xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Copyright (c) 1982, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  * (c) UNIX System Laboratories, Inc.
14  * Copyright (c) 1982, 1986, 1989, 1993
15  *	The Regents of the University of California.  All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
46  * $FreeBSD$
47  */
48 
49 #include "opt_quota.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/bio.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/file.h>
57 #include <sys/proc.h>
58 #include <sys/vnode.h>
59 #include <sys/mount.h>
60 #include <sys/kernel.h>
61 #include <sys/stdint.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 
65 #include <ufs/ufs/extattr.h>
66 #include <ufs/ufs/quota.h>
67 #include <ufs/ufs/inode.h>
68 #include <ufs/ufs/ufs_extern.h>
69 #include <ufs/ufs/ufsmount.h>
70 
71 #include <ufs/ffs/fs.h>
72 #include <ufs/ffs/ffs_extern.h>
73 
74 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
75 				  int size);
76 
77 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
78 static ufs2_daddr_t
79 	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
80 #ifdef DIAGNOSTIC
81 static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
82 #endif
83 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
84 static ino_t	ffs_dirpref(struct inode *);
85 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
86 static void	ffs_fserr(struct fs *, ino_t, char *);
87 static ufs2_daddr_t	ffs_hashalloc
88 		(struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
89 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
90 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
91 static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
92 static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
93 
94 /*
95  * Allocate a block in the filesystem.
96  *
97  * The size of the requested block is given, which must be some
98  * multiple of fs_fsize and <= fs_bsize.
99  * A preference may be optionally specified. If a preference is given
100  * the following hierarchy is used to allocate a block:
101  *   1) allocate the requested block.
102  *   2) allocate a rotationally optimal block in the same cylinder.
103  *   3) allocate a block in the same cylinder group.
104  *   4) quadradically rehash into other cylinder groups, until an
105  *      available block is located.
106  * If no block preference is given the following heirarchy is used
107  * to allocate a block:
108  *   1) allocate a block in the cylinder group that contains the
109  *      inode for the file.
110  *   2) quadradically rehash into other cylinder groups, until an
111  *      available block is located.
112  */
113 int
114 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
115 	struct inode *ip;
116 	ufs2_daddr_t lbn, bpref;
117 	int size;
118 	struct ucred *cred;
119 	ufs2_daddr_t *bnp;
120 {
121 	struct fs *fs;
122 	ufs2_daddr_t bno;
123 	int cg, reclaimed;
124 #ifdef QUOTA
125 	int error;
126 #endif
127 
128 	*bnp = 0;
129 	fs = ip->i_fs;
130 #ifdef DIAGNOSTIC
131 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
132 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
133 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
134 		    fs->fs_fsmnt);
135 		panic("ffs_alloc: bad size");
136 	}
137 	if (cred == NOCRED)
138 		panic("ffs_alloc: missing credential");
139 #endif /* DIAGNOSTIC */
140 	reclaimed = 0;
141 retry:
142 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
143 		goto nospace;
144 	if (suser_cred(cred, PRISON_ROOT) &&
145 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
146 		goto nospace;
147 #ifdef QUOTA
148 	error = chkdq(ip, btodb(size), cred, 0);
149 	if (error)
150 		return (error);
151 #endif
152 	if (bpref >= fs->fs_size)
153 		bpref = 0;
154 	if (bpref == 0)
155 		cg = ino_to_cg(fs, ip->i_number);
156 	else
157 		cg = dtog(fs, bpref);
158 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
159 	if (bno > 0) {
160 		DIP(ip, i_blocks) += btodb(size);
161 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
162 		*bnp = bno;
163 		return (0);
164 	}
165 #ifdef QUOTA
166 	/*
167 	 * Restore user's disk quota because allocation failed.
168 	 */
169 	(void) chkdq(ip, -btodb(size), cred, FORCE);
170 #endif
171 nospace:
172 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
173 		reclaimed = 1;
174 		softdep_request_cleanup(fs, ITOV(ip));
175 		goto retry;
176 	}
177 	ffs_fserr(fs, ip->i_number, "filesystem full");
178 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
179 	return (ENOSPC);
180 }
181 
182 /*
183  * Reallocate a fragment to a bigger size
184  *
185  * The number and size of the old block is given, and a preference
186  * and new size is also specified. The allocator attempts to extend
187  * the original block. Failing that, the regular block allocator is
188  * invoked to get an appropriate block.
189  */
190 int
191 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
192 	struct inode *ip;
193 	ufs2_daddr_t lbprev;
194 	ufs2_daddr_t bprev;
195 	ufs2_daddr_t bpref;
196 	int osize, nsize;
197 	struct ucred *cred;
198 	struct buf **bpp;
199 {
200 	struct vnode *vp;
201 	struct fs *fs;
202 	struct buf *bp;
203 	int cg, request, error, reclaimed;
204 	ufs2_daddr_t bno;
205 
206 	*bpp = 0;
207 	vp = ITOV(ip);
208 	fs = ip->i_fs;
209 #ifdef DIAGNOSTIC
210 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
211 		panic("ffs_realloccg: allocation on suspended filesystem");
212 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
213 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
214 		printf(
215 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
216 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
217 		    nsize, fs->fs_fsmnt);
218 		panic("ffs_realloccg: bad size");
219 	}
220 	if (cred == NOCRED)
221 		panic("ffs_realloccg: missing credential");
222 #endif /* DIAGNOSTIC */
223 	reclaimed = 0;
224 retry:
225 	if (suser_cred(cred, PRISON_ROOT) &&
226 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
227 		goto nospace;
228 	if (bprev == 0) {
229 		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
230 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
231 		    fs->fs_fsmnt);
232 		panic("ffs_realloccg: bad bprev");
233 	}
234 	/*
235 	 * Allocate the extra space in the buffer.
236 	 */
237 	error = bread(vp, lbprev, osize, NOCRED, &bp);
238 	if (error) {
239 		brelse(bp);
240 		return (error);
241 	}
242 
243 	if (bp->b_blkno == bp->b_lblkno) {
244 		if (lbprev >= NDADDR)
245 			panic("ffs_realloccg: lbprev out of range");
246 		bp->b_blkno = fsbtodb(fs, bprev);
247 	}
248 
249 #ifdef QUOTA
250 	error = chkdq(ip, btodb(nsize - osize), cred, 0);
251 	if (error) {
252 		brelse(bp);
253 		return (error);
254 	}
255 #endif
256 	/*
257 	 * Check for extension in the existing location.
258 	 */
259 	cg = dtog(fs, bprev);
260 	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
261 	if (bno) {
262 		if (bp->b_blkno != fsbtodb(fs, bno))
263 			panic("ffs_realloccg: bad blockno");
264 		DIP(ip, i_blocks) += btodb(nsize - osize);
265 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
266 		allocbuf(bp, nsize);
267 		bp->b_flags |= B_DONE;
268 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
269 		*bpp = bp;
270 		return (0);
271 	}
272 	/*
273 	 * Allocate a new disk location.
274 	 */
275 	if (bpref >= fs->fs_size)
276 		bpref = 0;
277 	switch ((int)fs->fs_optim) {
278 	case FS_OPTSPACE:
279 		/*
280 		 * Allocate an exact sized fragment. Although this makes
281 		 * best use of space, we will waste time relocating it if
282 		 * the file continues to grow. If the fragmentation is
283 		 * less than half of the minimum free reserve, we choose
284 		 * to begin optimizing for time.
285 		 */
286 		request = nsize;
287 		if (fs->fs_minfree <= 5 ||
288 		    fs->fs_cstotal.cs_nffree >
289 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
290 			break;
291 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
292 			fs->fs_fsmnt);
293 		fs->fs_optim = FS_OPTTIME;
294 		break;
295 	case FS_OPTTIME:
296 		/*
297 		 * At this point we have discovered a file that is trying to
298 		 * grow a small fragment to a larger fragment. To save time,
299 		 * we allocate a full sized block, then free the unused portion.
300 		 * If the file continues to grow, the `ffs_fragextend' call
301 		 * above will be able to grow it in place without further
302 		 * copying. If aberrant programs cause disk fragmentation to
303 		 * grow within 2% of the free reserve, we choose to begin
304 		 * optimizing for space.
305 		 */
306 		request = fs->fs_bsize;
307 		if (fs->fs_cstotal.cs_nffree <
308 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
309 			break;
310 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
311 			fs->fs_fsmnt);
312 		fs->fs_optim = FS_OPTSPACE;
313 		break;
314 	default:
315 		printf("dev = %s, optim = %ld, fs = %s\n",
316 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
317 		panic("ffs_realloccg: bad optim");
318 		/* NOTREACHED */
319 	}
320 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
321 	if (bno > 0) {
322 		bp->b_blkno = fsbtodb(fs, bno);
323 		if (!DOINGSOFTDEP(vp))
324 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
325 			    ip->i_number);
326 		if (nsize < request)
327 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
328 			    (long)(request - nsize), ip->i_number);
329 		DIP(ip, i_blocks) += btodb(nsize - osize);
330 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
331 		allocbuf(bp, nsize);
332 		bp->b_flags |= B_DONE;
333 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
334 		*bpp = bp;
335 		return (0);
336 	}
337 #ifdef QUOTA
338 	/*
339 	 * Restore user's disk quota because allocation failed.
340 	 */
341 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
342 #endif
343 	brelse(bp);
344 nospace:
345 	/*
346 	 * no space available
347 	 */
348 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
349 		reclaimed = 1;
350 		softdep_request_cleanup(fs, vp);
351 		goto retry;
352 	}
353 	ffs_fserr(fs, ip->i_number, "filesystem full");
354 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
355 	return (ENOSPC);
356 }
357 
358 /*
359  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
360  *
361  * The vnode and an array of buffer pointers for a range of sequential
362  * logical blocks to be made contiguous is given. The allocator attempts
363  * to find a range of sequential blocks starting as close as possible
364  * from the end of the allocation for the logical block immediately
365  * preceding the current range. If successful, the physical block numbers
366  * in the buffer pointers and in the inode are changed to reflect the new
367  * allocation. If unsuccessful, the allocation is left unchanged. The
368  * success in doing the reallocation is returned. Note that the error
369  * return is not reflected back to the user. Rather the previous block
370  * allocation will be used.
371  */
372 
373 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
374 
375 static int doasyncfree = 1;
376 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
377 
378 static int doreallocblks = 1;
379 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
380 
381 #ifdef DEBUG
382 static volatile int prtrealloc = 0;
383 #endif
384 
385 int
386 ffs_reallocblks(ap)
387 	struct vop_reallocblks_args /* {
388 		struct vnode *a_vp;
389 		struct cluster_save *a_buflist;
390 	} */ *ap;
391 {
392 
393 	if (doreallocblks == 0)
394 		return (ENOSPC);
395 	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
396 		return (ffs_reallocblks_ufs1(ap));
397 	return (ffs_reallocblks_ufs2(ap));
398 }
399 
400 static int
401 ffs_reallocblks_ufs1(ap)
402 	struct vop_reallocblks_args /* {
403 		struct vnode *a_vp;
404 		struct cluster_save *a_buflist;
405 	} */ *ap;
406 {
407 	struct fs *fs;
408 	struct inode *ip;
409 	struct vnode *vp;
410 	struct buf *sbp, *ebp;
411 	ufs1_daddr_t *bap, *sbap, *ebap = 0;
412 	struct cluster_save *buflist;
413 	ufs_lbn_t start_lbn, end_lbn;
414 	ufs1_daddr_t soff, newblk, blkno;
415 	ufs2_daddr_t pref;
416 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
417 	int i, len, start_lvl, end_lvl, ssize;
418 
419 	vp = ap->a_vp;
420 	ip = VTOI(vp);
421 	fs = ip->i_fs;
422 	if (fs->fs_contigsumsize <= 0)
423 		return (ENOSPC);
424 	buflist = ap->a_buflist;
425 	len = buflist->bs_nchildren;
426 	start_lbn = buflist->bs_children[0]->b_lblkno;
427 	end_lbn = start_lbn + len - 1;
428 #ifdef DIAGNOSTIC
429 	for (i = 0; i < len; i++)
430 		if (!ffs_checkblk(ip,
431 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
432 			panic("ffs_reallocblks: unallocated block 1");
433 	for (i = 1; i < len; i++)
434 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
435 			panic("ffs_reallocblks: non-logical cluster");
436 	blkno = buflist->bs_children[0]->b_blkno;
437 	ssize = fsbtodb(fs, fs->fs_frag);
438 	for (i = 1; i < len - 1; i++)
439 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
440 			panic("ffs_reallocblks: non-physical cluster %d", i);
441 #endif
442 	/*
443 	 * If the latest allocation is in a new cylinder group, assume that
444 	 * the filesystem has decided to move and do not force it back to
445 	 * the previous cylinder group.
446 	 */
447 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
448 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
449 		return (ENOSPC);
450 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
451 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
452 		return (ENOSPC);
453 	/*
454 	 * Get the starting offset and block map for the first block.
455 	 */
456 	if (start_lvl == 0) {
457 		sbap = &ip->i_din1->di_db[0];
458 		soff = start_lbn;
459 	} else {
460 		idp = &start_ap[start_lvl - 1];
461 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
462 			brelse(sbp);
463 			return (ENOSPC);
464 		}
465 		sbap = (ufs1_daddr_t *)sbp->b_data;
466 		soff = idp->in_off;
467 	}
468 	/*
469 	 * Find the preferred location for the cluster.
470 	 */
471 	pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
472 	/*
473 	 * If the block range spans two block maps, get the second map.
474 	 */
475 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
476 		ssize = len;
477 	} else {
478 #ifdef DIAGNOSTIC
479 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
480 			panic("ffs_reallocblk: start == end");
481 #endif
482 		ssize = len - (idp->in_off + 1);
483 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
484 			goto fail;
485 		ebap = (ufs1_daddr_t *)ebp->b_data;
486 	}
487 	/*
488 	 * Search the block map looking for an allocation of the desired size.
489 	 */
490 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
491 	    len, ffs_clusteralloc)) == 0)
492 		goto fail;
493 	/*
494 	 * We have found a new contiguous block.
495 	 *
496 	 * First we have to replace the old block pointers with the new
497 	 * block pointers in the inode and indirect blocks associated
498 	 * with the file.
499 	 */
500 #ifdef DEBUG
501 	if (prtrealloc)
502 		printf("realloc: ino %d, lbns %lld-%lld\n\told:", ip->i_number,
503 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
504 #endif
505 	blkno = newblk;
506 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
507 		if (i == ssize) {
508 			bap = ebap;
509 			soff = -i;
510 		}
511 #ifdef DIAGNOSTIC
512 		if (!ffs_checkblk(ip,
513 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
514 			panic("ffs_reallocblks: unallocated block 2");
515 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
516 			panic("ffs_reallocblks: alloc mismatch");
517 #endif
518 #ifdef DEBUG
519 		if (prtrealloc)
520 			printf(" %d,", *bap);
521 #endif
522 		if (DOINGSOFTDEP(vp)) {
523 			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
524 				softdep_setup_allocdirect(ip, start_lbn + i,
525 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
526 				    buflist->bs_children[i]);
527 			else
528 				softdep_setup_allocindir_page(ip, start_lbn + i,
529 				    i < ssize ? sbp : ebp, soff + i, blkno,
530 				    *bap, buflist->bs_children[i]);
531 		}
532 		*bap++ = blkno;
533 	}
534 	/*
535 	 * Next we must write out the modified inode and indirect blocks.
536 	 * For strict correctness, the writes should be synchronous since
537 	 * the old block values may have been written to disk. In practise
538 	 * they are almost never written, but if we are concerned about
539 	 * strict correctness, the `doasyncfree' flag should be set to zero.
540 	 *
541 	 * The test on `doasyncfree' should be changed to test a flag
542 	 * that shows whether the associated buffers and inodes have
543 	 * been written. The flag should be set when the cluster is
544 	 * started and cleared whenever the buffer or inode is flushed.
545 	 * We can then check below to see if it is set, and do the
546 	 * synchronous write only when it has been cleared.
547 	 */
548 	if (sbap != &ip->i_din1->di_db[0]) {
549 		if (doasyncfree)
550 			bdwrite(sbp);
551 		else
552 			bwrite(sbp);
553 	} else {
554 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
555 		if (!doasyncfree)
556 			UFS_UPDATE(vp, 1);
557 	}
558 	if (ssize < len) {
559 		if (doasyncfree)
560 			bdwrite(ebp);
561 		else
562 			bwrite(ebp);
563 	}
564 	/*
565 	 * Last, free the old blocks and assign the new blocks to the buffers.
566 	 */
567 #ifdef DEBUG
568 	if (prtrealloc)
569 		printf("\n\tnew:");
570 #endif
571 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
572 		if (!DOINGSOFTDEP(vp))
573 			ffs_blkfree(fs, ip->i_devvp,
574 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
575 			    fs->fs_bsize, ip->i_number);
576 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
577 #ifdef DIAGNOSTIC
578 		if (!ffs_checkblk(ip,
579 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
580 			panic("ffs_reallocblks: unallocated block 3");
581 #endif
582 #ifdef DEBUG
583 		if (prtrealloc)
584 			printf(" %d,", blkno);
585 #endif
586 	}
587 #ifdef DEBUG
588 	if (prtrealloc) {
589 		prtrealloc--;
590 		printf("\n");
591 	}
592 #endif
593 	return (0);
594 
595 fail:
596 	if (ssize < len)
597 		brelse(ebp);
598 	if (sbap != &ip->i_din1->di_db[0])
599 		brelse(sbp);
600 	return (ENOSPC);
601 }
602 
603 static int
604 ffs_reallocblks_ufs2(ap)
605 	struct vop_reallocblks_args /* {
606 		struct vnode *a_vp;
607 		struct cluster_save *a_buflist;
608 	} */ *ap;
609 {
610 	struct fs *fs;
611 	struct inode *ip;
612 	struct vnode *vp;
613 	struct buf *sbp, *ebp;
614 	ufs2_daddr_t *bap, *sbap, *ebap = 0;
615 	struct cluster_save *buflist;
616 	ufs_lbn_t start_lbn, end_lbn;
617 	ufs2_daddr_t soff, newblk, blkno, pref;
618 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
619 	int i, len, start_lvl, end_lvl, ssize;
620 
621 	vp = ap->a_vp;
622 	ip = VTOI(vp);
623 	fs = ip->i_fs;
624 	if (fs->fs_contigsumsize <= 0)
625 		return (ENOSPC);
626 	buflist = ap->a_buflist;
627 	len = buflist->bs_nchildren;
628 	start_lbn = buflist->bs_children[0]->b_lblkno;
629 	end_lbn = start_lbn + len - 1;
630 #ifdef DIAGNOSTIC
631 	for (i = 0; i < len; i++)
632 		if (!ffs_checkblk(ip,
633 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
634 			panic("ffs_reallocblks: unallocated block 1");
635 	for (i = 1; i < len; i++)
636 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
637 			panic("ffs_reallocblks: non-logical cluster");
638 	blkno = buflist->bs_children[0]->b_blkno;
639 	ssize = fsbtodb(fs, fs->fs_frag);
640 	for (i = 1; i < len - 1; i++)
641 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
642 			panic("ffs_reallocblks: non-physical cluster %d", i);
643 #endif
644 	/*
645 	 * If the latest allocation is in a new cylinder group, assume that
646 	 * the filesystem has decided to move and do not force it back to
647 	 * the previous cylinder group.
648 	 */
649 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
650 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
651 		return (ENOSPC);
652 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
653 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
654 		return (ENOSPC);
655 	/*
656 	 * Get the starting offset and block map for the first block.
657 	 */
658 	if (start_lvl == 0) {
659 		sbap = &ip->i_din2->di_db[0];
660 		soff = start_lbn;
661 	} else {
662 		idp = &start_ap[start_lvl - 1];
663 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
664 			brelse(sbp);
665 			return (ENOSPC);
666 		}
667 		sbap = (ufs2_daddr_t *)sbp->b_data;
668 		soff = idp->in_off;
669 	}
670 	/*
671 	 * Find the preferred location for the cluster.
672 	 */
673 	pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
674 	/*
675 	 * If the block range spans two block maps, get the second map.
676 	 */
677 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
678 		ssize = len;
679 	} else {
680 #ifdef DIAGNOSTIC
681 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
682 			panic("ffs_reallocblk: start == end");
683 #endif
684 		ssize = len - (idp->in_off + 1);
685 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
686 			goto fail;
687 		ebap = (ufs2_daddr_t *)ebp->b_data;
688 	}
689 	/*
690 	 * Search the block map looking for an allocation of the desired size.
691 	 */
692 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
693 	    len, ffs_clusteralloc)) == 0)
694 		goto fail;
695 	/*
696 	 * We have found a new contiguous block.
697 	 *
698 	 * First we have to replace the old block pointers with the new
699 	 * block pointers in the inode and indirect blocks associated
700 	 * with the file.
701 	 */
702 #ifdef DEBUG
703 	if (prtrealloc)
704 		printf("realloc: ino %d, lbns %lld-%lld\n\told:", ip->i_number,
705 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
706 #endif
707 	blkno = newblk;
708 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
709 		if (i == ssize) {
710 			bap = ebap;
711 			soff = -i;
712 		}
713 #ifdef DIAGNOSTIC
714 		if (!ffs_checkblk(ip,
715 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
716 			panic("ffs_reallocblks: unallocated block 2");
717 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
718 			panic("ffs_reallocblks: alloc mismatch");
719 #endif
720 #ifdef DEBUG
721 		if (prtrealloc)
722 			printf(" %lld,", (intmax_t)*bap);
723 #endif
724 		if (DOINGSOFTDEP(vp)) {
725 			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
726 				softdep_setup_allocdirect(ip, start_lbn + i,
727 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
728 				    buflist->bs_children[i]);
729 			else
730 				softdep_setup_allocindir_page(ip, start_lbn + i,
731 				    i < ssize ? sbp : ebp, soff + i, blkno,
732 				    *bap, buflist->bs_children[i]);
733 		}
734 		*bap++ = blkno;
735 	}
736 	/*
737 	 * Next we must write out the modified inode and indirect blocks.
738 	 * For strict correctness, the writes should be synchronous since
739 	 * the old block values may have been written to disk. In practise
740 	 * they are almost never written, but if we are concerned about
741 	 * strict correctness, the `doasyncfree' flag should be set to zero.
742 	 *
743 	 * The test on `doasyncfree' should be changed to test a flag
744 	 * that shows whether the associated buffers and inodes have
745 	 * been written. The flag should be set when the cluster is
746 	 * started and cleared whenever the buffer or inode is flushed.
747 	 * We can then check below to see if it is set, and do the
748 	 * synchronous write only when it has been cleared.
749 	 */
750 	if (sbap != &ip->i_din2->di_db[0]) {
751 		if (doasyncfree)
752 			bdwrite(sbp);
753 		else
754 			bwrite(sbp);
755 	} else {
756 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
757 		if (!doasyncfree)
758 			UFS_UPDATE(vp, 1);
759 	}
760 	if (ssize < len) {
761 		if (doasyncfree)
762 			bdwrite(ebp);
763 		else
764 			bwrite(ebp);
765 	}
766 	/*
767 	 * Last, free the old blocks and assign the new blocks to the buffers.
768 	 */
769 #ifdef DEBUG
770 	if (prtrealloc)
771 		printf("\n\tnew:");
772 #endif
773 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
774 		if (!DOINGSOFTDEP(vp))
775 			ffs_blkfree(fs, ip->i_devvp,
776 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
777 			    fs->fs_bsize, ip->i_number);
778 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
779 #ifdef DIAGNOSTIC
780 		if (!ffs_checkblk(ip,
781 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
782 			panic("ffs_reallocblks: unallocated block 3");
783 #endif
784 #ifdef DEBUG
785 		if (prtrealloc)
786 			printf(" %jd,", (intmax_t)blkno);
787 #endif
788 	}
789 #ifdef DEBUG
790 	if (prtrealloc) {
791 		prtrealloc--;
792 		printf("\n");
793 	}
794 #endif
795 	return (0);
796 
797 fail:
798 	if (ssize < len)
799 		brelse(ebp);
800 	if (sbap != &ip->i_din2->di_db[0])
801 		brelse(sbp);
802 	return (ENOSPC);
803 }
804 
805 /*
806  * Allocate an inode in the filesystem.
807  *
808  * If allocating a directory, use ffs_dirpref to select the inode.
809  * If allocating in a directory, the following hierarchy is followed:
810  *   1) allocate the preferred inode.
811  *   2) allocate an inode in the same cylinder group.
812  *   3) quadradically rehash into other cylinder groups, until an
813  *      available inode is located.
814  * If no inode preference is given the following heirarchy is used
815  * to allocate an inode:
816  *   1) allocate an inode in cylinder group 0.
817  *   2) quadradically rehash into other cylinder groups, until an
818  *      available inode is located.
819  */
820 int
821 ffs_valloc(pvp, mode, cred, vpp)
822 	struct vnode *pvp;
823 	int mode;
824 	struct ucred *cred;
825 	struct vnode **vpp;
826 {
827 	struct inode *pip;
828 	struct fs *fs;
829 	struct inode *ip;
830 	struct timespec ts;
831 	ino_t ino, ipref;
832 	int cg, error;
833 
834 	*vpp = NULL;
835 	pip = VTOI(pvp);
836 	fs = pip->i_fs;
837 	if (fs->fs_cstotal.cs_nifree == 0)
838 		goto noinodes;
839 
840 	if ((mode & IFMT) == IFDIR)
841 		ipref = ffs_dirpref(pip);
842 	else
843 		ipref = pip->i_number;
844 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
845 		ipref = 0;
846 	cg = ino_to_cg(fs, ipref);
847 	/*
848 	 * Track number of dirs created one after another
849 	 * in a same cg without intervening by files.
850 	 */
851 	if ((mode & IFMT) == IFDIR) {
852 		if (fs->fs_contigdirs[cg] < 255)
853 			fs->fs_contigdirs[cg]++;
854 	} else {
855 		if (fs->fs_contigdirs[cg] > 0)
856 			fs->fs_contigdirs[cg]--;
857 	}
858 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
859 					(allocfcn_t *)ffs_nodealloccg);
860 	if (ino == 0)
861 		goto noinodes;
862 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
863 	if (error) {
864 		UFS_VFREE(pvp, ino, mode);
865 		return (error);
866 	}
867 	ip = VTOI(*vpp);
868 	if (ip->i_mode) {
869 		printf("mode = 0%o, inum = %lu, fs = %s\n",
870 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
871 		panic("ffs_valloc: dup alloc");
872 	}
873 	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
874 		printf("free inode %s/%lu had %ld blocks\n",
875 		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
876 		DIP(ip, i_blocks) = 0;
877 	}
878 	ip->i_flags = 0;
879 	DIP(ip, i_flags) = 0;
880 	/*
881 	 * Set up a new generation number for this inode.
882 	 */
883 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
884 		ip->i_gen = random() / 2 + 1;
885 	DIP(ip, i_gen) = ip->i_gen;
886 	if (fs->fs_magic == FS_UFS2_MAGIC) {
887 		vfs_timestamp(&ts);
888 		ip->i_din2->di_birthtime = ts.tv_sec;
889 		ip->i_din2->di_birthnsec = ts.tv_nsec;
890 	}
891 	return (0);
892 noinodes:
893 	ffs_fserr(fs, pip->i_number, "out of inodes");
894 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
895 	return (ENOSPC);
896 }
897 
898 /*
899  * Find a cylinder group to place a directory.
900  *
901  * The policy implemented by this algorithm is to allocate a
902  * directory inode in the same cylinder group as its parent
903  * directory, but also to reserve space for its files inodes
904  * and data. Restrict the number of directories which may be
905  * allocated one after another in the same cylinder group
906  * without intervening allocation of files.
907  *
908  * If we allocate a first level directory then force allocation
909  * in another cylinder group.
910  */
911 static ino_t
912 ffs_dirpref(pip)
913 	struct inode *pip;
914 {
915 	struct fs *fs;
916 	int cg, prefcg, dirsize, cgsize;
917 	int avgifree, avgbfree, avgndir, curdirsize;
918 	int minifree, minbfree, maxndir;
919 	int mincg, minndir;
920 	int maxcontigdirs;
921 
922 	fs = pip->i_fs;
923 
924 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
925 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
926 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
927 
928 	/*
929 	 * Force allocation in another cg if creating a first level dir.
930 	 */
931 	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
932 	if (ITOV(pip)->v_vflag & VV_ROOT) {
933 		prefcg = arc4random() % fs->fs_ncg;
934 		mincg = prefcg;
935 		minndir = fs->fs_ipg;
936 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
937 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
938 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
939 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
940 				mincg = cg;
941 				minndir = fs->fs_cs(fs, cg).cs_ndir;
942 			}
943 		for (cg = 0; cg < prefcg; cg++)
944 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
945 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
946 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
947 				mincg = cg;
948 				minndir = fs->fs_cs(fs, cg).cs_ndir;
949 			}
950 		return ((ino_t)(fs->fs_ipg * mincg));
951 	}
952 
953 	/*
954 	 * Count various limits which used for
955 	 * optimal allocation of a directory inode.
956 	 */
957 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
958 	minifree = avgifree - fs->fs_ipg / 4;
959 	if (minifree < 0)
960 		minifree = 0;
961 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
962 	if (minbfree < 0)
963 		minbfree = 0;
964 	cgsize = fs->fs_fsize * fs->fs_fpg;
965 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
966 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
967 	if (dirsize < curdirsize)
968 		dirsize = curdirsize;
969 	maxcontigdirs = min(cgsize / dirsize, 255);
970 	if (fs->fs_avgfpdir > 0)
971 		maxcontigdirs = min(maxcontigdirs,
972 				    fs->fs_ipg / fs->fs_avgfpdir);
973 	if (maxcontigdirs == 0)
974 		maxcontigdirs = 1;
975 
976 	/*
977 	 * Limit number of dirs in one cg and reserve space for
978 	 * regular files, but only if we have no deficit in
979 	 * inodes or space.
980 	 */
981 	prefcg = ino_to_cg(fs, pip->i_number);
982 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
983 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
984 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
985 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
986 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
987 				return ((ino_t)(fs->fs_ipg * cg));
988 		}
989 	for (cg = 0; cg < prefcg; cg++)
990 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
991 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
992 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
993 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
994 				return ((ino_t)(fs->fs_ipg * cg));
995 		}
996 	/*
997 	 * This is a backstop when we have deficit in space.
998 	 */
999 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1000 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1001 			return ((ino_t)(fs->fs_ipg * cg));
1002 	for (cg = 0; cg < prefcg; cg++)
1003 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1004 			break;
1005 	return ((ino_t)(fs->fs_ipg * cg));
1006 }
1007 
1008 /*
1009  * Select the desired position for the next block in a file.  The file is
1010  * logically divided into sections. The first section is composed of the
1011  * direct blocks. Each additional section contains fs_maxbpg blocks.
1012  *
1013  * If no blocks have been allocated in the first section, the policy is to
1014  * request a block in the same cylinder group as the inode that describes
1015  * the file. If no blocks have been allocated in any other section, the
1016  * policy is to place the section in a cylinder group with a greater than
1017  * average number of free blocks.  An appropriate cylinder group is found
1018  * by using a rotor that sweeps the cylinder groups. When a new group of
1019  * blocks is needed, the sweep begins in the cylinder group following the
1020  * cylinder group from which the previous allocation was made. The sweep
1021  * continues until a cylinder group with greater than the average number
1022  * of free blocks is found. If the allocation is for the first block in an
1023  * indirect block, the information on the previous allocation is unavailable;
1024  * here a best guess is made based upon the logical block number being
1025  * allocated.
1026  *
1027  * If a section is already partially allocated, the policy is to
1028  * contiguously allocate fs_maxcontig blocks. The end of one of these
1029  * contiguous blocks and the beginning of the next is laid out
1030  * contiguously if possible.
1031  */
1032 ufs2_daddr_t
1033 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1034 	struct inode *ip;
1035 	ufs_lbn_t lbn;
1036 	int indx;
1037 	ufs1_daddr_t *bap;
1038 {
1039 	struct fs *fs;
1040 	int cg;
1041 	int avgbfree, startcg;
1042 
1043 	fs = ip->i_fs;
1044 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1045 		if (lbn < NDADDR + NINDIR(fs)) {
1046 			cg = ino_to_cg(fs, ip->i_number);
1047 			return (fs->fs_fpg * cg + fs->fs_frag);
1048 		}
1049 		/*
1050 		 * Find a cylinder with greater than average number of
1051 		 * unused data blocks.
1052 		 */
1053 		if (indx == 0 || bap[indx - 1] == 0)
1054 			startcg =
1055 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1056 		else
1057 			startcg = dtog(fs, bap[indx - 1]) + 1;
1058 		startcg %= fs->fs_ncg;
1059 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1060 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1061 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1062 				fs->fs_cgrotor = cg;
1063 				return (fs->fs_fpg * cg + fs->fs_frag);
1064 			}
1065 		for (cg = 0; cg <= startcg; cg++)
1066 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1067 				fs->fs_cgrotor = cg;
1068 				return (fs->fs_fpg * cg + fs->fs_frag);
1069 			}
1070 		return (0);
1071 	}
1072 	/*
1073 	 * We just always try to lay things out contiguously.
1074 	 */
1075 	return (bap[indx - 1] + fs->fs_frag);
1076 }
1077 
1078 /*
1079  * Same as above, but for UFS2
1080  */
1081 ufs2_daddr_t
1082 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1083 	struct inode *ip;
1084 	ufs_lbn_t lbn;
1085 	int indx;
1086 	ufs2_daddr_t *bap;
1087 {
1088 	struct fs *fs;
1089 	int cg;
1090 	int avgbfree, startcg;
1091 
1092 	fs = ip->i_fs;
1093 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1094 		if (lbn < NDADDR + NINDIR(fs)) {
1095 			cg = ino_to_cg(fs, ip->i_number);
1096 			return (fs->fs_fpg * cg + fs->fs_frag);
1097 		}
1098 		/*
1099 		 * Find a cylinder with greater than average number of
1100 		 * unused data blocks.
1101 		 */
1102 		if (indx == 0 || bap[indx - 1] == 0)
1103 			startcg =
1104 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1105 		else
1106 			startcg = dtog(fs, bap[indx - 1]) + 1;
1107 		startcg %= fs->fs_ncg;
1108 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1109 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1110 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1111 				fs->fs_cgrotor = cg;
1112 				return (fs->fs_fpg * cg + fs->fs_frag);
1113 			}
1114 		for (cg = 0; cg <= startcg; cg++)
1115 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1116 				fs->fs_cgrotor = cg;
1117 				return (fs->fs_fpg * cg + fs->fs_frag);
1118 			}
1119 		return (0);
1120 	}
1121 	/*
1122 	 * We just always try to lay things out contiguously.
1123 	 */
1124 	return (bap[indx - 1] + fs->fs_frag);
1125 }
1126 
1127 /*
1128  * Implement the cylinder overflow algorithm.
1129  *
1130  * The policy implemented by this algorithm is:
1131  *   1) allocate the block in its requested cylinder group.
1132  *   2) quadradically rehash on the cylinder group number.
1133  *   3) brute force search for a free block.
1134  */
1135 /*VARARGS5*/
1136 static ufs2_daddr_t
1137 ffs_hashalloc(ip, cg, pref, size, allocator)
1138 	struct inode *ip;
1139 	int cg;
1140 	ufs2_daddr_t pref;
1141 	int size;	/* size for data blocks, mode for inodes */
1142 	allocfcn_t *allocator;
1143 {
1144 	struct fs *fs;
1145 	ufs2_daddr_t result;
1146 	int i, icg = cg;
1147 
1148 #ifdef DIAGNOSTIC
1149 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1150 		panic("ffs_hashalloc: allocation on suspended filesystem");
1151 #endif
1152 	fs = ip->i_fs;
1153 	/*
1154 	 * 1: preferred cylinder group
1155 	 */
1156 	result = (*allocator)(ip, cg, pref, size);
1157 	if (result)
1158 		return (result);
1159 	/*
1160 	 * 2: quadratic rehash
1161 	 */
1162 	for (i = 1; i < fs->fs_ncg; i *= 2) {
1163 		cg += i;
1164 		if (cg >= fs->fs_ncg)
1165 			cg -= fs->fs_ncg;
1166 		result = (*allocator)(ip, cg, 0, size);
1167 		if (result)
1168 			return (result);
1169 	}
1170 	/*
1171 	 * 3: brute force search
1172 	 * Note that we start at i == 2, since 0 was checked initially,
1173 	 * and 1 is always checked in the quadratic rehash.
1174 	 */
1175 	cg = (icg + 2) % fs->fs_ncg;
1176 	for (i = 2; i < fs->fs_ncg; i++) {
1177 		result = (*allocator)(ip, cg, 0, size);
1178 		if (result)
1179 			return (result);
1180 		cg++;
1181 		if (cg == fs->fs_ncg)
1182 			cg = 0;
1183 	}
1184 	return (0);
1185 }
1186 
1187 /*
1188  * Determine whether a fragment can be extended.
1189  *
1190  * Check to see if the necessary fragments are available, and
1191  * if they are, allocate them.
1192  */
1193 static ufs2_daddr_t
1194 ffs_fragextend(ip, cg, bprev, osize, nsize)
1195 	struct inode *ip;
1196 	int cg;
1197 	ufs2_daddr_t bprev;
1198 	int osize, nsize;
1199 {
1200 	struct fs *fs;
1201 	struct cg *cgp;
1202 	struct buf *bp;
1203 	long bno;
1204 	int frags, bbase;
1205 	int i, error;
1206 	u_int8_t *blksfree;
1207 
1208 	fs = ip->i_fs;
1209 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1210 		return (0);
1211 	frags = numfrags(fs, nsize);
1212 	bbase = fragnum(fs, bprev);
1213 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1214 		/* cannot extend across a block boundary */
1215 		return (0);
1216 	}
1217 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1218 		(int)fs->fs_cgsize, NOCRED, &bp);
1219 	if (error) {
1220 		brelse(bp);
1221 		return (0);
1222 	}
1223 	cgp = (struct cg *)bp->b_data;
1224 	if (!cg_chkmagic(cgp)) {
1225 		brelse(bp);
1226 		return (0);
1227 	}
1228 	bp->b_xflags |= BX_BKGRDWRITE;
1229 	cgp->cg_old_time = cgp->cg_time = time_second;
1230 	bno = dtogd(fs, bprev);
1231 	blksfree = cg_blksfree(cgp);
1232 	for (i = numfrags(fs, osize); i < frags; i++)
1233 		if (isclr(blksfree, bno + i)) {
1234 			brelse(bp);
1235 			return (0);
1236 		}
1237 	/*
1238 	 * the current fragment can be extended
1239 	 * deduct the count on fragment being extended into
1240 	 * increase the count on the remaining fragment (if any)
1241 	 * allocate the extended piece
1242 	 */
1243 	for (i = frags; i < fs->fs_frag - bbase; i++)
1244 		if (isclr(blksfree, bno + i))
1245 			break;
1246 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1247 	if (i != frags)
1248 		cgp->cg_frsum[i - frags]++;
1249 	for (i = numfrags(fs, osize); i < frags; i++) {
1250 		clrbit(blksfree, bno + i);
1251 		cgp->cg_cs.cs_nffree--;
1252 		fs->fs_cstotal.cs_nffree--;
1253 		fs->fs_cs(fs, cg).cs_nffree--;
1254 	}
1255 	fs->fs_fmod = 1;
1256 	if (DOINGSOFTDEP(ITOV(ip)))
1257 		softdep_setup_blkmapdep(bp, fs, bprev);
1258 	if (fs->fs_active != 0)
1259 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1260 	bdwrite(bp);
1261 	return (bprev);
1262 }
1263 
1264 /*
1265  * Determine whether a block can be allocated.
1266  *
1267  * Check to see if a block of the appropriate size is available,
1268  * and if it is, allocate it.
1269  */
1270 static ufs2_daddr_t
1271 ffs_alloccg(ip, cg, bpref, size)
1272 	struct inode *ip;
1273 	int cg;
1274 	ufs2_daddr_t bpref;
1275 	int size;
1276 {
1277 	struct fs *fs;
1278 	struct cg *cgp;
1279 	struct buf *bp;
1280 	ufs1_daddr_t bno;
1281 	ufs2_daddr_t blkno;
1282 	int i, allocsiz, error, frags;
1283 	u_int8_t *blksfree;
1284 
1285 	fs = ip->i_fs;
1286 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1287 		return (0);
1288 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1289 		(int)fs->fs_cgsize, NOCRED, &bp);
1290 	if (error) {
1291 		brelse(bp);
1292 		return (0);
1293 	}
1294 	cgp = (struct cg *)bp->b_data;
1295 	if (!cg_chkmagic(cgp) ||
1296 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1297 		brelse(bp);
1298 		return (0);
1299 	}
1300 	bp->b_xflags |= BX_BKGRDWRITE;
1301 	cgp->cg_old_time = cgp->cg_time = time_second;
1302 	if (size == fs->fs_bsize) {
1303 		blkno = ffs_alloccgblk(ip, bp, bpref);
1304 		if (fs->fs_active != 0)
1305 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1306 		bdwrite(bp);
1307 		return (blkno);
1308 	}
1309 	/*
1310 	 * check to see if any fragments are already available
1311 	 * allocsiz is the size which will be allocated, hacking
1312 	 * it down to a smaller size if necessary
1313 	 */
1314 	blksfree = cg_blksfree(cgp);
1315 	frags = numfrags(fs, size);
1316 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1317 		if (cgp->cg_frsum[allocsiz] != 0)
1318 			break;
1319 	if (allocsiz == fs->fs_frag) {
1320 		/*
1321 		 * no fragments were available, so a block will be
1322 		 * allocated, and hacked up
1323 		 */
1324 		if (cgp->cg_cs.cs_nbfree == 0) {
1325 			brelse(bp);
1326 			return (0);
1327 		}
1328 		blkno = ffs_alloccgblk(ip, bp, bpref);
1329 		bno = dtogd(fs, blkno);
1330 		for (i = frags; i < fs->fs_frag; i++)
1331 			setbit(blksfree, bno + i);
1332 		i = fs->fs_frag - frags;
1333 		cgp->cg_cs.cs_nffree += i;
1334 		fs->fs_cstotal.cs_nffree += i;
1335 		fs->fs_cs(fs, cg).cs_nffree += i;
1336 		fs->fs_fmod = 1;
1337 		cgp->cg_frsum[i]++;
1338 		if (fs->fs_active != 0)
1339 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1340 		bdwrite(bp);
1341 		return (blkno);
1342 	}
1343 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1344 	if (bno < 0) {
1345 		brelse(bp);
1346 		return (0);
1347 	}
1348 	for (i = 0; i < frags; i++)
1349 		clrbit(blksfree, bno + i);
1350 	cgp->cg_cs.cs_nffree -= frags;
1351 	fs->fs_cstotal.cs_nffree -= frags;
1352 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1353 	fs->fs_fmod = 1;
1354 	cgp->cg_frsum[allocsiz]--;
1355 	if (frags != allocsiz)
1356 		cgp->cg_frsum[allocsiz - frags]++;
1357 	blkno = cg * fs->fs_fpg + bno;
1358 	if (DOINGSOFTDEP(ITOV(ip)))
1359 		softdep_setup_blkmapdep(bp, fs, blkno);
1360 	if (fs->fs_active != 0)
1361 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1362 	bdwrite(bp);
1363 	return (blkno);
1364 }
1365 
1366 /*
1367  * Allocate a block in a cylinder group.
1368  *
1369  * This algorithm implements the following policy:
1370  *   1) allocate the requested block.
1371  *   2) allocate a rotationally optimal block in the same cylinder.
1372  *   3) allocate the next available block on the block rotor for the
1373  *      specified cylinder group.
1374  * Note that this routine only allocates fs_bsize blocks; these
1375  * blocks may be fragmented by the routine that allocates them.
1376  */
1377 static ufs2_daddr_t
1378 ffs_alloccgblk(ip, bp, bpref)
1379 	struct inode *ip;
1380 	struct buf *bp;
1381 	ufs2_daddr_t bpref;
1382 {
1383 	struct fs *fs;
1384 	struct cg *cgp;
1385 	ufs1_daddr_t bno;
1386 	ufs2_daddr_t blkno;
1387 	u_int8_t *blksfree;
1388 
1389 	fs = ip->i_fs;
1390 	cgp = (struct cg *)bp->b_data;
1391 	blksfree = cg_blksfree(cgp);
1392 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1393 		bpref = cgp->cg_rotor;
1394 	} else {
1395 		bpref = blknum(fs, bpref);
1396 		bno = dtogd(fs, bpref);
1397 		/*
1398 		 * if the requested block is available, use it
1399 		 */
1400 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1401 			goto gotit;
1402 	}
1403 	/*
1404 	 * Take the next available block in this cylinder group.
1405 	 */
1406 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1407 	if (bno < 0)
1408 		return (0);
1409 	cgp->cg_rotor = bno;
1410 gotit:
1411 	blkno = fragstoblks(fs, bno);
1412 	ffs_clrblock(fs, blksfree, (long)blkno);
1413 	ffs_clusteracct(fs, cgp, blkno, -1);
1414 	cgp->cg_cs.cs_nbfree--;
1415 	fs->fs_cstotal.cs_nbfree--;
1416 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1417 	fs->fs_fmod = 1;
1418 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1419 	if (DOINGSOFTDEP(ITOV(ip)))
1420 		softdep_setup_blkmapdep(bp, fs, blkno);
1421 	return (blkno);
1422 }
1423 
1424 /*
1425  * Determine whether a cluster can be allocated.
1426  *
1427  * We do not currently check for optimal rotational layout if there
1428  * are multiple choices in the same cylinder group. Instead we just
1429  * take the first one that we find following bpref.
1430  */
1431 static ufs2_daddr_t
1432 ffs_clusteralloc(ip, cg, bpref, len)
1433 	struct inode *ip;
1434 	int cg;
1435 	ufs2_daddr_t bpref;
1436 	int len;
1437 {
1438 	struct fs *fs;
1439 	struct cg *cgp;
1440 	struct buf *bp;
1441 	int i, run, bit, map, got;
1442 	ufs2_daddr_t bno;
1443 	u_char *mapp;
1444 	int32_t *lp;
1445 	u_int8_t *blksfree;
1446 
1447 	fs = ip->i_fs;
1448 	if (fs->fs_maxcluster[cg] < len)
1449 		return (0);
1450 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1451 	    NOCRED, &bp))
1452 		goto fail;
1453 	cgp = (struct cg *)bp->b_data;
1454 	if (!cg_chkmagic(cgp))
1455 		goto fail;
1456 	bp->b_xflags |= BX_BKGRDWRITE;
1457 	/*
1458 	 * Check to see if a cluster of the needed size (or bigger) is
1459 	 * available in this cylinder group.
1460 	 */
1461 	lp = &cg_clustersum(cgp)[len];
1462 	for (i = len; i <= fs->fs_contigsumsize; i++)
1463 		if (*lp++ > 0)
1464 			break;
1465 	if (i > fs->fs_contigsumsize) {
1466 		/*
1467 		 * This is the first time looking for a cluster in this
1468 		 * cylinder group. Update the cluster summary information
1469 		 * to reflect the true maximum sized cluster so that
1470 		 * future cluster allocation requests can avoid reading
1471 		 * the cylinder group map only to find no clusters.
1472 		 */
1473 		lp = &cg_clustersum(cgp)[len - 1];
1474 		for (i = len - 1; i > 0; i--)
1475 			if (*lp-- > 0)
1476 				break;
1477 		fs->fs_maxcluster[cg] = i;
1478 		goto fail;
1479 	}
1480 	/*
1481 	 * Search the cluster map to find a big enough cluster.
1482 	 * We take the first one that we find, even if it is larger
1483 	 * than we need as we prefer to get one close to the previous
1484 	 * block allocation. We do not search before the current
1485 	 * preference point as we do not want to allocate a block
1486 	 * that is allocated before the previous one (as we will
1487 	 * then have to wait for another pass of the elevator
1488 	 * algorithm before it will be read). We prefer to fail and
1489 	 * be recalled to try an allocation in the next cylinder group.
1490 	 */
1491 	if (dtog(fs, bpref) != cg)
1492 		bpref = 0;
1493 	else
1494 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1495 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1496 	map = *mapp++;
1497 	bit = 1 << (bpref % NBBY);
1498 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1499 		if ((map & bit) == 0) {
1500 			run = 0;
1501 		} else {
1502 			run++;
1503 			if (run == len)
1504 				break;
1505 		}
1506 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1507 			bit <<= 1;
1508 		} else {
1509 			map = *mapp++;
1510 			bit = 1;
1511 		}
1512 	}
1513 	if (got >= cgp->cg_nclusterblks)
1514 		goto fail;
1515 	/*
1516 	 * Allocate the cluster that we have found.
1517 	 */
1518 	blksfree = cg_blksfree(cgp);
1519 	for (i = 1; i <= len; i++)
1520 		if (!ffs_isblock(fs, blksfree, got - run + i))
1521 			panic("ffs_clusteralloc: map mismatch");
1522 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1523 	if (dtog(fs, bno) != cg)
1524 		panic("ffs_clusteralloc: allocated out of group");
1525 	len = blkstofrags(fs, len);
1526 	for (i = 0; i < len; i += fs->fs_frag)
1527 		if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
1528 			panic("ffs_clusteralloc: lost block");
1529 	if (fs->fs_active != 0)
1530 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1531 	bdwrite(bp);
1532 	return (bno);
1533 
1534 fail:
1535 	brelse(bp);
1536 	return (0);
1537 }
1538 
1539 /*
1540  * Determine whether an inode can be allocated.
1541  *
1542  * Check to see if an inode is available, and if it is,
1543  * allocate it using the following policy:
1544  *   1) allocate the requested inode.
1545  *   2) allocate the next available inode after the requested
1546  *      inode in the specified cylinder group.
1547  */
1548 static ufs2_daddr_t
1549 ffs_nodealloccg(ip, cg, ipref, mode)
1550 	struct inode *ip;
1551 	int cg;
1552 	ufs2_daddr_t ipref;
1553 	int mode;
1554 {
1555 	struct fs *fs;
1556 	struct cg *cgp;
1557 	struct buf *bp, *ibp;
1558 	u_int8_t *inosused;
1559 	struct ufs2_dinode *dp2;
1560 	int error, start, len, loc, map, i;
1561 
1562 	fs = ip->i_fs;
1563 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1564 		return (0);
1565 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1566 		(int)fs->fs_cgsize, NOCRED, &bp);
1567 	if (error) {
1568 		brelse(bp);
1569 		return (0);
1570 	}
1571 	cgp = (struct cg *)bp->b_data;
1572 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1573 		brelse(bp);
1574 		return (0);
1575 	}
1576 	bp->b_xflags |= BX_BKGRDWRITE;
1577 	cgp->cg_old_time = cgp->cg_time = time_second;
1578 	inosused = cg_inosused(cgp);
1579 	if (ipref) {
1580 		ipref %= fs->fs_ipg;
1581 		if (isclr(inosused, ipref))
1582 			goto gotit;
1583 	}
1584 	start = cgp->cg_irotor / NBBY;
1585 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1586 	loc = skpc(0xff, len, &inosused[start]);
1587 	if (loc == 0) {
1588 		len = start + 1;
1589 		start = 0;
1590 		loc = skpc(0xff, len, &inosused[0]);
1591 		if (loc == 0) {
1592 			printf("cg = %d, irotor = %ld, fs = %s\n",
1593 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1594 			panic("ffs_nodealloccg: map corrupted");
1595 			/* NOTREACHED */
1596 		}
1597 	}
1598 	i = start + len - loc;
1599 	map = inosused[i];
1600 	ipref = i * NBBY;
1601 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1602 		if ((map & i) == 0) {
1603 			cgp->cg_irotor = ipref;
1604 			goto gotit;
1605 		}
1606 	}
1607 	printf("fs = %s\n", fs->fs_fsmnt);
1608 	panic("ffs_nodealloccg: block not in map");
1609 	/* NOTREACHED */
1610 gotit:
1611 	if (DOINGSOFTDEP(ITOV(ip)))
1612 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1613 	setbit(inosused, ipref);
1614 	cgp->cg_cs.cs_nifree--;
1615 	fs->fs_cstotal.cs_nifree--;
1616 	fs->fs_cs(fs, cg).cs_nifree--;
1617 	fs->fs_fmod = 1;
1618 	if ((mode & IFMT) == IFDIR) {
1619 		cgp->cg_cs.cs_ndir++;
1620 		fs->fs_cstotal.cs_ndir++;
1621 		fs->fs_cs(fs, cg).cs_ndir++;
1622 	}
1623 	/*
1624 	 * Check to see if we need to initialize more inodes.
1625 	 */
1626 	if (fs->fs_magic == FS_UFS2_MAGIC &&
1627 	    ipref + INOPB(fs) > cgp->cg_initediblk &&
1628 	    cgp->cg_initediblk < cgp->cg_niblk) {
1629 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
1630 		    ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
1631 		    (int)fs->fs_bsize, 0, 0);
1632 		bzero(ibp->b_data, (int)fs->fs_bsize);
1633 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
1634 		for (i = 0; i < INOPB(fs); i++) {
1635 			dp2->di_gen = random() / 2 + 1;
1636 			dp2++;
1637 		}
1638 		bawrite(ibp);
1639 		cgp->cg_initediblk += INOPB(fs);
1640 	}
1641 	if (fs->fs_active != 0)
1642 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1643 	bdwrite(bp);
1644 	return (cg * fs->fs_ipg + ipref);
1645 }
1646 
1647 /*
1648  * check if a block is free
1649  */
1650 static int
1651 ffs_isfreeblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1652 {
1653 
1654 	switch ((int)fs->fs_frag) {
1655 	case 8:
1656 		return (cp[h] == 0);
1657 	case 4:
1658 		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
1659 	case 2:
1660 		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
1661 	case 1:
1662 		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
1663 	default:
1664 		panic("ffs_isfreeblock");
1665 	}
1666 	return (0);
1667 }
1668 
1669 /*
1670  * Free a block or fragment.
1671  *
1672  * The specified block or fragment is placed back in the
1673  * free map. If a fragment is deallocated, a possible
1674  * block reassembly is checked.
1675  */
1676 void
1677 ffs_blkfree(fs, devvp, bno, size, inum)
1678 	struct fs *fs;
1679 	struct vnode *devvp;
1680 	ufs2_daddr_t bno;
1681 	long size;
1682 	ino_t inum;
1683 {
1684 	struct cg *cgp;
1685 	struct buf *bp;
1686 	ufs1_daddr_t fragno, cgbno;
1687 	ufs2_daddr_t cgblkno;
1688 	int i, error, cg, blk, frags, bbase;
1689 	u_int8_t *blksfree;
1690 	dev_t dev;
1691 
1692 	cg = dtog(fs, bno);
1693 	if (devvp->v_type != VCHR) {
1694 		/* devvp is a snapshot */
1695 		dev = VTOI(devvp)->i_devvp->v_rdev;
1696 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
1697 	} else {
1698 		/* devvp is a normal disk device */
1699 		dev = devvp->v_rdev;
1700 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
1701 		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree");
1702 		if ((devvp->v_vflag & VV_COPYONWRITE) &&
1703 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
1704 			return;
1705 		VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size);
1706 	}
1707 #ifdef DIAGNOSTIC
1708 	if (dev->si_mountpoint &&
1709 	    (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED))
1710 		panic("ffs_blkfree: deallocation on suspended filesystem");
1711 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1712 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1713 		printf("dev=%s, bno = %lld, bsize = %ld, size = %ld, fs = %s\n",
1714 		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
1715 		    size, fs->fs_fsmnt);
1716 		panic("ffs_blkfree: bad size");
1717 	}
1718 #endif
1719 	if ((u_int)bno >= fs->fs_size) {
1720 		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
1721 		    (u_long)inum);
1722 		ffs_fserr(fs, inum, "bad block");
1723 		return;
1724 	}
1725 	if ((error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1726 		brelse(bp);
1727 		return;
1728 	}
1729 	cgp = (struct cg *)bp->b_data;
1730 	if (!cg_chkmagic(cgp)) {
1731 		brelse(bp);
1732 		return;
1733 	}
1734 	bp->b_xflags |= BX_BKGRDWRITE;
1735 	cgp->cg_old_time = cgp->cg_time = time_second;
1736 	cgbno = dtogd(fs, bno);
1737 	blksfree = cg_blksfree(cgp);
1738 	if (size == fs->fs_bsize) {
1739 		fragno = fragstoblks(fs, cgbno);
1740 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1741 			if (devvp->v_type != VCHR) {
1742 				/* devvp is a snapshot */
1743 				brelse(bp);
1744 				return;
1745 			}
1746 			printf("dev = %s, block = %jd, fs = %s\n",
1747 			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
1748 			panic("ffs_blkfree: freeing free block");
1749 		}
1750 		ffs_setblock(fs, blksfree, fragno);
1751 		ffs_clusteracct(fs, cgp, fragno, 1);
1752 		cgp->cg_cs.cs_nbfree++;
1753 		fs->fs_cstotal.cs_nbfree++;
1754 		fs->fs_cs(fs, cg).cs_nbfree++;
1755 	} else {
1756 		bbase = cgbno - fragnum(fs, cgbno);
1757 		/*
1758 		 * decrement the counts associated with the old frags
1759 		 */
1760 		blk = blkmap(fs, blksfree, bbase);
1761 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1762 		/*
1763 		 * deallocate the fragment
1764 		 */
1765 		frags = numfrags(fs, size);
1766 		for (i = 0; i < frags; i++) {
1767 			if (isset(blksfree, cgbno + i)) {
1768 				printf("dev = %s, block = %jd, fs = %s\n",
1769 				    devtoname(dev), (intmax_t)(bno + i),
1770 				    fs->fs_fsmnt);
1771 				panic("ffs_blkfree: freeing free frag");
1772 			}
1773 			setbit(blksfree, cgbno + i);
1774 		}
1775 		cgp->cg_cs.cs_nffree += i;
1776 		fs->fs_cstotal.cs_nffree += i;
1777 		fs->fs_cs(fs, cg).cs_nffree += i;
1778 		/*
1779 		 * add back in counts associated with the new frags
1780 		 */
1781 		blk = blkmap(fs, blksfree, bbase);
1782 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1783 		/*
1784 		 * if a complete block has been reassembled, account for it
1785 		 */
1786 		fragno = fragstoblks(fs, bbase);
1787 		if (ffs_isblock(fs, blksfree, fragno)) {
1788 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1789 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1790 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1791 			ffs_clusteracct(fs, cgp, fragno, 1);
1792 			cgp->cg_cs.cs_nbfree++;
1793 			fs->fs_cstotal.cs_nbfree++;
1794 			fs->fs_cs(fs, cg).cs_nbfree++;
1795 		}
1796 	}
1797 	fs->fs_fmod = 1;
1798 	if (fs->fs_active != 0)
1799 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1800 	bdwrite(bp);
1801 }
1802 
1803 #ifdef DIAGNOSTIC
1804 /*
1805  * Verify allocation of a block or fragment. Returns true if block or
1806  * fragment is allocated, false if it is free.
1807  */
1808 static int
1809 ffs_checkblk(ip, bno, size)
1810 	struct inode *ip;
1811 	ufs2_daddr_t bno;
1812 	long size;
1813 {
1814 	struct fs *fs;
1815 	struct cg *cgp;
1816 	struct buf *bp;
1817 	ufs1_daddr_t cgbno;
1818 	int i, error, frags, free;
1819 	u_int8_t *blksfree;
1820 
1821 	fs = ip->i_fs;
1822 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1823 		printf("bsize = %ld, size = %ld, fs = %s\n",
1824 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1825 		panic("ffs_checkblk: bad size");
1826 	}
1827 	if ((u_int)bno >= fs->fs_size)
1828 		panic("ffs_checkblk: bad block %lld", (intmax_t)bno);
1829 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1830 		(int)fs->fs_cgsize, NOCRED, &bp);
1831 	if (error)
1832 		panic("ffs_checkblk: cg bread failed");
1833 	cgp = (struct cg *)bp->b_data;
1834 	if (!cg_chkmagic(cgp))
1835 		panic("ffs_checkblk: cg magic mismatch");
1836 	bp->b_xflags |= BX_BKGRDWRITE;
1837 	blksfree = cg_blksfree(cgp);
1838 	cgbno = dtogd(fs, bno);
1839 	if (size == fs->fs_bsize) {
1840 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
1841 	} else {
1842 		frags = numfrags(fs, size);
1843 		for (free = 0, i = 0; i < frags; i++)
1844 			if (isset(blksfree, cgbno + i))
1845 				free++;
1846 		if (free != 0 && free != frags)
1847 			panic("ffs_checkblk: partially free fragment");
1848 	}
1849 	brelse(bp);
1850 	return (!free);
1851 }
1852 #endif /* DIAGNOSTIC */
1853 
1854 /*
1855  * Free an inode.
1856  */
1857 int
1858 ffs_vfree(pvp, ino, mode)
1859 	struct vnode *pvp;
1860 	ino_t ino;
1861 	int mode;
1862 {
1863 	if (DOINGSOFTDEP(pvp)) {
1864 		softdep_freefile(pvp, ino, mode);
1865 		return (0);
1866 	}
1867 	return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode));
1868 }
1869 
1870 /*
1871  * Do the actual free operation.
1872  * The specified inode is placed back in the free map.
1873  */
1874 int
1875 ffs_freefile(fs, devvp, ino, mode)
1876 	struct fs *fs;
1877 	struct vnode *devvp;
1878 	ino_t ino;
1879 	int mode;
1880 {
1881 	struct cg *cgp;
1882 	struct buf *bp;
1883 	ufs2_daddr_t cgbno;
1884 	int error, cg;
1885 	u_int8_t *inosused;
1886 	dev_t dev;
1887 
1888 	cg = ino_to_cg(fs, ino);
1889 	if (devvp->v_type != VCHR) {
1890 		/* devvp is a snapshot */
1891 		dev = VTOI(devvp)->i_devvp->v_rdev;
1892 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1893 	} else {
1894 		/* devvp is a normal disk device */
1895 		dev = devvp->v_rdev;
1896 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1897 	}
1898 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1899 		panic("ffs_vfree: range: dev = %s, ino = %d, fs = %s",
1900 		    devtoname(dev), ino, fs->fs_fsmnt);
1901 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1902 		brelse(bp);
1903 		return (error);
1904 	}
1905 	cgp = (struct cg *)bp->b_data;
1906 	if (!cg_chkmagic(cgp)) {
1907 		brelse(bp);
1908 		return (0);
1909 	}
1910 	bp->b_xflags |= BX_BKGRDWRITE;
1911 	cgp->cg_old_time = cgp->cg_time = time_second;
1912 	inosused = cg_inosused(cgp);
1913 	ino %= fs->fs_ipg;
1914 	if (isclr(inosused, ino)) {
1915 		printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
1916 		    (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1917 		if (fs->fs_ronly == 0)
1918 			panic("ffs_vfree: freeing free inode");
1919 	}
1920 	clrbit(inosused, ino);
1921 	if (ino < cgp->cg_irotor)
1922 		cgp->cg_irotor = ino;
1923 	cgp->cg_cs.cs_nifree++;
1924 	fs->fs_cstotal.cs_nifree++;
1925 	fs->fs_cs(fs, cg).cs_nifree++;
1926 	if ((mode & IFMT) == IFDIR) {
1927 		cgp->cg_cs.cs_ndir--;
1928 		fs->fs_cstotal.cs_ndir--;
1929 		fs->fs_cs(fs, cg).cs_ndir--;
1930 	}
1931 	fs->fs_fmod = 1;
1932 	if (fs->fs_active != 0)
1933 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1934 	bdwrite(bp);
1935 	return (0);
1936 }
1937 
1938 /*
1939  * Find a block of the specified size in the specified cylinder group.
1940  *
1941  * It is a panic if a request is made to find a block if none are
1942  * available.
1943  */
1944 static ufs1_daddr_t
1945 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1946 	struct fs *fs;
1947 	struct cg *cgp;
1948 	ufs2_daddr_t bpref;
1949 	int allocsiz;
1950 {
1951 	ufs1_daddr_t bno;
1952 	int start, len, loc, i;
1953 	int blk, field, subfield, pos;
1954 	u_int8_t *blksfree;
1955 
1956 	/*
1957 	 * find the fragment by searching through the free block
1958 	 * map for an appropriate bit pattern
1959 	 */
1960 	if (bpref)
1961 		start = dtogd(fs, bpref) / NBBY;
1962 	else
1963 		start = cgp->cg_frotor / NBBY;
1964 	blksfree = cg_blksfree(cgp);
1965 	len = howmany(fs->fs_fpg, NBBY) - start;
1966 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
1967 		(u_char *)fragtbl[fs->fs_frag],
1968 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1969 	if (loc == 0) {
1970 		len = start + 1;
1971 		start = 0;
1972 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
1973 			(u_char *)fragtbl[fs->fs_frag],
1974 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1975 		if (loc == 0) {
1976 			printf("start = %d, len = %d, fs = %s\n",
1977 			    start, len, fs->fs_fsmnt);
1978 			panic("ffs_alloccg: map corrupted");
1979 			/* NOTREACHED */
1980 		}
1981 	}
1982 	bno = (start + len - loc) * NBBY;
1983 	cgp->cg_frotor = bno;
1984 	/*
1985 	 * found the byte in the map
1986 	 * sift through the bits to find the selected frag
1987 	 */
1988 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1989 		blk = blkmap(fs, blksfree, bno);
1990 		blk <<= 1;
1991 		field = around[allocsiz];
1992 		subfield = inside[allocsiz];
1993 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1994 			if ((blk & field) == subfield)
1995 				return (bno + pos);
1996 			field <<= 1;
1997 			subfield <<= 1;
1998 		}
1999 	}
2000 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2001 	panic("ffs_alloccg: block not in map");
2002 	return (-1);
2003 }
2004 
2005 /*
2006  * Update the cluster map because of an allocation or free.
2007  *
2008  * Cnt == 1 means free; cnt == -1 means allocating.
2009  */
2010 void
2011 ffs_clusteracct(fs, cgp, blkno, cnt)
2012 	struct fs *fs;
2013 	struct cg *cgp;
2014 	ufs1_daddr_t blkno;
2015 	int cnt;
2016 {
2017 	int32_t *sump;
2018 	int32_t *lp;
2019 	u_char *freemapp, *mapp;
2020 	int i, start, end, forw, back, map, bit;
2021 
2022 	if (fs->fs_contigsumsize <= 0)
2023 		return;
2024 	freemapp = cg_clustersfree(cgp);
2025 	sump = cg_clustersum(cgp);
2026 	/*
2027 	 * Allocate or clear the actual block.
2028 	 */
2029 	if (cnt > 0)
2030 		setbit(freemapp, blkno);
2031 	else
2032 		clrbit(freemapp, blkno);
2033 	/*
2034 	 * Find the size of the cluster going forward.
2035 	 */
2036 	start = blkno + 1;
2037 	end = start + fs->fs_contigsumsize;
2038 	if (end >= cgp->cg_nclusterblks)
2039 		end = cgp->cg_nclusterblks;
2040 	mapp = &freemapp[start / NBBY];
2041 	map = *mapp++;
2042 	bit = 1 << (start % NBBY);
2043 	for (i = start; i < end; i++) {
2044 		if ((map & bit) == 0)
2045 			break;
2046 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
2047 			bit <<= 1;
2048 		} else {
2049 			map = *mapp++;
2050 			bit = 1;
2051 		}
2052 	}
2053 	forw = i - start;
2054 	/*
2055 	 * Find the size of the cluster going backward.
2056 	 */
2057 	start = blkno - 1;
2058 	end = start - fs->fs_contigsumsize;
2059 	if (end < 0)
2060 		end = -1;
2061 	mapp = &freemapp[start / NBBY];
2062 	map = *mapp--;
2063 	bit = 1 << (start % NBBY);
2064 	for (i = start; i > end; i--) {
2065 		if ((map & bit) == 0)
2066 			break;
2067 		if ((i & (NBBY - 1)) != 0) {
2068 			bit >>= 1;
2069 		} else {
2070 			map = *mapp--;
2071 			bit = 1 << (NBBY - 1);
2072 		}
2073 	}
2074 	back = start - i;
2075 	/*
2076 	 * Account for old cluster and the possibly new forward and
2077 	 * back clusters.
2078 	 */
2079 	i = back + forw + 1;
2080 	if (i > fs->fs_contigsumsize)
2081 		i = fs->fs_contigsumsize;
2082 	sump[i] += cnt;
2083 	if (back > 0)
2084 		sump[back] -= cnt;
2085 	if (forw > 0)
2086 		sump[forw] -= cnt;
2087 	/*
2088 	 * Update cluster summary information.
2089 	 */
2090 	lp = &sump[fs->fs_contigsumsize];
2091 	for (i = fs->fs_contigsumsize; i > 0; i--)
2092 		if (*lp-- > 0)
2093 			break;
2094 	fs->fs_maxcluster[cgp->cg_cgx] = i;
2095 }
2096 
2097 /*
2098  * Fserr prints the name of a filesystem with an error diagnostic.
2099  *
2100  * The form of the error message is:
2101  *	fs: error message
2102  */
2103 static void
2104 ffs_fserr(fs, inum, cp)
2105 	struct fs *fs;
2106 	ino_t inum;
2107 	char *cp;
2108 {
2109 	struct proc *p = curproc;	/* XXX */
2110 
2111 	log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
2112 	    p ? p->p_pid : -1, p ? p->p_comm : "-",
2113 	    p ? p->p_ucred->cr_uid : 0, inum, fs->fs_fsmnt, cp);
2114 }
2115 
2116 /*
2117  * This function provides the capability for the fsck program to
2118  * update an active filesystem. Six operations are provided:
2119  *
2120  * adjrefcnt(inode, amt) - adjusts the reference count on the
2121  *	specified inode by the specified amount. Under normal
2122  *	operation the count should always go down. Decrementing
2123  *	the count to zero will cause the inode to be freed.
2124  * adjblkcnt(inode, amt) - adjust the number of blocks used to
2125  *	by the specifed amount.
2126  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2127  *	are marked as free. Inodes should never have to be marked
2128  *	as in use.
2129  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2130  *	are marked as free. Inodes should never have to be marked
2131  *	as in use.
2132  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2133  *	are marked as free. Blocks should never have to be marked
2134  *	as in use.
2135  * setflags(flags, set/clear) - the fs_flags field has the specified
2136  *	flags set (second parameter +1) or cleared (second parameter -1).
2137  */
2138 
2139 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2140 
2141 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2142 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2143 
2144 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2145 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2146 
2147 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2148 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2149 
2150 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2151 	sysctl_ffs_fsck, "Free Range of File Inodes");
2152 
2153 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2154 	sysctl_ffs_fsck, "Free Range of Blocks");
2155 
2156 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2157 	sysctl_ffs_fsck, "Change Filesystem Flags");
2158 
2159 #ifdef DEBUG
2160 static int fsckcmds = 0;
2161 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2162 #endif /* DEBUG */
2163 
2164 static int
2165 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2166 {
2167 	struct fsck_cmd cmd;
2168 	struct ufsmount *ump;
2169 	struct vnode *vp;
2170 	struct inode *ip;
2171 	struct mount *mp;
2172 	struct fs *fs;
2173 	ufs2_daddr_t blkno;
2174 	long blkcnt, blksize;
2175 	struct file *fp;
2176 	int filetype, error;
2177 
2178 	if (req->newlen > sizeof cmd)
2179 		return (EBADRPC);
2180 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2181 		return (error);
2182 	if (cmd.version != FFS_CMD_VERSION)
2183 		return (ERPCMISMATCH);
2184 	if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
2185 		return (error);
2186 	vn_start_write((struct vnode *)fp->f_data, &mp, V_WAIT);
2187 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2188 		vn_finished_write(mp);
2189 		fdrop(fp, curthread);
2190 		return (EINVAL);
2191 	}
2192 	if (mp->mnt_flag & MNT_RDONLY) {
2193 		vn_finished_write(mp);
2194 		fdrop(fp, curthread);
2195 		return (EROFS);
2196 	}
2197 	ump = VFSTOUFS(mp);
2198 	fs = ump->um_fs;
2199 	filetype = IFREG;
2200 
2201 	switch (oidp->oid_number) {
2202 
2203 	case FFS_SET_FLAGS:
2204 #ifdef DEBUG
2205 		if (fsckcmds)
2206 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2207 			    cmd.size > 0 ? "set" : "clear");
2208 #endif /* DEBUG */
2209 		if (cmd.size > 0)
2210 			fs->fs_flags |= (long)cmd.value;
2211 		else
2212 			fs->fs_flags &= ~(long)cmd.value;
2213 		break;
2214 
2215 	case FFS_ADJ_REFCNT:
2216 #ifdef DEBUG
2217 		if (fsckcmds) {
2218 			printf("%s: adjust inode %jd count by %jd\n",
2219 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2220 			    (intmax_t)cmd.size);
2221 		}
2222 #endif /* DEBUG */
2223 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2224 			break;
2225 		ip = VTOI(vp);
2226 		ip->i_nlink += cmd.size;
2227 		DIP(ip, i_nlink) = ip->i_nlink;
2228 		ip->i_effnlink += cmd.size;
2229 		ip->i_flag |= IN_CHANGE;
2230 		if (DOINGSOFTDEP(vp))
2231 			softdep_change_linkcnt(ip);
2232 		vput(vp);
2233 		break;
2234 
2235 	case FFS_ADJ_BLKCNT:
2236 #ifdef DEBUG
2237 		if (fsckcmds) {
2238 			printf("%s: adjust inode %jd block count by %jd\n",
2239 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2240 			    (intmax_t)cmd.size);
2241 		}
2242 #endif /* DEBUG */
2243 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2244 			break;
2245 		ip = VTOI(vp);
2246 		DIP(ip, i_blocks) += cmd.size;
2247 		ip->i_flag |= IN_CHANGE;
2248 		vput(vp);
2249 		break;
2250 
2251 	case FFS_DIR_FREE:
2252 		filetype = IFDIR;
2253 		/* fall through */
2254 
2255 	case FFS_FILE_FREE:
2256 #ifdef DEBUG
2257 		if (fsckcmds) {
2258 			if (cmd.size == 1)
2259 				printf("%s: free %s inode %d\n",
2260 				    mp->mnt_stat.f_mntonname,
2261 				    filetype == IFDIR ? "directory" : "file",
2262 				    (ino_t)cmd.value);
2263 			else
2264 				printf("%s: free %s inodes %d-%d\n",
2265 				    mp->mnt_stat.f_mntonname,
2266 				    filetype == IFDIR ? "directory" : "file",
2267 				    (ino_t)cmd.value,
2268 				    (ino_t)(cmd.value + cmd.size - 1));
2269 		}
2270 #endif /* DEBUG */
2271 		while (cmd.size > 0) {
2272 			if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value,
2273 			    filetype)))
2274 				break;
2275 			cmd.size -= 1;
2276 			cmd.value += 1;
2277 		}
2278 		break;
2279 
2280 	case FFS_BLK_FREE:
2281 #ifdef DEBUG
2282 		if (fsckcmds) {
2283 			if (cmd.size == 1)
2284 				printf("%s: free block %lld\n",
2285 				    mp->mnt_stat.f_mntonname,
2286 				    (intmax_t)cmd.value);
2287 			else
2288 				printf("%s: free blocks %lld-%lld\n",
2289 				    mp->mnt_stat.f_mntonname,
2290 				    (intmax_t)cmd.value,
2291 				    (intmax_t)cmd.value + cmd.size - 1);
2292 		}
2293 #endif /* DEBUG */
2294 		blkno = cmd.value;
2295 		blkcnt = cmd.size;
2296 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2297 		while (blkcnt > 0) {
2298 			if (blksize > blkcnt)
2299 				blksize = blkcnt;
2300 			ffs_blkfree(fs, ump->um_devvp, blkno,
2301 			    blksize * fs->fs_fsize, ROOTINO);
2302 			blkno += blksize;
2303 			blkcnt -= blksize;
2304 			blksize = fs->fs_frag;
2305 		}
2306 		break;
2307 
2308 	default:
2309 #ifdef DEBUG
2310 		if (fsckcmds) {
2311 			printf("Invalid request %d from fsck\n",
2312 			    oidp->oid_number);
2313 		}
2314 #endif /* DEBUG */
2315 		error = EINVAL;
2316 		break;
2317 
2318 	}
2319 	fdrop(fp, curthread);
2320 	vn_finished_write(mp);
2321 	return (error);
2322 }
2323