1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/capsicum.h> 69 #include <sys/systm.h> 70 #include <sys/bio.h> 71 #include <sys/buf.h> 72 #include <sys/conf.h> 73 #include <sys/fcntl.h> 74 #include <sys/file.h> 75 #include <sys/filedesc.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/vnode.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/syslog.h> 84 #include <sys/taskqueue.h> 85 86 #include <security/audit/audit.h> 87 88 #include <geom/geom.h> 89 90 #include <ufs/ufs/dir.h> 91 #include <ufs/ufs/extattr.h> 92 #include <ufs/ufs/quota.h> 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/ufs_extern.h> 95 #include <ufs/ufs/ufsmount.h> 96 97 #include <ufs/ffs/fs.h> 98 #include <ufs/ffs/ffs_extern.h> 99 #include <ufs/ffs/softdep.h> 100 101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 102 int size, int rsize); 103 104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 105 static ufs2_daddr_t 106 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 107 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 108 struct vnode *, ufs2_daddr_t, long, ino_t, 109 struct workhead *); 110 static void ffs_blkfree_trim_completed(struct bio *); 111 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 112 #ifdef INVARIANTS 113 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 114 #endif 115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 116 static ino_t ffs_dirpref(struct inode *); 117 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 118 int, int); 119 static ufs2_daddr_t ffs_hashalloc 120 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 121 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 122 int); 123 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 124 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 125 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 126 static void ffs_ckhash_cg(struct buf *); 127 128 /* 129 * Allocate a block in the filesystem. 130 * 131 * The size of the requested block is given, which must be some 132 * multiple of fs_fsize and <= fs_bsize. 133 * A preference may be optionally specified. If a preference is given 134 * the following hierarchy is used to allocate a block: 135 * 1) allocate the requested block. 136 * 2) allocate a rotationally optimal block in the same cylinder. 137 * 3) allocate a block in the same cylinder group. 138 * 4) quadradically rehash into other cylinder groups, until an 139 * available block is located. 140 * If no block preference is given the following hierarchy is used 141 * to allocate a block: 142 * 1) allocate a block in the cylinder group that contains the 143 * inode for the file. 144 * 2) quadradically rehash into other cylinder groups, until an 145 * available block is located. 146 */ 147 int 148 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 149 struct inode *ip; 150 ufs2_daddr_t lbn, bpref; 151 int size, flags; 152 struct ucred *cred; 153 ufs2_daddr_t *bnp; 154 { 155 struct fs *fs; 156 struct ufsmount *ump; 157 ufs2_daddr_t bno; 158 u_int cg, reclaimed; 159 static struct timeval lastfail; 160 static int curfail; 161 int64_t delta; 162 #ifdef QUOTA 163 int error; 164 #endif 165 166 *bnp = 0; 167 ump = ITOUMP(ip); 168 fs = ump->um_fs; 169 mtx_assert(UFS_MTX(ump), MA_OWNED); 170 #ifdef INVARIANTS 171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 172 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 173 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 174 fs->fs_fsmnt); 175 panic("ffs_alloc: bad size"); 176 } 177 if (cred == NOCRED) 178 panic("ffs_alloc: missing credential"); 179 #endif /* INVARIANTS */ 180 reclaimed = 0; 181 retry: 182 #ifdef QUOTA 183 UFS_UNLOCK(ump); 184 error = chkdq(ip, btodb(size), cred, 0); 185 if (error) 186 return (error); 187 UFS_LOCK(ump); 188 #endif 189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 190 goto nospace; 191 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 192 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 193 goto nospace; 194 if (bpref >= fs->fs_size) 195 bpref = 0; 196 if (bpref == 0) 197 cg = ino_to_cg(fs, ip->i_number); 198 else 199 cg = dtog(fs, bpref); 200 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 201 if (bno > 0) { 202 delta = btodb(size); 203 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 204 if (flags & IO_EXT) 205 ip->i_flag |= IN_CHANGE; 206 else 207 ip->i_flag |= IN_CHANGE | IN_UPDATE; 208 *bnp = bno; 209 return (0); 210 } 211 nospace: 212 #ifdef QUOTA 213 UFS_UNLOCK(ump); 214 /* 215 * Restore user's disk quota because allocation failed. 216 */ 217 (void) chkdq(ip, -btodb(size), cred, FORCE); 218 UFS_LOCK(ump); 219 #endif 220 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 221 reclaimed = 1; 222 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 223 goto retry; 224 } 225 UFS_UNLOCK(ump); 226 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 227 ffs_fserr(fs, ip->i_number, "filesystem full"); 228 uprintf("\n%s: write failed, filesystem is full\n", 229 fs->fs_fsmnt); 230 } 231 return (ENOSPC); 232 } 233 234 /* 235 * Reallocate a fragment to a bigger size 236 * 237 * The number and size of the old block is given, and a preference 238 * and new size is also specified. The allocator attempts to extend 239 * the original block. Failing that, the regular block allocator is 240 * invoked to get an appropriate block. 241 */ 242 int 243 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 244 struct inode *ip; 245 ufs2_daddr_t lbprev; 246 ufs2_daddr_t bprev; 247 ufs2_daddr_t bpref; 248 int osize, nsize, flags; 249 struct ucred *cred; 250 struct buf **bpp; 251 { 252 struct vnode *vp; 253 struct fs *fs; 254 struct buf *bp; 255 struct ufsmount *ump; 256 u_int cg, request, reclaimed; 257 int error, gbflags; 258 ufs2_daddr_t bno; 259 static struct timeval lastfail; 260 static int curfail; 261 int64_t delta; 262 263 vp = ITOV(ip); 264 ump = ITOUMP(ip); 265 fs = ump->um_fs; 266 bp = NULL; 267 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 268 269 mtx_assert(UFS_MTX(ump), MA_OWNED); 270 #ifdef INVARIANTS 271 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 272 panic("ffs_realloccg: allocation on suspended filesystem"); 273 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 274 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 275 printf( 276 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 277 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 278 nsize, fs->fs_fsmnt); 279 panic("ffs_realloccg: bad size"); 280 } 281 if (cred == NOCRED) 282 panic("ffs_realloccg: missing credential"); 283 #endif /* INVARIANTS */ 284 reclaimed = 0; 285 retry: 286 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 287 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 288 goto nospace; 289 } 290 if (bprev == 0) { 291 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 292 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 293 fs->fs_fsmnt); 294 panic("ffs_realloccg: bad bprev"); 295 } 296 UFS_UNLOCK(ump); 297 /* 298 * Allocate the extra space in the buffer. 299 */ 300 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 301 if (error) { 302 brelse(bp); 303 return (error); 304 } 305 306 if (bp->b_blkno == bp->b_lblkno) { 307 if (lbprev >= UFS_NDADDR) 308 panic("ffs_realloccg: lbprev out of range"); 309 bp->b_blkno = fsbtodb(fs, bprev); 310 } 311 312 #ifdef QUOTA 313 error = chkdq(ip, btodb(nsize - osize), cred, 0); 314 if (error) { 315 brelse(bp); 316 return (error); 317 } 318 #endif 319 /* 320 * Check for extension in the existing location. 321 */ 322 *bpp = NULL; 323 cg = dtog(fs, bprev); 324 UFS_LOCK(ump); 325 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 326 if (bno) { 327 if (bp->b_blkno != fsbtodb(fs, bno)) 328 panic("ffs_realloccg: bad blockno"); 329 delta = btodb(nsize - osize); 330 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 331 if (flags & IO_EXT) 332 ip->i_flag |= IN_CHANGE; 333 else 334 ip->i_flag |= IN_CHANGE | IN_UPDATE; 335 allocbuf(bp, nsize); 336 bp->b_flags |= B_DONE; 337 vfs_bio_bzero_buf(bp, osize, nsize - osize); 338 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 339 vfs_bio_set_valid(bp, osize, nsize - osize); 340 *bpp = bp; 341 return (0); 342 } 343 /* 344 * Allocate a new disk location. 345 */ 346 if (bpref >= fs->fs_size) 347 bpref = 0; 348 switch ((int)fs->fs_optim) { 349 case FS_OPTSPACE: 350 /* 351 * Allocate an exact sized fragment. Although this makes 352 * best use of space, we will waste time relocating it if 353 * the file continues to grow. If the fragmentation is 354 * less than half of the minimum free reserve, we choose 355 * to begin optimizing for time. 356 */ 357 request = nsize; 358 if (fs->fs_minfree <= 5 || 359 fs->fs_cstotal.cs_nffree > 360 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 361 break; 362 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 363 fs->fs_fsmnt); 364 fs->fs_optim = FS_OPTTIME; 365 break; 366 case FS_OPTTIME: 367 /* 368 * At this point we have discovered a file that is trying to 369 * grow a small fragment to a larger fragment. To save time, 370 * we allocate a full sized block, then free the unused portion. 371 * If the file continues to grow, the `ffs_fragextend' call 372 * above will be able to grow it in place without further 373 * copying. If aberrant programs cause disk fragmentation to 374 * grow within 2% of the free reserve, we choose to begin 375 * optimizing for space. 376 */ 377 request = fs->fs_bsize; 378 if (fs->fs_cstotal.cs_nffree < 379 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 380 break; 381 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 382 fs->fs_fsmnt); 383 fs->fs_optim = FS_OPTSPACE; 384 break; 385 default: 386 printf("dev = %s, optim = %ld, fs = %s\n", 387 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 388 panic("ffs_realloccg: bad optim"); 389 /* NOTREACHED */ 390 } 391 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 392 if (bno > 0) { 393 bp->b_blkno = fsbtodb(fs, bno); 394 if (!DOINGSOFTDEP(vp)) 395 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 396 ip->i_number, vp->v_type, NULL); 397 delta = btodb(nsize - osize); 398 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 399 if (flags & IO_EXT) 400 ip->i_flag |= IN_CHANGE; 401 else 402 ip->i_flag |= IN_CHANGE | IN_UPDATE; 403 allocbuf(bp, nsize); 404 bp->b_flags |= B_DONE; 405 vfs_bio_bzero_buf(bp, osize, nsize - osize); 406 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 407 vfs_bio_set_valid(bp, osize, nsize - osize); 408 *bpp = bp; 409 return (0); 410 } 411 #ifdef QUOTA 412 UFS_UNLOCK(ump); 413 /* 414 * Restore user's disk quota because allocation failed. 415 */ 416 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 417 UFS_LOCK(ump); 418 #endif 419 nospace: 420 /* 421 * no space available 422 */ 423 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 424 reclaimed = 1; 425 UFS_UNLOCK(ump); 426 if (bp) { 427 brelse(bp); 428 bp = NULL; 429 } 430 UFS_LOCK(ump); 431 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 432 goto retry; 433 } 434 UFS_UNLOCK(ump); 435 if (bp) 436 brelse(bp); 437 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 438 ffs_fserr(fs, ip->i_number, "filesystem full"); 439 uprintf("\n%s: write failed, filesystem is full\n", 440 fs->fs_fsmnt); 441 } 442 return (ENOSPC); 443 } 444 445 /* 446 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 447 * 448 * The vnode and an array of buffer pointers for a range of sequential 449 * logical blocks to be made contiguous is given. The allocator attempts 450 * to find a range of sequential blocks starting as close as possible 451 * from the end of the allocation for the logical block immediately 452 * preceding the current range. If successful, the physical block numbers 453 * in the buffer pointers and in the inode are changed to reflect the new 454 * allocation. If unsuccessful, the allocation is left unchanged. The 455 * success in doing the reallocation is returned. Note that the error 456 * return is not reflected back to the user. Rather the previous block 457 * allocation will be used. 458 */ 459 460 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 461 462 static int doasyncfree = 1; 463 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 464 "do not force synchronous writes when blocks are reallocated"); 465 466 static int doreallocblks = 1; 467 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 468 "enable block reallocation"); 469 470 static int maxclustersearch = 10; 471 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 472 0, "max number of cylinder group to search for contigous blocks"); 473 474 #ifdef DEBUG 475 static volatile int prtrealloc = 0; 476 #endif 477 478 int 479 ffs_reallocblks(ap) 480 struct vop_reallocblks_args /* { 481 struct vnode *a_vp; 482 struct cluster_save *a_buflist; 483 } */ *ap; 484 { 485 struct ufsmount *ump; 486 487 /* 488 * If the underlying device can do deletes, then skip reallocating 489 * the blocks of this file into contiguous sequences. Devices that 490 * benefit from BIO_DELETE also benefit from not moving the data. 491 * These devices are flash and therefore work less well with this 492 * optimization. Also skip if reallocblks has been disabled globally. 493 */ 494 ump = ap->a_vp->v_mount->mnt_data; 495 if (ump->um_candelete || doreallocblks == 0) 496 return (ENOSPC); 497 498 /* 499 * We can't wait in softdep prealloc as it may fsync and recurse 500 * here. Instead we simply fail to reallocate blocks if this 501 * rare condition arises. 502 */ 503 if (DOINGSOFTDEP(ap->a_vp)) 504 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 505 return (ENOSPC); 506 if (ump->um_fstype == UFS1) 507 return (ffs_reallocblks_ufs1(ap)); 508 return (ffs_reallocblks_ufs2(ap)); 509 } 510 511 static int 512 ffs_reallocblks_ufs1(ap) 513 struct vop_reallocblks_args /* { 514 struct vnode *a_vp; 515 struct cluster_save *a_buflist; 516 } */ *ap; 517 { 518 struct fs *fs; 519 struct inode *ip; 520 struct vnode *vp; 521 struct buf *sbp, *ebp; 522 ufs1_daddr_t *bap, *sbap, *ebap; 523 struct cluster_save *buflist; 524 struct ufsmount *ump; 525 ufs_lbn_t start_lbn, end_lbn; 526 ufs1_daddr_t soff, newblk, blkno; 527 ufs2_daddr_t pref; 528 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 529 int i, cg, len, start_lvl, end_lvl, ssize; 530 531 vp = ap->a_vp; 532 ip = VTOI(vp); 533 ump = ITOUMP(ip); 534 fs = ump->um_fs; 535 /* 536 * If we are not tracking block clusters or if we have less than 4% 537 * free blocks left, then do not attempt to cluster. Running with 538 * less than 5% free block reserve is not recommended and those that 539 * choose to do so do not expect to have good file layout. 540 */ 541 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 542 return (ENOSPC); 543 buflist = ap->a_buflist; 544 len = buflist->bs_nchildren; 545 start_lbn = buflist->bs_children[0]->b_lblkno; 546 end_lbn = start_lbn + len - 1; 547 #ifdef INVARIANTS 548 for (i = 0; i < len; i++) 549 if (!ffs_checkblk(ip, 550 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 551 panic("ffs_reallocblks: unallocated block 1"); 552 for (i = 1; i < len; i++) 553 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 554 panic("ffs_reallocblks: non-logical cluster"); 555 blkno = buflist->bs_children[0]->b_blkno; 556 ssize = fsbtodb(fs, fs->fs_frag); 557 for (i = 1; i < len - 1; i++) 558 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 559 panic("ffs_reallocblks: non-physical cluster %d", i); 560 #endif 561 /* 562 * If the cluster crosses the boundary for the first indirect 563 * block, leave space for the indirect block. Indirect blocks 564 * are initially laid out in a position after the last direct 565 * block. Block reallocation would usually destroy locality by 566 * moving the indirect block out of the way to make room for 567 * data blocks if we didn't compensate here. We should also do 568 * this for other indirect block boundaries, but it is only 569 * important for the first one. 570 */ 571 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 572 return (ENOSPC); 573 /* 574 * If the latest allocation is in a new cylinder group, assume that 575 * the filesystem has decided to move and do not force it back to 576 * the previous cylinder group. 577 */ 578 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 579 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 580 return (ENOSPC); 581 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 582 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 583 return (ENOSPC); 584 /* 585 * Get the starting offset and block map for the first block. 586 */ 587 if (start_lvl == 0) { 588 sbap = &ip->i_din1->di_db[0]; 589 soff = start_lbn; 590 } else { 591 idp = &start_ap[start_lvl - 1]; 592 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 593 brelse(sbp); 594 return (ENOSPC); 595 } 596 sbap = (ufs1_daddr_t *)sbp->b_data; 597 soff = idp->in_off; 598 } 599 /* 600 * If the block range spans two block maps, get the second map. 601 */ 602 ebap = NULL; 603 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 604 ssize = len; 605 } else { 606 #ifdef INVARIANTS 607 if (start_lvl > 0 && 608 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 609 panic("ffs_reallocblk: start == end"); 610 #endif 611 ssize = len - (idp->in_off + 1); 612 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 613 goto fail; 614 ebap = (ufs1_daddr_t *)ebp->b_data; 615 } 616 /* 617 * Find the preferred location for the cluster. If we have not 618 * previously failed at this endeavor, then follow our standard 619 * preference calculation. If we have failed at it, then pick up 620 * where we last ended our search. 621 */ 622 UFS_LOCK(ump); 623 if (ip->i_nextclustercg == -1) 624 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 625 else 626 pref = cgdata(fs, ip->i_nextclustercg); 627 /* 628 * Search the block map looking for an allocation of the desired size. 629 * To avoid wasting too much time, we limit the number of cylinder 630 * groups that we will search. 631 */ 632 cg = dtog(fs, pref); 633 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 634 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 635 break; 636 cg += 1; 637 if (cg >= fs->fs_ncg) 638 cg = 0; 639 } 640 /* 641 * If we have failed in our search, record where we gave up for 642 * next time. Otherwise, fall back to our usual search citerion. 643 */ 644 if (newblk == 0) { 645 ip->i_nextclustercg = cg; 646 UFS_UNLOCK(ump); 647 goto fail; 648 } 649 ip->i_nextclustercg = -1; 650 /* 651 * We have found a new contiguous block. 652 * 653 * First we have to replace the old block pointers with the new 654 * block pointers in the inode and indirect blocks associated 655 * with the file. 656 */ 657 #ifdef DEBUG 658 if (prtrealloc) 659 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 660 (uintmax_t)ip->i_number, 661 (intmax_t)start_lbn, (intmax_t)end_lbn); 662 #endif 663 blkno = newblk; 664 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 665 if (i == ssize) { 666 bap = ebap; 667 soff = -i; 668 } 669 #ifdef INVARIANTS 670 if (!ffs_checkblk(ip, 671 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 672 panic("ffs_reallocblks: unallocated block 2"); 673 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 674 panic("ffs_reallocblks: alloc mismatch"); 675 #endif 676 #ifdef DEBUG 677 if (prtrealloc) 678 printf(" %d,", *bap); 679 #endif 680 if (DOINGSOFTDEP(vp)) { 681 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 682 softdep_setup_allocdirect(ip, start_lbn + i, 683 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 684 buflist->bs_children[i]); 685 else 686 softdep_setup_allocindir_page(ip, start_lbn + i, 687 i < ssize ? sbp : ebp, soff + i, blkno, 688 *bap, buflist->bs_children[i]); 689 } 690 *bap++ = blkno; 691 } 692 /* 693 * Next we must write out the modified inode and indirect blocks. 694 * For strict correctness, the writes should be synchronous since 695 * the old block values may have been written to disk. In practise 696 * they are almost never written, but if we are concerned about 697 * strict correctness, the `doasyncfree' flag should be set to zero. 698 * 699 * The test on `doasyncfree' should be changed to test a flag 700 * that shows whether the associated buffers and inodes have 701 * been written. The flag should be set when the cluster is 702 * started and cleared whenever the buffer or inode is flushed. 703 * We can then check below to see if it is set, and do the 704 * synchronous write only when it has been cleared. 705 */ 706 if (sbap != &ip->i_din1->di_db[0]) { 707 if (doasyncfree) 708 bdwrite(sbp); 709 else 710 bwrite(sbp); 711 } else { 712 ip->i_flag |= IN_CHANGE | IN_UPDATE; 713 if (!doasyncfree) 714 ffs_update(vp, 1); 715 } 716 if (ssize < len) { 717 if (doasyncfree) 718 bdwrite(ebp); 719 else 720 bwrite(ebp); 721 } 722 /* 723 * Last, free the old blocks and assign the new blocks to the buffers. 724 */ 725 #ifdef DEBUG 726 if (prtrealloc) 727 printf("\n\tnew:"); 728 #endif 729 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 730 if (!DOINGSOFTDEP(vp)) 731 ffs_blkfree(ump, fs, ump->um_devvp, 732 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 733 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 734 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 735 #ifdef INVARIANTS 736 if (!ffs_checkblk(ip, 737 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 738 panic("ffs_reallocblks: unallocated block 3"); 739 #endif 740 #ifdef DEBUG 741 if (prtrealloc) 742 printf(" %d,", blkno); 743 #endif 744 } 745 #ifdef DEBUG 746 if (prtrealloc) { 747 prtrealloc--; 748 printf("\n"); 749 } 750 #endif 751 return (0); 752 753 fail: 754 if (ssize < len) 755 brelse(ebp); 756 if (sbap != &ip->i_din1->di_db[0]) 757 brelse(sbp); 758 return (ENOSPC); 759 } 760 761 static int 762 ffs_reallocblks_ufs2(ap) 763 struct vop_reallocblks_args /* { 764 struct vnode *a_vp; 765 struct cluster_save *a_buflist; 766 } */ *ap; 767 { 768 struct fs *fs; 769 struct inode *ip; 770 struct vnode *vp; 771 struct buf *sbp, *ebp; 772 ufs2_daddr_t *bap, *sbap, *ebap; 773 struct cluster_save *buflist; 774 struct ufsmount *ump; 775 ufs_lbn_t start_lbn, end_lbn; 776 ufs2_daddr_t soff, newblk, blkno, pref; 777 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 778 int i, cg, len, start_lvl, end_lvl, ssize; 779 780 vp = ap->a_vp; 781 ip = VTOI(vp); 782 ump = ITOUMP(ip); 783 fs = ump->um_fs; 784 /* 785 * If we are not tracking block clusters or if we have less than 4% 786 * free blocks left, then do not attempt to cluster. Running with 787 * less than 5% free block reserve is not recommended and those that 788 * choose to do so do not expect to have good file layout. 789 */ 790 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 791 return (ENOSPC); 792 buflist = ap->a_buflist; 793 len = buflist->bs_nchildren; 794 start_lbn = buflist->bs_children[0]->b_lblkno; 795 end_lbn = start_lbn + len - 1; 796 #ifdef INVARIANTS 797 for (i = 0; i < len; i++) 798 if (!ffs_checkblk(ip, 799 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 800 panic("ffs_reallocblks: unallocated block 1"); 801 for (i = 1; i < len; i++) 802 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 803 panic("ffs_reallocblks: non-logical cluster"); 804 blkno = buflist->bs_children[0]->b_blkno; 805 ssize = fsbtodb(fs, fs->fs_frag); 806 for (i = 1; i < len - 1; i++) 807 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 808 panic("ffs_reallocblks: non-physical cluster %d", i); 809 #endif 810 /* 811 * If the cluster crosses the boundary for the first indirect 812 * block, do not move anything in it. Indirect blocks are 813 * usually initially laid out in a position between the data 814 * blocks. Block reallocation would usually destroy locality by 815 * moving the indirect block out of the way to make room for 816 * data blocks if we didn't compensate here. We should also do 817 * this for other indirect block boundaries, but it is only 818 * important for the first one. 819 */ 820 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 821 return (ENOSPC); 822 /* 823 * If the latest allocation is in a new cylinder group, assume that 824 * the filesystem has decided to move and do not force it back to 825 * the previous cylinder group. 826 */ 827 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 828 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 829 return (ENOSPC); 830 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 831 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 832 return (ENOSPC); 833 /* 834 * Get the starting offset and block map for the first block. 835 */ 836 if (start_lvl == 0) { 837 sbap = &ip->i_din2->di_db[0]; 838 soff = start_lbn; 839 } else { 840 idp = &start_ap[start_lvl - 1]; 841 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 842 brelse(sbp); 843 return (ENOSPC); 844 } 845 sbap = (ufs2_daddr_t *)sbp->b_data; 846 soff = idp->in_off; 847 } 848 /* 849 * If the block range spans two block maps, get the second map. 850 */ 851 ebap = NULL; 852 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 853 ssize = len; 854 } else { 855 #ifdef INVARIANTS 856 if (start_lvl > 0 && 857 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 858 panic("ffs_reallocblk: start == end"); 859 #endif 860 ssize = len - (idp->in_off + 1); 861 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 862 goto fail; 863 ebap = (ufs2_daddr_t *)ebp->b_data; 864 } 865 /* 866 * Find the preferred location for the cluster. If we have not 867 * previously failed at this endeavor, then follow our standard 868 * preference calculation. If we have failed at it, then pick up 869 * where we last ended our search. 870 */ 871 UFS_LOCK(ump); 872 if (ip->i_nextclustercg == -1) 873 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 874 else 875 pref = cgdata(fs, ip->i_nextclustercg); 876 /* 877 * Search the block map looking for an allocation of the desired size. 878 * To avoid wasting too much time, we limit the number of cylinder 879 * groups that we will search. 880 */ 881 cg = dtog(fs, pref); 882 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 883 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 884 break; 885 cg += 1; 886 if (cg >= fs->fs_ncg) 887 cg = 0; 888 } 889 /* 890 * If we have failed in our search, record where we gave up for 891 * next time. Otherwise, fall back to our usual search citerion. 892 */ 893 if (newblk == 0) { 894 ip->i_nextclustercg = cg; 895 UFS_UNLOCK(ump); 896 goto fail; 897 } 898 ip->i_nextclustercg = -1; 899 /* 900 * We have found a new contiguous block. 901 * 902 * First we have to replace the old block pointers with the new 903 * block pointers in the inode and indirect blocks associated 904 * with the file. 905 */ 906 #ifdef DEBUG 907 if (prtrealloc) 908 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 909 (intmax_t)start_lbn, (intmax_t)end_lbn); 910 #endif 911 blkno = newblk; 912 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 913 if (i == ssize) { 914 bap = ebap; 915 soff = -i; 916 } 917 #ifdef INVARIANTS 918 if (!ffs_checkblk(ip, 919 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 920 panic("ffs_reallocblks: unallocated block 2"); 921 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 922 panic("ffs_reallocblks: alloc mismatch"); 923 #endif 924 #ifdef DEBUG 925 if (prtrealloc) 926 printf(" %jd,", (intmax_t)*bap); 927 #endif 928 if (DOINGSOFTDEP(vp)) { 929 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 930 softdep_setup_allocdirect(ip, start_lbn + i, 931 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 932 buflist->bs_children[i]); 933 else 934 softdep_setup_allocindir_page(ip, start_lbn + i, 935 i < ssize ? sbp : ebp, soff + i, blkno, 936 *bap, buflist->bs_children[i]); 937 } 938 *bap++ = blkno; 939 } 940 /* 941 * Next we must write out the modified inode and indirect blocks. 942 * For strict correctness, the writes should be synchronous since 943 * the old block values may have been written to disk. In practise 944 * they are almost never written, but if we are concerned about 945 * strict correctness, the `doasyncfree' flag should be set to zero. 946 * 947 * The test on `doasyncfree' should be changed to test a flag 948 * that shows whether the associated buffers and inodes have 949 * been written. The flag should be set when the cluster is 950 * started and cleared whenever the buffer or inode is flushed. 951 * We can then check below to see if it is set, and do the 952 * synchronous write only when it has been cleared. 953 */ 954 if (sbap != &ip->i_din2->di_db[0]) { 955 if (doasyncfree) 956 bdwrite(sbp); 957 else 958 bwrite(sbp); 959 } else { 960 ip->i_flag |= IN_CHANGE | IN_UPDATE; 961 if (!doasyncfree) 962 ffs_update(vp, 1); 963 } 964 if (ssize < len) { 965 if (doasyncfree) 966 bdwrite(ebp); 967 else 968 bwrite(ebp); 969 } 970 /* 971 * Last, free the old blocks and assign the new blocks to the buffers. 972 */ 973 #ifdef DEBUG 974 if (prtrealloc) 975 printf("\n\tnew:"); 976 #endif 977 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 978 if (!DOINGSOFTDEP(vp)) 979 ffs_blkfree(ump, fs, ump->um_devvp, 980 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 981 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 982 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 983 #ifdef INVARIANTS 984 if (!ffs_checkblk(ip, 985 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 986 panic("ffs_reallocblks: unallocated block 3"); 987 #endif 988 #ifdef DEBUG 989 if (prtrealloc) 990 printf(" %jd,", (intmax_t)blkno); 991 #endif 992 } 993 #ifdef DEBUG 994 if (prtrealloc) { 995 prtrealloc--; 996 printf("\n"); 997 } 998 #endif 999 return (0); 1000 1001 fail: 1002 if (ssize < len) 1003 brelse(ebp); 1004 if (sbap != &ip->i_din2->di_db[0]) 1005 brelse(sbp); 1006 return (ENOSPC); 1007 } 1008 1009 /* 1010 * Allocate an inode in the filesystem. 1011 * 1012 * If allocating a directory, use ffs_dirpref to select the inode. 1013 * If allocating in a directory, the following hierarchy is followed: 1014 * 1) allocate the preferred inode. 1015 * 2) allocate an inode in the same cylinder group. 1016 * 3) quadradically rehash into other cylinder groups, until an 1017 * available inode is located. 1018 * If no inode preference is given the following hierarchy is used 1019 * to allocate an inode: 1020 * 1) allocate an inode in cylinder group 0. 1021 * 2) quadradically rehash into other cylinder groups, until an 1022 * available inode is located. 1023 */ 1024 int 1025 ffs_valloc(pvp, mode, cred, vpp) 1026 struct vnode *pvp; 1027 int mode; 1028 struct ucred *cred; 1029 struct vnode **vpp; 1030 { 1031 struct inode *pip; 1032 struct fs *fs; 1033 struct inode *ip; 1034 struct timespec ts; 1035 struct ufsmount *ump; 1036 ino_t ino, ipref; 1037 u_int cg; 1038 int error, error1, reclaimed; 1039 static struct timeval lastfail; 1040 static int curfail; 1041 1042 *vpp = NULL; 1043 pip = VTOI(pvp); 1044 ump = ITOUMP(pip); 1045 fs = ump->um_fs; 1046 1047 UFS_LOCK(ump); 1048 reclaimed = 0; 1049 retry: 1050 if (fs->fs_cstotal.cs_nifree == 0) 1051 goto noinodes; 1052 1053 if ((mode & IFMT) == IFDIR) 1054 ipref = ffs_dirpref(pip); 1055 else 1056 ipref = pip->i_number; 1057 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1058 ipref = 0; 1059 cg = ino_to_cg(fs, ipref); 1060 /* 1061 * Track number of dirs created one after another 1062 * in a same cg without intervening by files. 1063 */ 1064 if ((mode & IFMT) == IFDIR) { 1065 if (fs->fs_contigdirs[cg] < 255) 1066 fs->fs_contigdirs[cg]++; 1067 } else { 1068 if (fs->fs_contigdirs[cg] > 0) 1069 fs->fs_contigdirs[cg]--; 1070 } 1071 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1072 (allocfcn_t *)ffs_nodealloccg); 1073 if (ino == 0) 1074 goto noinodes; 1075 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1076 if (error) { 1077 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1078 FFSV_FORCEINSMQ); 1079 ffs_vfree(pvp, ino, mode); 1080 if (error1 == 0) { 1081 ip = VTOI(*vpp); 1082 if (ip->i_mode) 1083 goto dup_alloc; 1084 ip->i_flag |= IN_MODIFIED; 1085 vput(*vpp); 1086 } 1087 return (error); 1088 } 1089 ip = VTOI(*vpp); 1090 if (ip->i_mode) { 1091 dup_alloc: 1092 printf("mode = 0%o, inum = %ju, fs = %s\n", 1093 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1094 panic("ffs_valloc: dup alloc"); 1095 } 1096 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1097 printf("free inode %s/%lu had %ld blocks\n", 1098 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1099 DIP_SET(ip, i_blocks, 0); 1100 } 1101 ip->i_flags = 0; 1102 DIP_SET(ip, i_flags, 0); 1103 /* 1104 * Set up a new generation number for this inode. 1105 */ 1106 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1107 ip->i_gen = arc4random(); 1108 DIP_SET(ip, i_gen, ip->i_gen); 1109 if (fs->fs_magic == FS_UFS2_MAGIC) { 1110 vfs_timestamp(&ts); 1111 ip->i_din2->di_birthtime = ts.tv_sec; 1112 ip->i_din2->di_birthnsec = ts.tv_nsec; 1113 } 1114 ufs_prepare_reclaim(*vpp); 1115 ip->i_flag = 0; 1116 (*vpp)->v_vflag = 0; 1117 (*vpp)->v_type = VNON; 1118 if (fs->fs_magic == FS_UFS2_MAGIC) { 1119 (*vpp)->v_op = &ffs_vnodeops2; 1120 ip->i_flag |= IN_UFS2; 1121 } else { 1122 (*vpp)->v_op = &ffs_vnodeops1; 1123 } 1124 return (0); 1125 noinodes: 1126 if (reclaimed == 0) { 1127 reclaimed = 1; 1128 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1129 goto retry; 1130 } 1131 UFS_UNLOCK(ump); 1132 if (ppsratecheck(&lastfail, &curfail, 1)) { 1133 ffs_fserr(fs, pip->i_number, "out of inodes"); 1134 uprintf("\n%s: create/symlink failed, no inodes free\n", 1135 fs->fs_fsmnt); 1136 } 1137 return (ENOSPC); 1138 } 1139 1140 /* 1141 * Find a cylinder group to place a directory. 1142 * 1143 * The policy implemented by this algorithm is to allocate a 1144 * directory inode in the same cylinder group as its parent 1145 * directory, but also to reserve space for its files inodes 1146 * and data. Restrict the number of directories which may be 1147 * allocated one after another in the same cylinder group 1148 * without intervening allocation of files. 1149 * 1150 * If we allocate a first level directory then force allocation 1151 * in another cylinder group. 1152 */ 1153 static ino_t 1154 ffs_dirpref(pip) 1155 struct inode *pip; 1156 { 1157 struct fs *fs; 1158 int cg, prefcg, dirsize, cgsize; 1159 u_int avgifree, avgbfree, avgndir, curdirsize; 1160 u_int minifree, minbfree, maxndir; 1161 u_int mincg, minndir; 1162 u_int maxcontigdirs; 1163 1164 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1165 fs = ITOFS(pip); 1166 1167 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1168 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1169 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1170 1171 /* 1172 * Force allocation in another cg if creating a first level dir. 1173 */ 1174 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1175 if (ITOV(pip)->v_vflag & VV_ROOT) { 1176 prefcg = arc4random() % fs->fs_ncg; 1177 mincg = prefcg; 1178 minndir = fs->fs_ipg; 1179 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1180 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1181 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1182 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1183 mincg = cg; 1184 minndir = fs->fs_cs(fs, cg).cs_ndir; 1185 } 1186 for (cg = 0; cg < prefcg; cg++) 1187 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1188 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1189 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1190 mincg = cg; 1191 minndir = fs->fs_cs(fs, cg).cs_ndir; 1192 } 1193 return ((ino_t)(fs->fs_ipg * mincg)); 1194 } 1195 1196 /* 1197 * Count various limits which used for 1198 * optimal allocation of a directory inode. 1199 */ 1200 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1201 minifree = avgifree - avgifree / 4; 1202 if (minifree < 1) 1203 minifree = 1; 1204 minbfree = avgbfree - avgbfree / 4; 1205 if (minbfree < 1) 1206 minbfree = 1; 1207 cgsize = fs->fs_fsize * fs->fs_fpg; 1208 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1209 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1210 if (dirsize < curdirsize) 1211 dirsize = curdirsize; 1212 if (dirsize <= 0) 1213 maxcontigdirs = 0; /* dirsize overflowed */ 1214 else 1215 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1216 if (fs->fs_avgfpdir > 0) 1217 maxcontigdirs = min(maxcontigdirs, 1218 fs->fs_ipg / fs->fs_avgfpdir); 1219 if (maxcontigdirs == 0) 1220 maxcontigdirs = 1; 1221 1222 /* 1223 * Limit number of dirs in one cg and reserve space for 1224 * regular files, but only if we have no deficit in 1225 * inodes or space. 1226 * 1227 * We are trying to find a suitable cylinder group nearby 1228 * our preferred cylinder group to place a new directory. 1229 * We scan from our preferred cylinder group forward looking 1230 * for a cylinder group that meets our criterion. If we get 1231 * to the final cylinder group and do not find anything, 1232 * we start scanning forwards from the beginning of the 1233 * filesystem. While it might seem sensible to start scanning 1234 * backwards or even to alternate looking forward and backward, 1235 * this approach fails badly when the filesystem is nearly full. 1236 * Specifically, we first search all the areas that have no space 1237 * and finally try the one preceding that. We repeat this on 1238 * every request and in the case of the final block end up 1239 * searching the entire filesystem. By jumping to the front 1240 * of the filesystem, our future forward searches always look 1241 * in new cylinder groups so finds every possible block after 1242 * one pass over the filesystem. 1243 */ 1244 prefcg = ino_to_cg(fs, pip->i_number); 1245 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1246 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1247 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1248 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1249 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1250 return ((ino_t)(fs->fs_ipg * cg)); 1251 } 1252 for (cg = 0; cg < prefcg; cg++) 1253 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1254 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1255 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1256 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1257 return ((ino_t)(fs->fs_ipg * cg)); 1258 } 1259 /* 1260 * This is a backstop when we have deficit in space. 1261 */ 1262 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1263 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1264 return ((ino_t)(fs->fs_ipg * cg)); 1265 for (cg = 0; cg < prefcg; cg++) 1266 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1267 break; 1268 return ((ino_t)(fs->fs_ipg * cg)); 1269 } 1270 1271 /* 1272 * Select the desired position for the next block in a file. The file is 1273 * logically divided into sections. The first section is composed of the 1274 * direct blocks and the next fs_maxbpg blocks. Each additional section 1275 * contains fs_maxbpg blocks. 1276 * 1277 * If no blocks have been allocated in the first section, the policy is to 1278 * request a block in the same cylinder group as the inode that describes 1279 * the file. The first indirect is allocated immediately following the last 1280 * direct block and the data blocks for the first indirect immediately 1281 * follow it. 1282 * 1283 * If no blocks have been allocated in any other section, the indirect 1284 * block(s) are allocated in the same cylinder group as its inode in an 1285 * area reserved immediately following the inode blocks. The policy for 1286 * the data blocks is to place them in a cylinder group with a greater than 1287 * average number of free blocks. An appropriate cylinder group is found 1288 * by using a rotor that sweeps the cylinder groups. When a new group of 1289 * blocks is needed, the sweep begins in the cylinder group following the 1290 * cylinder group from which the previous allocation was made. The sweep 1291 * continues until a cylinder group with greater than the average number 1292 * of free blocks is found. If the allocation is for the first block in an 1293 * indirect block or the previous block is a hole, then the information on 1294 * the previous allocation is unavailable; here a best guess is made based 1295 * on the logical block number being allocated. 1296 * 1297 * If a section is already partially allocated, the policy is to 1298 * allocate blocks contiguously within the section if possible. 1299 */ 1300 ufs2_daddr_t 1301 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1302 struct inode *ip; 1303 ufs_lbn_t lbn; 1304 int indx; 1305 ufs1_daddr_t *bap; 1306 { 1307 struct fs *fs; 1308 u_int cg, inocg; 1309 u_int avgbfree, startcg; 1310 ufs2_daddr_t pref; 1311 1312 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1313 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1314 fs = ITOFS(ip); 1315 /* 1316 * Allocation of indirect blocks is indicated by passing negative 1317 * values in indx: -1 for single indirect, -2 for double indirect, 1318 * -3 for triple indirect. As noted below, we attempt to allocate 1319 * the first indirect inline with the file data. For all later 1320 * indirect blocks, the data is often allocated in other cylinder 1321 * groups. However to speed random file access and to speed up 1322 * fsck, the filesystem reserves the first fs_metaspace blocks 1323 * (typically half of fs_minfree) of the data area of each cylinder 1324 * group to hold these later indirect blocks. 1325 */ 1326 inocg = ino_to_cg(fs, ip->i_number); 1327 if (indx < 0) { 1328 /* 1329 * Our preference for indirect blocks is the zone at the 1330 * beginning of the inode's cylinder group data area that 1331 * we try to reserve for indirect blocks. 1332 */ 1333 pref = cgmeta(fs, inocg); 1334 /* 1335 * If we are allocating the first indirect block, try to 1336 * place it immediately following the last direct block. 1337 */ 1338 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1339 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1340 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1341 return (pref); 1342 } 1343 /* 1344 * If we are allocating the first data block in the first indirect 1345 * block and the indirect has been allocated in the data block area, 1346 * try to place it immediately following the indirect block. 1347 */ 1348 if (lbn == UFS_NDADDR) { 1349 pref = ip->i_din1->di_ib[0]; 1350 if (pref != 0 && pref >= cgdata(fs, inocg) && 1351 pref < cgbase(fs, inocg + 1)) 1352 return (pref + fs->fs_frag); 1353 } 1354 /* 1355 * If we are at the beginning of a file, or we have already allocated 1356 * the maximum number of blocks per cylinder group, or we do not 1357 * have a block allocated immediately preceding us, then we need 1358 * to decide where to start allocating new blocks. 1359 */ 1360 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1361 /* 1362 * If we are allocating a directory data block, we want 1363 * to place it in the metadata area. 1364 */ 1365 if ((ip->i_mode & IFMT) == IFDIR) 1366 return (cgmeta(fs, inocg)); 1367 /* 1368 * Until we fill all the direct and all the first indirect's 1369 * blocks, we try to allocate in the data area of the inode's 1370 * cylinder group. 1371 */ 1372 if (lbn < UFS_NDADDR + NINDIR(fs)) 1373 return (cgdata(fs, inocg)); 1374 /* 1375 * Find a cylinder with greater than average number of 1376 * unused data blocks. 1377 */ 1378 if (indx == 0 || bap[indx - 1] == 0) 1379 startcg = inocg + lbn / fs->fs_maxbpg; 1380 else 1381 startcg = dtog(fs, bap[indx - 1]) + 1; 1382 startcg %= fs->fs_ncg; 1383 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1384 for (cg = startcg; cg < fs->fs_ncg; cg++) 1385 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1386 fs->fs_cgrotor = cg; 1387 return (cgdata(fs, cg)); 1388 } 1389 for (cg = 0; cg <= startcg; cg++) 1390 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1391 fs->fs_cgrotor = cg; 1392 return (cgdata(fs, cg)); 1393 } 1394 return (0); 1395 } 1396 /* 1397 * Otherwise, we just always try to lay things out contiguously. 1398 */ 1399 return (bap[indx - 1] + fs->fs_frag); 1400 } 1401 1402 /* 1403 * Same as above, but for UFS2 1404 */ 1405 ufs2_daddr_t 1406 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1407 struct inode *ip; 1408 ufs_lbn_t lbn; 1409 int indx; 1410 ufs2_daddr_t *bap; 1411 { 1412 struct fs *fs; 1413 u_int cg, inocg; 1414 u_int avgbfree, startcg; 1415 ufs2_daddr_t pref; 1416 1417 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1418 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1419 fs = ITOFS(ip); 1420 /* 1421 * Allocation of indirect blocks is indicated by passing negative 1422 * values in indx: -1 for single indirect, -2 for double indirect, 1423 * -3 for triple indirect. As noted below, we attempt to allocate 1424 * the first indirect inline with the file data. For all later 1425 * indirect blocks, the data is often allocated in other cylinder 1426 * groups. However to speed random file access and to speed up 1427 * fsck, the filesystem reserves the first fs_metaspace blocks 1428 * (typically half of fs_minfree) of the data area of each cylinder 1429 * group to hold these later indirect blocks. 1430 */ 1431 inocg = ino_to_cg(fs, ip->i_number); 1432 if (indx < 0) { 1433 /* 1434 * Our preference for indirect blocks is the zone at the 1435 * beginning of the inode's cylinder group data area that 1436 * we try to reserve for indirect blocks. 1437 */ 1438 pref = cgmeta(fs, inocg); 1439 /* 1440 * If we are allocating the first indirect block, try to 1441 * place it immediately following the last direct block. 1442 */ 1443 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1444 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1445 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1446 return (pref); 1447 } 1448 /* 1449 * If we are allocating the first data block in the first indirect 1450 * block and the indirect has been allocated in the data block area, 1451 * try to place it immediately following the indirect block. 1452 */ 1453 if (lbn == UFS_NDADDR) { 1454 pref = ip->i_din2->di_ib[0]; 1455 if (pref != 0 && pref >= cgdata(fs, inocg) && 1456 pref < cgbase(fs, inocg + 1)) 1457 return (pref + fs->fs_frag); 1458 } 1459 /* 1460 * If we are at the beginning of a file, or we have already allocated 1461 * the maximum number of blocks per cylinder group, or we do not 1462 * have a block allocated immediately preceding us, then we need 1463 * to decide where to start allocating new blocks. 1464 */ 1465 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1466 /* 1467 * If we are allocating a directory data block, we want 1468 * to place it in the metadata area. 1469 */ 1470 if ((ip->i_mode & IFMT) == IFDIR) 1471 return (cgmeta(fs, inocg)); 1472 /* 1473 * Until we fill all the direct and all the first indirect's 1474 * blocks, we try to allocate in the data area of the inode's 1475 * cylinder group. 1476 */ 1477 if (lbn < UFS_NDADDR + NINDIR(fs)) 1478 return (cgdata(fs, inocg)); 1479 /* 1480 * Find a cylinder with greater than average number of 1481 * unused data blocks. 1482 */ 1483 if (indx == 0 || bap[indx - 1] == 0) 1484 startcg = inocg + lbn / fs->fs_maxbpg; 1485 else 1486 startcg = dtog(fs, bap[indx - 1]) + 1; 1487 startcg %= fs->fs_ncg; 1488 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1489 for (cg = startcg; cg < fs->fs_ncg; cg++) 1490 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1491 fs->fs_cgrotor = cg; 1492 return (cgdata(fs, cg)); 1493 } 1494 for (cg = 0; cg <= startcg; cg++) 1495 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1496 fs->fs_cgrotor = cg; 1497 return (cgdata(fs, cg)); 1498 } 1499 return (0); 1500 } 1501 /* 1502 * Otherwise, we just always try to lay things out contiguously. 1503 */ 1504 return (bap[indx - 1] + fs->fs_frag); 1505 } 1506 1507 /* 1508 * Implement the cylinder overflow algorithm. 1509 * 1510 * The policy implemented by this algorithm is: 1511 * 1) allocate the block in its requested cylinder group. 1512 * 2) quadradically rehash on the cylinder group number. 1513 * 3) brute force search for a free block. 1514 * 1515 * Must be called with the UFS lock held. Will release the lock on success 1516 * and return with it held on failure. 1517 */ 1518 /*VARARGS5*/ 1519 static ufs2_daddr_t 1520 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1521 struct inode *ip; 1522 u_int cg; 1523 ufs2_daddr_t pref; 1524 int size; /* Search size for data blocks, mode for inodes */ 1525 int rsize; /* Real allocated size. */ 1526 allocfcn_t *allocator; 1527 { 1528 struct fs *fs; 1529 ufs2_daddr_t result; 1530 u_int i, icg = cg; 1531 1532 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1533 #ifdef INVARIANTS 1534 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1535 panic("ffs_hashalloc: allocation on suspended filesystem"); 1536 #endif 1537 fs = ITOFS(ip); 1538 /* 1539 * 1: preferred cylinder group 1540 */ 1541 result = (*allocator)(ip, cg, pref, size, rsize); 1542 if (result) 1543 return (result); 1544 /* 1545 * 2: quadratic rehash 1546 */ 1547 for (i = 1; i < fs->fs_ncg; i *= 2) { 1548 cg += i; 1549 if (cg >= fs->fs_ncg) 1550 cg -= fs->fs_ncg; 1551 result = (*allocator)(ip, cg, 0, size, rsize); 1552 if (result) 1553 return (result); 1554 } 1555 /* 1556 * 3: brute force search 1557 * Note that we start at i == 2, since 0 was checked initially, 1558 * and 1 is always checked in the quadratic rehash. 1559 */ 1560 cg = (icg + 2) % fs->fs_ncg; 1561 for (i = 2; i < fs->fs_ncg; i++) { 1562 result = (*allocator)(ip, cg, 0, size, rsize); 1563 if (result) 1564 return (result); 1565 cg++; 1566 if (cg == fs->fs_ncg) 1567 cg = 0; 1568 } 1569 return (0); 1570 } 1571 1572 /* 1573 * Determine whether a fragment can be extended. 1574 * 1575 * Check to see if the necessary fragments are available, and 1576 * if they are, allocate them. 1577 */ 1578 static ufs2_daddr_t 1579 ffs_fragextend(ip, cg, bprev, osize, nsize) 1580 struct inode *ip; 1581 u_int cg; 1582 ufs2_daddr_t bprev; 1583 int osize, nsize; 1584 { 1585 struct fs *fs; 1586 struct cg *cgp; 1587 struct buf *bp; 1588 struct ufsmount *ump; 1589 int nffree; 1590 long bno; 1591 int frags, bbase; 1592 int i, error; 1593 u_int8_t *blksfree; 1594 1595 ump = ITOUMP(ip); 1596 fs = ump->um_fs; 1597 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1598 return (0); 1599 frags = numfrags(fs, nsize); 1600 bbase = fragnum(fs, bprev); 1601 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1602 /* cannot extend across a block boundary */ 1603 return (0); 1604 } 1605 UFS_UNLOCK(ump); 1606 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) 1607 goto fail; 1608 bno = dtogd(fs, bprev); 1609 blksfree = cg_blksfree(cgp); 1610 for (i = numfrags(fs, osize); i < frags; i++) 1611 if (isclr(blksfree, bno + i)) 1612 goto fail; 1613 /* 1614 * the current fragment can be extended 1615 * deduct the count on fragment being extended into 1616 * increase the count on the remaining fragment (if any) 1617 * allocate the extended piece 1618 */ 1619 for (i = frags; i < fs->fs_frag - bbase; i++) 1620 if (isclr(blksfree, bno + i)) 1621 break; 1622 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1623 if (i != frags) 1624 cgp->cg_frsum[i - frags]++; 1625 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1626 clrbit(blksfree, bno + i); 1627 cgp->cg_cs.cs_nffree--; 1628 nffree++; 1629 } 1630 UFS_LOCK(ump); 1631 fs->fs_cstotal.cs_nffree -= nffree; 1632 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1633 fs->fs_fmod = 1; 1634 ACTIVECLEAR(fs, cg); 1635 UFS_UNLOCK(ump); 1636 if (DOINGSOFTDEP(ITOV(ip))) 1637 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1638 frags, numfrags(fs, osize)); 1639 bdwrite(bp); 1640 return (bprev); 1641 1642 fail: 1643 brelse(bp); 1644 UFS_LOCK(ump); 1645 return (0); 1646 1647 } 1648 1649 /* 1650 * Determine whether a block can be allocated. 1651 * 1652 * Check to see if a block of the appropriate size is available, 1653 * and if it is, allocate it. 1654 */ 1655 static ufs2_daddr_t 1656 ffs_alloccg(ip, cg, bpref, size, rsize) 1657 struct inode *ip; 1658 u_int cg; 1659 ufs2_daddr_t bpref; 1660 int size; 1661 int rsize; 1662 { 1663 struct fs *fs; 1664 struct cg *cgp; 1665 struct buf *bp; 1666 struct ufsmount *ump; 1667 ufs1_daddr_t bno; 1668 ufs2_daddr_t blkno; 1669 int i, allocsiz, error, frags; 1670 u_int8_t *blksfree; 1671 1672 ump = ITOUMP(ip); 1673 fs = ump->um_fs; 1674 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1675 return (0); 1676 UFS_UNLOCK(ump); 1677 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || 1678 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1679 goto fail; 1680 if (size == fs->fs_bsize) { 1681 UFS_LOCK(ump); 1682 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1683 ACTIVECLEAR(fs, cg); 1684 UFS_UNLOCK(ump); 1685 bdwrite(bp); 1686 return (blkno); 1687 } 1688 /* 1689 * check to see if any fragments are already available 1690 * allocsiz is the size which will be allocated, hacking 1691 * it down to a smaller size if necessary 1692 */ 1693 blksfree = cg_blksfree(cgp); 1694 frags = numfrags(fs, size); 1695 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1696 if (cgp->cg_frsum[allocsiz] != 0) 1697 break; 1698 if (allocsiz == fs->fs_frag) { 1699 /* 1700 * no fragments were available, so a block will be 1701 * allocated, and hacked up 1702 */ 1703 if (cgp->cg_cs.cs_nbfree == 0) 1704 goto fail; 1705 UFS_LOCK(ump); 1706 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1707 ACTIVECLEAR(fs, cg); 1708 UFS_UNLOCK(ump); 1709 bdwrite(bp); 1710 return (blkno); 1711 } 1712 KASSERT(size == rsize, 1713 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1714 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1715 if (bno < 0) 1716 goto fail; 1717 for (i = 0; i < frags; i++) 1718 clrbit(blksfree, bno + i); 1719 cgp->cg_cs.cs_nffree -= frags; 1720 cgp->cg_frsum[allocsiz]--; 1721 if (frags != allocsiz) 1722 cgp->cg_frsum[allocsiz - frags]++; 1723 UFS_LOCK(ump); 1724 fs->fs_cstotal.cs_nffree -= frags; 1725 fs->fs_cs(fs, cg).cs_nffree -= frags; 1726 fs->fs_fmod = 1; 1727 blkno = cgbase(fs, cg) + bno; 1728 ACTIVECLEAR(fs, cg); 1729 UFS_UNLOCK(ump); 1730 if (DOINGSOFTDEP(ITOV(ip))) 1731 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1732 bdwrite(bp); 1733 return (blkno); 1734 1735 fail: 1736 brelse(bp); 1737 UFS_LOCK(ump); 1738 return (0); 1739 } 1740 1741 /* 1742 * Allocate a block in a cylinder group. 1743 * 1744 * This algorithm implements the following policy: 1745 * 1) allocate the requested block. 1746 * 2) allocate a rotationally optimal block in the same cylinder. 1747 * 3) allocate the next available block on the block rotor for the 1748 * specified cylinder group. 1749 * Note that this routine only allocates fs_bsize blocks; these 1750 * blocks may be fragmented by the routine that allocates them. 1751 */ 1752 static ufs2_daddr_t 1753 ffs_alloccgblk(ip, bp, bpref, size) 1754 struct inode *ip; 1755 struct buf *bp; 1756 ufs2_daddr_t bpref; 1757 int size; 1758 { 1759 struct fs *fs; 1760 struct cg *cgp; 1761 struct ufsmount *ump; 1762 ufs1_daddr_t bno; 1763 ufs2_daddr_t blkno; 1764 u_int8_t *blksfree; 1765 int i, cgbpref; 1766 1767 ump = ITOUMP(ip); 1768 fs = ump->um_fs; 1769 mtx_assert(UFS_MTX(ump), MA_OWNED); 1770 cgp = (struct cg *)bp->b_data; 1771 blksfree = cg_blksfree(cgp); 1772 if (bpref == 0) { 1773 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1774 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1775 /* map bpref to correct zone in this cg */ 1776 if (bpref < cgdata(fs, cgbpref)) 1777 bpref = cgmeta(fs, cgp->cg_cgx); 1778 else 1779 bpref = cgdata(fs, cgp->cg_cgx); 1780 } 1781 /* 1782 * if the requested block is available, use it 1783 */ 1784 bno = dtogd(fs, blknum(fs, bpref)); 1785 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1786 goto gotit; 1787 /* 1788 * Take the next available block in this cylinder group. 1789 */ 1790 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1791 if (bno < 0) 1792 return (0); 1793 /* Update cg_rotor only if allocated from the data zone */ 1794 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1795 cgp->cg_rotor = bno; 1796 gotit: 1797 blkno = fragstoblks(fs, bno); 1798 ffs_clrblock(fs, blksfree, (long)blkno); 1799 ffs_clusteracct(fs, cgp, blkno, -1); 1800 cgp->cg_cs.cs_nbfree--; 1801 fs->fs_cstotal.cs_nbfree--; 1802 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1803 fs->fs_fmod = 1; 1804 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1805 /* 1806 * If the caller didn't want the whole block free the frags here. 1807 */ 1808 size = numfrags(fs, size); 1809 if (size != fs->fs_frag) { 1810 bno = dtogd(fs, blkno); 1811 for (i = size; i < fs->fs_frag; i++) 1812 setbit(blksfree, bno + i); 1813 i = fs->fs_frag - size; 1814 cgp->cg_cs.cs_nffree += i; 1815 fs->fs_cstotal.cs_nffree += i; 1816 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1817 fs->fs_fmod = 1; 1818 cgp->cg_frsum[i]++; 1819 } 1820 /* XXX Fixme. */ 1821 UFS_UNLOCK(ump); 1822 if (DOINGSOFTDEP(ITOV(ip))) 1823 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1824 size, 0); 1825 UFS_LOCK(ump); 1826 return (blkno); 1827 } 1828 1829 /* 1830 * Determine whether a cluster can be allocated. 1831 * 1832 * We do not currently check for optimal rotational layout if there 1833 * are multiple choices in the same cylinder group. Instead we just 1834 * take the first one that we find following bpref. 1835 */ 1836 static ufs2_daddr_t 1837 ffs_clusteralloc(ip, cg, bpref, len) 1838 struct inode *ip; 1839 u_int cg; 1840 ufs2_daddr_t bpref; 1841 int len; 1842 { 1843 struct fs *fs; 1844 struct cg *cgp; 1845 struct buf *bp; 1846 struct ufsmount *ump; 1847 int i, run, bit, map, got, error; 1848 ufs2_daddr_t bno; 1849 u_char *mapp; 1850 int32_t *lp; 1851 u_int8_t *blksfree; 1852 1853 ump = ITOUMP(ip); 1854 fs = ump->um_fs; 1855 if (fs->fs_maxcluster[cg] < len) 1856 return (0); 1857 UFS_UNLOCK(ump); 1858 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1859 UFS_LOCK(ump); 1860 return (0); 1861 } 1862 /* 1863 * Check to see if a cluster of the needed size (or bigger) is 1864 * available in this cylinder group. 1865 */ 1866 lp = &cg_clustersum(cgp)[len]; 1867 for (i = len; i <= fs->fs_contigsumsize; i++) 1868 if (*lp++ > 0) 1869 break; 1870 if (i > fs->fs_contigsumsize) { 1871 /* 1872 * This is the first time looking for a cluster in this 1873 * cylinder group. Update the cluster summary information 1874 * to reflect the true maximum sized cluster so that 1875 * future cluster allocation requests can avoid reading 1876 * the cylinder group map only to find no clusters. 1877 */ 1878 lp = &cg_clustersum(cgp)[len - 1]; 1879 for (i = len - 1; i > 0; i--) 1880 if (*lp-- > 0) 1881 break; 1882 UFS_LOCK(ump); 1883 fs->fs_maxcluster[cg] = i; 1884 brelse(bp); 1885 return (0); 1886 } 1887 /* 1888 * Search the cluster map to find a big enough cluster. 1889 * We take the first one that we find, even if it is larger 1890 * than we need as we prefer to get one close to the previous 1891 * block allocation. We do not search before the current 1892 * preference point as we do not want to allocate a block 1893 * that is allocated before the previous one (as we will 1894 * then have to wait for another pass of the elevator 1895 * algorithm before it will be read). We prefer to fail and 1896 * be recalled to try an allocation in the next cylinder group. 1897 */ 1898 if (dtog(fs, bpref) != cg) 1899 bpref = cgdata(fs, cg); 1900 else 1901 bpref = blknum(fs, bpref); 1902 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1903 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1904 map = *mapp++; 1905 bit = 1 << (bpref % NBBY); 1906 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1907 if ((map & bit) == 0) { 1908 run = 0; 1909 } else { 1910 run++; 1911 if (run == len) 1912 break; 1913 } 1914 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1915 bit <<= 1; 1916 } else { 1917 map = *mapp++; 1918 bit = 1; 1919 } 1920 } 1921 if (got >= cgp->cg_nclusterblks) { 1922 UFS_LOCK(ump); 1923 brelse(bp); 1924 return (0); 1925 } 1926 /* 1927 * Allocate the cluster that we have found. 1928 */ 1929 blksfree = cg_blksfree(cgp); 1930 for (i = 1; i <= len; i++) 1931 if (!ffs_isblock(fs, blksfree, got - run + i)) 1932 panic("ffs_clusteralloc: map mismatch"); 1933 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1934 if (dtog(fs, bno) != cg) 1935 panic("ffs_clusteralloc: allocated out of group"); 1936 len = blkstofrags(fs, len); 1937 UFS_LOCK(ump); 1938 for (i = 0; i < len; i += fs->fs_frag) 1939 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1940 panic("ffs_clusteralloc: lost block"); 1941 ACTIVECLEAR(fs, cg); 1942 UFS_UNLOCK(ump); 1943 bdwrite(bp); 1944 return (bno); 1945 } 1946 1947 static inline struct buf * 1948 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1949 { 1950 struct fs *fs; 1951 1952 fs = ITOFS(ip); 1953 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 1954 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 1955 gbflags)); 1956 } 1957 1958 /* 1959 * Determine whether an inode can be allocated. 1960 * 1961 * Check to see if an inode is available, and if it is, 1962 * allocate it using the following policy: 1963 * 1) allocate the requested inode. 1964 * 2) allocate the next available inode after the requested 1965 * inode in the specified cylinder group. 1966 */ 1967 static ufs2_daddr_t 1968 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1969 struct inode *ip; 1970 u_int cg; 1971 ufs2_daddr_t ipref; 1972 int mode; 1973 int unused; 1974 { 1975 struct fs *fs; 1976 struct cg *cgp; 1977 struct buf *bp, *ibp; 1978 struct ufsmount *ump; 1979 u_int8_t *inosused, *loc; 1980 struct ufs2_dinode *dp2; 1981 int error, start, len, i; 1982 u_int32_t old_initediblk; 1983 1984 ump = ITOUMP(ip); 1985 fs = ump->um_fs; 1986 check_nifree: 1987 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1988 return (0); 1989 UFS_UNLOCK(ump); 1990 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1991 UFS_LOCK(ump); 1992 return (0); 1993 } 1994 restart: 1995 if (cgp->cg_cs.cs_nifree == 0) { 1996 brelse(bp); 1997 UFS_LOCK(ump); 1998 return (0); 1999 } 2000 inosused = cg_inosused(cgp); 2001 if (ipref) { 2002 ipref %= fs->fs_ipg; 2003 if (isclr(inosused, ipref)) 2004 goto gotit; 2005 } 2006 start = cgp->cg_irotor / NBBY; 2007 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2008 loc = memcchr(&inosused[start], 0xff, len); 2009 if (loc == NULL) { 2010 len = start + 1; 2011 start = 0; 2012 loc = memcchr(&inosused[start], 0xff, len); 2013 if (loc == NULL) { 2014 printf("cg = %d, irotor = %ld, fs = %s\n", 2015 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2016 panic("ffs_nodealloccg: map corrupted"); 2017 /* NOTREACHED */ 2018 } 2019 } 2020 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2021 gotit: 2022 /* 2023 * Check to see if we need to initialize more inodes. 2024 */ 2025 if (fs->fs_magic == FS_UFS2_MAGIC && 2026 ipref + INOPB(fs) > cgp->cg_initediblk && 2027 cgp->cg_initediblk < cgp->cg_niblk) { 2028 old_initediblk = cgp->cg_initediblk; 2029 2030 /* 2031 * Free the cylinder group lock before writing the 2032 * initialized inode block. Entering the 2033 * babarrierwrite() with the cylinder group lock 2034 * causes lock order violation between the lock and 2035 * snaplk. 2036 * 2037 * Another thread can decide to initialize the same 2038 * inode block, but whichever thread first gets the 2039 * cylinder group lock after writing the newly 2040 * allocated inode block will update it and the other 2041 * will realize that it has lost and leave the 2042 * cylinder group unchanged. 2043 */ 2044 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2045 brelse(bp); 2046 if (ibp == NULL) { 2047 /* 2048 * The inode block buffer is already owned by 2049 * another thread, which must initialize it. 2050 * Wait on the buffer to allow another thread 2051 * to finish the updates, with dropped cg 2052 * buffer lock, then retry. 2053 */ 2054 ibp = getinobuf(ip, cg, old_initediblk, 0); 2055 brelse(ibp); 2056 UFS_LOCK(ump); 2057 goto check_nifree; 2058 } 2059 bzero(ibp->b_data, (int)fs->fs_bsize); 2060 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2061 for (i = 0; i < INOPB(fs); i++) { 2062 while (dp2->di_gen == 0) 2063 dp2->di_gen = arc4random(); 2064 dp2++; 2065 } 2066 /* 2067 * Rather than adding a soft updates dependency to ensure 2068 * that the new inode block is written before it is claimed 2069 * by the cylinder group map, we just do a barrier write 2070 * here. The barrier write will ensure that the inode block 2071 * gets written before the updated cylinder group map can be 2072 * written. The barrier write should only slow down bulk 2073 * loading of newly created filesystems. 2074 */ 2075 babarrierwrite(ibp); 2076 2077 /* 2078 * After the inode block is written, try to update the 2079 * cg initediblk pointer. If another thread beat us 2080 * to it, then leave it unchanged as the other thread 2081 * has already set it correctly. 2082 */ 2083 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); 2084 UFS_LOCK(ump); 2085 ACTIVECLEAR(fs, cg); 2086 UFS_UNLOCK(ump); 2087 if (error != 0) 2088 return (error); 2089 if (cgp->cg_initediblk == old_initediblk) 2090 cgp->cg_initediblk += INOPB(fs); 2091 goto restart; 2092 } 2093 cgp->cg_irotor = ipref; 2094 UFS_LOCK(ump); 2095 ACTIVECLEAR(fs, cg); 2096 setbit(inosused, ipref); 2097 cgp->cg_cs.cs_nifree--; 2098 fs->fs_cstotal.cs_nifree--; 2099 fs->fs_cs(fs, cg).cs_nifree--; 2100 fs->fs_fmod = 1; 2101 if ((mode & IFMT) == IFDIR) { 2102 cgp->cg_cs.cs_ndir++; 2103 fs->fs_cstotal.cs_ndir++; 2104 fs->fs_cs(fs, cg).cs_ndir++; 2105 } 2106 UFS_UNLOCK(ump); 2107 if (DOINGSOFTDEP(ITOV(ip))) 2108 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2109 bdwrite(bp); 2110 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2111 } 2112 2113 /* 2114 * Free a block or fragment. 2115 * 2116 * The specified block or fragment is placed back in the 2117 * free map. If a fragment is deallocated, a possible 2118 * block reassembly is checked. 2119 */ 2120 static void 2121 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2122 struct ufsmount *ump; 2123 struct fs *fs; 2124 struct vnode *devvp; 2125 ufs2_daddr_t bno; 2126 long size; 2127 ino_t inum; 2128 struct workhead *dephd; 2129 { 2130 struct mount *mp; 2131 struct cg *cgp; 2132 struct buf *bp; 2133 ufs1_daddr_t fragno, cgbno; 2134 int i, blk, frags, bbase, error; 2135 u_int cg; 2136 u_int8_t *blksfree; 2137 struct cdev *dev; 2138 2139 cg = dtog(fs, bno); 2140 if (devvp->v_type == VREG) { 2141 /* devvp is a snapshot */ 2142 MPASS(devvp->v_mount->mnt_data == ump); 2143 dev = ump->um_devvp->v_rdev; 2144 } else if (devvp->v_type == VCHR) { 2145 /* devvp is a normal disk device */ 2146 dev = devvp->v_rdev; 2147 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2148 } else 2149 return; 2150 #ifdef INVARIANTS 2151 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2152 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2153 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2154 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2155 size, fs->fs_fsmnt); 2156 panic("ffs_blkfree_cg: bad size"); 2157 } 2158 #endif 2159 if ((u_int)bno >= fs->fs_size) { 2160 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2161 (u_long)inum); 2162 ffs_fserr(fs, inum, "bad block"); 2163 return; 2164 } 2165 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2166 return; 2167 cgbno = dtogd(fs, bno); 2168 blksfree = cg_blksfree(cgp); 2169 UFS_LOCK(ump); 2170 if (size == fs->fs_bsize) { 2171 fragno = fragstoblks(fs, cgbno); 2172 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2173 if (devvp->v_type == VREG) { 2174 UFS_UNLOCK(ump); 2175 /* devvp is a snapshot */ 2176 brelse(bp); 2177 return; 2178 } 2179 printf("dev = %s, block = %jd, fs = %s\n", 2180 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2181 panic("ffs_blkfree_cg: freeing free block"); 2182 } 2183 ffs_setblock(fs, blksfree, fragno); 2184 ffs_clusteracct(fs, cgp, fragno, 1); 2185 cgp->cg_cs.cs_nbfree++; 2186 fs->fs_cstotal.cs_nbfree++; 2187 fs->fs_cs(fs, cg).cs_nbfree++; 2188 } else { 2189 bbase = cgbno - fragnum(fs, cgbno); 2190 /* 2191 * decrement the counts associated with the old frags 2192 */ 2193 blk = blkmap(fs, blksfree, bbase); 2194 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2195 /* 2196 * deallocate the fragment 2197 */ 2198 frags = numfrags(fs, size); 2199 for (i = 0; i < frags; i++) { 2200 if (isset(blksfree, cgbno + i)) { 2201 printf("dev = %s, block = %jd, fs = %s\n", 2202 devtoname(dev), (intmax_t)(bno + i), 2203 fs->fs_fsmnt); 2204 panic("ffs_blkfree_cg: freeing free frag"); 2205 } 2206 setbit(blksfree, cgbno + i); 2207 } 2208 cgp->cg_cs.cs_nffree += i; 2209 fs->fs_cstotal.cs_nffree += i; 2210 fs->fs_cs(fs, cg).cs_nffree += i; 2211 /* 2212 * add back in counts associated with the new frags 2213 */ 2214 blk = blkmap(fs, blksfree, bbase); 2215 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2216 /* 2217 * if a complete block has been reassembled, account for it 2218 */ 2219 fragno = fragstoblks(fs, bbase); 2220 if (ffs_isblock(fs, blksfree, fragno)) { 2221 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2222 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2223 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2224 ffs_clusteracct(fs, cgp, fragno, 1); 2225 cgp->cg_cs.cs_nbfree++; 2226 fs->fs_cstotal.cs_nbfree++; 2227 fs->fs_cs(fs, cg).cs_nbfree++; 2228 } 2229 } 2230 fs->fs_fmod = 1; 2231 ACTIVECLEAR(fs, cg); 2232 UFS_UNLOCK(ump); 2233 mp = UFSTOVFS(ump); 2234 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2235 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2236 numfrags(fs, size), dephd); 2237 bdwrite(bp); 2238 } 2239 2240 struct ffs_blkfree_trim_params { 2241 struct task task; 2242 struct ufsmount *ump; 2243 struct vnode *devvp; 2244 ufs2_daddr_t bno; 2245 long size; 2246 ino_t inum; 2247 struct workhead *pdephd; 2248 struct workhead dephd; 2249 }; 2250 2251 static void 2252 ffs_blkfree_trim_task(ctx, pending) 2253 void *ctx; 2254 int pending; 2255 { 2256 struct ffs_blkfree_trim_params *tp; 2257 2258 tp = ctx; 2259 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2260 tp->inum, tp->pdephd); 2261 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2262 atomic_add_int(&tp->ump->um_trim_inflight, -1); 2263 free(tp, M_TEMP); 2264 } 2265 2266 static void 2267 ffs_blkfree_trim_completed(bip) 2268 struct bio *bip; 2269 { 2270 struct ffs_blkfree_trim_params *tp; 2271 2272 tp = bip->bio_caller2; 2273 g_destroy_bio(bip); 2274 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2275 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2276 } 2277 2278 void 2279 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2280 struct ufsmount *ump; 2281 struct fs *fs; 2282 struct vnode *devvp; 2283 ufs2_daddr_t bno; 2284 long size; 2285 ino_t inum; 2286 enum vtype vtype; 2287 struct workhead *dephd; 2288 { 2289 struct mount *mp; 2290 struct bio *bip; 2291 struct ffs_blkfree_trim_params *tp; 2292 2293 /* 2294 * Check to see if a snapshot wants to claim the block. 2295 * Check that devvp is a normal disk device, not a snapshot, 2296 * it has a snapshot(s) associated with it, and one of the 2297 * snapshots wants to claim the block. 2298 */ 2299 if (devvp->v_type == VCHR && 2300 (devvp->v_vflag & VV_COPYONWRITE) && 2301 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2302 return; 2303 } 2304 /* 2305 * Nothing to delay if TRIM is disabled, or the operation is 2306 * performed on the snapshot. 2307 */ 2308 if (!ump->um_candelete || devvp->v_type == VREG) { 2309 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2310 return; 2311 } 2312 2313 /* 2314 * Postpone the set of the free bit in the cg bitmap until the 2315 * BIO_DELETE is completed. Otherwise, due to disk queue 2316 * reordering, TRIM might be issued after we reuse the block 2317 * and write some new data into it. 2318 */ 2319 atomic_add_int(&ump->um_trim_inflight, 1); 2320 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2321 tp->ump = ump; 2322 tp->devvp = devvp; 2323 tp->bno = bno; 2324 tp->size = size; 2325 tp->inum = inum; 2326 if (dephd != NULL) { 2327 LIST_INIT(&tp->dephd); 2328 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2329 tp->pdephd = &tp->dephd; 2330 } else 2331 tp->pdephd = NULL; 2332 2333 bip = g_alloc_bio(); 2334 bip->bio_cmd = BIO_DELETE; 2335 bip->bio_offset = dbtob(fsbtodb(fs, bno)); 2336 bip->bio_done = ffs_blkfree_trim_completed; 2337 bip->bio_length = size; 2338 bip->bio_caller2 = tp; 2339 2340 mp = UFSTOVFS(ump); 2341 vn_start_secondary_write(NULL, &mp, 0); 2342 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private); 2343 } 2344 2345 #ifdef INVARIANTS 2346 /* 2347 * Verify allocation of a block or fragment. Returns true if block or 2348 * fragment is allocated, false if it is free. 2349 */ 2350 static int 2351 ffs_checkblk(ip, bno, size) 2352 struct inode *ip; 2353 ufs2_daddr_t bno; 2354 long size; 2355 { 2356 struct fs *fs; 2357 struct cg *cgp; 2358 struct buf *bp; 2359 ufs1_daddr_t cgbno; 2360 int i, error, frags, free; 2361 u_int8_t *blksfree; 2362 2363 fs = ITOFS(ip); 2364 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2365 printf("bsize = %ld, size = %ld, fs = %s\n", 2366 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2367 panic("ffs_checkblk: bad size"); 2368 } 2369 if ((u_int)bno >= fs->fs_size) 2370 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2371 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); 2372 if (error) 2373 panic("ffs_checkblk: cylinder group read failed"); 2374 blksfree = cg_blksfree(cgp); 2375 cgbno = dtogd(fs, bno); 2376 if (size == fs->fs_bsize) { 2377 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2378 } else { 2379 frags = numfrags(fs, size); 2380 for (free = 0, i = 0; i < frags; i++) 2381 if (isset(blksfree, cgbno + i)) 2382 free++; 2383 if (free != 0 && free != frags) 2384 panic("ffs_checkblk: partially free fragment"); 2385 } 2386 brelse(bp); 2387 return (!free); 2388 } 2389 #endif /* INVARIANTS */ 2390 2391 /* 2392 * Free an inode. 2393 */ 2394 int 2395 ffs_vfree(pvp, ino, mode) 2396 struct vnode *pvp; 2397 ino_t ino; 2398 int mode; 2399 { 2400 struct ufsmount *ump; 2401 struct inode *ip; 2402 2403 if (DOINGSOFTDEP(pvp)) { 2404 softdep_freefile(pvp, ino, mode); 2405 return (0); 2406 } 2407 ip = VTOI(pvp); 2408 ump = VFSTOUFS(pvp->v_mount); 2409 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2410 } 2411 2412 /* 2413 * Do the actual free operation. 2414 * The specified inode is placed back in the free map. 2415 */ 2416 int 2417 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2418 struct ufsmount *ump; 2419 struct fs *fs; 2420 struct vnode *devvp; 2421 ino_t ino; 2422 int mode; 2423 struct workhead *wkhd; 2424 { 2425 struct cg *cgp; 2426 struct buf *bp; 2427 ufs2_daddr_t cgbno; 2428 int error; 2429 u_int cg; 2430 u_int8_t *inosused; 2431 struct cdev *dev; 2432 2433 cg = ino_to_cg(fs, ino); 2434 if (devvp->v_type == VREG) { 2435 /* devvp is a snapshot */ 2436 MPASS(devvp->v_mount->mnt_data == ump); 2437 dev = ump->um_devvp->v_rdev; 2438 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2439 } else if (devvp->v_type == VCHR) { 2440 /* devvp is a normal disk device */ 2441 dev = devvp->v_rdev; 2442 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2443 } else { 2444 bp = NULL; 2445 return (0); 2446 } 2447 if (ino >= fs->fs_ipg * fs->fs_ncg) 2448 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2449 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2450 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2451 return (error); 2452 inosused = cg_inosused(cgp); 2453 ino %= fs->fs_ipg; 2454 if (isclr(inosused, ino)) { 2455 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2456 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2457 if (fs->fs_ronly == 0) 2458 panic("ffs_freefile: freeing free inode"); 2459 } 2460 clrbit(inosused, ino); 2461 if (ino < cgp->cg_irotor) 2462 cgp->cg_irotor = ino; 2463 cgp->cg_cs.cs_nifree++; 2464 UFS_LOCK(ump); 2465 fs->fs_cstotal.cs_nifree++; 2466 fs->fs_cs(fs, cg).cs_nifree++; 2467 if ((mode & IFMT) == IFDIR) { 2468 cgp->cg_cs.cs_ndir--; 2469 fs->fs_cstotal.cs_ndir--; 2470 fs->fs_cs(fs, cg).cs_ndir--; 2471 } 2472 fs->fs_fmod = 1; 2473 ACTIVECLEAR(fs, cg); 2474 UFS_UNLOCK(ump); 2475 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2476 softdep_setup_inofree(UFSTOVFS(ump), bp, 2477 ino + cg * fs->fs_ipg, wkhd); 2478 bdwrite(bp); 2479 return (0); 2480 } 2481 2482 /* 2483 * Check to see if a file is free. 2484 * Used to check for allocated files in snapshots. 2485 */ 2486 int 2487 ffs_checkfreefile(fs, devvp, ino) 2488 struct fs *fs; 2489 struct vnode *devvp; 2490 ino_t ino; 2491 { 2492 struct cg *cgp; 2493 struct buf *bp; 2494 ufs2_daddr_t cgbno; 2495 int ret, error; 2496 u_int cg; 2497 u_int8_t *inosused; 2498 2499 cg = ino_to_cg(fs, ino); 2500 if (devvp->v_type == VREG) { 2501 /* devvp is a snapshot */ 2502 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2503 } else if (devvp->v_type == VCHR) { 2504 /* devvp is a normal disk device */ 2505 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2506 } else { 2507 return (1); 2508 } 2509 if (ino >= fs->fs_ipg * fs->fs_ncg) 2510 return (1); 2511 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2512 return (1); 2513 inosused = cg_inosused(cgp); 2514 ino %= fs->fs_ipg; 2515 ret = isclr(inosused, ino); 2516 brelse(bp); 2517 return (ret); 2518 } 2519 2520 /* 2521 * Find a block of the specified size in the specified cylinder group. 2522 * 2523 * It is a panic if a request is made to find a block if none are 2524 * available. 2525 */ 2526 static ufs1_daddr_t 2527 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2528 struct fs *fs; 2529 struct cg *cgp; 2530 ufs2_daddr_t bpref; 2531 int allocsiz; 2532 { 2533 ufs1_daddr_t bno; 2534 int start, len, loc, i; 2535 int blk, field, subfield, pos; 2536 u_int8_t *blksfree; 2537 2538 /* 2539 * find the fragment by searching through the free block 2540 * map for an appropriate bit pattern 2541 */ 2542 if (bpref) 2543 start = dtogd(fs, bpref) / NBBY; 2544 else 2545 start = cgp->cg_frotor / NBBY; 2546 blksfree = cg_blksfree(cgp); 2547 len = howmany(fs->fs_fpg, NBBY) - start; 2548 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2549 fragtbl[fs->fs_frag], 2550 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2551 if (loc == 0) { 2552 len = start + 1; 2553 start = 0; 2554 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2555 fragtbl[fs->fs_frag], 2556 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2557 if (loc == 0) { 2558 printf("start = %d, len = %d, fs = %s\n", 2559 start, len, fs->fs_fsmnt); 2560 panic("ffs_alloccg: map corrupted"); 2561 /* NOTREACHED */ 2562 } 2563 } 2564 bno = (start + len - loc) * NBBY; 2565 cgp->cg_frotor = bno; 2566 /* 2567 * found the byte in the map 2568 * sift through the bits to find the selected frag 2569 */ 2570 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2571 blk = blkmap(fs, blksfree, bno); 2572 blk <<= 1; 2573 field = around[allocsiz]; 2574 subfield = inside[allocsiz]; 2575 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2576 if ((blk & field) == subfield) 2577 return (bno + pos); 2578 field <<= 1; 2579 subfield <<= 1; 2580 } 2581 } 2582 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2583 panic("ffs_alloccg: block not in map"); 2584 return (-1); 2585 } 2586 2587 static const struct statfs * 2588 ffs_getmntstat(struct vnode *devvp) 2589 { 2590 2591 if (devvp->v_type == VCHR) 2592 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2593 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2594 } 2595 2596 /* 2597 * Fetch and verify a cylinder group. 2598 */ 2599 int 2600 ffs_getcg(fs, devvp, cg, bpp, cgpp) 2601 struct fs *fs; 2602 struct vnode *devvp; 2603 u_int cg; 2604 struct buf **bpp; 2605 struct cg **cgpp; 2606 { 2607 struct buf *bp; 2608 struct cg *cgp; 2609 const struct statfs *sfs; 2610 int flags, error; 2611 2612 *bpp = NULL; 2613 *cgpp = NULL; 2614 flags = 0; 2615 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2616 flags |= GB_CKHASH; 2617 error = breadn_flags(devvp, devvp->v_type == VREG ? 2618 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), 2619 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, 2620 ffs_ckhash_cg, &bp); 2621 if (error != 0) 2622 return (error); 2623 cgp = (struct cg *)bp->b_data; 2624 if (((fs->fs_metackhash & CK_CYLGRP) != 0 && 2625 (bp->b_flags & B_CKHASH) != 0 && 2626 cgp->cg_ckhash != bp->b_ckhash) || 2627 !cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2628 sfs = ffs_getmntstat(devvp); 2629 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2630 "0x%x != bp: 0x%jx\n", 2631 devvp->v_type == VCHR ? "" : "snapshot of ", 2632 sfs->f_mntfromname, sfs->f_mntonname, 2633 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2634 bp->b_flags &= ~B_CKHASH; 2635 bp->b_flags |= B_INVAL | B_NOCACHE; 2636 brelse(bp); 2637 return (EIO); 2638 } 2639 bp->b_flags &= ~B_CKHASH; 2640 bp->b_xflags |= BX_BKGRDWRITE; 2641 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2642 bp->b_xflags |= BX_CYLGRP; 2643 cgp->cg_old_time = cgp->cg_time = time_second; 2644 *bpp = bp; 2645 *cgpp = cgp; 2646 return (0); 2647 } 2648 2649 static void 2650 ffs_ckhash_cg(bp) 2651 struct buf *bp; 2652 { 2653 uint32_t ckhash; 2654 struct cg *cgp; 2655 2656 cgp = (struct cg *)bp->b_data; 2657 ckhash = cgp->cg_ckhash; 2658 cgp->cg_ckhash = 0; 2659 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2660 cgp->cg_ckhash = ckhash; 2661 } 2662 2663 /* 2664 * Fserr prints the name of a filesystem with an error diagnostic. 2665 * 2666 * The form of the error message is: 2667 * fs: error message 2668 */ 2669 void 2670 ffs_fserr(fs, inum, cp) 2671 struct fs *fs; 2672 ino_t inum; 2673 char *cp; 2674 { 2675 struct thread *td = curthread; /* XXX */ 2676 struct proc *p = td->td_proc; 2677 2678 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2679 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2680 fs->fs_fsmnt, cp); 2681 } 2682 2683 /* 2684 * This function provides the capability for the fsck program to 2685 * update an active filesystem. Fourteen operations are provided: 2686 * 2687 * adjrefcnt(inode, amt) - adjusts the reference count on the 2688 * specified inode by the specified amount. Under normal 2689 * operation the count should always go down. Decrementing 2690 * the count to zero will cause the inode to be freed. 2691 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2692 * inode by the specified amount. 2693 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2694 * adjust the superblock summary. 2695 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2696 * are marked as free. Inodes should never have to be marked 2697 * as in use. 2698 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2699 * are marked as free. Inodes should never have to be marked 2700 * as in use. 2701 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2702 * are marked as free. Blocks should never have to be marked 2703 * as in use. 2704 * setflags(flags, set/clear) - the fs_flags field has the specified 2705 * flags set (second parameter +1) or cleared (second parameter -1). 2706 * setcwd(dirinode) - set the current directory to dirinode in the 2707 * filesystem associated with the snapshot. 2708 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2709 * in the current directory is oldvalue then change it to newvalue. 2710 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2711 * with nameptr in the current directory is oldvalue then unlink it. 2712 * 2713 * The following functions may only be used on a quiescent filesystem 2714 * by the soft updates journal. They are not safe to be run on an active 2715 * filesystem. 2716 * 2717 * setinode(inode, dip) - the specified disk inode is replaced with the 2718 * contents pointed to by dip. 2719 * setbufoutput(fd, flags) - output associated with the specified file 2720 * descriptor (which must reference the character device supporting 2721 * the filesystem) switches from using physio to running through the 2722 * buffer cache when flags is set to 1. The descriptor reverts to 2723 * physio for output when flags is set to zero. 2724 */ 2725 2726 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2727 2728 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2729 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2730 2731 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2732 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2733 2734 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2735 sysctl_ffs_fsck, "Adjust number of directories"); 2736 2737 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2738 sysctl_ffs_fsck, "Adjust number of free blocks"); 2739 2740 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2741 sysctl_ffs_fsck, "Adjust number of free inodes"); 2742 2743 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2744 sysctl_ffs_fsck, "Adjust number of free frags"); 2745 2746 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2747 sysctl_ffs_fsck, "Adjust number of free clusters"); 2748 2749 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2750 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2751 2752 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2753 sysctl_ffs_fsck, "Free Range of File Inodes"); 2754 2755 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2756 sysctl_ffs_fsck, "Free Range of Blocks"); 2757 2758 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2759 sysctl_ffs_fsck, "Change Filesystem Flags"); 2760 2761 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2762 sysctl_ffs_fsck, "Set Current Working Directory"); 2763 2764 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2765 sysctl_ffs_fsck, "Change Value of .. Entry"); 2766 2767 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2768 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2769 2770 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2771 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2772 2773 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2774 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2775 2776 #define DEBUG 1 2777 #ifdef DEBUG 2778 static int fsckcmds = 0; 2779 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2780 #endif /* DEBUG */ 2781 2782 static int buffered_write(struct file *, struct uio *, struct ucred *, 2783 int, struct thread *); 2784 2785 static int 2786 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2787 { 2788 struct thread *td = curthread; 2789 struct fsck_cmd cmd; 2790 struct ufsmount *ump; 2791 struct vnode *vp, *dvp, *fdvp; 2792 struct inode *ip, *dp; 2793 struct mount *mp; 2794 struct fs *fs; 2795 ufs2_daddr_t blkno; 2796 long blkcnt, blksize; 2797 struct file *fp, *vfp; 2798 cap_rights_t rights; 2799 int filetype, error; 2800 static struct fileops *origops, bufferedops; 2801 2802 if (req->newlen > sizeof cmd) 2803 return (EBADRPC); 2804 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2805 return (error); 2806 if (cmd.version != FFS_CMD_VERSION) 2807 return (ERPCMISMATCH); 2808 if ((error = getvnode(td, cmd.handle, 2809 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 2810 return (error); 2811 vp = fp->f_data; 2812 if (vp->v_type != VREG && vp->v_type != VDIR) { 2813 fdrop(fp, td); 2814 return (EINVAL); 2815 } 2816 vn_start_write(vp, &mp, V_WAIT); 2817 if (mp == NULL || 2818 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2819 vn_finished_write(mp); 2820 fdrop(fp, td); 2821 return (EINVAL); 2822 } 2823 ump = VFSTOUFS(mp); 2824 if ((mp->mnt_flag & MNT_RDONLY) && 2825 ump->um_fsckpid != td->td_proc->p_pid) { 2826 vn_finished_write(mp); 2827 fdrop(fp, td); 2828 return (EROFS); 2829 } 2830 fs = ump->um_fs; 2831 filetype = IFREG; 2832 2833 switch (oidp->oid_number) { 2834 2835 case FFS_SET_FLAGS: 2836 #ifdef DEBUG 2837 if (fsckcmds) 2838 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2839 cmd.size > 0 ? "set" : "clear"); 2840 #endif /* DEBUG */ 2841 if (cmd.size > 0) 2842 fs->fs_flags |= (long)cmd.value; 2843 else 2844 fs->fs_flags &= ~(long)cmd.value; 2845 break; 2846 2847 case FFS_ADJ_REFCNT: 2848 #ifdef DEBUG 2849 if (fsckcmds) { 2850 printf("%s: adjust inode %jd link count by %jd\n", 2851 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2852 (intmax_t)cmd.size); 2853 } 2854 #endif /* DEBUG */ 2855 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2856 break; 2857 ip = VTOI(vp); 2858 ip->i_nlink += cmd.size; 2859 DIP_SET(ip, i_nlink, ip->i_nlink); 2860 ip->i_effnlink += cmd.size; 2861 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2862 error = ffs_update(vp, 1); 2863 if (DOINGSOFTDEP(vp)) 2864 softdep_change_linkcnt(ip); 2865 vput(vp); 2866 break; 2867 2868 case FFS_ADJ_BLKCNT: 2869 #ifdef DEBUG 2870 if (fsckcmds) { 2871 printf("%s: adjust inode %jd block count by %jd\n", 2872 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2873 (intmax_t)cmd.size); 2874 } 2875 #endif /* DEBUG */ 2876 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2877 break; 2878 ip = VTOI(vp); 2879 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2880 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2881 error = ffs_update(vp, 1); 2882 vput(vp); 2883 break; 2884 2885 case FFS_DIR_FREE: 2886 filetype = IFDIR; 2887 /* fall through */ 2888 2889 case FFS_FILE_FREE: 2890 #ifdef DEBUG 2891 if (fsckcmds) { 2892 if (cmd.size == 1) 2893 printf("%s: free %s inode %ju\n", 2894 mp->mnt_stat.f_mntonname, 2895 filetype == IFDIR ? "directory" : "file", 2896 (uintmax_t)cmd.value); 2897 else 2898 printf("%s: free %s inodes %ju-%ju\n", 2899 mp->mnt_stat.f_mntonname, 2900 filetype == IFDIR ? "directory" : "file", 2901 (uintmax_t)cmd.value, 2902 (uintmax_t)(cmd.value + cmd.size - 1)); 2903 } 2904 #endif /* DEBUG */ 2905 while (cmd.size > 0) { 2906 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2907 cmd.value, filetype, NULL))) 2908 break; 2909 cmd.size -= 1; 2910 cmd.value += 1; 2911 } 2912 break; 2913 2914 case FFS_BLK_FREE: 2915 #ifdef DEBUG 2916 if (fsckcmds) { 2917 if (cmd.size == 1) 2918 printf("%s: free block %jd\n", 2919 mp->mnt_stat.f_mntonname, 2920 (intmax_t)cmd.value); 2921 else 2922 printf("%s: free blocks %jd-%jd\n", 2923 mp->mnt_stat.f_mntonname, 2924 (intmax_t)cmd.value, 2925 (intmax_t)cmd.value + cmd.size - 1); 2926 } 2927 #endif /* DEBUG */ 2928 blkno = cmd.value; 2929 blkcnt = cmd.size; 2930 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2931 while (blkcnt > 0) { 2932 if (blksize > blkcnt) 2933 blksize = blkcnt; 2934 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2935 blksize * fs->fs_fsize, UFS_ROOTINO, VDIR, NULL); 2936 blkno += blksize; 2937 blkcnt -= blksize; 2938 blksize = fs->fs_frag; 2939 } 2940 break; 2941 2942 /* 2943 * Adjust superblock summaries. fsck(8) is expected to 2944 * submit deltas when necessary. 2945 */ 2946 case FFS_ADJ_NDIR: 2947 #ifdef DEBUG 2948 if (fsckcmds) { 2949 printf("%s: adjust number of directories by %jd\n", 2950 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2951 } 2952 #endif /* DEBUG */ 2953 fs->fs_cstotal.cs_ndir += cmd.value; 2954 break; 2955 2956 case FFS_ADJ_NBFREE: 2957 #ifdef DEBUG 2958 if (fsckcmds) { 2959 printf("%s: adjust number of free blocks by %+jd\n", 2960 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2961 } 2962 #endif /* DEBUG */ 2963 fs->fs_cstotal.cs_nbfree += cmd.value; 2964 break; 2965 2966 case FFS_ADJ_NIFREE: 2967 #ifdef DEBUG 2968 if (fsckcmds) { 2969 printf("%s: adjust number of free inodes by %+jd\n", 2970 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2971 } 2972 #endif /* DEBUG */ 2973 fs->fs_cstotal.cs_nifree += cmd.value; 2974 break; 2975 2976 case FFS_ADJ_NFFREE: 2977 #ifdef DEBUG 2978 if (fsckcmds) { 2979 printf("%s: adjust number of free frags by %+jd\n", 2980 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2981 } 2982 #endif /* DEBUG */ 2983 fs->fs_cstotal.cs_nffree += cmd.value; 2984 break; 2985 2986 case FFS_ADJ_NUMCLUSTERS: 2987 #ifdef DEBUG 2988 if (fsckcmds) { 2989 printf("%s: adjust number of free clusters by %+jd\n", 2990 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2991 } 2992 #endif /* DEBUG */ 2993 fs->fs_cstotal.cs_numclusters += cmd.value; 2994 break; 2995 2996 case FFS_SET_CWD: 2997 #ifdef DEBUG 2998 if (fsckcmds) { 2999 printf("%s: set current directory to inode %jd\n", 3000 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3001 } 3002 #endif /* DEBUG */ 3003 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3004 break; 3005 AUDIT_ARG_VNODE1(vp); 3006 if ((error = change_dir(vp, td)) != 0) { 3007 vput(vp); 3008 break; 3009 } 3010 VOP_UNLOCK(vp, 0); 3011 pwd_chdir(td, vp); 3012 break; 3013 3014 case FFS_SET_DOTDOT: 3015 #ifdef DEBUG 3016 if (fsckcmds) { 3017 printf("%s: change .. in cwd from %jd to %jd\n", 3018 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3019 (intmax_t)cmd.size); 3020 } 3021 #endif /* DEBUG */ 3022 /* 3023 * First we have to get and lock the parent directory 3024 * to which ".." points. 3025 */ 3026 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3027 if (error) 3028 break; 3029 /* 3030 * Now we get and lock the child directory containing "..". 3031 */ 3032 FILEDESC_SLOCK(td->td_proc->p_fd); 3033 dvp = td->td_proc->p_fd->fd_cdir; 3034 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3035 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3036 vput(fdvp); 3037 break; 3038 } 3039 dp = VTOI(dvp); 3040 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3041 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3042 DT_DIR, 0); 3043 cache_purge(fdvp); 3044 cache_purge(dvp); 3045 vput(dvp); 3046 vput(fdvp); 3047 break; 3048 3049 case FFS_UNLINK: 3050 #ifdef DEBUG 3051 if (fsckcmds) { 3052 char buf[32]; 3053 3054 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3055 strncpy(buf, "Name_too_long", 32); 3056 printf("%s: unlink %s (inode %jd)\n", 3057 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3058 } 3059 #endif /* DEBUG */ 3060 /* 3061 * kern_unlinkat will do its own start/finish writes and 3062 * they do not nest, so drop ours here. Setting mp == NULL 3063 * indicates that vn_finished_write is not needed down below. 3064 */ 3065 vn_finished_write(mp); 3066 mp = NULL; 3067 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 3068 UIO_USERSPACE, (ino_t)cmd.size); 3069 break; 3070 3071 case FFS_SET_INODE: 3072 if (ump->um_fsckpid != td->td_proc->p_pid) { 3073 error = EPERM; 3074 break; 3075 } 3076 #ifdef DEBUG 3077 if (fsckcmds) { 3078 printf("%s: update inode %jd\n", 3079 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3080 } 3081 #endif /* DEBUG */ 3082 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3083 break; 3084 AUDIT_ARG_VNODE1(vp); 3085 ip = VTOI(vp); 3086 if (I_IS_UFS1(ip)) 3087 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3088 sizeof(struct ufs1_dinode)); 3089 else 3090 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3091 sizeof(struct ufs2_dinode)); 3092 if (error) { 3093 vput(vp); 3094 break; 3095 } 3096 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3097 error = ffs_update(vp, 1); 3098 vput(vp); 3099 break; 3100 3101 case FFS_SET_BUFOUTPUT: 3102 if (ump->um_fsckpid != td->td_proc->p_pid) { 3103 error = EPERM; 3104 break; 3105 } 3106 if (ITOUMP(VTOI(vp)) != ump) { 3107 error = EINVAL; 3108 break; 3109 } 3110 #ifdef DEBUG 3111 if (fsckcmds) { 3112 printf("%s: %s buffered output for descriptor %jd\n", 3113 mp->mnt_stat.f_mntonname, 3114 cmd.size == 1 ? "enable" : "disable", 3115 (intmax_t)cmd.value); 3116 } 3117 #endif /* DEBUG */ 3118 if ((error = getvnode(td, cmd.value, 3119 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3120 break; 3121 if (vfp->f_vnode->v_type != VCHR) { 3122 fdrop(vfp, td); 3123 error = EINVAL; 3124 break; 3125 } 3126 if (origops == NULL) { 3127 origops = vfp->f_ops; 3128 bcopy((void *)origops, (void *)&bufferedops, 3129 sizeof(bufferedops)); 3130 bufferedops.fo_write = buffered_write; 3131 } 3132 if (cmd.size == 1) 3133 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3134 (uintptr_t)&bufferedops); 3135 else 3136 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3137 (uintptr_t)origops); 3138 fdrop(vfp, td); 3139 break; 3140 3141 default: 3142 #ifdef DEBUG 3143 if (fsckcmds) { 3144 printf("Invalid request %d from fsck\n", 3145 oidp->oid_number); 3146 } 3147 #endif /* DEBUG */ 3148 error = EINVAL; 3149 break; 3150 3151 } 3152 fdrop(fp, td); 3153 vn_finished_write(mp); 3154 return (error); 3155 } 3156 3157 /* 3158 * Function to switch a descriptor to use the buffer cache to stage 3159 * its I/O. This is needed so that writes to the filesystem device 3160 * will give snapshots a chance to copy modified blocks for which it 3161 * needs to retain copies. 3162 */ 3163 static int 3164 buffered_write(fp, uio, active_cred, flags, td) 3165 struct file *fp; 3166 struct uio *uio; 3167 struct ucred *active_cred; 3168 int flags; 3169 struct thread *td; 3170 { 3171 struct vnode *devvp, *vp; 3172 struct inode *ip; 3173 struct buf *bp; 3174 struct fs *fs; 3175 struct filedesc *fdp; 3176 int error; 3177 daddr_t lbn; 3178 3179 /* 3180 * The devvp is associated with the /dev filesystem. To discover 3181 * the filesystem with which the device is associated, we depend 3182 * on the application setting the current directory to a location 3183 * within the filesystem being written. Yes, this is an ugly hack. 3184 */ 3185 devvp = fp->f_vnode; 3186 if (!vn_isdisk(devvp, NULL)) 3187 return (EINVAL); 3188 fdp = td->td_proc->p_fd; 3189 FILEDESC_SLOCK(fdp); 3190 vp = fdp->fd_cdir; 3191 vref(vp); 3192 FILEDESC_SUNLOCK(fdp); 3193 vn_lock(vp, LK_SHARED | LK_RETRY); 3194 /* 3195 * Check that the current directory vnode indeed belongs to 3196 * UFS before trying to dereference UFS-specific v_data fields. 3197 */ 3198 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3199 vput(vp); 3200 return (EINVAL); 3201 } 3202 ip = VTOI(vp); 3203 if (ITODEVVP(ip) != devvp) { 3204 vput(vp); 3205 return (EINVAL); 3206 } 3207 fs = ITOFS(ip); 3208 vput(vp); 3209 foffset_lock_uio(fp, uio, flags); 3210 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3211 #ifdef DEBUG 3212 if (fsckcmds) { 3213 printf("%s: buffered write for block %jd\n", 3214 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3215 } 3216 #endif /* DEBUG */ 3217 /* 3218 * All I/O must be contained within a filesystem block, start on 3219 * a fragment boundary, and be a multiple of fragments in length. 3220 */ 3221 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3222 fragoff(fs, uio->uio_offset) != 0 || 3223 fragoff(fs, uio->uio_resid) != 0) { 3224 error = EINVAL; 3225 goto out; 3226 } 3227 lbn = numfrags(fs, uio->uio_offset); 3228 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3229 bp->b_flags |= B_RELBUF; 3230 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3231 brelse(bp); 3232 goto out; 3233 } 3234 error = bwrite(bp); 3235 out: 3236 VOP_UNLOCK(devvp, 0); 3237 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3238 return (error); 3239 } 3240