1717 	if (bpref)
1718 		start = dtogd(fs, bpref) / NBBY;
1719 	else
1720 		start = cgp->cg_frotor / NBBY;
1721 	blksfree = cg_blksfree(cgp);
1722 	len = howmany(fs->fs_fpg, NBBY) - start;
1723 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
1724 		(u_char *)fragtbl[fs->fs_frag],
1725 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1726 	if (loc == 0) {
1727 		len = start + 1;
1728 		start = 0;
1729 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
1730 			(u_char *)fragtbl[fs->fs_frag],
1731 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1732 		if (loc == 0) {
1733 			printf("start = %d, len = %d, fs = %s\n",
1734 			    start, len, fs->fs_fsmnt);
1735 			panic("ffs_alloccg: map corrupted");
1736 			/* NOTREACHED */
1737 		}
1738 	}
1739 	bno = (start + len - loc) * NBBY;
1740 	cgp->cg_frotor = bno;
1741 	/*
1742 	 * found the byte in the map
1743 	 * sift through the bits to find the selected frag
1744 	 */
1745 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1746 		blk = blkmap(fs, blksfree, bno);
1747 		blk <<= 1;
1748 		field = around[allocsiz];
1749 		subfield = inside[allocsiz];
1750 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1751 			if ((blk & field) == subfield)
1752 				return (bno + pos);
1753 			field <<= 1;
1754 			subfield <<= 1;
1755 		}
1756 	}
1757 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1758 	panic("ffs_alloccg: block not in map");
1759 	return (-1);
1760 }
1761 
1762 /*
1763  * Update the cluster map because of an allocation or free.
1764  *
1765  * Cnt == 1 means free; cnt == -1 means allocating.
1766  */
1767 void
1768 ffs_clusteracct(fs, cgp, blkno, cnt)
1769 	struct fs *fs;
1770 	struct cg *cgp;
1771 	ufs_daddr_t blkno;
1772 	int cnt;
1773 {
1774 	int32_t *sump;
1775 	int32_t *lp;
1776 	u_char *freemapp, *mapp;
1777 	int i, start, end, forw, back, map, bit;
1778 
1779 	if (fs->fs_contigsumsize <= 0)
1780 		return;
1781 	freemapp = cg_clustersfree(cgp);
1782 	sump = cg_clustersum(cgp);
1783 	/*
1784 	 * Allocate or clear the actual block.
1785 	 */
1786 	if (cnt > 0)
1787 		setbit(freemapp, blkno);
1788 	else
1789 		clrbit(freemapp, blkno);
1790 	/*
1791 	 * Find the size of the cluster going forward.
1792 	 */
1793 	start = blkno + 1;
1794 	end = start + fs->fs_contigsumsize;
1795 	if (end >= cgp->cg_nclusterblks)
1796 		end = cgp->cg_nclusterblks;
1797 	mapp = &freemapp[start / NBBY];
1798 	map = *mapp++;
1799 	bit = 1 << (start % NBBY);
1800 	for (i = start; i < end; i++) {
1801 		if ((map & bit) == 0)
1802 			break;
1803 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1804 			bit <<= 1;
1805 		} else {
1806 			map = *mapp++;
1807 			bit = 1;
1808 		}
1809 	}
1810 	forw = i - start;
1811 	/*
1812 	 * Find the size of the cluster going backward.
1813 	 */
1814 	start = blkno - 1;
1815 	end = start - fs->fs_contigsumsize;
1816 	if (end < 0)
1817 		end = -1;
1818 	mapp = &freemapp[start / NBBY];
1819 	map = *mapp--;
1820 	bit = 1 << (start % NBBY);
1821 	for (i = start; i > end; i--) {
1822 		if ((map & bit) == 0)
1823 			break;
1824 		if ((i & (NBBY - 1)) != 0) {
1825 			bit >>= 1;
1826 		} else {
1827 			map = *mapp--;
1828 			bit = 1 << (NBBY - 1);
1829 		}
1830 	}
1831 	back = start - i;
1832 	/*
1833 	 * Account for old cluster and the possibly new forward and
1834 	 * back clusters.
1835 	 */
1836 	i = back + forw + 1;
1837 	if (i > fs->fs_contigsumsize)
1838 		i = fs->fs_contigsumsize;
1839 	sump[i] += cnt;
1840 	if (back > 0)
1841 		sump[back] -= cnt;
1842 	if (forw > 0)
1843 		sump[forw] -= cnt;
1844 	/*
1845 	 * Update cluster summary information.
1846 	 */
1847 	lp = &sump[fs->fs_contigsumsize];
1848 	for (i = fs->fs_contigsumsize; i > 0; i--)
1849 		if (*lp-- > 0)
1850 			break;
1851 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1852 }
1853 
1854 /*
1855  * Fserr prints the name of a file system with an error diagnostic.
1856  *
1857  * The form of the error message is:
1858  *	fs: error message
1859  */
1860 static void
1861 ffs_fserr(fs, inum, cp)
1862 	struct fs *fs;
1863 	ino_t inum;
1864 	char *cp;
1865 {
1866 	struct proc *p = curproc;	/* XXX */
1867 
1868 	log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
1869 	    p ? p->p_pid : -1, p ? p->p_comm : "-",
1870 	    p ? p->p_ucred->cr_uid : 0, inum, fs->fs_fsmnt, cp);
1871 }
1872 
1873 /*
1874  * This function provides the capability for the fsck program to
1875  * update an active filesystem. Six operations are provided:
1876  *
1877  * adjrefcnt(inode, amt) - adjusts the reference count on the
1878  *	specified inode by the specified amount. Under normal
1879  *	operation the count should always go down. Decrementing
1880  *	the count to zero will cause the inode to be freed.
1881  * adjblkcnt(inode, amt) - adjust the number of blocks used to
1882  *	by the specifed amount.
1883  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
1884  *	are marked as free. Inodes should never have to be marked
1885  *	as in use.
1886  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
1887  *	are marked as free. Inodes should never have to be marked
1888  *	as in use.
1889  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
1890  *	are marked as free. Blocks should never have to be marked
1891  *	as in use.
1892  * setflags(flags, set/clear) - the fs_flags field has the specified
1893  *	flags set (second parameter +1) or cleared (second parameter -1).
1894  */
1895 
1896 static int sysctl_ffs_fsck __P((SYSCTL_HANDLER_ARGS));
1897 
1898 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
1899 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
1900 
1901 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
1902 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
1903 
1904 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
1905 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
1906 
1907 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
1908 	sysctl_ffs_fsck, "Free Range of File Inodes");
1909 
1910 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
1911 	sysctl_ffs_fsck, "Free Range of Blocks");
1912 
1913 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
1914 	sysctl_ffs_fsck, "Change Filesystem Flags");
1915 
1916 #ifdef DEBUG
1917 static int fsckcmds = 0;
1918 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
1919 #endif /* DEBUG */
1920 
1921 static int
1922 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
1923 {
1924 	struct fsck_cmd cmd;
1925 	struct ufsmount *ump;
1926 	struct vnode *vp;
1927 	struct inode *ip;
1928 	struct mount *mp;
1929 	struct fs *fs;
1930 	ufs_daddr_t blkno;
1931 	long blkcnt, blksize;
1932 	struct file *fp;
1933 	int filetype, error;
1934 
1935 	if (req->newlen > sizeof cmd)
1936 		return (EBADRPC);
1937 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
1938 		return (error);
1939 	if (cmd.version != FFS_CMD_VERSION)
1940 		return (ERPCMISMATCH);
1941 	if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
1942 		return (error);
1943 	vn_start_write((struct vnode *)fp->f_data, &mp, V_WAIT);
1944 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
1945 		vn_finished_write(mp);
1946 		fdrop(fp, curthread);
1947 		return (EINVAL);
1948 	}
1949 	if (mp->mnt_flag & MNT_RDONLY) {
1950 		vn_finished_write(mp);
1951 		fdrop(fp, curthread);
1952 		return (EROFS);
1953 	}
1954 	ump = VFSTOUFS(mp);
1955 	fs = ump->um_fs;
1956 	filetype = IFREG;
1957 
1958 	switch (oidp->oid_number) {
1959 
1960 	case FFS_SET_FLAGS:
1961 #ifdef DEBUG
1962 		if (fsckcmds)
1963 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
1964 			    cmd.size > 0 ? "set" : "clear");
1965 #endif /* DEBUG */
1966 		if (cmd.size > 0)
1967 			fs->fs_flags |= (long)cmd.value;
1968 		else
1969 			fs->fs_flags &= ~(long)cmd.value;
1970 		break;
1971 
1972 	case FFS_ADJ_REFCNT:
1973 #ifdef DEBUG
1974 		if (fsckcmds) {
1975 			printf("%s: adjust inode %d count by %ld\n",
1976 			    mp->mnt_stat.f_mntonname, (ino_t)cmd.value,
1977 			    cmd.size);
1978 		}
1979 #endif /* DEBUG */
1980 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, &vp)) != 0)
1981 			break;
1982 		ip = VTOI(vp);
1983 		ip->i_nlink += cmd.size;
1984 		ip->i_effnlink += cmd.size;
1985 		ip->i_flag |= IN_CHANGE;
1986 		if (DOINGSOFTDEP(vp))
1987 			softdep_change_linkcnt(ip);
1988 		vput(vp);
1989 		break;
1990 
1991 	case FFS_ADJ_BLKCNT:
1992 #ifdef DEBUG
1993 		if (fsckcmds) {
1994 			printf("%s: adjust inode %d block count by %ld\n",
1995 			    mp->mnt_stat.f_mntonname, (ino_t)cmd.value,
1996 			    cmd.size);
1997 		}
1998 #endif /* DEBUG */
1999 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, &vp)) != 0)
2000 			break;
2001 		ip = VTOI(vp);
2002 		ip->i_blocks += cmd.size;
2003 		ip->i_flag |= IN_CHANGE;
2004 		vput(vp);
2005 		break;
2006 
2007 	case FFS_DIR_FREE:
2008 		filetype = IFDIR;
2009 		/* fall through */
2010 
2011 	case FFS_FILE_FREE:
2012 #ifdef DEBUG
2013 		if (fsckcmds) {
2014 			if (cmd.size == 1)
2015 				printf("%s: free %s inode %d\n",
2016 				    mp->mnt_stat.f_mntonname,
2017 				    filetype == IFDIR ? "directory" : "file",
2018 				    (ino_t)cmd.value);
2019 			else
2020 				printf("%s: free %s inodes %d-%d\n",
2021 				    mp->mnt_stat.f_mntonname,
2022 				    filetype == IFDIR ? "directory" : "file",
2023 				    (ino_t)cmd.value,
2024 				    (ino_t)(cmd.value + cmd.size - 1));
2025 		}
2026 #endif /* DEBUG */
2027 		while (cmd.size > 0) {
2028 			if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value,
2029 			    filetype)))
2030 				break;
2031 			cmd.size -= 1;
2032 			cmd.value += 1;
2033 		}
2034 		break;
2035 
2036 	case FFS_BLK_FREE:
2037 #ifdef DEBUG
2038 		if (fsckcmds) {
2039 			if (cmd.size == 1)
2040 				printf("%s: free block %d\n",
2041 				    mp->mnt_stat.f_mntonname,
2042 				    (ufs_daddr_t)cmd.value);
2043 			else
2044 				printf("%s: free blocks %d-%ld\n",
2045 				    mp->mnt_stat.f_mntonname,
2046 				    (ufs_daddr_t)cmd.value,
2047 				    (ufs_daddr_t)cmd.value + cmd.size - 1);
2048 		}
2049 #endif /* DEBUG */
2050 		blkno = (ufs_daddr_t)cmd.value;
2051 		blkcnt = cmd.size;
2052 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2053 		while (blkcnt > 0) {
2054 			if (blksize > blkcnt)
2055 				blksize = blkcnt;
2056 			ffs_blkfree(fs, ump->um_devvp, blkno,
2057 			    blksize * fs->fs_fsize, ROOTINO);
2058 			blkno += blksize;
2059 			blkcnt -= blksize;
2060 			blksize = fs->fs_frag;
2061 		}
2062 		break;
2063 
2064 	default:
2065 #ifdef DEBUG
2066 		if (fsckcmds) {
2067 			printf("Invalid request %d from fsck\n",
2068 			    oidp->oid_number);
2069 		}
2070 #endif /* DEBUG */
2071 		error = EINVAL;
2072 		break;
2073 
2074 	}
2075 	fdrop(fp, curthread);
2076 	vn_finished_write(mp);
2077 	return (error);
2078 }
2079