1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bio.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/fcntl.h> 73 #include <sys/file.h> 74 #include <sys/filedesc.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/vnode.h> 78 #include <sys/mount.h> 79 #include <sys/kernel.h> 80 #include <sys/syscallsubr.h> 81 #include <sys/sysctl.h> 82 #include <sys/syslog.h> 83 84 #include <security/audit/audit.h> 85 86 #include <ufs/ufs/dir.h> 87 #include <ufs/ufs/extattr.h> 88 #include <ufs/ufs/quota.h> 89 #include <ufs/ufs/inode.h> 90 #include <ufs/ufs/ufs_extern.h> 91 #include <ufs/ufs/ufsmount.h> 92 93 #include <ufs/ffs/fs.h> 94 #include <ufs/ffs/ffs_extern.h> 95 96 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 97 int size, int rsize); 98 99 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 100 static ufs2_daddr_t 101 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 102 #ifdef INVARIANTS 103 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 104 #endif 105 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int, 106 int); 107 static ino_t ffs_dirpref(struct inode *); 108 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 109 int, int); 110 static void ffs_fserr(struct fs *, ino_t, char *); 111 static ufs2_daddr_t ffs_hashalloc 112 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 113 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 114 int); 115 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 116 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 117 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 118 119 /* 120 * Allocate a block in the filesystem. 121 * 122 * The size of the requested block is given, which must be some 123 * multiple of fs_fsize and <= fs_bsize. 124 * A preference may be optionally specified. If a preference is given 125 * the following hierarchy is used to allocate a block: 126 * 1) allocate the requested block. 127 * 2) allocate a rotationally optimal block in the same cylinder. 128 * 3) allocate a block in the same cylinder group. 129 * 4) quadradically rehash into other cylinder groups, until an 130 * available block is located. 131 * If no block preference is given the following hierarchy is used 132 * to allocate a block: 133 * 1) allocate a block in the cylinder group that contains the 134 * inode for the file. 135 * 2) quadradically rehash into other cylinder groups, until an 136 * available block is located. 137 */ 138 int 139 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 140 struct inode *ip; 141 ufs2_daddr_t lbn, bpref; 142 int size, flags; 143 struct ucred *cred; 144 ufs2_daddr_t *bnp; 145 { 146 struct fs *fs; 147 struct ufsmount *ump; 148 ufs2_daddr_t bno; 149 u_int cg, reclaimed; 150 static struct timeval lastfail; 151 static int curfail; 152 int64_t delta; 153 #ifdef QUOTA 154 int error; 155 #endif 156 157 *bnp = 0; 158 fs = ip->i_fs; 159 ump = ip->i_ump; 160 mtx_assert(UFS_MTX(ump), MA_OWNED); 161 #ifdef INVARIANTS 162 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 163 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 164 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 165 fs->fs_fsmnt); 166 panic("ffs_alloc: bad size"); 167 } 168 if (cred == NOCRED) 169 panic("ffs_alloc: missing credential"); 170 #endif /* INVARIANTS */ 171 reclaimed = 0; 172 retry: 173 #ifdef QUOTA 174 UFS_UNLOCK(ump); 175 error = chkdq(ip, btodb(size), cred, 0); 176 if (error) 177 return (error); 178 UFS_LOCK(ump); 179 #endif 180 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 181 goto nospace; 182 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 183 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 184 goto nospace; 185 if (bpref >= fs->fs_size) 186 bpref = 0; 187 if (bpref == 0) 188 cg = ino_to_cg(fs, ip->i_number); 189 else 190 cg = dtog(fs, bpref); 191 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 192 if (bno > 0) { 193 delta = btodb(size); 194 if (ip->i_flag & IN_SPACECOUNTED) { 195 UFS_LOCK(ump); 196 fs->fs_pendingblocks += delta; 197 UFS_UNLOCK(ump); 198 } 199 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 200 if (flags & IO_EXT) 201 ip->i_flag |= IN_CHANGE; 202 else 203 ip->i_flag |= IN_CHANGE | IN_UPDATE; 204 *bnp = bno; 205 return (0); 206 } 207 nospace: 208 #ifdef QUOTA 209 UFS_UNLOCK(ump); 210 /* 211 * Restore user's disk quota because allocation failed. 212 */ 213 (void) chkdq(ip, -btodb(size), cred, FORCE); 214 UFS_LOCK(ump); 215 #endif 216 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 217 reclaimed = 1; 218 softdep_request_cleanup(fs, ITOV(ip)); 219 goto retry; 220 } 221 UFS_UNLOCK(ump); 222 if (ppsratecheck(&lastfail, &curfail, 1)) { 223 ffs_fserr(fs, ip->i_number, "filesystem full"); 224 uprintf("\n%s: write failed, filesystem is full\n", 225 fs->fs_fsmnt); 226 } 227 return (ENOSPC); 228 } 229 230 /* 231 * Reallocate a fragment to a bigger size 232 * 233 * The number and size of the old block is given, and a preference 234 * and new size is also specified. The allocator attempts to extend 235 * the original block. Failing that, the regular block allocator is 236 * invoked to get an appropriate block. 237 */ 238 int 239 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 240 struct inode *ip; 241 ufs2_daddr_t lbprev; 242 ufs2_daddr_t bprev; 243 ufs2_daddr_t bpref; 244 int osize, nsize, flags; 245 struct ucred *cred; 246 struct buf **bpp; 247 { 248 struct vnode *vp; 249 struct fs *fs; 250 struct buf *bp; 251 struct ufsmount *ump; 252 u_int cg, request, reclaimed; 253 int error; 254 ufs2_daddr_t bno; 255 static struct timeval lastfail; 256 static int curfail; 257 int64_t delta; 258 259 *bpp = 0; 260 vp = ITOV(ip); 261 fs = ip->i_fs; 262 bp = NULL; 263 ump = ip->i_ump; 264 mtx_assert(UFS_MTX(ump), MA_OWNED); 265 #ifdef INVARIANTS 266 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 267 panic("ffs_realloccg: allocation on suspended filesystem"); 268 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 269 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 270 printf( 271 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 272 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 273 nsize, fs->fs_fsmnt); 274 panic("ffs_realloccg: bad size"); 275 } 276 if (cred == NOCRED) 277 panic("ffs_realloccg: missing credential"); 278 #endif /* INVARIANTS */ 279 reclaimed = 0; 280 retry: 281 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 282 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 283 goto nospace; 284 } 285 if (bprev == 0) { 286 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 287 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 288 fs->fs_fsmnt); 289 panic("ffs_realloccg: bad bprev"); 290 } 291 UFS_UNLOCK(ump); 292 /* 293 * Allocate the extra space in the buffer. 294 */ 295 error = bread(vp, lbprev, osize, NOCRED, &bp); 296 if (error) { 297 brelse(bp); 298 return (error); 299 } 300 301 if (bp->b_blkno == bp->b_lblkno) { 302 if (lbprev >= NDADDR) 303 panic("ffs_realloccg: lbprev out of range"); 304 bp->b_blkno = fsbtodb(fs, bprev); 305 } 306 307 #ifdef QUOTA 308 error = chkdq(ip, btodb(nsize - osize), cred, 0); 309 if (error) { 310 brelse(bp); 311 return (error); 312 } 313 #endif 314 /* 315 * Check for extension in the existing location. 316 */ 317 cg = dtog(fs, bprev); 318 UFS_LOCK(ump); 319 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 320 if (bno) { 321 if (bp->b_blkno != fsbtodb(fs, bno)) 322 panic("ffs_realloccg: bad blockno"); 323 delta = btodb(nsize - osize); 324 if (ip->i_flag & IN_SPACECOUNTED) { 325 UFS_LOCK(ump); 326 fs->fs_pendingblocks += delta; 327 UFS_UNLOCK(ump); 328 } 329 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 330 if (flags & IO_EXT) 331 ip->i_flag |= IN_CHANGE; 332 else 333 ip->i_flag |= IN_CHANGE | IN_UPDATE; 334 allocbuf(bp, nsize); 335 bp->b_flags |= B_DONE; 336 bzero(bp->b_data + osize, nsize - osize); 337 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 338 vfs_bio_set_valid(bp, osize, nsize - osize); 339 *bpp = bp; 340 return (0); 341 } 342 /* 343 * Allocate a new disk location. 344 */ 345 if (bpref >= fs->fs_size) 346 bpref = 0; 347 switch ((int)fs->fs_optim) { 348 case FS_OPTSPACE: 349 /* 350 * Allocate an exact sized fragment. Although this makes 351 * best use of space, we will waste time relocating it if 352 * the file continues to grow. If the fragmentation is 353 * less than half of the minimum free reserve, we choose 354 * to begin optimizing for time. 355 */ 356 request = nsize; 357 if (fs->fs_minfree <= 5 || 358 fs->fs_cstotal.cs_nffree > 359 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 360 break; 361 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 362 fs->fs_fsmnt); 363 fs->fs_optim = FS_OPTTIME; 364 break; 365 case FS_OPTTIME: 366 /* 367 * At this point we have discovered a file that is trying to 368 * grow a small fragment to a larger fragment. To save time, 369 * we allocate a full sized block, then free the unused portion. 370 * If the file continues to grow, the `ffs_fragextend' call 371 * above will be able to grow it in place without further 372 * copying. If aberrant programs cause disk fragmentation to 373 * grow within 2% of the free reserve, we choose to begin 374 * optimizing for space. 375 */ 376 request = fs->fs_bsize; 377 if (fs->fs_cstotal.cs_nffree < 378 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 379 break; 380 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 381 fs->fs_fsmnt); 382 fs->fs_optim = FS_OPTSPACE; 383 break; 384 default: 385 printf("dev = %s, optim = %ld, fs = %s\n", 386 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 387 panic("ffs_realloccg: bad optim"); 388 /* NOTREACHED */ 389 } 390 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 391 if (bno > 0) { 392 bp->b_blkno = fsbtodb(fs, bno); 393 if (!DOINGSOFTDEP(vp)) 394 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 395 ip->i_number, NULL); 396 delta = btodb(nsize - osize); 397 if (ip->i_flag & IN_SPACECOUNTED) { 398 UFS_LOCK(ump); 399 fs->fs_pendingblocks += delta; 400 UFS_UNLOCK(ump); 401 } 402 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 403 if (flags & IO_EXT) 404 ip->i_flag |= IN_CHANGE; 405 else 406 ip->i_flag |= IN_CHANGE | IN_UPDATE; 407 allocbuf(bp, nsize); 408 bp->b_flags |= B_DONE; 409 bzero(bp->b_data + osize, nsize - osize); 410 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 411 vfs_bio_set_valid(bp, osize, nsize - osize); 412 *bpp = bp; 413 return (0); 414 } 415 #ifdef QUOTA 416 UFS_UNLOCK(ump); 417 /* 418 * Restore user's disk quota because allocation failed. 419 */ 420 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 421 UFS_LOCK(ump); 422 #endif 423 nospace: 424 /* 425 * no space available 426 */ 427 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 428 reclaimed = 1; 429 softdep_request_cleanup(fs, vp); 430 UFS_UNLOCK(ump); 431 if (bp) { 432 brelse(bp); 433 bp = NULL; 434 } 435 UFS_LOCK(ump); 436 goto retry; 437 } 438 UFS_UNLOCK(ump); 439 if (bp) 440 brelse(bp); 441 if (ppsratecheck(&lastfail, &curfail, 1)) { 442 ffs_fserr(fs, ip->i_number, "filesystem full"); 443 uprintf("\n%s: write failed, filesystem is full\n", 444 fs->fs_fsmnt); 445 } 446 return (ENOSPC); 447 } 448 449 /* 450 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 451 * 452 * The vnode and an array of buffer pointers for a range of sequential 453 * logical blocks to be made contiguous is given. The allocator attempts 454 * to find a range of sequential blocks starting as close as possible 455 * from the end of the allocation for the logical block immediately 456 * preceding the current range. If successful, the physical block numbers 457 * in the buffer pointers and in the inode are changed to reflect the new 458 * allocation. If unsuccessful, the allocation is left unchanged. The 459 * success in doing the reallocation is returned. Note that the error 460 * return is not reflected back to the user. Rather the previous block 461 * allocation will be used. 462 */ 463 464 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 465 466 static int doasyncfree = 1; 467 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 468 469 static int doreallocblks = 1; 470 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 471 472 #ifdef DEBUG 473 static volatile int prtrealloc = 0; 474 #endif 475 476 int 477 ffs_reallocblks(ap) 478 struct vop_reallocblks_args /* { 479 struct vnode *a_vp; 480 struct cluster_save *a_buflist; 481 } */ *ap; 482 { 483 484 if (doreallocblks == 0) 485 return (ENOSPC); 486 /* 487 * We can't wait in softdep prealloc as it may fsync and recurse 488 * here. Instead we simply fail to reallocate blocks if this 489 * rare condition arises. 490 */ 491 if (DOINGSOFTDEP(ap->a_vp)) 492 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 493 return (ENOSPC); 494 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 495 return (ffs_reallocblks_ufs1(ap)); 496 return (ffs_reallocblks_ufs2(ap)); 497 } 498 499 static int 500 ffs_reallocblks_ufs1(ap) 501 struct vop_reallocblks_args /* { 502 struct vnode *a_vp; 503 struct cluster_save *a_buflist; 504 } */ *ap; 505 { 506 struct fs *fs; 507 struct inode *ip; 508 struct vnode *vp; 509 struct buf *sbp, *ebp; 510 ufs1_daddr_t *bap, *sbap, *ebap = 0; 511 struct cluster_save *buflist; 512 struct ufsmount *ump; 513 ufs_lbn_t start_lbn, end_lbn; 514 ufs1_daddr_t soff, newblk, blkno; 515 ufs2_daddr_t pref; 516 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 517 int i, len, start_lvl, end_lvl, ssize; 518 519 vp = ap->a_vp; 520 ip = VTOI(vp); 521 fs = ip->i_fs; 522 ump = ip->i_ump; 523 if (fs->fs_contigsumsize <= 0) 524 return (ENOSPC); 525 buflist = ap->a_buflist; 526 len = buflist->bs_nchildren; 527 start_lbn = buflist->bs_children[0]->b_lblkno; 528 end_lbn = start_lbn + len - 1; 529 #ifdef INVARIANTS 530 for (i = 0; i < len; i++) 531 if (!ffs_checkblk(ip, 532 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 533 panic("ffs_reallocblks: unallocated block 1"); 534 for (i = 1; i < len; i++) 535 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 536 panic("ffs_reallocblks: non-logical cluster"); 537 blkno = buflist->bs_children[0]->b_blkno; 538 ssize = fsbtodb(fs, fs->fs_frag); 539 for (i = 1; i < len - 1; i++) 540 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 541 panic("ffs_reallocblks: non-physical cluster %d", i); 542 #endif 543 /* 544 * If the latest allocation is in a new cylinder group, assume that 545 * the filesystem has decided to move and do not force it back to 546 * the previous cylinder group. 547 */ 548 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 549 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 550 return (ENOSPC); 551 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 552 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 553 return (ENOSPC); 554 /* 555 * Get the starting offset and block map for the first block. 556 */ 557 if (start_lvl == 0) { 558 sbap = &ip->i_din1->di_db[0]; 559 soff = start_lbn; 560 } else { 561 idp = &start_ap[start_lvl - 1]; 562 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 563 brelse(sbp); 564 return (ENOSPC); 565 } 566 sbap = (ufs1_daddr_t *)sbp->b_data; 567 soff = idp->in_off; 568 } 569 /* 570 * If the block range spans two block maps, get the second map. 571 */ 572 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 573 ssize = len; 574 } else { 575 #ifdef INVARIANTS 576 if (start_lvl > 0 && 577 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 578 panic("ffs_reallocblk: start == end"); 579 #endif 580 ssize = len - (idp->in_off + 1); 581 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 582 goto fail; 583 ebap = (ufs1_daddr_t *)ebp->b_data; 584 } 585 /* 586 * Find the preferred location for the cluster. 587 */ 588 UFS_LOCK(ump); 589 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 590 /* 591 * Search the block map looking for an allocation of the desired size. 592 */ 593 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 594 len, len, ffs_clusteralloc)) == 0) { 595 UFS_UNLOCK(ump); 596 goto fail; 597 } 598 /* 599 * We have found a new contiguous block. 600 * 601 * First we have to replace the old block pointers with the new 602 * block pointers in the inode and indirect blocks associated 603 * with the file. 604 */ 605 #ifdef DEBUG 606 if (prtrealloc) 607 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 608 (intmax_t)start_lbn, (intmax_t)end_lbn); 609 #endif 610 blkno = newblk; 611 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 612 if (i == ssize) { 613 bap = ebap; 614 soff = -i; 615 } 616 #ifdef INVARIANTS 617 if (!ffs_checkblk(ip, 618 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 619 panic("ffs_reallocblks: unallocated block 2"); 620 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 621 panic("ffs_reallocblks: alloc mismatch"); 622 #endif 623 #ifdef DEBUG 624 if (prtrealloc) 625 printf(" %d,", *bap); 626 #endif 627 if (DOINGSOFTDEP(vp)) { 628 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 629 softdep_setup_allocdirect(ip, start_lbn + i, 630 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 631 buflist->bs_children[i]); 632 else 633 softdep_setup_allocindir_page(ip, start_lbn + i, 634 i < ssize ? sbp : ebp, soff + i, blkno, 635 *bap, buflist->bs_children[i]); 636 } 637 *bap++ = blkno; 638 } 639 /* 640 * Next we must write out the modified inode and indirect blocks. 641 * For strict correctness, the writes should be synchronous since 642 * the old block values may have been written to disk. In practise 643 * they are almost never written, but if we are concerned about 644 * strict correctness, the `doasyncfree' flag should be set to zero. 645 * 646 * The test on `doasyncfree' should be changed to test a flag 647 * that shows whether the associated buffers and inodes have 648 * been written. The flag should be set when the cluster is 649 * started and cleared whenever the buffer or inode is flushed. 650 * We can then check below to see if it is set, and do the 651 * synchronous write only when it has been cleared. 652 */ 653 if (sbap != &ip->i_din1->di_db[0]) { 654 if (doasyncfree) 655 bdwrite(sbp); 656 else 657 bwrite(sbp); 658 } else { 659 ip->i_flag |= IN_CHANGE | IN_UPDATE; 660 if (!doasyncfree) 661 ffs_update(vp, 1); 662 } 663 if (ssize < len) { 664 if (doasyncfree) 665 bdwrite(ebp); 666 else 667 bwrite(ebp); 668 } 669 /* 670 * Last, free the old blocks and assign the new blocks to the buffers. 671 */ 672 #ifdef DEBUG 673 if (prtrealloc) 674 printf("\n\tnew:"); 675 #endif 676 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 677 if (!DOINGSOFTDEP(vp)) 678 ffs_blkfree(ump, fs, ip->i_devvp, 679 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 680 fs->fs_bsize, ip->i_number, NULL); 681 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 682 #ifdef INVARIANTS 683 if (!ffs_checkblk(ip, 684 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 685 panic("ffs_reallocblks: unallocated block 3"); 686 #endif 687 #ifdef DEBUG 688 if (prtrealloc) 689 printf(" %d,", blkno); 690 #endif 691 } 692 #ifdef DEBUG 693 if (prtrealloc) { 694 prtrealloc--; 695 printf("\n"); 696 } 697 #endif 698 return (0); 699 700 fail: 701 if (ssize < len) 702 brelse(ebp); 703 if (sbap != &ip->i_din1->di_db[0]) 704 brelse(sbp); 705 return (ENOSPC); 706 } 707 708 static int 709 ffs_reallocblks_ufs2(ap) 710 struct vop_reallocblks_args /* { 711 struct vnode *a_vp; 712 struct cluster_save *a_buflist; 713 } */ *ap; 714 { 715 struct fs *fs; 716 struct inode *ip; 717 struct vnode *vp; 718 struct buf *sbp, *ebp; 719 ufs2_daddr_t *bap, *sbap, *ebap = 0; 720 struct cluster_save *buflist; 721 struct ufsmount *ump; 722 ufs_lbn_t start_lbn, end_lbn; 723 ufs2_daddr_t soff, newblk, blkno, pref; 724 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 725 int i, len, start_lvl, end_lvl, ssize; 726 727 vp = ap->a_vp; 728 ip = VTOI(vp); 729 fs = ip->i_fs; 730 ump = ip->i_ump; 731 if (fs->fs_contigsumsize <= 0) 732 return (ENOSPC); 733 buflist = ap->a_buflist; 734 len = buflist->bs_nchildren; 735 start_lbn = buflist->bs_children[0]->b_lblkno; 736 end_lbn = start_lbn + len - 1; 737 #ifdef INVARIANTS 738 for (i = 0; i < len; i++) 739 if (!ffs_checkblk(ip, 740 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 741 panic("ffs_reallocblks: unallocated block 1"); 742 for (i = 1; i < len; i++) 743 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 744 panic("ffs_reallocblks: non-logical cluster"); 745 blkno = buflist->bs_children[0]->b_blkno; 746 ssize = fsbtodb(fs, fs->fs_frag); 747 for (i = 1; i < len - 1; i++) 748 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 749 panic("ffs_reallocblks: non-physical cluster %d", i); 750 #endif 751 /* 752 * If the latest allocation is in a new cylinder group, assume that 753 * the filesystem has decided to move and do not force it back to 754 * the previous cylinder group. 755 */ 756 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 757 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 758 return (ENOSPC); 759 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 760 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 761 return (ENOSPC); 762 /* 763 * Get the starting offset and block map for the first block. 764 */ 765 if (start_lvl == 0) { 766 sbap = &ip->i_din2->di_db[0]; 767 soff = start_lbn; 768 } else { 769 idp = &start_ap[start_lvl - 1]; 770 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 771 brelse(sbp); 772 return (ENOSPC); 773 } 774 sbap = (ufs2_daddr_t *)sbp->b_data; 775 soff = idp->in_off; 776 } 777 /* 778 * If the block range spans two block maps, get the second map. 779 */ 780 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 781 ssize = len; 782 } else { 783 #ifdef INVARIANTS 784 if (start_lvl > 0 && 785 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 786 panic("ffs_reallocblk: start == end"); 787 #endif 788 ssize = len - (idp->in_off + 1); 789 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 790 goto fail; 791 ebap = (ufs2_daddr_t *)ebp->b_data; 792 } 793 /* 794 * Find the preferred location for the cluster. 795 */ 796 UFS_LOCK(ump); 797 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 798 /* 799 * Search the block map looking for an allocation of the desired size. 800 */ 801 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 802 len, len, ffs_clusteralloc)) == 0) { 803 UFS_UNLOCK(ump); 804 goto fail; 805 } 806 /* 807 * We have found a new contiguous block. 808 * 809 * First we have to replace the old block pointers with the new 810 * block pointers in the inode and indirect blocks associated 811 * with the file. 812 */ 813 #ifdef DEBUG 814 if (prtrealloc) 815 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 816 (intmax_t)start_lbn, (intmax_t)end_lbn); 817 #endif 818 blkno = newblk; 819 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 820 if (i == ssize) { 821 bap = ebap; 822 soff = -i; 823 } 824 #ifdef INVARIANTS 825 if (!ffs_checkblk(ip, 826 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 827 panic("ffs_reallocblks: unallocated block 2"); 828 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 829 panic("ffs_reallocblks: alloc mismatch"); 830 #endif 831 #ifdef DEBUG 832 if (prtrealloc) 833 printf(" %jd,", (intmax_t)*bap); 834 #endif 835 if (DOINGSOFTDEP(vp)) { 836 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 837 softdep_setup_allocdirect(ip, start_lbn + i, 838 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 839 buflist->bs_children[i]); 840 else 841 softdep_setup_allocindir_page(ip, start_lbn + i, 842 i < ssize ? sbp : ebp, soff + i, blkno, 843 *bap, buflist->bs_children[i]); 844 } 845 *bap++ = blkno; 846 } 847 /* 848 * Next we must write out the modified inode and indirect blocks. 849 * For strict correctness, the writes should be synchronous since 850 * the old block values may have been written to disk. In practise 851 * they are almost never written, but if we are concerned about 852 * strict correctness, the `doasyncfree' flag should be set to zero. 853 * 854 * The test on `doasyncfree' should be changed to test a flag 855 * that shows whether the associated buffers and inodes have 856 * been written. The flag should be set when the cluster is 857 * started and cleared whenever the buffer or inode is flushed. 858 * We can then check below to see if it is set, and do the 859 * synchronous write only when it has been cleared. 860 */ 861 if (sbap != &ip->i_din2->di_db[0]) { 862 if (doasyncfree) 863 bdwrite(sbp); 864 else 865 bwrite(sbp); 866 } else { 867 ip->i_flag |= IN_CHANGE | IN_UPDATE; 868 if (!doasyncfree) 869 ffs_update(vp, 1); 870 } 871 if (ssize < len) { 872 if (doasyncfree) 873 bdwrite(ebp); 874 else 875 bwrite(ebp); 876 } 877 /* 878 * Last, free the old blocks and assign the new blocks to the buffers. 879 */ 880 #ifdef DEBUG 881 if (prtrealloc) 882 printf("\n\tnew:"); 883 #endif 884 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 885 if (!DOINGSOFTDEP(vp)) 886 ffs_blkfree(ump, fs, ip->i_devvp, 887 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 888 fs->fs_bsize, ip->i_number, NULL); 889 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 890 #ifdef INVARIANTS 891 if (!ffs_checkblk(ip, 892 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 893 panic("ffs_reallocblks: unallocated block 3"); 894 #endif 895 #ifdef DEBUG 896 if (prtrealloc) 897 printf(" %jd,", (intmax_t)blkno); 898 #endif 899 } 900 #ifdef DEBUG 901 if (prtrealloc) { 902 prtrealloc--; 903 printf("\n"); 904 } 905 #endif 906 return (0); 907 908 fail: 909 if (ssize < len) 910 brelse(ebp); 911 if (sbap != &ip->i_din2->di_db[0]) 912 brelse(sbp); 913 return (ENOSPC); 914 } 915 916 /* 917 * Allocate an inode in the filesystem. 918 * 919 * If allocating a directory, use ffs_dirpref to select the inode. 920 * If allocating in a directory, the following hierarchy is followed: 921 * 1) allocate the preferred inode. 922 * 2) allocate an inode in the same cylinder group. 923 * 3) quadradically rehash into other cylinder groups, until an 924 * available inode is located. 925 * If no inode preference is given the following hierarchy is used 926 * to allocate an inode: 927 * 1) allocate an inode in cylinder group 0. 928 * 2) quadradically rehash into other cylinder groups, until an 929 * available inode is located. 930 */ 931 int 932 ffs_valloc(pvp, mode, cred, vpp) 933 struct vnode *pvp; 934 int mode; 935 struct ucred *cred; 936 struct vnode **vpp; 937 { 938 struct inode *pip; 939 struct fs *fs; 940 struct inode *ip; 941 struct timespec ts; 942 struct ufsmount *ump; 943 ino_t ino, ipref; 944 u_int cg; 945 int error, error1; 946 static struct timeval lastfail; 947 static int curfail; 948 949 *vpp = NULL; 950 pip = VTOI(pvp); 951 fs = pip->i_fs; 952 ump = pip->i_ump; 953 954 UFS_LOCK(ump); 955 if (fs->fs_cstotal.cs_nifree == 0) 956 goto noinodes; 957 958 if ((mode & IFMT) == IFDIR) 959 ipref = ffs_dirpref(pip); 960 else 961 ipref = pip->i_number; 962 if (ipref >= fs->fs_ncg * fs->fs_ipg) 963 ipref = 0; 964 cg = ino_to_cg(fs, ipref); 965 /* 966 * Track number of dirs created one after another 967 * in a same cg without intervening by files. 968 */ 969 if ((mode & IFMT) == IFDIR) { 970 if (fs->fs_contigdirs[cg] < 255) 971 fs->fs_contigdirs[cg]++; 972 } else { 973 if (fs->fs_contigdirs[cg] > 0) 974 fs->fs_contigdirs[cg]--; 975 } 976 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 977 (allocfcn_t *)ffs_nodealloccg); 978 if (ino == 0) 979 goto noinodes; 980 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 981 if (error) { 982 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 983 FFSV_FORCEINSMQ); 984 ffs_vfree(pvp, ino, mode); 985 if (error1 == 0) { 986 ip = VTOI(*vpp); 987 if (ip->i_mode) 988 goto dup_alloc; 989 ip->i_flag |= IN_MODIFIED; 990 vput(*vpp); 991 } 992 return (error); 993 } 994 ip = VTOI(*vpp); 995 if (ip->i_mode) { 996 dup_alloc: 997 printf("mode = 0%o, inum = %lu, fs = %s\n", 998 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 999 panic("ffs_valloc: dup alloc"); 1000 } 1001 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1002 printf("free inode %s/%lu had %ld blocks\n", 1003 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1004 DIP_SET(ip, i_blocks, 0); 1005 } 1006 ip->i_flags = 0; 1007 DIP_SET(ip, i_flags, 0); 1008 /* 1009 * Set up a new generation number for this inode. 1010 */ 1011 if (ip->i_gen == 0 || ++ip->i_gen == 0) 1012 ip->i_gen = arc4random() / 2 + 1; 1013 DIP_SET(ip, i_gen, ip->i_gen); 1014 if (fs->fs_magic == FS_UFS2_MAGIC) { 1015 vfs_timestamp(&ts); 1016 ip->i_din2->di_birthtime = ts.tv_sec; 1017 ip->i_din2->di_birthnsec = ts.tv_nsec; 1018 } 1019 ip->i_flag = 0; 1020 vnode_destroy_vobject(*vpp); 1021 (*vpp)->v_type = VNON; 1022 if (fs->fs_magic == FS_UFS2_MAGIC) 1023 (*vpp)->v_op = &ffs_vnodeops2; 1024 else 1025 (*vpp)->v_op = &ffs_vnodeops1; 1026 return (0); 1027 noinodes: 1028 UFS_UNLOCK(ump); 1029 if (ppsratecheck(&lastfail, &curfail, 1)) { 1030 ffs_fserr(fs, pip->i_number, "out of inodes"); 1031 uprintf("\n%s: create/symlink failed, no inodes free\n", 1032 fs->fs_fsmnt); 1033 } 1034 return (ENOSPC); 1035 } 1036 1037 /* 1038 * Find a cylinder group to place a directory. 1039 * 1040 * The policy implemented by this algorithm is to allocate a 1041 * directory inode in the same cylinder group as its parent 1042 * directory, but also to reserve space for its files inodes 1043 * and data. Restrict the number of directories which may be 1044 * allocated one after another in the same cylinder group 1045 * without intervening allocation of files. 1046 * 1047 * If we allocate a first level directory then force allocation 1048 * in another cylinder group. 1049 */ 1050 static ino_t 1051 ffs_dirpref(pip) 1052 struct inode *pip; 1053 { 1054 struct fs *fs; 1055 u_int cg, prefcg, dirsize, cgsize; 1056 u_int avgifree, avgbfree, avgndir, curdirsize; 1057 u_int minifree, minbfree, maxndir; 1058 u_int mincg, minndir; 1059 u_int maxcontigdirs; 1060 1061 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1062 fs = pip->i_fs; 1063 1064 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1065 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1066 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1067 1068 /* 1069 * Force allocation in another cg if creating a first level dir. 1070 */ 1071 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1072 if (ITOV(pip)->v_vflag & VV_ROOT) { 1073 prefcg = arc4random() % fs->fs_ncg; 1074 mincg = prefcg; 1075 minndir = fs->fs_ipg; 1076 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1077 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1078 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1079 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1080 mincg = cg; 1081 minndir = fs->fs_cs(fs, cg).cs_ndir; 1082 } 1083 for (cg = 0; cg < prefcg; cg++) 1084 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1085 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1086 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1087 mincg = cg; 1088 minndir = fs->fs_cs(fs, cg).cs_ndir; 1089 } 1090 return ((ino_t)(fs->fs_ipg * mincg)); 1091 } 1092 1093 /* 1094 * Count various limits which used for 1095 * optimal allocation of a directory inode. 1096 */ 1097 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1098 minifree = avgifree - avgifree / 4; 1099 if (minifree < 1) 1100 minifree = 1; 1101 minbfree = avgbfree - avgbfree / 4; 1102 if (minbfree < 1) 1103 minbfree = 1; 1104 cgsize = fs->fs_fsize * fs->fs_fpg; 1105 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1106 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1107 if (dirsize < curdirsize) 1108 dirsize = curdirsize; 1109 if (dirsize <= 0) 1110 maxcontigdirs = 0; /* dirsize overflowed */ 1111 else 1112 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1113 if (fs->fs_avgfpdir > 0) 1114 maxcontigdirs = min(maxcontigdirs, 1115 fs->fs_ipg / fs->fs_avgfpdir); 1116 if (maxcontigdirs == 0) 1117 maxcontigdirs = 1; 1118 1119 /* 1120 * Limit number of dirs in one cg and reserve space for 1121 * regular files, but only if we have no deficit in 1122 * inodes or space. 1123 */ 1124 prefcg = ino_to_cg(fs, pip->i_number); 1125 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1126 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1127 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1128 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1129 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1130 return ((ino_t)(fs->fs_ipg * cg)); 1131 } 1132 for (cg = 0; cg < prefcg; cg++) 1133 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1134 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1135 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1136 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1137 return ((ino_t)(fs->fs_ipg * cg)); 1138 } 1139 /* 1140 * This is a backstop when we have deficit in space. 1141 */ 1142 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1143 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1144 return ((ino_t)(fs->fs_ipg * cg)); 1145 for (cg = 0; cg < prefcg; cg++) 1146 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1147 break; 1148 return ((ino_t)(fs->fs_ipg * cg)); 1149 } 1150 1151 /* 1152 * Select the desired position for the next block in a file. The file is 1153 * logically divided into sections. The first section is composed of the 1154 * direct blocks. Each additional section contains fs_maxbpg blocks. 1155 * 1156 * If no blocks have been allocated in the first section, the policy is to 1157 * request a block in the same cylinder group as the inode that describes 1158 * the file. If no blocks have been allocated in any other section, the 1159 * policy is to place the section in a cylinder group with a greater than 1160 * average number of free blocks. An appropriate cylinder group is found 1161 * by using a rotor that sweeps the cylinder groups. When a new group of 1162 * blocks is needed, the sweep begins in the cylinder group following the 1163 * cylinder group from which the previous allocation was made. The sweep 1164 * continues until a cylinder group with greater than the average number 1165 * of free blocks is found. If the allocation is for the first block in an 1166 * indirect block, the information on the previous allocation is unavailable; 1167 * here a best guess is made based upon the logical block number being 1168 * allocated. 1169 * 1170 * If a section is already partially allocated, the policy is to 1171 * contiguously allocate fs_maxcontig blocks. The end of one of these 1172 * contiguous blocks and the beginning of the next is laid out 1173 * contiguously if possible. 1174 */ 1175 ufs2_daddr_t 1176 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1177 struct inode *ip; 1178 ufs_lbn_t lbn; 1179 int indx; 1180 ufs1_daddr_t *bap; 1181 { 1182 struct fs *fs; 1183 u_int cg; 1184 u_int avgbfree, startcg; 1185 1186 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1187 fs = ip->i_fs; 1188 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1189 if (lbn < NDADDR + NINDIR(fs)) { 1190 cg = ino_to_cg(fs, ip->i_number); 1191 return (cgbase(fs, cg) + fs->fs_frag); 1192 } 1193 /* 1194 * Find a cylinder with greater than average number of 1195 * unused data blocks. 1196 */ 1197 if (indx == 0 || bap[indx - 1] == 0) 1198 startcg = 1199 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1200 else 1201 startcg = dtog(fs, bap[indx - 1]) + 1; 1202 startcg %= fs->fs_ncg; 1203 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1204 for (cg = startcg; cg < fs->fs_ncg; cg++) 1205 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1206 fs->fs_cgrotor = cg; 1207 return (cgbase(fs, cg) + fs->fs_frag); 1208 } 1209 for (cg = 0; cg <= startcg; cg++) 1210 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1211 fs->fs_cgrotor = cg; 1212 return (cgbase(fs, cg) + fs->fs_frag); 1213 } 1214 return (0); 1215 } 1216 /* 1217 * We just always try to lay things out contiguously. 1218 */ 1219 return (bap[indx - 1] + fs->fs_frag); 1220 } 1221 1222 /* 1223 * Same as above, but for UFS2 1224 */ 1225 ufs2_daddr_t 1226 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1227 struct inode *ip; 1228 ufs_lbn_t lbn; 1229 int indx; 1230 ufs2_daddr_t *bap; 1231 { 1232 struct fs *fs; 1233 u_int cg; 1234 u_int avgbfree, startcg; 1235 1236 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1237 fs = ip->i_fs; 1238 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1239 if (lbn < NDADDR + NINDIR(fs)) { 1240 cg = ino_to_cg(fs, ip->i_number); 1241 return (cgbase(fs, cg) + fs->fs_frag); 1242 } 1243 /* 1244 * Find a cylinder with greater than average number of 1245 * unused data blocks. 1246 */ 1247 if (indx == 0 || bap[indx - 1] == 0) 1248 startcg = 1249 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1250 else 1251 startcg = dtog(fs, bap[indx - 1]) + 1; 1252 startcg %= fs->fs_ncg; 1253 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1254 for (cg = startcg; cg < fs->fs_ncg; cg++) 1255 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1256 fs->fs_cgrotor = cg; 1257 return (cgbase(fs, cg) + fs->fs_frag); 1258 } 1259 for (cg = 0; cg <= startcg; cg++) 1260 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1261 fs->fs_cgrotor = cg; 1262 return (cgbase(fs, cg) + fs->fs_frag); 1263 } 1264 return (0); 1265 } 1266 /* 1267 * We just always try to lay things out contiguously. 1268 */ 1269 return (bap[indx - 1] + fs->fs_frag); 1270 } 1271 1272 /* 1273 * Implement the cylinder overflow algorithm. 1274 * 1275 * The policy implemented by this algorithm is: 1276 * 1) allocate the block in its requested cylinder group. 1277 * 2) quadradically rehash on the cylinder group number. 1278 * 3) brute force search for a free block. 1279 * 1280 * Must be called with the UFS lock held. Will release the lock on success 1281 * and return with it held on failure. 1282 */ 1283 /*VARARGS5*/ 1284 static ufs2_daddr_t 1285 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1286 struct inode *ip; 1287 u_int cg; 1288 ufs2_daddr_t pref; 1289 int size; /* Search size for data blocks, mode for inodes */ 1290 int rsize; /* Real allocated size. */ 1291 allocfcn_t *allocator; 1292 { 1293 struct fs *fs; 1294 ufs2_daddr_t result; 1295 u_int i, icg = cg; 1296 1297 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1298 #ifdef INVARIANTS 1299 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1300 panic("ffs_hashalloc: allocation on suspended filesystem"); 1301 #endif 1302 fs = ip->i_fs; 1303 /* 1304 * 1: preferred cylinder group 1305 */ 1306 result = (*allocator)(ip, cg, pref, size, rsize); 1307 if (result) 1308 return (result); 1309 /* 1310 * 2: quadratic rehash 1311 */ 1312 for (i = 1; i < fs->fs_ncg; i *= 2) { 1313 cg += i; 1314 if (cg >= fs->fs_ncg) 1315 cg -= fs->fs_ncg; 1316 result = (*allocator)(ip, cg, 0, size, rsize); 1317 if (result) 1318 return (result); 1319 } 1320 /* 1321 * 3: brute force search 1322 * Note that we start at i == 2, since 0 was checked initially, 1323 * and 1 is always checked in the quadratic rehash. 1324 */ 1325 cg = (icg + 2) % fs->fs_ncg; 1326 for (i = 2; i < fs->fs_ncg; i++) { 1327 result = (*allocator)(ip, cg, 0, size, rsize); 1328 if (result) 1329 return (result); 1330 cg++; 1331 if (cg == fs->fs_ncg) 1332 cg = 0; 1333 } 1334 return (0); 1335 } 1336 1337 /* 1338 * Determine whether a fragment can be extended. 1339 * 1340 * Check to see if the necessary fragments are available, and 1341 * if they are, allocate them. 1342 */ 1343 static ufs2_daddr_t 1344 ffs_fragextend(ip, cg, bprev, osize, nsize) 1345 struct inode *ip; 1346 u_int cg; 1347 ufs2_daddr_t bprev; 1348 int osize, nsize; 1349 { 1350 struct fs *fs; 1351 struct cg *cgp; 1352 struct buf *bp; 1353 struct ufsmount *ump; 1354 int nffree; 1355 long bno; 1356 int frags, bbase; 1357 int i, error; 1358 u_int8_t *blksfree; 1359 1360 ump = ip->i_ump; 1361 fs = ip->i_fs; 1362 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1363 return (0); 1364 frags = numfrags(fs, nsize); 1365 bbase = fragnum(fs, bprev); 1366 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1367 /* cannot extend across a block boundary */ 1368 return (0); 1369 } 1370 UFS_UNLOCK(ump); 1371 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1372 (int)fs->fs_cgsize, NOCRED, &bp); 1373 if (error) 1374 goto fail; 1375 cgp = (struct cg *)bp->b_data; 1376 if (!cg_chkmagic(cgp)) 1377 goto fail; 1378 bp->b_xflags |= BX_BKGRDWRITE; 1379 cgp->cg_old_time = cgp->cg_time = time_second; 1380 bno = dtogd(fs, bprev); 1381 blksfree = cg_blksfree(cgp); 1382 for (i = numfrags(fs, osize); i < frags; i++) 1383 if (isclr(blksfree, bno + i)) 1384 goto fail; 1385 /* 1386 * the current fragment can be extended 1387 * deduct the count on fragment being extended into 1388 * increase the count on the remaining fragment (if any) 1389 * allocate the extended piece 1390 */ 1391 for (i = frags; i < fs->fs_frag - bbase; i++) 1392 if (isclr(blksfree, bno + i)) 1393 break; 1394 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1395 if (i != frags) 1396 cgp->cg_frsum[i - frags]++; 1397 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1398 clrbit(blksfree, bno + i); 1399 cgp->cg_cs.cs_nffree--; 1400 nffree++; 1401 } 1402 UFS_LOCK(ump); 1403 fs->fs_cstotal.cs_nffree -= nffree; 1404 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1405 fs->fs_fmod = 1; 1406 ACTIVECLEAR(fs, cg); 1407 UFS_UNLOCK(ump); 1408 if (DOINGSOFTDEP(ITOV(ip))) 1409 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1410 frags, numfrags(fs, osize)); 1411 bdwrite(bp); 1412 return (bprev); 1413 1414 fail: 1415 brelse(bp); 1416 UFS_LOCK(ump); 1417 return (0); 1418 1419 } 1420 1421 /* 1422 * Determine whether a block can be allocated. 1423 * 1424 * Check to see if a block of the appropriate size is available, 1425 * and if it is, allocate it. 1426 */ 1427 static ufs2_daddr_t 1428 ffs_alloccg(ip, cg, bpref, size, rsize) 1429 struct inode *ip; 1430 u_int cg; 1431 ufs2_daddr_t bpref; 1432 int size; 1433 int rsize; 1434 { 1435 struct fs *fs; 1436 struct cg *cgp; 1437 struct buf *bp; 1438 struct ufsmount *ump; 1439 ufs1_daddr_t bno; 1440 ufs2_daddr_t blkno; 1441 int i, allocsiz, error, frags; 1442 u_int8_t *blksfree; 1443 1444 ump = ip->i_ump; 1445 fs = ip->i_fs; 1446 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1447 return (0); 1448 UFS_UNLOCK(ump); 1449 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1450 (int)fs->fs_cgsize, NOCRED, &bp); 1451 if (error) 1452 goto fail; 1453 cgp = (struct cg *)bp->b_data; 1454 if (!cg_chkmagic(cgp) || 1455 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1456 goto fail; 1457 bp->b_xflags |= BX_BKGRDWRITE; 1458 cgp->cg_old_time = cgp->cg_time = time_second; 1459 if (size == fs->fs_bsize) { 1460 UFS_LOCK(ump); 1461 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1462 ACTIVECLEAR(fs, cg); 1463 UFS_UNLOCK(ump); 1464 bdwrite(bp); 1465 return (blkno); 1466 } 1467 /* 1468 * check to see if any fragments are already available 1469 * allocsiz is the size which will be allocated, hacking 1470 * it down to a smaller size if necessary 1471 */ 1472 blksfree = cg_blksfree(cgp); 1473 frags = numfrags(fs, size); 1474 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1475 if (cgp->cg_frsum[allocsiz] != 0) 1476 break; 1477 if (allocsiz == fs->fs_frag) { 1478 /* 1479 * no fragments were available, so a block will be 1480 * allocated, and hacked up 1481 */ 1482 if (cgp->cg_cs.cs_nbfree == 0) 1483 goto fail; 1484 UFS_LOCK(ump); 1485 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1486 ACTIVECLEAR(fs, cg); 1487 UFS_UNLOCK(ump); 1488 bdwrite(bp); 1489 return (blkno); 1490 } 1491 KASSERT(size == rsize, 1492 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1493 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1494 if (bno < 0) 1495 goto fail; 1496 for (i = 0; i < frags; i++) 1497 clrbit(blksfree, bno + i); 1498 cgp->cg_cs.cs_nffree -= frags; 1499 cgp->cg_frsum[allocsiz]--; 1500 if (frags != allocsiz) 1501 cgp->cg_frsum[allocsiz - frags]++; 1502 UFS_LOCK(ump); 1503 fs->fs_cstotal.cs_nffree -= frags; 1504 fs->fs_cs(fs, cg).cs_nffree -= frags; 1505 fs->fs_fmod = 1; 1506 blkno = cgbase(fs, cg) + bno; 1507 ACTIVECLEAR(fs, cg); 1508 UFS_UNLOCK(ump); 1509 if (DOINGSOFTDEP(ITOV(ip))) 1510 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1511 bdwrite(bp); 1512 return (blkno); 1513 1514 fail: 1515 brelse(bp); 1516 UFS_LOCK(ump); 1517 return (0); 1518 } 1519 1520 /* 1521 * Allocate a block in a cylinder group. 1522 * 1523 * This algorithm implements the following policy: 1524 * 1) allocate the requested block. 1525 * 2) allocate a rotationally optimal block in the same cylinder. 1526 * 3) allocate the next available block on the block rotor for the 1527 * specified cylinder group. 1528 * Note that this routine only allocates fs_bsize blocks; these 1529 * blocks may be fragmented by the routine that allocates them. 1530 */ 1531 static ufs2_daddr_t 1532 ffs_alloccgblk(ip, bp, bpref, size) 1533 struct inode *ip; 1534 struct buf *bp; 1535 ufs2_daddr_t bpref; 1536 int size; 1537 { 1538 struct fs *fs; 1539 struct cg *cgp; 1540 struct ufsmount *ump; 1541 ufs1_daddr_t bno; 1542 ufs2_daddr_t blkno; 1543 u_int8_t *blksfree; 1544 int i; 1545 1546 fs = ip->i_fs; 1547 ump = ip->i_ump; 1548 mtx_assert(UFS_MTX(ump), MA_OWNED); 1549 cgp = (struct cg *)bp->b_data; 1550 blksfree = cg_blksfree(cgp); 1551 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1552 bpref = cgp->cg_rotor; 1553 } else { 1554 bpref = blknum(fs, bpref); 1555 bno = dtogd(fs, bpref); 1556 /* 1557 * if the requested block is available, use it 1558 */ 1559 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1560 goto gotit; 1561 } 1562 /* 1563 * Take the next available block in this cylinder group. 1564 */ 1565 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1566 if (bno < 0) 1567 return (0); 1568 cgp->cg_rotor = bno; 1569 gotit: 1570 blkno = fragstoblks(fs, bno); 1571 ffs_clrblock(fs, blksfree, (long)blkno); 1572 ffs_clusteracct(fs, cgp, blkno, -1); 1573 cgp->cg_cs.cs_nbfree--; 1574 fs->fs_cstotal.cs_nbfree--; 1575 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1576 fs->fs_fmod = 1; 1577 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1578 /* 1579 * If the caller didn't want the whole block free the frags here. 1580 */ 1581 size = numfrags(fs, size); 1582 if (size != fs->fs_frag) { 1583 bno = dtogd(fs, blkno); 1584 for (i = size; i < fs->fs_frag; i++) 1585 setbit(blksfree, bno + i); 1586 i = fs->fs_frag - size; 1587 cgp->cg_cs.cs_nffree += i; 1588 fs->fs_cstotal.cs_nffree += i; 1589 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1590 fs->fs_fmod = 1; 1591 cgp->cg_frsum[i]++; 1592 } 1593 /* XXX Fixme. */ 1594 UFS_UNLOCK(ump); 1595 if (DOINGSOFTDEP(ITOV(ip))) 1596 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1597 size, 0); 1598 UFS_LOCK(ump); 1599 return (blkno); 1600 } 1601 1602 /* 1603 * Determine whether a cluster can be allocated. 1604 * 1605 * We do not currently check for optimal rotational layout if there 1606 * are multiple choices in the same cylinder group. Instead we just 1607 * take the first one that we find following bpref. 1608 */ 1609 static ufs2_daddr_t 1610 ffs_clusteralloc(ip, cg, bpref, len, unused) 1611 struct inode *ip; 1612 u_int cg; 1613 ufs2_daddr_t bpref; 1614 int len; 1615 int unused; 1616 { 1617 struct fs *fs; 1618 struct cg *cgp; 1619 struct buf *bp; 1620 struct ufsmount *ump; 1621 int i, run, bit, map, got; 1622 ufs2_daddr_t bno; 1623 u_char *mapp; 1624 int32_t *lp; 1625 u_int8_t *blksfree; 1626 1627 fs = ip->i_fs; 1628 ump = ip->i_ump; 1629 if (fs->fs_maxcluster[cg] < len) 1630 return (0); 1631 UFS_UNLOCK(ump); 1632 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1633 NOCRED, &bp)) 1634 goto fail_lock; 1635 cgp = (struct cg *)bp->b_data; 1636 if (!cg_chkmagic(cgp)) 1637 goto fail_lock; 1638 bp->b_xflags |= BX_BKGRDWRITE; 1639 /* 1640 * Check to see if a cluster of the needed size (or bigger) is 1641 * available in this cylinder group. 1642 */ 1643 lp = &cg_clustersum(cgp)[len]; 1644 for (i = len; i <= fs->fs_contigsumsize; i++) 1645 if (*lp++ > 0) 1646 break; 1647 if (i > fs->fs_contigsumsize) { 1648 /* 1649 * This is the first time looking for a cluster in this 1650 * cylinder group. Update the cluster summary information 1651 * to reflect the true maximum sized cluster so that 1652 * future cluster allocation requests can avoid reading 1653 * the cylinder group map only to find no clusters. 1654 */ 1655 lp = &cg_clustersum(cgp)[len - 1]; 1656 for (i = len - 1; i > 0; i--) 1657 if (*lp-- > 0) 1658 break; 1659 UFS_LOCK(ump); 1660 fs->fs_maxcluster[cg] = i; 1661 goto fail; 1662 } 1663 /* 1664 * Search the cluster map to find a big enough cluster. 1665 * We take the first one that we find, even if it is larger 1666 * than we need as we prefer to get one close to the previous 1667 * block allocation. We do not search before the current 1668 * preference point as we do not want to allocate a block 1669 * that is allocated before the previous one (as we will 1670 * then have to wait for another pass of the elevator 1671 * algorithm before it will be read). We prefer to fail and 1672 * be recalled to try an allocation in the next cylinder group. 1673 */ 1674 if (dtog(fs, bpref) != cg) 1675 bpref = 0; 1676 else 1677 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1678 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1679 map = *mapp++; 1680 bit = 1 << (bpref % NBBY); 1681 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1682 if ((map & bit) == 0) { 1683 run = 0; 1684 } else { 1685 run++; 1686 if (run == len) 1687 break; 1688 } 1689 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1690 bit <<= 1; 1691 } else { 1692 map = *mapp++; 1693 bit = 1; 1694 } 1695 } 1696 if (got >= cgp->cg_nclusterblks) 1697 goto fail_lock; 1698 /* 1699 * Allocate the cluster that we have found. 1700 */ 1701 blksfree = cg_blksfree(cgp); 1702 for (i = 1; i <= len; i++) 1703 if (!ffs_isblock(fs, blksfree, got - run + i)) 1704 panic("ffs_clusteralloc: map mismatch"); 1705 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1706 if (dtog(fs, bno) != cg) 1707 panic("ffs_clusteralloc: allocated out of group"); 1708 len = blkstofrags(fs, len); 1709 UFS_LOCK(ump); 1710 for (i = 0; i < len; i += fs->fs_frag) 1711 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1712 panic("ffs_clusteralloc: lost block"); 1713 ACTIVECLEAR(fs, cg); 1714 UFS_UNLOCK(ump); 1715 bdwrite(bp); 1716 return (bno); 1717 1718 fail_lock: 1719 UFS_LOCK(ump); 1720 fail: 1721 brelse(bp); 1722 return (0); 1723 } 1724 1725 /* 1726 * Determine whether an inode can be allocated. 1727 * 1728 * Check to see if an inode is available, and if it is, 1729 * allocate it using the following policy: 1730 * 1) allocate the requested inode. 1731 * 2) allocate the next available inode after the requested 1732 * inode in the specified cylinder group. 1733 */ 1734 static ufs2_daddr_t 1735 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1736 struct inode *ip; 1737 u_int cg; 1738 ufs2_daddr_t ipref; 1739 int mode; 1740 int unused; 1741 { 1742 struct fs *fs; 1743 struct cg *cgp; 1744 struct buf *bp, *ibp; 1745 struct ufsmount *ump; 1746 u_int8_t *inosused; 1747 struct ufs2_dinode *dp2; 1748 int error, start, len, loc, map, i; 1749 1750 fs = ip->i_fs; 1751 ump = ip->i_ump; 1752 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1753 return (0); 1754 UFS_UNLOCK(ump); 1755 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1756 (int)fs->fs_cgsize, NOCRED, &bp); 1757 if (error) { 1758 brelse(bp); 1759 UFS_LOCK(ump); 1760 return (0); 1761 } 1762 cgp = (struct cg *)bp->b_data; 1763 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1764 brelse(bp); 1765 UFS_LOCK(ump); 1766 return (0); 1767 } 1768 bp->b_xflags |= BX_BKGRDWRITE; 1769 cgp->cg_old_time = cgp->cg_time = time_second; 1770 inosused = cg_inosused(cgp); 1771 if (ipref) { 1772 ipref %= fs->fs_ipg; 1773 if (isclr(inosused, ipref)) 1774 goto gotit; 1775 } 1776 start = cgp->cg_irotor / NBBY; 1777 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1778 loc = skpc(0xff, len, &inosused[start]); 1779 if (loc == 0) { 1780 len = start + 1; 1781 start = 0; 1782 loc = skpc(0xff, len, &inosused[0]); 1783 if (loc == 0) { 1784 printf("cg = %d, irotor = %ld, fs = %s\n", 1785 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1786 panic("ffs_nodealloccg: map corrupted"); 1787 /* NOTREACHED */ 1788 } 1789 } 1790 i = start + len - loc; 1791 map = inosused[i]; 1792 ipref = i * NBBY; 1793 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1794 if ((map & i) == 0) { 1795 cgp->cg_irotor = ipref; 1796 goto gotit; 1797 } 1798 } 1799 printf("fs = %s\n", fs->fs_fsmnt); 1800 panic("ffs_nodealloccg: block not in map"); 1801 /* NOTREACHED */ 1802 gotit: 1803 /* 1804 * Check to see if we need to initialize more inodes. 1805 */ 1806 ibp = NULL; 1807 if (fs->fs_magic == FS_UFS2_MAGIC && 1808 ipref + INOPB(fs) > cgp->cg_initediblk && 1809 cgp->cg_initediblk < cgp->cg_niblk) { 1810 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1811 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1812 (int)fs->fs_bsize, 0, 0, 0); 1813 bzero(ibp->b_data, (int)fs->fs_bsize); 1814 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1815 for (i = 0; i < INOPB(fs); i++) { 1816 dp2->di_gen = arc4random() / 2 + 1; 1817 dp2++; 1818 } 1819 cgp->cg_initediblk += INOPB(fs); 1820 } 1821 UFS_LOCK(ump); 1822 ACTIVECLEAR(fs, cg); 1823 setbit(inosused, ipref); 1824 cgp->cg_cs.cs_nifree--; 1825 fs->fs_cstotal.cs_nifree--; 1826 fs->fs_cs(fs, cg).cs_nifree--; 1827 fs->fs_fmod = 1; 1828 if ((mode & IFMT) == IFDIR) { 1829 cgp->cg_cs.cs_ndir++; 1830 fs->fs_cstotal.cs_ndir++; 1831 fs->fs_cs(fs, cg).cs_ndir++; 1832 } 1833 UFS_UNLOCK(ump); 1834 if (DOINGSOFTDEP(ITOV(ip))) 1835 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1836 bdwrite(bp); 1837 if (ibp != NULL) 1838 bawrite(ibp); 1839 return ((ino_t)(cg * fs->fs_ipg + ipref)); 1840 } 1841 1842 /* 1843 * Free a block or fragment. 1844 * 1845 * The specified block or fragment is placed back in the 1846 * free map. If a fragment is deallocated, a possible 1847 * block reassembly is checked. 1848 */ 1849 void 1850 ffs_blkfree(ump, fs, devvp, bno, size, inum, dephd) 1851 struct ufsmount *ump; 1852 struct fs *fs; 1853 struct vnode *devvp; 1854 ufs2_daddr_t bno; 1855 long size; 1856 ino_t inum; 1857 struct workhead *dephd; 1858 { 1859 struct mount *mp; 1860 struct cg *cgp; 1861 struct buf *bp; 1862 ufs1_daddr_t fragno, cgbno; 1863 ufs2_daddr_t cgblkno; 1864 int i, blk, frags, bbase; 1865 u_int cg; 1866 u_int8_t *blksfree; 1867 struct cdev *dev; 1868 1869 cg = dtog(fs, bno); 1870 if (devvp->v_type == VREG) { 1871 /* devvp is a snapshot */ 1872 dev = VTOI(devvp)->i_devvp->v_rdev; 1873 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1874 } else { 1875 /* devvp is a normal disk device */ 1876 dev = devvp->v_rdev; 1877 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1878 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1879 if ((devvp->v_vflag & VV_COPYONWRITE) && 1880 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1881 return; 1882 } 1883 #ifdef INVARIANTS 1884 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1885 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1886 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1887 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1888 size, fs->fs_fsmnt); 1889 panic("ffs_blkfree: bad size"); 1890 } 1891 #endif 1892 if ((u_int)bno >= fs->fs_size) { 1893 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1894 (u_long)inum); 1895 ffs_fserr(fs, inum, "bad block"); 1896 return; 1897 } 1898 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 1899 brelse(bp); 1900 return; 1901 } 1902 cgp = (struct cg *)bp->b_data; 1903 if (!cg_chkmagic(cgp)) { 1904 brelse(bp); 1905 return; 1906 } 1907 bp->b_xflags |= BX_BKGRDWRITE; 1908 cgp->cg_old_time = cgp->cg_time = time_second; 1909 cgbno = dtogd(fs, bno); 1910 blksfree = cg_blksfree(cgp); 1911 UFS_LOCK(ump); 1912 if (size == fs->fs_bsize) { 1913 fragno = fragstoblks(fs, cgbno); 1914 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1915 if (devvp->v_type == VREG) { 1916 UFS_UNLOCK(ump); 1917 /* devvp is a snapshot */ 1918 brelse(bp); 1919 return; 1920 } 1921 printf("dev = %s, block = %jd, fs = %s\n", 1922 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1923 panic("ffs_blkfree: freeing free block"); 1924 } 1925 ffs_setblock(fs, blksfree, fragno); 1926 ffs_clusteracct(fs, cgp, fragno, 1); 1927 cgp->cg_cs.cs_nbfree++; 1928 fs->fs_cstotal.cs_nbfree++; 1929 fs->fs_cs(fs, cg).cs_nbfree++; 1930 } else { 1931 bbase = cgbno - fragnum(fs, cgbno); 1932 /* 1933 * decrement the counts associated with the old frags 1934 */ 1935 blk = blkmap(fs, blksfree, bbase); 1936 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1937 /* 1938 * deallocate the fragment 1939 */ 1940 frags = numfrags(fs, size); 1941 for (i = 0; i < frags; i++) { 1942 if (isset(blksfree, cgbno + i)) { 1943 printf("dev = %s, block = %jd, fs = %s\n", 1944 devtoname(dev), (intmax_t)(bno + i), 1945 fs->fs_fsmnt); 1946 panic("ffs_blkfree: freeing free frag"); 1947 } 1948 setbit(blksfree, cgbno + i); 1949 } 1950 cgp->cg_cs.cs_nffree += i; 1951 fs->fs_cstotal.cs_nffree += i; 1952 fs->fs_cs(fs, cg).cs_nffree += i; 1953 /* 1954 * add back in counts associated with the new frags 1955 */ 1956 blk = blkmap(fs, blksfree, bbase); 1957 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1958 /* 1959 * if a complete block has been reassembled, account for it 1960 */ 1961 fragno = fragstoblks(fs, bbase); 1962 if (ffs_isblock(fs, blksfree, fragno)) { 1963 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1964 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1965 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1966 ffs_clusteracct(fs, cgp, fragno, 1); 1967 cgp->cg_cs.cs_nbfree++; 1968 fs->fs_cstotal.cs_nbfree++; 1969 fs->fs_cs(fs, cg).cs_nbfree++; 1970 } 1971 } 1972 fs->fs_fmod = 1; 1973 ACTIVECLEAR(fs, cg); 1974 UFS_UNLOCK(ump); 1975 mp = UFSTOVFS(ump); 1976 if (mp->mnt_flag & MNT_SOFTDEP && devvp->v_type != VREG) 1977 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 1978 numfrags(fs, size), dephd); 1979 bdwrite(bp); 1980 } 1981 1982 #ifdef INVARIANTS 1983 /* 1984 * Verify allocation of a block or fragment. Returns true if block or 1985 * fragment is allocated, false if it is free. 1986 */ 1987 static int 1988 ffs_checkblk(ip, bno, size) 1989 struct inode *ip; 1990 ufs2_daddr_t bno; 1991 long size; 1992 { 1993 struct fs *fs; 1994 struct cg *cgp; 1995 struct buf *bp; 1996 ufs1_daddr_t cgbno; 1997 int i, error, frags, free; 1998 u_int8_t *blksfree; 1999 2000 fs = ip->i_fs; 2001 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2002 printf("bsize = %ld, size = %ld, fs = %s\n", 2003 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2004 panic("ffs_checkblk: bad size"); 2005 } 2006 if ((u_int)bno >= fs->fs_size) 2007 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2008 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 2009 (int)fs->fs_cgsize, NOCRED, &bp); 2010 if (error) 2011 panic("ffs_checkblk: cg bread failed"); 2012 cgp = (struct cg *)bp->b_data; 2013 if (!cg_chkmagic(cgp)) 2014 panic("ffs_checkblk: cg magic mismatch"); 2015 bp->b_xflags |= BX_BKGRDWRITE; 2016 blksfree = cg_blksfree(cgp); 2017 cgbno = dtogd(fs, bno); 2018 if (size == fs->fs_bsize) { 2019 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2020 } else { 2021 frags = numfrags(fs, size); 2022 for (free = 0, i = 0; i < frags; i++) 2023 if (isset(blksfree, cgbno + i)) 2024 free++; 2025 if (free != 0 && free != frags) 2026 panic("ffs_checkblk: partially free fragment"); 2027 } 2028 brelse(bp); 2029 return (!free); 2030 } 2031 #endif /* INVARIANTS */ 2032 2033 /* 2034 * Free an inode. 2035 */ 2036 int 2037 ffs_vfree(pvp, ino, mode) 2038 struct vnode *pvp; 2039 ino_t ino; 2040 int mode; 2041 { 2042 struct inode *ip; 2043 2044 if (DOINGSOFTDEP(pvp)) { 2045 softdep_freefile(pvp, ino, mode); 2046 return (0); 2047 } 2048 ip = VTOI(pvp); 2049 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode, 2050 NULL)); 2051 } 2052 2053 /* 2054 * Do the actual free operation. 2055 * The specified inode is placed back in the free map. 2056 */ 2057 int 2058 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2059 struct ufsmount *ump; 2060 struct fs *fs; 2061 struct vnode *devvp; 2062 ino_t ino; 2063 int mode; 2064 struct workhead *wkhd; 2065 { 2066 struct cg *cgp; 2067 struct buf *bp; 2068 ufs2_daddr_t cgbno; 2069 int error; 2070 u_int cg; 2071 u_int8_t *inosused; 2072 struct cdev *dev; 2073 2074 cg = ino_to_cg(fs, ino); 2075 if (devvp->v_type == VREG) { 2076 /* devvp is a snapshot */ 2077 dev = VTOI(devvp)->i_devvp->v_rdev; 2078 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2079 } else { 2080 /* devvp is a normal disk device */ 2081 dev = devvp->v_rdev; 2082 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2083 } 2084 if (ino >= fs->fs_ipg * fs->fs_ncg) 2085 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 2086 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 2087 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2088 brelse(bp); 2089 return (error); 2090 } 2091 cgp = (struct cg *)bp->b_data; 2092 if (!cg_chkmagic(cgp)) { 2093 brelse(bp); 2094 return (0); 2095 } 2096 bp->b_xflags |= BX_BKGRDWRITE; 2097 cgp->cg_old_time = cgp->cg_time = time_second; 2098 inosused = cg_inosused(cgp); 2099 ino %= fs->fs_ipg; 2100 if (isclr(inosused, ino)) { 2101 printf("dev = %s, ino = %u, fs = %s\n", devtoname(dev), 2102 ino + cg * fs->fs_ipg, fs->fs_fsmnt); 2103 if (fs->fs_ronly == 0) 2104 panic("ffs_freefile: freeing free inode"); 2105 } 2106 clrbit(inosused, ino); 2107 if (ino < cgp->cg_irotor) 2108 cgp->cg_irotor = ino; 2109 cgp->cg_cs.cs_nifree++; 2110 UFS_LOCK(ump); 2111 fs->fs_cstotal.cs_nifree++; 2112 fs->fs_cs(fs, cg).cs_nifree++; 2113 if ((mode & IFMT) == IFDIR) { 2114 cgp->cg_cs.cs_ndir--; 2115 fs->fs_cstotal.cs_ndir--; 2116 fs->fs_cs(fs, cg).cs_ndir--; 2117 } 2118 fs->fs_fmod = 1; 2119 ACTIVECLEAR(fs, cg); 2120 UFS_UNLOCK(ump); 2121 if (UFSTOVFS(ump)->mnt_flag & MNT_SOFTDEP && devvp->v_type != VREG) 2122 softdep_setup_inofree(UFSTOVFS(ump), bp, 2123 ino + cg * fs->fs_ipg, wkhd); 2124 bdwrite(bp); 2125 return (0); 2126 } 2127 2128 /* 2129 * Check to see if a file is free. 2130 */ 2131 int 2132 ffs_checkfreefile(fs, devvp, ino) 2133 struct fs *fs; 2134 struct vnode *devvp; 2135 ino_t ino; 2136 { 2137 struct cg *cgp; 2138 struct buf *bp; 2139 ufs2_daddr_t cgbno; 2140 int ret; 2141 u_int cg; 2142 u_int8_t *inosused; 2143 2144 cg = ino_to_cg(fs, ino); 2145 if (devvp->v_type == VREG) { 2146 /* devvp is a snapshot */ 2147 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2148 } else { 2149 /* devvp is a normal disk device */ 2150 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2151 } 2152 if (ino >= fs->fs_ipg * fs->fs_ncg) 2153 return (1); 2154 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2155 brelse(bp); 2156 return (1); 2157 } 2158 cgp = (struct cg *)bp->b_data; 2159 if (!cg_chkmagic(cgp)) { 2160 brelse(bp); 2161 return (1); 2162 } 2163 inosused = cg_inosused(cgp); 2164 ino %= fs->fs_ipg; 2165 ret = isclr(inosused, ino); 2166 brelse(bp); 2167 return (ret); 2168 } 2169 2170 /* 2171 * Find a block of the specified size in the specified cylinder group. 2172 * 2173 * It is a panic if a request is made to find a block if none are 2174 * available. 2175 */ 2176 static ufs1_daddr_t 2177 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2178 struct fs *fs; 2179 struct cg *cgp; 2180 ufs2_daddr_t bpref; 2181 int allocsiz; 2182 { 2183 ufs1_daddr_t bno; 2184 int start, len, loc, i; 2185 int blk, field, subfield, pos; 2186 u_int8_t *blksfree; 2187 2188 /* 2189 * find the fragment by searching through the free block 2190 * map for an appropriate bit pattern 2191 */ 2192 if (bpref) 2193 start = dtogd(fs, bpref) / NBBY; 2194 else 2195 start = cgp->cg_frotor / NBBY; 2196 blksfree = cg_blksfree(cgp); 2197 len = howmany(fs->fs_fpg, NBBY) - start; 2198 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2199 fragtbl[fs->fs_frag], 2200 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2201 if (loc == 0) { 2202 len = start + 1; 2203 start = 0; 2204 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2205 fragtbl[fs->fs_frag], 2206 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2207 if (loc == 0) { 2208 printf("start = %d, len = %d, fs = %s\n", 2209 start, len, fs->fs_fsmnt); 2210 panic("ffs_alloccg: map corrupted"); 2211 /* NOTREACHED */ 2212 } 2213 } 2214 bno = (start + len - loc) * NBBY; 2215 cgp->cg_frotor = bno; 2216 /* 2217 * found the byte in the map 2218 * sift through the bits to find the selected frag 2219 */ 2220 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2221 blk = blkmap(fs, blksfree, bno); 2222 blk <<= 1; 2223 field = around[allocsiz]; 2224 subfield = inside[allocsiz]; 2225 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2226 if ((blk & field) == subfield) 2227 return (bno + pos); 2228 field <<= 1; 2229 subfield <<= 1; 2230 } 2231 } 2232 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2233 panic("ffs_alloccg: block not in map"); 2234 return (-1); 2235 } 2236 2237 /* 2238 * Fserr prints the name of a filesystem with an error diagnostic. 2239 * 2240 * The form of the error message is: 2241 * fs: error message 2242 */ 2243 static void 2244 ffs_fserr(fs, inum, cp) 2245 struct fs *fs; 2246 ino_t inum; 2247 char *cp; 2248 { 2249 struct thread *td = curthread; /* XXX */ 2250 struct proc *p = td->td_proc; 2251 2252 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2253 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp); 2254 } 2255 2256 /* 2257 * This function provides the capability for the fsck program to 2258 * update an active filesystem. Fourteen operations are provided: 2259 * 2260 * adjrefcnt(inode, amt) - adjusts the reference count on the 2261 * specified inode by the specified amount. Under normal 2262 * operation the count should always go down. Decrementing 2263 * the count to zero will cause the inode to be freed. 2264 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2265 * by the specifed amount. 2266 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2267 * adjust the superblock summary. 2268 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2269 * are marked as free. Inodes should never have to be marked 2270 * as in use. 2271 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2272 * are marked as free. Inodes should never have to be marked 2273 * as in use. 2274 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2275 * are marked as free. Blocks should never have to be marked 2276 * as in use. 2277 * setflags(flags, set/clear) - the fs_flags field has the specified 2278 * flags set (second parameter +1) or cleared (second parameter -1). 2279 * setcwd(dirinode) - set the current directory to dirinode in the 2280 * filesystem associated with the snapshot. 2281 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2282 * in the current directory is oldvalue then change it to newvalue. 2283 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2284 * with nameptr in the current directory is oldvalue then unlink it. 2285 */ 2286 2287 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2288 2289 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2290 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2291 2292 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2293 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2294 2295 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2296 sysctl_ffs_fsck, "Adjust number of directories"); 2297 2298 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2299 sysctl_ffs_fsck, "Adjust number of free blocks"); 2300 2301 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2302 sysctl_ffs_fsck, "Adjust number of free inodes"); 2303 2304 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2305 sysctl_ffs_fsck, "Adjust number of free frags"); 2306 2307 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2308 sysctl_ffs_fsck, "Adjust number of free clusters"); 2309 2310 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2311 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2312 2313 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2314 sysctl_ffs_fsck, "Free Range of File Inodes"); 2315 2316 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2317 sysctl_ffs_fsck, "Free Range of Blocks"); 2318 2319 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2320 sysctl_ffs_fsck, "Change Filesystem Flags"); 2321 2322 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2323 sysctl_ffs_fsck, "Set Current Working Directory"); 2324 2325 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2326 sysctl_ffs_fsck, "Change Value of .. Entry"); 2327 2328 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2329 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2330 2331 #ifdef DEBUG 2332 static int fsckcmds = 0; 2333 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2334 #endif /* DEBUG */ 2335 2336 static int 2337 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2338 { 2339 struct thread *td = curthread; 2340 struct fsck_cmd cmd; 2341 struct ufsmount *ump; 2342 struct vnode *vp, *vpold, *dvp, *fdvp; 2343 struct inode *ip, *dp; 2344 struct mount *mp; 2345 struct fs *fs; 2346 ufs2_daddr_t blkno; 2347 long blkcnt, blksize; 2348 struct filedesc *fdp; 2349 struct file *fp; 2350 int vfslocked, filetype, error; 2351 2352 if (req->newlen > sizeof cmd) 2353 return (EBADRPC); 2354 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2355 return (error); 2356 if (cmd.version != FFS_CMD_VERSION) 2357 return (ERPCMISMATCH); 2358 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2359 return (error); 2360 vp = fp->f_data; 2361 if (vp->v_type != VREG && vp->v_type != VDIR) { 2362 fdrop(fp, td); 2363 return (EINVAL); 2364 } 2365 vn_start_write(vp, &mp, V_WAIT); 2366 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2367 vn_finished_write(mp); 2368 fdrop(fp, td); 2369 return (EINVAL); 2370 } 2371 if (mp->mnt_flag & MNT_RDONLY) { 2372 vn_finished_write(mp); 2373 fdrop(fp, td); 2374 return (EROFS); 2375 } 2376 ump = VFSTOUFS(mp); 2377 fs = ump->um_fs; 2378 filetype = IFREG; 2379 2380 switch (oidp->oid_number) { 2381 2382 case FFS_SET_FLAGS: 2383 #ifdef DEBUG 2384 if (fsckcmds) 2385 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2386 cmd.size > 0 ? "set" : "clear"); 2387 #endif /* DEBUG */ 2388 if (cmd.size > 0) 2389 fs->fs_flags |= (long)cmd.value; 2390 else 2391 fs->fs_flags &= ~(long)cmd.value; 2392 break; 2393 2394 case FFS_ADJ_REFCNT: 2395 #ifdef DEBUG 2396 if (fsckcmds) { 2397 printf("%s: adjust inode %jd count by %jd\n", 2398 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2399 (intmax_t)cmd.size); 2400 } 2401 #endif /* DEBUG */ 2402 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2403 break; 2404 ip = VTOI(vp); 2405 ip->i_nlink += cmd.size; 2406 DIP_SET(ip, i_nlink, ip->i_nlink); 2407 ip->i_effnlink += cmd.size; 2408 ip->i_flag |= IN_CHANGE; 2409 if (DOINGSOFTDEP(vp)) 2410 softdep_change_linkcnt(ip); 2411 vput(vp); 2412 break; 2413 2414 case FFS_ADJ_BLKCNT: 2415 #ifdef DEBUG 2416 if (fsckcmds) { 2417 printf("%s: adjust inode %jd block count by %jd\n", 2418 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2419 (intmax_t)cmd.size); 2420 } 2421 #endif /* DEBUG */ 2422 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2423 break; 2424 ip = VTOI(vp); 2425 if (ip->i_flag & IN_SPACECOUNTED) { 2426 UFS_LOCK(ump); 2427 fs->fs_pendingblocks += cmd.size; 2428 UFS_UNLOCK(ump); 2429 } 2430 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2431 ip->i_flag |= IN_CHANGE; 2432 vput(vp); 2433 break; 2434 2435 case FFS_DIR_FREE: 2436 filetype = IFDIR; 2437 /* fall through */ 2438 2439 case FFS_FILE_FREE: 2440 #ifdef DEBUG 2441 if (fsckcmds) { 2442 if (cmd.size == 1) 2443 printf("%s: free %s inode %d\n", 2444 mp->mnt_stat.f_mntonname, 2445 filetype == IFDIR ? "directory" : "file", 2446 (ino_t)cmd.value); 2447 else 2448 printf("%s: free %s inodes %d-%d\n", 2449 mp->mnt_stat.f_mntonname, 2450 filetype == IFDIR ? "directory" : "file", 2451 (ino_t)cmd.value, 2452 (ino_t)(cmd.value + cmd.size - 1)); 2453 } 2454 #endif /* DEBUG */ 2455 while (cmd.size > 0) { 2456 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2457 cmd.value, filetype, NULL))) 2458 break; 2459 cmd.size -= 1; 2460 cmd.value += 1; 2461 } 2462 break; 2463 2464 case FFS_BLK_FREE: 2465 #ifdef DEBUG 2466 if (fsckcmds) { 2467 if (cmd.size == 1) 2468 printf("%s: free block %jd\n", 2469 mp->mnt_stat.f_mntonname, 2470 (intmax_t)cmd.value); 2471 else 2472 printf("%s: free blocks %jd-%jd\n", 2473 mp->mnt_stat.f_mntonname, 2474 (intmax_t)cmd.value, 2475 (intmax_t)cmd.value + cmd.size - 1); 2476 } 2477 #endif /* DEBUG */ 2478 blkno = cmd.value; 2479 blkcnt = cmd.size; 2480 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2481 while (blkcnt > 0) { 2482 if (blksize > blkcnt) 2483 blksize = blkcnt; 2484 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2485 blksize * fs->fs_fsize, ROOTINO, NULL); 2486 blkno += blksize; 2487 blkcnt -= blksize; 2488 blksize = fs->fs_frag; 2489 } 2490 break; 2491 2492 /* 2493 * Adjust superblock summaries. fsck(8) is expected to 2494 * submit deltas when necessary. 2495 */ 2496 case FFS_ADJ_NDIR: 2497 #ifdef DEBUG 2498 if (fsckcmds) { 2499 printf("%s: adjust number of directories by %jd\n", 2500 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2501 } 2502 #endif /* DEBUG */ 2503 fs->fs_cstotal.cs_ndir += cmd.value; 2504 break; 2505 2506 case FFS_ADJ_NBFREE: 2507 #ifdef DEBUG 2508 if (fsckcmds) { 2509 printf("%s: adjust number of free blocks by %+jd\n", 2510 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2511 } 2512 #endif /* DEBUG */ 2513 fs->fs_cstotal.cs_nbfree += cmd.value; 2514 break; 2515 2516 case FFS_ADJ_NIFREE: 2517 #ifdef DEBUG 2518 if (fsckcmds) { 2519 printf("%s: adjust number of free inodes by %+jd\n", 2520 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2521 } 2522 #endif /* DEBUG */ 2523 fs->fs_cstotal.cs_nifree += cmd.value; 2524 break; 2525 2526 case FFS_ADJ_NFFREE: 2527 #ifdef DEBUG 2528 if (fsckcmds) { 2529 printf("%s: adjust number of free frags by %+jd\n", 2530 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2531 } 2532 #endif /* DEBUG */ 2533 fs->fs_cstotal.cs_nffree += cmd.value; 2534 break; 2535 2536 case FFS_ADJ_NUMCLUSTERS: 2537 #ifdef DEBUG 2538 if (fsckcmds) { 2539 printf("%s: adjust number of free clusters by %+jd\n", 2540 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2541 } 2542 #endif /* DEBUG */ 2543 fs->fs_cstotal.cs_numclusters += cmd.value; 2544 break; 2545 2546 case FFS_SET_CWD: 2547 #ifdef DEBUG 2548 if (fsckcmds) { 2549 printf("%s: set current directory to inode %jd\n", 2550 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2551 } 2552 #endif /* DEBUG */ 2553 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2554 break; 2555 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2556 AUDIT_ARG_VNODE1(vp); 2557 if ((error = change_dir(vp, td)) != 0) { 2558 vput(vp); 2559 VFS_UNLOCK_GIANT(vfslocked); 2560 break; 2561 } 2562 VOP_UNLOCK(vp, 0); 2563 VFS_UNLOCK_GIANT(vfslocked); 2564 fdp = td->td_proc->p_fd; 2565 FILEDESC_XLOCK(fdp); 2566 vpold = fdp->fd_cdir; 2567 fdp->fd_cdir = vp; 2568 FILEDESC_XUNLOCK(fdp); 2569 vfslocked = VFS_LOCK_GIANT(vpold->v_mount); 2570 vrele(vpold); 2571 VFS_UNLOCK_GIANT(vfslocked); 2572 break; 2573 2574 case FFS_SET_DOTDOT: 2575 #ifdef DEBUG 2576 if (fsckcmds) { 2577 printf("%s: change .. in cwd from %jd to %jd\n", 2578 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2579 (intmax_t)cmd.size); 2580 } 2581 #endif /* DEBUG */ 2582 /* 2583 * First we have to get and lock the parent directory 2584 * to which ".." points. 2585 */ 2586 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2587 if (error) 2588 break; 2589 /* 2590 * Now we get and lock the child directory containing "..". 2591 */ 2592 FILEDESC_SLOCK(td->td_proc->p_fd); 2593 dvp = td->td_proc->p_fd->fd_cdir; 2594 FILEDESC_SUNLOCK(td->td_proc->p_fd); 2595 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 2596 vput(fdvp); 2597 break; 2598 } 2599 dp = VTOI(dvp); 2600 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 2601 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 2602 DT_DIR, 0); 2603 cache_purge(fdvp); 2604 cache_purge(dvp); 2605 vput(dvp); 2606 vput(fdvp); 2607 break; 2608 2609 case FFS_UNLINK: 2610 #ifdef DEBUG 2611 if (fsckcmds) { 2612 char buf[32]; 2613 2614 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 2615 strncpy(buf, "Name_too_long", 32); 2616 printf("%s: unlink %s (inode %jd)\n", 2617 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 2618 } 2619 #endif /* DEBUG */ 2620 /* 2621 * kern_unlinkat will do its own start/finish writes and 2622 * they do not nest, so drop ours here. Setting mp == NULL 2623 * indicates that vn_finished_write is not needed down below. 2624 */ 2625 vn_finished_write(mp); 2626 mp = NULL; 2627 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 2628 UIO_USERSPACE, (ino_t)cmd.size); 2629 break; 2630 2631 default: 2632 #ifdef DEBUG 2633 if (fsckcmds) { 2634 printf("Invalid request %d from fsck\n", 2635 oidp->oid_number); 2636 } 2637 #endif /* DEBUG */ 2638 error = EINVAL; 2639 break; 2640 2641 } 2642 fdrop(fp, td); 2643 vn_finished_write(mp); 2644 return (error); 2645 } 2646