xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision afe61c15161c324a7af299a9b8457aba5afc92db)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/buf.h>
39 #include <sys/proc.h>
40 #include <sys/vnode.h>
41 #include <sys/mount.h>
42 #include <sys/kernel.h>
43 #include <sys/syslog.h>
44 
45 #include <vm/vm.h>
46 
47 #include <ufs/ufs/quota.h>
48 #include <ufs/ufs/inode.h>
49 
50 #include <ufs/ffs/fs.h>
51 #include <ufs/ffs/ffs_extern.h>
52 
53 extern u_long nextgennumber;
54 
55 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
56 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
57 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
58 static ino_t	ffs_dirpref __P((struct fs *));
59 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
60 static void	ffs_fserr __P((struct fs *, u_int, char *));
61 static u_long	ffs_hashalloc
62 		    __P((struct inode *, int, long, int, u_long (*)()));
63 static ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
64 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
65 
66 void		ffs_clusteracct	__P((struct fs *, struct cg *, daddr_t, int));
67 
68 /*
69  * Allocate a block in the file system.
70  *
71  * The size of the requested block is given, which must be some
72  * multiple of fs_fsize and <= fs_bsize.
73  * A preference may be optionally specified. If a preference is given
74  * the following hierarchy is used to allocate a block:
75  *   1) allocate the requested block.
76  *   2) allocate a rotationally optimal block in the same cylinder.
77  *   3) allocate a block in the same cylinder group.
78  *   4) quadradically rehash into other cylinder groups, until an
79  *      available block is located.
80  * If no block preference is given the following heirarchy is used
81  * to allocate a block:
82  *   1) allocate a block in the cylinder group that contains the
83  *      inode for the file.
84  *   2) quadradically rehash into other cylinder groups, until an
85  *      available block is located.
86  */
87 int
88 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
89 	register struct inode *ip;
90 	daddr_t lbn, bpref;
91 	int size;
92 	struct ucred *cred;
93 	daddr_t *bnp;
94 {
95 	register struct fs *fs;
96 	daddr_t bno;
97 	int cg, error;
98 
99 	*bnp = 0;
100 	fs = ip->i_fs;
101 #ifdef DIAGNOSTIC
102 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
103 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
104 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
105 		panic("ffs_alloc: bad size");
106 	}
107 	if (cred == NOCRED)
108 		panic("ffs_alloc: missing credential\n");
109 #endif /* DIAGNOSTIC */
110 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
111 		goto nospace;
112 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
113 		goto nospace;
114 #ifdef QUOTA
115 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
116 		return (error);
117 #endif
118 	if (bpref >= fs->fs_size)
119 		bpref = 0;
120 	if (bpref == 0)
121 		cg = ino_to_cg(fs, ip->i_number);
122 	else
123 		cg = dtog(fs, bpref);
124 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
125 	    (u_long (*)())ffs_alloccg);
126 	if (bno > 0) {
127 		ip->i_blocks += btodb(size);
128 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
129 		*bnp = bno;
130 		return (0);
131 	}
132 #ifdef QUOTA
133 	/*
134 	 * Restore user's disk quota because allocation failed.
135 	 */
136 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
137 #endif
138 nospace:
139 	ffs_fserr(fs, cred->cr_uid, "file system full");
140 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
141 	return (ENOSPC);
142 }
143 
144 /*
145  * Reallocate a fragment to a bigger size
146  *
147  * The number and size of the old block is given, and a preference
148  * and new size is also specified. The allocator attempts to extend
149  * the original block. Failing that, the regular block allocator is
150  * invoked to get an appropriate block.
151  */
152 int
153 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
154 	register struct inode *ip;
155 	daddr_t lbprev;
156 	daddr_t bpref;
157 	int osize, nsize;
158 	struct ucred *cred;
159 	struct buf **bpp;
160 {
161 	register struct fs *fs;
162 	struct buf *bp;
163 	int cg, request, error;
164 	daddr_t bprev, bno;
165 
166 	*bpp = 0;
167 	fs = ip->i_fs;
168 #ifdef DIAGNOSTIC
169 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
170 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
171 		printf(
172 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
173 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
174 		panic("ffs_realloccg: bad size");
175 	}
176 	if (cred == NOCRED)
177 		panic("ffs_realloccg: missing credential\n");
178 #endif /* DIAGNOSTIC */
179 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
180 		goto nospace;
181 	if ((bprev = ip->i_db[lbprev]) == 0) {
182 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
183 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
184 		panic("ffs_realloccg: bad bprev");
185 	}
186 	/*
187 	 * Allocate the extra space in the buffer.
188 	 */
189 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
190 		brelse(bp);
191 		return (error);
192 	}
193 #ifdef QUOTA
194 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
195 		brelse(bp);
196 		return (error);
197 	}
198 #endif
199 	/*
200 	 * Check for extension in the existing location.
201 	 */
202 	cg = dtog(fs, bprev);
203 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
204 		if (bp->b_blkno != fsbtodb(fs, bno))
205 			panic("bad blockno");
206 		ip->i_blocks += btodb(nsize - osize);
207 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
208 		allocbuf(bp, nsize);
209 		bp->b_flags |= B_DONE;
210 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
211 		*bpp = bp;
212 		return (0);
213 	}
214 	/*
215 	 * Allocate a new disk location.
216 	 */
217 	if (bpref >= fs->fs_size)
218 		bpref = 0;
219 	switch ((int)fs->fs_optim) {
220 	case FS_OPTSPACE:
221 		/*
222 		 * Allocate an exact sized fragment. Although this makes
223 		 * best use of space, we will waste time relocating it if
224 		 * the file continues to grow. If the fragmentation is
225 		 * less than half of the minimum free reserve, we choose
226 		 * to begin optimizing for time.
227 		 */
228 		request = nsize;
229 		if (fs->fs_minfree < 5 ||
230 		    fs->fs_cstotal.cs_nffree >
231 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
232 			break;
233 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
234 			fs->fs_fsmnt);
235 		fs->fs_optim = FS_OPTTIME;
236 		break;
237 	case FS_OPTTIME:
238 		/*
239 		 * At this point we have discovered a file that is trying to
240 		 * grow a small fragment to a larger fragment. To save time,
241 		 * we allocate a full sized block, then free the unused portion.
242 		 * If the file continues to grow, the `ffs_fragextend' call
243 		 * above will be able to grow it in place without further
244 		 * copying. If aberrant programs cause disk fragmentation to
245 		 * grow within 2% of the free reserve, we choose to begin
246 		 * optimizing for space.
247 		 */
248 		request = fs->fs_bsize;
249 		if (fs->fs_cstotal.cs_nffree <
250 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
251 			break;
252 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
253 			fs->fs_fsmnt);
254 		fs->fs_optim = FS_OPTSPACE;
255 		break;
256 	default:
257 		printf("dev = 0x%x, optim = %d, fs = %s\n",
258 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
259 		panic("ffs_realloccg: bad optim");
260 		/* NOTREACHED */
261 	}
262 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
263 	    (u_long (*)())ffs_alloccg);
264 	if (bno > 0) {
265 		bp->b_blkno = fsbtodb(fs, bno);
266 		(void) vnode_pager_uncache(ITOV(ip));
267 		ffs_blkfree(ip, bprev, (long)osize);
268 		if (nsize < request)
269 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
270 			    (long)(request - nsize));
271 		ip->i_blocks += btodb(nsize - osize);
272 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
273 		allocbuf(bp, nsize);
274 		bp->b_flags |= B_DONE;
275 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
276 		*bpp = bp;
277 		return (0);
278 	}
279 #ifdef QUOTA
280 	/*
281 	 * Restore user's disk quota because allocation failed.
282 	 */
283 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
284 #endif
285 	brelse(bp);
286 nospace:
287 	/*
288 	 * no space available
289 	 */
290 	ffs_fserr(fs, cred->cr_uid, "file system full");
291 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
292 	return (ENOSPC);
293 }
294 
295 /*
296  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
297  *
298  * The vnode and an array of buffer pointers for a range of sequential
299  * logical blocks to be made contiguous is given. The allocator attempts
300  * to find a range of sequential blocks starting as close as possible to
301  * an fs_rotdelay offset from the end of the allocation for the logical
302  * block immediately preceeding the current range. If successful, the
303  * physical block numbers in the buffer pointers and in the inode are
304  * changed to reflect the new allocation. If unsuccessful, the allocation
305  * is left unchanged. The success in doing the reallocation is returned.
306  * Note that the error return is not reflected back to the user. Rather
307  * the previous block allocation will be used.
308  */
309 #include <sys/sysctl.h>
310 int doasyncfree = 1;
311 #ifdef DEBUG
312 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
313 #endif
314 int
315 ffs_reallocblks(ap)
316 	struct vop_reallocblks_args /* {
317 		struct vnode *a_vp;
318 		struct cluster_save *a_buflist;
319 	} */ *ap;
320 {
321 	struct fs *fs;
322 	struct inode *ip;
323 	struct vnode *vp;
324 	struct buf *sbp, *ebp;
325 	daddr_t *bap, *sbap, *ebap = 0;
326 	struct cluster_save *buflist;
327 	daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
328 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
329 	int i, len, start_lvl, end_lvl, pref, ssize;
330 
331 	vp = ap->a_vp;
332 	ip = VTOI(vp);
333 	fs = ip->i_fs;
334 	if (fs->fs_contigsumsize <= 0)
335 		return (ENOSPC);
336 	buflist = ap->a_buflist;
337 	len = buflist->bs_nchildren;
338 	start_lbn = buflist->bs_children[0]->b_lblkno;
339 	end_lbn = start_lbn + len - 1;
340 #ifdef DIAGNOSTIC
341 	for (i = 1; i < len; i++)
342 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
343 			panic("ffs_reallocblks: non-cluster");
344 #endif
345 	/*
346 	 * If the latest allocation is in a new cylinder group, assume that
347 	 * the filesystem has decided to move and do not force it back to
348 	 * the previous cylinder group.
349 	 */
350 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
351 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
352 		return (ENOSPC);
353 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
354 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
355 		return (ENOSPC);
356 	/*
357 	 * Get the starting offset and block map for the first block.
358 	 */
359 	if (start_lvl == 0) {
360 		sbap = &ip->i_db[0];
361 		soff = start_lbn;
362 	} else {
363 		idp = &start_ap[start_lvl - 1];
364 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
365 			brelse(sbp);
366 			return (ENOSPC);
367 		}
368 		sbap = (daddr_t *)sbp->b_data;
369 		soff = idp->in_off;
370 	}
371 	/*
372 	 * Find the preferred location for the cluster.
373 	 */
374 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
375 	/*
376 	 * If the block range spans two block maps, get the second map.
377 	 */
378 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
379 		ssize = len;
380 	} else {
381 #ifdef DIAGNOSTIC
382 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
383 			panic("ffs_reallocblk: start == end");
384 #endif
385 		ssize = len - (idp->in_off + 1);
386 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
387 			goto fail;
388 		ebap = (daddr_t *)ebp->b_data;
389 	}
390 	/*
391 	 * Search the block map looking for an allocation of the desired size.
392 	 */
393 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
394 	    len, (u_long (*)())ffs_clusteralloc)) == 0)
395 		goto fail;
396 	/*
397 	 * We have found a new contiguous block.
398 	 *
399 	 * First we have to replace the old block pointers with the new
400 	 * block pointers in the inode and indirect blocks associated
401 	 * with the file.
402 	 */
403 	blkno = newblk;
404 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
405 		if (i == ssize)
406 			bap = ebap;
407 #ifdef DIAGNOSTIC
408 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
409 			panic("ffs_reallocblks: alloc mismatch");
410 #endif
411 		*bap++ = blkno;
412 	}
413 	/*
414 	 * Next we must write out the modified inode and indirect blocks.
415 	 * For strict correctness, the writes should be synchronous since
416 	 * the old block values may have been written to disk. In practise
417 	 * they are almost never written, but if we are concerned about
418 	 * strict correctness, the `doasyncfree' flag should be set to zero.
419 	 *
420 	 * The test on `doasyncfree' should be changed to test a flag
421 	 * that shows whether the associated buffers and inodes have
422 	 * been written. The flag should be set when the cluster is
423 	 * started and cleared whenever the buffer or inode is flushed.
424 	 * We can then check below to see if it is set, and do the
425 	 * synchronous write only when it has been cleared.
426 	 */
427 	if (sbap != &ip->i_db[0]) {
428 		if (doasyncfree)
429 			bdwrite(sbp);
430 		else
431 			bwrite(sbp);
432 	} else {
433 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
434 		if (!doasyncfree)
435 			VOP_UPDATE(vp, &time, &time, MNT_WAIT);
436 	}
437 	if (ssize < len)
438 		if (doasyncfree)
439 			bdwrite(ebp);
440 		else
441 			bwrite(ebp);
442 	/*
443 	 * Last, free the old blocks and assign the new blocks to the buffers.
444 	 */
445 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
446 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
447 		    fs->fs_bsize);
448 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
449 	}
450 	return (0);
451 
452 fail:
453 	if (ssize < len)
454 		brelse(ebp);
455 	if (sbap != &ip->i_db[0])
456 		brelse(sbp);
457 	return (ENOSPC);
458 }
459 
460 /*
461  * Allocate an inode in the file system.
462  *
463  * If allocating a directory, use ffs_dirpref to select the inode.
464  * If allocating in a directory, the following hierarchy is followed:
465  *   1) allocate the preferred inode.
466  *   2) allocate an inode in the same cylinder group.
467  *   3) quadradically rehash into other cylinder groups, until an
468  *      available inode is located.
469  * If no inode preference is given the following heirarchy is used
470  * to allocate an inode:
471  *   1) allocate an inode in cylinder group 0.
472  *   2) quadradically rehash into other cylinder groups, until an
473  *      available inode is located.
474  */
475 int
476 ffs_valloc(ap)
477 	struct vop_valloc_args /* {
478 		struct vnode *a_pvp;
479 		int a_mode;
480 		struct ucred *a_cred;
481 		struct vnode **a_vpp;
482 	} */ *ap;
483 {
484 	register struct vnode *pvp = ap->a_pvp;
485 	register struct inode *pip;
486 	register struct fs *fs;
487 	register struct inode *ip;
488 	mode_t mode = ap->a_mode;
489 	ino_t ino, ipref;
490 	int cg, error;
491 
492 	*ap->a_vpp = NULL;
493 	pip = VTOI(pvp);
494 	fs = pip->i_fs;
495 	if (fs->fs_cstotal.cs_nifree == 0)
496 		goto noinodes;
497 
498 	if ((mode & IFMT) == IFDIR)
499 		ipref = ffs_dirpref(fs);
500 	else
501 		ipref = pip->i_number;
502 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
503 		ipref = 0;
504 	cg = ino_to_cg(fs, ipref);
505 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
506 	if (ino == 0)
507 		goto noinodes;
508 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
509 	if (error) {
510 		VOP_VFREE(pvp, ino, mode);
511 		return (error);
512 	}
513 	ip = VTOI(*ap->a_vpp);
514 	if (ip->i_mode) {
515 		printf("mode = 0%o, inum = %d, fs = %s\n",
516 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
517 		panic("ffs_valloc: dup alloc");
518 	}
519 	if (ip->i_blocks) {				/* XXX */
520 		printf("free inode %s/%d had %d blocks\n",
521 		    fs->fs_fsmnt, ino, ip->i_blocks);
522 		ip->i_blocks = 0;
523 	}
524 	ip->i_flags = 0;
525 	/*
526 	 * Set up a new generation number for this inode.
527 	 */
528 	if (++nextgennumber < (u_long)time.tv_sec)
529 		nextgennumber = time.tv_sec;
530 	ip->i_gen = nextgennumber;
531 	return (0);
532 noinodes:
533 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
534 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
535 	return (ENOSPC);
536 }
537 
538 /*
539  * Find a cylinder to place a directory.
540  *
541  * The policy implemented by this algorithm is to select from
542  * among those cylinder groups with above the average number of
543  * free inodes, the one with the smallest number of directories.
544  */
545 static ino_t
546 ffs_dirpref(fs)
547 	register struct fs *fs;
548 {
549 	int cg, minndir, mincg, avgifree;
550 
551 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
552 	minndir = fs->fs_ipg;
553 	mincg = 0;
554 	for (cg = 0; cg < fs->fs_ncg; cg++)
555 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
556 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
557 			mincg = cg;
558 			minndir = fs->fs_cs(fs, cg).cs_ndir;
559 		}
560 	return ((ino_t)(fs->fs_ipg * mincg));
561 }
562 
563 /*
564  * Select the desired position for the next block in a file.  The file is
565  * logically divided into sections. The first section is composed of the
566  * direct blocks. Each additional section contains fs_maxbpg blocks.
567  *
568  * If no blocks have been allocated in the first section, the policy is to
569  * request a block in the same cylinder group as the inode that describes
570  * the file. If no blocks have been allocated in any other section, the
571  * policy is to place the section in a cylinder group with a greater than
572  * average number of free blocks.  An appropriate cylinder group is found
573  * by using a rotor that sweeps the cylinder groups. When a new group of
574  * blocks is needed, the sweep begins in the cylinder group following the
575  * cylinder group from which the previous allocation was made. The sweep
576  * continues until a cylinder group with greater than the average number
577  * of free blocks is found. If the allocation is for the first block in an
578  * indirect block, the information on the previous allocation is unavailable;
579  * here a best guess is made based upon the logical block number being
580  * allocated.
581  *
582  * If a section is already partially allocated, the policy is to
583  * contiguously allocate fs_maxcontig blocks.  The end of one of these
584  * contiguous blocks and the beginning of the next is physically separated
585  * so that the disk head will be in transit between them for at least
586  * fs_rotdelay milliseconds.  This is to allow time for the processor to
587  * schedule another I/O transfer.
588  */
589 daddr_t
590 ffs_blkpref(ip, lbn, indx, bap)
591 	struct inode *ip;
592 	daddr_t lbn;
593 	int indx;
594 	daddr_t *bap;
595 {
596 	register struct fs *fs;
597 	register int cg;
598 	int avgbfree, startcg;
599 	daddr_t nextblk;
600 
601 	fs = ip->i_fs;
602 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
603 		if (lbn < NDADDR) {
604 			cg = ino_to_cg(fs, ip->i_number);
605 			return (fs->fs_fpg * cg + fs->fs_frag);
606 		}
607 		/*
608 		 * Find a cylinder with greater than average number of
609 		 * unused data blocks.
610 		 */
611 		if (indx == 0 || bap[indx - 1] == 0)
612 			startcg =
613 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
614 		else
615 			startcg = dtog(fs, bap[indx - 1]) + 1;
616 		startcg %= fs->fs_ncg;
617 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
618 		for (cg = startcg; cg < fs->fs_ncg; cg++)
619 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
620 				fs->fs_cgrotor = cg;
621 				return (fs->fs_fpg * cg + fs->fs_frag);
622 			}
623 		for (cg = 0; cg <= startcg; cg++)
624 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
625 				fs->fs_cgrotor = cg;
626 				return (fs->fs_fpg * cg + fs->fs_frag);
627 			}
628 		return (NULL);
629 	}
630 	/*
631 	 * One or more previous blocks have been laid out. If less
632 	 * than fs_maxcontig previous blocks are contiguous, the
633 	 * next block is requested contiguously, otherwise it is
634 	 * requested rotationally delayed by fs_rotdelay milliseconds.
635 	 */
636 	nextblk = bap[indx - 1] + fs->fs_frag;
637 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
638 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
639 		return (nextblk);
640 	if (fs->fs_rotdelay != 0)
641 		/*
642 		 * Here we convert ms of delay to frags as:
643 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
644 		 *	((sect/frag) * (ms/sec))
645 		 * then round up to the next block.
646 		 */
647 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
648 		    (NSPF(fs) * 1000), fs->fs_frag);
649 	return (nextblk);
650 }
651 
652 /*
653  * Implement the cylinder overflow algorithm.
654  *
655  * The policy implemented by this algorithm is:
656  *   1) allocate the block in its requested cylinder group.
657  *   2) quadradically rehash on the cylinder group number.
658  *   3) brute force search for a free block.
659  */
660 /*VARARGS5*/
661 static u_long
662 ffs_hashalloc(ip, cg, pref, size, allocator)
663 	struct inode *ip;
664 	int cg;
665 	long pref;
666 	int size;	/* size for data blocks, mode for inodes */
667 	u_long (*allocator)();
668 {
669 	register struct fs *fs;
670 	long result;
671 	int i, icg = cg;
672 
673 	fs = ip->i_fs;
674 	/*
675 	 * 1: preferred cylinder group
676 	 */
677 	result = (*allocator)(ip, cg, pref, size);
678 	if (result)
679 		return (result);
680 	/*
681 	 * 2: quadratic rehash
682 	 */
683 	for (i = 1; i < fs->fs_ncg; i *= 2) {
684 		cg += i;
685 		if (cg >= fs->fs_ncg)
686 			cg -= fs->fs_ncg;
687 		result = (*allocator)(ip, cg, 0, size);
688 		if (result)
689 			return (result);
690 	}
691 	/*
692 	 * 3: brute force search
693 	 * Note that we start at i == 2, since 0 was checked initially,
694 	 * and 1 is always checked in the quadratic rehash.
695 	 */
696 	cg = (icg + 2) % fs->fs_ncg;
697 	for (i = 2; i < fs->fs_ncg; i++) {
698 		result = (*allocator)(ip, cg, 0, size);
699 		if (result)
700 			return (result);
701 		cg++;
702 		if (cg == fs->fs_ncg)
703 			cg = 0;
704 	}
705 	return (NULL);
706 }
707 
708 /*
709  * Determine whether a fragment can be extended.
710  *
711  * Check to see if the necessary fragments are available, and
712  * if they are, allocate them.
713  */
714 static daddr_t
715 ffs_fragextend(ip, cg, bprev, osize, nsize)
716 	struct inode *ip;
717 	int cg;
718 	long bprev;
719 	int osize, nsize;
720 {
721 	register struct fs *fs;
722 	register struct cg *cgp;
723 	struct buf *bp;
724 	long bno;
725 	int frags, bbase;
726 	int i, error;
727 
728 	fs = ip->i_fs;
729 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
730 		return (NULL);
731 	frags = numfrags(fs, nsize);
732 	bbase = fragnum(fs, bprev);
733 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
734 		/* cannot extend across a block boundary */
735 		return (NULL);
736 	}
737 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
738 		(int)fs->fs_cgsize, NOCRED, &bp);
739 	if (error) {
740 		brelse(bp);
741 		return (NULL);
742 	}
743 	cgp = (struct cg *)bp->b_data;
744 	if (!cg_chkmagic(cgp)) {
745 		brelse(bp);
746 		return (NULL);
747 	}
748 	cgp->cg_time = time.tv_sec;
749 	bno = dtogd(fs, bprev);
750 	for (i = numfrags(fs, osize); i < frags; i++)
751 		if (isclr(cg_blksfree(cgp), bno + i)) {
752 			brelse(bp);
753 			return (NULL);
754 		}
755 	/*
756 	 * the current fragment can be extended
757 	 * deduct the count on fragment being extended into
758 	 * increase the count on the remaining fragment (if any)
759 	 * allocate the extended piece
760 	 */
761 	for (i = frags; i < fs->fs_frag - bbase; i++)
762 		if (isclr(cg_blksfree(cgp), bno + i))
763 			break;
764 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
765 	if (i != frags)
766 		cgp->cg_frsum[i - frags]++;
767 	for (i = numfrags(fs, osize); i < frags; i++) {
768 		clrbit(cg_blksfree(cgp), bno + i);
769 		cgp->cg_cs.cs_nffree--;
770 		fs->fs_cstotal.cs_nffree--;
771 		fs->fs_cs(fs, cg).cs_nffree--;
772 	}
773 	fs->fs_fmod = 1;
774 	bdwrite(bp);
775 	return (bprev);
776 }
777 
778 /*
779  * Determine whether a block can be allocated.
780  *
781  * Check to see if a block of the appropriate size is available,
782  * and if it is, allocate it.
783  */
784 static daddr_t
785 ffs_alloccg(ip, cg, bpref, size)
786 	struct inode *ip;
787 	int cg;
788 	daddr_t bpref;
789 	int size;
790 {
791 	register struct fs *fs;
792 	register struct cg *cgp;
793 	struct buf *bp;
794 	register int i;
795 	int error, bno, frags, allocsiz;
796 
797 	fs = ip->i_fs;
798 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
799 		return (NULL);
800 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
801 		(int)fs->fs_cgsize, NOCRED, &bp);
802 	if (error) {
803 		brelse(bp);
804 		return (NULL);
805 	}
806 	cgp = (struct cg *)bp->b_data;
807 	if (!cg_chkmagic(cgp) ||
808 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
809 		brelse(bp);
810 		return (NULL);
811 	}
812 	cgp->cg_time = time.tv_sec;
813 	if (size == fs->fs_bsize) {
814 		bno = ffs_alloccgblk(fs, cgp, bpref);
815 		bdwrite(bp);
816 		return (bno);
817 	}
818 	/*
819 	 * check to see if any fragments are already available
820 	 * allocsiz is the size which will be allocated, hacking
821 	 * it down to a smaller size if necessary
822 	 */
823 	frags = numfrags(fs, size);
824 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
825 		if (cgp->cg_frsum[allocsiz] != 0)
826 			break;
827 	if (allocsiz == fs->fs_frag) {
828 		/*
829 		 * no fragments were available, so a block will be
830 		 * allocated, and hacked up
831 		 */
832 		if (cgp->cg_cs.cs_nbfree == 0) {
833 			brelse(bp);
834 			return (NULL);
835 		}
836 		bno = ffs_alloccgblk(fs, cgp, bpref);
837 		bpref = dtogd(fs, bno);
838 		for (i = frags; i < fs->fs_frag; i++)
839 			setbit(cg_blksfree(cgp), bpref + i);
840 		i = fs->fs_frag - frags;
841 		cgp->cg_cs.cs_nffree += i;
842 		fs->fs_cstotal.cs_nffree += i;
843 		fs->fs_cs(fs, cg).cs_nffree += i;
844 		fs->fs_fmod = 1;
845 		cgp->cg_frsum[i]++;
846 		bdwrite(bp);
847 		return (bno);
848 	}
849 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
850 	if (bno < 0) {
851 		brelse(bp);
852 		return (NULL);
853 	}
854 	for (i = 0; i < frags; i++)
855 		clrbit(cg_blksfree(cgp), bno + i);
856 	cgp->cg_cs.cs_nffree -= frags;
857 	fs->fs_cstotal.cs_nffree -= frags;
858 	fs->fs_cs(fs, cg).cs_nffree -= frags;
859 	fs->fs_fmod = 1;
860 	cgp->cg_frsum[allocsiz]--;
861 	if (frags != allocsiz)
862 		cgp->cg_frsum[allocsiz - frags]++;
863 	bdwrite(bp);
864 	return (cg * fs->fs_fpg + bno);
865 }
866 
867 /*
868  * Allocate a block in a cylinder group.
869  *
870  * This algorithm implements the following policy:
871  *   1) allocate the requested block.
872  *   2) allocate a rotationally optimal block in the same cylinder.
873  *   3) allocate the next available block on the block rotor for the
874  *      specified cylinder group.
875  * Note that this routine only allocates fs_bsize blocks; these
876  * blocks may be fragmented by the routine that allocates them.
877  */
878 static daddr_t
879 ffs_alloccgblk(fs, cgp, bpref)
880 	register struct fs *fs;
881 	register struct cg *cgp;
882 	daddr_t bpref;
883 {
884 	daddr_t bno, blkno;
885 	int cylno, pos, delta;
886 	short *cylbp;
887 	register int i;
888 
889 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
890 		bpref = cgp->cg_rotor;
891 		goto norot;
892 	}
893 	bpref = blknum(fs, bpref);
894 	bpref = dtogd(fs, bpref);
895 	/*
896 	 * if the requested block is available, use it
897 	 */
898 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
899 		bno = bpref;
900 		goto gotit;
901 	}
902 	/*
903 	 * check for a block available on the same cylinder
904 	 */
905 	cylno = cbtocylno(fs, bpref);
906 	if (cg_blktot(cgp)[cylno] == 0)
907 		goto norot;
908 	if (fs->fs_cpc == 0) {
909 		/*
910 		 * Block layout information is not available.
911 		 * Leaving bpref unchanged means we take the
912 		 * next available free block following the one
913 		 * we just allocated. Hopefully this will at
914 		 * least hit a track cache on drives of unknown
915 		 * geometry (e.g. SCSI).
916 		 */
917 		goto norot;
918 	}
919 	/*
920 	 * check the summary information to see if a block is
921 	 * available in the requested cylinder starting at the
922 	 * requested rotational position and proceeding around.
923 	 */
924 	cylbp = cg_blks(fs, cgp, cylno);
925 	pos = cbtorpos(fs, bpref);
926 	for (i = pos; i < fs->fs_nrpos; i++)
927 		if (cylbp[i] > 0)
928 			break;
929 	if (i == fs->fs_nrpos)
930 		for (i = 0; i < pos; i++)
931 			if (cylbp[i] > 0)
932 				break;
933 	if (cylbp[i] > 0) {
934 		/*
935 		 * found a rotational position, now find the actual
936 		 * block. A panic if none is actually there.
937 		 */
938 		pos = cylno % fs->fs_cpc;
939 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
940 		if (fs_postbl(fs, pos)[i] == -1) {
941 			printf("pos = %d, i = %d, fs = %s\n",
942 			    pos, i, fs->fs_fsmnt);
943 			panic("ffs_alloccgblk: cyl groups corrupted");
944 		}
945 		for (i = fs_postbl(fs, pos)[i];; ) {
946 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
947 				bno = blkstofrags(fs, (bno + i));
948 				goto gotit;
949 			}
950 			delta = fs_rotbl(fs)[i];
951 			if (delta <= 0 ||
952 			    delta + i > fragstoblks(fs, fs->fs_fpg))
953 				break;
954 			i += delta;
955 		}
956 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
957 		panic("ffs_alloccgblk: can't find blk in cyl");
958 	}
959 norot:
960 	/*
961 	 * no blocks in the requested cylinder, so take next
962 	 * available one in this cylinder group.
963 	 */
964 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
965 	if (bno < 0)
966 		return (NULL);
967 	cgp->cg_rotor = bno;
968 gotit:
969 	blkno = fragstoblks(fs, bno);
970 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
971 	ffs_clusteracct(fs, cgp, blkno, -1);
972 	cgp->cg_cs.cs_nbfree--;
973 	fs->fs_cstotal.cs_nbfree--;
974 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
975 	cylno = cbtocylno(fs, bno);
976 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
977 	cg_blktot(cgp)[cylno]--;
978 	fs->fs_fmod = 1;
979 	return (cgp->cg_cgx * fs->fs_fpg + bno);
980 }
981 
982 /*
983  * Determine whether a cluster can be allocated.
984  *
985  * We do not currently check for optimal rotational layout if there
986  * are multiple choices in the same cylinder group. Instead we just
987  * take the first one that we find following bpref.
988  */
989 static daddr_t
990 ffs_clusteralloc(ip, cg, bpref, len)
991 	struct inode *ip;
992 	int cg;
993 	daddr_t bpref;
994 	int len;
995 {
996 	register struct fs *fs;
997 	register struct cg *cgp;
998 	struct buf *bp;
999 	int i, run, bno, bit, map;
1000 	u_char *mapp;
1001 
1002 	fs = ip->i_fs;
1003 	if (fs->fs_cs(fs, cg).cs_nbfree < len)
1004 		return (NULL);
1005 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1006 	    NOCRED, &bp))
1007 		goto fail;
1008 	cgp = (struct cg *)bp->b_data;
1009 	if (!cg_chkmagic(cgp))
1010 		goto fail;
1011 	/*
1012 	 * Check to see if a cluster of the needed size (or bigger) is
1013 	 * available in this cylinder group.
1014 	 */
1015 	for (i = len; i <= fs->fs_contigsumsize; i++)
1016 		if (cg_clustersum(cgp)[i] > 0)
1017 			break;
1018 	if (i > fs->fs_contigsumsize)
1019 		goto fail;
1020 	/*
1021 	 * Search the cluster map to find a big enough cluster.
1022 	 * We take the first one that we find, even if it is larger
1023 	 * than we need as we prefer to get one close to the previous
1024 	 * block allocation. We do not search before the current
1025 	 * preference point as we do not want to allocate a block
1026 	 * that is allocated before the previous one (as we will
1027 	 * then have to wait for another pass of the elevator
1028 	 * algorithm before it will be read). We prefer to fail and
1029 	 * be recalled to try an allocation in the next cylinder group.
1030 	 */
1031 	if (dtog(fs, bpref) != cg)
1032 		bpref = 0;
1033 	else
1034 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1035 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1036 	map = *mapp++;
1037 	bit = 1 << (bpref % NBBY);
1038 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1039 		if ((map & bit) == 0) {
1040 			run = 0;
1041 		} else {
1042 			run++;
1043 			if (run == len)
1044 				break;
1045 		}
1046 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1047 			bit <<= 1;
1048 		} else {
1049 			map = *mapp++;
1050 			bit = 1;
1051 		}
1052 	}
1053 	if (i == cgp->cg_nclusterblks)
1054 		goto fail;
1055 	/*
1056 	 * Allocate the cluster that we have found.
1057 	 */
1058 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1059 	len = blkstofrags(fs, len);
1060 	for (i = 0; i < len; i += fs->fs_frag)
1061 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1062 			panic("ffs_clusteralloc: lost block");
1063 	brelse(bp);
1064 	return (bno);
1065 
1066 fail:
1067 	brelse(bp);
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Determine whether an inode can be allocated.
1073  *
1074  * Check to see if an inode is available, and if it is,
1075  * allocate it using the following policy:
1076  *   1) allocate the requested inode.
1077  *   2) allocate the next available inode after the requested
1078  *      inode in the specified cylinder group.
1079  */
1080 static ino_t
1081 ffs_nodealloccg(ip, cg, ipref, mode)
1082 	struct inode *ip;
1083 	int cg;
1084 	daddr_t ipref;
1085 	int mode;
1086 {
1087 	register struct fs *fs;
1088 	register struct cg *cgp;
1089 	struct buf *bp;
1090 	int error, start, len, loc, map, i;
1091 
1092 	fs = ip->i_fs;
1093 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1094 		return (NULL);
1095 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1096 		(int)fs->fs_cgsize, NOCRED, &bp);
1097 	if (error) {
1098 		brelse(bp);
1099 		return (NULL);
1100 	}
1101 	cgp = (struct cg *)bp->b_data;
1102 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1103 		brelse(bp);
1104 		return (NULL);
1105 	}
1106 	cgp->cg_time = time.tv_sec;
1107 	if (ipref) {
1108 		ipref %= fs->fs_ipg;
1109 		if (isclr(cg_inosused(cgp), ipref))
1110 			goto gotit;
1111 	}
1112 	start = cgp->cg_irotor / NBBY;
1113 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1114 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1115 	if (loc == 0) {
1116 		len = start + 1;
1117 		start = 0;
1118 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1119 		if (loc == 0) {
1120 			printf("cg = %d, irotor = %d, fs = %s\n",
1121 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
1122 			panic("ffs_nodealloccg: map corrupted");
1123 			/* NOTREACHED */
1124 		}
1125 	}
1126 	i = start + len - loc;
1127 	map = cg_inosused(cgp)[i];
1128 	ipref = i * NBBY;
1129 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1130 		if ((map & i) == 0) {
1131 			cgp->cg_irotor = ipref;
1132 			goto gotit;
1133 		}
1134 	}
1135 	printf("fs = %s\n", fs->fs_fsmnt);
1136 	panic("ffs_nodealloccg: block not in map");
1137 	/* NOTREACHED */
1138 gotit:
1139 	setbit(cg_inosused(cgp), ipref);
1140 	cgp->cg_cs.cs_nifree--;
1141 	fs->fs_cstotal.cs_nifree--;
1142 	fs->fs_cs(fs, cg).cs_nifree--;
1143 	fs->fs_fmod = 1;
1144 	if ((mode & IFMT) == IFDIR) {
1145 		cgp->cg_cs.cs_ndir++;
1146 		fs->fs_cstotal.cs_ndir++;
1147 		fs->fs_cs(fs, cg).cs_ndir++;
1148 	}
1149 	bdwrite(bp);
1150 	return (cg * fs->fs_ipg + ipref);
1151 }
1152 
1153 /*
1154  * Free a block or fragment.
1155  *
1156  * The specified block or fragment is placed back in the
1157  * free map. If a fragment is deallocated, a possible
1158  * block reassembly is checked.
1159  */
1160 void
1161 ffs_blkfree(ip, bno, size)
1162 	register struct inode *ip;
1163 	daddr_t bno;
1164 	long size;
1165 {
1166 	register struct fs *fs;
1167 	register struct cg *cgp;
1168 	struct buf *bp;
1169 	daddr_t blkno;
1170 	int i, error, cg, blk, frags, bbase;
1171 
1172 	fs = ip->i_fs;
1173 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1174 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1175 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1176 		panic("blkfree: bad size");
1177 	}
1178 	cg = dtog(fs, bno);
1179 	if ((u_int)bno >= fs->fs_size) {
1180 		printf("bad block %d, ino %d\n", bno, ip->i_number);
1181 		ffs_fserr(fs, ip->i_uid, "bad block");
1182 		return;
1183 	}
1184 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1185 		(int)fs->fs_cgsize, NOCRED, &bp);
1186 	if (error) {
1187 		brelse(bp);
1188 		return;
1189 	}
1190 	cgp = (struct cg *)bp->b_data;
1191 	if (!cg_chkmagic(cgp)) {
1192 		brelse(bp);
1193 		return;
1194 	}
1195 	cgp->cg_time = time.tv_sec;
1196 	bno = dtogd(fs, bno);
1197 	if (size == fs->fs_bsize) {
1198 		blkno = fragstoblks(fs, bno);
1199 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1200 			printf("dev = 0x%x, block = %d, fs = %s\n",
1201 			    ip->i_dev, bno, fs->fs_fsmnt);
1202 			panic("blkfree: freeing free block");
1203 		}
1204 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1205 		ffs_clusteracct(fs, cgp, blkno, 1);
1206 		cgp->cg_cs.cs_nbfree++;
1207 		fs->fs_cstotal.cs_nbfree++;
1208 		fs->fs_cs(fs, cg).cs_nbfree++;
1209 		i = cbtocylno(fs, bno);
1210 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1211 		cg_blktot(cgp)[i]++;
1212 	} else {
1213 		bbase = bno - fragnum(fs, bno);
1214 		/*
1215 		 * decrement the counts associated with the old frags
1216 		 */
1217 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1218 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1219 		/*
1220 		 * deallocate the fragment
1221 		 */
1222 		frags = numfrags(fs, size);
1223 		for (i = 0; i < frags; i++) {
1224 			if (isset(cg_blksfree(cgp), bno + i)) {
1225 				printf("dev = 0x%x, block = %d, fs = %s\n",
1226 				    ip->i_dev, bno + i, fs->fs_fsmnt);
1227 				panic("blkfree: freeing free frag");
1228 			}
1229 			setbit(cg_blksfree(cgp), bno + i);
1230 		}
1231 		cgp->cg_cs.cs_nffree += i;
1232 		fs->fs_cstotal.cs_nffree += i;
1233 		fs->fs_cs(fs, cg).cs_nffree += i;
1234 		/*
1235 		 * add back in counts associated with the new frags
1236 		 */
1237 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1238 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1239 		/*
1240 		 * if a complete block has been reassembled, account for it
1241 		 */
1242 		blkno = fragstoblks(fs, bbase);
1243 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1244 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1245 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1246 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1247 			ffs_clusteracct(fs, cgp, blkno, 1);
1248 			cgp->cg_cs.cs_nbfree++;
1249 			fs->fs_cstotal.cs_nbfree++;
1250 			fs->fs_cs(fs, cg).cs_nbfree++;
1251 			i = cbtocylno(fs, bbase);
1252 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1253 			cg_blktot(cgp)[i]++;
1254 		}
1255 	}
1256 	fs->fs_fmod = 1;
1257 	bdwrite(bp);
1258 }
1259 
1260 /*
1261  * Free an inode.
1262  *
1263  * The specified inode is placed back in the free map.
1264  */
1265 int
1266 ffs_vfree(ap)
1267 	struct vop_vfree_args /* {
1268 		struct vnode *a_pvp;
1269 		ino_t a_ino;
1270 		int a_mode;
1271 	} */ *ap;
1272 {
1273 	register struct fs *fs;
1274 	register struct cg *cgp;
1275 	register struct inode *pip;
1276 	ino_t ino = ap->a_ino;
1277 	struct buf *bp;
1278 	int error, cg;
1279 
1280 	pip = VTOI(ap->a_pvp);
1281 	fs = pip->i_fs;
1282 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1283 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1284 		    pip->i_dev, ino, fs->fs_fsmnt);
1285 	cg = ino_to_cg(fs, ino);
1286 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1287 		(int)fs->fs_cgsize, NOCRED, &bp);
1288 	if (error) {
1289 		brelse(bp);
1290 		return (0);
1291 	}
1292 	cgp = (struct cg *)bp->b_data;
1293 	if (!cg_chkmagic(cgp)) {
1294 		brelse(bp);
1295 		return (0);
1296 	}
1297 	cgp->cg_time = time.tv_sec;
1298 	ino %= fs->fs_ipg;
1299 	if (isclr(cg_inosused(cgp), ino)) {
1300 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1301 		    pip->i_dev, ino, fs->fs_fsmnt);
1302 		if (fs->fs_ronly == 0)
1303 			panic("ifree: freeing free inode");
1304 	}
1305 	clrbit(cg_inosused(cgp), ino);
1306 	if (ino < cgp->cg_irotor)
1307 		cgp->cg_irotor = ino;
1308 	cgp->cg_cs.cs_nifree++;
1309 	fs->fs_cstotal.cs_nifree++;
1310 	fs->fs_cs(fs, cg).cs_nifree++;
1311 	if ((ap->a_mode & IFMT) == IFDIR) {
1312 		cgp->cg_cs.cs_ndir--;
1313 		fs->fs_cstotal.cs_ndir--;
1314 		fs->fs_cs(fs, cg).cs_ndir--;
1315 	}
1316 	fs->fs_fmod = 1;
1317 	bdwrite(bp);
1318 	return (0);
1319 }
1320 
1321 /*
1322  * Find a block of the specified size in the specified cylinder group.
1323  *
1324  * It is a panic if a request is made to find a block if none are
1325  * available.
1326  */
1327 static daddr_t
1328 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1329 	register struct fs *fs;
1330 	register struct cg *cgp;
1331 	daddr_t bpref;
1332 	int allocsiz;
1333 {
1334 	daddr_t bno;
1335 	int start, len, loc, i;
1336 	int blk, field, subfield, pos;
1337 
1338 	/*
1339 	 * find the fragment by searching through the free block
1340 	 * map for an appropriate bit pattern
1341 	 */
1342 	if (bpref)
1343 		start = dtogd(fs, bpref) / NBBY;
1344 	else
1345 		start = cgp->cg_frotor / NBBY;
1346 	len = howmany(fs->fs_fpg, NBBY) - start;
1347 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1348 		(u_char *)fragtbl[fs->fs_frag],
1349 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1350 	if (loc == 0) {
1351 		len = start + 1;
1352 		start = 0;
1353 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1354 			(u_char *)fragtbl[fs->fs_frag],
1355 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1356 		if (loc == 0) {
1357 			printf("start = %d, len = %d, fs = %s\n",
1358 			    start, len, fs->fs_fsmnt);
1359 			panic("ffs_alloccg: map corrupted");
1360 			/* NOTREACHED */
1361 		}
1362 	}
1363 	bno = (start + len - loc) * NBBY;
1364 	cgp->cg_frotor = bno;
1365 	/*
1366 	 * found the byte in the map
1367 	 * sift through the bits to find the selected frag
1368 	 */
1369 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1370 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1371 		blk <<= 1;
1372 		field = around[allocsiz];
1373 		subfield = inside[allocsiz];
1374 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1375 			if ((blk & field) == subfield)
1376 				return (bno + pos);
1377 			field <<= 1;
1378 			subfield <<= 1;
1379 		}
1380 	}
1381 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1382 	panic("ffs_alloccg: block not in map");
1383 	return (-1);
1384 }
1385 
1386 /*
1387  * Update the cluster map because of an allocation or free.
1388  *
1389  * Cnt == 1 means free; cnt == -1 means allocating.
1390  */
1391 void
1392 ffs_clusteracct(fs, cgp, blkno, cnt)
1393 	struct fs *fs;
1394 	struct cg *cgp;
1395 	daddr_t blkno;
1396 	int cnt;
1397 {
1398 	long *sump;
1399 	u_char *freemapp, *mapp;
1400 	int i, start, end, forw, back, map, bit;
1401 
1402 	if (fs->fs_contigsumsize <= 0)
1403 		return;
1404 	freemapp = cg_clustersfree(cgp);
1405 	sump = cg_clustersum(cgp);
1406 	/*
1407 	 * Allocate or clear the actual block.
1408 	 */
1409 	if (cnt > 0)
1410 		setbit(freemapp, blkno);
1411 	else
1412 		clrbit(freemapp, blkno);
1413 	/*
1414 	 * Find the size of the cluster going forward.
1415 	 */
1416 	start = blkno + 1;
1417 	end = start + fs->fs_contigsumsize;
1418 	if (end >= cgp->cg_nclusterblks)
1419 		end = cgp->cg_nclusterblks;
1420 	mapp = &freemapp[start / NBBY];
1421 	map = *mapp++;
1422 	bit = 1 << (start % NBBY);
1423 	for (i = start; i < end; i++) {
1424 		if ((map & bit) == 0)
1425 			break;
1426 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1427 			bit <<= 1;
1428 		} else {
1429 			map = *mapp++;
1430 			bit = 1;
1431 		}
1432 	}
1433 	forw = i - start;
1434 	/*
1435 	 * Find the size of the cluster going backward.
1436 	 */
1437 	start = blkno - 1;
1438 	end = start - fs->fs_contigsumsize;
1439 	if (end < 0)
1440 		end = -1;
1441 	mapp = &freemapp[start / NBBY];
1442 	map = *mapp--;
1443 	bit = 1 << (start % NBBY);
1444 	for (i = start; i > end; i--) {
1445 		if ((map & bit) == 0)
1446 			break;
1447 		if ((i & (NBBY - 1)) != 0) {
1448 			bit >>= 1;
1449 		} else {
1450 			map = *mapp--;
1451 			bit = 1 << (NBBY - 1);
1452 		}
1453 	}
1454 	back = start - i;
1455 	/*
1456 	 * Account for old cluster and the possibly new forward and
1457 	 * back clusters.
1458 	 */
1459 	i = back + forw + 1;
1460 	if (i > fs->fs_contigsumsize)
1461 		i = fs->fs_contigsumsize;
1462 	sump[i] += cnt;
1463 	if (back > 0)
1464 		sump[back] -= cnt;
1465 	if (forw > 0)
1466 		sump[forw] -= cnt;
1467 }
1468 
1469 /*
1470  * Fserr prints the name of a file system with an error diagnostic.
1471  *
1472  * The form of the error message is:
1473  *	fs: error message
1474  */
1475 static void
1476 ffs_fserr(fs, uid, cp)
1477 	struct fs *fs;
1478 	u_int uid;
1479 	char *cp;
1480 {
1481 
1482 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1483 }
1484