xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision b52f49a9a0f22207ad5130ad8faba08de3ed23d8)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Copyright (c) 1982, 1986, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_quota.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/conf.h>
55 #include <sys/file.h>
56 #include <sys/filedesc.h>
57 #include <sys/proc.h>
58 #include <sys/vnode.h>
59 #include <sys/mount.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62 #include <sys/syslog.h>
63 
64 #include <ufs/ufs/extattr.h>
65 #include <ufs/ufs/quota.h>
66 #include <ufs/ufs/inode.h>
67 #include <ufs/ufs/ufs_extern.h>
68 #include <ufs/ufs/ufsmount.h>
69 
70 #include <ufs/ffs/fs.h>
71 #include <ufs/ffs/ffs_extern.h>
72 
73 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
74 				  int size);
75 
76 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
77 static ufs2_daddr_t
78 	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
79 #ifdef DIAGNOSTIC
80 static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
81 #endif
82 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
83 static ino_t	ffs_dirpref(struct inode *);
84 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
85 static void	ffs_fserr(struct fs *, ino_t, char *);
86 static ufs2_daddr_t	ffs_hashalloc
87 		(struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
88 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
89 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
90 static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
91 static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
92 
93 /*
94  * Allocate a block in the filesystem.
95  *
96  * The size of the requested block is given, which must be some
97  * multiple of fs_fsize and <= fs_bsize.
98  * A preference may be optionally specified. If a preference is given
99  * the following hierarchy is used to allocate a block:
100  *   1) allocate the requested block.
101  *   2) allocate a rotationally optimal block in the same cylinder.
102  *   3) allocate a block in the same cylinder group.
103  *   4) quadradically rehash into other cylinder groups, until an
104  *      available block is located.
105  * If no block preference is given the following heirarchy is used
106  * to allocate a block:
107  *   1) allocate a block in the cylinder group that contains the
108  *      inode for the file.
109  *   2) quadradically rehash into other cylinder groups, until an
110  *      available block is located.
111  */
112 int
113 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
114 	struct inode *ip;
115 	ufs2_daddr_t lbn, bpref;
116 	int size;
117 	struct ucred *cred;
118 	ufs2_daddr_t *bnp;
119 {
120 	struct fs *fs;
121 	ufs2_daddr_t bno;
122 	int cg, reclaimed;
123 #ifdef QUOTA
124 	int error;
125 #endif
126 
127 	*bnp = 0;
128 	fs = ip->i_fs;
129 #ifdef DIAGNOSTIC
130 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
131 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
132 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
133 		    fs->fs_fsmnt);
134 		panic("ffs_alloc: bad size");
135 	}
136 	if (cred == NOCRED)
137 		panic("ffs_alloc: missing credential");
138 #endif /* DIAGNOSTIC */
139 	reclaimed = 0;
140 retry:
141 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
142 		goto nospace;
143 	if (suser_cred(cred, PRISON_ROOT) &&
144 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
145 		goto nospace;
146 #ifdef QUOTA
147 	error = chkdq(ip, btodb(size), cred, 0);
148 	if (error)
149 		return (error);
150 #endif
151 	if (bpref >= fs->fs_size)
152 		bpref = 0;
153 	if (bpref == 0)
154 		cg = ino_to_cg(fs, ip->i_number);
155 	else
156 		cg = dtog(fs, bpref);
157 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
158 	if (bno > 0) {
159 		DIP(ip, i_blocks) += btodb(size);
160 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
161 		*bnp = bno;
162 		return (0);
163 	}
164 #ifdef QUOTA
165 	/*
166 	 * Restore user's disk quota because allocation failed.
167 	 */
168 	(void) chkdq(ip, -btodb(size), cred, FORCE);
169 #endif
170 nospace:
171 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
172 		reclaimed = 1;
173 		softdep_request_cleanup(fs, ITOV(ip));
174 		goto retry;
175 	}
176 	ffs_fserr(fs, ip->i_number, "filesystem full");
177 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
178 	return (ENOSPC);
179 }
180 
181 /*
182  * Reallocate a fragment to a bigger size
183  *
184  * The number and size of the old block is given, and a preference
185  * and new size is also specified. The allocator attempts to extend
186  * the original block. Failing that, the regular block allocator is
187  * invoked to get an appropriate block.
188  */
189 int
190 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
191 	struct inode *ip;
192 	ufs2_daddr_t lbprev;
193 	ufs2_daddr_t bprev;
194 	ufs2_daddr_t bpref;
195 	int osize, nsize;
196 	struct ucred *cred;
197 	struct buf **bpp;
198 {
199 	struct vnode *vp;
200 	struct fs *fs;
201 	struct buf *bp;
202 	int cg, request, error, reclaimed;
203 	ufs2_daddr_t bno;
204 
205 	*bpp = 0;
206 	vp = ITOV(ip);
207 	fs = ip->i_fs;
208 #ifdef DIAGNOSTIC
209 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
210 		panic("ffs_realloccg: allocation on suspended filesystem");
211 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
212 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
213 		printf(
214 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
215 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
216 		    nsize, fs->fs_fsmnt);
217 		panic("ffs_realloccg: bad size");
218 	}
219 	if (cred == NOCRED)
220 		panic("ffs_realloccg: missing credential");
221 #endif /* DIAGNOSTIC */
222 	reclaimed = 0;
223 retry:
224 	if (suser_cred(cred, PRISON_ROOT) &&
225 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
226 		goto nospace;
227 	if (bprev == 0) {
228 		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
229 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
230 		    fs->fs_fsmnt);
231 		panic("ffs_realloccg: bad bprev");
232 	}
233 	/*
234 	 * Allocate the extra space in the buffer.
235 	 */
236 	error = bread(vp, lbprev, osize, NOCRED, &bp);
237 	if (error) {
238 		brelse(bp);
239 		return (error);
240 	}
241 
242 	if (bp->b_blkno == bp->b_lblkno) {
243 		if (lbprev >= NDADDR)
244 			panic("ffs_realloccg: lbprev out of range");
245 		bp->b_blkno = fsbtodb(fs, bprev);
246 	}
247 
248 #ifdef QUOTA
249 	error = chkdq(ip, btodb(nsize - osize), cred, 0);
250 	if (error) {
251 		brelse(bp);
252 		return (error);
253 	}
254 #endif
255 	/*
256 	 * Check for extension in the existing location.
257 	 */
258 	cg = dtog(fs, bprev);
259 	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
260 	if (bno) {
261 		if (bp->b_blkno != fsbtodb(fs, bno))
262 			panic("ffs_realloccg: bad blockno");
263 		DIP(ip, i_blocks) += btodb(nsize - osize);
264 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
265 		allocbuf(bp, nsize);
266 		bp->b_flags |= B_DONE;
267 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
268 		*bpp = bp;
269 		return (0);
270 	}
271 	/*
272 	 * Allocate a new disk location.
273 	 */
274 	if (bpref >= fs->fs_size)
275 		bpref = 0;
276 	switch ((int)fs->fs_optim) {
277 	case FS_OPTSPACE:
278 		/*
279 		 * Allocate an exact sized fragment. Although this makes
280 		 * best use of space, we will waste time relocating it if
281 		 * the file continues to grow. If the fragmentation is
282 		 * less than half of the minimum free reserve, we choose
283 		 * to begin optimizing for time.
284 		 */
285 		request = nsize;
286 		if (fs->fs_minfree <= 5 ||
287 		    fs->fs_cstotal.cs_nffree >
288 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
289 			break;
290 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
291 			fs->fs_fsmnt);
292 		fs->fs_optim = FS_OPTTIME;
293 		break;
294 	case FS_OPTTIME:
295 		/*
296 		 * At this point we have discovered a file that is trying to
297 		 * grow a small fragment to a larger fragment. To save time,
298 		 * we allocate a full sized block, then free the unused portion.
299 		 * If the file continues to grow, the `ffs_fragextend' call
300 		 * above will be able to grow it in place without further
301 		 * copying. If aberrant programs cause disk fragmentation to
302 		 * grow within 2% of the free reserve, we choose to begin
303 		 * optimizing for space.
304 		 */
305 		request = fs->fs_bsize;
306 		if (fs->fs_cstotal.cs_nffree <
307 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
308 			break;
309 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
310 			fs->fs_fsmnt);
311 		fs->fs_optim = FS_OPTSPACE;
312 		break;
313 	default:
314 		printf("dev = %s, optim = %ld, fs = %s\n",
315 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
316 		panic("ffs_realloccg: bad optim");
317 		/* NOTREACHED */
318 	}
319 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
320 	if (bno > 0) {
321 		bp->b_blkno = fsbtodb(fs, bno);
322 		if (!DOINGSOFTDEP(vp))
323 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
324 			    ip->i_number);
325 		if (nsize < request)
326 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
327 			    (long)(request - nsize), ip->i_number);
328 		DIP(ip, i_blocks) += btodb(nsize - osize);
329 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
330 		allocbuf(bp, nsize);
331 		bp->b_flags |= B_DONE;
332 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
333 		*bpp = bp;
334 		return (0);
335 	}
336 #ifdef QUOTA
337 	/*
338 	 * Restore user's disk quota because allocation failed.
339 	 */
340 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
341 #endif
342 	brelse(bp);
343 nospace:
344 	/*
345 	 * no space available
346 	 */
347 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
348 		reclaimed = 1;
349 		softdep_request_cleanup(fs, vp);
350 		goto retry;
351 	}
352 	ffs_fserr(fs, ip->i_number, "filesystem full");
353 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
354 	return (ENOSPC);
355 }
356 
357 /*
358  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
359  *
360  * The vnode and an array of buffer pointers for a range of sequential
361  * logical blocks to be made contiguous is given. The allocator attempts
362  * to find a range of sequential blocks starting as close as possible
363  * from the end of the allocation for the logical block immediately
364  * preceding the current range. If successful, the physical block numbers
365  * in the buffer pointers and in the inode are changed to reflect the new
366  * allocation. If unsuccessful, the allocation is left unchanged. The
367  * success in doing the reallocation is returned. Note that the error
368  * return is not reflected back to the user. Rather the previous block
369  * allocation will be used.
370  */
371 
372 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
373 
374 static int doasyncfree = 1;
375 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
376 
377 static int doreallocblks = 1;
378 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
379 
380 #ifdef DEBUG
381 static volatile int prtrealloc = 0;
382 #endif
383 
384 int
385 ffs_reallocblks(ap)
386 	struct vop_reallocblks_args /* {
387 		struct vnode *a_vp;
388 		struct cluster_save *a_buflist;
389 	} */ *ap;
390 {
391 
392 	if (doreallocblks == 0)
393 		return (ENOSPC);
394 	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
395 		return (ffs_reallocblks_ufs1(ap));
396 	return (ffs_reallocblks_ufs2(ap));
397 }
398 
399 static int
400 ffs_reallocblks_ufs1(ap)
401 	struct vop_reallocblks_args /* {
402 		struct vnode *a_vp;
403 		struct cluster_save *a_buflist;
404 	} */ *ap;
405 {
406 	struct fs *fs;
407 	struct inode *ip;
408 	struct vnode *vp;
409 	struct buf *sbp, *ebp;
410 	ufs1_daddr_t *bap, *sbap, *ebap = 0;
411 	struct cluster_save *buflist;
412 	ufs_lbn_t start_lbn, end_lbn;
413 	ufs1_daddr_t soff, newblk, blkno;
414 	ufs2_daddr_t pref;
415 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
416 	int i, len, start_lvl, end_lvl, ssize;
417 
418 	vp = ap->a_vp;
419 	ip = VTOI(vp);
420 	fs = ip->i_fs;
421 	if (fs->fs_contigsumsize <= 0)
422 		return (ENOSPC);
423 	buflist = ap->a_buflist;
424 	len = buflist->bs_nchildren;
425 	start_lbn = buflist->bs_children[0]->b_lblkno;
426 	end_lbn = start_lbn + len - 1;
427 #ifdef DIAGNOSTIC
428 	for (i = 0; i < len; i++)
429 		if (!ffs_checkblk(ip,
430 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
431 			panic("ffs_reallocblks: unallocated block 1");
432 	for (i = 1; i < len; i++)
433 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
434 			panic("ffs_reallocblks: non-logical cluster");
435 	blkno = buflist->bs_children[0]->b_blkno;
436 	ssize = fsbtodb(fs, fs->fs_frag);
437 	for (i = 1; i < len - 1; i++)
438 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
439 			panic("ffs_reallocblks: non-physical cluster %d", i);
440 #endif
441 	/*
442 	 * If the latest allocation is in a new cylinder group, assume that
443 	 * the filesystem has decided to move and do not force it back to
444 	 * the previous cylinder group.
445 	 */
446 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
447 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
448 		return (ENOSPC);
449 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
450 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
451 		return (ENOSPC);
452 	/*
453 	 * Get the starting offset and block map for the first block.
454 	 */
455 	if (start_lvl == 0) {
456 		sbap = &ip->i_din1->di_db[0];
457 		soff = start_lbn;
458 	} else {
459 		idp = &start_ap[start_lvl - 1];
460 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
461 			brelse(sbp);
462 			return (ENOSPC);
463 		}
464 		sbap = (ufs1_daddr_t *)sbp->b_data;
465 		soff = idp->in_off;
466 	}
467 	/*
468 	 * Find the preferred location for the cluster.
469 	 */
470 	pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
471 	/*
472 	 * If the block range spans two block maps, get the second map.
473 	 */
474 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
475 		ssize = len;
476 	} else {
477 #ifdef DIAGNOSTIC
478 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
479 			panic("ffs_reallocblk: start == end");
480 #endif
481 		ssize = len - (idp->in_off + 1);
482 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
483 			goto fail;
484 		ebap = (ufs1_daddr_t *)ebp->b_data;
485 	}
486 	/*
487 	 * Search the block map looking for an allocation of the desired size.
488 	 */
489 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
490 	    len, ffs_clusteralloc)) == 0)
491 		goto fail;
492 	/*
493 	 * We have found a new contiguous block.
494 	 *
495 	 * First we have to replace the old block pointers with the new
496 	 * block pointers in the inode and indirect blocks associated
497 	 * with the file.
498 	 */
499 #ifdef DEBUG
500 	if (prtrealloc)
501 		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
502 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
503 #endif
504 	blkno = newblk;
505 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
506 		if (i == ssize) {
507 			bap = ebap;
508 			soff = -i;
509 		}
510 #ifdef DIAGNOSTIC
511 		if (!ffs_checkblk(ip,
512 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
513 			panic("ffs_reallocblks: unallocated block 2");
514 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
515 			panic("ffs_reallocblks: alloc mismatch");
516 #endif
517 #ifdef DEBUG
518 		if (prtrealloc)
519 			printf(" %d,", *bap);
520 #endif
521 		if (DOINGSOFTDEP(vp)) {
522 			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
523 				softdep_setup_allocdirect(ip, start_lbn + i,
524 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
525 				    buflist->bs_children[i]);
526 			else
527 				softdep_setup_allocindir_page(ip, start_lbn + i,
528 				    i < ssize ? sbp : ebp, soff + i, blkno,
529 				    *bap, buflist->bs_children[i]);
530 		}
531 		*bap++ = blkno;
532 	}
533 	/*
534 	 * Next we must write out the modified inode and indirect blocks.
535 	 * For strict correctness, the writes should be synchronous since
536 	 * the old block values may have been written to disk. In practise
537 	 * they are almost never written, but if we are concerned about
538 	 * strict correctness, the `doasyncfree' flag should be set to zero.
539 	 *
540 	 * The test on `doasyncfree' should be changed to test a flag
541 	 * that shows whether the associated buffers and inodes have
542 	 * been written. The flag should be set when the cluster is
543 	 * started and cleared whenever the buffer or inode is flushed.
544 	 * We can then check below to see if it is set, and do the
545 	 * synchronous write only when it has been cleared.
546 	 */
547 	if (sbap != &ip->i_din1->di_db[0]) {
548 		if (doasyncfree)
549 			bdwrite(sbp);
550 		else
551 			bwrite(sbp);
552 	} else {
553 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
554 		if (!doasyncfree)
555 			UFS_UPDATE(vp, 1);
556 	}
557 	if (ssize < len) {
558 		if (doasyncfree)
559 			bdwrite(ebp);
560 		else
561 			bwrite(ebp);
562 	}
563 	/*
564 	 * Last, free the old blocks and assign the new blocks to the buffers.
565 	 */
566 #ifdef DEBUG
567 	if (prtrealloc)
568 		printf("\n\tnew:");
569 #endif
570 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
571 		if (!DOINGSOFTDEP(vp))
572 			ffs_blkfree(fs, ip->i_devvp,
573 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
574 			    fs->fs_bsize, ip->i_number);
575 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
576 #ifdef DIAGNOSTIC
577 		if (!ffs_checkblk(ip,
578 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
579 			panic("ffs_reallocblks: unallocated block 3");
580 #endif
581 #ifdef DEBUG
582 		if (prtrealloc)
583 			printf(" %d,", blkno);
584 #endif
585 	}
586 #ifdef DEBUG
587 	if (prtrealloc) {
588 		prtrealloc--;
589 		printf("\n");
590 	}
591 #endif
592 	return (0);
593 
594 fail:
595 	if (ssize < len)
596 		brelse(ebp);
597 	if (sbap != &ip->i_din1->di_db[0])
598 		brelse(sbp);
599 	return (ENOSPC);
600 }
601 
602 static int
603 ffs_reallocblks_ufs2(ap)
604 	struct vop_reallocblks_args /* {
605 		struct vnode *a_vp;
606 		struct cluster_save *a_buflist;
607 	} */ *ap;
608 {
609 	struct fs *fs;
610 	struct inode *ip;
611 	struct vnode *vp;
612 	struct buf *sbp, *ebp;
613 	ufs2_daddr_t *bap, *sbap, *ebap = 0;
614 	struct cluster_save *buflist;
615 	ufs_lbn_t start_lbn, end_lbn;
616 	ufs2_daddr_t soff, newblk, blkno, pref;
617 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
618 	int i, len, start_lvl, end_lvl, ssize;
619 
620 	vp = ap->a_vp;
621 	ip = VTOI(vp);
622 	fs = ip->i_fs;
623 	if (fs->fs_contigsumsize <= 0)
624 		return (ENOSPC);
625 	buflist = ap->a_buflist;
626 	len = buflist->bs_nchildren;
627 	start_lbn = buflist->bs_children[0]->b_lblkno;
628 	end_lbn = start_lbn + len - 1;
629 #ifdef DIAGNOSTIC
630 	for (i = 0; i < len; i++)
631 		if (!ffs_checkblk(ip,
632 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
633 			panic("ffs_reallocblks: unallocated block 1");
634 	for (i = 1; i < len; i++)
635 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
636 			panic("ffs_reallocblks: non-logical cluster");
637 	blkno = buflist->bs_children[0]->b_blkno;
638 	ssize = fsbtodb(fs, fs->fs_frag);
639 	for (i = 1; i < len - 1; i++)
640 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
641 			panic("ffs_reallocblks: non-physical cluster %d", i);
642 #endif
643 	/*
644 	 * If the latest allocation is in a new cylinder group, assume that
645 	 * the filesystem has decided to move and do not force it back to
646 	 * the previous cylinder group.
647 	 */
648 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
649 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
650 		return (ENOSPC);
651 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
652 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
653 		return (ENOSPC);
654 	/*
655 	 * Get the starting offset and block map for the first block.
656 	 */
657 	if (start_lvl == 0) {
658 		sbap = &ip->i_din2->di_db[0];
659 		soff = start_lbn;
660 	} else {
661 		idp = &start_ap[start_lvl - 1];
662 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
663 			brelse(sbp);
664 			return (ENOSPC);
665 		}
666 		sbap = (ufs2_daddr_t *)sbp->b_data;
667 		soff = idp->in_off;
668 	}
669 	/*
670 	 * Find the preferred location for the cluster.
671 	 */
672 	pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
673 	/*
674 	 * If the block range spans two block maps, get the second map.
675 	 */
676 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
677 		ssize = len;
678 	} else {
679 #ifdef DIAGNOSTIC
680 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
681 			panic("ffs_reallocblk: start == end");
682 #endif
683 		ssize = len - (idp->in_off + 1);
684 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
685 			goto fail;
686 		ebap = (ufs2_daddr_t *)ebp->b_data;
687 	}
688 	/*
689 	 * Search the block map looking for an allocation of the desired size.
690 	 */
691 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
692 	    len, ffs_clusteralloc)) == 0)
693 		goto fail;
694 	/*
695 	 * We have found a new contiguous block.
696 	 *
697 	 * First we have to replace the old block pointers with the new
698 	 * block pointers in the inode and indirect blocks associated
699 	 * with the file.
700 	 */
701 #ifdef DEBUG
702 	if (prtrealloc)
703 		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
704 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
705 #endif
706 	blkno = newblk;
707 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
708 		if (i == ssize) {
709 			bap = ebap;
710 			soff = -i;
711 		}
712 #ifdef DIAGNOSTIC
713 		if (!ffs_checkblk(ip,
714 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
715 			panic("ffs_reallocblks: unallocated block 2");
716 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
717 			panic("ffs_reallocblks: alloc mismatch");
718 #endif
719 #ifdef DEBUG
720 		if (prtrealloc)
721 			printf(" %jd,", (intmax_t)*bap);
722 #endif
723 		if (DOINGSOFTDEP(vp)) {
724 			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
725 				softdep_setup_allocdirect(ip, start_lbn + i,
726 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
727 				    buflist->bs_children[i]);
728 			else
729 				softdep_setup_allocindir_page(ip, start_lbn + i,
730 				    i < ssize ? sbp : ebp, soff + i, blkno,
731 				    *bap, buflist->bs_children[i]);
732 		}
733 		*bap++ = blkno;
734 	}
735 	/*
736 	 * Next we must write out the modified inode and indirect blocks.
737 	 * For strict correctness, the writes should be synchronous since
738 	 * the old block values may have been written to disk. In practise
739 	 * they are almost never written, but if we are concerned about
740 	 * strict correctness, the `doasyncfree' flag should be set to zero.
741 	 *
742 	 * The test on `doasyncfree' should be changed to test a flag
743 	 * that shows whether the associated buffers and inodes have
744 	 * been written. The flag should be set when the cluster is
745 	 * started and cleared whenever the buffer or inode is flushed.
746 	 * We can then check below to see if it is set, and do the
747 	 * synchronous write only when it has been cleared.
748 	 */
749 	if (sbap != &ip->i_din2->di_db[0]) {
750 		if (doasyncfree)
751 			bdwrite(sbp);
752 		else
753 			bwrite(sbp);
754 	} else {
755 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
756 		if (!doasyncfree)
757 			UFS_UPDATE(vp, 1);
758 	}
759 	if (ssize < len) {
760 		if (doasyncfree)
761 			bdwrite(ebp);
762 		else
763 			bwrite(ebp);
764 	}
765 	/*
766 	 * Last, free the old blocks and assign the new blocks to the buffers.
767 	 */
768 #ifdef DEBUG
769 	if (prtrealloc)
770 		printf("\n\tnew:");
771 #endif
772 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
773 		if (!DOINGSOFTDEP(vp))
774 			ffs_blkfree(fs, ip->i_devvp,
775 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
776 			    fs->fs_bsize, ip->i_number);
777 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
778 #ifdef DIAGNOSTIC
779 		if (!ffs_checkblk(ip,
780 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
781 			panic("ffs_reallocblks: unallocated block 3");
782 #endif
783 #ifdef DEBUG
784 		if (prtrealloc)
785 			printf(" %jd,", (intmax_t)blkno);
786 #endif
787 	}
788 #ifdef DEBUG
789 	if (prtrealloc) {
790 		prtrealloc--;
791 		printf("\n");
792 	}
793 #endif
794 	return (0);
795 
796 fail:
797 	if (ssize < len)
798 		brelse(ebp);
799 	if (sbap != &ip->i_din2->di_db[0])
800 		brelse(sbp);
801 	return (ENOSPC);
802 }
803 
804 /*
805  * Allocate an inode in the filesystem.
806  *
807  * If allocating a directory, use ffs_dirpref to select the inode.
808  * If allocating in a directory, the following hierarchy is followed:
809  *   1) allocate the preferred inode.
810  *   2) allocate an inode in the same cylinder group.
811  *   3) quadradically rehash into other cylinder groups, until an
812  *      available inode is located.
813  * If no inode preference is given the following heirarchy is used
814  * to allocate an inode:
815  *   1) allocate an inode in cylinder group 0.
816  *   2) quadradically rehash into other cylinder groups, until an
817  *      available inode is located.
818  */
819 int
820 ffs_valloc(pvp, mode, cred, vpp)
821 	struct vnode *pvp;
822 	int mode;
823 	struct ucred *cred;
824 	struct vnode **vpp;
825 {
826 	struct inode *pip;
827 	struct fs *fs;
828 	struct inode *ip;
829 	struct timespec ts;
830 	ino_t ino, ipref;
831 	int cg, error;
832 
833 	*vpp = NULL;
834 	pip = VTOI(pvp);
835 	fs = pip->i_fs;
836 	if (fs->fs_cstotal.cs_nifree == 0)
837 		goto noinodes;
838 
839 	if ((mode & IFMT) == IFDIR)
840 		ipref = ffs_dirpref(pip);
841 	else
842 		ipref = pip->i_number;
843 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
844 		ipref = 0;
845 	cg = ino_to_cg(fs, ipref);
846 	/*
847 	 * Track number of dirs created one after another
848 	 * in a same cg without intervening by files.
849 	 */
850 	if ((mode & IFMT) == IFDIR) {
851 		if (fs->fs_contigdirs[cg] < 255)
852 			fs->fs_contigdirs[cg]++;
853 	} else {
854 		if (fs->fs_contigdirs[cg] > 0)
855 			fs->fs_contigdirs[cg]--;
856 	}
857 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
858 					(allocfcn_t *)ffs_nodealloccg);
859 	if (ino == 0)
860 		goto noinodes;
861 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
862 	if (error) {
863 		UFS_VFREE(pvp, ino, mode);
864 		return (error);
865 	}
866 	ip = VTOI(*vpp);
867 	if (ip->i_mode) {
868 		printf("mode = 0%o, inum = %lu, fs = %s\n",
869 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
870 		panic("ffs_valloc: dup alloc");
871 	}
872 	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
873 		printf("free inode %s/%lu had %ld blocks\n",
874 		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
875 		DIP(ip, i_blocks) = 0;
876 	}
877 	ip->i_flags = 0;
878 	DIP(ip, i_flags) = 0;
879 	/*
880 	 * Set up a new generation number for this inode.
881 	 */
882 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
883 		ip->i_gen = arc4random() / 2 + 1;
884 	DIP(ip, i_gen) = ip->i_gen;
885 	if (fs->fs_magic == FS_UFS2_MAGIC) {
886 		vfs_timestamp(&ts);
887 		ip->i_din2->di_birthtime = ts.tv_sec;
888 		ip->i_din2->di_birthnsec = ts.tv_nsec;
889 	}
890 	return (0);
891 noinodes:
892 	ffs_fserr(fs, pip->i_number, "out of inodes");
893 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
894 	return (ENOSPC);
895 }
896 
897 /*
898  * Find a cylinder group to place a directory.
899  *
900  * The policy implemented by this algorithm is to allocate a
901  * directory inode in the same cylinder group as its parent
902  * directory, but also to reserve space for its files inodes
903  * and data. Restrict the number of directories which may be
904  * allocated one after another in the same cylinder group
905  * without intervening allocation of files.
906  *
907  * If we allocate a first level directory then force allocation
908  * in another cylinder group.
909  */
910 static ino_t
911 ffs_dirpref(pip)
912 	struct inode *pip;
913 {
914 	struct fs *fs;
915 	int cg, prefcg, dirsize, cgsize;
916 	int avgifree, avgbfree, avgndir, curdirsize;
917 	int minifree, minbfree, maxndir;
918 	int mincg, minndir;
919 	int maxcontigdirs;
920 
921 	fs = pip->i_fs;
922 
923 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
924 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
925 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
926 
927 	/*
928 	 * Force allocation in another cg if creating a first level dir.
929 	 */
930 	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
931 	if (ITOV(pip)->v_vflag & VV_ROOT) {
932 		prefcg = arc4random() % fs->fs_ncg;
933 		mincg = prefcg;
934 		minndir = fs->fs_ipg;
935 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
936 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
937 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
938 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
939 				mincg = cg;
940 				minndir = fs->fs_cs(fs, cg).cs_ndir;
941 			}
942 		for (cg = 0; cg < prefcg; cg++)
943 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
944 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
945 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
946 				mincg = cg;
947 				minndir = fs->fs_cs(fs, cg).cs_ndir;
948 			}
949 		return ((ino_t)(fs->fs_ipg * mincg));
950 	}
951 
952 	/*
953 	 * Count various limits which used for
954 	 * optimal allocation of a directory inode.
955 	 */
956 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
957 	minifree = avgifree - fs->fs_ipg / 4;
958 	if (minifree < 0)
959 		minifree = 0;
960 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
961 	if (minbfree < 0)
962 		minbfree = 0;
963 	cgsize = fs->fs_fsize * fs->fs_fpg;
964 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
965 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
966 	if (dirsize < curdirsize)
967 		dirsize = curdirsize;
968 	maxcontigdirs = min(cgsize / dirsize, 255);
969 	if (fs->fs_avgfpdir > 0)
970 		maxcontigdirs = min(maxcontigdirs,
971 				    fs->fs_ipg / fs->fs_avgfpdir);
972 	if (maxcontigdirs == 0)
973 		maxcontigdirs = 1;
974 
975 	/*
976 	 * Limit number of dirs in one cg and reserve space for
977 	 * regular files, but only if we have no deficit in
978 	 * inodes or space.
979 	 */
980 	prefcg = ino_to_cg(fs, pip->i_number);
981 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
982 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
983 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
984 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
985 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
986 				return ((ino_t)(fs->fs_ipg * cg));
987 		}
988 	for (cg = 0; cg < prefcg; cg++)
989 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
990 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
991 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
992 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
993 				return ((ino_t)(fs->fs_ipg * cg));
994 		}
995 	/*
996 	 * This is a backstop when we have deficit in space.
997 	 */
998 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
999 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1000 			return ((ino_t)(fs->fs_ipg * cg));
1001 	for (cg = 0; cg < prefcg; cg++)
1002 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1003 			break;
1004 	return ((ino_t)(fs->fs_ipg * cg));
1005 }
1006 
1007 /*
1008  * Select the desired position for the next block in a file.  The file is
1009  * logically divided into sections. The first section is composed of the
1010  * direct blocks. Each additional section contains fs_maxbpg blocks.
1011  *
1012  * If no blocks have been allocated in the first section, the policy is to
1013  * request a block in the same cylinder group as the inode that describes
1014  * the file. If no blocks have been allocated in any other section, the
1015  * policy is to place the section in a cylinder group with a greater than
1016  * average number of free blocks.  An appropriate cylinder group is found
1017  * by using a rotor that sweeps the cylinder groups. When a new group of
1018  * blocks is needed, the sweep begins in the cylinder group following the
1019  * cylinder group from which the previous allocation was made. The sweep
1020  * continues until a cylinder group with greater than the average number
1021  * of free blocks is found. If the allocation is for the first block in an
1022  * indirect block, the information on the previous allocation is unavailable;
1023  * here a best guess is made based upon the logical block number being
1024  * allocated.
1025  *
1026  * If a section is already partially allocated, the policy is to
1027  * contiguously allocate fs_maxcontig blocks. The end of one of these
1028  * contiguous blocks and the beginning of the next is laid out
1029  * contiguously if possible.
1030  */
1031 ufs2_daddr_t
1032 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1033 	struct inode *ip;
1034 	ufs_lbn_t lbn;
1035 	int indx;
1036 	ufs1_daddr_t *bap;
1037 {
1038 	struct fs *fs;
1039 	int cg;
1040 	int avgbfree, startcg;
1041 
1042 	fs = ip->i_fs;
1043 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1044 		if (lbn < NDADDR + NINDIR(fs)) {
1045 			cg = ino_to_cg(fs, ip->i_number);
1046 			return (fs->fs_fpg * cg + fs->fs_frag);
1047 		}
1048 		/*
1049 		 * Find a cylinder with greater than average number of
1050 		 * unused data blocks.
1051 		 */
1052 		if (indx == 0 || bap[indx - 1] == 0)
1053 			startcg =
1054 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1055 		else
1056 			startcg = dtog(fs, bap[indx - 1]) + 1;
1057 		startcg %= fs->fs_ncg;
1058 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1059 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1060 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1061 				fs->fs_cgrotor = cg;
1062 				return (fs->fs_fpg * cg + fs->fs_frag);
1063 			}
1064 		for (cg = 0; cg <= startcg; cg++)
1065 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1066 				fs->fs_cgrotor = cg;
1067 				return (fs->fs_fpg * cg + fs->fs_frag);
1068 			}
1069 		return (0);
1070 	}
1071 	/*
1072 	 * We just always try to lay things out contiguously.
1073 	 */
1074 	return (bap[indx - 1] + fs->fs_frag);
1075 }
1076 
1077 /*
1078  * Same as above, but for UFS2
1079  */
1080 ufs2_daddr_t
1081 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1082 	struct inode *ip;
1083 	ufs_lbn_t lbn;
1084 	int indx;
1085 	ufs2_daddr_t *bap;
1086 {
1087 	struct fs *fs;
1088 	int cg;
1089 	int avgbfree, startcg;
1090 
1091 	fs = ip->i_fs;
1092 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1093 		if (lbn < NDADDR + NINDIR(fs)) {
1094 			cg = ino_to_cg(fs, ip->i_number);
1095 			return (fs->fs_fpg * cg + fs->fs_frag);
1096 		}
1097 		/*
1098 		 * Find a cylinder with greater than average number of
1099 		 * unused data blocks.
1100 		 */
1101 		if (indx == 0 || bap[indx - 1] == 0)
1102 			startcg =
1103 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1104 		else
1105 			startcg = dtog(fs, bap[indx - 1]) + 1;
1106 		startcg %= fs->fs_ncg;
1107 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1108 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1109 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1110 				fs->fs_cgrotor = cg;
1111 				return (fs->fs_fpg * cg + fs->fs_frag);
1112 			}
1113 		for (cg = 0; cg <= startcg; cg++)
1114 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1115 				fs->fs_cgrotor = cg;
1116 				return (fs->fs_fpg * cg + fs->fs_frag);
1117 			}
1118 		return (0);
1119 	}
1120 	/*
1121 	 * We just always try to lay things out contiguously.
1122 	 */
1123 	return (bap[indx - 1] + fs->fs_frag);
1124 }
1125 
1126 /*
1127  * Implement the cylinder overflow algorithm.
1128  *
1129  * The policy implemented by this algorithm is:
1130  *   1) allocate the block in its requested cylinder group.
1131  *   2) quadradically rehash on the cylinder group number.
1132  *   3) brute force search for a free block.
1133  */
1134 /*VARARGS5*/
1135 static ufs2_daddr_t
1136 ffs_hashalloc(ip, cg, pref, size, allocator)
1137 	struct inode *ip;
1138 	int cg;
1139 	ufs2_daddr_t pref;
1140 	int size;	/* size for data blocks, mode for inodes */
1141 	allocfcn_t *allocator;
1142 {
1143 	struct fs *fs;
1144 	ufs2_daddr_t result;
1145 	int i, icg = cg;
1146 
1147 #ifdef DIAGNOSTIC
1148 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1149 		panic("ffs_hashalloc: allocation on suspended filesystem");
1150 #endif
1151 	fs = ip->i_fs;
1152 	/*
1153 	 * 1: preferred cylinder group
1154 	 */
1155 	result = (*allocator)(ip, cg, pref, size);
1156 	if (result)
1157 		return (result);
1158 	/*
1159 	 * 2: quadratic rehash
1160 	 */
1161 	for (i = 1; i < fs->fs_ncg; i *= 2) {
1162 		cg += i;
1163 		if (cg >= fs->fs_ncg)
1164 			cg -= fs->fs_ncg;
1165 		result = (*allocator)(ip, cg, 0, size);
1166 		if (result)
1167 			return (result);
1168 	}
1169 	/*
1170 	 * 3: brute force search
1171 	 * Note that we start at i == 2, since 0 was checked initially,
1172 	 * and 1 is always checked in the quadratic rehash.
1173 	 */
1174 	cg = (icg + 2) % fs->fs_ncg;
1175 	for (i = 2; i < fs->fs_ncg; i++) {
1176 		result = (*allocator)(ip, cg, 0, size);
1177 		if (result)
1178 			return (result);
1179 		cg++;
1180 		if (cg == fs->fs_ncg)
1181 			cg = 0;
1182 	}
1183 	return (0);
1184 }
1185 
1186 /*
1187  * Determine whether a fragment can be extended.
1188  *
1189  * Check to see if the necessary fragments are available, and
1190  * if they are, allocate them.
1191  */
1192 static ufs2_daddr_t
1193 ffs_fragextend(ip, cg, bprev, osize, nsize)
1194 	struct inode *ip;
1195 	int cg;
1196 	ufs2_daddr_t bprev;
1197 	int osize, nsize;
1198 {
1199 	struct fs *fs;
1200 	struct cg *cgp;
1201 	struct buf *bp;
1202 	long bno;
1203 	int frags, bbase;
1204 	int i, error;
1205 	u_int8_t *blksfree;
1206 
1207 	fs = ip->i_fs;
1208 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1209 		return (0);
1210 	frags = numfrags(fs, nsize);
1211 	bbase = fragnum(fs, bprev);
1212 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1213 		/* cannot extend across a block boundary */
1214 		return (0);
1215 	}
1216 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1217 		(int)fs->fs_cgsize, NOCRED, &bp);
1218 	if (error) {
1219 		brelse(bp);
1220 		return (0);
1221 	}
1222 	cgp = (struct cg *)bp->b_data;
1223 	if (!cg_chkmagic(cgp)) {
1224 		brelse(bp);
1225 		return (0);
1226 	}
1227 	bp->b_xflags |= BX_BKGRDWRITE;
1228 	cgp->cg_old_time = cgp->cg_time = time_second;
1229 	bno = dtogd(fs, bprev);
1230 	blksfree = cg_blksfree(cgp);
1231 	for (i = numfrags(fs, osize); i < frags; i++)
1232 		if (isclr(blksfree, bno + i)) {
1233 			brelse(bp);
1234 			return (0);
1235 		}
1236 	/*
1237 	 * the current fragment can be extended
1238 	 * deduct the count on fragment being extended into
1239 	 * increase the count on the remaining fragment (if any)
1240 	 * allocate the extended piece
1241 	 */
1242 	for (i = frags; i < fs->fs_frag - bbase; i++)
1243 		if (isclr(blksfree, bno + i))
1244 			break;
1245 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1246 	if (i != frags)
1247 		cgp->cg_frsum[i - frags]++;
1248 	for (i = numfrags(fs, osize); i < frags; i++) {
1249 		clrbit(blksfree, bno + i);
1250 		cgp->cg_cs.cs_nffree--;
1251 		fs->fs_cstotal.cs_nffree--;
1252 		fs->fs_cs(fs, cg).cs_nffree--;
1253 	}
1254 	fs->fs_fmod = 1;
1255 	if (DOINGSOFTDEP(ITOV(ip)))
1256 		softdep_setup_blkmapdep(bp, fs, bprev);
1257 	if (fs->fs_active != 0)
1258 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1259 	bdwrite(bp);
1260 	return (bprev);
1261 }
1262 
1263 /*
1264  * Determine whether a block can be allocated.
1265  *
1266  * Check to see if a block of the appropriate size is available,
1267  * and if it is, allocate it.
1268  */
1269 static ufs2_daddr_t
1270 ffs_alloccg(ip, cg, bpref, size)
1271 	struct inode *ip;
1272 	int cg;
1273 	ufs2_daddr_t bpref;
1274 	int size;
1275 {
1276 	struct fs *fs;
1277 	struct cg *cgp;
1278 	struct buf *bp;
1279 	ufs1_daddr_t bno;
1280 	ufs2_daddr_t blkno;
1281 	int i, allocsiz, error, frags;
1282 	u_int8_t *blksfree;
1283 
1284 	fs = ip->i_fs;
1285 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1286 		return (0);
1287 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1288 		(int)fs->fs_cgsize, NOCRED, &bp);
1289 	if (error) {
1290 		brelse(bp);
1291 		return (0);
1292 	}
1293 	cgp = (struct cg *)bp->b_data;
1294 	if (!cg_chkmagic(cgp) ||
1295 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1296 		brelse(bp);
1297 		return (0);
1298 	}
1299 	bp->b_xflags |= BX_BKGRDWRITE;
1300 	cgp->cg_old_time = cgp->cg_time = time_second;
1301 	if (size == fs->fs_bsize) {
1302 		blkno = ffs_alloccgblk(ip, bp, bpref);
1303 		if (fs->fs_active != 0)
1304 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1305 		bdwrite(bp);
1306 		return (blkno);
1307 	}
1308 	/*
1309 	 * check to see if any fragments are already available
1310 	 * allocsiz is the size which will be allocated, hacking
1311 	 * it down to a smaller size if necessary
1312 	 */
1313 	blksfree = cg_blksfree(cgp);
1314 	frags = numfrags(fs, size);
1315 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1316 		if (cgp->cg_frsum[allocsiz] != 0)
1317 			break;
1318 	if (allocsiz == fs->fs_frag) {
1319 		/*
1320 		 * no fragments were available, so a block will be
1321 		 * allocated, and hacked up
1322 		 */
1323 		if (cgp->cg_cs.cs_nbfree == 0) {
1324 			brelse(bp);
1325 			return (0);
1326 		}
1327 		blkno = ffs_alloccgblk(ip, bp, bpref);
1328 		bno = dtogd(fs, blkno);
1329 		for (i = frags; i < fs->fs_frag; i++)
1330 			setbit(blksfree, bno + i);
1331 		i = fs->fs_frag - frags;
1332 		cgp->cg_cs.cs_nffree += i;
1333 		fs->fs_cstotal.cs_nffree += i;
1334 		fs->fs_cs(fs, cg).cs_nffree += i;
1335 		fs->fs_fmod = 1;
1336 		cgp->cg_frsum[i]++;
1337 		if (fs->fs_active != 0)
1338 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1339 		bdwrite(bp);
1340 		return (blkno);
1341 	}
1342 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1343 	if (bno < 0) {
1344 		brelse(bp);
1345 		return (0);
1346 	}
1347 	for (i = 0; i < frags; i++)
1348 		clrbit(blksfree, bno + i);
1349 	cgp->cg_cs.cs_nffree -= frags;
1350 	fs->fs_cstotal.cs_nffree -= frags;
1351 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1352 	fs->fs_fmod = 1;
1353 	cgp->cg_frsum[allocsiz]--;
1354 	if (frags != allocsiz)
1355 		cgp->cg_frsum[allocsiz - frags]++;
1356 	blkno = cg * fs->fs_fpg + bno;
1357 	if (DOINGSOFTDEP(ITOV(ip)))
1358 		softdep_setup_blkmapdep(bp, fs, blkno);
1359 	if (fs->fs_active != 0)
1360 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1361 	bdwrite(bp);
1362 	return (blkno);
1363 }
1364 
1365 /*
1366  * Allocate a block in a cylinder group.
1367  *
1368  * This algorithm implements the following policy:
1369  *   1) allocate the requested block.
1370  *   2) allocate a rotationally optimal block in the same cylinder.
1371  *   3) allocate the next available block on the block rotor for the
1372  *      specified cylinder group.
1373  * Note that this routine only allocates fs_bsize blocks; these
1374  * blocks may be fragmented by the routine that allocates them.
1375  */
1376 static ufs2_daddr_t
1377 ffs_alloccgblk(ip, bp, bpref)
1378 	struct inode *ip;
1379 	struct buf *bp;
1380 	ufs2_daddr_t bpref;
1381 {
1382 	struct fs *fs;
1383 	struct cg *cgp;
1384 	ufs1_daddr_t bno;
1385 	ufs2_daddr_t blkno;
1386 	u_int8_t *blksfree;
1387 
1388 	fs = ip->i_fs;
1389 	cgp = (struct cg *)bp->b_data;
1390 	blksfree = cg_blksfree(cgp);
1391 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1392 		bpref = cgp->cg_rotor;
1393 	} else {
1394 		bpref = blknum(fs, bpref);
1395 		bno = dtogd(fs, bpref);
1396 		/*
1397 		 * if the requested block is available, use it
1398 		 */
1399 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1400 			goto gotit;
1401 	}
1402 	/*
1403 	 * Take the next available block in this cylinder group.
1404 	 */
1405 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1406 	if (bno < 0)
1407 		return (0);
1408 	cgp->cg_rotor = bno;
1409 gotit:
1410 	blkno = fragstoblks(fs, bno);
1411 	ffs_clrblock(fs, blksfree, (long)blkno);
1412 	ffs_clusteracct(fs, cgp, blkno, -1);
1413 	cgp->cg_cs.cs_nbfree--;
1414 	fs->fs_cstotal.cs_nbfree--;
1415 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1416 	fs->fs_fmod = 1;
1417 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1418 	if (DOINGSOFTDEP(ITOV(ip)))
1419 		softdep_setup_blkmapdep(bp, fs, blkno);
1420 	return (blkno);
1421 }
1422 
1423 /*
1424  * Determine whether a cluster can be allocated.
1425  *
1426  * We do not currently check for optimal rotational layout if there
1427  * are multiple choices in the same cylinder group. Instead we just
1428  * take the first one that we find following bpref.
1429  */
1430 static ufs2_daddr_t
1431 ffs_clusteralloc(ip, cg, bpref, len)
1432 	struct inode *ip;
1433 	int cg;
1434 	ufs2_daddr_t bpref;
1435 	int len;
1436 {
1437 	struct fs *fs;
1438 	struct cg *cgp;
1439 	struct buf *bp;
1440 	int i, run, bit, map, got;
1441 	ufs2_daddr_t bno;
1442 	u_char *mapp;
1443 	int32_t *lp;
1444 	u_int8_t *blksfree;
1445 
1446 	fs = ip->i_fs;
1447 	if (fs->fs_maxcluster[cg] < len)
1448 		return (0);
1449 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1450 	    NOCRED, &bp))
1451 		goto fail;
1452 	cgp = (struct cg *)bp->b_data;
1453 	if (!cg_chkmagic(cgp))
1454 		goto fail;
1455 	bp->b_xflags |= BX_BKGRDWRITE;
1456 	/*
1457 	 * Check to see if a cluster of the needed size (or bigger) is
1458 	 * available in this cylinder group.
1459 	 */
1460 	lp = &cg_clustersum(cgp)[len];
1461 	for (i = len; i <= fs->fs_contigsumsize; i++)
1462 		if (*lp++ > 0)
1463 			break;
1464 	if (i > fs->fs_contigsumsize) {
1465 		/*
1466 		 * This is the first time looking for a cluster in this
1467 		 * cylinder group. Update the cluster summary information
1468 		 * to reflect the true maximum sized cluster so that
1469 		 * future cluster allocation requests can avoid reading
1470 		 * the cylinder group map only to find no clusters.
1471 		 */
1472 		lp = &cg_clustersum(cgp)[len - 1];
1473 		for (i = len - 1; i > 0; i--)
1474 			if (*lp-- > 0)
1475 				break;
1476 		fs->fs_maxcluster[cg] = i;
1477 		goto fail;
1478 	}
1479 	/*
1480 	 * Search the cluster map to find a big enough cluster.
1481 	 * We take the first one that we find, even if it is larger
1482 	 * than we need as we prefer to get one close to the previous
1483 	 * block allocation. We do not search before the current
1484 	 * preference point as we do not want to allocate a block
1485 	 * that is allocated before the previous one (as we will
1486 	 * then have to wait for another pass of the elevator
1487 	 * algorithm before it will be read). We prefer to fail and
1488 	 * be recalled to try an allocation in the next cylinder group.
1489 	 */
1490 	if (dtog(fs, bpref) != cg)
1491 		bpref = 0;
1492 	else
1493 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1494 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1495 	map = *mapp++;
1496 	bit = 1 << (bpref % NBBY);
1497 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1498 		if ((map & bit) == 0) {
1499 			run = 0;
1500 		} else {
1501 			run++;
1502 			if (run == len)
1503 				break;
1504 		}
1505 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1506 			bit <<= 1;
1507 		} else {
1508 			map = *mapp++;
1509 			bit = 1;
1510 		}
1511 	}
1512 	if (got >= cgp->cg_nclusterblks)
1513 		goto fail;
1514 	/*
1515 	 * Allocate the cluster that we have found.
1516 	 */
1517 	blksfree = cg_blksfree(cgp);
1518 	for (i = 1; i <= len; i++)
1519 		if (!ffs_isblock(fs, blksfree, got - run + i))
1520 			panic("ffs_clusteralloc: map mismatch");
1521 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1522 	if (dtog(fs, bno) != cg)
1523 		panic("ffs_clusteralloc: allocated out of group");
1524 	len = blkstofrags(fs, len);
1525 	for (i = 0; i < len; i += fs->fs_frag)
1526 		if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
1527 			panic("ffs_clusteralloc: lost block");
1528 	if (fs->fs_active != 0)
1529 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1530 	bdwrite(bp);
1531 	return (bno);
1532 
1533 fail:
1534 	brelse(bp);
1535 	return (0);
1536 }
1537 
1538 /*
1539  * Determine whether an inode can be allocated.
1540  *
1541  * Check to see if an inode is available, and if it is,
1542  * allocate it using the following policy:
1543  *   1) allocate the requested inode.
1544  *   2) allocate the next available inode after the requested
1545  *      inode in the specified cylinder group.
1546  */
1547 static ufs2_daddr_t
1548 ffs_nodealloccg(ip, cg, ipref, mode)
1549 	struct inode *ip;
1550 	int cg;
1551 	ufs2_daddr_t ipref;
1552 	int mode;
1553 {
1554 	struct fs *fs;
1555 	struct cg *cgp;
1556 	struct buf *bp, *ibp;
1557 	u_int8_t *inosused;
1558 	struct ufs2_dinode *dp2;
1559 	int error, start, len, loc, map, i;
1560 
1561 	fs = ip->i_fs;
1562 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1563 		return (0);
1564 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1565 		(int)fs->fs_cgsize, NOCRED, &bp);
1566 	if (error) {
1567 		brelse(bp);
1568 		return (0);
1569 	}
1570 	cgp = (struct cg *)bp->b_data;
1571 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1572 		brelse(bp);
1573 		return (0);
1574 	}
1575 	bp->b_xflags |= BX_BKGRDWRITE;
1576 	cgp->cg_old_time = cgp->cg_time = time_second;
1577 	inosused = cg_inosused(cgp);
1578 	if (ipref) {
1579 		ipref %= fs->fs_ipg;
1580 		if (isclr(inosused, ipref))
1581 			goto gotit;
1582 	}
1583 	start = cgp->cg_irotor / NBBY;
1584 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1585 	loc = skpc(0xff, len, &inosused[start]);
1586 	if (loc == 0) {
1587 		len = start + 1;
1588 		start = 0;
1589 		loc = skpc(0xff, len, &inosused[0]);
1590 		if (loc == 0) {
1591 			printf("cg = %d, irotor = %ld, fs = %s\n",
1592 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1593 			panic("ffs_nodealloccg: map corrupted");
1594 			/* NOTREACHED */
1595 		}
1596 	}
1597 	i = start + len - loc;
1598 	map = inosused[i];
1599 	ipref = i * NBBY;
1600 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1601 		if ((map & i) == 0) {
1602 			cgp->cg_irotor = ipref;
1603 			goto gotit;
1604 		}
1605 	}
1606 	printf("fs = %s\n", fs->fs_fsmnt);
1607 	panic("ffs_nodealloccg: block not in map");
1608 	/* NOTREACHED */
1609 gotit:
1610 	if (DOINGSOFTDEP(ITOV(ip)))
1611 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1612 	setbit(inosused, ipref);
1613 	cgp->cg_cs.cs_nifree--;
1614 	fs->fs_cstotal.cs_nifree--;
1615 	fs->fs_cs(fs, cg).cs_nifree--;
1616 	fs->fs_fmod = 1;
1617 	if ((mode & IFMT) == IFDIR) {
1618 		cgp->cg_cs.cs_ndir++;
1619 		fs->fs_cstotal.cs_ndir++;
1620 		fs->fs_cs(fs, cg).cs_ndir++;
1621 	}
1622 	/*
1623 	 * Check to see if we need to initialize more inodes.
1624 	 */
1625 	if (fs->fs_magic == FS_UFS2_MAGIC &&
1626 	    ipref + INOPB(fs) > cgp->cg_initediblk &&
1627 	    cgp->cg_initediblk < cgp->cg_niblk) {
1628 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
1629 		    ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
1630 		    (int)fs->fs_bsize, 0, 0, 0);
1631 		bzero(ibp->b_data, (int)fs->fs_bsize);
1632 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
1633 		for (i = 0; i < INOPB(fs); i++) {
1634 			dp2->di_gen = arc4random() / 2 + 1;
1635 			dp2++;
1636 		}
1637 		bawrite(ibp);
1638 		cgp->cg_initediblk += INOPB(fs);
1639 	}
1640 	if (fs->fs_active != 0)
1641 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1642 	bdwrite(bp);
1643 	return (cg * fs->fs_ipg + ipref);
1644 }
1645 
1646 /*
1647  * check if a block is free
1648  */
1649 static int
1650 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
1651 {
1652 
1653 	switch ((int)fs->fs_frag) {
1654 	case 8:
1655 		return (cp[h] == 0);
1656 	case 4:
1657 		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
1658 	case 2:
1659 		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
1660 	case 1:
1661 		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
1662 	default:
1663 		panic("ffs_isfreeblock");
1664 	}
1665 	return (0);
1666 }
1667 
1668 /*
1669  * Free a block or fragment.
1670  *
1671  * The specified block or fragment is placed back in the
1672  * free map. If a fragment is deallocated, a possible
1673  * block reassembly is checked.
1674  */
1675 void
1676 ffs_blkfree(fs, devvp, bno, size, inum)
1677 	struct fs *fs;
1678 	struct vnode *devvp;
1679 	ufs2_daddr_t bno;
1680 	long size;
1681 	ino_t inum;
1682 {
1683 	struct cg *cgp;
1684 	struct buf *bp;
1685 	ufs1_daddr_t fragno, cgbno;
1686 	ufs2_daddr_t cgblkno;
1687 	int i, cg, blk, frags, bbase;
1688 	u_int8_t *blksfree;
1689 	dev_t dev;
1690 
1691 	cg = dtog(fs, bno);
1692 	if (devvp->v_type != VCHR) {
1693 		/* devvp is a snapshot */
1694 		dev = VTOI(devvp)->i_devvp->v_rdev;
1695 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
1696 	} else {
1697 		/* devvp is a normal disk device */
1698 		dev = devvp->v_rdev;
1699 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
1700 		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree");
1701 		if ((devvp->v_vflag & VV_COPYONWRITE) &&
1702 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
1703 			return;
1704 		VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size);
1705 	}
1706 #ifdef DIAGNOSTIC
1707 	if (dev->si_mountpoint &&
1708 	    (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED))
1709 		panic("ffs_blkfree: deallocation on suspended filesystem");
1710 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1711 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1712 		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
1713 		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
1714 		    size, fs->fs_fsmnt);
1715 		panic("ffs_blkfree: bad size");
1716 	}
1717 #endif
1718 	if ((u_int)bno >= fs->fs_size) {
1719 		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
1720 		    (u_long)inum);
1721 		ffs_fserr(fs, inum, "bad block");
1722 		return;
1723 	}
1724 	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1725 		brelse(bp);
1726 		return;
1727 	}
1728 	cgp = (struct cg *)bp->b_data;
1729 	if (!cg_chkmagic(cgp)) {
1730 		brelse(bp);
1731 		return;
1732 	}
1733 	bp->b_xflags |= BX_BKGRDWRITE;
1734 	cgp->cg_old_time = cgp->cg_time = time_second;
1735 	cgbno = dtogd(fs, bno);
1736 	blksfree = cg_blksfree(cgp);
1737 	if (size == fs->fs_bsize) {
1738 		fragno = fragstoblks(fs, cgbno);
1739 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1740 			if (devvp->v_type != VCHR) {
1741 				/* devvp is a snapshot */
1742 				brelse(bp);
1743 				return;
1744 			}
1745 			printf("dev = %s, block = %jd, fs = %s\n",
1746 			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
1747 			panic("ffs_blkfree: freeing free block");
1748 		}
1749 		ffs_setblock(fs, blksfree, fragno);
1750 		ffs_clusteracct(fs, cgp, fragno, 1);
1751 		cgp->cg_cs.cs_nbfree++;
1752 		fs->fs_cstotal.cs_nbfree++;
1753 		fs->fs_cs(fs, cg).cs_nbfree++;
1754 	} else {
1755 		bbase = cgbno - fragnum(fs, cgbno);
1756 		/*
1757 		 * decrement the counts associated with the old frags
1758 		 */
1759 		blk = blkmap(fs, blksfree, bbase);
1760 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1761 		/*
1762 		 * deallocate the fragment
1763 		 */
1764 		frags = numfrags(fs, size);
1765 		for (i = 0; i < frags; i++) {
1766 			if (isset(blksfree, cgbno + i)) {
1767 				printf("dev = %s, block = %jd, fs = %s\n",
1768 				    devtoname(dev), (intmax_t)(bno + i),
1769 				    fs->fs_fsmnt);
1770 				panic("ffs_blkfree: freeing free frag");
1771 			}
1772 			setbit(blksfree, cgbno + i);
1773 		}
1774 		cgp->cg_cs.cs_nffree += i;
1775 		fs->fs_cstotal.cs_nffree += i;
1776 		fs->fs_cs(fs, cg).cs_nffree += i;
1777 		/*
1778 		 * add back in counts associated with the new frags
1779 		 */
1780 		blk = blkmap(fs, blksfree, bbase);
1781 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1782 		/*
1783 		 * if a complete block has been reassembled, account for it
1784 		 */
1785 		fragno = fragstoblks(fs, bbase);
1786 		if (ffs_isblock(fs, blksfree, fragno)) {
1787 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1788 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1789 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1790 			ffs_clusteracct(fs, cgp, fragno, 1);
1791 			cgp->cg_cs.cs_nbfree++;
1792 			fs->fs_cstotal.cs_nbfree++;
1793 			fs->fs_cs(fs, cg).cs_nbfree++;
1794 		}
1795 	}
1796 	fs->fs_fmod = 1;
1797 	if (fs->fs_active != 0)
1798 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1799 	bdwrite(bp);
1800 }
1801 
1802 #ifdef DIAGNOSTIC
1803 /*
1804  * Verify allocation of a block or fragment. Returns true if block or
1805  * fragment is allocated, false if it is free.
1806  */
1807 static int
1808 ffs_checkblk(ip, bno, size)
1809 	struct inode *ip;
1810 	ufs2_daddr_t bno;
1811 	long size;
1812 {
1813 	struct fs *fs;
1814 	struct cg *cgp;
1815 	struct buf *bp;
1816 	ufs1_daddr_t cgbno;
1817 	int i, error, frags, free;
1818 	u_int8_t *blksfree;
1819 
1820 	fs = ip->i_fs;
1821 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1822 		printf("bsize = %ld, size = %ld, fs = %s\n",
1823 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1824 		panic("ffs_checkblk: bad size");
1825 	}
1826 	if ((u_int)bno >= fs->fs_size)
1827 		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
1828 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1829 		(int)fs->fs_cgsize, NOCRED, &bp);
1830 	if (error)
1831 		panic("ffs_checkblk: cg bread failed");
1832 	cgp = (struct cg *)bp->b_data;
1833 	if (!cg_chkmagic(cgp))
1834 		panic("ffs_checkblk: cg magic mismatch");
1835 	bp->b_xflags |= BX_BKGRDWRITE;
1836 	blksfree = cg_blksfree(cgp);
1837 	cgbno = dtogd(fs, bno);
1838 	if (size == fs->fs_bsize) {
1839 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
1840 	} else {
1841 		frags = numfrags(fs, size);
1842 		for (free = 0, i = 0; i < frags; i++)
1843 			if (isset(blksfree, cgbno + i))
1844 				free++;
1845 		if (free != 0 && free != frags)
1846 			panic("ffs_checkblk: partially free fragment");
1847 	}
1848 	brelse(bp);
1849 	return (!free);
1850 }
1851 #endif /* DIAGNOSTIC */
1852 
1853 /*
1854  * Free an inode.
1855  */
1856 int
1857 ffs_vfree(pvp, ino, mode)
1858 	struct vnode *pvp;
1859 	ino_t ino;
1860 	int mode;
1861 {
1862 	if (DOINGSOFTDEP(pvp)) {
1863 		softdep_freefile(pvp, ino, mode);
1864 		return (0);
1865 	}
1866 	return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode));
1867 }
1868 
1869 /*
1870  * Do the actual free operation.
1871  * The specified inode is placed back in the free map.
1872  */
1873 int
1874 ffs_freefile(fs, devvp, ino, mode)
1875 	struct fs *fs;
1876 	struct vnode *devvp;
1877 	ino_t ino;
1878 	int mode;
1879 {
1880 	struct cg *cgp;
1881 	struct buf *bp;
1882 	ufs2_daddr_t cgbno;
1883 	int error, cg;
1884 	u_int8_t *inosused;
1885 	dev_t dev;
1886 
1887 	cg = ino_to_cg(fs, ino);
1888 	if (devvp->v_type != VCHR) {
1889 		/* devvp is a snapshot */
1890 		dev = VTOI(devvp)->i_devvp->v_rdev;
1891 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1892 	} else {
1893 		/* devvp is a normal disk device */
1894 		dev = devvp->v_rdev;
1895 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1896 	}
1897 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1898 		panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s",
1899 		    devtoname(dev), (u_long)ino, fs->fs_fsmnt);
1900 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1901 		brelse(bp);
1902 		return (error);
1903 	}
1904 	cgp = (struct cg *)bp->b_data;
1905 	if (!cg_chkmagic(cgp)) {
1906 		brelse(bp);
1907 		return (0);
1908 	}
1909 	bp->b_xflags |= BX_BKGRDWRITE;
1910 	cgp->cg_old_time = cgp->cg_time = time_second;
1911 	inosused = cg_inosused(cgp);
1912 	ino %= fs->fs_ipg;
1913 	if (isclr(inosused, ino)) {
1914 		printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
1915 		    (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1916 		if (fs->fs_ronly == 0)
1917 			panic("ffs_freefile: freeing free inode");
1918 	}
1919 	clrbit(inosused, ino);
1920 	if (ino < cgp->cg_irotor)
1921 		cgp->cg_irotor = ino;
1922 	cgp->cg_cs.cs_nifree++;
1923 	fs->fs_cstotal.cs_nifree++;
1924 	fs->fs_cs(fs, cg).cs_nifree++;
1925 	if ((mode & IFMT) == IFDIR) {
1926 		cgp->cg_cs.cs_ndir--;
1927 		fs->fs_cstotal.cs_ndir--;
1928 		fs->fs_cs(fs, cg).cs_ndir--;
1929 	}
1930 	fs->fs_fmod = 1;
1931 	if (fs->fs_active != 0)
1932 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1933 	bdwrite(bp);
1934 	return (0);
1935 }
1936 
1937 /*
1938  * Check to see if a file is free.
1939  */
1940 int
1941 ffs_checkfreefile(fs, devvp, ino)
1942 	struct fs *fs;
1943 	struct vnode *devvp;
1944 	ino_t ino;
1945 {
1946 	struct cg *cgp;
1947 	struct buf *bp;
1948 	ufs2_daddr_t cgbno;
1949 	int ret, cg;
1950 	u_int8_t *inosused;
1951 
1952 	cg = ino_to_cg(fs, ino);
1953 	if (devvp->v_type != VCHR) {
1954 		/* devvp is a snapshot */
1955 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1956 	} else {
1957 		/* devvp is a normal disk device */
1958 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1959 	}
1960 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1961 		return (1);
1962 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1963 		brelse(bp);
1964 		return (1);
1965 	}
1966 	cgp = (struct cg *)bp->b_data;
1967 	if (!cg_chkmagic(cgp)) {
1968 		brelse(bp);
1969 		return (1);
1970 	}
1971 	inosused = cg_inosused(cgp);
1972 	ino %= fs->fs_ipg;
1973 	ret = isclr(inosused, ino);
1974 	brelse(bp);
1975 	return (ret);
1976 }
1977 
1978 /*
1979  * Find a block of the specified size in the specified cylinder group.
1980  *
1981  * It is a panic if a request is made to find a block if none are
1982  * available.
1983  */
1984 static ufs1_daddr_t
1985 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1986 	struct fs *fs;
1987 	struct cg *cgp;
1988 	ufs2_daddr_t bpref;
1989 	int allocsiz;
1990 {
1991 	ufs1_daddr_t bno;
1992 	int start, len, loc, i;
1993 	int blk, field, subfield, pos;
1994 	u_int8_t *blksfree;
1995 
1996 	/*
1997 	 * find the fragment by searching through the free block
1998 	 * map for an appropriate bit pattern
1999 	 */
2000 	if (bpref)
2001 		start = dtogd(fs, bpref) / NBBY;
2002 	else
2003 		start = cgp->cg_frotor / NBBY;
2004 	blksfree = cg_blksfree(cgp);
2005 	len = howmany(fs->fs_fpg, NBBY) - start;
2006 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2007 		(u_char *)fragtbl[fs->fs_frag],
2008 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2009 	if (loc == 0) {
2010 		len = start + 1;
2011 		start = 0;
2012 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2013 			(u_char *)fragtbl[fs->fs_frag],
2014 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2015 		if (loc == 0) {
2016 			printf("start = %d, len = %d, fs = %s\n",
2017 			    start, len, fs->fs_fsmnt);
2018 			panic("ffs_alloccg: map corrupted");
2019 			/* NOTREACHED */
2020 		}
2021 	}
2022 	bno = (start + len - loc) * NBBY;
2023 	cgp->cg_frotor = bno;
2024 	/*
2025 	 * found the byte in the map
2026 	 * sift through the bits to find the selected frag
2027 	 */
2028 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2029 		blk = blkmap(fs, blksfree, bno);
2030 		blk <<= 1;
2031 		field = around[allocsiz];
2032 		subfield = inside[allocsiz];
2033 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2034 			if ((blk & field) == subfield)
2035 				return (bno + pos);
2036 			field <<= 1;
2037 			subfield <<= 1;
2038 		}
2039 	}
2040 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2041 	panic("ffs_alloccg: block not in map");
2042 	return (-1);
2043 }
2044 
2045 /*
2046  * Update the cluster map because of an allocation or free.
2047  *
2048  * Cnt == 1 means free; cnt == -1 means allocating.
2049  */
2050 void
2051 ffs_clusteracct(fs, cgp, blkno, cnt)
2052 	struct fs *fs;
2053 	struct cg *cgp;
2054 	ufs1_daddr_t blkno;
2055 	int cnt;
2056 {
2057 	int32_t *sump;
2058 	int32_t *lp;
2059 	u_char *freemapp, *mapp;
2060 	int i, start, end, forw, back, map, bit;
2061 
2062 	if (fs->fs_contigsumsize <= 0)
2063 		return;
2064 	freemapp = cg_clustersfree(cgp);
2065 	sump = cg_clustersum(cgp);
2066 	/*
2067 	 * Allocate or clear the actual block.
2068 	 */
2069 	if (cnt > 0)
2070 		setbit(freemapp, blkno);
2071 	else
2072 		clrbit(freemapp, blkno);
2073 	/*
2074 	 * Find the size of the cluster going forward.
2075 	 */
2076 	start = blkno + 1;
2077 	end = start + fs->fs_contigsumsize;
2078 	if (end >= cgp->cg_nclusterblks)
2079 		end = cgp->cg_nclusterblks;
2080 	mapp = &freemapp[start / NBBY];
2081 	map = *mapp++;
2082 	bit = 1 << (start % NBBY);
2083 	for (i = start; i < end; i++) {
2084 		if ((map & bit) == 0)
2085 			break;
2086 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
2087 			bit <<= 1;
2088 		} else {
2089 			map = *mapp++;
2090 			bit = 1;
2091 		}
2092 	}
2093 	forw = i - start;
2094 	/*
2095 	 * Find the size of the cluster going backward.
2096 	 */
2097 	start = blkno - 1;
2098 	end = start - fs->fs_contigsumsize;
2099 	if (end < 0)
2100 		end = -1;
2101 	mapp = &freemapp[start / NBBY];
2102 	map = *mapp--;
2103 	bit = 1 << (start % NBBY);
2104 	for (i = start; i > end; i--) {
2105 		if ((map & bit) == 0)
2106 			break;
2107 		if ((i & (NBBY - 1)) != 0) {
2108 			bit >>= 1;
2109 		} else {
2110 			map = *mapp--;
2111 			bit = 1 << (NBBY - 1);
2112 		}
2113 	}
2114 	back = start - i;
2115 	/*
2116 	 * Account for old cluster and the possibly new forward and
2117 	 * back clusters.
2118 	 */
2119 	i = back + forw + 1;
2120 	if (i > fs->fs_contigsumsize)
2121 		i = fs->fs_contigsumsize;
2122 	sump[i] += cnt;
2123 	if (back > 0)
2124 		sump[back] -= cnt;
2125 	if (forw > 0)
2126 		sump[forw] -= cnt;
2127 	/*
2128 	 * Update cluster summary information.
2129 	 */
2130 	lp = &sump[fs->fs_contigsumsize];
2131 	for (i = fs->fs_contigsumsize; i > 0; i--)
2132 		if (*lp-- > 0)
2133 			break;
2134 	fs->fs_maxcluster[cgp->cg_cgx] = i;
2135 }
2136 
2137 /*
2138  * Fserr prints the name of a filesystem with an error diagnostic.
2139  *
2140  * The form of the error message is:
2141  *	fs: error message
2142  */
2143 static void
2144 ffs_fserr(fs, inum, cp)
2145 	struct fs *fs;
2146 	ino_t inum;
2147 	char *cp;
2148 {
2149 	struct thread *td = curthread;	/* XXX */
2150 	struct proc *p = td->td_proc;
2151 
2152 	log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
2153 	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp);
2154 }
2155 
2156 /*
2157  * This function provides the capability for the fsck program to
2158  * update an active filesystem. Six operations are provided:
2159  *
2160  * adjrefcnt(inode, amt) - adjusts the reference count on the
2161  *	specified inode by the specified amount. Under normal
2162  *	operation the count should always go down. Decrementing
2163  *	the count to zero will cause the inode to be freed.
2164  * adjblkcnt(inode, amt) - adjust the number of blocks used to
2165  *	by the specifed amount.
2166  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2167  *	are marked as free. Inodes should never have to be marked
2168  *	as in use.
2169  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2170  *	are marked as free. Inodes should never have to be marked
2171  *	as in use.
2172  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2173  *	are marked as free. Blocks should never have to be marked
2174  *	as in use.
2175  * setflags(flags, set/clear) - the fs_flags field has the specified
2176  *	flags set (second parameter +1) or cleared (second parameter -1).
2177  */
2178 
2179 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2180 
2181 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2182 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2183 
2184 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2185 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2186 
2187 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2188 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2189 
2190 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2191 	sysctl_ffs_fsck, "Free Range of File Inodes");
2192 
2193 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2194 	sysctl_ffs_fsck, "Free Range of Blocks");
2195 
2196 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2197 	sysctl_ffs_fsck, "Change Filesystem Flags");
2198 
2199 #ifdef DEBUG
2200 static int fsckcmds = 0;
2201 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2202 #endif /* DEBUG */
2203 
2204 static int
2205 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2206 {
2207 	struct fsck_cmd cmd;
2208 	struct ufsmount *ump;
2209 	struct vnode *vp;
2210 	struct inode *ip;
2211 	struct mount *mp;
2212 	struct fs *fs;
2213 	ufs2_daddr_t blkno;
2214 	long blkcnt, blksize;
2215 	struct file *fp;
2216 	int filetype, error;
2217 
2218 	if (req->newlen > sizeof cmd)
2219 		return (EBADRPC);
2220 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2221 		return (error);
2222 	if (cmd.version != FFS_CMD_VERSION)
2223 		return (ERPCMISMATCH);
2224 	if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
2225 		return (error);
2226 	vn_start_write(fp->f_data, &mp, V_WAIT);
2227 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2228 		vn_finished_write(mp);
2229 		fdrop(fp, curthread);
2230 		return (EINVAL);
2231 	}
2232 	if (mp->mnt_flag & MNT_RDONLY) {
2233 		vn_finished_write(mp);
2234 		fdrop(fp, curthread);
2235 		return (EROFS);
2236 	}
2237 	ump = VFSTOUFS(mp);
2238 	fs = ump->um_fs;
2239 	filetype = IFREG;
2240 
2241 	switch (oidp->oid_number) {
2242 
2243 	case FFS_SET_FLAGS:
2244 #ifdef DEBUG
2245 		if (fsckcmds)
2246 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2247 			    cmd.size > 0 ? "set" : "clear");
2248 #endif /* DEBUG */
2249 		if (cmd.size > 0)
2250 			fs->fs_flags |= (long)cmd.value;
2251 		else
2252 			fs->fs_flags &= ~(long)cmd.value;
2253 		break;
2254 
2255 	case FFS_ADJ_REFCNT:
2256 #ifdef DEBUG
2257 		if (fsckcmds) {
2258 			printf("%s: adjust inode %jd count by %jd\n",
2259 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2260 			    (intmax_t)cmd.size);
2261 		}
2262 #endif /* DEBUG */
2263 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2264 			break;
2265 		ip = VTOI(vp);
2266 		ip->i_nlink += cmd.size;
2267 		DIP(ip, i_nlink) = ip->i_nlink;
2268 		ip->i_effnlink += cmd.size;
2269 		ip->i_flag |= IN_CHANGE;
2270 		if (DOINGSOFTDEP(vp))
2271 			softdep_change_linkcnt(ip);
2272 		vput(vp);
2273 		break;
2274 
2275 	case FFS_ADJ_BLKCNT:
2276 #ifdef DEBUG
2277 		if (fsckcmds) {
2278 			printf("%s: adjust inode %jd block count by %jd\n",
2279 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2280 			    (intmax_t)cmd.size);
2281 		}
2282 #endif /* DEBUG */
2283 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2284 			break;
2285 		ip = VTOI(vp);
2286 		DIP(ip, i_blocks) += cmd.size;
2287 		ip->i_flag |= IN_CHANGE;
2288 		vput(vp);
2289 		break;
2290 
2291 	case FFS_DIR_FREE:
2292 		filetype = IFDIR;
2293 		/* fall through */
2294 
2295 	case FFS_FILE_FREE:
2296 #ifdef DEBUG
2297 		if (fsckcmds) {
2298 			if (cmd.size == 1)
2299 				printf("%s: free %s inode %d\n",
2300 				    mp->mnt_stat.f_mntonname,
2301 				    filetype == IFDIR ? "directory" : "file",
2302 				    (ino_t)cmd.value);
2303 			else
2304 				printf("%s: free %s inodes %d-%d\n",
2305 				    mp->mnt_stat.f_mntonname,
2306 				    filetype == IFDIR ? "directory" : "file",
2307 				    (ino_t)cmd.value,
2308 				    (ino_t)(cmd.value + cmd.size - 1));
2309 		}
2310 #endif /* DEBUG */
2311 		while (cmd.size > 0) {
2312 			if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value,
2313 			    filetype)))
2314 				break;
2315 			cmd.size -= 1;
2316 			cmd.value += 1;
2317 		}
2318 		break;
2319 
2320 	case FFS_BLK_FREE:
2321 #ifdef DEBUG
2322 		if (fsckcmds) {
2323 			if (cmd.size == 1)
2324 				printf("%s: free block %jd\n",
2325 				    mp->mnt_stat.f_mntonname,
2326 				    (intmax_t)cmd.value);
2327 			else
2328 				printf("%s: free blocks %jd-%jd\n",
2329 				    mp->mnt_stat.f_mntonname,
2330 				    (intmax_t)cmd.value,
2331 				    (intmax_t)cmd.value + cmd.size - 1);
2332 		}
2333 #endif /* DEBUG */
2334 		blkno = cmd.value;
2335 		blkcnt = cmd.size;
2336 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2337 		while (blkcnt > 0) {
2338 			if (blksize > blkcnt)
2339 				blksize = blkcnt;
2340 			ffs_blkfree(fs, ump->um_devvp, blkno,
2341 			    blksize * fs->fs_fsize, ROOTINO);
2342 			blkno += blksize;
2343 			blkcnt -= blksize;
2344 			blksize = fs->fs_frag;
2345 		}
2346 		break;
2347 
2348 	default:
2349 #ifdef DEBUG
2350 		if (fsckcmds) {
2351 			printf("Invalid request %d from fsck\n",
2352 			    oidp->oid_number);
2353 		}
2354 #endif /* DEBUG */
2355 		error = EINVAL;
2356 		break;
2357 
2358 	}
2359 	fdrop(fp, curthread);
2360 	vn_finished_write(mp);
2361 	return (error);
2362 }
2363