1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/bio.h> 72 #include <sys/buf.h> 73 #include <sys/capsicum.h> 74 #include <sys/conf.h> 75 #include <sys/fcntl.h> 76 #include <sys/file.h> 77 #include <sys/filedesc.h> 78 #include <sys/gsb_crc32.h> 79 #include <sys/kernel.h> 80 #include <sys/mount.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/stat.h> 84 #include <sys/syscallsubr.h> 85 #include <sys/sysctl.h> 86 #include <sys/syslog.h> 87 #include <sys/taskqueue.h> 88 #include <sys/vnode.h> 89 90 #include <security/audit/audit.h> 91 92 #include <geom/geom.h> 93 #include <geom/geom_vfs.h> 94 95 #include <ufs/ufs/dir.h> 96 #include <ufs/ufs/extattr.h> 97 #include <ufs/ufs/quota.h> 98 #include <ufs/ufs/inode.h> 99 #include <ufs/ufs/ufs_extern.h> 100 #include <ufs/ufs/ufsmount.h> 101 102 #include <ufs/ffs/fs.h> 103 #include <ufs/ffs/ffs_extern.h> 104 #include <ufs/ffs/softdep.h> 105 106 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, uint64_t cg, 107 ufs2_daddr_t bpref, int size, int rsize); 108 109 static ufs2_daddr_t ffs_alloccg(struct inode *, uint64_t, ufs2_daddr_t, int, 110 int); 111 static ufs2_daddr_t 112 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 113 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 114 struct vnode *, ufs2_daddr_t, long, ino_t, 115 struct workhead *); 116 #ifdef INVARIANTS 117 static int ffs_checkfreeblk(struct inode *, ufs2_daddr_t, long); 118 #endif 119 static void ffs_checkcgintegrity(struct fs *, uint64_t, int); 120 static ufs2_daddr_t ffs_clusteralloc(struct inode *, uint64_t, ufs2_daddr_t, 121 int); 122 static ino_t ffs_dirpref(struct inode *); 123 static ufs2_daddr_t ffs_fragextend(struct inode *, uint64_t, ufs2_daddr_t, 124 int, int); 125 static ufs2_daddr_t ffs_hashalloc(struct inode *, uint64_t, ufs2_daddr_t, 126 int, int, allocfcn_t *); 127 static ufs2_daddr_t ffs_nodealloccg(struct inode *, uint64_t, ufs2_daddr_t, int, 128 int); 129 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 130 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 131 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 132 static void ffs_ckhash_cg(struct buf *); 133 134 /* 135 * Allocate a block in the filesystem. 136 * 137 * The size of the requested block is given, which must be some 138 * multiple of fs_fsize and <= fs_bsize. 139 * A preference may be optionally specified. If a preference is given 140 * the following hierarchy is used to allocate a block: 141 * 1) allocate the requested block. 142 * 2) allocate a rotationally optimal block in the same cylinder. 143 * 3) allocate a block in the same cylinder group. 144 * 4) quadratically rehash into other cylinder groups, until an 145 * available block is located. 146 * If no block preference is given the following hierarchy is used 147 * to allocate a block: 148 * 1) allocate a block in the cylinder group that contains the 149 * inode for the file. 150 * 2) quadratically rehash into other cylinder groups, until an 151 * available block is located. 152 */ 153 int 154 ffs_alloc(struct inode *ip, 155 ufs2_daddr_t lbn, 156 ufs2_daddr_t bpref, 157 int size, 158 int flags, 159 struct ucred *cred, 160 ufs2_daddr_t *bnp) 161 { 162 struct fs *fs; 163 struct ufsmount *ump; 164 ufs2_daddr_t bno; 165 uint64_t cg, reclaimed; 166 int64_t delta; 167 #ifdef QUOTA 168 int error; 169 #endif 170 171 *bnp = 0; 172 ump = ITOUMP(ip); 173 fs = ump->um_fs; 174 mtx_assert(UFS_MTX(ump), MA_OWNED); 175 #ifdef INVARIANTS 176 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) { 177 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 178 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 179 fs->fs_fsmnt); 180 panic("ffs_alloc: bad size"); 181 } 182 if (cred == NOCRED) 183 panic("ffs_alloc: missing credential"); 184 #endif /* INVARIANTS */ 185 reclaimed = 0; 186 retry: 187 #ifdef QUOTA 188 UFS_UNLOCK(ump); 189 error = chkdq(ip, btodb(size), cred, 0); 190 if (error) 191 return (error); 192 UFS_LOCK(ump); 193 #endif 194 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 195 goto nospace; 196 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 197 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 198 goto nospace; 199 if (bpref >= fs->fs_size) 200 bpref = 0; 201 if (bpref == 0) 202 cg = ino_to_cg(fs, ip->i_number); 203 else 204 cg = dtog(fs, bpref); 205 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 206 if (bno > 0) { 207 delta = btodb(size); 208 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 209 if (flags & IO_EXT) 210 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 211 else 212 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 213 *bnp = bno; 214 return (0); 215 } 216 nospace: 217 #ifdef QUOTA 218 UFS_UNLOCK(ump); 219 /* 220 * Restore user's disk quota because allocation failed. 221 */ 222 (void) chkdq(ip, -btodb(size), cred, FORCE); 223 UFS_LOCK(ump); 224 #endif 225 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 226 reclaimed = 1; 227 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 228 goto retry; 229 } 230 if (ffs_fsfail_cleanup_locked(ump, 0)) { 231 UFS_UNLOCK(ump); 232 return (ENXIO); 233 } 234 if (reclaimed > 0 && 235 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 236 UFS_UNLOCK(ump); 237 ffs_fserr(fs, ip->i_number, "filesystem full"); 238 uprintf("\n%s: write failed, filesystem is full\n", 239 fs->fs_fsmnt); 240 } else { 241 UFS_UNLOCK(ump); 242 } 243 return (ENOSPC); 244 } 245 246 /* 247 * Reallocate a fragment to a bigger size 248 * 249 * The number and size of the old block is given, and a preference 250 * and new size is also specified. The allocator attempts to extend 251 * the original block. Failing that, the regular block allocator is 252 * invoked to get an appropriate block. 253 */ 254 int 255 ffs_realloccg(struct inode *ip, 256 ufs2_daddr_t lbprev, 257 ufs2_daddr_t bprev, 258 ufs2_daddr_t bpref, 259 int osize, 260 int nsize, 261 int flags, 262 struct ucred *cred, 263 struct buf **bpp) 264 { 265 struct vnode *vp; 266 struct fs *fs; 267 struct buf *bp; 268 struct ufsmount *ump; 269 uint64_t cg, request, reclaimed; 270 int error, gbflags; 271 ufs2_daddr_t bno; 272 int64_t delta; 273 274 vp = ITOV(ip); 275 ump = ITOUMP(ip); 276 fs = ump->um_fs; 277 bp = NULL; 278 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 279 #ifdef WITNESS 280 gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; 281 #endif 282 283 mtx_assert(UFS_MTX(ump), MA_OWNED); 284 #ifdef INVARIANTS 285 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 286 panic("ffs_realloccg: allocation on suspended filesystem"); 287 if ((uint64_t)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 288 (uint64_t)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 289 printf( 290 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 291 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 292 nsize, fs->fs_fsmnt); 293 panic("ffs_realloccg: bad size"); 294 } 295 if (cred == NOCRED) 296 panic("ffs_realloccg: missing credential"); 297 #endif /* INVARIANTS */ 298 reclaimed = 0; 299 retry: 300 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 301 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 302 goto nospace; 303 } 304 if (bprev == 0) { 305 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 306 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 307 fs->fs_fsmnt); 308 panic("ffs_realloccg: bad bprev"); 309 } 310 UFS_UNLOCK(ump); 311 /* 312 * Allocate the extra space in the buffer. 313 */ 314 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 315 if (error) { 316 return (error); 317 } 318 319 if (bp->b_blkno == bp->b_lblkno) { 320 if (lbprev >= UFS_NDADDR) 321 panic("ffs_realloccg: lbprev out of range"); 322 bp->b_blkno = fsbtodb(fs, bprev); 323 } 324 325 #ifdef QUOTA 326 error = chkdq(ip, btodb(nsize - osize), cred, 0); 327 if (error) { 328 brelse(bp); 329 return (error); 330 } 331 #endif 332 /* 333 * Check for extension in the existing location. 334 */ 335 *bpp = NULL; 336 cg = dtog(fs, bprev); 337 UFS_LOCK(ump); 338 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 339 if (bno) { 340 if (bp->b_blkno != fsbtodb(fs, bno)) 341 panic("ffs_realloccg: bad blockno"); 342 delta = btodb(nsize - osize); 343 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 344 if (flags & IO_EXT) 345 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 346 else 347 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 348 allocbuf(bp, nsize); 349 bp->b_flags |= B_DONE; 350 vfs_bio_bzero_buf(bp, osize, nsize - osize); 351 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 352 vfs_bio_set_valid(bp, osize, nsize - osize); 353 *bpp = bp; 354 return (0); 355 } 356 /* 357 * Allocate a new disk location. 358 */ 359 if (bpref >= fs->fs_size) 360 bpref = 0; 361 switch ((int)fs->fs_optim) { 362 case FS_OPTSPACE: 363 /* 364 * Allocate an exact sized fragment. Although this makes 365 * best use of space, we will waste time relocating it if 366 * the file continues to grow. If the fragmentation is 367 * less than half of the minimum free reserve, we choose 368 * to begin optimizing for time. 369 */ 370 request = nsize; 371 if (fs->fs_minfree <= 5 || 372 fs->fs_cstotal.cs_nffree > 373 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 374 break; 375 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 376 fs->fs_fsmnt); 377 fs->fs_optim = FS_OPTTIME; 378 break; 379 case FS_OPTTIME: 380 /* 381 * At this point we have discovered a file that is trying to 382 * grow a small fragment to a larger fragment. To save time, 383 * we allocate a full sized block, then free the unused portion. 384 * If the file continues to grow, the `ffs_fragextend' call 385 * above will be able to grow it in place without further 386 * copying. If aberrant programs cause disk fragmentation to 387 * grow within 2% of the free reserve, we choose to begin 388 * optimizing for space. 389 */ 390 request = fs->fs_bsize; 391 if (fs->fs_cstotal.cs_nffree < 392 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 393 break; 394 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 395 fs->fs_fsmnt); 396 fs->fs_optim = FS_OPTSPACE; 397 break; 398 default: 399 printf("dev = %s, optim = %ld, fs = %s\n", 400 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 401 panic("ffs_realloccg: bad optim"); 402 /* NOTREACHED */ 403 } 404 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 405 if (bno > 0) { 406 bp->b_blkno = fsbtodb(fs, bno); 407 if (!DOINGSOFTDEP(vp)) 408 /* 409 * The usual case is that a smaller fragment that 410 * was just allocated has been replaced with a bigger 411 * fragment or a full-size block. If it is marked as 412 * B_DELWRI, the current contents have not been written 413 * to disk. It is possible that the block was written 414 * earlier, but very uncommon. If the block has never 415 * been written, there is no need to send a BIO_DELETE 416 * for it when it is freed. The gain from avoiding the 417 * TRIMs for the common case of unwritten blocks far 418 * exceeds the cost of the write amplification for the 419 * uncommon case of failing to send a TRIM for a block 420 * that had been written. 421 */ 422 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 423 ip->i_number, vp->v_type, NULL, 424 (bp->b_flags & B_DELWRI) != 0 ? 425 NOTRIM_KEY : SINGLETON_KEY); 426 delta = btodb(nsize - osize); 427 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 428 if (flags & IO_EXT) 429 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 430 else 431 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 432 allocbuf(bp, nsize); 433 bp->b_flags |= B_DONE; 434 vfs_bio_bzero_buf(bp, osize, nsize - osize); 435 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 436 vfs_bio_set_valid(bp, osize, nsize - osize); 437 *bpp = bp; 438 return (0); 439 } 440 #ifdef QUOTA 441 UFS_UNLOCK(ump); 442 /* 443 * Restore user's disk quota because allocation failed. 444 */ 445 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 446 UFS_LOCK(ump); 447 #endif 448 nospace: 449 /* 450 * no space available 451 */ 452 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 453 reclaimed = 1; 454 UFS_UNLOCK(ump); 455 if (bp) { 456 brelse(bp); 457 bp = NULL; 458 } 459 UFS_LOCK(ump); 460 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 461 goto retry; 462 } 463 if (bp) 464 brelse(bp); 465 if (ffs_fsfail_cleanup_locked(ump, 0)) { 466 UFS_UNLOCK(ump); 467 return (ENXIO); 468 } 469 if (reclaimed > 0 && 470 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 471 UFS_UNLOCK(ump); 472 ffs_fserr(fs, ip->i_number, "filesystem full"); 473 uprintf("\n%s: write failed, filesystem is full\n", 474 fs->fs_fsmnt); 475 } else { 476 UFS_UNLOCK(ump); 477 } 478 return (ENOSPC); 479 } 480 481 /* 482 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 483 * 484 * The vnode and an array of buffer pointers for a range of sequential 485 * logical blocks to be made contiguous is given. The allocator attempts 486 * to find a range of sequential blocks starting as close as possible 487 * from the end of the allocation for the logical block immediately 488 * preceding the current range. If successful, the physical block numbers 489 * in the buffer pointers and in the inode are changed to reflect the new 490 * allocation. If unsuccessful, the allocation is left unchanged. The 491 * success in doing the reallocation is returned. Note that the error 492 * return is not reflected back to the user. Rather the previous block 493 * allocation will be used. 494 */ 495 496 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 497 "FFS filesystem"); 498 499 static int doasyncfree = 1; 500 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 501 "do not force synchronous writes when blocks are reallocated"); 502 503 static int doreallocblks = 1; 504 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 505 "enable block reallocation"); 506 507 static int dotrimcons = 1; 508 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 509 "enable BIO_DELETE / TRIM consolidation"); 510 511 static int maxclustersearch = 10; 512 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 513 0, "max number of cylinder group to search for contigous blocks"); 514 515 #ifdef DIAGNOSTIC 516 static int prtrealloc = 0; 517 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 518 "print out FFS filesystem block reallocation operations"); 519 #endif 520 521 int 522 ffs_reallocblks( 523 struct vop_reallocblks_args /* { 524 struct vnode *a_vp; 525 struct cluster_save *a_buflist; 526 } */ *ap) 527 { 528 struct ufsmount *ump; 529 int error; 530 531 /* 532 * We used to skip reallocating the blocks of a file into a 533 * contiguous sequence if the underlying flash device requested 534 * BIO_DELETE notifications, because devices that benefit from 535 * BIO_DELETE also benefit from not moving the data. However, 536 * the destination for the data is usually moved before the data 537 * is written to the initially allocated location, so we rarely 538 * suffer the penalty of extra writes. With the addition of the 539 * consolidation of contiguous blocks into single BIO_DELETE 540 * operations, having fewer but larger contiguous blocks reduces 541 * the number of (slow and expensive) BIO_DELETE operations. So 542 * when doing BIO_DELETE consolidation, we do block reallocation. 543 * 544 * Skip if reallocblks has been disabled globally. 545 */ 546 ump = ap->a_vp->v_mount->mnt_data; 547 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 548 doreallocblks == 0) 549 return (ENOSPC); 550 551 /* 552 * We can't wait in softdep prealloc as it may fsync and recurse 553 * here. Instead we simply fail to reallocate blocks if this 554 * rare condition arises. 555 */ 556 if (DOINGSUJ(ap->a_vp)) 557 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 558 return (ENOSPC); 559 vn_seqc_write_begin(ap->a_vp); 560 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) : 561 ffs_reallocblks_ufs2(ap); 562 vn_seqc_write_end(ap->a_vp); 563 return (error); 564 } 565 566 static int 567 ffs_reallocblks_ufs1( 568 struct vop_reallocblks_args /* { 569 struct vnode *a_vp; 570 struct cluster_save *a_buflist; 571 } */ *ap) 572 { 573 struct fs *fs; 574 struct inode *ip; 575 struct vnode *vp; 576 struct buf *sbp, *ebp, *bp; 577 ufs1_daddr_t *bap, *sbap, *ebap; 578 struct cluster_save *buflist; 579 struct ufsmount *ump; 580 ufs_lbn_t start_lbn, end_lbn; 581 ufs1_daddr_t soff, newblk, blkno; 582 ufs2_daddr_t pref; 583 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 584 int i, cg, len, start_lvl, end_lvl, ssize; 585 586 vp = ap->a_vp; 587 ip = VTOI(vp); 588 ump = ITOUMP(ip); 589 fs = ump->um_fs; 590 /* 591 * If we are not tracking block clusters or if we have less than 4% 592 * free blocks left, then do not attempt to cluster. Running with 593 * less than 5% free block reserve is not recommended and those that 594 * choose to do so do not expect to have good file layout. 595 */ 596 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 597 return (ENOSPC); 598 buflist = ap->a_buflist; 599 len = buflist->bs_nchildren; 600 start_lbn = buflist->bs_children[0]->b_lblkno; 601 end_lbn = start_lbn + len - 1; 602 #ifdef INVARIANTS 603 for (i = 0; i < len; i++) 604 if (!ffs_checkfreeblk(ip, 605 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 606 panic("ffs_reallocblks: unallocated block 1"); 607 for (i = 1; i < len; i++) 608 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 609 panic("ffs_reallocblks: non-logical cluster"); 610 blkno = buflist->bs_children[0]->b_blkno; 611 ssize = fsbtodb(fs, fs->fs_frag); 612 for (i = 1; i < len - 1; i++) 613 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 614 panic("ffs_reallocblks: non-physical cluster %d", i); 615 #endif 616 /* 617 * If the cluster crosses the boundary for the first indirect 618 * block, leave space for the indirect block. Indirect blocks 619 * are initially laid out in a position after the last direct 620 * block. Block reallocation would usually destroy locality by 621 * moving the indirect block out of the way to make room for 622 * data blocks if we didn't compensate here. We should also do 623 * this for other indirect block boundaries, but it is only 624 * important for the first one. 625 */ 626 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 627 return (ENOSPC); 628 /* 629 * If the latest allocation is in a new cylinder group, assume that 630 * the filesystem has decided to move and do not force it back to 631 * the previous cylinder group. 632 */ 633 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 634 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 635 return (ENOSPC); 636 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 637 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 638 return (ENOSPC); 639 /* 640 * Get the starting offset and block map for the first block. 641 */ 642 if (start_lvl == 0) { 643 sbap = &ip->i_din1->di_db[0]; 644 soff = start_lbn; 645 } else { 646 idp = &start_ap[start_lvl - 1]; 647 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 648 brelse(sbp); 649 return (ENOSPC); 650 } 651 sbap = (ufs1_daddr_t *)sbp->b_data; 652 soff = idp->in_off; 653 } 654 /* 655 * If the block range spans two block maps, get the second map. 656 */ 657 ebap = NULL; 658 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 659 ssize = len; 660 } else { 661 #ifdef INVARIANTS 662 if (start_lvl > 0 && 663 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 664 panic("ffs_reallocblk: start == end"); 665 #endif 666 ssize = len - (idp->in_off + 1); 667 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 668 goto fail; 669 ebap = (ufs1_daddr_t *)ebp->b_data; 670 } 671 /* 672 * Find the preferred location for the cluster. If we have not 673 * previously failed at this endeavor, then follow our standard 674 * preference calculation. If we have failed at it, then pick up 675 * where we last ended our search. 676 */ 677 UFS_LOCK(ump); 678 if (ip->i_nextclustercg == -1) 679 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 680 else 681 pref = cgdata(fs, ip->i_nextclustercg); 682 /* 683 * Search the block map looking for an allocation of the desired size. 684 * To avoid wasting too much time, we limit the number of cylinder 685 * groups that we will search. 686 */ 687 cg = dtog(fs, pref); 688 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 689 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 690 break; 691 cg += 1; 692 if (cg >= fs->fs_ncg) 693 cg = 0; 694 } 695 /* 696 * If we have failed in our search, record where we gave up for 697 * next time. Otherwise, fall back to our usual search citerion. 698 */ 699 if (newblk == 0) { 700 ip->i_nextclustercg = cg; 701 UFS_UNLOCK(ump); 702 goto fail; 703 } 704 ip->i_nextclustercg = -1; 705 /* 706 * We have found a new contiguous block. 707 * 708 * First we have to replace the old block pointers with the new 709 * block pointers in the inode and indirect blocks associated 710 * with the file. 711 */ 712 #ifdef DIAGNOSTIC 713 if (prtrealloc) 714 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 715 (uintmax_t)ip->i_number, 716 (intmax_t)start_lbn, (intmax_t)end_lbn); 717 #endif 718 blkno = newblk; 719 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 720 if (i == ssize) { 721 bap = ebap; 722 soff = -i; 723 } 724 #ifdef INVARIANTS 725 if (!ffs_checkfreeblk(ip, 726 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 727 panic("ffs_reallocblks: unallocated block 2"); 728 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 729 panic("ffs_reallocblks: alloc mismatch"); 730 #endif 731 #ifdef DIAGNOSTIC 732 if (prtrealloc) 733 printf(" %d,", *bap); 734 #endif 735 if (DOINGSOFTDEP(vp)) { 736 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 737 softdep_setup_allocdirect(ip, start_lbn + i, 738 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 739 buflist->bs_children[i]); 740 else 741 softdep_setup_allocindir_page(ip, start_lbn + i, 742 i < ssize ? sbp : ebp, soff + i, blkno, 743 *bap, buflist->bs_children[i]); 744 } 745 *bap++ = blkno; 746 } 747 /* 748 * Next we must write out the modified inode and indirect blocks. 749 * For strict correctness, the writes should be synchronous since 750 * the old block values may have been written to disk. In practise 751 * they are almost never written, but if we are concerned about 752 * strict correctness, the `doasyncfree' flag should be set to zero. 753 * 754 * The test on `doasyncfree' should be changed to test a flag 755 * that shows whether the associated buffers and inodes have 756 * been written. The flag should be set when the cluster is 757 * started and cleared whenever the buffer or inode is flushed. 758 * We can then check below to see if it is set, and do the 759 * synchronous write only when it has been cleared. 760 */ 761 if (sbap != &ip->i_din1->di_db[0]) { 762 if (doasyncfree) 763 bdwrite(sbp); 764 else 765 bwrite(sbp); 766 } else { 767 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 768 if (!doasyncfree) 769 ffs_update(vp, 1); 770 } 771 if (ssize < len) { 772 if (doasyncfree) 773 bdwrite(ebp); 774 else 775 bwrite(ebp); 776 } 777 /* 778 * Last, free the old blocks and assign the new blocks to the buffers. 779 */ 780 #ifdef DIAGNOSTIC 781 if (prtrealloc) 782 printf("\n\tnew:"); 783 #endif 784 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 785 bp = buflist->bs_children[i]; 786 if (!DOINGSOFTDEP(vp)) 787 /* 788 * The usual case is that a set of N-contiguous blocks 789 * that was just allocated has been replaced with a 790 * set of N+1-contiguous blocks. If they are marked as 791 * B_DELWRI, the current contents have not been written 792 * to disk. It is possible that the blocks were written 793 * earlier, but very uncommon. If the blocks have never 794 * been written, there is no need to send a BIO_DELETE 795 * for them when they are freed. The gain from avoiding 796 * the TRIMs for the common case of unwritten blocks 797 * far exceeds the cost of the write amplification for 798 * the uncommon case of failing to send a TRIM for the 799 * blocks that had been written. 800 */ 801 ffs_blkfree(ump, fs, ump->um_devvp, 802 dbtofsb(fs, bp->b_blkno), 803 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 804 (bp->b_flags & B_DELWRI) != 0 ? 805 NOTRIM_KEY : SINGLETON_KEY); 806 bp->b_blkno = fsbtodb(fs, blkno); 807 #ifdef INVARIANTS 808 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno), 809 fs->fs_bsize)) 810 panic("ffs_reallocblks: unallocated block 3"); 811 #endif 812 #ifdef DIAGNOSTIC 813 if (prtrealloc) 814 printf(" %d,", blkno); 815 #endif 816 } 817 #ifdef DIAGNOSTIC 818 if (prtrealloc) { 819 prtrealloc--; 820 printf("\n"); 821 } 822 #endif 823 return (0); 824 825 fail: 826 if (ssize < len) 827 brelse(ebp); 828 if (sbap != &ip->i_din1->di_db[0]) 829 brelse(sbp); 830 return (ENOSPC); 831 } 832 833 static int 834 ffs_reallocblks_ufs2( 835 struct vop_reallocblks_args /* { 836 struct vnode *a_vp; 837 struct cluster_save *a_buflist; 838 } */ *ap) 839 { 840 struct fs *fs; 841 struct inode *ip; 842 struct vnode *vp; 843 struct buf *sbp, *ebp, *bp; 844 ufs2_daddr_t *bap, *sbap, *ebap; 845 struct cluster_save *buflist; 846 struct ufsmount *ump; 847 ufs_lbn_t start_lbn, end_lbn; 848 ufs2_daddr_t soff, newblk, blkno, pref; 849 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 850 int i, cg, len, start_lvl, end_lvl, ssize; 851 852 vp = ap->a_vp; 853 ip = VTOI(vp); 854 ump = ITOUMP(ip); 855 fs = ump->um_fs; 856 /* 857 * If we are not tracking block clusters or if we have less than 4% 858 * free blocks left, then do not attempt to cluster. Running with 859 * less than 5% free block reserve is not recommended and those that 860 * choose to do so do not expect to have good file layout. 861 */ 862 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 863 return (ENOSPC); 864 buflist = ap->a_buflist; 865 len = buflist->bs_nchildren; 866 start_lbn = buflist->bs_children[0]->b_lblkno; 867 end_lbn = start_lbn + len - 1; 868 #ifdef INVARIANTS 869 for (i = 0; i < len; i++) 870 if (!ffs_checkfreeblk(ip, 871 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 872 panic("ffs_reallocblks: unallocated block 1"); 873 for (i = 1; i < len; i++) 874 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 875 panic("ffs_reallocblks: non-logical cluster"); 876 blkno = buflist->bs_children[0]->b_blkno; 877 ssize = fsbtodb(fs, fs->fs_frag); 878 for (i = 1; i < len - 1; i++) 879 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 880 panic("ffs_reallocblks: non-physical cluster %d", i); 881 #endif 882 /* 883 * If the cluster crosses the boundary for the first indirect 884 * block, do not move anything in it. Indirect blocks are 885 * usually initially laid out in a position between the data 886 * blocks. Block reallocation would usually destroy locality by 887 * moving the indirect block out of the way to make room for 888 * data blocks if we didn't compensate here. We should also do 889 * this for other indirect block boundaries, but it is only 890 * important for the first one. 891 */ 892 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 893 return (ENOSPC); 894 /* 895 * If the latest allocation is in a new cylinder group, assume that 896 * the filesystem has decided to move and do not force it back to 897 * the previous cylinder group. 898 */ 899 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 900 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 901 return (ENOSPC); 902 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 903 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 904 return (ENOSPC); 905 /* 906 * Get the starting offset and block map for the first block. 907 */ 908 if (start_lvl == 0) { 909 sbap = &ip->i_din2->di_db[0]; 910 soff = start_lbn; 911 } else { 912 idp = &start_ap[start_lvl - 1]; 913 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 914 brelse(sbp); 915 return (ENOSPC); 916 } 917 sbap = (ufs2_daddr_t *)sbp->b_data; 918 soff = idp->in_off; 919 } 920 /* 921 * If the block range spans two block maps, get the second map. 922 */ 923 ebap = NULL; 924 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 925 ssize = len; 926 } else { 927 #ifdef INVARIANTS 928 if (start_lvl > 0 && 929 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 930 panic("ffs_reallocblk: start == end"); 931 #endif 932 ssize = len - (idp->in_off + 1); 933 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 934 goto fail; 935 ebap = (ufs2_daddr_t *)ebp->b_data; 936 } 937 /* 938 * Find the preferred location for the cluster. If we have not 939 * previously failed at this endeavor, then follow our standard 940 * preference calculation. If we have failed at it, then pick up 941 * where we last ended our search. 942 */ 943 UFS_LOCK(ump); 944 if (ip->i_nextclustercg == -1) 945 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 946 else 947 pref = cgdata(fs, ip->i_nextclustercg); 948 /* 949 * Search the block map looking for an allocation of the desired size. 950 * To avoid wasting too much time, we limit the number of cylinder 951 * groups that we will search. 952 */ 953 cg = dtog(fs, pref); 954 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 955 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 956 break; 957 cg += 1; 958 if (cg >= fs->fs_ncg) 959 cg = 0; 960 } 961 /* 962 * If we have failed in our search, record where we gave up for 963 * next time. Otherwise, fall back to our usual search citerion. 964 */ 965 if (newblk == 0) { 966 ip->i_nextclustercg = cg; 967 UFS_UNLOCK(ump); 968 goto fail; 969 } 970 ip->i_nextclustercg = -1; 971 /* 972 * We have found a new contiguous block. 973 * 974 * First we have to replace the old block pointers with the new 975 * block pointers in the inode and indirect blocks associated 976 * with the file. 977 */ 978 #ifdef DIAGNOSTIC 979 if (prtrealloc) 980 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 981 (intmax_t)start_lbn, (intmax_t)end_lbn); 982 #endif 983 blkno = newblk; 984 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 985 if (i == ssize) { 986 bap = ebap; 987 soff = -i; 988 } 989 #ifdef INVARIANTS 990 if (!ffs_checkfreeblk(ip, 991 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 992 panic("ffs_reallocblks: unallocated block 2"); 993 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 994 panic("ffs_reallocblks: alloc mismatch"); 995 #endif 996 #ifdef DIAGNOSTIC 997 if (prtrealloc) 998 printf(" %jd,", (intmax_t)*bap); 999 #endif 1000 if (DOINGSOFTDEP(vp)) { 1001 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 1002 softdep_setup_allocdirect(ip, start_lbn + i, 1003 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 1004 buflist->bs_children[i]); 1005 else 1006 softdep_setup_allocindir_page(ip, start_lbn + i, 1007 i < ssize ? sbp : ebp, soff + i, blkno, 1008 *bap, buflist->bs_children[i]); 1009 } 1010 *bap++ = blkno; 1011 } 1012 /* 1013 * Next we must write out the modified inode and indirect blocks. 1014 * For strict correctness, the writes should be synchronous since 1015 * the old block values may have been written to disk. In practise 1016 * they are almost never written, but if we are concerned about 1017 * strict correctness, the `doasyncfree' flag should be set to zero. 1018 * 1019 * The test on `doasyncfree' should be changed to test a flag 1020 * that shows whether the associated buffers and inodes have 1021 * been written. The flag should be set when the cluster is 1022 * started and cleared whenever the buffer or inode is flushed. 1023 * We can then check below to see if it is set, and do the 1024 * synchronous write only when it has been cleared. 1025 */ 1026 if (sbap != &ip->i_din2->di_db[0]) { 1027 if (doasyncfree) 1028 bdwrite(sbp); 1029 else 1030 bwrite(sbp); 1031 } else { 1032 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1033 if (!doasyncfree) 1034 ffs_update(vp, 1); 1035 } 1036 if (ssize < len) { 1037 if (doasyncfree) 1038 bdwrite(ebp); 1039 else 1040 bwrite(ebp); 1041 } 1042 /* 1043 * Last, free the old blocks and assign the new blocks to the buffers. 1044 */ 1045 #ifdef DIAGNOSTIC 1046 if (prtrealloc) 1047 printf("\n\tnew:"); 1048 #endif 1049 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1050 bp = buflist->bs_children[i]; 1051 if (!DOINGSOFTDEP(vp)) 1052 /* 1053 * The usual case is that a set of N-contiguous blocks 1054 * that was just allocated has been replaced with a 1055 * set of N+1-contiguous blocks. If they are marked as 1056 * B_DELWRI, the current contents have not been written 1057 * to disk. It is possible that the blocks were written 1058 * earlier, but very uncommon. If the blocks have never 1059 * been written, there is no need to send a BIO_DELETE 1060 * for them when they are freed. The gain from avoiding 1061 * the TRIMs for the common case of unwritten blocks 1062 * far exceeds the cost of the write amplification for 1063 * the uncommon case of failing to send a TRIM for the 1064 * blocks that had been written. 1065 */ 1066 ffs_blkfree(ump, fs, ump->um_devvp, 1067 dbtofsb(fs, bp->b_blkno), 1068 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1069 (bp->b_flags & B_DELWRI) != 0 ? 1070 NOTRIM_KEY : SINGLETON_KEY); 1071 bp->b_blkno = fsbtodb(fs, blkno); 1072 #ifdef INVARIANTS 1073 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno), 1074 fs->fs_bsize)) 1075 panic("ffs_reallocblks: unallocated block 3"); 1076 #endif 1077 #ifdef DIAGNOSTIC 1078 if (prtrealloc) 1079 printf(" %jd,", (intmax_t)blkno); 1080 #endif 1081 } 1082 #ifdef DIAGNOSTIC 1083 if (prtrealloc) { 1084 prtrealloc--; 1085 printf("\n"); 1086 } 1087 #endif 1088 return (0); 1089 1090 fail: 1091 if (ssize < len) 1092 brelse(ebp); 1093 if (sbap != &ip->i_din2->di_db[0]) 1094 brelse(sbp); 1095 return (ENOSPC); 1096 } 1097 1098 /* 1099 * Allocate an inode in the filesystem. 1100 * 1101 * If allocating a directory, use ffs_dirpref to select the inode. 1102 * If allocating in a directory, the following hierarchy is followed: 1103 * 1) allocate the preferred inode. 1104 * 2) allocate an inode in the same cylinder group. 1105 * 3) quadratically rehash into other cylinder groups, until an 1106 * available inode is located. 1107 * If no inode preference is given the following hierarchy is used 1108 * to allocate an inode: 1109 * 1) allocate an inode in cylinder group 0. 1110 * 2) quadratically rehash into other cylinder groups, until an 1111 * available inode is located. 1112 */ 1113 int 1114 ffs_valloc(struct vnode *pvp, 1115 int mode, 1116 struct ucred *cred, 1117 struct vnode **vpp) 1118 { 1119 struct inode *pip; 1120 struct fs *fs; 1121 struct inode *ip; 1122 struct timespec ts; 1123 struct ufsmount *ump; 1124 ino_t ino, ipref; 1125 uint64_t cg; 1126 int error, reclaimed; 1127 1128 *vpp = NULL; 1129 pip = VTOI(pvp); 1130 ump = ITOUMP(pip); 1131 fs = ump->um_fs; 1132 1133 UFS_LOCK(ump); 1134 reclaimed = 0; 1135 retry: 1136 if (fs->fs_cstotal.cs_nifree == 0) 1137 goto noinodes; 1138 1139 if ((mode & IFMT) == IFDIR) 1140 ipref = ffs_dirpref(pip); 1141 else 1142 ipref = pip->i_number; 1143 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1144 ipref = 0; 1145 cg = ino_to_cg(fs, ipref); 1146 /* 1147 * Track number of dirs created one after another 1148 * in a same cg without intervening by files. 1149 */ 1150 if ((mode & IFMT) == IFDIR) { 1151 if (fs->fs_contigdirs[cg] < 255) 1152 fs->fs_contigdirs[cg]++; 1153 } else { 1154 if (fs->fs_contigdirs[cg] > 0) 1155 fs->fs_contigdirs[cg]--; 1156 } 1157 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1158 (allocfcn_t *)ffs_nodealloccg); 1159 if (ino == 0) 1160 goto noinodes; 1161 /* 1162 * Get rid of the cached old vnode, force allocation of a new vnode 1163 * for this inode. If this fails, release the allocated ino and 1164 * return the error. 1165 */ 1166 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1167 FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) { 1168 ffs_vfree(pvp, ino, mode); 1169 return (error); 1170 } 1171 /* 1172 * We got an inode, so check mode and panic if it is already allocated. 1173 */ 1174 ip = VTOI(*vpp); 1175 if (ip->i_mode) { 1176 printf("mode = 0%o, inum = %ju, fs = %s\n", 1177 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1178 panic("ffs_valloc: dup alloc"); 1179 } 1180 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1181 printf("free inode %s/%ju had %ld blocks\n", 1182 fs->fs_fsmnt, (intmax_t)ino, (long)DIP(ip, i_blocks)); 1183 DIP_SET(ip, i_blocks, 0); 1184 } 1185 ip->i_flags = 0; 1186 DIP_SET(ip, i_flags, 0); 1187 if ((mode & IFMT) == IFDIR) 1188 DIP_SET(ip, i_dirdepth, DIP(pip, i_dirdepth) + 1); 1189 /* 1190 * Set up a new generation number for this inode. 1191 */ 1192 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1193 ip->i_gen = arc4random(); 1194 DIP_SET(ip, i_gen, ip->i_gen); 1195 if (fs->fs_magic == FS_UFS2_MAGIC) { 1196 vfs_timestamp(&ts); 1197 ip->i_din2->di_birthtime = ts.tv_sec; 1198 ip->i_din2->di_birthnsec = ts.tv_nsec; 1199 } 1200 ip->i_flag = 0; 1201 (*vpp)->v_vflag = 0; 1202 (*vpp)->v_type = VNON; 1203 if (fs->fs_magic == FS_UFS2_MAGIC) { 1204 (*vpp)->v_op = &ffs_vnodeops2; 1205 UFS_INODE_SET_FLAG(ip, IN_UFS2); 1206 } else { 1207 (*vpp)->v_op = &ffs_vnodeops1; 1208 } 1209 return (0); 1210 noinodes: 1211 if (reclaimed == 0) { 1212 reclaimed = 1; 1213 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1214 goto retry; 1215 } 1216 if (ffs_fsfail_cleanup_locked(ump, 0)) { 1217 UFS_UNLOCK(ump); 1218 return (ENXIO); 1219 } 1220 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 1221 UFS_UNLOCK(ump); 1222 ffs_fserr(fs, pip->i_number, "out of inodes"); 1223 uprintf("\n%s: create/symlink failed, no inodes free\n", 1224 fs->fs_fsmnt); 1225 } else { 1226 UFS_UNLOCK(ump); 1227 } 1228 return (ENOSPC); 1229 } 1230 1231 /* 1232 * Find a cylinder group to place a directory. 1233 * 1234 * The policy implemented by this algorithm is to allocate a 1235 * directory inode in the same cylinder group as its parent 1236 * directory, but also to reserve space for its files inodes 1237 * and data. Restrict the number of directories which may be 1238 * allocated one after another in the same cylinder group 1239 * without intervening allocation of files. 1240 * 1241 * If we allocate a first level directory then force allocation 1242 * in another cylinder group. 1243 */ 1244 static ino_t 1245 ffs_dirpref(struct inode *pip) 1246 { 1247 struct fs *fs; 1248 int cg, prefcg, curcg, dirsize, cgsize; 1249 int depth, range, start, end, numdirs, power, numerator, denominator; 1250 uint64_t avgifree, avgbfree, avgndir, curdirsize; 1251 uint64_t minifree, minbfree, maxndir; 1252 uint64_t maxcontigdirs; 1253 1254 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1255 fs = ITOFS(pip); 1256 1257 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1258 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1259 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1260 1261 /* 1262 * Select a preferred cylinder group to place a new directory. 1263 * If we are near the root of the filesystem we aim to spread 1264 * them out as much as possible. As we descend deeper from the 1265 * root we cluster them closer together around their parent as 1266 * we expect them to be more closely interactive. Higher-level 1267 * directories like usr/src/sys and usr/src/bin should be 1268 * separated while the directories in these areas are more 1269 * likely to be accessed together so should be closer. 1270 * 1271 * We pick a range of cylinder groups around the cylinder group 1272 * of the directory in which we are being created. The size of 1273 * the range for our search is based on our depth from the root 1274 * of our filesystem. We then probe that range based on how many 1275 * directories are already present. The first new directory is at 1276 * 1/2 (middle) of the range; the second is in the first 1/4 of the 1277 * range, then at 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, etc. 1278 */ 1279 depth = DIP(pip, i_dirdepth); 1280 range = fs->fs_ncg / (1 << depth); 1281 curcg = ino_to_cg(fs, pip->i_number); 1282 start = curcg - (range / 2); 1283 if (start < 0) 1284 start += fs->fs_ncg; 1285 end = curcg + (range / 2); 1286 if (end >= fs->fs_ncg) 1287 end -= fs->fs_ncg; 1288 numdirs = pip->i_effnlink - 1; 1289 power = fls(numdirs); 1290 numerator = (numdirs & ~(1 << (power - 1))) * 2 + 1; 1291 denominator = 1 << power; 1292 prefcg = (curcg - (range / 2) + (range * numerator / denominator)); 1293 if (prefcg < 0) 1294 prefcg += fs->fs_ncg; 1295 if (prefcg >= fs->fs_ncg) 1296 prefcg -= fs->fs_ncg; 1297 /* 1298 * If this filesystem is not tracking directory depths, 1299 * revert to the old algorithm. 1300 */ 1301 if (depth == 0 && pip->i_number != UFS_ROOTINO) 1302 prefcg = curcg; 1303 1304 /* 1305 * Count various limits which used for 1306 * optimal allocation of a directory inode. 1307 */ 1308 maxndir = min(avgndir + (1 << depth), fs->fs_ipg); 1309 minifree = avgifree - avgifree / 4; 1310 if (minifree < 1) 1311 minifree = 1; 1312 minbfree = avgbfree - avgbfree / 4; 1313 if (minbfree < 1) 1314 minbfree = 1; 1315 cgsize = fs->fs_fsize * fs->fs_fpg; 1316 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1317 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1318 if (dirsize < curdirsize) 1319 dirsize = curdirsize; 1320 if (dirsize <= 0) 1321 maxcontigdirs = 0; /* dirsize overflowed */ 1322 else 1323 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1324 if (fs->fs_avgfpdir > 0) 1325 maxcontigdirs = min(maxcontigdirs, 1326 fs->fs_ipg / fs->fs_avgfpdir); 1327 if (maxcontigdirs == 0) 1328 maxcontigdirs = 1; 1329 1330 /* 1331 * Limit number of dirs in one cg and reserve space for 1332 * regular files, but only if we have no deficit in 1333 * inodes or space. 1334 * 1335 * We are trying to find a suitable cylinder group nearby 1336 * our preferred cylinder group to place a new directory. 1337 * We scan from our preferred cylinder group forward looking 1338 * for a cylinder group that meets our criterion. If we get 1339 * to the final cylinder group and do not find anything, 1340 * we start scanning forwards from the beginning of the 1341 * filesystem. While it might seem sensible to start scanning 1342 * backwards or even to alternate looking forward and backward, 1343 * this approach fails badly when the filesystem is nearly full. 1344 * Specifically, we first search all the areas that have no space 1345 * and finally try the one preceding that. We repeat this on 1346 * every request and in the case of the final block end up 1347 * searching the entire filesystem. By jumping to the front 1348 * of the filesystem, our future forward searches always look 1349 * in new cylinder groups so finds every possible block after 1350 * one pass over the filesystem. 1351 */ 1352 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1353 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1354 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1355 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1356 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1357 return ((ino_t)(fs->fs_ipg * cg)); 1358 } 1359 for (cg = 0; cg < prefcg; cg++) 1360 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1361 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1362 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1363 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1364 return ((ino_t)(fs->fs_ipg * cg)); 1365 } 1366 /* 1367 * This is a backstop when we have deficit in space. 1368 */ 1369 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1370 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1371 return ((ino_t)(fs->fs_ipg * cg)); 1372 for (cg = 0; cg < prefcg; cg++) 1373 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1374 break; 1375 return ((ino_t)(fs->fs_ipg * cg)); 1376 } 1377 1378 /* 1379 * Select the desired position for the next block in a file. The file is 1380 * logically divided into sections. The first section is composed of the 1381 * direct blocks and the next fs_maxbpg blocks. Each additional section 1382 * contains fs_maxbpg blocks. 1383 * 1384 * If no blocks have been allocated in the first section, the policy is to 1385 * request a block in the same cylinder group as the inode that describes 1386 * the file. The first indirect is allocated immediately following the last 1387 * direct block and the data blocks for the first indirect immediately 1388 * follow it. 1389 * 1390 * If no blocks have been allocated in any other section, the indirect 1391 * block(s) are allocated in the same cylinder group as its inode in an 1392 * area reserved immediately following the inode blocks. The policy for 1393 * the data blocks is to place them in a cylinder group with a greater than 1394 * average number of free blocks. An appropriate cylinder group is found 1395 * by using a rotor that sweeps the cylinder groups. When a new group of 1396 * blocks is needed, the sweep begins in the cylinder group following the 1397 * cylinder group from which the previous allocation was made. The sweep 1398 * continues until a cylinder group with greater than the average number 1399 * of free blocks is found. If the allocation is for the first block in an 1400 * indirect block or the previous block is a hole, then the information on 1401 * the previous allocation is unavailable; here a best guess is made based 1402 * on the logical block number being allocated. 1403 * 1404 * If a section is already partially allocated, the policy is to 1405 * allocate blocks contiguously within the section if possible. 1406 */ 1407 ufs2_daddr_t 1408 ffs_blkpref_ufs1(struct inode *ip, 1409 ufs_lbn_t lbn, 1410 int indx, 1411 ufs1_daddr_t *bap) 1412 { 1413 struct fs *fs; 1414 uint64_t cg, inocg; 1415 uint64_t avgbfree, startcg; 1416 ufs2_daddr_t pref, prevbn; 1417 1418 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1419 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1420 fs = ITOFS(ip); 1421 /* 1422 * Allocation of indirect blocks is indicated by passing negative 1423 * values in indx: -1 for single indirect, -2 for double indirect, 1424 * -3 for triple indirect. As noted below, we attempt to allocate 1425 * the first indirect inline with the file data. For all later 1426 * indirect blocks, the data is often allocated in other cylinder 1427 * groups. However to speed random file access and to speed up 1428 * fsck, the filesystem reserves the first fs_metaspace blocks 1429 * (typically half of fs_minfree) of the data area of each cylinder 1430 * group to hold these later indirect blocks. 1431 */ 1432 inocg = ino_to_cg(fs, ip->i_number); 1433 if (indx < 0) { 1434 /* 1435 * Our preference for indirect blocks is the zone at the 1436 * beginning of the inode's cylinder group data area that 1437 * we try to reserve for indirect blocks. 1438 */ 1439 pref = cgmeta(fs, inocg); 1440 /* 1441 * If we are allocating the first indirect block, try to 1442 * place it immediately following the last direct block. 1443 */ 1444 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1445 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1446 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1447 return (pref); 1448 } 1449 /* 1450 * If we are allocating the first data block in the first indirect 1451 * block and the indirect has been allocated in the data block area, 1452 * try to place it immediately following the indirect block. 1453 */ 1454 if (lbn == UFS_NDADDR) { 1455 pref = ip->i_din1->di_ib[0]; 1456 if (pref != 0 && pref >= cgdata(fs, inocg) && 1457 pref < cgbase(fs, inocg + 1)) 1458 return (pref + fs->fs_frag); 1459 } 1460 /* 1461 * If we are at the beginning of a file, or we have already allocated 1462 * the maximum number of blocks per cylinder group, or we do not 1463 * have a block allocated immediately preceding us, then we need 1464 * to decide where to start allocating new blocks. 1465 */ 1466 if (indx == 0) { 1467 prevbn = 0; 1468 } else { 1469 prevbn = bap[indx - 1]; 1470 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1471 fs->fs_bsize) != 0) 1472 prevbn = 0; 1473 } 1474 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1475 /* 1476 * If we are allocating a directory data block, we want 1477 * to place it in the metadata area. 1478 */ 1479 if ((ip->i_mode & IFMT) == IFDIR) 1480 return (cgmeta(fs, inocg)); 1481 /* 1482 * Until we fill all the direct and all the first indirect's 1483 * blocks, we try to allocate in the data area of the inode's 1484 * cylinder group. 1485 */ 1486 if (lbn < UFS_NDADDR + NINDIR(fs)) 1487 return (cgdata(fs, inocg)); 1488 /* 1489 * Find a cylinder with greater than average number of 1490 * unused data blocks. 1491 */ 1492 if (indx == 0 || prevbn == 0) 1493 startcg = inocg + lbn / fs->fs_maxbpg; 1494 else 1495 startcg = dtog(fs, prevbn) + 1; 1496 startcg %= fs->fs_ncg; 1497 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1498 for (cg = startcg; cg < fs->fs_ncg; cg++) 1499 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1500 fs->fs_cgrotor = cg; 1501 return (cgdata(fs, cg)); 1502 } 1503 for (cg = 0; cg <= startcg; cg++) 1504 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1505 fs->fs_cgrotor = cg; 1506 return (cgdata(fs, cg)); 1507 } 1508 return (0); 1509 } 1510 /* 1511 * Otherwise, we just always try to lay things out contiguously. 1512 */ 1513 return (prevbn + fs->fs_frag); 1514 } 1515 1516 /* 1517 * Same as above, but for UFS2 1518 */ 1519 ufs2_daddr_t 1520 ffs_blkpref_ufs2(struct inode *ip, 1521 ufs_lbn_t lbn, 1522 int indx, 1523 ufs2_daddr_t *bap) 1524 { 1525 struct fs *fs; 1526 uint64_t cg, inocg; 1527 uint64_t avgbfree, startcg; 1528 ufs2_daddr_t pref, prevbn; 1529 1530 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1531 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1532 fs = ITOFS(ip); 1533 /* 1534 * Allocation of indirect blocks is indicated by passing negative 1535 * values in indx: -1 for single indirect, -2 for double indirect, 1536 * -3 for triple indirect. As noted below, we attempt to allocate 1537 * the first indirect inline with the file data. For all later 1538 * indirect blocks, the data is often allocated in other cylinder 1539 * groups. However to speed random file access and to speed up 1540 * fsck, the filesystem reserves the first fs_metaspace blocks 1541 * (typically half of fs_minfree) of the data area of each cylinder 1542 * group to hold these later indirect blocks. 1543 */ 1544 inocg = ino_to_cg(fs, ip->i_number); 1545 if (indx < 0) { 1546 /* 1547 * Our preference for indirect blocks is the zone at the 1548 * beginning of the inode's cylinder group data area that 1549 * we try to reserve for indirect blocks. 1550 */ 1551 pref = cgmeta(fs, inocg); 1552 /* 1553 * If we are allocating the first indirect block, try to 1554 * place it immediately following the last direct block. 1555 */ 1556 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1557 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1558 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1559 return (pref); 1560 } 1561 /* 1562 * If we are allocating the first data block in the first indirect 1563 * block and the indirect has been allocated in the data block area, 1564 * try to place it immediately following the indirect block. 1565 */ 1566 if (lbn == UFS_NDADDR) { 1567 pref = ip->i_din2->di_ib[0]; 1568 if (pref != 0 && pref >= cgdata(fs, inocg) && 1569 pref < cgbase(fs, inocg + 1)) 1570 return (pref + fs->fs_frag); 1571 } 1572 /* 1573 * If we are at the beginning of a file, or we have already allocated 1574 * the maximum number of blocks per cylinder group, or we do not 1575 * have a block allocated immediately preceding us, then we need 1576 * to decide where to start allocating new blocks. 1577 */ 1578 if (indx == 0) { 1579 prevbn = 0; 1580 } else { 1581 prevbn = bap[indx - 1]; 1582 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1583 fs->fs_bsize) != 0) 1584 prevbn = 0; 1585 } 1586 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1587 /* 1588 * If we are allocating a directory data block, we want 1589 * to place it in the metadata area. 1590 */ 1591 if ((ip->i_mode & IFMT) == IFDIR) 1592 return (cgmeta(fs, inocg)); 1593 /* 1594 * Until we fill all the direct and all the first indirect's 1595 * blocks, we try to allocate in the data area of the inode's 1596 * cylinder group. 1597 */ 1598 if (lbn < UFS_NDADDR + NINDIR(fs)) 1599 return (cgdata(fs, inocg)); 1600 /* 1601 * Find a cylinder with greater than average number of 1602 * unused data blocks. 1603 */ 1604 if (indx == 0 || prevbn == 0) 1605 startcg = inocg + lbn / fs->fs_maxbpg; 1606 else 1607 startcg = dtog(fs, prevbn) + 1; 1608 startcg %= fs->fs_ncg; 1609 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1610 for (cg = startcg; cg < fs->fs_ncg; cg++) 1611 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1612 fs->fs_cgrotor = cg; 1613 return (cgdata(fs, cg)); 1614 } 1615 for (cg = 0; cg <= startcg; cg++) 1616 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1617 fs->fs_cgrotor = cg; 1618 return (cgdata(fs, cg)); 1619 } 1620 return (0); 1621 } 1622 /* 1623 * Otherwise, we just always try to lay things out contiguously. 1624 */ 1625 return (prevbn + fs->fs_frag); 1626 } 1627 1628 /* 1629 * Implement the cylinder overflow algorithm. 1630 * 1631 * The policy implemented by this algorithm is: 1632 * 1) allocate the block in its requested cylinder group. 1633 * 2) quadratically rehash on the cylinder group number. 1634 * 3) brute force search for a free block. 1635 * 1636 * Must be called with the UFS lock held. Will release the lock on success 1637 * and return with it held on failure. 1638 */ 1639 /*VARARGS5*/ 1640 static ufs2_daddr_t 1641 ffs_hashalloc(struct inode *ip, 1642 uint64_t cg, 1643 ufs2_daddr_t pref, 1644 int size, /* Search size for data blocks, mode for inodes */ 1645 int rsize, /* Real allocated size. */ 1646 allocfcn_t *allocator) 1647 { 1648 struct fs *fs; 1649 ufs2_daddr_t result; 1650 uint64_t i, icg = cg; 1651 1652 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1653 #ifdef INVARIANTS 1654 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1655 panic("ffs_hashalloc: allocation on suspended filesystem"); 1656 #endif 1657 fs = ITOFS(ip); 1658 /* 1659 * 1: preferred cylinder group 1660 */ 1661 result = (*allocator)(ip, cg, pref, size, rsize); 1662 if (result) 1663 return (result); 1664 /* 1665 * 2: quadratic rehash 1666 */ 1667 for (i = 1; i < fs->fs_ncg; i *= 2) { 1668 cg += i; 1669 if (cg >= fs->fs_ncg) 1670 cg -= fs->fs_ncg; 1671 result = (*allocator)(ip, cg, 0, size, rsize); 1672 if (result) 1673 return (result); 1674 } 1675 /* 1676 * 3: brute force search 1677 * Note that we start at i == 2, since 0 was checked initially, 1678 * and 1 is always checked in the quadratic rehash. 1679 */ 1680 cg = (icg + 2) % fs->fs_ncg; 1681 for (i = 2; i < fs->fs_ncg; i++) { 1682 result = (*allocator)(ip, cg, 0, size, rsize); 1683 if (result) 1684 return (result); 1685 cg++; 1686 if (cg == fs->fs_ncg) 1687 cg = 0; 1688 } 1689 return (0); 1690 } 1691 1692 /* 1693 * Determine whether a fragment can be extended. 1694 * 1695 * Check to see if the necessary fragments are available, and 1696 * if they are, allocate them. 1697 */ 1698 static ufs2_daddr_t 1699 ffs_fragextend(struct inode *ip, 1700 uint64_t cg, 1701 ufs2_daddr_t bprev, 1702 int osize, 1703 int nsize) 1704 { 1705 struct fs *fs; 1706 struct cg *cgp; 1707 struct buf *bp; 1708 struct ufsmount *ump; 1709 int nffree; 1710 long bno; 1711 int frags, bbase; 1712 int i, error; 1713 uint8_t *blksfree; 1714 1715 ump = ITOUMP(ip); 1716 fs = ump->um_fs; 1717 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1718 return (0); 1719 frags = numfrags(fs, nsize); 1720 bbase = fragnum(fs, bprev); 1721 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1722 /* cannot extend across a block boundary */ 1723 return (0); 1724 } 1725 UFS_UNLOCK(ump); 1726 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 1727 ffs_checkcgintegrity(fs, cg, error); 1728 goto fail; 1729 } 1730 bno = dtogd(fs, bprev); 1731 blksfree = cg_blksfree(cgp); 1732 for (i = numfrags(fs, osize); i < frags; i++) 1733 if (isclr(blksfree, bno + i)) 1734 goto fail; 1735 /* 1736 * the current fragment can be extended 1737 * deduct the count on fragment being extended into 1738 * increase the count on the remaining fragment (if any) 1739 * allocate the extended piece 1740 */ 1741 for (i = frags; i < fs->fs_frag - bbase; i++) 1742 if (isclr(blksfree, bno + i)) 1743 break; 1744 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1745 if (i != frags) 1746 cgp->cg_frsum[i - frags]++; 1747 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1748 clrbit(blksfree, bno + i); 1749 cgp->cg_cs.cs_nffree--; 1750 nffree++; 1751 } 1752 UFS_LOCK(ump); 1753 fs->fs_cstotal.cs_nffree -= nffree; 1754 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1755 fs->fs_fmod = 1; 1756 ACTIVECLEAR(fs, cg); 1757 UFS_UNLOCK(ump); 1758 if (DOINGSOFTDEP(ITOV(ip))) 1759 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1760 frags, numfrags(fs, osize)); 1761 bdwrite(bp); 1762 return (bprev); 1763 1764 fail: 1765 brelse(bp); 1766 UFS_LOCK(ump); 1767 return (0); 1768 1769 } 1770 1771 /* 1772 * Determine whether a block can be allocated. 1773 * 1774 * Check to see if a block of the appropriate size is available, 1775 * and if it is, allocate it. 1776 */ 1777 static ufs2_daddr_t 1778 ffs_alloccg(struct inode *ip, 1779 uint64_t cg, 1780 ufs2_daddr_t bpref, 1781 int size, 1782 int rsize) 1783 { 1784 struct fs *fs; 1785 struct cg *cgp; 1786 struct buf *bp; 1787 struct ufsmount *ump; 1788 ufs1_daddr_t bno; 1789 ufs2_daddr_t blkno; 1790 int i, allocsiz, error, frags; 1791 uint8_t *blksfree; 1792 1793 ump = ITOUMP(ip); 1794 fs = ump->um_fs; 1795 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1796 return (0); 1797 UFS_UNLOCK(ump); 1798 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 || 1799 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 1800 ffs_checkcgintegrity(fs, cg, error); 1801 goto fail; 1802 } 1803 if (size == fs->fs_bsize) { 1804 UFS_LOCK(ump); 1805 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1806 ACTIVECLEAR(fs, cg); 1807 UFS_UNLOCK(ump); 1808 bdwrite(bp); 1809 return (blkno); 1810 } 1811 /* 1812 * check to see if any fragments are already available 1813 * allocsiz is the size which will be allocated, hacking 1814 * it down to a smaller size if necessary 1815 */ 1816 blksfree = cg_blksfree(cgp); 1817 frags = numfrags(fs, size); 1818 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1819 if (cgp->cg_frsum[allocsiz] != 0) 1820 break; 1821 if (allocsiz == fs->fs_frag) { 1822 /* 1823 * no fragments were available, so a block will be 1824 * allocated, and hacked up 1825 */ 1826 if (cgp->cg_cs.cs_nbfree == 0) 1827 goto fail; 1828 UFS_LOCK(ump); 1829 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1830 ACTIVECLEAR(fs, cg); 1831 UFS_UNLOCK(ump); 1832 bdwrite(bp); 1833 return (blkno); 1834 } 1835 KASSERT(size == rsize, 1836 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1837 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1838 if (bno < 0) 1839 goto fail; 1840 for (i = 0; i < frags; i++) 1841 clrbit(blksfree, bno + i); 1842 cgp->cg_cs.cs_nffree -= frags; 1843 cgp->cg_frsum[allocsiz]--; 1844 if (frags != allocsiz) 1845 cgp->cg_frsum[allocsiz - frags]++; 1846 UFS_LOCK(ump); 1847 fs->fs_cstotal.cs_nffree -= frags; 1848 fs->fs_cs(fs, cg).cs_nffree -= frags; 1849 fs->fs_fmod = 1; 1850 blkno = cgbase(fs, cg) + bno; 1851 ACTIVECLEAR(fs, cg); 1852 UFS_UNLOCK(ump); 1853 if (DOINGSOFTDEP(ITOV(ip))) 1854 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1855 bdwrite(bp); 1856 return (blkno); 1857 1858 fail: 1859 brelse(bp); 1860 UFS_LOCK(ump); 1861 return (0); 1862 } 1863 1864 /* 1865 * Allocate a block in a cylinder group. 1866 * 1867 * This algorithm implements the following policy: 1868 * 1) allocate the requested block. 1869 * 2) allocate a rotationally optimal block in the same cylinder. 1870 * 3) allocate the next available block on the block rotor for the 1871 * specified cylinder group. 1872 * Note that this routine only allocates fs_bsize blocks; these 1873 * blocks may be fragmented by the routine that allocates them. 1874 */ 1875 static ufs2_daddr_t 1876 ffs_alloccgblk(struct inode *ip, 1877 struct buf *bp, 1878 ufs2_daddr_t bpref, 1879 int size) 1880 { 1881 struct fs *fs; 1882 struct cg *cgp; 1883 struct ufsmount *ump; 1884 ufs1_daddr_t bno; 1885 ufs2_daddr_t blkno; 1886 uint8_t *blksfree; 1887 int i, cgbpref; 1888 1889 ump = ITOUMP(ip); 1890 fs = ump->um_fs; 1891 mtx_assert(UFS_MTX(ump), MA_OWNED); 1892 cgp = (struct cg *)bp->b_data; 1893 blksfree = cg_blksfree(cgp); 1894 if (bpref == 0) { 1895 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1896 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1897 /* map bpref to correct zone in this cg */ 1898 if (bpref < cgdata(fs, cgbpref)) 1899 bpref = cgmeta(fs, cgp->cg_cgx); 1900 else 1901 bpref = cgdata(fs, cgp->cg_cgx); 1902 } 1903 /* 1904 * if the requested block is available, use it 1905 */ 1906 bno = dtogd(fs, blknum(fs, bpref)); 1907 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1908 goto gotit; 1909 /* 1910 * Take the next available block in this cylinder group. 1911 */ 1912 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1913 if (bno < 0) 1914 return (0); 1915 /* Update cg_rotor only if allocated from the data zone */ 1916 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1917 cgp->cg_rotor = bno; 1918 gotit: 1919 blkno = fragstoblks(fs, bno); 1920 ffs_clrblock(fs, blksfree, (long)blkno); 1921 ffs_clusteracct(fs, cgp, blkno, -1); 1922 cgp->cg_cs.cs_nbfree--; 1923 fs->fs_cstotal.cs_nbfree--; 1924 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1925 fs->fs_fmod = 1; 1926 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1927 /* 1928 * If the caller didn't want the whole block free the frags here. 1929 */ 1930 size = numfrags(fs, size); 1931 if (size != fs->fs_frag) { 1932 bno = dtogd(fs, blkno); 1933 for (i = size; i < fs->fs_frag; i++) 1934 setbit(blksfree, bno + i); 1935 i = fs->fs_frag - size; 1936 cgp->cg_cs.cs_nffree += i; 1937 fs->fs_cstotal.cs_nffree += i; 1938 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1939 fs->fs_fmod = 1; 1940 cgp->cg_frsum[i]++; 1941 } 1942 /* XXX Fixme. */ 1943 UFS_UNLOCK(ump); 1944 if (DOINGSOFTDEP(ITOV(ip))) 1945 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1946 UFS_LOCK(ump); 1947 return (blkno); 1948 } 1949 1950 /* 1951 * Determine whether a cluster can be allocated. 1952 * 1953 * We do not currently check for optimal rotational layout if there 1954 * are multiple choices in the same cylinder group. Instead we just 1955 * take the first one that we find following bpref. 1956 */ 1957 static ufs2_daddr_t 1958 ffs_clusteralloc(struct inode *ip, 1959 uint64_t cg, 1960 ufs2_daddr_t bpref, 1961 int len) 1962 { 1963 struct fs *fs; 1964 struct cg *cgp; 1965 struct buf *bp; 1966 struct ufsmount *ump; 1967 int i, run, bit, map, got, error; 1968 ufs2_daddr_t bno; 1969 uint8_t *mapp; 1970 int32_t *lp; 1971 uint8_t *blksfree; 1972 1973 ump = ITOUMP(ip); 1974 fs = ump->um_fs; 1975 if (fs->fs_maxcluster[cg] < len) 1976 return (0); 1977 UFS_UNLOCK(ump); 1978 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 1979 ffs_checkcgintegrity(fs, cg, error); 1980 UFS_LOCK(ump); 1981 return (0); 1982 } 1983 /* 1984 * Check to see if a cluster of the needed size (or bigger) is 1985 * available in this cylinder group. 1986 */ 1987 lp = &cg_clustersum(cgp)[len]; 1988 for (i = len; i <= fs->fs_contigsumsize; i++) 1989 if (*lp++ > 0) 1990 break; 1991 if (i > fs->fs_contigsumsize) { 1992 /* 1993 * This is the first time looking for a cluster in this 1994 * cylinder group. Update the cluster summary information 1995 * to reflect the true maximum sized cluster so that 1996 * future cluster allocation requests can avoid reading 1997 * the cylinder group map only to find no clusters. 1998 */ 1999 lp = &cg_clustersum(cgp)[len - 1]; 2000 for (i = len - 1; i > 0; i--) 2001 if (*lp-- > 0) 2002 break; 2003 UFS_LOCK(ump); 2004 fs->fs_maxcluster[cg] = i; 2005 brelse(bp); 2006 return (0); 2007 } 2008 /* 2009 * Search the cluster map to find a big enough cluster. 2010 * We take the first one that we find, even if it is larger 2011 * than we need as we prefer to get one close to the previous 2012 * block allocation. We do not search before the current 2013 * preference point as we do not want to allocate a block 2014 * that is allocated before the previous one (as we will 2015 * then have to wait for another pass of the elevator 2016 * algorithm before it will be read). We prefer to fail and 2017 * be recalled to try an allocation in the next cylinder group. 2018 */ 2019 if (dtog(fs, bpref) != cg) 2020 bpref = cgdata(fs, cg); 2021 else 2022 bpref = blknum(fs, bpref); 2023 bpref = fragstoblks(fs, dtogd(fs, bpref)); 2024 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 2025 map = *mapp++; 2026 bit = 1 << (bpref % NBBY); 2027 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 2028 if ((map & bit) == 0) { 2029 run = 0; 2030 } else { 2031 run++; 2032 if (run == len) 2033 break; 2034 } 2035 if ((got & (NBBY - 1)) != (NBBY - 1)) { 2036 bit <<= 1; 2037 } else { 2038 map = *mapp++; 2039 bit = 1; 2040 } 2041 } 2042 if (got >= cgp->cg_nclusterblks) { 2043 UFS_LOCK(ump); 2044 brelse(bp); 2045 return (0); 2046 } 2047 /* 2048 * Allocate the cluster that we have found. 2049 */ 2050 blksfree = cg_blksfree(cgp); 2051 for (i = 1; i <= len; i++) 2052 if (!ffs_isblock(fs, blksfree, got - run + i)) 2053 panic("ffs_clusteralloc: map mismatch"); 2054 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 2055 if (dtog(fs, bno) != cg) 2056 panic("ffs_clusteralloc: allocated out of group"); 2057 len = blkstofrags(fs, len); 2058 UFS_LOCK(ump); 2059 for (i = 0; i < len; i += fs->fs_frag) 2060 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2061 panic("ffs_clusteralloc: lost block"); 2062 ACTIVECLEAR(fs, cg); 2063 UFS_UNLOCK(ump); 2064 bdwrite(bp); 2065 return (bno); 2066 } 2067 2068 static inline struct buf * 2069 getinobuf(struct inode *ip, 2070 uint64_t cg, 2071 uint32_t cginoblk, 2072 int gbflags) 2073 { 2074 struct fs *fs; 2075 2076 fs = ITOFS(ip); 2077 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2078 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2079 gbflags)); 2080 } 2081 2082 /* 2083 * Synchronous inode initialization is needed only when barrier writes do not 2084 * work as advertised, and will impose a heavy cost on file creation in a newly 2085 * created filesystem. 2086 */ 2087 static int doasyncinodeinit = 1; 2088 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2089 &doasyncinodeinit, 0, 2090 "Perform inode block initialization using asynchronous writes"); 2091 2092 /* 2093 * Determine whether an inode can be allocated. 2094 * 2095 * Check to see if an inode is available, and if it is, 2096 * allocate it using the following policy: 2097 * 1) allocate the requested inode. 2098 * 2) allocate the next available inode after the requested 2099 * inode in the specified cylinder group. 2100 */ 2101 static ufs2_daddr_t 2102 ffs_nodealloccg(struct inode *ip, 2103 uint64_t cg, 2104 ufs2_daddr_t ipref, 2105 int mode, 2106 int unused) 2107 { 2108 struct fs *fs; 2109 struct cg *cgp; 2110 struct buf *bp, *ibp; 2111 struct ufsmount *ump; 2112 uint8_t *inosused, *loc; 2113 struct ufs2_dinode *dp2; 2114 int error, start, len, i; 2115 uint32_t old_initediblk; 2116 2117 ump = ITOUMP(ip); 2118 fs = ump->um_fs; 2119 check_nifree: 2120 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2121 return (0); 2122 UFS_UNLOCK(ump); 2123 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 2124 ffs_checkcgintegrity(fs, cg, error); 2125 UFS_LOCK(ump); 2126 return (0); 2127 } 2128 restart: 2129 if (cgp->cg_cs.cs_nifree == 0) { 2130 brelse(bp); 2131 UFS_LOCK(ump); 2132 return (0); 2133 } 2134 inosused = cg_inosused(cgp); 2135 if (ipref) { 2136 ipref %= fs->fs_ipg; 2137 if (isclr(inosused, ipref)) 2138 goto gotit; 2139 } 2140 start = cgp->cg_irotor / NBBY; 2141 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2142 loc = memcchr(&inosused[start], 0xff, len); 2143 if (loc == NULL) { 2144 len = start + 1; 2145 start = 0; 2146 loc = memcchr(&inosused[start], 0xff, len); 2147 if (loc == NULL) { 2148 printf("cg = %ju, irotor = %ld, fs = %s\n", 2149 (intmax_t)cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2150 panic("ffs_nodealloccg: map corrupted"); 2151 /* NOTREACHED */ 2152 } 2153 } 2154 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2155 gotit: 2156 /* 2157 * Check to see if we need to initialize more inodes. 2158 */ 2159 if (fs->fs_magic == FS_UFS2_MAGIC && 2160 ipref + INOPB(fs) > cgp->cg_initediblk && 2161 cgp->cg_initediblk < cgp->cg_niblk) { 2162 old_initediblk = cgp->cg_initediblk; 2163 2164 /* 2165 * Free the cylinder group lock before writing the 2166 * initialized inode block. Entering the 2167 * babarrierwrite() with the cylinder group lock 2168 * causes lock order violation between the lock and 2169 * snaplk. 2170 * 2171 * Another thread can decide to initialize the same 2172 * inode block, but whichever thread first gets the 2173 * cylinder group lock after writing the newly 2174 * allocated inode block will update it and the other 2175 * will realize that it has lost and leave the 2176 * cylinder group unchanged. 2177 */ 2178 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2179 brelse(bp); 2180 if (ibp == NULL) { 2181 /* 2182 * The inode block buffer is already owned by 2183 * another thread, which must initialize it. 2184 * Wait on the buffer to allow another thread 2185 * to finish the updates, with dropped cg 2186 * buffer lock, then retry. 2187 */ 2188 ibp = getinobuf(ip, cg, old_initediblk, 0); 2189 brelse(ibp); 2190 UFS_LOCK(ump); 2191 goto check_nifree; 2192 } 2193 bzero(ibp->b_data, (int)fs->fs_bsize); 2194 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2195 for (i = 0; i < INOPB(fs); i++) { 2196 while (dp2->di_gen == 0) 2197 dp2->di_gen = arc4random(); 2198 dp2++; 2199 } 2200 2201 /* 2202 * Rather than adding a soft updates dependency to ensure 2203 * that the new inode block is written before it is claimed 2204 * by the cylinder group map, we just do a barrier write 2205 * here. The barrier write will ensure that the inode block 2206 * gets written before the updated cylinder group map can be 2207 * written. The barrier write should only slow down bulk 2208 * loading of newly created filesystems. 2209 */ 2210 if (doasyncinodeinit) 2211 babarrierwrite(ibp); 2212 else 2213 bwrite(ibp); 2214 2215 /* 2216 * After the inode block is written, try to update the 2217 * cg initediblk pointer. If another thread beat us 2218 * to it, then leave it unchanged as the other thread 2219 * has already set it correctly. 2220 */ 2221 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2222 UFS_LOCK(ump); 2223 ACTIVECLEAR(fs, cg); 2224 UFS_UNLOCK(ump); 2225 if (error != 0) 2226 return (error); 2227 if (cgp->cg_initediblk == old_initediblk) 2228 cgp->cg_initediblk += INOPB(fs); 2229 goto restart; 2230 } 2231 cgp->cg_irotor = ipref; 2232 UFS_LOCK(ump); 2233 ACTIVECLEAR(fs, cg); 2234 setbit(inosused, ipref); 2235 cgp->cg_cs.cs_nifree--; 2236 fs->fs_cstotal.cs_nifree--; 2237 fs->fs_cs(fs, cg).cs_nifree--; 2238 fs->fs_fmod = 1; 2239 if ((mode & IFMT) == IFDIR) { 2240 cgp->cg_cs.cs_ndir++; 2241 fs->fs_cstotal.cs_ndir++; 2242 fs->fs_cs(fs, cg).cs_ndir++; 2243 } 2244 UFS_UNLOCK(ump); 2245 if (DOINGSOFTDEP(ITOV(ip))) 2246 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2247 bdwrite(bp); 2248 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2249 } 2250 2251 /* 2252 * Free a block or fragment. 2253 * 2254 * The specified block or fragment is placed back in the 2255 * free map. If a fragment is deallocated, a possible 2256 * block reassembly is checked. 2257 */ 2258 static void 2259 ffs_blkfree_cg(struct ufsmount *ump, 2260 struct fs *fs, 2261 struct vnode *devvp, 2262 ufs2_daddr_t bno, 2263 long size, 2264 ino_t inum, 2265 struct workhead *dephd) 2266 { 2267 struct mount *mp; 2268 struct cg *cgp; 2269 struct buf *bp; 2270 daddr_t dbn; 2271 ufs1_daddr_t fragno, cgbno; 2272 int i, blk, frags, bbase, error; 2273 uint64_t cg; 2274 uint8_t *blksfree; 2275 struct cdev *dev; 2276 2277 cg = dtog(fs, bno); 2278 if (devvp->v_type == VREG) { 2279 /* devvp is a snapshot */ 2280 MPASS(devvp->v_mount->mnt_data == ump); 2281 dev = ump->um_devvp->v_rdev; 2282 } else if (devvp->v_type == VCHR) { 2283 /* 2284 * devvp is a normal disk device 2285 * XXXKIB: devvp is not locked there, v_rdev access depends on 2286 * busy mount, which prevents mntfs devvp from reclamation. 2287 */ 2288 dev = devvp->v_rdev; 2289 } else 2290 return; 2291 #ifdef INVARIANTS 2292 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2293 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2294 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2295 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2296 size, fs->fs_fsmnt); 2297 panic("ffs_blkfree_cg: invalid size"); 2298 } 2299 #endif 2300 if ((uint64_t)bno >= fs->fs_size) { 2301 printf("bad block %jd, ino %ju\n", (intmax_t)bno, 2302 (intmax_t)inum); 2303 ffs_fserr(fs, inum, "bad block"); 2304 return; 2305 } 2306 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2307 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2308 return; 2309 /* 2310 * Would like to just downgrade to read-only. Until that 2311 * capability is available, just toss the cylinder group 2312 * update and mark the filesystem as needing to run fsck. 2313 */ 2314 fs->fs_flags |= FS_NEEDSFSCK; 2315 if (devvp->v_type == VREG) 2316 dbn = fragstoblks(fs, cgtod(fs, cg)); 2317 else 2318 dbn = fsbtodb(fs, cgtod(fs, cg)); 2319 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2320 KASSERT(error == 0, ("getblkx failed")); 2321 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2322 numfrags(fs, size), dephd, true); 2323 bp->b_flags |= B_RELBUF | B_NOCACHE; 2324 bp->b_flags &= ~B_CACHE; 2325 bawrite(bp); 2326 return; 2327 } 2328 cgbno = dtogd(fs, bno); 2329 blksfree = cg_blksfree(cgp); 2330 UFS_LOCK(ump); 2331 if (size == fs->fs_bsize) { 2332 fragno = fragstoblks(fs, cgbno); 2333 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2334 if (devvp->v_type == VREG) { 2335 UFS_UNLOCK(ump); 2336 /* devvp is a snapshot */ 2337 brelse(bp); 2338 return; 2339 } 2340 printf("dev = %s, block = %jd, fs = %s\n", 2341 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2342 panic("ffs_blkfree_cg: freeing free block"); 2343 } 2344 ffs_setblock(fs, blksfree, fragno); 2345 ffs_clusteracct(fs, cgp, fragno, 1); 2346 cgp->cg_cs.cs_nbfree++; 2347 fs->fs_cstotal.cs_nbfree++; 2348 fs->fs_cs(fs, cg).cs_nbfree++; 2349 } else { 2350 bbase = cgbno - fragnum(fs, cgbno); 2351 /* 2352 * decrement the counts associated with the old frags 2353 */ 2354 blk = blkmap(fs, blksfree, bbase); 2355 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2356 /* 2357 * deallocate the fragment 2358 */ 2359 frags = numfrags(fs, size); 2360 for (i = 0; i < frags; i++) { 2361 if (isset(blksfree, cgbno + i)) { 2362 printf("dev = %s, block = %jd, fs = %s\n", 2363 devtoname(dev), (intmax_t)(bno + i), 2364 fs->fs_fsmnt); 2365 panic("ffs_blkfree_cg: freeing free frag"); 2366 } 2367 setbit(blksfree, cgbno + i); 2368 } 2369 cgp->cg_cs.cs_nffree += i; 2370 fs->fs_cstotal.cs_nffree += i; 2371 fs->fs_cs(fs, cg).cs_nffree += i; 2372 /* 2373 * add back in counts associated with the new frags 2374 */ 2375 blk = blkmap(fs, blksfree, bbase); 2376 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2377 /* 2378 * if a complete block has been reassembled, account for it 2379 */ 2380 fragno = fragstoblks(fs, bbase); 2381 if (ffs_isblock(fs, blksfree, fragno)) { 2382 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2383 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2384 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2385 ffs_clusteracct(fs, cgp, fragno, 1); 2386 cgp->cg_cs.cs_nbfree++; 2387 fs->fs_cstotal.cs_nbfree++; 2388 fs->fs_cs(fs, cg).cs_nbfree++; 2389 } 2390 } 2391 fs->fs_fmod = 1; 2392 ACTIVECLEAR(fs, cg); 2393 UFS_UNLOCK(ump); 2394 mp = UFSTOVFS(ump); 2395 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2396 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2397 numfrags(fs, size), dephd, false); 2398 bdwrite(bp); 2399 } 2400 2401 /* 2402 * Structures and routines associated with trim management. 2403 * 2404 * The following requests are passed to trim_lookup to indicate 2405 * the actions that should be taken. 2406 */ 2407 #define NEW 1 /* if found, error else allocate and hash it */ 2408 #define OLD 2 /* if not found, error, else return it */ 2409 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2410 #define DONE 4 /* if not found, error else unhash and return it */ 2411 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2412 2413 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2414 2415 #define TRIMLIST_HASH(ump, key) \ 2416 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2417 2418 /* 2419 * These structures describe each of the block free requests aggregated 2420 * together to make up a trim request. 2421 */ 2422 struct trim_blkreq { 2423 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2424 ufs2_daddr_t bno; 2425 long size; 2426 struct workhead *pdephd; 2427 struct workhead dephd; 2428 }; 2429 2430 /* 2431 * Description of a trim request. 2432 */ 2433 struct ffs_blkfree_trim_params { 2434 TAILQ_HEAD(, trim_blkreq) blklist; 2435 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2436 struct task task; 2437 struct ufsmount *ump; 2438 struct vnode *devvp; 2439 ino_t inum; 2440 ufs2_daddr_t bno; 2441 long size; 2442 long key; 2443 }; 2444 2445 static void ffs_blkfree_trim_completed(struct buf *); 2446 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2447 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2448 struct vnode *, ufs2_daddr_t, long, ino_t, uint64_t, int); 2449 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2450 2451 /* 2452 * Called on trim completion to start a task to free the associated block(s). 2453 */ 2454 static void 2455 ffs_blkfree_trim_completed(struct buf *bp) 2456 { 2457 struct ffs_blkfree_trim_params *tp; 2458 2459 tp = bp->b_fsprivate1; 2460 free(bp, M_TRIM); 2461 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2462 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2463 } 2464 2465 /* 2466 * Trim completion task that free associated block(s). 2467 */ 2468 static void 2469 ffs_blkfree_trim_task(void *ctx, int pending) 2470 { 2471 struct ffs_blkfree_trim_params *tp; 2472 struct trim_blkreq *blkelm; 2473 struct ufsmount *ump; 2474 2475 tp = ctx; 2476 ump = tp->ump; 2477 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2478 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2479 blkelm->size, tp->inum, blkelm->pdephd); 2480 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2481 free(blkelm, M_TRIM); 2482 } 2483 vn_finished_secondary_write(UFSTOVFS(ump)); 2484 UFS_LOCK(ump); 2485 ump->um_trim_inflight -= 1; 2486 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2487 UFS_UNLOCK(ump); 2488 free(tp, M_TRIM); 2489 } 2490 2491 /* 2492 * Lookup a trim request by inode number. 2493 * Allocate if requested (NEW, REPLACE, SINGLE). 2494 */ 2495 static struct ffs_blkfree_trim_params * 2496 trim_lookup(struct ufsmount *ump, 2497 struct vnode *devvp, 2498 ufs2_daddr_t bno, 2499 long size, 2500 ino_t inum, 2501 uint64_t key, 2502 int alloctype) 2503 { 2504 struct trimlist_hashhead *tphashhead; 2505 struct ffs_blkfree_trim_params *tp, *ntp; 2506 2507 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2508 if (alloctype != SINGLE) { 2509 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2510 UFS_LOCK(ump); 2511 tphashhead = TRIMLIST_HASH(ump, key); 2512 LIST_FOREACH(tp, tphashhead, hashlist) 2513 if (key == tp->key) 2514 break; 2515 } 2516 switch (alloctype) { 2517 case NEW: 2518 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2519 break; 2520 case OLD: 2521 KASSERT(tp != NULL, 2522 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2523 UFS_UNLOCK(ump); 2524 free(ntp, M_TRIM); 2525 return (tp); 2526 case REPLACE: 2527 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2528 LIST_REMOVE(tp, hashlist); 2529 /* tp will be freed by caller */ 2530 break; 2531 case DONE: 2532 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2533 LIST_REMOVE(tp, hashlist); 2534 UFS_UNLOCK(ump); 2535 free(ntp, M_TRIM); 2536 return (tp); 2537 } 2538 TAILQ_INIT(&ntp->blklist); 2539 ntp->ump = ump; 2540 ntp->devvp = devvp; 2541 ntp->bno = bno; 2542 ntp->size = size; 2543 ntp->inum = inum; 2544 ntp->key = key; 2545 if (alloctype != SINGLE) { 2546 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2547 UFS_UNLOCK(ump); 2548 } 2549 return (ntp); 2550 } 2551 2552 /* 2553 * Dispatch a trim request. 2554 */ 2555 static void 2556 ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp) 2557 { 2558 struct ufsmount *ump; 2559 struct mount *mp; 2560 struct buf *bp; 2561 2562 /* 2563 * Postpone the set of the free bit in the cg bitmap until the 2564 * BIO_DELETE is completed. Otherwise, due to disk queue 2565 * reordering, TRIM might be issued after we reuse the block 2566 * and write some new data into it. 2567 */ 2568 ump = tp->ump; 2569 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2570 bp->b_iocmd = BIO_DELETE; 2571 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2572 bp->b_iodone = ffs_blkfree_trim_completed; 2573 bp->b_bcount = tp->size; 2574 bp->b_fsprivate1 = tp; 2575 UFS_LOCK(ump); 2576 ump->um_trim_total += 1; 2577 ump->um_trim_inflight += 1; 2578 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2579 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2580 UFS_UNLOCK(ump); 2581 2582 mp = UFSTOVFS(ump); 2583 vn_start_secondary_write(NULL, &mp, 0); 2584 g_vfs_strategy(ump->um_bo, bp); 2585 } 2586 2587 /* 2588 * Allocate a new key to use to identify a range of blocks. 2589 */ 2590 uint64_t 2591 ffs_blkrelease_start(struct ufsmount *ump, 2592 struct vnode *devvp, 2593 ino_t inum) 2594 { 2595 static u_long masterkey; 2596 uint64_t key; 2597 2598 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2599 return (SINGLETON_KEY); 2600 do { 2601 key = atomic_fetchadd_long(&masterkey, 1); 2602 } while (key < FIRST_VALID_KEY); 2603 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2604 return (key); 2605 } 2606 2607 /* 2608 * Deallocate a key that has been used to identify a range of blocks. 2609 */ 2610 void 2611 ffs_blkrelease_finish(struct ufsmount *ump, uint64_t key) 2612 { 2613 struct ffs_blkfree_trim_params *tp; 2614 2615 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2616 return; 2617 /* 2618 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2619 * a file deletion is active, specifically after a call 2620 * to ffs_blkrelease_start() but before the call to 2621 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2622 * have handed out SINGLETON_KEY rather than starting a 2623 * collection sequence. Thus if we get a SINGLETON_KEY 2624 * passed to ffs_blkrelease_finish(), we just return rather 2625 * than trying to finish the nonexistent sequence. 2626 */ 2627 if (key == SINGLETON_KEY) { 2628 #ifdef INVARIANTS 2629 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2630 ump->um_mountp->mnt_stat.f_mntonname); 2631 #endif 2632 return; 2633 } 2634 /* 2635 * We are done with sending blocks using this key. Look up the key 2636 * using the DONE alloctype (in tp) to request that it be unhashed 2637 * as we will not be adding to it. If the key has never been used, 2638 * tp->size will be zero, so we can just free tp. Otherwise the call 2639 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2640 * tp to be issued (and then tp to be freed). 2641 */ 2642 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2643 if (tp->size == 0) 2644 free(tp, M_TRIM); 2645 else 2646 ffs_blkfree_sendtrim(tp); 2647 } 2648 2649 /* 2650 * Setup to free a block or fragment. 2651 * 2652 * Check for snapshots that might want to claim the block. 2653 * If trims are requested, prepare a trim request. Attempt to 2654 * aggregate consecutive blocks into a single trim request. 2655 */ 2656 void 2657 ffs_blkfree(struct ufsmount *ump, 2658 struct fs *fs, 2659 struct vnode *devvp, 2660 ufs2_daddr_t bno, 2661 long size, 2662 ino_t inum, 2663 __enum_uint8(vtype) vtype, 2664 struct workhead *dephd, 2665 uint64_t key) 2666 { 2667 struct ffs_blkfree_trim_params *tp, *ntp; 2668 struct trim_blkreq *blkelm; 2669 2670 /* 2671 * Check to see if a snapshot wants to claim the block. 2672 * Check that devvp is a normal disk device, not a snapshot, 2673 * it has a snapshot(s) associated with it, and one of the 2674 * snapshots wants to claim the block. 2675 */ 2676 if (devvp->v_type == VCHR && 2677 (devvp->v_vflag & VV_COPYONWRITE) && 2678 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2679 return; 2680 } 2681 /* 2682 * Nothing to delay if TRIM is not required for this block or TRIM 2683 * is disabled or the operation is performed on a snapshot. 2684 */ 2685 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2686 devvp->v_type == VREG) { 2687 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2688 return; 2689 } 2690 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2691 blkelm->bno = bno; 2692 blkelm->size = size; 2693 if (dephd == NULL) { 2694 blkelm->pdephd = NULL; 2695 } else { 2696 LIST_INIT(&blkelm->dephd); 2697 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2698 blkelm->pdephd = &blkelm->dephd; 2699 } 2700 if (key == SINGLETON_KEY) { 2701 /* 2702 * Just a single non-contiguous piece. Use the SINGLE 2703 * alloctype to return a trim request that will not be 2704 * hashed for future lookup. 2705 */ 2706 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2707 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2708 ffs_blkfree_sendtrim(tp); 2709 return; 2710 } 2711 /* 2712 * The callers of this function are not tracking whether or not 2713 * the blocks are contiguous. They are just saying that they 2714 * are freeing a set of blocks. It is this code that determines 2715 * the pieces of that range that are actually contiguous. 2716 * 2717 * Calling ffs_blkrelease_start() will have created an entry 2718 * that we will use. 2719 */ 2720 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2721 if (tp->size == 0) { 2722 /* 2723 * First block of a potential range, set block and size 2724 * for the trim block. 2725 */ 2726 tp->bno = bno; 2727 tp->size = size; 2728 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2729 return; 2730 } 2731 /* 2732 * If this block is a continuation of the range (either 2733 * follows at the end or preceeds in the front) then we 2734 * add it to the front or back of the list and return. 2735 * 2736 * If it is not a continuation of the trim that we were 2737 * building, using the REPLACE alloctype, we request that 2738 * the old trim request (still in tp) be unhashed and a 2739 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2740 * call causes the block range described by tp to be issued 2741 * (and then tp to be freed). 2742 */ 2743 if (bno + numfrags(fs, size) == tp->bno) { 2744 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2745 tp->bno = bno; 2746 tp->size += size; 2747 return; 2748 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2749 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2750 tp->size += size; 2751 return; 2752 } 2753 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2754 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2755 ffs_blkfree_sendtrim(tp); 2756 } 2757 2758 #ifdef INVARIANTS 2759 /* 2760 * Verify allocation of a block or fragment. 2761 * Return 1 if block or fragment is free. 2762 */ 2763 static int 2764 ffs_checkfreeblk(struct inode *ip, 2765 ufs2_daddr_t bno, 2766 long size) 2767 { 2768 struct fs *fs; 2769 struct cg *cgp; 2770 struct buf *bp; 2771 ufs1_daddr_t cgbno; 2772 int i, frags, blkalloced; 2773 uint8_t *blksfree; 2774 2775 fs = ITOFS(ip); 2776 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2777 printf("bsize = %ld, size = %ld, fs = %s\n", 2778 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2779 panic("ffs_checkfreeblk: bad size"); 2780 } 2781 if ((uint64_t)bno >= fs->fs_size) 2782 panic("ffs_checkfreeblk: too big block %jd", (intmax_t)bno); 2783 if (ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp) != 0) 2784 return (0); 2785 blksfree = cg_blksfree(cgp); 2786 cgbno = dtogd(fs, bno); 2787 if (size == fs->fs_bsize) { 2788 blkalloced = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2789 } else { 2790 frags = numfrags(fs, size); 2791 for (blkalloced = 0, i = 0; i < frags; i++) 2792 if (isset(blksfree, cgbno + i)) 2793 blkalloced++; 2794 if (blkalloced != 0 && blkalloced != frags) 2795 panic("ffs_checkfreeblk: partially free fragment"); 2796 } 2797 brelse(bp); 2798 return (blkalloced == 0); 2799 } 2800 #endif /* INVARIANTS */ 2801 2802 /* 2803 * Free an inode. 2804 */ 2805 int 2806 ffs_vfree(struct vnode *pvp, 2807 ino_t ino, 2808 int mode) 2809 { 2810 struct ufsmount *ump; 2811 2812 if (DOINGSOFTDEP(pvp)) { 2813 softdep_freefile(pvp, ino, mode); 2814 return (0); 2815 } 2816 ump = VFSTOUFS(pvp->v_mount); 2817 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2818 } 2819 2820 /* 2821 * Do the actual free operation. 2822 * The specified inode is placed back in the free map. 2823 */ 2824 int 2825 ffs_freefile(struct ufsmount *ump, 2826 struct fs *fs, 2827 struct vnode *devvp, 2828 ino_t ino, 2829 int mode, 2830 struct workhead *wkhd) 2831 { 2832 struct cg *cgp; 2833 struct buf *bp; 2834 daddr_t dbn; 2835 int error; 2836 uint64_t cg; 2837 uint8_t *inosused; 2838 struct cdev *dev; 2839 ino_t cgino; 2840 2841 cg = ino_to_cg(fs, ino); 2842 if (devvp->v_type == VREG) { 2843 /* devvp is a snapshot */ 2844 MPASS(devvp->v_mount->mnt_data == ump); 2845 dev = ump->um_devvp->v_rdev; 2846 } else if (devvp->v_type == VCHR) { 2847 /* devvp is a normal disk device */ 2848 dev = devvp->v_rdev; 2849 } else { 2850 bp = NULL; 2851 return (0); 2852 } 2853 if (ino >= fs->fs_ipg * fs->fs_ncg) 2854 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2855 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2856 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2857 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2858 return (error); 2859 /* 2860 * Would like to just downgrade to read-only. Until that 2861 * capability is available, just toss the cylinder group 2862 * update and mark the filesystem as needing to run fsck. 2863 */ 2864 fs->fs_flags |= FS_NEEDSFSCK; 2865 if (devvp->v_type == VREG) 2866 dbn = fragstoblks(fs, cgtod(fs, cg)); 2867 else 2868 dbn = fsbtodb(fs, cgtod(fs, cg)); 2869 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2870 KASSERT(error == 0, ("getblkx failed")); 2871 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, true); 2872 bp->b_flags |= B_RELBUF | B_NOCACHE; 2873 bp->b_flags &= ~B_CACHE; 2874 bawrite(bp); 2875 return (error); 2876 } 2877 inosused = cg_inosused(cgp); 2878 cgino = ino % fs->fs_ipg; 2879 if (isclr(inosused, cgino)) { 2880 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2881 (uintmax_t)ino, fs->fs_fsmnt); 2882 if (fs->fs_ronly == 0) 2883 panic("ffs_freefile: freeing free inode"); 2884 } 2885 clrbit(inosused, cgino); 2886 if (cgino < cgp->cg_irotor) 2887 cgp->cg_irotor = cgino; 2888 cgp->cg_cs.cs_nifree++; 2889 UFS_LOCK(ump); 2890 fs->fs_cstotal.cs_nifree++; 2891 fs->fs_cs(fs, cg).cs_nifree++; 2892 if ((mode & IFMT) == IFDIR) { 2893 cgp->cg_cs.cs_ndir--; 2894 fs->fs_cstotal.cs_ndir--; 2895 fs->fs_cs(fs, cg).cs_ndir--; 2896 } 2897 fs->fs_fmod = 1; 2898 ACTIVECLEAR(fs, cg); 2899 UFS_UNLOCK(ump); 2900 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2901 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, false); 2902 bdwrite(bp); 2903 return (0); 2904 } 2905 2906 /* 2907 * Check to see if a file is free. 2908 * Used to check for allocated files in snapshots. 2909 * Return 1 if file is free. 2910 */ 2911 int 2912 ffs_checkfreefile(struct fs *fs, 2913 struct vnode *devvp, 2914 ino_t ino) 2915 { 2916 struct cg *cgp; 2917 struct buf *bp; 2918 int ret, error; 2919 uint64_t cg; 2920 uint8_t *inosused; 2921 2922 cg = ino_to_cg(fs, ino); 2923 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2924 return (1); 2925 if (ino >= fs->fs_ipg * fs->fs_ncg) 2926 return (1); 2927 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0) 2928 return (1); 2929 inosused = cg_inosused(cgp); 2930 ino %= fs->fs_ipg; 2931 ret = isclr(inosused, ino); 2932 brelse(bp); 2933 return (ret); 2934 } 2935 2936 /* 2937 * Find a block of the specified size in the specified cylinder group. 2938 * 2939 * It is a panic if a request is made to find a block if none are 2940 * available. 2941 */ 2942 static ufs1_daddr_t 2943 ffs_mapsearch(struct fs *fs, 2944 struct cg *cgp, 2945 ufs2_daddr_t bpref, 2946 int allocsiz) 2947 { 2948 ufs1_daddr_t bno; 2949 int start, len, loc, i; 2950 int blk, field, subfield, pos; 2951 uint8_t *blksfree; 2952 2953 /* 2954 * find the fragment by searching through the free block 2955 * map for an appropriate bit pattern 2956 */ 2957 if (bpref) 2958 start = dtogd(fs, bpref) / NBBY; 2959 else 2960 start = cgp->cg_frotor / NBBY; 2961 blksfree = cg_blksfree(cgp); 2962 len = howmany(fs->fs_fpg, NBBY) - start; 2963 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[start], 2964 fragtbl[fs->fs_frag], 2965 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2966 if (loc == 0) { 2967 len = start + 1; 2968 start = 0; 2969 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[0], 2970 fragtbl[fs->fs_frag], 2971 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2972 if (loc == 0) { 2973 printf("start = %d, len = %d, fs = %s\n", 2974 start, len, fs->fs_fsmnt); 2975 panic("ffs_alloccg: map corrupted"); 2976 /* NOTREACHED */ 2977 } 2978 } 2979 bno = (start + len - loc) * NBBY; 2980 cgp->cg_frotor = bno; 2981 /* 2982 * found the byte in the map 2983 * sift through the bits to find the selected frag 2984 */ 2985 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2986 blk = blkmap(fs, blksfree, bno); 2987 blk <<= 1; 2988 field = around[allocsiz]; 2989 subfield = inside[allocsiz]; 2990 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2991 if ((blk & field) == subfield) 2992 return (bno + pos); 2993 field <<= 1; 2994 subfield <<= 1; 2995 } 2996 } 2997 printf("bno = %ju, fs = %s\n", (intmax_t)bno, fs->fs_fsmnt); 2998 panic("ffs_alloccg: block not in map"); 2999 return (-1); 3000 } 3001 3002 /* 3003 * Fetch and verify a cylinder group. 3004 */ 3005 int 3006 ffs_getcg(struct fs *fs, 3007 struct vnode *devvp, 3008 uint64_t cg, 3009 int flags, 3010 struct buf **bpp, 3011 struct cg **cgpp) 3012 { 3013 struct buf *bp; 3014 struct cg *cgp; 3015 struct mount *mp; 3016 const struct statfs *sfs; 3017 daddr_t blkno; 3018 int error; 3019 3020 *bpp = NULL; 3021 *cgpp = NULL; 3022 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3023 flags |= GB_CKHASH; 3024 if (devvp->v_type == VCHR) { 3025 blkno = fsbtodb(fs, cgtod(fs, cg)); 3026 mp = devvp->v_rdev->si_mountpt; 3027 } else { 3028 blkno = fragstoblks(fs, cgtod(fs, cg)); 3029 mp = devvp->v_mount; 3030 } 3031 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL, 3032 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp); 3033 if (error != 0) 3034 return (error); 3035 cgp = (struct cg *)bp->b_data; 3036 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 3037 (bp->b_flags & B_CKHASH) != 0 && 3038 cgp->cg_ckhash != bp->b_ckhash) { 3039 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg, 3040 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) { 3041 sfs = &mp->mnt_stat; 3042 printf("UFS %s%s (%s) cylinder checkhash failed: " 3043 "cg %ju, cgp: 0x%x != bp: 0x%jx\n", 3044 devvp->v_type == VCHR ? "" : "snapshot of ", 3045 sfs->f_mntfromname, sfs->f_mntonname, (intmax_t)cg, 3046 cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 3047 } 3048 bp->b_flags &= ~B_CKHASH; 3049 bp->b_flags |= B_INVAL | B_NOCACHE; 3050 brelse(bp); 3051 return (EINTEGRITY); 3052 } 3053 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 3054 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg, 3055 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) { 3056 sfs = &mp->mnt_stat; 3057 printf("UFS %s%s (%s)", 3058 devvp->v_type == VCHR ? "" : "snapshot of ", 3059 sfs->f_mntfromname, sfs->f_mntonname); 3060 if (!cg_chkmagic(cgp)) 3061 printf(" cg %ju: bad magic number 0x%x should " 3062 "be 0x%x\n", (intmax_t)cg, cgp->cg_magic, 3063 CG_MAGIC); 3064 else 3065 printf(": wrong cylinder group cg %ju != " 3066 "cgx %u\n", (intmax_t)cg, cgp->cg_cgx); 3067 } 3068 bp->b_flags &= ~B_CKHASH; 3069 bp->b_flags |= B_INVAL | B_NOCACHE; 3070 brelse(bp); 3071 return (EINTEGRITY); 3072 } 3073 bp->b_flags &= ~B_CKHASH; 3074 bp->b_xflags |= BX_BKGRDWRITE; 3075 /* 3076 * If we are using check hashes on the cylinder group then we want 3077 * to limit changing the cylinder group time to when we are actually 3078 * going to write it to disk so that its check hash remains correct 3079 * in memory. If the CK_CYLGRP flag is set the time is updated in 3080 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 3081 * update the time here as we have done historically. 3082 */ 3083 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3084 bp->b_xflags |= BX_CYLGRP; 3085 else 3086 cgp->cg_old_time = cgp->cg_time = time_second; 3087 *bpp = bp; 3088 *cgpp = cgp; 3089 return (0); 3090 } 3091 3092 static void 3093 ffs_ckhash_cg(struct buf *bp) 3094 { 3095 uint32_t ckhash; 3096 struct cg *cgp; 3097 3098 cgp = (struct cg *)bp->b_data; 3099 ckhash = cgp->cg_ckhash; 3100 cgp->cg_ckhash = 0; 3101 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3102 cgp->cg_ckhash = ckhash; 3103 } 3104 3105 /* 3106 * Called when a cylinder group read has failed. If an integrity check 3107 * is the cause of failure then the cylinder group will not be usable 3108 * until the filesystem has been unmounted and fsck has been run to 3109 * repair it. To avoid future attempts to allocate resources from the 3110 * cylinder group, its available resources are set to zero in the 3111 * superblock summary information. Since it will appear to have no 3112 * resources available, no further calls will be made to allocate 3113 * resources from it. When resources are freed to the cylinder group 3114 * the resource free routines will find the cylinder group unusable so 3115 * the resource will simply be discarded and thus will not show up in 3116 * the superblock summary information until they are recovered by fsck. 3117 */ 3118 static void 3119 ffs_checkcgintegrity(struct fs *fs, 3120 uint64_t cg, 3121 int error) 3122 { 3123 3124 if (error != EINTEGRITY) 3125 return; 3126 fs->fs_cstotal.cs_nffree -= fs->fs_cs(fs, cg).cs_nffree; 3127 fs->fs_cs(fs, cg).cs_nffree = 0; 3128 fs->fs_cstotal.cs_nbfree -= fs->fs_cs(fs, cg).cs_nbfree; 3129 fs->fs_cs(fs, cg).cs_nbfree = 0; 3130 fs->fs_cstotal.cs_nifree -= fs->fs_cs(fs, cg).cs_nifree; 3131 fs->fs_cs(fs, cg).cs_nifree = 0; 3132 fs->fs_maxcluster[cg] = 0; 3133 fs->fs_flags |= FS_NEEDSFSCK; 3134 fs->fs_fmod = 1; 3135 } 3136 3137 /* 3138 * Fserr prints the name of a filesystem with an error diagnostic. 3139 * 3140 * The form of the error message is: 3141 * fs: error message 3142 */ 3143 void 3144 ffs_fserr(struct fs *fs, 3145 ino_t inum, 3146 char *cp) 3147 { 3148 struct thread *td = curthread; /* XXX */ 3149 struct proc *p = td->td_proc; 3150 3151 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3152 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3153 fs->fs_fsmnt, cp); 3154 } 3155 3156 /* 3157 * This function provides the capability for the fsck program to 3158 * update an active filesystem. Sixteen operations are provided: 3159 * 3160 * adjrefcnt(inode, amt) - adjusts the reference count on the 3161 * specified inode by the specified amount. Under normal 3162 * operation the count should always go down. Decrementing 3163 * the count to zero will cause the inode to be freed. 3164 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3165 * inode by the specified amount. 3166 * adjdepth(inode, amt) - adjust the depth of the specified directory 3167 * inode by the specified amount. 3168 * setsize(inode, size) - set the size of the inode to the 3169 * specified size. 3170 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3171 * adjust the superblock summary. 3172 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3173 * are marked as free. Inodes should never have to be marked 3174 * as in use. 3175 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3176 * are marked as free. Inodes should never have to be marked 3177 * as in use. 3178 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3179 * are marked as free. Blocks should never have to be marked 3180 * as in use. 3181 * setflags(flags, set/clear) - the fs_flags field has the specified 3182 * flags set (second parameter +1) or cleared (second parameter -1). 3183 * setcwd(dirinode) - set the current directory to dirinode in the 3184 * filesystem associated with the snapshot. 3185 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3186 * in the current directory is oldvalue then change it to newvalue. 3187 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3188 * with nameptr in the current directory is oldvalue then unlink it. 3189 */ 3190 3191 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3192 3193 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, 3194 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT, 3195 0, 0, sysctl_ffs_fsck, "S,fsck", 3196 "Adjust Inode Reference Count"); 3197 3198 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, 3199 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3200 "Adjust Inode Used Blocks Count"); 3201 3202 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_DEPTH, adjdepth, 3203 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3204 "Adjust Directory Inode Depth"); 3205 3206 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, 3207 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3208 "Set the inode size"); 3209 3210 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, 3211 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3212 "Adjust number of directories"); 3213 3214 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, 3215 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3216 "Adjust number of free blocks"); 3217 3218 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, 3219 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3220 "Adjust number of free inodes"); 3221 3222 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, 3223 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3224 "Adjust number of free frags"); 3225 3226 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, 3227 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3228 "Adjust number of free clusters"); 3229 3230 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, 3231 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3232 "Free Range of Directory Inodes"); 3233 3234 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, 3235 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3236 "Free Range of File Inodes"); 3237 3238 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, 3239 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3240 "Free Range of Blocks"); 3241 3242 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, 3243 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3244 "Change Filesystem Flags"); 3245 3246 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, 3247 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3248 "Set Current Working Directory"); 3249 3250 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, 3251 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3252 "Change Value of .. Entry"); 3253 3254 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, 3255 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3256 "Unlink a Duplicate Name"); 3257 3258 #ifdef DIAGNOSTIC 3259 static int fsckcmds = 0; 3260 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3261 "print out fsck_ffs-based filesystem update commands"); 3262 #endif /* DIAGNOSTIC */ 3263 3264 static int 3265 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3266 { 3267 struct thread *td = curthread; 3268 struct fsck_cmd cmd; 3269 struct ufsmount *ump; 3270 struct vnode *vp, *dvp, *fdvp; 3271 struct inode *ip, *dp; 3272 struct mount *mp; 3273 struct fs *fs; 3274 struct pwd *pwd; 3275 ufs2_daddr_t blkno; 3276 long blkcnt, blksize; 3277 uint64_t key; 3278 struct file *fp; 3279 cap_rights_t rights; 3280 int filetype, error; 3281 3282 if (req->newptr == NULL || req->newlen > sizeof(cmd)) 3283 return (EBADRPC); 3284 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0) 3285 return (error); 3286 if (cmd.version != FFS_CMD_VERSION) 3287 return (ERPCMISMATCH); 3288 if ((error = getvnode(td, cmd.handle, 3289 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0) 3290 return (error); 3291 vp = fp->f_vnode; 3292 if (vp->v_type != VREG && vp->v_type != VDIR) { 3293 fdrop(fp, td); 3294 return (EINVAL); 3295 } 3296 vn_start_write(vp, &mp, V_WAIT); 3297 if (mp == NULL || 3298 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3299 vn_finished_write(mp); 3300 fdrop(fp, td); 3301 return (EINVAL); 3302 } 3303 ump = VFSTOUFS(mp); 3304 if (mp->mnt_flag & MNT_RDONLY) { 3305 vn_finished_write(mp); 3306 fdrop(fp, td); 3307 return (EROFS); 3308 } 3309 fs = ump->um_fs; 3310 filetype = IFREG; 3311 3312 switch (oidp->oid_number) { 3313 case FFS_SET_FLAGS: 3314 #ifdef DIAGNOSTIC 3315 if (fsckcmds) 3316 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3317 cmd.size > 0 ? "set" : "clear"); 3318 #endif /* DIAGNOSTIC */ 3319 if (cmd.size > 0) 3320 fs->fs_flags |= (long)cmd.value; 3321 else 3322 fs->fs_flags &= ~(long)cmd.value; 3323 break; 3324 3325 case FFS_ADJ_REFCNT: 3326 #ifdef DIAGNOSTIC 3327 if (fsckcmds) { 3328 printf("%s: adjust inode %jd link count by %jd\n", 3329 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3330 (intmax_t)cmd.size); 3331 } 3332 #endif /* DIAGNOSTIC */ 3333 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3334 break; 3335 ip = VTOI(vp); 3336 ip->i_nlink += cmd.size; 3337 DIP_SET(ip, i_nlink, ip->i_nlink); 3338 ip->i_effnlink += cmd.size; 3339 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3340 error = ffs_update(vp, 1); 3341 if (DOINGSOFTDEP(vp)) 3342 softdep_change_linkcnt(ip); 3343 vput(vp); 3344 break; 3345 3346 case FFS_ADJ_BLKCNT: 3347 #ifdef DIAGNOSTIC 3348 if (fsckcmds) { 3349 printf("%s: adjust inode %jd block count by %jd\n", 3350 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3351 (intmax_t)cmd.size); 3352 } 3353 #endif /* DIAGNOSTIC */ 3354 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3355 break; 3356 ip = VTOI(vp); 3357 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3358 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3359 error = ffs_update(vp, 1); 3360 vput(vp); 3361 break; 3362 3363 case FFS_ADJ_DEPTH: 3364 #ifdef DIAGNOSTIC 3365 if (fsckcmds) { 3366 printf("%s: adjust directory inode %jd depth by %jd\n", 3367 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3368 (intmax_t)cmd.size); 3369 } 3370 #endif /* DIAGNOSTIC */ 3371 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3372 break; 3373 if (vp->v_type != VDIR) { 3374 vput(vp); 3375 error = ENOTDIR; 3376 break; 3377 } 3378 ip = VTOI(vp); 3379 DIP_SET(ip, i_dirdepth, DIP(ip, i_dirdepth) + cmd.size); 3380 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3381 error = ffs_update(vp, 1); 3382 vput(vp); 3383 break; 3384 3385 case FFS_SET_SIZE: 3386 #ifdef DIAGNOSTIC 3387 if (fsckcmds) { 3388 printf("%s: set inode %jd size to %jd\n", 3389 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3390 (intmax_t)cmd.size); 3391 } 3392 #endif /* DIAGNOSTIC */ 3393 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3394 break; 3395 ip = VTOI(vp); 3396 DIP_SET(ip, i_size, cmd.size); 3397 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED); 3398 error = ffs_update(vp, 1); 3399 vput(vp); 3400 break; 3401 3402 case FFS_DIR_FREE: 3403 filetype = IFDIR; 3404 /* fall through */ 3405 3406 case FFS_FILE_FREE: 3407 #ifdef DIAGNOSTIC 3408 if (fsckcmds) { 3409 if (cmd.size == 1) 3410 printf("%s: free %s inode %ju\n", 3411 mp->mnt_stat.f_mntonname, 3412 filetype == IFDIR ? "directory" : "file", 3413 (uintmax_t)cmd.value); 3414 else 3415 printf("%s: free %s inodes %ju-%ju\n", 3416 mp->mnt_stat.f_mntonname, 3417 filetype == IFDIR ? "directory" : "file", 3418 (uintmax_t)cmd.value, 3419 (uintmax_t)(cmd.value + cmd.size - 1)); 3420 } 3421 #endif /* DIAGNOSTIC */ 3422 while (cmd.size > 0) { 3423 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3424 cmd.value, filetype, NULL))) 3425 break; 3426 cmd.size -= 1; 3427 cmd.value += 1; 3428 } 3429 break; 3430 3431 case FFS_BLK_FREE: 3432 #ifdef DIAGNOSTIC 3433 if (fsckcmds) { 3434 if (cmd.size == 1) 3435 printf("%s: free block %jd\n", 3436 mp->mnt_stat.f_mntonname, 3437 (intmax_t)cmd.value); 3438 else 3439 printf("%s: free blocks %jd-%jd\n", 3440 mp->mnt_stat.f_mntonname, 3441 (intmax_t)cmd.value, 3442 (intmax_t)cmd.value + cmd.size - 1); 3443 } 3444 #endif /* DIAGNOSTIC */ 3445 blkno = cmd.value; 3446 blkcnt = cmd.size; 3447 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3448 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3449 while (blkcnt > 0) { 3450 if (blkcnt < blksize) 3451 blksize = blkcnt; 3452 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3453 blksize * fs->fs_fsize, UFS_ROOTINO, 3454 VDIR, NULL, key); 3455 blkno += blksize; 3456 blkcnt -= blksize; 3457 blksize = fs->fs_frag; 3458 } 3459 ffs_blkrelease_finish(ump, key); 3460 break; 3461 3462 /* 3463 * Adjust superblock summaries. fsck(8) is expected to 3464 * submit deltas when necessary. 3465 */ 3466 case FFS_ADJ_NDIR: 3467 #ifdef DIAGNOSTIC 3468 if (fsckcmds) { 3469 printf("%s: adjust number of directories by %jd\n", 3470 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3471 } 3472 #endif /* DIAGNOSTIC */ 3473 fs->fs_cstotal.cs_ndir += cmd.value; 3474 break; 3475 3476 case FFS_ADJ_NBFREE: 3477 #ifdef DIAGNOSTIC 3478 if (fsckcmds) { 3479 printf("%s: adjust number of free blocks by %+jd\n", 3480 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3481 } 3482 #endif /* DIAGNOSTIC */ 3483 fs->fs_cstotal.cs_nbfree += cmd.value; 3484 break; 3485 3486 case FFS_ADJ_NIFREE: 3487 #ifdef DIAGNOSTIC 3488 if (fsckcmds) { 3489 printf("%s: adjust number of free inodes by %+jd\n", 3490 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3491 } 3492 #endif /* DIAGNOSTIC */ 3493 fs->fs_cstotal.cs_nifree += cmd.value; 3494 break; 3495 3496 case FFS_ADJ_NFFREE: 3497 #ifdef DIAGNOSTIC 3498 if (fsckcmds) { 3499 printf("%s: adjust number of free frags by %+jd\n", 3500 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3501 } 3502 #endif /* DIAGNOSTIC */ 3503 fs->fs_cstotal.cs_nffree += cmd.value; 3504 break; 3505 3506 case FFS_ADJ_NUMCLUSTERS: 3507 #ifdef DIAGNOSTIC 3508 if (fsckcmds) { 3509 printf("%s: adjust number of free clusters by %+jd\n", 3510 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3511 } 3512 #endif /* DIAGNOSTIC */ 3513 fs->fs_cstotal.cs_numclusters += cmd.value; 3514 break; 3515 3516 case FFS_SET_CWD: 3517 #ifdef DIAGNOSTIC 3518 if (fsckcmds) { 3519 printf("%s: set current directory to inode %jd\n", 3520 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3521 } 3522 #endif /* DIAGNOSTIC */ 3523 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3524 break; 3525 AUDIT_ARG_VNODE1(vp); 3526 if ((error = change_dir(vp, td)) != 0) { 3527 vput(vp); 3528 break; 3529 } 3530 VOP_UNLOCK(vp); 3531 pwd_chdir(td, vp); 3532 break; 3533 3534 case FFS_SET_DOTDOT: 3535 #ifdef DIAGNOSTIC 3536 if (fsckcmds) { 3537 printf("%s: change .. in cwd from %jd to %jd\n", 3538 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3539 (intmax_t)cmd.size); 3540 } 3541 #endif /* DIAGNOSTIC */ 3542 /* 3543 * First we have to get and lock the parent directory 3544 * to which ".." points. 3545 */ 3546 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3547 if (error) 3548 break; 3549 /* 3550 * Now we get and lock the child directory containing "..". 3551 */ 3552 pwd = pwd_hold(td); 3553 dvp = pwd->pwd_cdir; 3554 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) { 3555 vput(fdvp); 3556 pwd_drop(pwd); 3557 break; 3558 } 3559 dp = VTOI(dvp); 3560 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */ 3561 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3562 DT_DIR, 0); 3563 cache_purge(fdvp); 3564 cache_purge(dvp); 3565 vput(dvp); 3566 vput(fdvp); 3567 pwd_drop(pwd); 3568 break; 3569 3570 case FFS_UNLINK: 3571 #ifdef DIAGNOSTIC 3572 if (fsckcmds) { 3573 char buf[32]; 3574 3575 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3576 strncpy(buf, "Name_too_long", 32); 3577 printf("%s: unlink %s (inode %jd)\n", 3578 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3579 } 3580 #endif /* DIAGNOSTIC */ 3581 /* 3582 * kern_funlinkat will do its own start/finish writes and 3583 * they do not nest, so drop ours here. Setting mp == NULL 3584 * indicates that vn_finished_write is not needed down below. 3585 */ 3586 vn_finished_write(mp); 3587 mp = NULL; 3588 error = kern_funlinkat(td, AT_FDCWD, 3589 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3590 0, (ino_t)cmd.size); 3591 break; 3592 3593 default: 3594 #ifdef DIAGNOSTIC 3595 if (fsckcmds) { 3596 printf("Invalid request %d from fsck\n", 3597 oidp->oid_number); 3598 } 3599 #endif /* DIAGNOSTIC */ 3600 error = EINVAL; 3601 break; 3602 } 3603 fdrop(fp, td); 3604 vn_finished_write(mp); 3605 return (error); 3606 } 3607