1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/capability.h> 69 #include <sys/systm.h> 70 #include <sys/bio.h> 71 #include <sys/buf.h> 72 #include <sys/conf.h> 73 #include <sys/fcntl.h> 74 #include <sys/file.h> 75 #include <sys/filedesc.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/vnode.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/syslog.h> 84 #include <sys/taskqueue.h> 85 86 #include <security/audit/audit.h> 87 88 #include <geom/geom.h> 89 90 #include <ufs/ufs/dir.h> 91 #include <ufs/ufs/extattr.h> 92 #include <ufs/ufs/quota.h> 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/ufs_extern.h> 95 #include <ufs/ufs/ufsmount.h> 96 97 #include <ufs/ffs/fs.h> 98 #include <ufs/ffs/ffs_extern.h> 99 #include <ufs/ffs/softdep.h> 100 101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 102 int size, int rsize); 103 104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 105 static ufs2_daddr_t 106 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 107 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 108 struct vnode *, ufs2_daddr_t, long, ino_t, 109 struct workhead *); 110 static void ffs_blkfree_trim_completed(struct bio *); 111 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 112 #ifdef INVARIANTS 113 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 114 #endif 115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int, 116 int); 117 static ino_t ffs_dirpref(struct inode *); 118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 119 int, int); 120 static ufs2_daddr_t ffs_hashalloc 121 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 123 int); 124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 125 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 126 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 127 128 /* 129 * Allocate a block in the filesystem. 130 * 131 * The size of the requested block is given, which must be some 132 * multiple of fs_fsize and <= fs_bsize. 133 * A preference may be optionally specified. If a preference is given 134 * the following hierarchy is used to allocate a block: 135 * 1) allocate the requested block. 136 * 2) allocate a rotationally optimal block in the same cylinder. 137 * 3) allocate a block in the same cylinder group. 138 * 4) quadradically rehash into other cylinder groups, until an 139 * available block is located. 140 * If no block preference is given the following hierarchy is used 141 * to allocate a block: 142 * 1) allocate a block in the cylinder group that contains the 143 * inode for the file. 144 * 2) quadradically rehash into other cylinder groups, until an 145 * available block is located. 146 */ 147 int 148 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 149 struct inode *ip; 150 ufs2_daddr_t lbn, bpref; 151 int size, flags; 152 struct ucred *cred; 153 ufs2_daddr_t *bnp; 154 { 155 struct fs *fs; 156 struct ufsmount *ump; 157 ufs2_daddr_t bno; 158 u_int cg, reclaimed; 159 static struct timeval lastfail; 160 static int curfail; 161 int64_t delta; 162 #ifdef QUOTA 163 int error; 164 #endif 165 166 *bnp = 0; 167 fs = ip->i_fs; 168 ump = ip->i_ump; 169 mtx_assert(UFS_MTX(ump), MA_OWNED); 170 #ifdef INVARIANTS 171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 172 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 173 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 174 fs->fs_fsmnt); 175 panic("ffs_alloc: bad size"); 176 } 177 if (cred == NOCRED) 178 panic("ffs_alloc: missing credential"); 179 #endif /* INVARIANTS */ 180 reclaimed = 0; 181 retry: 182 #ifdef QUOTA 183 UFS_UNLOCK(ump); 184 error = chkdq(ip, btodb(size), cred, 0); 185 if (error) 186 return (error); 187 UFS_LOCK(ump); 188 #endif 189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 190 goto nospace; 191 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 192 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 193 goto nospace; 194 if (bpref >= fs->fs_size) 195 bpref = 0; 196 if (bpref == 0) 197 cg = ino_to_cg(fs, ip->i_number); 198 else 199 cg = dtog(fs, bpref); 200 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 201 if (bno > 0) { 202 delta = btodb(size); 203 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 204 if (flags & IO_EXT) 205 ip->i_flag |= IN_CHANGE; 206 else 207 ip->i_flag |= IN_CHANGE | IN_UPDATE; 208 *bnp = bno; 209 return (0); 210 } 211 nospace: 212 #ifdef QUOTA 213 UFS_UNLOCK(ump); 214 /* 215 * Restore user's disk quota because allocation failed. 216 */ 217 (void) chkdq(ip, -btodb(size), cred, FORCE); 218 UFS_LOCK(ump); 219 #endif 220 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 221 reclaimed = 1; 222 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 223 goto retry; 224 } 225 UFS_UNLOCK(ump); 226 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 227 ffs_fserr(fs, ip->i_number, "filesystem full"); 228 uprintf("\n%s: write failed, filesystem is full\n", 229 fs->fs_fsmnt); 230 } 231 return (ENOSPC); 232 } 233 234 /* 235 * Reallocate a fragment to a bigger size 236 * 237 * The number and size of the old block is given, and a preference 238 * and new size is also specified. The allocator attempts to extend 239 * the original block. Failing that, the regular block allocator is 240 * invoked to get an appropriate block. 241 */ 242 int 243 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 244 struct inode *ip; 245 ufs2_daddr_t lbprev; 246 ufs2_daddr_t bprev; 247 ufs2_daddr_t bpref; 248 int osize, nsize, flags; 249 struct ucred *cred; 250 struct buf **bpp; 251 { 252 struct vnode *vp; 253 struct fs *fs; 254 struct buf *bp; 255 struct ufsmount *ump; 256 u_int cg, request, reclaimed; 257 int error, gbflags; 258 ufs2_daddr_t bno; 259 static struct timeval lastfail; 260 static int curfail; 261 int64_t delta; 262 263 *bpp = 0; 264 vp = ITOV(ip); 265 fs = ip->i_fs; 266 bp = NULL; 267 ump = ip->i_ump; 268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 269 270 mtx_assert(UFS_MTX(ump), MA_OWNED); 271 #ifdef INVARIANTS 272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 273 panic("ffs_realloccg: allocation on suspended filesystem"); 274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 276 printf( 277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 278 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 279 nsize, fs->fs_fsmnt); 280 panic("ffs_realloccg: bad size"); 281 } 282 if (cred == NOCRED) 283 panic("ffs_realloccg: missing credential"); 284 #endif /* INVARIANTS */ 285 reclaimed = 0; 286 retry: 287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 289 goto nospace; 290 } 291 if (bprev == 0) { 292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 293 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 294 fs->fs_fsmnt); 295 panic("ffs_realloccg: bad bprev"); 296 } 297 UFS_UNLOCK(ump); 298 /* 299 * Allocate the extra space in the buffer. 300 */ 301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 302 if (error) { 303 brelse(bp); 304 return (error); 305 } 306 307 if (bp->b_blkno == bp->b_lblkno) { 308 if (lbprev >= NDADDR) 309 panic("ffs_realloccg: lbprev out of range"); 310 bp->b_blkno = fsbtodb(fs, bprev); 311 } 312 313 #ifdef QUOTA 314 error = chkdq(ip, btodb(nsize - osize), cred, 0); 315 if (error) { 316 brelse(bp); 317 return (error); 318 } 319 #endif 320 /* 321 * Check for extension in the existing location. 322 */ 323 cg = dtog(fs, bprev); 324 UFS_LOCK(ump); 325 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 326 if (bno) { 327 if (bp->b_blkno != fsbtodb(fs, bno)) 328 panic("ffs_realloccg: bad blockno"); 329 delta = btodb(nsize - osize); 330 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 331 if (flags & IO_EXT) 332 ip->i_flag |= IN_CHANGE; 333 else 334 ip->i_flag |= IN_CHANGE | IN_UPDATE; 335 allocbuf(bp, nsize); 336 bp->b_flags |= B_DONE; 337 vfs_bio_bzero_buf(bp, osize, nsize - osize); 338 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 339 vfs_bio_set_valid(bp, osize, nsize - osize); 340 *bpp = bp; 341 return (0); 342 } 343 /* 344 * Allocate a new disk location. 345 */ 346 if (bpref >= fs->fs_size) 347 bpref = 0; 348 switch ((int)fs->fs_optim) { 349 case FS_OPTSPACE: 350 /* 351 * Allocate an exact sized fragment. Although this makes 352 * best use of space, we will waste time relocating it if 353 * the file continues to grow. If the fragmentation is 354 * less than half of the minimum free reserve, we choose 355 * to begin optimizing for time. 356 */ 357 request = nsize; 358 if (fs->fs_minfree <= 5 || 359 fs->fs_cstotal.cs_nffree > 360 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 361 break; 362 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 363 fs->fs_fsmnt); 364 fs->fs_optim = FS_OPTTIME; 365 break; 366 case FS_OPTTIME: 367 /* 368 * At this point we have discovered a file that is trying to 369 * grow a small fragment to a larger fragment. To save time, 370 * we allocate a full sized block, then free the unused portion. 371 * If the file continues to grow, the `ffs_fragextend' call 372 * above will be able to grow it in place without further 373 * copying. If aberrant programs cause disk fragmentation to 374 * grow within 2% of the free reserve, we choose to begin 375 * optimizing for space. 376 */ 377 request = fs->fs_bsize; 378 if (fs->fs_cstotal.cs_nffree < 379 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 380 break; 381 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 382 fs->fs_fsmnt); 383 fs->fs_optim = FS_OPTSPACE; 384 break; 385 default: 386 printf("dev = %s, optim = %ld, fs = %s\n", 387 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 388 panic("ffs_realloccg: bad optim"); 389 /* NOTREACHED */ 390 } 391 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 392 if (bno > 0) { 393 bp->b_blkno = fsbtodb(fs, bno); 394 if (!DOINGSOFTDEP(vp)) 395 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 396 ip->i_number, vp->v_type, NULL); 397 delta = btodb(nsize - osize); 398 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 399 if (flags & IO_EXT) 400 ip->i_flag |= IN_CHANGE; 401 else 402 ip->i_flag |= IN_CHANGE | IN_UPDATE; 403 allocbuf(bp, nsize); 404 bp->b_flags |= B_DONE; 405 vfs_bio_bzero_buf(bp, osize, nsize - osize); 406 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 407 vfs_bio_set_valid(bp, osize, nsize - osize); 408 *bpp = bp; 409 return (0); 410 } 411 #ifdef QUOTA 412 UFS_UNLOCK(ump); 413 /* 414 * Restore user's disk quota because allocation failed. 415 */ 416 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 417 UFS_LOCK(ump); 418 #endif 419 nospace: 420 /* 421 * no space available 422 */ 423 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 424 reclaimed = 1; 425 UFS_UNLOCK(ump); 426 if (bp) { 427 brelse(bp); 428 bp = NULL; 429 } 430 UFS_LOCK(ump); 431 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 432 goto retry; 433 } 434 UFS_UNLOCK(ump); 435 if (bp) 436 brelse(bp); 437 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 438 ffs_fserr(fs, ip->i_number, "filesystem full"); 439 uprintf("\n%s: write failed, filesystem is full\n", 440 fs->fs_fsmnt); 441 } 442 return (ENOSPC); 443 } 444 445 /* 446 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 447 * 448 * The vnode and an array of buffer pointers for a range of sequential 449 * logical blocks to be made contiguous is given. The allocator attempts 450 * to find a range of sequential blocks starting as close as possible 451 * from the end of the allocation for the logical block immediately 452 * preceding the current range. If successful, the physical block numbers 453 * in the buffer pointers and in the inode are changed to reflect the new 454 * allocation. If unsuccessful, the allocation is left unchanged. The 455 * success in doing the reallocation is returned. Note that the error 456 * return is not reflected back to the user. Rather the previous block 457 * allocation will be used. 458 */ 459 460 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 461 462 static int doasyncfree = 1; 463 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 464 465 static int doreallocblks = 1; 466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 467 468 #ifdef DEBUG 469 static volatile int prtrealloc = 0; 470 #endif 471 472 int 473 ffs_reallocblks(ap) 474 struct vop_reallocblks_args /* { 475 struct vnode *a_vp; 476 struct cluster_save *a_buflist; 477 } */ *ap; 478 { 479 480 if (doreallocblks == 0) 481 return (ENOSPC); 482 /* 483 * We can't wait in softdep prealloc as it may fsync and recurse 484 * here. Instead we simply fail to reallocate blocks if this 485 * rare condition arises. 486 */ 487 if (DOINGSOFTDEP(ap->a_vp)) 488 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 489 return (ENOSPC); 490 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 491 return (ffs_reallocblks_ufs1(ap)); 492 return (ffs_reallocblks_ufs2(ap)); 493 } 494 495 static int 496 ffs_reallocblks_ufs1(ap) 497 struct vop_reallocblks_args /* { 498 struct vnode *a_vp; 499 struct cluster_save *a_buflist; 500 } */ *ap; 501 { 502 struct fs *fs; 503 struct inode *ip; 504 struct vnode *vp; 505 struct buf *sbp, *ebp; 506 ufs1_daddr_t *bap, *sbap, *ebap = 0; 507 struct cluster_save *buflist; 508 struct ufsmount *ump; 509 ufs_lbn_t start_lbn, end_lbn; 510 ufs1_daddr_t soff, newblk, blkno; 511 ufs2_daddr_t pref; 512 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 513 int i, len, start_lvl, end_lvl, ssize; 514 515 vp = ap->a_vp; 516 ip = VTOI(vp); 517 fs = ip->i_fs; 518 ump = ip->i_ump; 519 /* 520 * If we are not tracking block clusters or if we have less than 2% 521 * free blocks left, then do not attempt to cluster. Running with 522 * less than 5% free block reserve is not recommended and those that 523 * choose to do so do not expect to have good file layout. 524 */ 525 if (fs->fs_contigsumsize <= 0 || freespace(fs, 2) < 0) 526 return (ENOSPC); 527 buflist = ap->a_buflist; 528 len = buflist->bs_nchildren; 529 start_lbn = buflist->bs_children[0]->b_lblkno; 530 end_lbn = start_lbn + len - 1; 531 #ifdef INVARIANTS 532 for (i = 0; i < len; i++) 533 if (!ffs_checkblk(ip, 534 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 535 panic("ffs_reallocblks: unallocated block 1"); 536 for (i = 1; i < len; i++) 537 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 538 panic("ffs_reallocblks: non-logical cluster"); 539 blkno = buflist->bs_children[0]->b_blkno; 540 ssize = fsbtodb(fs, fs->fs_frag); 541 for (i = 1; i < len - 1; i++) 542 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 543 panic("ffs_reallocblks: non-physical cluster %d", i); 544 #endif 545 /* 546 * If the cluster crosses the boundary for the first indirect 547 * block, leave space for the indirect block. Indirect blocks 548 * are initially laid out in a position after the last direct 549 * block. Block reallocation would usually destroy locality by 550 * moving the indirect block out of the way to make room for 551 * data blocks if we didn't compensate here. We should also do 552 * this for other indirect block boundaries, but it is only 553 * important for the first one. 554 */ 555 if (start_lbn < NDADDR && end_lbn >= NDADDR) 556 return (ENOSPC); 557 /* 558 * If the latest allocation is in a new cylinder group, assume that 559 * the filesystem has decided to move and do not force it back to 560 * the previous cylinder group. 561 */ 562 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 563 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 564 return (ENOSPC); 565 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 566 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 567 return (ENOSPC); 568 /* 569 * Get the starting offset and block map for the first block. 570 */ 571 if (start_lvl == 0) { 572 sbap = &ip->i_din1->di_db[0]; 573 soff = start_lbn; 574 } else { 575 idp = &start_ap[start_lvl - 1]; 576 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 577 brelse(sbp); 578 return (ENOSPC); 579 } 580 sbap = (ufs1_daddr_t *)sbp->b_data; 581 soff = idp->in_off; 582 } 583 /* 584 * If the block range spans two block maps, get the second map. 585 */ 586 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 587 ssize = len; 588 } else { 589 #ifdef INVARIANTS 590 if (start_lvl > 0 && 591 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 592 panic("ffs_reallocblk: start == end"); 593 #endif 594 ssize = len - (idp->in_off + 1); 595 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 596 goto fail; 597 ebap = (ufs1_daddr_t *)ebp->b_data; 598 } 599 /* 600 * Find the preferred location for the cluster. 601 */ 602 UFS_LOCK(ump); 603 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 604 /* 605 * Search the block map looking for an allocation of the desired size. 606 */ 607 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 608 len, len, ffs_clusteralloc)) == 0) { 609 UFS_UNLOCK(ump); 610 goto fail; 611 } 612 /* 613 * We have found a new contiguous block. 614 * 615 * First we have to replace the old block pointers with the new 616 * block pointers in the inode and indirect blocks associated 617 * with the file. 618 */ 619 #ifdef DEBUG 620 if (prtrealloc) 621 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 622 (uintmax_t)ip->i_number, 623 (intmax_t)start_lbn, (intmax_t)end_lbn); 624 #endif 625 blkno = newblk; 626 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 627 if (i == ssize) { 628 bap = ebap; 629 soff = -i; 630 } 631 #ifdef INVARIANTS 632 if (!ffs_checkblk(ip, 633 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 634 panic("ffs_reallocblks: unallocated block 2"); 635 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 636 panic("ffs_reallocblks: alloc mismatch"); 637 #endif 638 #ifdef DEBUG 639 if (prtrealloc) 640 printf(" %d,", *bap); 641 #endif 642 if (DOINGSOFTDEP(vp)) { 643 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 644 softdep_setup_allocdirect(ip, start_lbn + i, 645 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 646 buflist->bs_children[i]); 647 else 648 softdep_setup_allocindir_page(ip, start_lbn + i, 649 i < ssize ? sbp : ebp, soff + i, blkno, 650 *bap, buflist->bs_children[i]); 651 } 652 *bap++ = blkno; 653 } 654 /* 655 * Next we must write out the modified inode and indirect blocks. 656 * For strict correctness, the writes should be synchronous since 657 * the old block values may have been written to disk. In practise 658 * they are almost never written, but if we are concerned about 659 * strict correctness, the `doasyncfree' flag should be set to zero. 660 * 661 * The test on `doasyncfree' should be changed to test a flag 662 * that shows whether the associated buffers and inodes have 663 * been written. The flag should be set when the cluster is 664 * started and cleared whenever the buffer or inode is flushed. 665 * We can then check below to see if it is set, and do the 666 * synchronous write only when it has been cleared. 667 */ 668 if (sbap != &ip->i_din1->di_db[0]) { 669 if (doasyncfree) 670 bdwrite(sbp); 671 else 672 bwrite(sbp); 673 } else { 674 ip->i_flag |= IN_CHANGE | IN_UPDATE; 675 if (!doasyncfree) 676 ffs_update(vp, 1); 677 } 678 if (ssize < len) { 679 if (doasyncfree) 680 bdwrite(ebp); 681 else 682 bwrite(ebp); 683 } 684 /* 685 * Last, free the old blocks and assign the new blocks to the buffers. 686 */ 687 #ifdef DEBUG 688 if (prtrealloc) 689 printf("\n\tnew:"); 690 #endif 691 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 692 if (!DOINGSOFTDEP(vp)) 693 ffs_blkfree(ump, fs, ip->i_devvp, 694 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 695 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 696 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 697 #ifdef INVARIANTS 698 if (!ffs_checkblk(ip, 699 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 700 panic("ffs_reallocblks: unallocated block 3"); 701 #endif 702 #ifdef DEBUG 703 if (prtrealloc) 704 printf(" %d,", blkno); 705 #endif 706 } 707 #ifdef DEBUG 708 if (prtrealloc) { 709 prtrealloc--; 710 printf("\n"); 711 } 712 #endif 713 return (0); 714 715 fail: 716 if (ssize < len) 717 brelse(ebp); 718 if (sbap != &ip->i_din1->di_db[0]) 719 brelse(sbp); 720 return (ENOSPC); 721 } 722 723 static int 724 ffs_reallocblks_ufs2(ap) 725 struct vop_reallocblks_args /* { 726 struct vnode *a_vp; 727 struct cluster_save *a_buflist; 728 } */ *ap; 729 { 730 struct fs *fs; 731 struct inode *ip; 732 struct vnode *vp; 733 struct buf *sbp, *ebp; 734 ufs2_daddr_t *bap, *sbap, *ebap = 0; 735 struct cluster_save *buflist; 736 struct ufsmount *ump; 737 ufs_lbn_t start_lbn, end_lbn; 738 ufs2_daddr_t soff, newblk, blkno, pref; 739 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 740 int i, len, start_lvl, end_lvl, ssize; 741 742 vp = ap->a_vp; 743 ip = VTOI(vp); 744 fs = ip->i_fs; 745 ump = ip->i_ump; 746 /* 747 * If we are not tracking block clusters or if we have less than 2% 748 * free blocks left, then do not attempt to cluster. Running with 749 * less than 5% free block reserve is not recommended and those that 750 * choose to do so do not expect to have good file layout. 751 */ 752 if (fs->fs_contigsumsize <= 0 || freespace(fs, 2) < 0) 753 return (ENOSPC); 754 buflist = ap->a_buflist; 755 len = buflist->bs_nchildren; 756 start_lbn = buflist->bs_children[0]->b_lblkno; 757 end_lbn = start_lbn + len - 1; 758 #ifdef INVARIANTS 759 for (i = 0; i < len; i++) 760 if (!ffs_checkblk(ip, 761 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 762 panic("ffs_reallocblks: unallocated block 1"); 763 for (i = 1; i < len; i++) 764 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 765 panic("ffs_reallocblks: non-logical cluster"); 766 blkno = buflist->bs_children[0]->b_blkno; 767 ssize = fsbtodb(fs, fs->fs_frag); 768 for (i = 1; i < len - 1; i++) 769 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 770 panic("ffs_reallocblks: non-physical cluster %d", i); 771 #endif 772 /* 773 * If the cluster crosses the boundary for the first indirect 774 * block, do not move anything in it. Indirect blocks are 775 * usually initially laid out in a position between the data 776 * blocks. Block reallocation would usually destroy locality by 777 * moving the indirect block out of the way to make room for 778 * data blocks if we didn't compensate here. We should also do 779 * this for other indirect block boundaries, but it is only 780 * important for the first one. 781 */ 782 if (start_lbn < NDADDR && end_lbn >= NDADDR) 783 return (ENOSPC); 784 /* 785 * If the latest allocation is in a new cylinder group, assume that 786 * the filesystem has decided to move and do not force it back to 787 * the previous cylinder group. 788 */ 789 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 790 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 791 return (ENOSPC); 792 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 793 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 794 return (ENOSPC); 795 /* 796 * Get the starting offset and block map for the first block. 797 */ 798 if (start_lvl == 0) { 799 sbap = &ip->i_din2->di_db[0]; 800 soff = start_lbn; 801 } else { 802 idp = &start_ap[start_lvl - 1]; 803 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 804 brelse(sbp); 805 return (ENOSPC); 806 } 807 sbap = (ufs2_daddr_t *)sbp->b_data; 808 soff = idp->in_off; 809 } 810 /* 811 * If the block range spans two block maps, get the second map. 812 */ 813 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 814 ssize = len; 815 } else { 816 #ifdef INVARIANTS 817 if (start_lvl > 0 && 818 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 819 panic("ffs_reallocblk: start == end"); 820 #endif 821 ssize = len - (idp->in_off + 1); 822 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 823 goto fail; 824 ebap = (ufs2_daddr_t *)ebp->b_data; 825 } 826 /* 827 * Find the preferred location for the cluster. 828 */ 829 UFS_LOCK(ump); 830 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 831 /* 832 * Search the block map looking for an allocation of the desired size. 833 */ 834 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 835 len, len, ffs_clusteralloc)) == 0) { 836 UFS_UNLOCK(ump); 837 goto fail; 838 } 839 /* 840 * We have found a new contiguous block. 841 * 842 * First we have to replace the old block pointers with the new 843 * block pointers in the inode and indirect blocks associated 844 * with the file. 845 */ 846 #ifdef DEBUG 847 if (prtrealloc) 848 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 849 (intmax_t)start_lbn, (intmax_t)end_lbn); 850 #endif 851 blkno = newblk; 852 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 853 if (i == ssize) { 854 bap = ebap; 855 soff = -i; 856 } 857 #ifdef INVARIANTS 858 if (!ffs_checkblk(ip, 859 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 860 panic("ffs_reallocblks: unallocated block 2"); 861 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 862 panic("ffs_reallocblks: alloc mismatch"); 863 #endif 864 #ifdef DEBUG 865 if (prtrealloc) 866 printf(" %jd,", (intmax_t)*bap); 867 #endif 868 if (DOINGSOFTDEP(vp)) { 869 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 870 softdep_setup_allocdirect(ip, start_lbn + i, 871 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 872 buflist->bs_children[i]); 873 else 874 softdep_setup_allocindir_page(ip, start_lbn + i, 875 i < ssize ? sbp : ebp, soff + i, blkno, 876 *bap, buflist->bs_children[i]); 877 } 878 *bap++ = blkno; 879 } 880 /* 881 * Next we must write out the modified inode and indirect blocks. 882 * For strict correctness, the writes should be synchronous since 883 * the old block values may have been written to disk. In practise 884 * they are almost never written, but if we are concerned about 885 * strict correctness, the `doasyncfree' flag should be set to zero. 886 * 887 * The test on `doasyncfree' should be changed to test a flag 888 * that shows whether the associated buffers and inodes have 889 * been written. The flag should be set when the cluster is 890 * started and cleared whenever the buffer or inode is flushed. 891 * We can then check below to see if it is set, and do the 892 * synchronous write only when it has been cleared. 893 */ 894 if (sbap != &ip->i_din2->di_db[0]) { 895 if (doasyncfree) 896 bdwrite(sbp); 897 else 898 bwrite(sbp); 899 } else { 900 ip->i_flag |= IN_CHANGE | IN_UPDATE; 901 if (!doasyncfree) 902 ffs_update(vp, 1); 903 } 904 if (ssize < len) { 905 if (doasyncfree) 906 bdwrite(ebp); 907 else 908 bwrite(ebp); 909 } 910 /* 911 * Last, free the old blocks and assign the new blocks to the buffers. 912 */ 913 #ifdef DEBUG 914 if (prtrealloc) 915 printf("\n\tnew:"); 916 #endif 917 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 918 if (!DOINGSOFTDEP(vp)) 919 ffs_blkfree(ump, fs, ip->i_devvp, 920 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 921 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 922 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 923 #ifdef INVARIANTS 924 if (!ffs_checkblk(ip, 925 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 926 panic("ffs_reallocblks: unallocated block 3"); 927 #endif 928 #ifdef DEBUG 929 if (prtrealloc) 930 printf(" %jd,", (intmax_t)blkno); 931 #endif 932 } 933 #ifdef DEBUG 934 if (prtrealloc) { 935 prtrealloc--; 936 printf("\n"); 937 } 938 #endif 939 return (0); 940 941 fail: 942 if (ssize < len) 943 brelse(ebp); 944 if (sbap != &ip->i_din2->di_db[0]) 945 brelse(sbp); 946 return (ENOSPC); 947 } 948 949 /* 950 * Allocate an inode in the filesystem. 951 * 952 * If allocating a directory, use ffs_dirpref to select the inode. 953 * If allocating in a directory, the following hierarchy is followed: 954 * 1) allocate the preferred inode. 955 * 2) allocate an inode in the same cylinder group. 956 * 3) quadradically rehash into other cylinder groups, until an 957 * available inode is located. 958 * If no inode preference is given the following hierarchy is used 959 * to allocate an inode: 960 * 1) allocate an inode in cylinder group 0. 961 * 2) quadradically rehash into other cylinder groups, until an 962 * available inode is located. 963 */ 964 int 965 ffs_valloc(pvp, mode, cred, vpp) 966 struct vnode *pvp; 967 int mode; 968 struct ucred *cred; 969 struct vnode **vpp; 970 { 971 struct inode *pip; 972 struct fs *fs; 973 struct inode *ip; 974 struct timespec ts; 975 struct ufsmount *ump; 976 ino_t ino, ipref; 977 u_int cg; 978 int error, error1, reclaimed; 979 static struct timeval lastfail; 980 static int curfail; 981 982 *vpp = NULL; 983 pip = VTOI(pvp); 984 fs = pip->i_fs; 985 ump = pip->i_ump; 986 987 UFS_LOCK(ump); 988 reclaimed = 0; 989 retry: 990 if (fs->fs_cstotal.cs_nifree == 0) 991 goto noinodes; 992 993 if ((mode & IFMT) == IFDIR) 994 ipref = ffs_dirpref(pip); 995 else 996 ipref = pip->i_number; 997 if (ipref >= fs->fs_ncg * fs->fs_ipg) 998 ipref = 0; 999 cg = ino_to_cg(fs, ipref); 1000 /* 1001 * Track number of dirs created one after another 1002 * in a same cg without intervening by files. 1003 */ 1004 if ((mode & IFMT) == IFDIR) { 1005 if (fs->fs_contigdirs[cg] < 255) 1006 fs->fs_contigdirs[cg]++; 1007 } else { 1008 if (fs->fs_contigdirs[cg] > 0) 1009 fs->fs_contigdirs[cg]--; 1010 } 1011 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1012 (allocfcn_t *)ffs_nodealloccg); 1013 if (ino == 0) 1014 goto noinodes; 1015 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1016 if (error) { 1017 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1018 FFSV_FORCEINSMQ); 1019 ffs_vfree(pvp, ino, mode); 1020 if (error1 == 0) { 1021 ip = VTOI(*vpp); 1022 if (ip->i_mode) 1023 goto dup_alloc; 1024 ip->i_flag |= IN_MODIFIED; 1025 vput(*vpp); 1026 } 1027 return (error); 1028 } 1029 ip = VTOI(*vpp); 1030 if (ip->i_mode) { 1031 dup_alloc: 1032 printf("mode = 0%o, inum = %lu, fs = %s\n", 1033 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 1034 panic("ffs_valloc: dup alloc"); 1035 } 1036 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1037 printf("free inode %s/%lu had %ld blocks\n", 1038 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1039 DIP_SET(ip, i_blocks, 0); 1040 } 1041 ip->i_flags = 0; 1042 DIP_SET(ip, i_flags, 0); 1043 /* 1044 * Set up a new generation number for this inode. 1045 */ 1046 if (ip->i_gen == 0 || ++ip->i_gen == 0) 1047 ip->i_gen = arc4random() / 2 + 1; 1048 DIP_SET(ip, i_gen, ip->i_gen); 1049 if (fs->fs_magic == FS_UFS2_MAGIC) { 1050 vfs_timestamp(&ts); 1051 ip->i_din2->di_birthtime = ts.tv_sec; 1052 ip->i_din2->di_birthnsec = ts.tv_nsec; 1053 } 1054 ufs_prepare_reclaim(*vpp); 1055 ip->i_flag = 0; 1056 (*vpp)->v_vflag = 0; 1057 (*vpp)->v_type = VNON; 1058 if (fs->fs_magic == FS_UFS2_MAGIC) 1059 (*vpp)->v_op = &ffs_vnodeops2; 1060 else 1061 (*vpp)->v_op = &ffs_vnodeops1; 1062 return (0); 1063 noinodes: 1064 if (reclaimed == 0) { 1065 reclaimed = 1; 1066 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1067 goto retry; 1068 } 1069 UFS_UNLOCK(ump); 1070 if (ppsratecheck(&lastfail, &curfail, 1)) { 1071 ffs_fserr(fs, pip->i_number, "out of inodes"); 1072 uprintf("\n%s: create/symlink failed, no inodes free\n", 1073 fs->fs_fsmnt); 1074 } 1075 return (ENOSPC); 1076 } 1077 1078 /* 1079 * Find a cylinder group to place a directory. 1080 * 1081 * The policy implemented by this algorithm is to allocate a 1082 * directory inode in the same cylinder group as its parent 1083 * directory, but also to reserve space for its files inodes 1084 * and data. Restrict the number of directories which may be 1085 * allocated one after another in the same cylinder group 1086 * without intervening allocation of files. 1087 * 1088 * If we allocate a first level directory then force allocation 1089 * in another cylinder group. 1090 */ 1091 static ino_t 1092 ffs_dirpref(pip) 1093 struct inode *pip; 1094 { 1095 struct fs *fs; 1096 int cg, prefcg, dirsize, cgsize; 1097 u_int avgifree, avgbfree, avgndir, curdirsize; 1098 u_int minifree, minbfree, maxndir; 1099 u_int mincg, minndir; 1100 u_int maxcontigdirs; 1101 1102 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1103 fs = pip->i_fs; 1104 1105 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1106 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1107 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1108 1109 /* 1110 * Force allocation in another cg if creating a first level dir. 1111 */ 1112 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1113 if (ITOV(pip)->v_vflag & VV_ROOT) { 1114 prefcg = arc4random() % fs->fs_ncg; 1115 mincg = prefcg; 1116 minndir = fs->fs_ipg; 1117 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1118 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1119 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1120 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1121 mincg = cg; 1122 minndir = fs->fs_cs(fs, cg).cs_ndir; 1123 } 1124 for (cg = 0; cg < prefcg; cg++) 1125 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1126 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1127 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1128 mincg = cg; 1129 minndir = fs->fs_cs(fs, cg).cs_ndir; 1130 } 1131 return ((ino_t)(fs->fs_ipg * mincg)); 1132 } 1133 1134 /* 1135 * Count various limits which used for 1136 * optimal allocation of a directory inode. 1137 */ 1138 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1139 minifree = avgifree - avgifree / 4; 1140 if (minifree < 1) 1141 minifree = 1; 1142 minbfree = avgbfree - avgbfree / 4; 1143 if (minbfree < 1) 1144 minbfree = 1; 1145 cgsize = fs->fs_fsize * fs->fs_fpg; 1146 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1147 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1148 if (dirsize < curdirsize) 1149 dirsize = curdirsize; 1150 if (dirsize <= 0) 1151 maxcontigdirs = 0; /* dirsize overflowed */ 1152 else 1153 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1154 if (fs->fs_avgfpdir > 0) 1155 maxcontigdirs = min(maxcontigdirs, 1156 fs->fs_ipg / fs->fs_avgfpdir); 1157 if (maxcontigdirs == 0) 1158 maxcontigdirs = 1; 1159 1160 /* 1161 * Limit number of dirs in one cg and reserve space for 1162 * regular files, but only if we have no deficit in 1163 * inodes or space. 1164 * 1165 * We are trying to find a suitable cylinder group nearby 1166 * our preferred cylinder group to place a new directory. 1167 * We scan from our preferred cylinder group forward looking 1168 * for a cylinder group that meets our criterion. If we get 1169 * to the final cylinder group and do not find anything, 1170 * we start scanning backwards from our preferred cylinder 1171 * group. The ideal would be to alternate looking forward 1172 * and backward, but that is just too complex to code for 1173 * the gain it would get. The most likely place where the 1174 * backward scan would take effect is when we start near 1175 * the end of the filesystem and do not find anything from 1176 * where we are to the end. In that case, scanning backward 1177 * will likely find us a suitable cylinder group much closer 1178 * to our desired location than if we were to start scanning 1179 * forward from the beginning of the filesystem. 1180 */ 1181 prefcg = ino_to_cg(fs, pip->i_number); 1182 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1183 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1184 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1185 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1186 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1187 return ((ino_t)(fs->fs_ipg * cg)); 1188 } 1189 for (cg = 0; cg < prefcg; cg++) 1190 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1191 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1192 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1193 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1194 return ((ino_t)(fs->fs_ipg * cg)); 1195 } 1196 /* 1197 * This is a backstop when we have deficit in space. 1198 */ 1199 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1200 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1201 return ((ino_t)(fs->fs_ipg * cg)); 1202 for (cg = 0; cg < prefcg; cg++) 1203 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1204 break; 1205 return ((ino_t)(fs->fs_ipg * cg)); 1206 } 1207 1208 /* 1209 * Select the desired position for the next block in a file. The file is 1210 * logically divided into sections. The first section is composed of the 1211 * direct blocks and the next fs_maxbpg blocks. Each additional section 1212 * contains fs_maxbpg blocks. 1213 * 1214 * If no blocks have been allocated in the first section, the policy is to 1215 * request a block in the same cylinder group as the inode that describes 1216 * the file. The first indirect is allocated immediately following the last 1217 * direct block and the data blocks for the first indirect immediately 1218 * follow it. 1219 * 1220 * If no blocks have been allocated in any other section, the indirect 1221 * block(s) are allocated in the same cylinder group as its inode in an 1222 * area reserved immediately following the inode blocks. The policy for 1223 * the data blocks is to place them in a cylinder group with a greater than 1224 * average number of free blocks. An appropriate cylinder group is found 1225 * by using a rotor that sweeps the cylinder groups. When a new group of 1226 * blocks is needed, the sweep begins in the cylinder group following the 1227 * cylinder group from which the previous allocation was made. The sweep 1228 * continues until a cylinder group with greater than the average number 1229 * of free blocks is found. If the allocation is for the first block in an 1230 * indirect block or the previous block is a hole, then the information on 1231 * the previous allocation is unavailable; here a best guess is made based 1232 * on the logical block number being allocated. 1233 * 1234 * If a section is already partially allocated, the policy is to 1235 * allocate blocks contiguously within the section if possible. 1236 */ 1237 ufs2_daddr_t 1238 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1239 struct inode *ip; 1240 ufs_lbn_t lbn; 1241 int indx; 1242 ufs1_daddr_t *bap; 1243 { 1244 struct fs *fs; 1245 u_int cg, inocg; 1246 u_int avgbfree, startcg; 1247 ufs2_daddr_t pref; 1248 1249 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1250 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1251 fs = ip->i_fs; 1252 /* 1253 * Allocation of indirect blocks is indicated by passing negative 1254 * values in indx: -1 for single indirect, -2 for double indirect, 1255 * -3 for triple indirect. As noted below, we attempt to allocate 1256 * the first indirect inline with the file data. For all later 1257 * indirect blocks, the data is often allocated in other cylinder 1258 * groups. However to speed random file access and to speed up 1259 * fsck, the filesystem reserves the first fs_metaspace blocks 1260 * (typically half of fs_minfree) of the data area of each cylinder 1261 * group to hold these later indirect blocks. 1262 */ 1263 inocg = ino_to_cg(fs, ip->i_number); 1264 if (indx < 0) { 1265 /* 1266 * Our preference for indirect blocks is the zone at the 1267 * beginning of the inode's cylinder group data area that 1268 * we try to reserve for indirect blocks. 1269 */ 1270 pref = cgmeta(fs, inocg); 1271 /* 1272 * If we are allocating the first indirect block, try to 1273 * place it immediately following the last direct block. 1274 */ 1275 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1276 ip->i_din1->di_db[NDADDR - 1] != 0) 1277 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag; 1278 return (pref); 1279 } 1280 /* 1281 * If we are allocating the first data block in the first indirect 1282 * block and the indirect has been allocated in the data block area, 1283 * try to place it immediately following the indirect block. 1284 */ 1285 if (lbn == NDADDR) { 1286 pref = ip->i_din1->di_ib[0]; 1287 if (pref != 0 && pref >= cgdata(fs, inocg) && 1288 pref < cgbase(fs, inocg + 1)) 1289 return (pref + fs->fs_frag); 1290 } 1291 /* 1292 * If we are at the beginning of a file, or we have already allocated 1293 * the maximum number of blocks per cylinder group, or we do not 1294 * have a block allocated immediately preceeding us, then we need 1295 * to decide where to start allocating new blocks. 1296 */ 1297 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1298 /* 1299 * If we are allocating a directory data block, we want 1300 * to place it in the metadata area. 1301 */ 1302 if ((ip->i_mode & IFMT) == IFDIR) 1303 return (cgmeta(fs, inocg)); 1304 /* 1305 * Until we fill all the direct and all the first indirect's 1306 * blocks, we try to allocate in the data area of the inode's 1307 * cylinder group. 1308 */ 1309 if (lbn < NDADDR + NINDIR(fs)) 1310 return (cgdata(fs, inocg)); 1311 /* 1312 * Find a cylinder with greater than average number of 1313 * unused data blocks. 1314 */ 1315 if (indx == 0 || bap[indx - 1] == 0) 1316 startcg = inocg + lbn / fs->fs_maxbpg; 1317 else 1318 startcg = dtog(fs, bap[indx - 1]) + 1; 1319 startcg %= fs->fs_ncg; 1320 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1321 for (cg = startcg; cg < fs->fs_ncg; cg++) 1322 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1323 fs->fs_cgrotor = cg; 1324 return (cgdata(fs, cg)); 1325 } 1326 for (cg = 0; cg <= startcg; cg++) 1327 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1328 fs->fs_cgrotor = cg; 1329 return (cgdata(fs, cg)); 1330 } 1331 return (0); 1332 } 1333 /* 1334 * Otherwise, we just always try to lay things out contiguously. 1335 */ 1336 return (bap[indx - 1] + fs->fs_frag); 1337 } 1338 1339 /* 1340 * Same as above, but for UFS2 1341 */ 1342 ufs2_daddr_t 1343 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1344 struct inode *ip; 1345 ufs_lbn_t lbn; 1346 int indx; 1347 ufs2_daddr_t *bap; 1348 { 1349 struct fs *fs; 1350 u_int cg, inocg; 1351 u_int avgbfree, startcg; 1352 ufs2_daddr_t pref; 1353 1354 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1355 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1356 fs = ip->i_fs; 1357 /* 1358 * Allocation of indirect blocks is indicated by passing negative 1359 * values in indx: -1 for single indirect, -2 for double indirect, 1360 * -3 for triple indirect. As noted below, we attempt to allocate 1361 * the first indirect inline with the file data. For all later 1362 * indirect blocks, the data is often allocated in other cylinder 1363 * groups. However to speed random file access and to speed up 1364 * fsck, the filesystem reserves the first fs_metaspace blocks 1365 * (typically half of fs_minfree) of the data area of each cylinder 1366 * group to hold these later indirect blocks. 1367 */ 1368 inocg = ino_to_cg(fs, ip->i_number); 1369 if (indx < 0) { 1370 /* 1371 * Our preference for indirect blocks is the zone at the 1372 * beginning of the inode's cylinder group data area that 1373 * we try to reserve for indirect blocks. 1374 */ 1375 pref = cgmeta(fs, inocg); 1376 /* 1377 * If we are allocating the first indirect block, try to 1378 * place it immediately following the last direct block. 1379 */ 1380 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1381 ip->i_din2->di_db[NDADDR - 1] != 0) 1382 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag; 1383 return (pref); 1384 } 1385 /* 1386 * If we are allocating the first data block in the first indirect 1387 * block and the indirect has been allocated in the data block area, 1388 * try to place it immediately following the indirect block. 1389 */ 1390 if (lbn == NDADDR) { 1391 pref = ip->i_din2->di_ib[0]; 1392 if (pref != 0 && pref >= cgdata(fs, inocg) && 1393 pref < cgbase(fs, inocg + 1)) 1394 return (pref + fs->fs_frag); 1395 } 1396 /* 1397 * If we are at the beginning of a file, or we have already allocated 1398 * the maximum number of blocks per cylinder group, or we do not 1399 * have a block allocated immediately preceeding us, then we need 1400 * to decide where to start allocating new blocks. 1401 */ 1402 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1403 /* 1404 * If we are allocating a directory data block, we want 1405 * to place it in the metadata area. 1406 */ 1407 if ((ip->i_mode & IFMT) == IFDIR) 1408 return (cgmeta(fs, inocg)); 1409 /* 1410 * Until we fill all the direct and all the first indirect's 1411 * blocks, we try to allocate in the data area of the inode's 1412 * cylinder group. 1413 */ 1414 if (lbn < NDADDR + NINDIR(fs)) 1415 return (cgdata(fs, inocg)); 1416 /* 1417 * Find a cylinder with greater than average number of 1418 * unused data blocks. 1419 */ 1420 if (indx == 0 || bap[indx - 1] == 0) 1421 startcg = inocg + lbn / fs->fs_maxbpg; 1422 else 1423 startcg = dtog(fs, bap[indx - 1]) + 1; 1424 startcg %= fs->fs_ncg; 1425 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1426 for (cg = startcg; cg < fs->fs_ncg; cg++) 1427 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1428 fs->fs_cgrotor = cg; 1429 return (cgdata(fs, cg)); 1430 } 1431 for (cg = 0; cg <= startcg; cg++) 1432 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1433 fs->fs_cgrotor = cg; 1434 return (cgdata(fs, cg)); 1435 } 1436 return (0); 1437 } 1438 /* 1439 * Otherwise, we just always try to lay things out contiguously. 1440 */ 1441 return (bap[indx - 1] + fs->fs_frag); 1442 } 1443 1444 /* 1445 * Implement the cylinder overflow algorithm. 1446 * 1447 * The policy implemented by this algorithm is: 1448 * 1) allocate the block in its requested cylinder group. 1449 * 2) quadradically rehash on the cylinder group number. 1450 * 3) brute force search for a free block. 1451 * 1452 * Must be called with the UFS lock held. Will release the lock on success 1453 * and return with it held on failure. 1454 */ 1455 /*VARARGS5*/ 1456 static ufs2_daddr_t 1457 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1458 struct inode *ip; 1459 u_int cg; 1460 ufs2_daddr_t pref; 1461 int size; /* Search size for data blocks, mode for inodes */ 1462 int rsize; /* Real allocated size. */ 1463 allocfcn_t *allocator; 1464 { 1465 struct fs *fs; 1466 ufs2_daddr_t result; 1467 u_int i, icg = cg; 1468 1469 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1470 #ifdef INVARIANTS 1471 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1472 panic("ffs_hashalloc: allocation on suspended filesystem"); 1473 #endif 1474 fs = ip->i_fs; 1475 /* 1476 * 1: preferred cylinder group 1477 */ 1478 result = (*allocator)(ip, cg, pref, size, rsize); 1479 if (result) 1480 return (result); 1481 /* 1482 * 2: quadratic rehash 1483 */ 1484 for (i = 1; i < fs->fs_ncg; i *= 2) { 1485 cg += i; 1486 if (cg >= fs->fs_ncg) 1487 cg -= fs->fs_ncg; 1488 result = (*allocator)(ip, cg, 0, size, rsize); 1489 if (result) 1490 return (result); 1491 } 1492 /* 1493 * 3: brute force search 1494 * Note that we start at i == 2, since 0 was checked initially, 1495 * and 1 is always checked in the quadratic rehash. 1496 */ 1497 cg = (icg + 2) % fs->fs_ncg; 1498 for (i = 2; i < fs->fs_ncg; i++) { 1499 result = (*allocator)(ip, cg, 0, size, rsize); 1500 if (result) 1501 return (result); 1502 cg++; 1503 if (cg == fs->fs_ncg) 1504 cg = 0; 1505 } 1506 return (0); 1507 } 1508 1509 /* 1510 * Determine whether a fragment can be extended. 1511 * 1512 * Check to see if the necessary fragments are available, and 1513 * if they are, allocate them. 1514 */ 1515 static ufs2_daddr_t 1516 ffs_fragextend(ip, cg, bprev, osize, nsize) 1517 struct inode *ip; 1518 u_int cg; 1519 ufs2_daddr_t bprev; 1520 int osize, nsize; 1521 { 1522 struct fs *fs; 1523 struct cg *cgp; 1524 struct buf *bp; 1525 struct ufsmount *ump; 1526 int nffree; 1527 long bno; 1528 int frags, bbase; 1529 int i, error; 1530 u_int8_t *blksfree; 1531 1532 ump = ip->i_ump; 1533 fs = ip->i_fs; 1534 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1535 return (0); 1536 frags = numfrags(fs, nsize); 1537 bbase = fragnum(fs, bprev); 1538 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1539 /* cannot extend across a block boundary */ 1540 return (0); 1541 } 1542 UFS_UNLOCK(ump); 1543 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1544 (int)fs->fs_cgsize, NOCRED, &bp); 1545 if (error) 1546 goto fail; 1547 cgp = (struct cg *)bp->b_data; 1548 if (!cg_chkmagic(cgp)) 1549 goto fail; 1550 bp->b_xflags |= BX_BKGRDWRITE; 1551 cgp->cg_old_time = cgp->cg_time = time_second; 1552 bno = dtogd(fs, bprev); 1553 blksfree = cg_blksfree(cgp); 1554 for (i = numfrags(fs, osize); i < frags; i++) 1555 if (isclr(blksfree, bno + i)) 1556 goto fail; 1557 /* 1558 * the current fragment can be extended 1559 * deduct the count on fragment being extended into 1560 * increase the count on the remaining fragment (if any) 1561 * allocate the extended piece 1562 */ 1563 for (i = frags; i < fs->fs_frag - bbase; i++) 1564 if (isclr(blksfree, bno + i)) 1565 break; 1566 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1567 if (i != frags) 1568 cgp->cg_frsum[i - frags]++; 1569 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1570 clrbit(blksfree, bno + i); 1571 cgp->cg_cs.cs_nffree--; 1572 nffree++; 1573 } 1574 UFS_LOCK(ump); 1575 fs->fs_cstotal.cs_nffree -= nffree; 1576 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1577 fs->fs_fmod = 1; 1578 ACTIVECLEAR(fs, cg); 1579 UFS_UNLOCK(ump); 1580 if (DOINGSOFTDEP(ITOV(ip))) 1581 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1582 frags, numfrags(fs, osize)); 1583 bdwrite(bp); 1584 return (bprev); 1585 1586 fail: 1587 brelse(bp); 1588 UFS_LOCK(ump); 1589 return (0); 1590 1591 } 1592 1593 /* 1594 * Determine whether a block can be allocated. 1595 * 1596 * Check to see if a block of the appropriate size is available, 1597 * and if it is, allocate it. 1598 */ 1599 static ufs2_daddr_t 1600 ffs_alloccg(ip, cg, bpref, size, rsize) 1601 struct inode *ip; 1602 u_int cg; 1603 ufs2_daddr_t bpref; 1604 int size; 1605 int rsize; 1606 { 1607 struct fs *fs; 1608 struct cg *cgp; 1609 struct buf *bp; 1610 struct ufsmount *ump; 1611 ufs1_daddr_t bno; 1612 ufs2_daddr_t blkno; 1613 int i, allocsiz, error, frags; 1614 u_int8_t *blksfree; 1615 1616 ump = ip->i_ump; 1617 fs = ip->i_fs; 1618 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1619 return (0); 1620 UFS_UNLOCK(ump); 1621 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1622 (int)fs->fs_cgsize, NOCRED, &bp); 1623 if (error) 1624 goto fail; 1625 cgp = (struct cg *)bp->b_data; 1626 if (!cg_chkmagic(cgp) || 1627 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1628 goto fail; 1629 bp->b_xflags |= BX_BKGRDWRITE; 1630 cgp->cg_old_time = cgp->cg_time = time_second; 1631 if (size == fs->fs_bsize) { 1632 UFS_LOCK(ump); 1633 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1634 ACTIVECLEAR(fs, cg); 1635 UFS_UNLOCK(ump); 1636 bdwrite(bp); 1637 return (blkno); 1638 } 1639 /* 1640 * check to see if any fragments are already available 1641 * allocsiz is the size which will be allocated, hacking 1642 * it down to a smaller size if necessary 1643 */ 1644 blksfree = cg_blksfree(cgp); 1645 frags = numfrags(fs, size); 1646 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1647 if (cgp->cg_frsum[allocsiz] != 0) 1648 break; 1649 if (allocsiz == fs->fs_frag) { 1650 /* 1651 * no fragments were available, so a block will be 1652 * allocated, and hacked up 1653 */ 1654 if (cgp->cg_cs.cs_nbfree == 0) 1655 goto fail; 1656 UFS_LOCK(ump); 1657 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1658 ACTIVECLEAR(fs, cg); 1659 UFS_UNLOCK(ump); 1660 bdwrite(bp); 1661 return (blkno); 1662 } 1663 KASSERT(size == rsize, 1664 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1665 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1666 if (bno < 0) 1667 goto fail; 1668 for (i = 0; i < frags; i++) 1669 clrbit(blksfree, bno + i); 1670 cgp->cg_cs.cs_nffree -= frags; 1671 cgp->cg_frsum[allocsiz]--; 1672 if (frags != allocsiz) 1673 cgp->cg_frsum[allocsiz - frags]++; 1674 UFS_LOCK(ump); 1675 fs->fs_cstotal.cs_nffree -= frags; 1676 fs->fs_cs(fs, cg).cs_nffree -= frags; 1677 fs->fs_fmod = 1; 1678 blkno = cgbase(fs, cg) + bno; 1679 ACTIVECLEAR(fs, cg); 1680 UFS_UNLOCK(ump); 1681 if (DOINGSOFTDEP(ITOV(ip))) 1682 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1683 bdwrite(bp); 1684 return (blkno); 1685 1686 fail: 1687 brelse(bp); 1688 UFS_LOCK(ump); 1689 return (0); 1690 } 1691 1692 /* 1693 * Allocate a block in a cylinder group. 1694 * 1695 * This algorithm implements the following policy: 1696 * 1) allocate the requested block. 1697 * 2) allocate a rotationally optimal block in the same cylinder. 1698 * 3) allocate the next available block on the block rotor for the 1699 * specified cylinder group. 1700 * Note that this routine only allocates fs_bsize blocks; these 1701 * blocks may be fragmented by the routine that allocates them. 1702 */ 1703 static ufs2_daddr_t 1704 ffs_alloccgblk(ip, bp, bpref, size) 1705 struct inode *ip; 1706 struct buf *bp; 1707 ufs2_daddr_t bpref; 1708 int size; 1709 { 1710 struct fs *fs; 1711 struct cg *cgp; 1712 struct ufsmount *ump; 1713 ufs1_daddr_t bno; 1714 ufs2_daddr_t blkno; 1715 u_int8_t *blksfree; 1716 int i, cgbpref; 1717 1718 fs = ip->i_fs; 1719 ump = ip->i_ump; 1720 mtx_assert(UFS_MTX(ump), MA_OWNED); 1721 cgp = (struct cg *)bp->b_data; 1722 blksfree = cg_blksfree(cgp); 1723 if (bpref == 0) { 1724 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1725 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1726 /* map bpref to correct zone in this cg */ 1727 if (bpref < cgdata(fs, cgbpref)) 1728 bpref = cgmeta(fs, cgp->cg_cgx); 1729 else 1730 bpref = cgdata(fs, cgp->cg_cgx); 1731 } 1732 /* 1733 * if the requested block is available, use it 1734 */ 1735 bno = dtogd(fs, blknum(fs, bpref)); 1736 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1737 goto gotit; 1738 /* 1739 * Take the next available block in this cylinder group. 1740 */ 1741 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1742 if (bno < 0) 1743 return (0); 1744 /* Update cg_rotor only if allocated from the data zone */ 1745 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1746 cgp->cg_rotor = bno; 1747 gotit: 1748 blkno = fragstoblks(fs, bno); 1749 ffs_clrblock(fs, blksfree, (long)blkno); 1750 ffs_clusteracct(fs, cgp, blkno, -1); 1751 cgp->cg_cs.cs_nbfree--; 1752 fs->fs_cstotal.cs_nbfree--; 1753 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1754 fs->fs_fmod = 1; 1755 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1756 /* 1757 * If the caller didn't want the whole block free the frags here. 1758 */ 1759 size = numfrags(fs, size); 1760 if (size != fs->fs_frag) { 1761 bno = dtogd(fs, blkno); 1762 for (i = size; i < fs->fs_frag; i++) 1763 setbit(blksfree, bno + i); 1764 i = fs->fs_frag - size; 1765 cgp->cg_cs.cs_nffree += i; 1766 fs->fs_cstotal.cs_nffree += i; 1767 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1768 fs->fs_fmod = 1; 1769 cgp->cg_frsum[i]++; 1770 } 1771 /* XXX Fixme. */ 1772 UFS_UNLOCK(ump); 1773 if (DOINGSOFTDEP(ITOV(ip))) 1774 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1775 size, 0); 1776 UFS_LOCK(ump); 1777 return (blkno); 1778 } 1779 1780 /* 1781 * Determine whether a cluster can be allocated. 1782 * 1783 * We do not currently check for optimal rotational layout if there 1784 * are multiple choices in the same cylinder group. Instead we just 1785 * take the first one that we find following bpref. 1786 */ 1787 static ufs2_daddr_t 1788 ffs_clusteralloc(ip, cg, bpref, len, unused) 1789 struct inode *ip; 1790 u_int cg; 1791 ufs2_daddr_t bpref; 1792 int len; 1793 int unused; 1794 { 1795 struct fs *fs; 1796 struct cg *cgp; 1797 struct buf *bp; 1798 struct ufsmount *ump; 1799 int i, run, bit, map, got; 1800 ufs2_daddr_t bno; 1801 u_char *mapp; 1802 int32_t *lp; 1803 u_int8_t *blksfree; 1804 1805 fs = ip->i_fs; 1806 ump = ip->i_ump; 1807 if (fs->fs_maxcluster[cg] < len) 1808 return (0); 1809 UFS_UNLOCK(ump); 1810 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1811 NOCRED, &bp)) 1812 goto fail_lock; 1813 cgp = (struct cg *)bp->b_data; 1814 if (!cg_chkmagic(cgp)) 1815 goto fail_lock; 1816 bp->b_xflags |= BX_BKGRDWRITE; 1817 /* 1818 * Check to see if a cluster of the needed size (or bigger) is 1819 * available in this cylinder group. 1820 */ 1821 lp = &cg_clustersum(cgp)[len]; 1822 for (i = len; i <= fs->fs_contigsumsize; i++) 1823 if (*lp++ > 0) 1824 break; 1825 if (i > fs->fs_contigsumsize) { 1826 /* 1827 * This is the first time looking for a cluster in this 1828 * cylinder group. Update the cluster summary information 1829 * to reflect the true maximum sized cluster so that 1830 * future cluster allocation requests can avoid reading 1831 * the cylinder group map only to find no clusters. 1832 */ 1833 lp = &cg_clustersum(cgp)[len - 1]; 1834 for (i = len - 1; i > 0; i--) 1835 if (*lp-- > 0) 1836 break; 1837 UFS_LOCK(ump); 1838 fs->fs_maxcluster[cg] = i; 1839 goto fail; 1840 } 1841 /* 1842 * Search the cluster map to find a big enough cluster. 1843 * We take the first one that we find, even if it is larger 1844 * than we need as we prefer to get one close to the previous 1845 * block allocation. We do not search before the current 1846 * preference point as we do not want to allocate a block 1847 * that is allocated before the previous one (as we will 1848 * then have to wait for another pass of the elevator 1849 * algorithm before it will be read). We prefer to fail and 1850 * be recalled to try an allocation in the next cylinder group. 1851 */ 1852 if (dtog(fs, bpref) != cg) 1853 bpref = cgdata(fs, cg); 1854 else 1855 bpref = blknum(fs, bpref); 1856 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1857 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1858 map = *mapp++; 1859 bit = 1 << (bpref % NBBY); 1860 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1861 if ((map & bit) == 0) { 1862 run = 0; 1863 } else { 1864 run++; 1865 if (run == len) 1866 break; 1867 } 1868 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1869 bit <<= 1; 1870 } else { 1871 map = *mapp++; 1872 bit = 1; 1873 } 1874 } 1875 if (got >= cgp->cg_nclusterblks) 1876 goto fail_lock; 1877 /* 1878 * Allocate the cluster that we have found. 1879 */ 1880 blksfree = cg_blksfree(cgp); 1881 for (i = 1; i <= len; i++) 1882 if (!ffs_isblock(fs, blksfree, got - run + i)) 1883 panic("ffs_clusteralloc: map mismatch"); 1884 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1885 if (dtog(fs, bno) != cg) 1886 panic("ffs_clusteralloc: allocated out of group"); 1887 len = blkstofrags(fs, len); 1888 UFS_LOCK(ump); 1889 for (i = 0; i < len; i += fs->fs_frag) 1890 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1891 panic("ffs_clusteralloc: lost block"); 1892 ACTIVECLEAR(fs, cg); 1893 UFS_UNLOCK(ump); 1894 bdwrite(bp); 1895 return (bno); 1896 1897 fail_lock: 1898 UFS_LOCK(ump); 1899 fail: 1900 brelse(bp); 1901 return (0); 1902 } 1903 1904 static inline struct buf * 1905 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1906 { 1907 struct fs *fs; 1908 1909 fs = ip->i_fs; 1910 return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, 1911 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 1912 gbflags)); 1913 } 1914 1915 /* 1916 * Determine whether an inode can be allocated. 1917 * 1918 * Check to see if an inode is available, and if it is, 1919 * allocate it using the following policy: 1920 * 1) allocate the requested inode. 1921 * 2) allocate the next available inode after the requested 1922 * inode in the specified cylinder group. 1923 */ 1924 static ufs2_daddr_t 1925 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1926 struct inode *ip; 1927 u_int cg; 1928 ufs2_daddr_t ipref; 1929 int mode; 1930 int unused; 1931 { 1932 struct fs *fs; 1933 struct cg *cgp; 1934 struct buf *bp, *ibp; 1935 struct ufsmount *ump; 1936 u_int8_t *inosused, *loc; 1937 struct ufs2_dinode *dp2; 1938 int error, start, len, i; 1939 u_int32_t old_initediblk; 1940 1941 fs = ip->i_fs; 1942 ump = ip->i_ump; 1943 check_nifree: 1944 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1945 return (0); 1946 UFS_UNLOCK(ump); 1947 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1948 (int)fs->fs_cgsize, NOCRED, &bp); 1949 if (error) { 1950 brelse(bp); 1951 UFS_LOCK(ump); 1952 return (0); 1953 } 1954 cgp = (struct cg *)bp->b_data; 1955 restart: 1956 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1957 brelse(bp); 1958 UFS_LOCK(ump); 1959 return (0); 1960 } 1961 bp->b_xflags |= BX_BKGRDWRITE; 1962 inosused = cg_inosused(cgp); 1963 if (ipref) { 1964 ipref %= fs->fs_ipg; 1965 if (isclr(inosused, ipref)) 1966 goto gotit; 1967 } 1968 start = cgp->cg_irotor / NBBY; 1969 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1970 loc = memcchr(&inosused[start], 0xff, len); 1971 if (loc == NULL) { 1972 len = start + 1; 1973 start = 0; 1974 loc = memcchr(&inosused[start], 0xff, len); 1975 if (loc == NULL) { 1976 printf("cg = %d, irotor = %ld, fs = %s\n", 1977 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1978 panic("ffs_nodealloccg: map corrupted"); 1979 /* NOTREACHED */ 1980 } 1981 } 1982 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 1983 gotit: 1984 /* 1985 * Check to see if we need to initialize more inodes. 1986 */ 1987 if (fs->fs_magic == FS_UFS2_MAGIC && 1988 ipref + INOPB(fs) > cgp->cg_initediblk && 1989 cgp->cg_initediblk < cgp->cg_niblk) { 1990 old_initediblk = cgp->cg_initediblk; 1991 1992 /* 1993 * Free the cylinder group lock before writing the 1994 * initialized inode block. Entering the 1995 * babarrierwrite() with the cylinder group lock 1996 * causes lock order violation between the lock and 1997 * snaplk. 1998 * 1999 * Another thread can decide to initialize the same 2000 * inode block, but whichever thread first gets the 2001 * cylinder group lock after writing the newly 2002 * allocated inode block will update it and the other 2003 * will realize that it has lost and leave the 2004 * cylinder group unchanged. 2005 */ 2006 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2007 brelse(bp); 2008 if (ibp == NULL) { 2009 /* 2010 * The inode block buffer is already owned by 2011 * another thread, which must initialize it. 2012 * Wait on the buffer to allow another thread 2013 * to finish the updates, with dropped cg 2014 * buffer lock, then retry. 2015 */ 2016 ibp = getinobuf(ip, cg, old_initediblk, 0); 2017 brelse(ibp); 2018 UFS_LOCK(ump); 2019 goto check_nifree; 2020 } 2021 bzero(ibp->b_data, (int)fs->fs_bsize); 2022 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2023 for (i = 0; i < INOPB(fs); i++) { 2024 dp2->di_gen = arc4random() / 2 + 1; 2025 dp2++; 2026 } 2027 /* 2028 * Rather than adding a soft updates dependency to ensure 2029 * that the new inode block is written before it is claimed 2030 * by the cylinder group map, we just do a barrier write 2031 * here. The barrier write will ensure that the inode block 2032 * gets written before the updated cylinder group map can be 2033 * written. The barrier write should only slow down bulk 2034 * loading of newly created filesystems. 2035 */ 2036 babarrierwrite(ibp); 2037 2038 /* 2039 * After the inode block is written, try to update the 2040 * cg initediblk pointer. If another thread beat us 2041 * to it, then leave it unchanged as the other thread 2042 * has already set it correctly. 2043 */ 2044 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 2045 (int)fs->fs_cgsize, NOCRED, &bp); 2046 UFS_LOCK(ump); 2047 ACTIVECLEAR(fs, cg); 2048 UFS_UNLOCK(ump); 2049 if (error != 0) { 2050 brelse(bp); 2051 return (error); 2052 } 2053 cgp = (struct cg *)bp->b_data; 2054 if (cgp->cg_initediblk == old_initediblk) 2055 cgp->cg_initediblk += INOPB(fs); 2056 goto restart; 2057 } 2058 cgp->cg_old_time = cgp->cg_time = time_second; 2059 cgp->cg_irotor = ipref; 2060 UFS_LOCK(ump); 2061 ACTIVECLEAR(fs, cg); 2062 setbit(inosused, ipref); 2063 cgp->cg_cs.cs_nifree--; 2064 fs->fs_cstotal.cs_nifree--; 2065 fs->fs_cs(fs, cg).cs_nifree--; 2066 fs->fs_fmod = 1; 2067 if ((mode & IFMT) == IFDIR) { 2068 cgp->cg_cs.cs_ndir++; 2069 fs->fs_cstotal.cs_ndir++; 2070 fs->fs_cs(fs, cg).cs_ndir++; 2071 } 2072 UFS_UNLOCK(ump); 2073 if (DOINGSOFTDEP(ITOV(ip))) 2074 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2075 bdwrite(bp); 2076 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2077 } 2078 2079 /* 2080 * Free a block or fragment. 2081 * 2082 * The specified block or fragment is placed back in the 2083 * free map. If a fragment is deallocated, a possible 2084 * block reassembly is checked. 2085 */ 2086 static void 2087 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2088 struct ufsmount *ump; 2089 struct fs *fs; 2090 struct vnode *devvp; 2091 ufs2_daddr_t bno; 2092 long size; 2093 ino_t inum; 2094 struct workhead *dephd; 2095 { 2096 struct mount *mp; 2097 struct cg *cgp; 2098 struct buf *bp; 2099 ufs1_daddr_t fragno, cgbno; 2100 ufs2_daddr_t cgblkno; 2101 int i, blk, frags, bbase; 2102 u_int cg; 2103 u_int8_t *blksfree; 2104 struct cdev *dev; 2105 2106 cg = dtog(fs, bno); 2107 if (devvp->v_type == VREG) { 2108 /* devvp is a snapshot */ 2109 dev = VTOI(devvp)->i_devvp->v_rdev; 2110 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 2111 } else { 2112 /* devvp is a normal disk device */ 2113 dev = devvp->v_rdev; 2114 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 2115 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2116 } 2117 #ifdef INVARIANTS 2118 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2119 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2120 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2121 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2122 size, fs->fs_fsmnt); 2123 panic("ffs_blkfree_cg: bad size"); 2124 } 2125 #endif 2126 if ((u_int)bno >= fs->fs_size) { 2127 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2128 (u_long)inum); 2129 ffs_fserr(fs, inum, "bad block"); 2130 return; 2131 } 2132 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2133 brelse(bp); 2134 return; 2135 } 2136 cgp = (struct cg *)bp->b_data; 2137 if (!cg_chkmagic(cgp)) { 2138 brelse(bp); 2139 return; 2140 } 2141 bp->b_xflags |= BX_BKGRDWRITE; 2142 cgp->cg_old_time = cgp->cg_time = time_second; 2143 cgbno = dtogd(fs, bno); 2144 blksfree = cg_blksfree(cgp); 2145 UFS_LOCK(ump); 2146 if (size == fs->fs_bsize) { 2147 fragno = fragstoblks(fs, cgbno); 2148 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2149 if (devvp->v_type == VREG) { 2150 UFS_UNLOCK(ump); 2151 /* devvp is a snapshot */ 2152 brelse(bp); 2153 return; 2154 } 2155 printf("dev = %s, block = %jd, fs = %s\n", 2156 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2157 panic("ffs_blkfree_cg: freeing free block"); 2158 } 2159 ffs_setblock(fs, blksfree, fragno); 2160 ffs_clusteracct(fs, cgp, fragno, 1); 2161 cgp->cg_cs.cs_nbfree++; 2162 fs->fs_cstotal.cs_nbfree++; 2163 fs->fs_cs(fs, cg).cs_nbfree++; 2164 } else { 2165 bbase = cgbno - fragnum(fs, cgbno); 2166 /* 2167 * decrement the counts associated with the old frags 2168 */ 2169 blk = blkmap(fs, blksfree, bbase); 2170 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2171 /* 2172 * deallocate the fragment 2173 */ 2174 frags = numfrags(fs, size); 2175 for (i = 0; i < frags; i++) { 2176 if (isset(blksfree, cgbno + i)) { 2177 printf("dev = %s, block = %jd, fs = %s\n", 2178 devtoname(dev), (intmax_t)(bno + i), 2179 fs->fs_fsmnt); 2180 panic("ffs_blkfree_cg: freeing free frag"); 2181 } 2182 setbit(blksfree, cgbno + i); 2183 } 2184 cgp->cg_cs.cs_nffree += i; 2185 fs->fs_cstotal.cs_nffree += i; 2186 fs->fs_cs(fs, cg).cs_nffree += i; 2187 /* 2188 * add back in counts associated with the new frags 2189 */ 2190 blk = blkmap(fs, blksfree, bbase); 2191 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2192 /* 2193 * if a complete block has been reassembled, account for it 2194 */ 2195 fragno = fragstoblks(fs, bbase); 2196 if (ffs_isblock(fs, blksfree, fragno)) { 2197 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2198 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2199 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2200 ffs_clusteracct(fs, cgp, fragno, 1); 2201 cgp->cg_cs.cs_nbfree++; 2202 fs->fs_cstotal.cs_nbfree++; 2203 fs->fs_cs(fs, cg).cs_nbfree++; 2204 } 2205 } 2206 fs->fs_fmod = 1; 2207 ACTIVECLEAR(fs, cg); 2208 UFS_UNLOCK(ump); 2209 mp = UFSTOVFS(ump); 2210 if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG) 2211 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2212 numfrags(fs, size), dephd); 2213 bdwrite(bp); 2214 } 2215 2216 TASKQUEUE_DEFINE_THREAD(ffs_trim); 2217 2218 struct ffs_blkfree_trim_params { 2219 struct task task; 2220 struct ufsmount *ump; 2221 struct vnode *devvp; 2222 ufs2_daddr_t bno; 2223 long size; 2224 ino_t inum; 2225 struct workhead *pdephd; 2226 struct workhead dephd; 2227 }; 2228 2229 static void 2230 ffs_blkfree_trim_task(ctx, pending) 2231 void *ctx; 2232 int pending; 2233 { 2234 struct ffs_blkfree_trim_params *tp; 2235 2236 tp = ctx; 2237 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2238 tp->inum, tp->pdephd); 2239 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2240 free(tp, M_TEMP); 2241 } 2242 2243 static void 2244 ffs_blkfree_trim_completed(bip) 2245 struct bio *bip; 2246 { 2247 struct ffs_blkfree_trim_params *tp; 2248 2249 tp = bip->bio_caller2; 2250 g_destroy_bio(bip); 2251 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2252 taskqueue_enqueue(taskqueue_ffs_trim, &tp->task); 2253 } 2254 2255 void 2256 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2257 struct ufsmount *ump; 2258 struct fs *fs; 2259 struct vnode *devvp; 2260 ufs2_daddr_t bno; 2261 long size; 2262 ino_t inum; 2263 enum vtype vtype; 2264 struct workhead *dephd; 2265 { 2266 struct mount *mp; 2267 struct bio *bip; 2268 struct ffs_blkfree_trim_params *tp; 2269 2270 /* 2271 * Check to see if a snapshot wants to claim the block. 2272 * Check that devvp is a normal disk device, not a snapshot, 2273 * it has a snapshot(s) associated with it, and one of the 2274 * snapshots wants to claim the block. 2275 */ 2276 if (devvp->v_type != VREG && 2277 (devvp->v_vflag & VV_COPYONWRITE) && 2278 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2279 return; 2280 } 2281 /* 2282 * Nothing to delay if TRIM is disabled, or the operation is 2283 * performed on the snapshot. 2284 */ 2285 if (!ump->um_candelete || devvp->v_type == VREG) { 2286 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2287 return; 2288 } 2289 2290 /* 2291 * Postpone the set of the free bit in the cg bitmap until the 2292 * BIO_DELETE is completed. Otherwise, due to disk queue 2293 * reordering, TRIM might be issued after we reuse the block 2294 * and write some new data into it. 2295 */ 2296 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2297 tp->ump = ump; 2298 tp->devvp = devvp; 2299 tp->bno = bno; 2300 tp->size = size; 2301 tp->inum = inum; 2302 if (dephd != NULL) { 2303 LIST_INIT(&tp->dephd); 2304 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2305 tp->pdephd = &tp->dephd; 2306 } else 2307 tp->pdephd = NULL; 2308 2309 bip = g_alloc_bio(); 2310 bip->bio_cmd = BIO_DELETE; 2311 bip->bio_offset = dbtob(fsbtodb(fs, bno)); 2312 bip->bio_done = ffs_blkfree_trim_completed; 2313 bip->bio_length = size; 2314 bip->bio_caller2 = tp; 2315 2316 mp = UFSTOVFS(ump); 2317 vn_start_secondary_write(NULL, &mp, 0); 2318 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private); 2319 } 2320 2321 #ifdef INVARIANTS 2322 /* 2323 * Verify allocation of a block or fragment. Returns true if block or 2324 * fragment is allocated, false if it is free. 2325 */ 2326 static int 2327 ffs_checkblk(ip, bno, size) 2328 struct inode *ip; 2329 ufs2_daddr_t bno; 2330 long size; 2331 { 2332 struct fs *fs; 2333 struct cg *cgp; 2334 struct buf *bp; 2335 ufs1_daddr_t cgbno; 2336 int i, error, frags, free; 2337 u_int8_t *blksfree; 2338 2339 fs = ip->i_fs; 2340 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2341 printf("bsize = %ld, size = %ld, fs = %s\n", 2342 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2343 panic("ffs_checkblk: bad size"); 2344 } 2345 if ((u_int)bno >= fs->fs_size) 2346 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2347 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 2348 (int)fs->fs_cgsize, NOCRED, &bp); 2349 if (error) 2350 panic("ffs_checkblk: cg bread failed"); 2351 cgp = (struct cg *)bp->b_data; 2352 if (!cg_chkmagic(cgp)) 2353 panic("ffs_checkblk: cg magic mismatch"); 2354 bp->b_xflags |= BX_BKGRDWRITE; 2355 blksfree = cg_blksfree(cgp); 2356 cgbno = dtogd(fs, bno); 2357 if (size == fs->fs_bsize) { 2358 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2359 } else { 2360 frags = numfrags(fs, size); 2361 for (free = 0, i = 0; i < frags; i++) 2362 if (isset(blksfree, cgbno + i)) 2363 free++; 2364 if (free != 0 && free != frags) 2365 panic("ffs_checkblk: partially free fragment"); 2366 } 2367 brelse(bp); 2368 return (!free); 2369 } 2370 #endif /* INVARIANTS */ 2371 2372 /* 2373 * Free an inode. 2374 */ 2375 int 2376 ffs_vfree(pvp, ino, mode) 2377 struct vnode *pvp; 2378 ino_t ino; 2379 int mode; 2380 { 2381 struct inode *ip; 2382 2383 if (DOINGSOFTDEP(pvp)) { 2384 softdep_freefile(pvp, ino, mode); 2385 return (0); 2386 } 2387 ip = VTOI(pvp); 2388 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode, 2389 NULL)); 2390 } 2391 2392 /* 2393 * Do the actual free operation. 2394 * The specified inode is placed back in the free map. 2395 */ 2396 int 2397 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2398 struct ufsmount *ump; 2399 struct fs *fs; 2400 struct vnode *devvp; 2401 ino_t ino; 2402 int mode; 2403 struct workhead *wkhd; 2404 { 2405 struct cg *cgp; 2406 struct buf *bp; 2407 ufs2_daddr_t cgbno; 2408 int error; 2409 u_int cg; 2410 u_int8_t *inosused; 2411 struct cdev *dev; 2412 2413 cg = ino_to_cg(fs, ino); 2414 if (devvp->v_type == VREG) { 2415 /* devvp is a snapshot */ 2416 dev = VTOI(devvp)->i_devvp->v_rdev; 2417 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2418 } else { 2419 /* devvp is a normal disk device */ 2420 dev = devvp->v_rdev; 2421 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2422 } 2423 if (ino >= fs->fs_ipg * fs->fs_ncg) 2424 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2425 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2426 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2427 brelse(bp); 2428 return (error); 2429 } 2430 cgp = (struct cg *)bp->b_data; 2431 if (!cg_chkmagic(cgp)) { 2432 brelse(bp); 2433 return (0); 2434 } 2435 bp->b_xflags |= BX_BKGRDWRITE; 2436 cgp->cg_old_time = cgp->cg_time = time_second; 2437 inosused = cg_inosused(cgp); 2438 ino %= fs->fs_ipg; 2439 if (isclr(inosused, ino)) { 2440 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2441 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2442 if (fs->fs_ronly == 0) 2443 panic("ffs_freefile: freeing free inode"); 2444 } 2445 clrbit(inosused, ino); 2446 if (ino < cgp->cg_irotor) 2447 cgp->cg_irotor = ino; 2448 cgp->cg_cs.cs_nifree++; 2449 UFS_LOCK(ump); 2450 fs->fs_cstotal.cs_nifree++; 2451 fs->fs_cs(fs, cg).cs_nifree++; 2452 if ((mode & IFMT) == IFDIR) { 2453 cgp->cg_cs.cs_ndir--; 2454 fs->fs_cstotal.cs_ndir--; 2455 fs->fs_cs(fs, cg).cs_ndir--; 2456 } 2457 fs->fs_fmod = 1; 2458 ACTIVECLEAR(fs, cg); 2459 UFS_UNLOCK(ump); 2460 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG) 2461 softdep_setup_inofree(UFSTOVFS(ump), bp, 2462 ino + cg * fs->fs_ipg, wkhd); 2463 bdwrite(bp); 2464 return (0); 2465 } 2466 2467 /* 2468 * Check to see if a file is free. 2469 */ 2470 int 2471 ffs_checkfreefile(fs, devvp, ino) 2472 struct fs *fs; 2473 struct vnode *devvp; 2474 ino_t ino; 2475 { 2476 struct cg *cgp; 2477 struct buf *bp; 2478 ufs2_daddr_t cgbno; 2479 int ret; 2480 u_int cg; 2481 u_int8_t *inosused; 2482 2483 cg = ino_to_cg(fs, ino); 2484 if (devvp->v_type == VREG) { 2485 /* devvp is a snapshot */ 2486 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2487 } else { 2488 /* devvp is a normal disk device */ 2489 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2490 } 2491 if (ino >= fs->fs_ipg * fs->fs_ncg) 2492 return (1); 2493 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2494 brelse(bp); 2495 return (1); 2496 } 2497 cgp = (struct cg *)bp->b_data; 2498 if (!cg_chkmagic(cgp)) { 2499 brelse(bp); 2500 return (1); 2501 } 2502 inosused = cg_inosused(cgp); 2503 ino %= fs->fs_ipg; 2504 ret = isclr(inosused, ino); 2505 brelse(bp); 2506 return (ret); 2507 } 2508 2509 /* 2510 * Find a block of the specified size in the specified cylinder group. 2511 * 2512 * It is a panic if a request is made to find a block if none are 2513 * available. 2514 */ 2515 static ufs1_daddr_t 2516 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2517 struct fs *fs; 2518 struct cg *cgp; 2519 ufs2_daddr_t bpref; 2520 int allocsiz; 2521 { 2522 ufs1_daddr_t bno; 2523 int start, len, loc, i; 2524 int blk, field, subfield, pos; 2525 u_int8_t *blksfree; 2526 2527 /* 2528 * find the fragment by searching through the free block 2529 * map for an appropriate bit pattern 2530 */ 2531 if (bpref) 2532 start = dtogd(fs, bpref) / NBBY; 2533 else 2534 start = cgp->cg_frotor / NBBY; 2535 blksfree = cg_blksfree(cgp); 2536 len = howmany(fs->fs_fpg, NBBY) - start; 2537 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2538 fragtbl[fs->fs_frag], 2539 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2540 if (loc == 0) { 2541 len = start + 1; 2542 start = 0; 2543 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2544 fragtbl[fs->fs_frag], 2545 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2546 if (loc == 0) { 2547 printf("start = %d, len = %d, fs = %s\n", 2548 start, len, fs->fs_fsmnt); 2549 panic("ffs_alloccg: map corrupted"); 2550 /* NOTREACHED */ 2551 } 2552 } 2553 bno = (start + len - loc) * NBBY; 2554 cgp->cg_frotor = bno; 2555 /* 2556 * found the byte in the map 2557 * sift through the bits to find the selected frag 2558 */ 2559 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2560 blk = blkmap(fs, blksfree, bno); 2561 blk <<= 1; 2562 field = around[allocsiz]; 2563 subfield = inside[allocsiz]; 2564 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2565 if ((blk & field) == subfield) 2566 return (bno + pos); 2567 field <<= 1; 2568 subfield <<= 1; 2569 } 2570 } 2571 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2572 panic("ffs_alloccg: block not in map"); 2573 return (-1); 2574 } 2575 2576 /* 2577 * Fserr prints the name of a filesystem with an error diagnostic. 2578 * 2579 * The form of the error message is: 2580 * fs: error message 2581 */ 2582 void 2583 ffs_fserr(fs, inum, cp) 2584 struct fs *fs; 2585 ino_t inum; 2586 char *cp; 2587 { 2588 struct thread *td = curthread; /* XXX */ 2589 struct proc *p = td->td_proc; 2590 2591 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2592 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2593 fs->fs_fsmnt, cp); 2594 } 2595 2596 /* 2597 * This function provides the capability for the fsck program to 2598 * update an active filesystem. Fourteen operations are provided: 2599 * 2600 * adjrefcnt(inode, amt) - adjusts the reference count on the 2601 * specified inode by the specified amount. Under normal 2602 * operation the count should always go down. Decrementing 2603 * the count to zero will cause the inode to be freed. 2604 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2605 * inode by the specified amount. 2606 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2607 * adjust the superblock summary. 2608 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2609 * are marked as free. Inodes should never have to be marked 2610 * as in use. 2611 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2612 * are marked as free. Inodes should never have to be marked 2613 * as in use. 2614 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2615 * are marked as free. Blocks should never have to be marked 2616 * as in use. 2617 * setflags(flags, set/clear) - the fs_flags field has the specified 2618 * flags set (second parameter +1) or cleared (second parameter -1). 2619 * setcwd(dirinode) - set the current directory to dirinode in the 2620 * filesystem associated with the snapshot. 2621 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2622 * in the current directory is oldvalue then change it to newvalue. 2623 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2624 * with nameptr in the current directory is oldvalue then unlink it. 2625 * 2626 * The following functions may only be used on a quiescent filesystem 2627 * by the soft updates journal. They are not safe to be run on an active 2628 * filesystem. 2629 * 2630 * setinode(inode, dip) - the specified disk inode is replaced with the 2631 * contents pointed to by dip. 2632 * setbufoutput(fd, flags) - output associated with the specified file 2633 * descriptor (which must reference the character device supporting 2634 * the filesystem) switches from using physio to running through the 2635 * buffer cache when flags is set to 1. The descriptor reverts to 2636 * physio for output when flags is set to zero. 2637 */ 2638 2639 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2640 2641 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2642 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2643 2644 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2645 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2646 2647 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2648 sysctl_ffs_fsck, "Adjust number of directories"); 2649 2650 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2651 sysctl_ffs_fsck, "Adjust number of free blocks"); 2652 2653 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2654 sysctl_ffs_fsck, "Adjust number of free inodes"); 2655 2656 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2657 sysctl_ffs_fsck, "Adjust number of free frags"); 2658 2659 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2660 sysctl_ffs_fsck, "Adjust number of free clusters"); 2661 2662 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2663 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2664 2665 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2666 sysctl_ffs_fsck, "Free Range of File Inodes"); 2667 2668 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2669 sysctl_ffs_fsck, "Free Range of Blocks"); 2670 2671 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2672 sysctl_ffs_fsck, "Change Filesystem Flags"); 2673 2674 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2675 sysctl_ffs_fsck, "Set Current Working Directory"); 2676 2677 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2678 sysctl_ffs_fsck, "Change Value of .. Entry"); 2679 2680 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2681 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2682 2683 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2684 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2685 2686 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2687 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2688 2689 #define DEBUG 1 2690 #ifdef DEBUG 2691 static int fsckcmds = 0; 2692 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2693 #endif /* DEBUG */ 2694 2695 static int buffered_write(struct file *, struct uio *, struct ucred *, 2696 int, struct thread *); 2697 2698 static int 2699 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2700 { 2701 struct thread *td = curthread; 2702 struct fsck_cmd cmd; 2703 struct ufsmount *ump; 2704 struct vnode *vp, *vpold, *dvp, *fdvp; 2705 struct inode *ip, *dp; 2706 struct mount *mp; 2707 struct fs *fs; 2708 ufs2_daddr_t blkno; 2709 long blkcnt, blksize; 2710 struct filedesc *fdp; 2711 struct file *fp, *vfp; 2712 cap_rights_t rights; 2713 int filetype, error; 2714 static struct fileops *origops, bufferedops; 2715 2716 if (req->newlen > sizeof cmd) 2717 return (EBADRPC); 2718 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2719 return (error); 2720 if (cmd.version != FFS_CMD_VERSION) 2721 return (ERPCMISMATCH); 2722 if ((error = getvnode(td->td_proc->p_fd, cmd.handle, 2723 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 2724 return (error); 2725 vp = fp->f_data; 2726 if (vp->v_type != VREG && vp->v_type != VDIR) { 2727 fdrop(fp, td); 2728 return (EINVAL); 2729 } 2730 vn_start_write(vp, &mp, V_WAIT); 2731 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2732 vn_finished_write(mp); 2733 fdrop(fp, td); 2734 return (EINVAL); 2735 } 2736 ump = VFSTOUFS(mp); 2737 if ((mp->mnt_flag & MNT_RDONLY) && 2738 ump->um_fsckpid != td->td_proc->p_pid) { 2739 vn_finished_write(mp); 2740 fdrop(fp, td); 2741 return (EROFS); 2742 } 2743 fs = ump->um_fs; 2744 filetype = IFREG; 2745 2746 switch (oidp->oid_number) { 2747 2748 case FFS_SET_FLAGS: 2749 #ifdef DEBUG 2750 if (fsckcmds) 2751 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2752 cmd.size > 0 ? "set" : "clear"); 2753 #endif /* DEBUG */ 2754 if (cmd.size > 0) 2755 fs->fs_flags |= (long)cmd.value; 2756 else 2757 fs->fs_flags &= ~(long)cmd.value; 2758 break; 2759 2760 case FFS_ADJ_REFCNT: 2761 #ifdef DEBUG 2762 if (fsckcmds) { 2763 printf("%s: adjust inode %jd link count by %jd\n", 2764 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2765 (intmax_t)cmd.size); 2766 } 2767 #endif /* DEBUG */ 2768 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2769 break; 2770 ip = VTOI(vp); 2771 ip->i_nlink += cmd.size; 2772 DIP_SET(ip, i_nlink, ip->i_nlink); 2773 ip->i_effnlink += cmd.size; 2774 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2775 error = ffs_update(vp, 1); 2776 if (DOINGSOFTDEP(vp)) 2777 softdep_change_linkcnt(ip); 2778 vput(vp); 2779 break; 2780 2781 case FFS_ADJ_BLKCNT: 2782 #ifdef DEBUG 2783 if (fsckcmds) { 2784 printf("%s: adjust inode %jd block count by %jd\n", 2785 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2786 (intmax_t)cmd.size); 2787 } 2788 #endif /* DEBUG */ 2789 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2790 break; 2791 ip = VTOI(vp); 2792 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2793 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2794 error = ffs_update(vp, 1); 2795 vput(vp); 2796 break; 2797 2798 case FFS_DIR_FREE: 2799 filetype = IFDIR; 2800 /* fall through */ 2801 2802 case FFS_FILE_FREE: 2803 #ifdef DEBUG 2804 if (fsckcmds) { 2805 if (cmd.size == 1) 2806 printf("%s: free %s inode %ju\n", 2807 mp->mnt_stat.f_mntonname, 2808 filetype == IFDIR ? "directory" : "file", 2809 (uintmax_t)cmd.value); 2810 else 2811 printf("%s: free %s inodes %ju-%ju\n", 2812 mp->mnt_stat.f_mntonname, 2813 filetype == IFDIR ? "directory" : "file", 2814 (uintmax_t)cmd.value, 2815 (uintmax_t)(cmd.value + cmd.size - 1)); 2816 } 2817 #endif /* DEBUG */ 2818 while (cmd.size > 0) { 2819 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2820 cmd.value, filetype, NULL))) 2821 break; 2822 cmd.size -= 1; 2823 cmd.value += 1; 2824 } 2825 break; 2826 2827 case FFS_BLK_FREE: 2828 #ifdef DEBUG 2829 if (fsckcmds) { 2830 if (cmd.size == 1) 2831 printf("%s: free block %jd\n", 2832 mp->mnt_stat.f_mntonname, 2833 (intmax_t)cmd.value); 2834 else 2835 printf("%s: free blocks %jd-%jd\n", 2836 mp->mnt_stat.f_mntonname, 2837 (intmax_t)cmd.value, 2838 (intmax_t)cmd.value + cmd.size - 1); 2839 } 2840 #endif /* DEBUG */ 2841 blkno = cmd.value; 2842 blkcnt = cmd.size; 2843 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2844 while (blkcnt > 0) { 2845 if (blksize > blkcnt) 2846 blksize = blkcnt; 2847 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2848 blksize * fs->fs_fsize, ROOTINO, VDIR, NULL); 2849 blkno += blksize; 2850 blkcnt -= blksize; 2851 blksize = fs->fs_frag; 2852 } 2853 break; 2854 2855 /* 2856 * Adjust superblock summaries. fsck(8) is expected to 2857 * submit deltas when necessary. 2858 */ 2859 case FFS_ADJ_NDIR: 2860 #ifdef DEBUG 2861 if (fsckcmds) { 2862 printf("%s: adjust number of directories by %jd\n", 2863 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2864 } 2865 #endif /* DEBUG */ 2866 fs->fs_cstotal.cs_ndir += cmd.value; 2867 break; 2868 2869 case FFS_ADJ_NBFREE: 2870 #ifdef DEBUG 2871 if (fsckcmds) { 2872 printf("%s: adjust number of free blocks by %+jd\n", 2873 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2874 } 2875 #endif /* DEBUG */ 2876 fs->fs_cstotal.cs_nbfree += cmd.value; 2877 break; 2878 2879 case FFS_ADJ_NIFREE: 2880 #ifdef DEBUG 2881 if (fsckcmds) { 2882 printf("%s: adjust number of free inodes by %+jd\n", 2883 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2884 } 2885 #endif /* DEBUG */ 2886 fs->fs_cstotal.cs_nifree += cmd.value; 2887 break; 2888 2889 case FFS_ADJ_NFFREE: 2890 #ifdef DEBUG 2891 if (fsckcmds) { 2892 printf("%s: adjust number of free frags by %+jd\n", 2893 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2894 } 2895 #endif /* DEBUG */ 2896 fs->fs_cstotal.cs_nffree += cmd.value; 2897 break; 2898 2899 case FFS_ADJ_NUMCLUSTERS: 2900 #ifdef DEBUG 2901 if (fsckcmds) { 2902 printf("%s: adjust number of free clusters by %+jd\n", 2903 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2904 } 2905 #endif /* DEBUG */ 2906 fs->fs_cstotal.cs_numclusters += cmd.value; 2907 break; 2908 2909 case FFS_SET_CWD: 2910 #ifdef DEBUG 2911 if (fsckcmds) { 2912 printf("%s: set current directory to inode %jd\n", 2913 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2914 } 2915 #endif /* DEBUG */ 2916 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2917 break; 2918 AUDIT_ARG_VNODE1(vp); 2919 if ((error = change_dir(vp, td)) != 0) { 2920 vput(vp); 2921 break; 2922 } 2923 VOP_UNLOCK(vp, 0); 2924 fdp = td->td_proc->p_fd; 2925 FILEDESC_XLOCK(fdp); 2926 vpold = fdp->fd_cdir; 2927 fdp->fd_cdir = vp; 2928 FILEDESC_XUNLOCK(fdp); 2929 vrele(vpold); 2930 break; 2931 2932 case FFS_SET_DOTDOT: 2933 #ifdef DEBUG 2934 if (fsckcmds) { 2935 printf("%s: change .. in cwd from %jd to %jd\n", 2936 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2937 (intmax_t)cmd.size); 2938 } 2939 #endif /* DEBUG */ 2940 /* 2941 * First we have to get and lock the parent directory 2942 * to which ".." points. 2943 */ 2944 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2945 if (error) 2946 break; 2947 /* 2948 * Now we get and lock the child directory containing "..". 2949 */ 2950 FILEDESC_SLOCK(td->td_proc->p_fd); 2951 dvp = td->td_proc->p_fd->fd_cdir; 2952 FILEDESC_SUNLOCK(td->td_proc->p_fd); 2953 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 2954 vput(fdvp); 2955 break; 2956 } 2957 dp = VTOI(dvp); 2958 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 2959 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 2960 DT_DIR, 0); 2961 cache_purge(fdvp); 2962 cache_purge(dvp); 2963 vput(dvp); 2964 vput(fdvp); 2965 break; 2966 2967 case FFS_UNLINK: 2968 #ifdef DEBUG 2969 if (fsckcmds) { 2970 char buf[32]; 2971 2972 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 2973 strncpy(buf, "Name_too_long", 32); 2974 printf("%s: unlink %s (inode %jd)\n", 2975 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 2976 } 2977 #endif /* DEBUG */ 2978 /* 2979 * kern_unlinkat will do its own start/finish writes and 2980 * they do not nest, so drop ours here. Setting mp == NULL 2981 * indicates that vn_finished_write is not needed down below. 2982 */ 2983 vn_finished_write(mp); 2984 mp = NULL; 2985 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 2986 UIO_USERSPACE, (ino_t)cmd.size); 2987 break; 2988 2989 case FFS_SET_INODE: 2990 if (ump->um_fsckpid != td->td_proc->p_pid) { 2991 error = EPERM; 2992 break; 2993 } 2994 #ifdef DEBUG 2995 if (fsckcmds) { 2996 printf("%s: update inode %jd\n", 2997 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2998 } 2999 #endif /* DEBUG */ 3000 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3001 break; 3002 AUDIT_ARG_VNODE1(vp); 3003 ip = VTOI(vp); 3004 if (ip->i_ump->um_fstype == UFS1) 3005 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3006 sizeof(struct ufs1_dinode)); 3007 else 3008 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3009 sizeof(struct ufs2_dinode)); 3010 if (error) { 3011 vput(vp); 3012 break; 3013 } 3014 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3015 error = ffs_update(vp, 1); 3016 vput(vp); 3017 break; 3018 3019 case FFS_SET_BUFOUTPUT: 3020 if (ump->um_fsckpid != td->td_proc->p_pid) { 3021 error = EPERM; 3022 break; 3023 } 3024 if (VTOI(vp)->i_ump != ump) { 3025 error = EINVAL; 3026 break; 3027 } 3028 #ifdef DEBUG 3029 if (fsckcmds) { 3030 printf("%s: %s buffered output for descriptor %jd\n", 3031 mp->mnt_stat.f_mntonname, 3032 cmd.size == 1 ? "enable" : "disable", 3033 (intmax_t)cmd.value); 3034 } 3035 #endif /* DEBUG */ 3036 if ((error = getvnode(td->td_proc->p_fd, cmd.value, 3037 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3038 break; 3039 if (vfp->f_vnode->v_type != VCHR) { 3040 fdrop(vfp, td); 3041 error = EINVAL; 3042 break; 3043 } 3044 if (origops == NULL) { 3045 origops = vfp->f_ops; 3046 bcopy((void *)origops, (void *)&bufferedops, 3047 sizeof(bufferedops)); 3048 bufferedops.fo_write = buffered_write; 3049 } 3050 if (cmd.size == 1) 3051 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3052 (uintptr_t)&bufferedops); 3053 else 3054 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3055 (uintptr_t)origops); 3056 fdrop(vfp, td); 3057 break; 3058 3059 default: 3060 #ifdef DEBUG 3061 if (fsckcmds) { 3062 printf("Invalid request %d from fsck\n", 3063 oidp->oid_number); 3064 } 3065 #endif /* DEBUG */ 3066 error = EINVAL; 3067 break; 3068 3069 } 3070 fdrop(fp, td); 3071 vn_finished_write(mp); 3072 return (error); 3073 } 3074 3075 /* 3076 * Function to switch a descriptor to use the buffer cache to stage 3077 * its I/O. This is needed so that writes to the filesystem device 3078 * will give snapshots a chance to copy modified blocks for which it 3079 * needs to retain copies. 3080 */ 3081 static int 3082 buffered_write(fp, uio, active_cred, flags, td) 3083 struct file *fp; 3084 struct uio *uio; 3085 struct ucred *active_cred; 3086 int flags; 3087 struct thread *td; 3088 { 3089 struct vnode *devvp, *vp; 3090 struct inode *ip; 3091 struct buf *bp; 3092 struct fs *fs; 3093 struct filedesc *fdp; 3094 int error; 3095 daddr_t lbn; 3096 3097 /* 3098 * The devvp is associated with the /dev filesystem. To discover 3099 * the filesystem with which the device is associated, we depend 3100 * on the application setting the current directory to a location 3101 * within the filesystem being written. Yes, this is an ugly hack. 3102 */ 3103 devvp = fp->f_vnode; 3104 if (!vn_isdisk(devvp, NULL)) 3105 return (EINVAL); 3106 fdp = td->td_proc->p_fd; 3107 FILEDESC_SLOCK(fdp); 3108 vp = fdp->fd_cdir; 3109 vref(vp); 3110 FILEDESC_SUNLOCK(fdp); 3111 vn_lock(vp, LK_SHARED | LK_RETRY); 3112 /* 3113 * Check that the current directory vnode indeed belongs to 3114 * UFS before trying to dereference UFS-specific v_data fields. 3115 */ 3116 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3117 vput(vp); 3118 return (EINVAL); 3119 } 3120 ip = VTOI(vp); 3121 if (ip->i_devvp != devvp) { 3122 vput(vp); 3123 return (EINVAL); 3124 } 3125 fs = ip->i_fs; 3126 vput(vp); 3127 foffset_lock_uio(fp, uio, flags); 3128 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3129 #ifdef DEBUG 3130 if (fsckcmds) { 3131 printf("%s: buffered write for block %jd\n", 3132 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3133 } 3134 #endif /* DEBUG */ 3135 /* 3136 * All I/O must be contained within a filesystem block, start on 3137 * a fragment boundary, and be a multiple of fragments in length. 3138 */ 3139 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3140 fragoff(fs, uio->uio_offset) != 0 || 3141 fragoff(fs, uio->uio_resid) != 0) { 3142 error = EINVAL; 3143 goto out; 3144 } 3145 lbn = numfrags(fs, uio->uio_offset); 3146 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3147 bp->b_flags |= B_RELBUF; 3148 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3149 brelse(bp); 3150 goto out; 3151 } 3152 error = bwrite(bp); 3153 out: 3154 VOP_UNLOCK(devvp, 0); 3155 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3156 return (error); 3157 } 3158