xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Copyright (c) 1982, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  * (c) UNIX System Laboratories, Inc.
14  * Copyright (c) 1982, 1986, 1989, 1993
15  *	The Regents of the University of California.  All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
46  * $FreeBSD$
47  */
48 
49 #include "opt_quota.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/bio.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/file.h>
57 #include <sys/proc.h>
58 #include <sys/vnode.h>
59 #include <sys/mount.h>
60 #include <sys/kernel.h>
61 #include <sys/stdint.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 
65 #include <ufs/ufs/extattr.h>
66 #include <ufs/ufs/quota.h>
67 #include <ufs/ufs/inode.h>
68 #include <ufs/ufs/ufs_extern.h>
69 #include <ufs/ufs/ufsmount.h>
70 
71 #include <ufs/ffs/fs.h>
72 #include <ufs/ffs/ffs_extern.h>
73 
74 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
75 				  int size);
76 
77 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
78 static ufs2_daddr_t
79 	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
80 #ifdef DIAGNOSTIC
81 static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
82 #endif
83 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
84 static ino_t	ffs_dirpref(struct inode *);
85 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
86 static void	ffs_fserr(struct fs *, ino_t, char *);
87 static ufs2_daddr_t	ffs_hashalloc
88 		(struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
89 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
90 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
91 static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
92 static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
93 
94 /*
95  * Allocate a block in the filesystem.
96  *
97  * The size of the requested block is given, which must be some
98  * multiple of fs_fsize and <= fs_bsize.
99  * A preference may be optionally specified. If a preference is given
100  * the following hierarchy is used to allocate a block:
101  *   1) allocate the requested block.
102  *   2) allocate a rotationally optimal block in the same cylinder.
103  *   3) allocate a block in the same cylinder group.
104  *   4) quadradically rehash into other cylinder groups, until an
105  *      available block is located.
106  * If no block preference is given the following heirarchy is used
107  * to allocate a block:
108  *   1) allocate a block in the cylinder group that contains the
109  *      inode for the file.
110  *   2) quadradically rehash into other cylinder groups, until an
111  *      available block is located.
112  */
113 int
114 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
115 	struct inode *ip;
116 	ufs2_daddr_t lbn, bpref;
117 	int size;
118 	struct ucred *cred;
119 	ufs2_daddr_t *bnp;
120 {
121 	struct fs *fs;
122 	ufs2_daddr_t bno;
123 	int cg, reclaimed;
124 #ifdef QUOTA
125 	int error;
126 #endif
127 
128 	*bnp = 0;
129 	fs = ip->i_fs;
130 #ifdef DIAGNOSTIC
131 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
132 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
133 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
134 		    fs->fs_fsmnt);
135 		panic("ffs_alloc: bad size");
136 	}
137 	if (cred == NOCRED)
138 		panic("ffs_alloc: missing credential");
139 #endif /* DIAGNOSTIC */
140 	reclaimed = 0;
141 retry:
142 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
143 		goto nospace;
144 	if (suser_cred(cred, PRISON_ROOT) &&
145 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
146 		goto nospace;
147 #ifdef QUOTA
148 	error = chkdq(ip, btodb(size), cred, 0);
149 	if (error)
150 		return (error);
151 #endif
152 	if (bpref >= fs->fs_size)
153 		bpref = 0;
154 	if (bpref == 0)
155 		cg = ino_to_cg(fs, ip->i_number);
156 	else
157 		cg = dtog(fs, bpref);
158 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
159 	if (bno > 0) {
160 		DIP(ip, i_blocks) += btodb(size);
161 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
162 		*bnp = bno;
163 		return (0);
164 	}
165 #ifdef QUOTA
166 	/*
167 	 * Restore user's disk quota because allocation failed.
168 	 */
169 	(void) chkdq(ip, -btodb(size), cred, FORCE);
170 #endif
171 nospace:
172 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
173 		reclaimed = 1;
174 		softdep_request_cleanup(fs, ITOV(ip));
175 		goto retry;
176 	}
177 	ffs_fserr(fs, ip->i_number, "filesystem full");
178 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
179 	return (ENOSPC);
180 }
181 
182 /*
183  * Reallocate a fragment to a bigger size
184  *
185  * The number and size of the old block is given, and a preference
186  * and new size is also specified. The allocator attempts to extend
187  * the original block. Failing that, the regular block allocator is
188  * invoked to get an appropriate block.
189  */
190 int
191 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
192 	struct inode *ip;
193 	ufs2_daddr_t lbprev;
194 	ufs2_daddr_t bprev;
195 	ufs2_daddr_t bpref;
196 	int osize, nsize;
197 	struct ucred *cred;
198 	struct buf **bpp;
199 {
200 	struct vnode *vp;
201 	struct fs *fs;
202 	struct buf *bp;
203 	int cg, request, error, reclaimed;
204 	ufs2_daddr_t bno;
205 
206 	*bpp = 0;
207 	vp = ITOV(ip);
208 	fs = ip->i_fs;
209 #ifdef DIAGNOSTIC
210 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
211 		panic("ffs_realloccg: allocation on suspended filesystem");
212 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
213 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
214 		printf(
215 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
216 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
217 		    nsize, fs->fs_fsmnt);
218 		panic("ffs_realloccg: bad size");
219 	}
220 	if (cred == NOCRED)
221 		panic("ffs_realloccg: missing credential");
222 #endif /* DIAGNOSTIC */
223 	reclaimed = 0;
224 retry:
225 	if (suser_cred(cred, PRISON_ROOT) &&
226 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
227 		goto nospace;
228 	if (bprev == 0) {
229 		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
230 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
231 		    fs->fs_fsmnt);
232 		panic("ffs_realloccg: bad bprev");
233 	}
234 	/*
235 	 * Allocate the extra space in the buffer.
236 	 */
237 	error = bread(vp, lbprev, osize, NOCRED, &bp);
238 	if (error) {
239 		brelse(bp);
240 		return (error);
241 	}
242 
243 	if (bp->b_blkno == bp->b_lblkno) {
244 		if (lbprev >= NDADDR)
245 			panic("ffs_realloccg: lbprev out of range");
246 		bp->b_blkno = fsbtodb(fs, bprev);
247 	}
248 
249 #ifdef QUOTA
250 	error = chkdq(ip, btodb(nsize - osize), cred, 0);
251 	if (error) {
252 		brelse(bp);
253 		return (error);
254 	}
255 #endif
256 	/*
257 	 * Check for extension in the existing location.
258 	 */
259 	cg = dtog(fs, bprev);
260 	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
261 	if (bno) {
262 		if (bp->b_blkno != fsbtodb(fs, bno))
263 			panic("ffs_realloccg: bad blockno");
264 		DIP(ip, i_blocks) += btodb(nsize - osize);
265 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
266 		allocbuf(bp, nsize);
267 		bp->b_flags |= B_DONE;
268 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
269 		*bpp = bp;
270 		return (0);
271 	}
272 	/*
273 	 * Allocate a new disk location.
274 	 */
275 	if (bpref >= fs->fs_size)
276 		bpref = 0;
277 	switch ((int)fs->fs_optim) {
278 	case FS_OPTSPACE:
279 		/*
280 		 * Allocate an exact sized fragment. Although this makes
281 		 * best use of space, we will waste time relocating it if
282 		 * the file continues to grow. If the fragmentation is
283 		 * less than half of the minimum free reserve, we choose
284 		 * to begin optimizing for time.
285 		 */
286 		request = nsize;
287 		if (fs->fs_minfree <= 5 ||
288 		    fs->fs_cstotal.cs_nffree >
289 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
290 			break;
291 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
292 			fs->fs_fsmnt);
293 		fs->fs_optim = FS_OPTTIME;
294 		break;
295 	case FS_OPTTIME:
296 		/*
297 		 * At this point we have discovered a file that is trying to
298 		 * grow a small fragment to a larger fragment. To save time,
299 		 * we allocate a full sized block, then free the unused portion.
300 		 * If the file continues to grow, the `ffs_fragextend' call
301 		 * above will be able to grow it in place without further
302 		 * copying. If aberrant programs cause disk fragmentation to
303 		 * grow within 2% of the free reserve, we choose to begin
304 		 * optimizing for space.
305 		 */
306 		request = fs->fs_bsize;
307 		if (fs->fs_cstotal.cs_nffree <
308 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
309 			break;
310 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
311 			fs->fs_fsmnt);
312 		fs->fs_optim = FS_OPTSPACE;
313 		break;
314 	default:
315 		printf("dev = %s, optim = %ld, fs = %s\n",
316 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
317 		panic("ffs_realloccg: bad optim");
318 		/* NOTREACHED */
319 	}
320 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
321 	if (bno > 0) {
322 		bp->b_blkno = fsbtodb(fs, bno);
323 		if (!DOINGSOFTDEP(vp))
324 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
325 			    ip->i_number);
326 		if (nsize < request)
327 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
328 			    (long)(request - nsize), ip->i_number);
329 		DIP(ip, i_blocks) += btodb(nsize - osize);
330 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
331 		allocbuf(bp, nsize);
332 		bp->b_flags |= B_DONE;
333 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
334 		*bpp = bp;
335 		return (0);
336 	}
337 #ifdef QUOTA
338 	/*
339 	 * Restore user's disk quota because allocation failed.
340 	 */
341 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
342 #endif
343 	brelse(bp);
344 nospace:
345 	/*
346 	 * no space available
347 	 */
348 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
349 		reclaimed = 1;
350 		softdep_request_cleanup(fs, vp);
351 		goto retry;
352 	}
353 	ffs_fserr(fs, ip->i_number, "filesystem full");
354 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
355 	return (ENOSPC);
356 }
357 
358 /*
359  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
360  *
361  * The vnode and an array of buffer pointers for a range of sequential
362  * logical blocks to be made contiguous is given. The allocator attempts
363  * to find a range of sequential blocks starting as close as possible
364  * from the end of the allocation for the logical block immediately
365  * preceding the current range. If successful, the physical block numbers
366  * in the buffer pointers and in the inode are changed to reflect the new
367  * allocation. If unsuccessful, the allocation is left unchanged. The
368  * success in doing the reallocation is returned. Note that the error
369  * return is not reflected back to the user. Rather the previous block
370  * allocation will be used.
371  */
372 
373 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
374 
375 static int doasyncfree = 1;
376 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
377 
378 static int doreallocblks = 1;
379 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
380 
381 #ifdef DEBUG
382 static volatile int prtrealloc = 0;
383 #endif
384 
385 int
386 ffs_reallocblks(ap)
387 	struct vop_reallocblks_args /* {
388 		struct vnode *a_vp;
389 		struct cluster_save *a_buflist;
390 	} */ *ap;
391 {
392 
393 	if (doreallocblks == 0)
394 		return (ENOSPC);
395 	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
396 		return (ffs_reallocblks_ufs1(ap));
397 	return (ffs_reallocblks_ufs2(ap));
398 }
399 
400 static int
401 ffs_reallocblks_ufs1(ap)
402 	struct vop_reallocblks_args /* {
403 		struct vnode *a_vp;
404 		struct cluster_save *a_buflist;
405 	} */ *ap;
406 {
407 	struct fs *fs;
408 	struct inode *ip;
409 	struct vnode *vp;
410 	struct buf *sbp, *ebp;
411 	ufs1_daddr_t *bap, *sbap, *ebap = 0;
412 	struct cluster_save *buflist;
413 	ufs_lbn_t start_lbn, end_lbn;
414 	ufs1_daddr_t soff, newblk, blkno;
415 	ufs2_daddr_t pref;
416 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
417 	int i, len, start_lvl, end_lvl, ssize;
418 
419 	vp = ap->a_vp;
420 	ip = VTOI(vp);
421 	fs = ip->i_fs;
422 	if (fs->fs_contigsumsize <= 0)
423 		return (ENOSPC);
424 	buflist = ap->a_buflist;
425 	len = buflist->bs_nchildren;
426 	start_lbn = buflist->bs_children[0]->b_lblkno;
427 	end_lbn = start_lbn + len - 1;
428 #ifdef DIAGNOSTIC
429 	for (i = 0; i < len; i++)
430 		if (!ffs_checkblk(ip,
431 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
432 			panic("ffs_reallocblks: unallocated block 1");
433 	for (i = 1; i < len; i++)
434 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
435 			panic("ffs_reallocblks: non-logical cluster");
436 	blkno = buflist->bs_children[0]->b_blkno;
437 	ssize = fsbtodb(fs, fs->fs_frag);
438 	for (i = 1; i < len - 1; i++)
439 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
440 			panic("ffs_reallocblks: non-physical cluster %d", i);
441 #endif
442 	/*
443 	 * If the latest allocation is in a new cylinder group, assume that
444 	 * the filesystem has decided to move and do not force it back to
445 	 * the previous cylinder group.
446 	 */
447 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
448 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
449 		return (ENOSPC);
450 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
451 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
452 		return (ENOSPC);
453 	/*
454 	 * Get the starting offset and block map for the first block.
455 	 */
456 	if (start_lvl == 0) {
457 		sbap = &ip->i_din1->di_db[0];
458 		soff = start_lbn;
459 	} else {
460 		idp = &start_ap[start_lvl - 1];
461 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
462 			brelse(sbp);
463 			return (ENOSPC);
464 		}
465 		sbap = (ufs1_daddr_t *)sbp->b_data;
466 		soff = idp->in_off;
467 	}
468 	/*
469 	 * Find the preferred location for the cluster.
470 	 */
471 	pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
472 	/*
473 	 * If the block range spans two block maps, get the second map.
474 	 */
475 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
476 		ssize = len;
477 	} else {
478 #ifdef DIAGNOSTIC
479 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
480 			panic("ffs_reallocblk: start == end");
481 #endif
482 		ssize = len - (idp->in_off + 1);
483 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
484 			goto fail;
485 		ebap = (ufs1_daddr_t *)ebp->b_data;
486 	}
487 	/*
488 	 * Search the block map looking for an allocation of the desired size.
489 	 */
490 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
491 	    len, ffs_clusteralloc)) == 0)
492 		goto fail;
493 	/*
494 	 * We have found a new contiguous block.
495 	 *
496 	 * First we have to replace the old block pointers with the new
497 	 * block pointers in the inode and indirect blocks associated
498 	 * with the file.
499 	 */
500 #ifdef DEBUG
501 	if (prtrealloc)
502 		printf("realloc: ino %d, lbns %lld-%lld\n\told:", ip->i_number,
503 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
504 #endif
505 	blkno = newblk;
506 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
507 		if (i == ssize) {
508 			bap = ebap;
509 			soff = -i;
510 		}
511 #ifdef DIAGNOSTIC
512 		if (!ffs_checkblk(ip,
513 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
514 			panic("ffs_reallocblks: unallocated block 2");
515 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
516 			panic("ffs_reallocblks: alloc mismatch");
517 #endif
518 #ifdef DEBUG
519 		if (prtrealloc)
520 			printf(" %d,", *bap);
521 #endif
522 		if (DOINGSOFTDEP(vp)) {
523 			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
524 				softdep_setup_allocdirect(ip, start_lbn + i,
525 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
526 				    buflist->bs_children[i]);
527 			else
528 				softdep_setup_allocindir_page(ip, start_lbn + i,
529 				    i < ssize ? sbp : ebp, soff + i, blkno,
530 				    *bap, buflist->bs_children[i]);
531 		}
532 		*bap++ = blkno;
533 	}
534 	/*
535 	 * Next we must write out the modified inode and indirect blocks.
536 	 * For strict correctness, the writes should be synchronous since
537 	 * the old block values may have been written to disk. In practise
538 	 * they are almost never written, but if we are concerned about
539 	 * strict correctness, the `doasyncfree' flag should be set to zero.
540 	 *
541 	 * The test on `doasyncfree' should be changed to test a flag
542 	 * that shows whether the associated buffers and inodes have
543 	 * been written. The flag should be set when the cluster is
544 	 * started and cleared whenever the buffer or inode is flushed.
545 	 * We can then check below to see if it is set, and do the
546 	 * synchronous write only when it has been cleared.
547 	 */
548 	if (sbap != &ip->i_din1->di_db[0]) {
549 		if (doasyncfree)
550 			bdwrite(sbp);
551 		else
552 			bwrite(sbp);
553 	} else {
554 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
555 		if (!doasyncfree)
556 			UFS_UPDATE(vp, 1);
557 	}
558 	if (ssize < len) {
559 		if (doasyncfree)
560 			bdwrite(ebp);
561 		else
562 			bwrite(ebp);
563 	}
564 	/*
565 	 * Last, free the old blocks and assign the new blocks to the buffers.
566 	 */
567 #ifdef DEBUG
568 	if (prtrealloc)
569 		printf("\n\tnew:");
570 #endif
571 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
572 		if (!DOINGSOFTDEP(vp))
573 			ffs_blkfree(fs, ip->i_devvp,
574 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
575 			    fs->fs_bsize, ip->i_number);
576 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
577 #ifdef DIAGNOSTIC
578 		if (!ffs_checkblk(ip,
579 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
580 			panic("ffs_reallocblks: unallocated block 3");
581 #endif
582 #ifdef DEBUG
583 		if (prtrealloc)
584 			printf(" %d,", blkno);
585 #endif
586 	}
587 #ifdef DEBUG
588 	if (prtrealloc) {
589 		prtrealloc--;
590 		printf("\n");
591 	}
592 #endif
593 	return (0);
594 
595 fail:
596 	if (ssize < len)
597 		brelse(ebp);
598 	if (sbap != &ip->i_din1->di_db[0])
599 		brelse(sbp);
600 	return (ENOSPC);
601 }
602 
603 static int
604 ffs_reallocblks_ufs2(ap)
605 	struct vop_reallocblks_args /* {
606 		struct vnode *a_vp;
607 		struct cluster_save *a_buflist;
608 	} */ *ap;
609 {
610 	struct fs *fs;
611 	struct inode *ip;
612 	struct vnode *vp;
613 	struct buf *sbp, *ebp;
614 	ufs2_daddr_t *bap, *sbap, *ebap = 0;
615 	struct cluster_save *buflist;
616 	ufs_lbn_t start_lbn, end_lbn;
617 	ufs2_daddr_t soff, newblk, blkno, pref;
618 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
619 	int i, len, start_lvl, end_lvl, ssize;
620 
621 	vp = ap->a_vp;
622 	ip = VTOI(vp);
623 	fs = ip->i_fs;
624 	if (fs->fs_contigsumsize <= 0)
625 		return (ENOSPC);
626 	buflist = ap->a_buflist;
627 	len = buflist->bs_nchildren;
628 	start_lbn = buflist->bs_children[0]->b_lblkno;
629 	end_lbn = start_lbn + len - 1;
630 #ifdef DIAGNOSTIC
631 	for (i = 0; i < len; i++)
632 		if (!ffs_checkblk(ip,
633 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
634 			panic("ffs_reallocblks: unallocated block 1");
635 	for (i = 1; i < len; i++)
636 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
637 			panic("ffs_reallocblks: non-logical cluster");
638 	blkno = buflist->bs_children[0]->b_blkno;
639 	ssize = fsbtodb(fs, fs->fs_frag);
640 	for (i = 1; i < len - 1; i++)
641 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
642 			panic("ffs_reallocblks: non-physical cluster %d", i);
643 #endif
644 	/*
645 	 * If the latest allocation is in a new cylinder group, assume that
646 	 * the filesystem has decided to move and do not force it back to
647 	 * the previous cylinder group.
648 	 */
649 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
650 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
651 		return (ENOSPC);
652 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
653 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
654 		return (ENOSPC);
655 	/*
656 	 * Get the starting offset and block map for the first block.
657 	 */
658 	if (start_lvl == 0) {
659 		sbap = &ip->i_din2->di_db[0];
660 		soff = start_lbn;
661 	} else {
662 		idp = &start_ap[start_lvl - 1];
663 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
664 			brelse(sbp);
665 			return (ENOSPC);
666 		}
667 		sbap = (ufs2_daddr_t *)sbp->b_data;
668 		soff = idp->in_off;
669 	}
670 	/*
671 	 * Find the preferred location for the cluster.
672 	 */
673 	pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
674 	/*
675 	 * If the block range spans two block maps, get the second map.
676 	 */
677 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
678 		ssize = len;
679 	} else {
680 #ifdef DIAGNOSTIC
681 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
682 			panic("ffs_reallocblk: start == end");
683 #endif
684 		ssize = len - (idp->in_off + 1);
685 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
686 			goto fail;
687 		ebap = (ufs2_daddr_t *)ebp->b_data;
688 	}
689 	/*
690 	 * Search the block map looking for an allocation of the desired size.
691 	 */
692 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
693 	    len, ffs_clusteralloc)) == 0)
694 		goto fail;
695 	/*
696 	 * We have found a new contiguous block.
697 	 *
698 	 * First we have to replace the old block pointers with the new
699 	 * block pointers in the inode and indirect blocks associated
700 	 * with the file.
701 	 */
702 #ifdef DEBUG
703 	if (prtrealloc)
704 		printf("realloc: ino %d, lbns %lld-%lld\n\told:", ip->i_number,
705 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
706 #endif
707 	blkno = newblk;
708 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
709 		if (i == ssize) {
710 			bap = ebap;
711 			soff = -i;
712 		}
713 #ifdef DIAGNOSTIC
714 		if (!ffs_checkblk(ip,
715 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
716 			panic("ffs_reallocblks: unallocated block 2");
717 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
718 			panic("ffs_reallocblks: alloc mismatch");
719 #endif
720 #ifdef DEBUG
721 		if (prtrealloc)
722 			printf(" %lld,", (intmax_t)*bap);
723 #endif
724 		if (DOINGSOFTDEP(vp)) {
725 			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
726 				softdep_setup_allocdirect(ip, start_lbn + i,
727 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
728 				    buflist->bs_children[i]);
729 			else
730 				softdep_setup_allocindir_page(ip, start_lbn + i,
731 				    i < ssize ? sbp : ebp, soff + i, blkno,
732 				    *bap, buflist->bs_children[i]);
733 		}
734 		*bap++ = blkno;
735 	}
736 	/*
737 	 * Next we must write out the modified inode and indirect blocks.
738 	 * For strict correctness, the writes should be synchronous since
739 	 * the old block values may have been written to disk. In practise
740 	 * they are almost never written, but if we are concerned about
741 	 * strict correctness, the `doasyncfree' flag should be set to zero.
742 	 *
743 	 * The test on `doasyncfree' should be changed to test a flag
744 	 * that shows whether the associated buffers and inodes have
745 	 * been written. The flag should be set when the cluster is
746 	 * started and cleared whenever the buffer or inode is flushed.
747 	 * We can then check below to see if it is set, and do the
748 	 * synchronous write only when it has been cleared.
749 	 */
750 	if (sbap != &ip->i_din2->di_db[0]) {
751 		if (doasyncfree)
752 			bdwrite(sbp);
753 		else
754 			bwrite(sbp);
755 	} else {
756 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
757 		if (!doasyncfree)
758 			UFS_UPDATE(vp, 1);
759 	}
760 	if (ssize < len) {
761 		if (doasyncfree)
762 			bdwrite(ebp);
763 		else
764 			bwrite(ebp);
765 	}
766 	/*
767 	 * Last, free the old blocks and assign the new blocks to the buffers.
768 	 */
769 #ifdef DEBUG
770 	if (prtrealloc)
771 		printf("\n\tnew:");
772 #endif
773 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
774 		if (!DOINGSOFTDEP(vp))
775 			ffs_blkfree(fs, ip->i_devvp,
776 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
777 			    fs->fs_bsize, ip->i_number);
778 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
779 #ifdef DIAGNOSTIC
780 		if (!ffs_checkblk(ip,
781 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
782 			panic("ffs_reallocblks: unallocated block 3");
783 #endif
784 #ifdef DEBUG
785 		if (prtrealloc)
786 			printf(" %jd,", (intmax_t)blkno);
787 #endif
788 	}
789 #ifdef DEBUG
790 	if (prtrealloc) {
791 		prtrealloc--;
792 		printf("\n");
793 	}
794 #endif
795 	return (0);
796 
797 fail:
798 	if (ssize < len)
799 		brelse(ebp);
800 	if (sbap != &ip->i_din2->di_db[0])
801 		brelse(sbp);
802 	return (ENOSPC);
803 }
804 
805 /*
806  * Allocate an inode in the filesystem.
807  *
808  * If allocating a directory, use ffs_dirpref to select the inode.
809  * If allocating in a directory, the following hierarchy is followed:
810  *   1) allocate the preferred inode.
811  *   2) allocate an inode in the same cylinder group.
812  *   3) quadradically rehash into other cylinder groups, until an
813  *      available inode is located.
814  * If no inode preference is given the following heirarchy is used
815  * to allocate an inode:
816  *   1) allocate an inode in cylinder group 0.
817  *   2) quadradically rehash into other cylinder groups, until an
818  *      available inode is located.
819  */
820 int
821 ffs_valloc(pvp, mode, cred, vpp)
822 	struct vnode *pvp;
823 	int mode;
824 	struct ucred *cred;
825 	struct vnode **vpp;
826 {
827 	struct inode *pip;
828 	struct fs *fs;
829 	struct inode *ip;
830 	struct timespec ts;
831 	ino_t ino, ipref;
832 	int cg, error;
833 
834 	*vpp = NULL;
835 	pip = VTOI(pvp);
836 	fs = pip->i_fs;
837 	if (fs->fs_cstotal.cs_nifree == 0)
838 		goto noinodes;
839 
840 	if ((mode & IFMT) == IFDIR)
841 		ipref = ffs_dirpref(pip);
842 	else
843 		ipref = pip->i_number;
844 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
845 		ipref = 0;
846 	cg = ino_to_cg(fs, ipref);
847 	/*
848 	 * Track number of dirs created one after another
849 	 * in a same cg without intervening by files.
850 	 */
851 	if ((mode & IFMT) == IFDIR) {
852 		if (fs->fs_contigdirs[cg] < 255)
853 			fs->fs_contigdirs[cg]++;
854 	} else {
855 		if (fs->fs_contigdirs[cg] > 0)
856 			fs->fs_contigdirs[cg]--;
857 	}
858 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
859 					(allocfcn_t *)ffs_nodealloccg);
860 	if (ino == 0)
861 		goto noinodes;
862 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
863 	if (error) {
864 		UFS_VFREE(pvp, ino, mode);
865 		return (error);
866 	}
867 	ip = VTOI(*vpp);
868 	if (ip->i_mode) {
869 		printf("mode = 0%o, inum = %lu, fs = %s\n",
870 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
871 		panic("ffs_valloc: dup alloc");
872 	}
873 	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
874 		printf("free inode %s/%lu had %ld blocks\n",
875 		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
876 		DIP(ip, i_blocks) = 0;
877 	}
878 	ip->i_flags = 0;
879 	DIP(ip, i_flags) = 0;
880 	/*
881 	 * Set up a new generation number for this inode.
882 	 */
883 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
884 		ip->i_gen = random() / 2 + 1;
885 	DIP(ip, i_gen) = ip->i_gen;
886 	if (fs->fs_magic == FS_UFS2_MAGIC) {
887 		vfs_timestamp(&ts);
888 		ip->i_din2->di_birthtime = ts.tv_sec;
889 		ip->i_din2->di_birthnsec = ts.tv_nsec;
890 	}
891 	return (0);
892 noinodes:
893 	ffs_fserr(fs, pip->i_number, "out of inodes");
894 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
895 	return (ENOSPC);
896 }
897 
898 /*
899  * Find a cylinder group to place a directory.
900  *
901  * The policy implemented by this algorithm is to allocate a
902  * directory inode in the same cylinder group as its parent
903  * directory, but also to reserve space for its files inodes
904  * and data. Restrict the number of directories which may be
905  * allocated one after another in the same cylinder group
906  * without intervening allocation of files.
907  *
908  * If we allocate a first level directory then force allocation
909  * in another cylinder group.
910  */
911 static ino_t
912 ffs_dirpref(pip)
913 	struct inode *pip;
914 {
915 	struct fs *fs;
916 	int cg, prefcg, dirsize, cgsize;
917 	int avgifree, avgbfree, avgndir, curdirsize;
918 	int minifree, minbfree, maxndir;
919 	int mincg, minndir;
920 	int maxcontigdirs;
921 
922 	fs = pip->i_fs;
923 
924 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
925 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
926 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
927 
928 	/*
929 	 * Force allocation in another cg if creating a first level dir.
930 	 */
931 	if (ITOV(pip)->v_flag & VROOT) {
932 		prefcg = arc4random() % fs->fs_ncg;
933 		mincg = prefcg;
934 		minndir = fs->fs_ipg;
935 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
936 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
937 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
938 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
939 				mincg = cg;
940 				minndir = fs->fs_cs(fs, cg).cs_ndir;
941 			}
942 		for (cg = 0; cg < prefcg; cg++)
943 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
944 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
945 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
946 				mincg = cg;
947 				minndir = fs->fs_cs(fs, cg).cs_ndir;
948 			}
949 		return ((ino_t)(fs->fs_ipg * mincg));
950 	}
951 
952 	/*
953 	 * Count various limits which used for
954 	 * optimal allocation of a directory inode.
955 	 */
956 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
957 	minifree = avgifree - fs->fs_ipg / 4;
958 	if (minifree < 0)
959 		minifree = 0;
960 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
961 	if (minbfree < 0)
962 		minbfree = 0;
963 	cgsize = fs->fs_fsize * fs->fs_fpg;
964 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
965 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
966 	if (dirsize < curdirsize)
967 		dirsize = curdirsize;
968 	maxcontigdirs = min(cgsize / dirsize, 255);
969 	if (fs->fs_avgfpdir > 0)
970 		maxcontigdirs = min(maxcontigdirs,
971 				    fs->fs_ipg / fs->fs_avgfpdir);
972 	if (maxcontigdirs == 0)
973 		maxcontigdirs = 1;
974 
975 	/*
976 	 * Limit number of dirs in one cg and reserve space for
977 	 * regular files, but only if we have no deficit in
978 	 * inodes or space.
979 	 */
980 	prefcg = ino_to_cg(fs, pip->i_number);
981 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
982 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
983 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
984 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
985 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
986 				return ((ino_t)(fs->fs_ipg * cg));
987 		}
988 	for (cg = 0; cg < prefcg; cg++)
989 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
990 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
991 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
992 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
993 				return ((ino_t)(fs->fs_ipg * cg));
994 		}
995 	/*
996 	 * This is a backstop when we have deficit in space.
997 	 */
998 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
999 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1000 			return ((ino_t)(fs->fs_ipg * cg));
1001 	for (cg = 0; cg < prefcg; cg++)
1002 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1003 			break;
1004 	return ((ino_t)(fs->fs_ipg * cg));
1005 }
1006 
1007 /*
1008  * Select the desired position for the next block in a file.  The file is
1009  * logically divided into sections. The first section is composed of the
1010  * direct blocks. Each additional section contains fs_maxbpg blocks.
1011  *
1012  * If no blocks have been allocated in the first section, the policy is to
1013  * request a block in the same cylinder group as the inode that describes
1014  * the file. If no blocks have been allocated in any other section, the
1015  * policy is to place the section in a cylinder group with a greater than
1016  * average number of free blocks.  An appropriate cylinder group is found
1017  * by using a rotor that sweeps the cylinder groups. When a new group of
1018  * blocks is needed, the sweep begins in the cylinder group following the
1019  * cylinder group from which the previous allocation was made. The sweep
1020  * continues until a cylinder group with greater than the average number
1021  * of free blocks is found. If the allocation is for the first block in an
1022  * indirect block, the information on the previous allocation is unavailable;
1023  * here a best guess is made based upon the logical block number being
1024  * allocated.
1025  *
1026  * If a section is already partially allocated, the policy is to
1027  * contiguously allocate fs_maxcontig blocks. The end of one of these
1028  * contiguous blocks and the beginning of the next is laid out
1029  * contiguously if possible.
1030  */
1031 ufs2_daddr_t
1032 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1033 	struct inode *ip;
1034 	ufs_lbn_t lbn;
1035 	int indx;
1036 	ufs1_daddr_t *bap;
1037 {
1038 	struct fs *fs;
1039 	int cg;
1040 	int avgbfree, startcg;
1041 
1042 	fs = ip->i_fs;
1043 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1044 		if (lbn < NDADDR + NINDIR(fs)) {
1045 			cg = ino_to_cg(fs, ip->i_number);
1046 			return (fs->fs_fpg * cg + fs->fs_frag);
1047 		}
1048 		/*
1049 		 * Find a cylinder with greater than average number of
1050 		 * unused data blocks.
1051 		 */
1052 		if (indx == 0 || bap[indx - 1] == 0)
1053 			startcg =
1054 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1055 		else
1056 			startcg = dtog(fs, bap[indx - 1]) + 1;
1057 		startcg %= fs->fs_ncg;
1058 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1059 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1060 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1061 				fs->fs_cgrotor = cg;
1062 				return (fs->fs_fpg * cg + fs->fs_frag);
1063 			}
1064 		for (cg = 0; cg <= startcg; cg++)
1065 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1066 				fs->fs_cgrotor = cg;
1067 				return (fs->fs_fpg * cg + fs->fs_frag);
1068 			}
1069 		return (0);
1070 	}
1071 	/*
1072 	 * We just always try to lay things out contiguously.
1073 	 */
1074 	return (bap[indx - 1] + fs->fs_frag);
1075 }
1076 
1077 /*
1078  * Same as above, but for UFS2
1079  */
1080 ufs2_daddr_t
1081 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1082 	struct inode *ip;
1083 	ufs_lbn_t lbn;
1084 	int indx;
1085 	ufs2_daddr_t *bap;
1086 {
1087 	struct fs *fs;
1088 	int cg;
1089 	int avgbfree, startcg;
1090 
1091 	fs = ip->i_fs;
1092 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1093 		if (lbn < NDADDR + NINDIR(fs)) {
1094 			cg = ino_to_cg(fs, ip->i_number);
1095 			return (fs->fs_fpg * cg + fs->fs_frag);
1096 		}
1097 		/*
1098 		 * Find a cylinder with greater than average number of
1099 		 * unused data blocks.
1100 		 */
1101 		if (indx == 0 || bap[indx - 1] == 0)
1102 			startcg =
1103 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1104 		else
1105 			startcg = dtog(fs, bap[indx - 1]) + 1;
1106 		startcg %= fs->fs_ncg;
1107 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1108 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1109 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1110 				fs->fs_cgrotor = cg;
1111 				return (fs->fs_fpg * cg + fs->fs_frag);
1112 			}
1113 		for (cg = 0; cg <= startcg; cg++)
1114 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1115 				fs->fs_cgrotor = cg;
1116 				return (fs->fs_fpg * cg + fs->fs_frag);
1117 			}
1118 		return (0);
1119 	}
1120 	/*
1121 	 * We just always try to lay things out contiguously.
1122 	 */
1123 	return (bap[indx - 1] + fs->fs_frag);
1124 }
1125 
1126 /*
1127  * Implement the cylinder overflow algorithm.
1128  *
1129  * The policy implemented by this algorithm is:
1130  *   1) allocate the block in its requested cylinder group.
1131  *   2) quadradically rehash on the cylinder group number.
1132  *   3) brute force search for a free block.
1133  */
1134 /*VARARGS5*/
1135 static ufs2_daddr_t
1136 ffs_hashalloc(ip, cg, pref, size, allocator)
1137 	struct inode *ip;
1138 	int cg;
1139 	ufs2_daddr_t pref;
1140 	int size;	/* size for data blocks, mode for inodes */
1141 	allocfcn_t *allocator;
1142 {
1143 	struct fs *fs;
1144 	ufs2_daddr_t result;
1145 	int i, icg = cg;
1146 
1147 #ifdef DIAGNOSTIC
1148 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1149 		panic("ffs_hashalloc: allocation on suspended filesystem");
1150 #endif
1151 	fs = ip->i_fs;
1152 	/*
1153 	 * 1: preferred cylinder group
1154 	 */
1155 	result = (*allocator)(ip, cg, pref, size);
1156 	if (result)
1157 		return (result);
1158 	/*
1159 	 * 2: quadratic rehash
1160 	 */
1161 	for (i = 1; i < fs->fs_ncg; i *= 2) {
1162 		cg += i;
1163 		if (cg >= fs->fs_ncg)
1164 			cg -= fs->fs_ncg;
1165 		result = (*allocator)(ip, cg, 0, size);
1166 		if (result)
1167 			return (result);
1168 	}
1169 	/*
1170 	 * 3: brute force search
1171 	 * Note that we start at i == 2, since 0 was checked initially,
1172 	 * and 1 is always checked in the quadratic rehash.
1173 	 */
1174 	cg = (icg + 2) % fs->fs_ncg;
1175 	for (i = 2; i < fs->fs_ncg; i++) {
1176 		result = (*allocator)(ip, cg, 0, size);
1177 		if (result)
1178 			return (result);
1179 		cg++;
1180 		if (cg == fs->fs_ncg)
1181 			cg = 0;
1182 	}
1183 	return (0);
1184 }
1185 
1186 /*
1187  * Determine whether a fragment can be extended.
1188  *
1189  * Check to see if the necessary fragments are available, and
1190  * if they are, allocate them.
1191  */
1192 static ufs2_daddr_t
1193 ffs_fragextend(ip, cg, bprev, osize, nsize)
1194 	struct inode *ip;
1195 	int cg;
1196 	ufs2_daddr_t bprev;
1197 	int osize, nsize;
1198 {
1199 	struct fs *fs;
1200 	struct cg *cgp;
1201 	struct buf *bp;
1202 	long bno;
1203 	int frags, bbase;
1204 	int i, error;
1205 	u_int8_t *blksfree;
1206 
1207 	fs = ip->i_fs;
1208 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1209 		return (0);
1210 	frags = numfrags(fs, nsize);
1211 	bbase = fragnum(fs, bprev);
1212 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1213 		/* cannot extend across a block boundary */
1214 		return (0);
1215 	}
1216 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1217 		(int)fs->fs_cgsize, NOCRED, &bp);
1218 	if (error) {
1219 		brelse(bp);
1220 		return (0);
1221 	}
1222 	cgp = (struct cg *)bp->b_data;
1223 	if (!cg_chkmagic(cgp)) {
1224 		brelse(bp);
1225 		return (0);
1226 	}
1227 	bp->b_xflags |= BX_BKGRDWRITE;
1228 	cgp->cg_old_time = cgp->cg_time = time_second;
1229 	bno = dtogd(fs, bprev);
1230 	blksfree = cg_blksfree(cgp);
1231 	for (i = numfrags(fs, osize); i < frags; i++)
1232 		if (isclr(blksfree, bno + i)) {
1233 			brelse(bp);
1234 			return (0);
1235 		}
1236 	/*
1237 	 * the current fragment can be extended
1238 	 * deduct the count on fragment being extended into
1239 	 * increase the count on the remaining fragment (if any)
1240 	 * allocate the extended piece
1241 	 */
1242 	for (i = frags; i < fs->fs_frag - bbase; i++)
1243 		if (isclr(blksfree, bno + i))
1244 			break;
1245 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1246 	if (i != frags)
1247 		cgp->cg_frsum[i - frags]++;
1248 	for (i = numfrags(fs, osize); i < frags; i++) {
1249 		clrbit(blksfree, bno + i);
1250 		cgp->cg_cs.cs_nffree--;
1251 		fs->fs_cstotal.cs_nffree--;
1252 		fs->fs_cs(fs, cg).cs_nffree--;
1253 	}
1254 	fs->fs_fmod = 1;
1255 	if (DOINGSOFTDEP(ITOV(ip)))
1256 		softdep_setup_blkmapdep(bp, fs, bprev);
1257 	if (fs->fs_active != 0)
1258 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1259 	bdwrite(bp);
1260 	return (bprev);
1261 }
1262 
1263 /*
1264  * Determine whether a block can be allocated.
1265  *
1266  * Check to see if a block of the appropriate size is available,
1267  * and if it is, allocate it.
1268  */
1269 static ufs2_daddr_t
1270 ffs_alloccg(ip, cg, bpref, size)
1271 	struct inode *ip;
1272 	int cg;
1273 	ufs2_daddr_t bpref;
1274 	int size;
1275 {
1276 	struct fs *fs;
1277 	struct cg *cgp;
1278 	struct buf *bp;
1279 	ufs1_daddr_t bno;
1280 	ufs2_daddr_t blkno;
1281 	int i, allocsiz, error, frags;
1282 	u_int8_t *blksfree;
1283 
1284 	fs = ip->i_fs;
1285 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1286 		return (0);
1287 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1288 		(int)fs->fs_cgsize, NOCRED, &bp);
1289 	if (error) {
1290 		brelse(bp);
1291 		return (0);
1292 	}
1293 	cgp = (struct cg *)bp->b_data;
1294 	if (!cg_chkmagic(cgp) ||
1295 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1296 		brelse(bp);
1297 		return (0);
1298 	}
1299 	bp->b_xflags |= BX_BKGRDWRITE;
1300 	cgp->cg_old_time = cgp->cg_time = time_second;
1301 	if (size == fs->fs_bsize) {
1302 		blkno = ffs_alloccgblk(ip, bp, bpref);
1303 		if (fs->fs_active != 0)
1304 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1305 		bdwrite(bp);
1306 		return (blkno);
1307 	}
1308 	/*
1309 	 * check to see if any fragments are already available
1310 	 * allocsiz is the size which will be allocated, hacking
1311 	 * it down to a smaller size if necessary
1312 	 */
1313 	blksfree = cg_blksfree(cgp);
1314 	frags = numfrags(fs, size);
1315 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1316 		if (cgp->cg_frsum[allocsiz] != 0)
1317 			break;
1318 	if (allocsiz == fs->fs_frag) {
1319 		/*
1320 		 * no fragments were available, so a block will be
1321 		 * allocated, and hacked up
1322 		 */
1323 		if (cgp->cg_cs.cs_nbfree == 0) {
1324 			brelse(bp);
1325 			return (0);
1326 		}
1327 		blkno = ffs_alloccgblk(ip, bp, bpref);
1328 		bno = dtogd(fs, blkno);
1329 		for (i = frags; i < fs->fs_frag; i++)
1330 			setbit(blksfree, bno + i);
1331 		i = fs->fs_frag - frags;
1332 		cgp->cg_cs.cs_nffree += i;
1333 		fs->fs_cstotal.cs_nffree += i;
1334 		fs->fs_cs(fs, cg).cs_nffree += i;
1335 		fs->fs_fmod = 1;
1336 		cgp->cg_frsum[i]++;
1337 		if (fs->fs_active != 0)
1338 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1339 		bdwrite(bp);
1340 		return (blkno);
1341 	}
1342 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1343 	if (bno < 0) {
1344 		brelse(bp);
1345 		return (0);
1346 	}
1347 	for (i = 0; i < frags; i++)
1348 		clrbit(blksfree, bno + i);
1349 	cgp->cg_cs.cs_nffree -= frags;
1350 	fs->fs_cstotal.cs_nffree -= frags;
1351 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1352 	fs->fs_fmod = 1;
1353 	cgp->cg_frsum[allocsiz]--;
1354 	if (frags != allocsiz)
1355 		cgp->cg_frsum[allocsiz - frags]++;
1356 	blkno = cg * fs->fs_fpg + bno;
1357 	if (DOINGSOFTDEP(ITOV(ip)))
1358 		softdep_setup_blkmapdep(bp, fs, blkno);
1359 	if (fs->fs_active != 0)
1360 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1361 	bdwrite(bp);
1362 	return (blkno);
1363 }
1364 
1365 /*
1366  * Allocate a block in a cylinder group.
1367  *
1368  * This algorithm implements the following policy:
1369  *   1) allocate the requested block.
1370  *   2) allocate a rotationally optimal block in the same cylinder.
1371  *   3) allocate the next available block on the block rotor for the
1372  *      specified cylinder group.
1373  * Note that this routine only allocates fs_bsize blocks; these
1374  * blocks may be fragmented by the routine that allocates them.
1375  */
1376 static ufs2_daddr_t
1377 ffs_alloccgblk(ip, bp, bpref)
1378 	struct inode *ip;
1379 	struct buf *bp;
1380 	ufs2_daddr_t bpref;
1381 {
1382 	struct fs *fs;
1383 	struct cg *cgp;
1384 	ufs1_daddr_t bno;
1385 	ufs2_daddr_t blkno;
1386 	u_int8_t *blksfree;
1387 
1388 	fs = ip->i_fs;
1389 	cgp = (struct cg *)bp->b_data;
1390 	blksfree = cg_blksfree(cgp);
1391 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1392 		bpref = cgp->cg_rotor;
1393 	} else {
1394 		bpref = blknum(fs, bpref);
1395 		bno = dtogd(fs, bpref);
1396 		/*
1397 		 * if the requested block is available, use it
1398 		 */
1399 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1400 			goto gotit;
1401 	}
1402 	/*
1403 	 * Take the next available block in this cylinder group.
1404 	 */
1405 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1406 	if (bno < 0)
1407 		return (0);
1408 	cgp->cg_rotor = bno;
1409 gotit:
1410 	blkno = fragstoblks(fs, bno);
1411 	ffs_clrblock(fs, blksfree, (long)blkno);
1412 	ffs_clusteracct(fs, cgp, blkno, -1);
1413 	cgp->cg_cs.cs_nbfree--;
1414 	fs->fs_cstotal.cs_nbfree--;
1415 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1416 	fs->fs_fmod = 1;
1417 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1418 	if (DOINGSOFTDEP(ITOV(ip)))
1419 		softdep_setup_blkmapdep(bp, fs, blkno);
1420 	return (blkno);
1421 }
1422 
1423 /*
1424  * Determine whether a cluster can be allocated.
1425  *
1426  * We do not currently check for optimal rotational layout if there
1427  * are multiple choices in the same cylinder group. Instead we just
1428  * take the first one that we find following bpref.
1429  */
1430 static ufs2_daddr_t
1431 ffs_clusteralloc(ip, cg, bpref, len)
1432 	struct inode *ip;
1433 	int cg;
1434 	ufs2_daddr_t bpref;
1435 	int len;
1436 {
1437 	struct fs *fs;
1438 	struct cg *cgp;
1439 	struct buf *bp;
1440 	int i, run, bit, map, got;
1441 	ufs2_daddr_t bno;
1442 	u_char *mapp;
1443 	int32_t *lp;
1444 	u_int8_t *blksfree;
1445 
1446 	fs = ip->i_fs;
1447 	if (fs->fs_maxcluster[cg] < len)
1448 		return (0);
1449 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1450 	    NOCRED, &bp))
1451 		goto fail;
1452 	cgp = (struct cg *)bp->b_data;
1453 	if (!cg_chkmagic(cgp))
1454 		goto fail;
1455 	bp->b_xflags |= BX_BKGRDWRITE;
1456 	/*
1457 	 * Check to see if a cluster of the needed size (or bigger) is
1458 	 * available in this cylinder group.
1459 	 */
1460 	lp = &cg_clustersum(cgp)[len];
1461 	for (i = len; i <= fs->fs_contigsumsize; i++)
1462 		if (*lp++ > 0)
1463 			break;
1464 	if (i > fs->fs_contigsumsize) {
1465 		/*
1466 		 * This is the first time looking for a cluster in this
1467 		 * cylinder group. Update the cluster summary information
1468 		 * to reflect the true maximum sized cluster so that
1469 		 * future cluster allocation requests can avoid reading
1470 		 * the cylinder group map only to find no clusters.
1471 		 */
1472 		lp = &cg_clustersum(cgp)[len - 1];
1473 		for (i = len - 1; i > 0; i--)
1474 			if (*lp-- > 0)
1475 				break;
1476 		fs->fs_maxcluster[cg] = i;
1477 		goto fail;
1478 	}
1479 	/*
1480 	 * Search the cluster map to find a big enough cluster.
1481 	 * We take the first one that we find, even if it is larger
1482 	 * than we need as we prefer to get one close to the previous
1483 	 * block allocation. We do not search before the current
1484 	 * preference point as we do not want to allocate a block
1485 	 * that is allocated before the previous one (as we will
1486 	 * then have to wait for another pass of the elevator
1487 	 * algorithm before it will be read). We prefer to fail and
1488 	 * be recalled to try an allocation in the next cylinder group.
1489 	 */
1490 	if (dtog(fs, bpref) != cg)
1491 		bpref = 0;
1492 	else
1493 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1494 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1495 	map = *mapp++;
1496 	bit = 1 << (bpref % NBBY);
1497 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1498 		if ((map & bit) == 0) {
1499 			run = 0;
1500 		} else {
1501 			run++;
1502 			if (run == len)
1503 				break;
1504 		}
1505 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1506 			bit <<= 1;
1507 		} else {
1508 			map = *mapp++;
1509 			bit = 1;
1510 		}
1511 	}
1512 	if (got >= cgp->cg_nclusterblks)
1513 		goto fail;
1514 	/*
1515 	 * Allocate the cluster that we have found.
1516 	 */
1517 	blksfree = cg_blksfree(cgp);
1518 	for (i = 1; i <= len; i++)
1519 		if (!ffs_isblock(fs, blksfree, got - run + i))
1520 			panic("ffs_clusteralloc: map mismatch");
1521 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1522 	if (dtog(fs, bno) != cg)
1523 		panic("ffs_clusteralloc: allocated out of group");
1524 	len = blkstofrags(fs, len);
1525 	for (i = 0; i < len; i += fs->fs_frag)
1526 		if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
1527 			panic("ffs_clusteralloc: lost block");
1528 	if (fs->fs_active != 0)
1529 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1530 	bdwrite(bp);
1531 	return (bno);
1532 
1533 fail:
1534 	brelse(bp);
1535 	return (0);
1536 }
1537 
1538 /*
1539  * Determine whether an inode can be allocated.
1540  *
1541  * Check to see if an inode is available, and if it is,
1542  * allocate it using the following policy:
1543  *   1) allocate the requested inode.
1544  *   2) allocate the next available inode after the requested
1545  *      inode in the specified cylinder group.
1546  */
1547 static ufs2_daddr_t
1548 ffs_nodealloccg(ip, cg, ipref, mode)
1549 	struct inode *ip;
1550 	int cg;
1551 	ufs2_daddr_t ipref;
1552 	int mode;
1553 {
1554 	struct fs *fs;
1555 	struct cg *cgp;
1556 	struct buf *bp, *ibp;
1557 	u_int8_t *inosused;
1558 	struct ufs2_dinode *dp2;
1559 	int error, start, len, loc, map, i;
1560 
1561 	fs = ip->i_fs;
1562 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1563 		return (0);
1564 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1565 		(int)fs->fs_cgsize, NOCRED, &bp);
1566 	if (error) {
1567 		brelse(bp);
1568 		return (0);
1569 	}
1570 	cgp = (struct cg *)bp->b_data;
1571 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1572 		brelse(bp);
1573 		return (0);
1574 	}
1575 	bp->b_xflags |= BX_BKGRDWRITE;
1576 	cgp->cg_old_time = cgp->cg_time = time_second;
1577 	inosused = cg_inosused(cgp);
1578 	if (ipref) {
1579 		ipref %= fs->fs_ipg;
1580 		if (isclr(inosused, ipref))
1581 			goto gotit;
1582 	}
1583 	start = cgp->cg_irotor / NBBY;
1584 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1585 	loc = skpc(0xff, len, &inosused[start]);
1586 	if (loc == 0) {
1587 		len = start + 1;
1588 		start = 0;
1589 		loc = skpc(0xff, len, &inosused[0]);
1590 		if (loc == 0) {
1591 			printf("cg = %d, irotor = %ld, fs = %s\n",
1592 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1593 			panic("ffs_nodealloccg: map corrupted");
1594 			/* NOTREACHED */
1595 		}
1596 	}
1597 	i = start + len - loc;
1598 	map = inosused[i];
1599 	ipref = i * NBBY;
1600 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1601 		if ((map & i) == 0) {
1602 			cgp->cg_irotor = ipref;
1603 			goto gotit;
1604 		}
1605 	}
1606 	printf("fs = %s\n", fs->fs_fsmnt);
1607 	panic("ffs_nodealloccg: block not in map");
1608 	/* NOTREACHED */
1609 gotit:
1610 	if (DOINGSOFTDEP(ITOV(ip)))
1611 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1612 	setbit(inosused, ipref);
1613 	cgp->cg_cs.cs_nifree--;
1614 	fs->fs_cstotal.cs_nifree--;
1615 	fs->fs_cs(fs, cg).cs_nifree--;
1616 	fs->fs_fmod = 1;
1617 	if ((mode & IFMT) == IFDIR) {
1618 		cgp->cg_cs.cs_ndir++;
1619 		fs->fs_cstotal.cs_ndir++;
1620 		fs->fs_cs(fs, cg).cs_ndir++;
1621 	}
1622 	/*
1623 	 * Check to see if we need to initialize more inodes.
1624 	 */
1625 	if (fs->fs_magic == FS_UFS2_MAGIC &&
1626 	    ipref + INOPB(fs) > cgp->cg_initediblk &&
1627 	    cgp->cg_initediblk < cgp->cg_niblk) {
1628 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
1629 		    ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
1630 		    (int)fs->fs_bsize, 0, 0);
1631 		bzero(ibp->b_data, (int)fs->fs_bsize);
1632 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
1633 		for (i = 0; i < INOPB(fs); i++) {
1634 			dp2->di_gen = random() / 2 + 1;
1635 			dp2++;
1636 		}
1637 		bawrite(ibp);
1638 		cgp->cg_initediblk += INOPB(fs);
1639 	}
1640 	if (fs->fs_active != 0)
1641 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1642 	bdwrite(bp);
1643 	return (cg * fs->fs_ipg + ipref);
1644 }
1645 
1646 /*
1647  * Free a block or fragment.
1648  *
1649  * The specified block or fragment is placed back in the
1650  * free map. If a fragment is deallocated, a possible
1651  * block reassembly is checked.
1652  */
1653 void
1654 ffs_blkfree(fs, devvp, bno, size, inum)
1655 	struct fs *fs;
1656 	struct vnode *devvp;
1657 	ufs2_daddr_t bno;
1658 	long size;
1659 	ino_t inum;
1660 {
1661 	struct cg *cgp;
1662 	struct buf *bp;
1663 	ufs1_daddr_t fragno, cgbno;
1664 	ufs2_daddr_t cgblkno;
1665 	int i, error, cg, blk, frags, bbase;
1666 	u_int8_t *blksfree;
1667 	dev_t dev;
1668 
1669 	cg = dtog(fs, bno);
1670 	if (devvp->v_type != VCHR) {
1671 		/* devvp is a snapshot */
1672 		dev = VTOI(devvp)->i_devvp->v_rdev;
1673 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
1674 	} else {
1675 		/* devvp is a normal disk device */
1676 		dev = devvp->v_rdev;
1677 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
1678 		if ((devvp->v_flag & VCOPYONWRITE) &&
1679 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
1680 			return;
1681 		VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size);
1682 	}
1683 #ifdef DIAGNOSTIC
1684 	if (dev->si_mountpoint &&
1685 	    (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED))
1686 		panic("ffs_blkfree: deallocation on suspended filesystem");
1687 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1688 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1689 		printf("dev=%s, bno = %lld, bsize = %ld, size = %ld, fs = %s\n",
1690 		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
1691 		    size, fs->fs_fsmnt);
1692 		panic("ffs_blkfree: bad size");
1693 	}
1694 #endif
1695 	if ((u_int)bno >= fs->fs_size) {
1696 		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
1697 		    (u_long)inum);
1698 		ffs_fserr(fs, inum, "bad block");
1699 		return;
1700 	}
1701 	if ((error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1702 		brelse(bp);
1703 		return;
1704 	}
1705 	cgp = (struct cg *)bp->b_data;
1706 	if (!cg_chkmagic(cgp)) {
1707 		brelse(bp);
1708 		return;
1709 	}
1710 	bp->b_xflags |= BX_BKGRDWRITE;
1711 	cgp->cg_old_time = cgp->cg_time = time_second;
1712 	cgbno = dtogd(fs, bno);
1713 	blksfree = cg_blksfree(cgp);
1714 	if (size == fs->fs_bsize) {
1715 		fragno = fragstoblks(fs, cgbno);
1716 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1717 			if (devvp->v_type != VCHR) {
1718 				/* devvp is a snapshot */
1719 				brelse(bp);
1720 				return;
1721 			}
1722 			printf("dev = %s, block = %jd, fs = %s\n",
1723 			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
1724 			panic("ffs_blkfree: freeing free block");
1725 		}
1726 		ffs_setblock(fs, blksfree, fragno);
1727 		ffs_clusteracct(fs, cgp, fragno, 1);
1728 		cgp->cg_cs.cs_nbfree++;
1729 		fs->fs_cstotal.cs_nbfree++;
1730 		fs->fs_cs(fs, cg).cs_nbfree++;
1731 	} else {
1732 		bbase = cgbno - fragnum(fs, cgbno);
1733 		/*
1734 		 * decrement the counts associated with the old frags
1735 		 */
1736 		blk = blkmap(fs, blksfree, bbase);
1737 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1738 		/*
1739 		 * deallocate the fragment
1740 		 */
1741 		frags = numfrags(fs, size);
1742 		for (i = 0; i < frags; i++) {
1743 			if (isset(blksfree, cgbno + i)) {
1744 				printf("dev = %s, block = %jd, fs = %s\n",
1745 				    devtoname(dev), (intmax_t)(bno + i),
1746 				    fs->fs_fsmnt);
1747 				panic("ffs_blkfree: freeing free frag");
1748 			}
1749 			setbit(blksfree, cgbno + i);
1750 		}
1751 		cgp->cg_cs.cs_nffree += i;
1752 		fs->fs_cstotal.cs_nffree += i;
1753 		fs->fs_cs(fs, cg).cs_nffree += i;
1754 		/*
1755 		 * add back in counts associated with the new frags
1756 		 */
1757 		blk = blkmap(fs, blksfree, bbase);
1758 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1759 		/*
1760 		 * if a complete block has been reassembled, account for it
1761 		 */
1762 		fragno = fragstoblks(fs, bbase);
1763 		if (ffs_isblock(fs, blksfree, fragno)) {
1764 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1765 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1766 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1767 			ffs_clusteracct(fs, cgp, fragno, 1);
1768 			cgp->cg_cs.cs_nbfree++;
1769 			fs->fs_cstotal.cs_nbfree++;
1770 			fs->fs_cs(fs, cg).cs_nbfree++;
1771 		}
1772 	}
1773 	fs->fs_fmod = 1;
1774 	if (fs->fs_active != 0)
1775 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1776 	bdwrite(bp);
1777 }
1778 
1779 #ifdef DIAGNOSTIC
1780 /*
1781  * Verify allocation of a block or fragment. Returns true if block or
1782  * fragment is allocated, false if it is free.
1783  */
1784 static int
1785 ffs_checkblk(ip, bno, size)
1786 	struct inode *ip;
1787 	ufs2_daddr_t bno;
1788 	long size;
1789 {
1790 	struct fs *fs;
1791 	struct cg *cgp;
1792 	struct buf *bp;
1793 	ufs1_daddr_t cgbno;
1794 	int i, error, frags, free;
1795 	u_int8_t *blksfree;
1796 
1797 	fs = ip->i_fs;
1798 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1799 		printf("bsize = %ld, size = %ld, fs = %s\n",
1800 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1801 		panic("ffs_checkblk: bad size");
1802 	}
1803 	if ((u_int)bno >= fs->fs_size)
1804 		panic("ffs_checkblk: bad block %lld", (intmax_t)bno);
1805 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1806 		(int)fs->fs_cgsize, NOCRED, &bp);
1807 	if (error)
1808 		panic("ffs_checkblk: cg bread failed");
1809 	cgp = (struct cg *)bp->b_data;
1810 	if (!cg_chkmagic(cgp))
1811 		panic("ffs_checkblk: cg magic mismatch");
1812 	bp->b_xflags |= BX_BKGRDWRITE;
1813 	blksfree = cg_blksfree(cgp);
1814 	cgbno = dtogd(fs, bno);
1815 	if (size == fs->fs_bsize) {
1816 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
1817 	} else {
1818 		frags = numfrags(fs, size);
1819 		for (free = 0, i = 0; i < frags; i++)
1820 			if (isset(blksfree, cgbno + i))
1821 				free++;
1822 		if (free != 0 && free != frags)
1823 			panic("ffs_checkblk: partially free fragment");
1824 	}
1825 	brelse(bp);
1826 	return (!free);
1827 }
1828 #endif /* DIAGNOSTIC */
1829 
1830 /*
1831  * Free an inode.
1832  */
1833 int
1834 ffs_vfree(pvp, ino, mode)
1835 	struct vnode *pvp;
1836 	ino_t ino;
1837 	int mode;
1838 {
1839 	if (DOINGSOFTDEP(pvp)) {
1840 		softdep_freefile(pvp, ino, mode);
1841 		return (0);
1842 	}
1843 	return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode));
1844 }
1845 
1846 /*
1847  * Do the actual free operation.
1848  * The specified inode is placed back in the free map.
1849  */
1850 int
1851 ffs_freefile(fs, devvp, ino, mode)
1852 	struct fs *fs;
1853 	struct vnode *devvp;
1854 	ino_t ino;
1855 	int mode;
1856 {
1857 	struct cg *cgp;
1858 	struct buf *bp;
1859 	ufs2_daddr_t cgbno;
1860 	int error, cg;
1861 	u_int8_t *inosused;
1862 	dev_t dev;
1863 
1864 	cg = ino_to_cg(fs, ino);
1865 	if (devvp->v_type != VCHR) {
1866 		/* devvp is a snapshot */
1867 		dev = VTOI(devvp)->i_devvp->v_rdev;
1868 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1869 	} else {
1870 		/* devvp is a normal disk device */
1871 		dev = devvp->v_rdev;
1872 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1873 	}
1874 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1875 		panic("ffs_vfree: range: dev = %s, ino = %d, fs = %s",
1876 		    devtoname(dev), ino, fs->fs_fsmnt);
1877 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1878 		brelse(bp);
1879 		return (error);
1880 	}
1881 	cgp = (struct cg *)bp->b_data;
1882 	if (!cg_chkmagic(cgp)) {
1883 		brelse(bp);
1884 		return (0);
1885 	}
1886 	bp->b_xflags |= BX_BKGRDWRITE;
1887 	cgp->cg_old_time = cgp->cg_time = time_second;
1888 	inosused = cg_inosused(cgp);
1889 	ino %= fs->fs_ipg;
1890 	if (isclr(inosused, ino)) {
1891 		printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
1892 		    (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1893 		if (fs->fs_ronly == 0)
1894 			panic("ffs_vfree: freeing free inode");
1895 	}
1896 	clrbit(inosused, ino);
1897 	if (ino < cgp->cg_irotor)
1898 		cgp->cg_irotor = ino;
1899 	cgp->cg_cs.cs_nifree++;
1900 	fs->fs_cstotal.cs_nifree++;
1901 	fs->fs_cs(fs, cg).cs_nifree++;
1902 	if ((mode & IFMT) == IFDIR) {
1903 		cgp->cg_cs.cs_ndir--;
1904 		fs->fs_cstotal.cs_ndir--;
1905 		fs->fs_cs(fs, cg).cs_ndir--;
1906 	}
1907 	fs->fs_fmod = 1;
1908 	if (fs->fs_active != 0)
1909 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1910 	bdwrite(bp);
1911 	return (0);
1912 }
1913 
1914 /*
1915  * Find a block of the specified size in the specified cylinder group.
1916  *
1917  * It is a panic if a request is made to find a block if none are
1918  * available.
1919  */
1920 static ufs1_daddr_t
1921 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1922 	struct fs *fs;
1923 	struct cg *cgp;
1924 	ufs2_daddr_t bpref;
1925 	int allocsiz;
1926 {
1927 	ufs1_daddr_t bno;
1928 	int start, len, loc, i;
1929 	int blk, field, subfield, pos;
1930 	u_int8_t *blksfree;
1931 
1932 	/*
1933 	 * find the fragment by searching through the free block
1934 	 * map for an appropriate bit pattern
1935 	 */
1936 	if (bpref)
1937 		start = dtogd(fs, bpref) / NBBY;
1938 	else
1939 		start = cgp->cg_frotor / NBBY;
1940 	blksfree = cg_blksfree(cgp);
1941 	len = howmany(fs->fs_fpg, NBBY) - start;
1942 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
1943 		(u_char *)fragtbl[fs->fs_frag],
1944 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1945 	if (loc == 0) {
1946 		len = start + 1;
1947 		start = 0;
1948 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
1949 			(u_char *)fragtbl[fs->fs_frag],
1950 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1951 		if (loc == 0) {
1952 			printf("start = %d, len = %d, fs = %s\n",
1953 			    start, len, fs->fs_fsmnt);
1954 			panic("ffs_alloccg: map corrupted");
1955 			/* NOTREACHED */
1956 		}
1957 	}
1958 	bno = (start + len - loc) * NBBY;
1959 	cgp->cg_frotor = bno;
1960 	/*
1961 	 * found the byte in the map
1962 	 * sift through the bits to find the selected frag
1963 	 */
1964 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1965 		blk = blkmap(fs, blksfree, bno);
1966 		blk <<= 1;
1967 		field = around[allocsiz];
1968 		subfield = inside[allocsiz];
1969 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1970 			if ((blk & field) == subfield)
1971 				return (bno + pos);
1972 			field <<= 1;
1973 			subfield <<= 1;
1974 		}
1975 	}
1976 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1977 	panic("ffs_alloccg: block not in map");
1978 	return (-1);
1979 }
1980 
1981 /*
1982  * Update the cluster map because of an allocation or free.
1983  *
1984  * Cnt == 1 means free; cnt == -1 means allocating.
1985  */
1986 void
1987 ffs_clusteracct(fs, cgp, blkno, cnt)
1988 	struct fs *fs;
1989 	struct cg *cgp;
1990 	ufs1_daddr_t blkno;
1991 	int cnt;
1992 {
1993 	int32_t *sump;
1994 	int32_t *lp;
1995 	u_char *freemapp, *mapp;
1996 	int i, start, end, forw, back, map, bit;
1997 
1998 	if (fs->fs_contigsumsize <= 0)
1999 		return;
2000 	freemapp = cg_clustersfree(cgp);
2001 	sump = cg_clustersum(cgp);
2002 	/*
2003 	 * Allocate or clear the actual block.
2004 	 */
2005 	if (cnt > 0)
2006 		setbit(freemapp, blkno);
2007 	else
2008 		clrbit(freemapp, blkno);
2009 	/*
2010 	 * Find the size of the cluster going forward.
2011 	 */
2012 	start = blkno + 1;
2013 	end = start + fs->fs_contigsumsize;
2014 	if (end >= cgp->cg_nclusterblks)
2015 		end = cgp->cg_nclusterblks;
2016 	mapp = &freemapp[start / NBBY];
2017 	map = *mapp++;
2018 	bit = 1 << (start % NBBY);
2019 	for (i = start; i < end; i++) {
2020 		if ((map & bit) == 0)
2021 			break;
2022 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
2023 			bit <<= 1;
2024 		} else {
2025 			map = *mapp++;
2026 			bit = 1;
2027 		}
2028 	}
2029 	forw = i - start;
2030 	/*
2031 	 * Find the size of the cluster going backward.
2032 	 */
2033 	start = blkno - 1;
2034 	end = start - fs->fs_contigsumsize;
2035 	if (end < 0)
2036 		end = -1;
2037 	mapp = &freemapp[start / NBBY];
2038 	map = *mapp--;
2039 	bit = 1 << (start % NBBY);
2040 	for (i = start; i > end; i--) {
2041 		if ((map & bit) == 0)
2042 			break;
2043 		if ((i & (NBBY - 1)) != 0) {
2044 			bit >>= 1;
2045 		} else {
2046 			map = *mapp--;
2047 			bit = 1 << (NBBY - 1);
2048 		}
2049 	}
2050 	back = start - i;
2051 	/*
2052 	 * Account for old cluster and the possibly new forward and
2053 	 * back clusters.
2054 	 */
2055 	i = back + forw + 1;
2056 	if (i > fs->fs_contigsumsize)
2057 		i = fs->fs_contigsumsize;
2058 	sump[i] += cnt;
2059 	if (back > 0)
2060 		sump[back] -= cnt;
2061 	if (forw > 0)
2062 		sump[forw] -= cnt;
2063 	/*
2064 	 * Update cluster summary information.
2065 	 */
2066 	lp = &sump[fs->fs_contigsumsize];
2067 	for (i = fs->fs_contigsumsize; i > 0; i--)
2068 		if (*lp-- > 0)
2069 			break;
2070 	fs->fs_maxcluster[cgp->cg_cgx] = i;
2071 }
2072 
2073 /*
2074  * Fserr prints the name of a filesystem with an error diagnostic.
2075  *
2076  * The form of the error message is:
2077  *	fs: error message
2078  */
2079 static void
2080 ffs_fserr(fs, inum, cp)
2081 	struct fs *fs;
2082 	ino_t inum;
2083 	char *cp;
2084 {
2085 	struct proc *p = curproc;	/* XXX */
2086 
2087 	log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
2088 	    p ? p->p_pid : -1, p ? p->p_comm : "-",
2089 	    p ? p->p_ucred->cr_uid : 0, inum, fs->fs_fsmnt, cp);
2090 }
2091 
2092 /*
2093  * This function provides the capability for the fsck program to
2094  * update an active filesystem. Six operations are provided:
2095  *
2096  * adjrefcnt(inode, amt) - adjusts the reference count on the
2097  *	specified inode by the specified amount. Under normal
2098  *	operation the count should always go down. Decrementing
2099  *	the count to zero will cause the inode to be freed.
2100  * adjblkcnt(inode, amt) - adjust the number of blocks used to
2101  *	by the specifed amount.
2102  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2103  *	are marked as free. Inodes should never have to be marked
2104  *	as in use.
2105  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2106  *	are marked as free. Inodes should never have to be marked
2107  *	as in use.
2108  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2109  *	are marked as free. Blocks should never have to be marked
2110  *	as in use.
2111  * setflags(flags, set/clear) - the fs_flags field has the specified
2112  *	flags set (second parameter +1) or cleared (second parameter -1).
2113  */
2114 
2115 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2116 
2117 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2118 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2119 
2120 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2121 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2122 
2123 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2124 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2125 
2126 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2127 	sysctl_ffs_fsck, "Free Range of File Inodes");
2128 
2129 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2130 	sysctl_ffs_fsck, "Free Range of Blocks");
2131 
2132 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2133 	sysctl_ffs_fsck, "Change Filesystem Flags");
2134 
2135 #ifdef DEBUG
2136 static int fsckcmds = 0;
2137 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2138 #endif /* DEBUG */
2139 
2140 static int
2141 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2142 {
2143 	struct fsck_cmd cmd;
2144 	struct ufsmount *ump;
2145 	struct vnode *vp;
2146 	struct inode *ip;
2147 	struct mount *mp;
2148 	struct fs *fs;
2149 	ufs2_daddr_t blkno;
2150 	long blkcnt, blksize;
2151 	struct file *fp;
2152 	int filetype, error;
2153 
2154 	if (req->newlen > sizeof cmd)
2155 		return (EBADRPC);
2156 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2157 		return (error);
2158 	if (cmd.version != FFS_CMD_VERSION)
2159 		return (ERPCMISMATCH);
2160 	if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
2161 		return (error);
2162 	vn_start_write((struct vnode *)fp->f_data, &mp, V_WAIT);
2163 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2164 		vn_finished_write(mp);
2165 		fdrop(fp, curthread);
2166 		return (EINVAL);
2167 	}
2168 	if (mp->mnt_flag & MNT_RDONLY) {
2169 		vn_finished_write(mp);
2170 		fdrop(fp, curthread);
2171 		return (EROFS);
2172 	}
2173 	ump = VFSTOUFS(mp);
2174 	fs = ump->um_fs;
2175 	filetype = IFREG;
2176 
2177 	switch (oidp->oid_number) {
2178 
2179 	case FFS_SET_FLAGS:
2180 #ifdef DEBUG
2181 		if (fsckcmds)
2182 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2183 			    cmd.size > 0 ? "set" : "clear");
2184 #endif /* DEBUG */
2185 		if (cmd.size > 0)
2186 			fs->fs_flags |= (long)cmd.value;
2187 		else
2188 			fs->fs_flags &= ~(long)cmd.value;
2189 		break;
2190 
2191 	case FFS_ADJ_REFCNT:
2192 #ifdef DEBUG
2193 		if (fsckcmds) {
2194 			printf("%s: adjust inode %jd count by %jd\n",
2195 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2196 			    (intmax_t)cmd.size);
2197 		}
2198 #endif /* DEBUG */
2199 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2200 			break;
2201 		ip = VTOI(vp);
2202 		ip->i_nlink += cmd.size;
2203 		DIP(ip, i_nlink) = ip->i_nlink;
2204 		ip->i_effnlink += cmd.size;
2205 		ip->i_flag |= IN_CHANGE;
2206 		if (DOINGSOFTDEP(vp))
2207 			softdep_change_linkcnt(ip);
2208 		vput(vp);
2209 		break;
2210 
2211 	case FFS_ADJ_BLKCNT:
2212 #ifdef DEBUG
2213 		if (fsckcmds) {
2214 			printf("%s: adjust inode %jd block count by %jd\n",
2215 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2216 			    (intmax_t)cmd.size);
2217 		}
2218 #endif /* DEBUG */
2219 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2220 			break;
2221 		ip = VTOI(vp);
2222 		DIP(ip, i_blocks) += cmd.size;
2223 		ip->i_flag |= IN_CHANGE;
2224 		vput(vp);
2225 		break;
2226 
2227 	case FFS_DIR_FREE:
2228 		filetype = IFDIR;
2229 		/* fall through */
2230 
2231 	case FFS_FILE_FREE:
2232 #ifdef DEBUG
2233 		if (fsckcmds) {
2234 			if (cmd.size == 1)
2235 				printf("%s: free %s inode %d\n",
2236 				    mp->mnt_stat.f_mntonname,
2237 				    filetype == IFDIR ? "directory" : "file",
2238 				    (ino_t)cmd.value);
2239 			else
2240 				printf("%s: free %s inodes %d-%d\n",
2241 				    mp->mnt_stat.f_mntonname,
2242 				    filetype == IFDIR ? "directory" : "file",
2243 				    (ino_t)cmd.value,
2244 				    (ino_t)(cmd.value + cmd.size - 1));
2245 		}
2246 #endif /* DEBUG */
2247 		while (cmd.size > 0) {
2248 			if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value,
2249 			    filetype)))
2250 				break;
2251 			cmd.size -= 1;
2252 			cmd.value += 1;
2253 		}
2254 		break;
2255 
2256 	case FFS_BLK_FREE:
2257 #ifdef DEBUG
2258 		if (fsckcmds) {
2259 			if (cmd.size == 1)
2260 				printf("%s: free block %lld\n",
2261 				    mp->mnt_stat.f_mntonname,
2262 				    (intmax_t)cmd.value);
2263 			else
2264 				printf("%s: free blocks %lld-%lld\n",
2265 				    mp->mnt_stat.f_mntonname,
2266 				    (intmax_t)cmd.value,
2267 				    (intmax_t)cmd.value + cmd.size - 1);
2268 		}
2269 #endif /* DEBUG */
2270 		blkno = cmd.value;
2271 		blkcnt = cmd.size;
2272 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2273 		while (blkcnt > 0) {
2274 			if (blksize > blkcnt)
2275 				blksize = blkcnt;
2276 			ffs_blkfree(fs, ump->um_devvp, blkno,
2277 			    blksize * fs->fs_fsize, ROOTINO);
2278 			blkno += blksize;
2279 			blkcnt -= blksize;
2280 			blksize = fs->fs_frag;
2281 		}
2282 		break;
2283 
2284 	default:
2285 #ifdef DEBUG
2286 		if (fsckcmds) {
2287 			printf("Invalid request %d from fsck\n",
2288 			    oidp->oid_number);
2289 		}
2290 #endif /* DEBUG */
2291 		error = EINVAL;
2292 		break;
2293 
2294 	}
2295 	fdrop(fp, curthread);
2296 	vn_finished_write(mp);
2297 	return (error);
2298 }
2299