1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bio.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/fcntl.h> 73 #include <sys/file.h> 74 #include <sys/filedesc.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/vnode.h> 78 #include <sys/mount.h> 79 #include <sys/kernel.h> 80 #include <sys/syscallsubr.h> 81 #include <sys/sysctl.h> 82 #include <sys/syslog.h> 83 84 #include <security/audit/audit.h> 85 86 #include <ufs/ufs/dir.h> 87 #include <ufs/ufs/extattr.h> 88 #include <ufs/ufs/quota.h> 89 #include <ufs/ufs/inode.h> 90 #include <ufs/ufs/ufs_extern.h> 91 #include <ufs/ufs/ufsmount.h> 92 93 #include <ufs/ffs/fs.h> 94 #include <ufs/ffs/ffs_extern.h> 95 96 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref, 97 int size); 98 99 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int); 100 static ufs2_daddr_t 101 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t); 102 #ifdef INVARIANTS 103 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 104 #endif 105 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int); 106 static void ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *, 107 ufs1_daddr_t, int); 108 static ino_t ffs_dirpref(struct inode *); 109 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int); 110 static void ffs_fserr(struct fs *, ino_t, char *); 111 static ufs2_daddr_t ffs_hashalloc 112 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *); 113 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int); 114 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 115 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 116 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 117 118 /* 119 * Allocate a block in the filesystem. 120 * 121 * The size of the requested block is given, which must be some 122 * multiple of fs_fsize and <= fs_bsize. 123 * A preference may be optionally specified. If a preference is given 124 * the following hierarchy is used to allocate a block: 125 * 1) allocate the requested block. 126 * 2) allocate a rotationally optimal block in the same cylinder. 127 * 3) allocate a block in the same cylinder group. 128 * 4) quadradically rehash into other cylinder groups, until an 129 * available block is located. 130 * If no block preference is given the following hierarchy is used 131 * to allocate a block: 132 * 1) allocate a block in the cylinder group that contains the 133 * inode for the file. 134 * 2) quadradically rehash into other cylinder groups, until an 135 * available block is located. 136 */ 137 int 138 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 139 struct inode *ip; 140 ufs2_daddr_t lbn, bpref; 141 int size, flags; 142 struct ucred *cred; 143 ufs2_daddr_t *bnp; 144 { 145 struct fs *fs; 146 struct ufsmount *ump; 147 ufs2_daddr_t bno; 148 int cg, reclaimed; 149 static struct timeval lastfail; 150 static int curfail; 151 int64_t delta; 152 #ifdef QUOTA 153 int error; 154 #endif 155 156 *bnp = 0; 157 fs = ip->i_fs; 158 ump = ip->i_ump; 159 mtx_assert(UFS_MTX(ump), MA_OWNED); 160 #ifdef INVARIANTS 161 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 162 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 163 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 164 fs->fs_fsmnt); 165 panic("ffs_alloc: bad size"); 166 } 167 if (cred == NOCRED) 168 panic("ffs_alloc: missing credential"); 169 #endif /* INVARIANTS */ 170 reclaimed = 0; 171 retry: 172 #ifdef QUOTA 173 UFS_UNLOCK(ump); 174 error = chkdq(ip, btodb(size), cred, 0); 175 if (error) 176 return (error); 177 UFS_LOCK(ump); 178 #endif 179 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 180 goto nospace; 181 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 182 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 183 goto nospace; 184 if (bpref >= fs->fs_size) 185 bpref = 0; 186 if (bpref == 0) 187 cg = ino_to_cg(fs, ip->i_number); 188 else 189 cg = dtog(fs, bpref); 190 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 191 if (bno > 0) { 192 delta = btodb(size); 193 if (ip->i_flag & IN_SPACECOUNTED) { 194 UFS_LOCK(ump); 195 fs->fs_pendingblocks += delta; 196 UFS_UNLOCK(ump); 197 } 198 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 199 if (flags & IO_EXT) 200 ip->i_flag |= IN_CHANGE; 201 else 202 ip->i_flag |= IN_CHANGE | IN_UPDATE; 203 *bnp = bno; 204 return (0); 205 } 206 nospace: 207 #ifdef QUOTA 208 UFS_UNLOCK(ump); 209 /* 210 * Restore user's disk quota because allocation failed. 211 */ 212 (void) chkdq(ip, -btodb(size), cred, FORCE); 213 UFS_LOCK(ump); 214 #endif 215 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 216 reclaimed = 1; 217 softdep_request_cleanup(fs, ITOV(ip)); 218 goto retry; 219 } 220 UFS_UNLOCK(ump); 221 if (ppsratecheck(&lastfail, &curfail, 1)) { 222 ffs_fserr(fs, ip->i_number, "filesystem full"); 223 uprintf("\n%s: write failed, filesystem is full\n", 224 fs->fs_fsmnt); 225 } 226 return (ENOSPC); 227 } 228 229 /* 230 * Reallocate a fragment to a bigger size 231 * 232 * The number and size of the old block is given, and a preference 233 * and new size is also specified. The allocator attempts to extend 234 * the original block. Failing that, the regular block allocator is 235 * invoked to get an appropriate block. 236 */ 237 int 238 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 239 struct inode *ip; 240 ufs2_daddr_t lbprev; 241 ufs2_daddr_t bprev; 242 ufs2_daddr_t bpref; 243 int osize, nsize, flags; 244 struct ucred *cred; 245 struct buf **bpp; 246 { 247 struct vnode *vp; 248 struct fs *fs; 249 struct buf *bp; 250 struct ufsmount *ump; 251 int cg, request, error, reclaimed; 252 ufs2_daddr_t bno; 253 static struct timeval lastfail; 254 static int curfail; 255 int64_t delta; 256 257 *bpp = 0; 258 vp = ITOV(ip); 259 fs = ip->i_fs; 260 bp = NULL; 261 ump = ip->i_ump; 262 mtx_assert(UFS_MTX(ump), MA_OWNED); 263 #ifdef INVARIANTS 264 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 265 panic("ffs_realloccg: allocation on suspended filesystem"); 266 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 267 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 268 printf( 269 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 270 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 271 nsize, fs->fs_fsmnt); 272 panic("ffs_realloccg: bad size"); 273 } 274 if (cred == NOCRED) 275 panic("ffs_realloccg: missing credential"); 276 #endif /* INVARIANTS */ 277 reclaimed = 0; 278 retry: 279 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 280 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 281 goto nospace; 282 } 283 if (bprev == 0) { 284 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 285 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 286 fs->fs_fsmnt); 287 panic("ffs_realloccg: bad bprev"); 288 } 289 UFS_UNLOCK(ump); 290 /* 291 * Allocate the extra space in the buffer. 292 */ 293 error = bread(vp, lbprev, osize, NOCRED, &bp); 294 if (error) { 295 brelse(bp); 296 return (error); 297 } 298 299 if (bp->b_blkno == bp->b_lblkno) { 300 if (lbprev >= NDADDR) 301 panic("ffs_realloccg: lbprev out of range"); 302 bp->b_blkno = fsbtodb(fs, bprev); 303 } 304 305 #ifdef QUOTA 306 error = chkdq(ip, btodb(nsize - osize), cred, 0); 307 if (error) { 308 brelse(bp); 309 return (error); 310 } 311 #endif 312 /* 313 * Check for extension in the existing location. 314 */ 315 cg = dtog(fs, bprev); 316 UFS_LOCK(ump); 317 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 318 if (bno) { 319 if (bp->b_blkno != fsbtodb(fs, bno)) 320 panic("ffs_realloccg: bad blockno"); 321 delta = btodb(nsize - osize); 322 if (ip->i_flag & IN_SPACECOUNTED) { 323 UFS_LOCK(ump); 324 fs->fs_pendingblocks += delta; 325 UFS_UNLOCK(ump); 326 } 327 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 328 if (flags & IO_EXT) 329 ip->i_flag |= IN_CHANGE; 330 else 331 ip->i_flag |= IN_CHANGE | IN_UPDATE; 332 allocbuf(bp, nsize); 333 bp->b_flags |= B_DONE; 334 bzero(bp->b_data + osize, nsize - osize); 335 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 336 vfs_bio_set_valid(bp, osize, nsize - osize); 337 *bpp = bp; 338 return (0); 339 } 340 /* 341 * Allocate a new disk location. 342 */ 343 if (bpref >= fs->fs_size) 344 bpref = 0; 345 switch ((int)fs->fs_optim) { 346 case FS_OPTSPACE: 347 /* 348 * Allocate an exact sized fragment. Although this makes 349 * best use of space, we will waste time relocating it if 350 * the file continues to grow. If the fragmentation is 351 * less than half of the minimum free reserve, we choose 352 * to begin optimizing for time. 353 */ 354 request = nsize; 355 if (fs->fs_minfree <= 5 || 356 fs->fs_cstotal.cs_nffree > 357 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 358 break; 359 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 360 fs->fs_fsmnt); 361 fs->fs_optim = FS_OPTTIME; 362 break; 363 case FS_OPTTIME: 364 /* 365 * At this point we have discovered a file that is trying to 366 * grow a small fragment to a larger fragment. To save time, 367 * we allocate a full sized block, then free the unused portion. 368 * If the file continues to grow, the `ffs_fragextend' call 369 * above will be able to grow it in place without further 370 * copying. If aberrant programs cause disk fragmentation to 371 * grow within 2% of the free reserve, we choose to begin 372 * optimizing for space. 373 */ 374 request = fs->fs_bsize; 375 if (fs->fs_cstotal.cs_nffree < 376 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 377 break; 378 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 379 fs->fs_fsmnt); 380 fs->fs_optim = FS_OPTSPACE; 381 break; 382 default: 383 printf("dev = %s, optim = %ld, fs = %s\n", 384 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 385 panic("ffs_realloccg: bad optim"); 386 /* NOTREACHED */ 387 } 388 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 389 if (bno > 0) { 390 bp->b_blkno = fsbtodb(fs, bno); 391 if (!DOINGSOFTDEP(vp)) 392 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 393 ip->i_number); 394 if (nsize < request) 395 ffs_blkfree(ump, fs, ip->i_devvp, 396 bno + numfrags(fs, nsize), 397 (long)(request - nsize), ip->i_number); 398 delta = btodb(nsize - osize); 399 if (ip->i_flag & IN_SPACECOUNTED) { 400 UFS_LOCK(ump); 401 fs->fs_pendingblocks += delta; 402 UFS_UNLOCK(ump); 403 } 404 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 405 if (flags & IO_EXT) 406 ip->i_flag |= IN_CHANGE; 407 else 408 ip->i_flag |= IN_CHANGE | IN_UPDATE; 409 allocbuf(bp, nsize); 410 bp->b_flags |= B_DONE; 411 bzero(bp->b_data + osize, nsize - osize); 412 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 413 vfs_bio_set_valid(bp, osize, nsize - osize); 414 *bpp = bp; 415 return (0); 416 } 417 #ifdef QUOTA 418 UFS_UNLOCK(ump); 419 /* 420 * Restore user's disk quota because allocation failed. 421 */ 422 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 423 UFS_LOCK(ump); 424 #endif 425 nospace: 426 /* 427 * no space available 428 */ 429 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 430 reclaimed = 1; 431 softdep_request_cleanup(fs, vp); 432 UFS_UNLOCK(ump); 433 if (bp) 434 brelse(bp); 435 UFS_LOCK(ump); 436 goto retry; 437 } 438 UFS_UNLOCK(ump); 439 if (bp) 440 brelse(bp); 441 if (ppsratecheck(&lastfail, &curfail, 1)) { 442 ffs_fserr(fs, ip->i_number, "filesystem full"); 443 uprintf("\n%s: write failed, filesystem is full\n", 444 fs->fs_fsmnt); 445 } 446 return (ENOSPC); 447 } 448 449 /* 450 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 451 * 452 * The vnode and an array of buffer pointers for a range of sequential 453 * logical blocks to be made contiguous is given. The allocator attempts 454 * to find a range of sequential blocks starting as close as possible 455 * from the end of the allocation for the logical block immediately 456 * preceding the current range. If successful, the physical block numbers 457 * in the buffer pointers and in the inode are changed to reflect the new 458 * allocation. If unsuccessful, the allocation is left unchanged. The 459 * success in doing the reallocation is returned. Note that the error 460 * return is not reflected back to the user. Rather the previous block 461 * allocation will be used. 462 */ 463 464 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 465 466 static int doasyncfree = 1; 467 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 468 469 static int doreallocblks = 1; 470 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 471 472 #ifdef DEBUG 473 static volatile int prtrealloc = 0; 474 #endif 475 476 int 477 ffs_reallocblks(ap) 478 struct vop_reallocblks_args /* { 479 struct vnode *a_vp; 480 struct cluster_save *a_buflist; 481 } */ *ap; 482 { 483 484 if (doreallocblks == 0) 485 return (ENOSPC); 486 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 487 return (ffs_reallocblks_ufs1(ap)); 488 return (ffs_reallocblks_ufs2(ap)); 489 } 490 491 static int 492 ffs_reallocblks_ufs1(ap) 493 struct vop_reallocblks_args /* { 494 struct vnode *a_vp; 495 struct cluster_save *a_buflist; 496 } */ *ap; 497 { 498 struct fs *fs; 499 struct inode *ip; 500 struct vnode *vp; 501 struct buf *sbp, *ebp; 502 ufs1_daddr_t *bap, *sbap, *ebap = 0; 503 struct cluster_save *buflist; 504 struct ufsmount *ump; 505 ufs_lbn_t start_lbn, end_lbn; 506 ufs1_daddr_t soff, newblk, blkno; 507 ufs2_daddr_t pref; 508 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 509 int i, len, start_lvl, end_lvl, ssize; 510 511 vp = ap->a_vp; 512 ip = VTOI(vp); 513 fs = ip->i_fs; 514 ump = ip->i_ump; 515 if (fs->fs_contigsumsize <= 0) 516 return (ENOSPC); 517 buflist = ap->a_buflist; 518 len = buflist->bs_nchildren; 519 start_lbn = buflist->bs_children[0]->b_lblkno; 520 end_lbn = start_lbn + len - 1; 521 #ifdef INVARIANTS 522 for (i = 0; i < len; i++) 523 if (!ffs_checkblk(ip, 524 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 525 panic("ffs_reallocblks: unallocated block 1"); 526 for (i = 1; i < len; i++) 527 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 528 panic("ffs_reallocblks: non-logical cluster"); 529 blkno = buflist->bs_children[0]->b_blkno; 530 ssize = fsbtodb(fs, fs->fs_frag); 531 for (i = 1; i < len - 1; i++) 532 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 533 panic("ffs_reallocblks: non-physical cluster %d", i); 534 #endif 535 /* 536 * If the latest allocation is in a new cylinder group, assume that 537 * the filesystem has decided to move and do not force it back to 538 * the previous cylinder group. 539 */ 540 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 541 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 542 return (ENOSPC); 543 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 544 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 545 return (ENOSPC); 546 /* 547 * Get the starting offset and block map for the first block. 548 */ 549 if (start_lvl == 0) { 550 sbap = &ip->i_din1->di_db[0]; 551 soff = start_lbn; 552 } else { 553 idp = &start_ap[start_lvl - 1]; 554 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 555 brelse(sbp); 556 return (ENOSPC); 557 } 558 sbap = (ufs1_daddr_t *)sbp->b_data; 559 soff = idp->in_off; 560 } 561 /* 562 * If the block range spans two block maps, get the second map. 563 */ 564 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 565 ssize = len; 566 } else { 567 #ifdef INVARIANTS 568 if (start_lvl > 0 && 569 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 570 panic("ffs_reallocblk: start == end"); 571 #endif 572 ssize = len - (idp->in_off + 1); 573 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 574 goto fail; 575 ebap = (ufs1_daddr_t *)ebp->b_data; 576 } 577 /* 578 * Find the preferred location for the cluster. 579 */ 580 UFS_LOCK(ump); 581 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 582 /* 583 * Search the block map looking for an allocation of the desired size. 584 */ 585 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 586 len, ffs_clusteralloc)) == 0) { 587 UFS_UNLOCK(ump); 588 goto fail; 589 } 590 /* 591 * We have found a new contiguous block. 592 * 593 * First we have to replace the old block pointers with the new 594 * block pointers in the inode and indirect blocks associated 595 * with the file. 596 */ 597 #ifdef DEBUG 598 if (prtrealloc) 599 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 600 (intmax_t)start_lbn, (intmax_t)end_lbn); 601 #endif 602 blkno = newblk; 603 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 604 if (i == ssize) { 605 bap = ebap; 606 soff = -i; 607 } 608 #ifdef INVARIANTS 609 if (!ffs_checkblk(ip, 610 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 611 panic("ffs_reallocblks: unallocated block 2"); 612 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 613 panic("ffs_reallocblks: alloc mismatch"); 614 #endif 615 #ifdef DEBUG 616 if (prtrealloc) 617 printf(" %d,", *bap); 618 #endif 619 if (DOINGSOFTDEP(vp)) { 620 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 621 softdep_setup_allocdirect(ip, start_lbn + i, 622 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 623 buflist->bs_children[i]); 624 else 625 softdep_setup_allocindir_page(ip, start_lbn + i, 626 i < ssize ? sbp : ebp, soff + i, blkno, 627 *bap, buflist->bs_children[i]); 628 } 629 *bap++ = blkno; 630 } 631 /* 632 * Next we must write out the modified inode and indirect blocks. 633 * For strict correctness, the writes should be synchronous since 634 * the old block values may have been written to disk. In practise 635 * they are almost never written, but if we are concerned about 636 * strict correctness, the `doasyncfree' flag should be set to zero. 637 * 638 * The test on `doasyncfree' should be changed to test a flag 639 * that shows whether the associated buffers and inodes have 640 * been written. The flag should be set when the cluster is 641 * started and cleared whenever the buffer or inode is flushed. 642 * We can then check below to see if it is set, and do the 643 * synchronous write only when it has been cleared. 644 */ 645 if (sbap != &ip->i_din1->di_db[0]) { 646 if (doasyncfree) 647 bdwrite(sbp); 648 else 649 bwrite(sbp); 650 } else { 651 ip->i_flag |= IN_CHANGE | IN_UPDATE; 652 if (!doasyncfree) 653 ffs_update(vp, 1); 654 } 655 if (ssize < len) { 656 if (doasyncfree) 657 bdwrite(ebp); 658 else 659 bwrite(ebp); 660 } 661 /* 662 * Last, free the old blocks and assign the new blocks to the buffers. 663 */ 664 #ifdef DEBUG 665 if (prtrealloc) 666 printf("\n\tnew:"); 667 #endif 668 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 669 if (!DOINGSOFTDEP(vp)) 670 ffs_blkfree(ump, fs, ip->i_devvp, 671 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 672 fs->fs_bsize, ip->i_number); 673 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 674 #ifdef INVARIANTS 675 if (!ffs_checkblk(ip, 676 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 677 panic("ffs_reallocblks: unallocated block 3"); 678 #endif 679 #ifdef DEBUG 680 if (prtrealloc) 681 printf(" %d,", blkno); 682 #endif 683 } 684 #ifdef DEBUG 685 if (prtrealloc) { 686 prtrealloc--; 687 printf("\n"); 688 } 689 #endif 690 return (0); 691 692 fail: 693 if (ssize < len) 694 brelse(ebp); 695 if (sbap != &ip->i_din1->di_db[0]) 696 brelse(sbp); 697 return (ENOSPC); 698 } 699 700 static int 701 ffs_reallocblks_ufs2(ap) 702 struct vop_reallocblks_args /* { 703 struct vnode *a_vp; 704 struct cluster_save *a_buflist; 705 } */ *ap; 706 { 707 struct fs *fs; 708 struct inode *ip; 709 struct vnode *vp; 710 struct buf *sbp, *ebp; 711 ufs2_daddr_t *bap, *sbap, *ebap = 0; 712 struct cluster_save *buflist; 713 struct ufsmount *ump; 714 ufs_lbn_t start_lbn, end_lbn; 715 ufs2_daddr_t soff, newblk, blkno, pref; 716 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 717 int i, len, start_lvl, end_lvl, ssize; 718 719 vp = ap->a_vp; 720 ip = VTOI(vp); 721 fs = ip->i_fs; 722 ump = ip->i_ump; 723 if (fs->fs_contigsumsize <= 0) 724 return (ENOSPC); 725 buflist = ap->a_buflist; 726 len = buflist->bs_nchildren; 727 start_lbn = buflist->bs_children[0]->b_lblkno; 728 end_lbn = start_lbn + len - 1; 729 #ifdef INVARIANTS 730 for (i = 0; i < len; i++) 731 if (!ffs_checkblk(ip, 732 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 733 panic("ffs_reallocblks: unallocated block 1"); 734 for (i = 1; i < len; i++) 735 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 736 panic("ffs_reallocblks: non-logical cluster"); 737 blkno = buflist->bs_children[0]->b_blkno; 738 ssize = fsbtodb(fs, fs->fs_frag); 739 for (i = 1; i < len - 1; i++) 740 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 741 panic("ffs_reallocblks: non-physical cluster %d", i); 742 #endif 743 /* 744 * If the latest allocation is in a new cylinder group, assume that 745 * the filesystem has decided to move and do not force it back to 746 * the previous cylinder group. 747 */ 748 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 749 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 750 return (ENOSPC); 751 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 752 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 753 return (ENOSPC); 754 /* 755 * Get the starting offset and block map for the first block. 756 */ 757 if (start_lvl == 0) { 758 sbap = &ip->i_din2->di_db[0]; 759 soff = start_lbn; 760 } else { 761 idp = &start_ap[start_lvl - 1]; 762 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 763 brelse(sbp); 764 return (ENOSPC); 765 } 766 sbap = (ufs2_daddr_t *)sbp->b_data; 767 soff = idp->in_off; 768 } 769 /* 770 * If the block range spans two block maps, get the second map. 771 */ 772 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 773 ssize = len; 774 } else { 775 #ifdef INVARIANTS 776 if (start_lvl > 0 && 777 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 778 panic("ffs_reallocblk: start == end"); 779 #endif 780 ssize = len - (idp->in_off + 1); 781 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 782 goto fail; 783 ebap = (ufs2_daddr_t *)ebp->b_data; 784 } 785 /* 786 * Find the preferred location for the cluster. 787 */ 788 UFS_LOCK(ump); 789 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 790 /* 791 * Search the block map looking for an allocation of the desired size. 792 */ 793 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 794 len, ffs_clusteralloc)) == 0) { 795 UFS_UNLOCK(ump); 796 goto fail; 797 } 798 /* 799 * We have found a new contiguous block. 800 * 801 * First we have to replace the old block pointers with the new 802 * block pointers in the inode and indirect blocks associated 803 * with the file. 804 */ 805 #ifdef DEBUG 806 if (prtrealloc) 807 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 808 (intmax_t)start_lbn, (intmax_t)end_lbn); 809 #endif 810 blkno = newblk; 811 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 812 if (i == ssize) { 813 bap = ebap; 814 soff = -i; 815 } 816 #ifdef INVARIANTS 817 if (!ffs_checkblk(ip, 818 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 819 panic("ffs_reallocblks: unallocated block 2"); 820 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 821 panic("ffs_reallocblks: alloc mismatch"); 822 #endif 823 #ifdef DEBUG 824 if (prtrealloc) 825 printf(" %jd,", (intmax_t)*bap); 826 #endif 827 if (DOINGSOFTDEP(vp)) { 828 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 829 softdep_setup_allocdirect(ip, start_lbn + i, 830 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 831 buflist->bs_children[i]); 832 else 833 softdep_setup_allocindir_page(ip, start_lbn + i, 834 i < ssize ? sbp : ebp, soff + i, blkno, 835 *bap, buflist->bs_children[i]); 836 } 837 *bap++ = blkno; 838 } 839 /* 840 * Next we must write out the modified inode and indirect blocks. 841 * For strict correctness, the writes should be synchronous since 842 * the old block values may have been written to disk. In practise 843 * they are almost never written, but if we are concerned about 844 * strict correctness, the `doasyncfree' flag should be set to zero. 845 * 846 * The test on `doasyncfree' should be changed to test a flag 847 * that shows whether the associated buffers and inodes have 848 * been written. The flag should be set when the cluster is 849 * started and cleared whenever the buffer or inode is flushed. 850 * We can then check below to see if it is set, and do the 851 * synchronous write only when it has been cleared. 852 */ 853 if (sbap != &ip->i_din2->di_db[0]) { 854 if (doasyncfree) 855 bdwrite(sbp); 856 else 857 bwrite(sbp); 858 } else { 859 ip->i_flag |= IN_CHANGE | IN_UPDATE; 860 if (!doasyncfree) 861 ffs_update(vp, 1); 862 } 863 if (ssize < len) { 864 if (doasyncfree) 865 bdwrite(ebp); 866 else 867 bwrite(ebp); 868 } 869 /* 870 * Last, free the old blocks and assign the new blocks to the buffers. 871 */ 872 #ifdef DEBUG 873 if (prtrealloc) 874 printf("\n\tnew:"); 875 #endif 876 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 877 if (!DOINGSOFTDEP(vp)) 878 ffs_blkfree(ump, fs, ip->i_devvp, 879 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 880 fs->fs_bsize, ip->i_number); 881 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 882 #ifdef INVARIANTS 883 if (!ffs_checkblk(ip, 884 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 885 panic("ffs_reallocblks: unallocated block 3"); 886 #endif 887 #ifdef DEBUG 888 if (prtrealloc) 889 printf(" %jd,", (intmax_t)blkno); 890 #endif 891 } 892 #ifdef DEBUG 893 if (prtrealloc) { 894 prtrealloc--; 895 printf("\n"); 896 } 897 #endif 898 return (0); 899 900 fail: 901 if (ssize < len) 902 brelse(ebp); 903 if (sbap != &ip->i_din2->di_db[0]) 904 brelse(sbp); 905 return (ENOSPC); 906 } 907 908 /* 909 * Allocate an inode in the filesystem. 910 * 911 * If allocating a directory, use ffs_dirpref to select the inode. 912 * If allocating in a directory, the following hierarchy is followed: 913 * 1) allocate the preferred inode. 914 * 2) allocate an inode in the same cylinder group. 915 * 3) quadradically rehash into other cylinder groups, until an 916 * available inode is located. 917 * If no inode preference is given the following hierarchy is used 918 * to allocate an inode: 919 * 1) allocate an inode in cylinder group 0. 920 * 2) quadradically rehash into other cylinder groups, until an 921 * available inode is located. 922 */ 923 int 924 ffs_valloc(pvp, mode, cred, vpp) 925 struct vnode *pvp; 926 int mode; 927 struct ucred *cred; 928 struct vnode **vpp; 929 { 930 struct inode *pip; 931 struct fs *fs; 932 struct inode *ip; 933 struct timespec ts; 934 struct ufsmount *ump; 935 ino_t ino, ipref; 936 int cg, error, error1; 937 static struct timeval lastfail; 938 static int curfail; 939 940 *vpp = NULL; 941 pip = VTOI(pvp); 942 fs = pip->i_fs; 943 ump = pip->i_ump; 944 945 UFS_LOCK(ump); 946 if (fs->fs_cstotal.cs_nifree == 0) 947 goto noinodes; 948 949 if ((mode & IFMT) == IFDIR) 950 ipref = ffs_dirpref(pip); 951 else 952 ipref = pip->i_number; 953 if (ipref >= fs->fs_ncg * fs->fs_ipg) 954 ipref = 0; 955 cg = ino_to_cg(fs, ipref); 956 /* 957 * Track number of dirs created one after another 958 * in a same cg without intervening by files. 959 */ 960 if ((mode & IFMT) == IFDIR) { 961 if (fs->fs_contigdirs[cg] < 255) 962 fs->fs_contigdirs[cg]++; 963 } else { 964 if (fs->fs_contigdirs[cg] > 0) 965 fs->fs_contigdirs[cg]--; 966 } 967 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 968 (allocfcn_t *)ffs_nodealloccg); 969 if (ino == 0) 970 goto noinodes; 971 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 972 if (error) { 973 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 974 FFSV_FORCEINSMQ); 975 ffs_vfree(pvp, ino, mode); 976 if (error1 == 0) { 977 ip = VTOI(*vpp); 978 if (ip->i_mode) 979 goto dup_alloc; 980 ip->i_flag |= IN_MODIFIED; 981 vput(*vpp); 982 } 983 return (error); 984 } 985 ip = VTOI(*vpp); 986 if (ip->i_mode) { 987 dup_alloc: 988 printf("mode = 0%o, inum = %lu, fs = %s\n", 989 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 990 panic("ffs_valloc: dup alloc"); 991 } 992 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 993 printf("free inode %s/%lu had %ld blocks\n", 994 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 995 DIP_SET(ip, i_blocks, 0); 996 } 997 ip->i_flags = 0; 998 DIP_SET(ip, i_flags, 0); 999 /* 1000 * Set up a new generation number for this inode. 1001 */ 1002 if (ip->i_gen == 0 || ++ip->i_gen == 0) 1003 ip->i_gen = arc4random() / 2 + 1; 1004 DIP_SET(ip, i_gen, ip->i_gen); 1005 if (fs->fs_magic == FS_UFS2_MAGIC) { 1006 vfs_timestamp(&ts); 1007 ip->i_din2->di_birthtime = ts.tv_sec; 1008 ip->i_din2->di_birthnsec = ts.tv_nsec; 1009 } 1010 ip->i_flag = 0; 1011 vnode_destroy_vobject(*vpp); 1012 (*vpp)->v_type = VNON; 1013 if (fs->fs_magic == FS_UFS2_MAGIC) 1014 (*vpp)->v_op = &ffs_vnodeops2; 1015 else 1016 (*vpp)->v_op = &ffs_vnodeops1; 1017 return (0); 1018 noinodes: 1019 UFS_UNLOCK(ump); 1020 if (ppsratecheck(&lastfail, &curfail, 1)) { 1021 ffs_fserr(fs, pip->i_number, "out of inodes"); 1022 uprintf("\n%s: create/symlink failed, no inodes free\n", 1023 fs->fs_fsmnt); 1024 } 1025 return (ENOSPC); 1026 } 1027 1028 /* 1029 * Find a cylinder group to place a directory. 1030 * 1031 * The policy implemented by this algorithm is to allocate a 1032 * directory inode in the same cylinder group as its parent 1033 * directory, but also to reserve space for its files inodes 1034 * and data. Restrict the number of directories which may be 1035 * allocated one after another in the same cylinder group 1036 * without intervening allocation of files. 1037 * 1038 * If we allocate a first level directory then force allocation 1039 * in another cylinder group. 1040 */ 1041 static ino_t 1042 ffs_dirpref(pip) 1043 struct inode *pip; 1044 { 1045 struct fs *fs; 1046 int cg, prefcg, dirsize, cgsize; 1047 int avgifree, avgbfree, avgndir, curdirsize; 1048 int minifree, minbfree, maxndir; 1049 int mincg, minndir; 1050 int maxcontigdirs; 1051 1052 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1053 fs = pip->i_fs; 1054 1055 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1056 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1057 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1058 1059 /* 1060 * Force allocation in another cg if creating a first level dir. 1061 */ 1062 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1063 if (ITOV(pip)->v_vflag & VV_ROOT) { 1064 prefcg = arc4random() % fs->fs_ncg; 1065 mincg = prefcg; 1066 minndir = fs->fs_ipg; 1067 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1068 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1069 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1070 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1071 mincg = cg; 1072 minndir = fs->fs_cs(fs, cg).cs_ndir; 1073 } 1074 for (cg = 0; cg < prefcg; cg++) 1075 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1076 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1077 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1078 mincg = cg; 1079 minndir = fs->fs_cs(fs, cg).cs_ndir; 1080 } 1081 return ((ino_t)(fs->fs_ipg * mincg)); 1082 } 1083 1084 /* 1085 * Count various limits which used for 1086 * optimal allocation of a directory inode. 1087 */ 1088 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1089 minifree = avgifree - avgifree / 4; 1090 if (minifree < 1) 1091 minifree = 1; 1092 minbfree = avgbfree - avgbfree / 4; 1093 if (minbfree < 1) 1094 minbfree = 1; 1095 cgsize = fs->fs_fsize * fs->fs_fpg; 1096 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1097 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1098 if (dirsize < curdirsize) 1099 dirsize = curdirsize; 1100 if (dirsize <= 0) 1101 maxcontigdirs = 0; /* dirsize overflowed */ 1102 else 1103 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1104 if (fs->fs_avgfpdir > 0) 1105 maxcontigdirs = min(maxcontigdirs, 1106 fs->fs_ipg / fs->fs_avgfpdir); 1107 if (maxcontigdirs == 0) 1108 maxcontigdirs = 1; 1109 1110 /* 1111 * Limit number of dirs in one cg and reserve space for 1112 * regular files, but only if we have no deficit in 1113 * inodes or space. 1114 */ 1115 prefcg = ino_to_cg(fs, pip->i_number); 1116 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1117 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1118 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1119 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1120 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1121 return ((ino_t)(fs->fs_ipg * cg)); 1122 } 1123 for (cg = 0; cg < prefcg; cg++) 1124 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1125 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1126 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1127 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1128 return ((ino_t)(fs->fs_ipg * cg)); 1129 } 1130 /* 1131 * This is a backstop when we have deficit in space. 1132 */ 1133 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1134 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1135 return ((ino_t)(fs->fs_ipg * cg)); 1136 for (cg = 0; cg < prefcg; cg++) 1137 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1138 break; 1139 return ((ino_t)(fs->fs_ipg * cg)); 1140 } 1141 1142 /* 1143 * Select the desired position for the next block in a file. The file is 1144 * logically divided into sections. The first section is composed of the 1145 * direct blocks. Each additional section contains fs_maxbpg blocks. 1146 * 1147 * If no blocks have been allocated in the first section, the policy is to 1148 * request a block in the same cylinder group as the inode that describes 1149 * the file. If no blocks have been allocated in any other section, the 1150 * policy is to place the section in a cylinder group with a greater than 1151 * average number of free blocks. An appropriate cylinder group is found 1152 * by using a rotor that sweeps the cylinder groups. When a new group of 1153 * blocks is needed, the sweep begins in the cylinder group following the 1154 * cylinder group from which the previous allocation was made. The sweep 1155 * continues until a cylinder group with greater than the average number 1156 * of free blocks is found. If the allocation is for the first block in an 1157 * indirect block, the information on the previous allocation is unavailable; 1158 * here a best guess is made based upon the logical block number being 1159 * allocated. 1160 * 1161 * If a section is already partially allocated, the policy is to 1162 * contiguously allocate fs_maxcontig blocks. The end of one of these 1163 * contiguous blocks and the beginning of the next is laid out 1164 * contiguously if possible. 1165 */ 1166 ufs2_daddr_t 1167 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1168 struct inode *ip; 1169 ufs_lbn_t lbn; 1170 int indx; 1171 ufs1_daddr_t *bap; 1172 { 1173 struct fs *fs; 1174 int cg; 1175 int avgbfree, startcg; 1176 1177 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1178 fs = ip->i_fs; 1179 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1180 if (lbn < NDADDR + NINDIR(fs)) { 1181 cg = ino_to_cg(fs, ip->i_number); 1182 return (cgbase(fs, cg) + fs->fs_frag); 1183 } 1184 /* 1185 * Find a cylinder with greater than average number of 1186 * unused data blocks. 1187 */ 1188 if (indx == 0 || bap[indx - 1] == 0) 1189 startcg = 1190 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1191 else 1192 startcg = dtog(fs, bap[indx - 1]) + 1; 1193 startcg %= fs->fs_ncg; 1194 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1195 for (cg = startcg; cg < fs->fs_ncg; cg++) 1196 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1197 fs->fs_cgrotor = cg; 1198 return (cgbase(fs, cg) + fs->fs_frag); 1199 } 1200 for (cg = 0; cg <= startcg; cg++) 1201 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1202 fs->fs_cgrotor = cg; 1203 return (cgbase(fs, cg) + fs->fs_frag); 1204 } 1205 return (0); 1206 } 1207 /* 1208 * We just always try to lay things out contiguously. 1209 */ 1210 return (bap[indx - 1] + fs->fs_frag); 1211 } 1212 1213 /* 1214 * Same as above, but for UFS2 1215 */ 1216 ufs2_daddr_t 1217 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1218 struct inode *ip; 1219 ufs_lbn_t lbn; 1220 int indx; 1221 ufs2_daddr_t *bap; 1222 { 1223 struct fs *fs; 1224 int cg; 1225 int avgbfree, startcg; 1226 1227 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1228 fs = ip->i_fs; 1229 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1230 if (lbn < NDADDR + NINDIR(fs)) { 1231 cg = ino_to_cg(fs, ip->i_number); 1232 return (cgbase(fs, cg) + fs->fs_frag); 1233 } 1234 /* 1235 * Find a cylinder with greater than average number of 1236 * unused data blocks. 1237 */ 1238 if (indx == 0 || bap[indx - 1] == 0) 1239 startcg = 1240 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1241 else 1242 startcg = dtog(fs, bap[indx - 1]) + 1; 1243 startcg %= fs->fs_ncg; 1244 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1245 for (cg = startcg; cg < fs->fs_ncg; cg++) 1246 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1247 fs->fs_cgrotor = cg; 1248 return (cgbase(fs, cg) + fs->fs_frag); 1249 } 1250 for (cg = 0; cg <= startcg; cg++) 1251 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1252 fs->fs_cgrotor = cg; 1253 return (cgbase(fs, cg) + fs->fs_frag); 1254 } 1255 return (0); 1256 } 1257 /* 1258 * We just always try to lay things out contiguously. 1259 */ 1260 return (bap[indx - 1] + fs->fs_frag); 1261 } 1262 1263 /* 1264 * Implement the cylinder overflow algorithm. 1265 * 1266 * The policy implemented by this algorithm is: 1267 * 1) allocate the block in its requested cylinder group. 1268 * 2) quadradically rehash on the cylinder group number. 1269 * 3) brute force search for a free block. 1270 * 1271 * Must be called with the UFS lock held. Will release the lock on success 1272 * and return with it held on failure. 1273 */ 1274 /*VARARGS5*/ 1275 static ufs2_daddr_t 1276 ffs_hashalloc(ip, cg, pref, size, allocator) 1277 struct inode *ip; 1278 int cg; 1279 ufs2_daddr_t pref; 1280 int size; /* size for data blocks, mode for inodes */ 1281 allocfcn_t *allocator; 1282 { 1283 struct fs *fs; 1284 ufs2_daddr_t result; 1285 int i, icg = cg; 1286 1287 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1288 #ifdef INVARIANTS 1289 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1290 panic("ffs_hashalloc: allocation on suspended filesystem"); 1291 #endif 1292 fs = ip->i_fs; 1293 /* 1294 * 1: preferred cylinder group 1295 */ 1296 result = (*allocator)(ip, cg, pref, size); 1297 if (result) 1298 return (result); 1299 /* 1300 * 2: quadratic rehash 1301 */ 1302 for (i = 1; i < fs->fs_ncg; i *= 2) { 1303 cg += i; 1304 if (cg >= fs->fs_ncg) 1305 cg -= fs->fs_ncg; 1306 result = (*allocator)(ip, cg, 0, size); 1307 if (result) 1308 return (result); 1309 } 1310 /* 1311 * 3: brute force search 1312 * Note that we start at i == 2, since 0 was checked initially, 1313 * and 1 is always checked in the quadratic rehash. 1314 */ 1315 cg = (icg + 2) % fs->fs_ncg; 1316 for (i = 2; i < fs->fs_ncg; i++) { 1317 result = (*allocator)(ip, cg, 0, size); 1318 if (result) 1319 return (result); 1320 cg++; 1321 if (cg == fs->fs_ncg) 1322 cg = 0; 1323 } 1324 return (0); 1325 } 1326 1327 /* 1328 * Determine whether a fragment can be extended. 1329 * 1330 * Check to see if the necessary fragments are available, and 1331 * if they are, allocate them. 1332 */ 1333 static ufs2_daddr_t 1334 ffs_fragextend(ip, cg, bprev, osize, nsize) 1335 struct inode *ip; 1336 int cg; 1337 ufs2_daddr_t bprev; 1338 int osize, nsize; 1339 { 1340 struct fs *fs; 1341 struct cg *cgp; 1342 struct buf *bp; 1343 struct ufsmount *ump; 1344 int nffree; 1345 long bno; 1346 int frags, bbase; 1347 int i, error; 1348 u_int8_t *blksfree; 1349 1350 ump = ip->i_ump; 1351 fs = ip->i_fs; 1352 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1353 return (0); 1354 frags = numfrags(fs, nsize); 1355 bbase = fragnum(fs, bprev); 1356 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1357 /* cannot extend across a block boundary */ 1358 return (0); 1359 } 1360 UFS_UNLOCK(ump); 1361 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1362 (int)fs->fs_cgsize, NOCRED, &bp); 1363 if (error) 1364 goto fail; 1365 cgp = (struct cg *)bp->b_data; 1366 if (!cg_chkmagic(cgp)) 1367 goto fail; 1368 bp->b_xflags |= BX_BKGRDWRITE; 1369 cgp->cg_old_time = cgp->cg_time = time_second; 1370 bno = dtogd(fs, bprev); 1371 blksfree = cg_blksfree(cgp); 1372 for (i = numfrags(fs, osize); i < frags; i++) 1373 if (isclr(blksfree, bno + i)) 1374 goto fail; 1375 /* 1376 * the current fragment can be extended 1377 * deduct the count on fragment being extended into 1378 * increase the count on the remaining fragment (if any) 1379 * allocate the extended piece 1380 */ 1381 for (i = frags; i < fs->fs_frag - bbase; i++) 1382 if (isclr(blksfree, bno + i)) 1383 break; 1384 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1385 if (i != frags) 1386 cgp->cg_frsum[i - frags]++; 1387 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1388 clrbit(blksfree, bno + i); 1389 cgp->cg_cs.cs_nffree--; 1390 nffree++; 1391 } 1392 UFS_LOCK(ump); 1393 fs->fs_cstotal.cs_nffree -= nffree; 1394 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1395 fs->fs_fmod = 1; 1396 ACTIVECLEAR(fs, cg); 1397 UFS_UNLOCK(ump); 1398 if (DOINGSOFTDEP(ITOV(ip))) 1399 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev); 1400 bdwrite(bp); 1401 return (bprev); 1402 1403 fail: 1404 brelse(bp); 1405 UFS_LOCK(ump); 1406 return (0); 1407 1408 } 1409 1410 /* 1411 * Determine whether a block can be allocated. 1412 * 1413 * Check to see if a block of the appropriate size is available, 1414 * and if it is, allocate it. 1415 */ 1416 static ufs2_daddr_t 1417 ffs_alloccg(ip, cg, bpref, size) 1418 struct inode *ip; 1419 int cg; 1420 ufs2_daddr_t bpref; 1421 int size; 1422 { 1423 struct fs *fs; 1424 struct cg *cgp; 1425 struct buf *bp; 1426 struct ufsmount *ump; 1427 ufs1_daddr_t bno; 1428 ufs2_daddr_t blkno; 1429 int i, allocsiz, error, frags; 1430 u_int8_t *blksfree; 1431 1432 ump = ip->i_ump; 1433 fs = ip->i_fs; 1434 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1435 return (0); 1436 UFS_UNLOCK(ump); 1437 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1438 (int)fs->fs_cgsize, NOCRED, &bp); 1439 if (error) 1440 goto fail; 1441 cgp = (struct cg *)bp->b_data; 1442 if (!cg_chkmagic(cgp) || 1443 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1444 goto fail; 1445 bp->b_xflags |= BX_BKGRDWRITE; 1446 cgp->cg_old_time = cgp->cg_time = time_second; 1447 if (size == fs->fs_bsize) { 1448 UFS_LOCK(ump); 1449 blkno = ffs_alloccgblk(ip, bp, bpref); 1450 ACTIVECLEAR(fs, cg); 1451 UFS_UNLOCK(ump); 1452 bdwrite(bp); 1453 return (blkno); 1454 } 1455 /* 1456 * check to see if any fragments are already available 1457 * allocsiz is the size which will be allocated, hacking 1458 * it down to a smaller size if necessary 1459 */ 1460 blksfree = cg_blksfree(cgp); 1461 frags = numfrags(fs, size); 1462 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1463 if (cgp->cg_frsum[allocsiz] != 0) 1464 break; 1465 if (allocsiz == fs->fs_frag) { 1466 /* 1467 * no fragments were available, so a block will be 1468 * allocated, and hacked up 1469 */ 1470 if (cgp->cg_cs.cs_nbfree == 0) 1471 goto fail; 1472 UFS_LOCK(ump); 1473 blkno = ffs_alloccgblk(ip, bp, bpref); 1474 bno = dtogd(fs, blkno); 1475 for (i = frags; i < fs->fs_frag; i++) 1476 setbit(blksfree, bno + i); 1477 i = fs->fs_frag - frags; 1478 cgp->cg_cs.cs_nffree += i; 1479 fs->fs_cstotal.cs_nffree += i; 1480 fs->fs_cs(fs, cg).cs_nffree += i; 1481 fs->fs_fmod = 1; 1482 cgp->cg_frsum[i]++; 1483 ACTIVECLEAR(fs, cg); 1484 UFS_UNLOCK(ump); 1485 bdwrite(bp); 1486 return (blkno); 1487 } 1488 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1489 if (bno < 0) 1490 goto fail; 1491 for (i = 0; i < frags; i++) 1492 clrbit(blksfree, bno + i); 1493 cgp->cg_cs.cs_nffree -= frags; 1494 cgp->cg_frsum[allocsiz]--; 1495 if (frags != allocsiz) 1496 cgp->cg_frsum[allocsiz - frags]++; 1497 UFS_LOCK(ump); 1498 fs->fs_cstotal.cs_nffree -= frags; 1499 fs->fs_cs(fs, cg).cs_nffree -= frags; 1500 fs->fs_fmod = 1; 1501 blkno = cgbase(fs, cg) + bno; 1502 ACTIVECLEAR(fs, cg); 1503 UFS_UNLOCK(ump); 1504 if (DOINGSOFTDEP(ITOV(ip))) 1505 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno); 1506 bdwrite(bp); 1507 return (blkno); 1508 1509 fail: 1510 brelse(bp); 1511 UFS_LOCK(ump); 1512 return (0); 1513 } 1514 1515 /* 1516 * Allocate a block in a cylinder group. 1517 * 1518 * This algorithm implements the following policy: 1519 * 1) allocate the requested block. 1520 * 2) allocate a rotationally optimal block in the same cylinder. 1521 * 3) allocate the next available block on the block rotor for the 1522 * specified cylinder group. 1523 * Note that this routine only allocates fs_bsize blocks; these 1524 * blocks may be fragmented by the routine that allocates them. 1525 */ 1526 static ufs2_daddr_t 1527 ffs_alloccgblk(ip, bp, bpref) 1528 struct inode *ip; 1529 struct buf *bp; 1530 ufs2_daddr_t bpref; 1531 { 1532 struct fs *fs; 1533 struct cg *cgp; 1534 struct ufsmount *ump; 1535 ufs1_daddr_t bno; 1536 ufs2_daddr_t blkno; 1537 u_int8_t *blksfree; 1538 1539 fs = ip->i_fs; 1540 ump = ip->i_ump; 1541 mtx_assert(UFS_MTX(ump), MA_OWNED); 1542 cgp = (struct cg *)bp->b_data; 1543 blksfree = cg_blksfree(cgp); 1544 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1545 bpref = cgp->cg_rotor; 1546 } else { 1547 bpref = blknum(fs, bpref); 1548 bno = dtogd(fs, bpref); 1549 /* 1550 * if the requested block is available, use it 1551 */ 1552 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1553 goto gotit; 1554 } 1555 /* 1556 * Take the next available block in this cylinder group. 1557 */ 1558 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1559 if (bno < 0) 1560 return (0); 1561 cgp->cg_rotor = bno; 1562 gotit: 1563 blkno = fragstoblks(fs, bno); 1564 ffs_clrblock(fs, blksfree, (long)blkno); 1565 ffs_clusteracct(ump, fs, cgp, blkno, -1); 1566 cgp->cg_cs.cs_nbfree--; 1567 fs->fs_cstotal.cs_nbfree--; 1568 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1569 fs->fs_fmod = 1; 1570 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1571 /* XXX Fixme. */ 1572 UFS_UNLOCK(ump); 1573 if (DOINGSOFTDEP(ITOV(ip))) 1574 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno); 1575 UFS_LOCK(ump); 1576 return (blkno); 1577 } 1578 1579 /* 1580 * Determine whether a cluster can be allocated. 1581 * 1582 * We do not currently check for optimal rotational layout if there 1583 * are multiple choices in the same cylinder group. Instead we just 1584 * take the first one that we find following bpref. 1585 */ 1586 static ufs2_daddr_t 1587 ffs_clusteralloc(ip, cg, bpref, len) 1588 struct inode *ip; 1589 int cg; 1590 ufs2_daddr_t bpref; 1591 int len; 1592 { 1593 struct fs *fs; 1594 struct cg *cgp; 1595 struct buf *bp; 1596 struct ufsmount *ump; 1597 int i, run, bit, map, got; 1598 ufs2_daddr_t bno; 1599 u_char *mapp; 1600 int32_t *lp; 1601 u_int8_t *blksfree; 1602 1603 fs = ip->i_fs; 1604 ump = ip->i_ump; 1605 if (fs->fs_maxcluster[cg] < len) 1606 return (0); 1607 UFS_UNLOCK(ump); 1608 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1609 NOCRED, &bp)) 1610 goto fail_lock; 1611 cgp = (struct cg *)bp->b_data; 1612 if (!cg_chkmagic(cgp)) 1613 goto fail_lock; 1614 bp->b_xflags |= BX_BKGRDWRITE; 1615 /* 1616 * Check to see if a cluster of the needed size (or bigger) is 1617 * available in this cylinder group. 1618 */ 1619 lp = &cg_clustersum(cgp)[len]; 1620 for (i = len; i <= fs->fs_contigsumsize; i++) 1621 if (*lp++ > 0) 1622 break; 1623 if (i > fs->fs_contigsumsize) { 1624 /* 1625 * This is the first time looking for a cluster in this 1626 * cylinder group. Update the cluster summary information 1627 * to reflect the true maximum sized cluster so that 1628 * future cluster allocation requests can avoid reading 1629 * the cylinder group map only to find no clusters. 1630 */ 1631 lp = &cg_clustersum(cgp)[len - 1]; 1632 for (i = len - 1; i > 0; i--) 1633 if (*lp-- > 0) 1634 break; 1635 UFS_LOCK(ump); 1636 fs->fs_maxcluster[cg] = i; 1637 goto fail; 1638 } 1639 /* 1640 * Search the cluster map to find a big enough cluster. 1641 * We take the first one that we find, even if it is larger 1642 * than we need as we prefer to get one close to the previous 1643 * block allocation. We do not search before the current 1644 * preference point as we do not want to allocate a block 1645 * that is allocated before the previous one (as we will 1646 * then have to wait for another pass of the elevator 1647 * algorithm before it will be read). We prefer to fail and 1648 * be recalled to try an allocation in the next cylinder group. 1649 */ 1650 if (dtog(fs, bpref) != cg) 1651 bpref = 0; 1652 else 1653 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1654 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1655 map = *mapp++; 1656 bit = 1 << (bpref % NBBY); 1657 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1658 if ((map & bit) == 0) { 1659 run = 0; 1660 } else { 1661 run++; 1662 if (run == len) 1663 break; 1664 } 1665 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1666 bit <<= 1; 1667 } else { 1668 map = *mapp++; 1669 bit = 1; 1670 } 1671 } 1672 if (got >= cgp->cg_nclusterblks) 1673 goto fail_lock; 1674 /* 1675 * Allocate the cluster that we have found. 1676 */ 1677 blksfree = cg_blksfree(cgp); 1678 for (i = 1; i <= len; i++) 1679 if (!ffs_isblock(fs, blksfree, got - run + i)) 1680 panic("ffs_clusteralloc: map mismatch"); 1681 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1682 if (dtog(fs, bno) != cg) 1683 panic("ffs_clusteralloc: allocated out of group"); 1684 len = blkstofrags(fs, len); 1685 UFS_LOCK(ump); 1686 for (i = 0; i < len; i += fs->fs_frag) 1687 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1688 panic("ffs_clusteralloc: lost block"); 1689 ACTIVECLEAR(fs, cg); 1690 UFS_UNLOCK(ump); 1691 bdwrite(bp); 1692 return (bno); 1693 1694 fail_lock: 1695 UFS_LOCK(ump); 1696 fail: 1697 brelse(bp); 1698 return (0); 1699 } 1700 1701 /* 1702 * Determine whether an inode can be allocated. 1703 * 1704 * Check to see if an inode is available, and if it is, 1705 * allocate it using the following policy: 1706 * 1) allocate the requested inode. 1707 * 2) allocate the next available inode after the requested 1708 * inode in the specified cylinder group. 1709 */ 1710 static ufs2_daddr_t 1711 ffs_nodealloccg(ip, cg, ipref, mode) 1712 struct inode *ip; 1713 int cg; 1714 ufs2_daddr_t ipref; 1715 int mode; 1716 { 1717 struct fs *fs; 1718 struct cg *cgp; 1719 struct buf *bp, *ibp; 1720 struct ufsmount *ump; 1721 u_int8_t *inosused; 1722 struct ufs2_dinode *dp2; 1723 int error, start, len, loc, map, i; 1724 1725 fs = ip->i_fs; 1726 ump = ip->i_ump; 1727 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1728 return (0); 1729 UFS_UNLOCK(ump); 1730 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1731 (int)fs->fs_cgsize, NOCRED, &bp); 1732 if (error) { 1733 brelse(bp); 1734 UFS_LOCK(ump); 1735 return (0); 1736 } 1737 cgp = (struct cg *)bp->b_data; 1738 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1739 brelse(bp); 1740 UFS_LOCK(ump); 1741 return (0); 1742 } 1743 bp->b_xflags |= BX_BKGRDWRITE; 1744 cgp->cg_old_time = cgp->cg_time = time_second; 1745 inosused = cg_inosused(cgp); 1746 if (ipref) { 1747 ipref %= fs->fs_ipg; 1748 if (isclr(inosused, ipref)) 1749 goto gotit; 1750 } 1751 start = cgp->cg_irotor / NBBY; 1752 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1753 loc = skpc(0xff, len, &inosused[start]); 1754 if (loc == 0) { 1755 len = start + 1; 1756 start = 0; 1757 loc = skpc(0xff, len, &inosused[0]); 1758 if (loc == 0) { 1759 printf("cg = %d, irotor = %ld, fs = %s\n", 1760 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1761 panic("ffs_nodealloccg: map corrupted"); 1762 /* NOTREACHED */ 1763 } 1764 } 1765 i = start + len - loc; 1766 map = inosused[i]; 1767 ipref = i * NBBY; 1768 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1769 if ((map & i) == 0) { 1770 cgp->cg_irotor = ipref; 1771 goto gotit; 1772 } 1773 } 1774 printf("fs = %s\n", fs->fs_fsmnt); 1775 panic("ffs_nodealloccg: block not in map"); 1776 /* NOTREACHED */ 1777 gotit: 1778 /* 1779 * Check to see if we need to initialize more inodes. 1780 */ 1781 ibp = NULL; 1782 if (fs->fs_magic == FS_UFS2_MAGIC && 1783 ipref + INOPB(fs) > cgp->cg_initediblk && 1784 cgp->cg_initediblk < cgp->cg_niblk) { 1785 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1786 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1787 (int)fs->fs_bsize, 0, 0, 0); 1788 bzero(ibp->b_data, (int)fs->fs_bsize); 1789 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1790 for (i = 0; i < INOPB(fs); i++) { 1791 dp2->di_gen = arc4random() / 2 + 1; 1792 dp2++; 1793 } 1794 cgp->cg_initediblk += INOPB(fs); 1795 } 1796 UFS_LOCK(ump); 1797 ACTIVECLEAR(fs, cg); 1798 setbit(inosused, ipref); 1799 cgp->cg_cs.cs_nifree--; 1800 fs->fs_cstotal.cs_nifree--; 1801 fs->fs_cs(fs, cg).cs_nifree--; 1802 fs->fs_fmod = 1; 1803 if ((mode & IFMT) == IFDIR) { 1804 cgp->cg_cs.cs_ndir++; 1805 fs->fs_cstotal.cs_ndir++; 1806 fs->fs_cs(fs, cg).cs_ndir++; 1807 } 1808 UFS_UNLOCK(ump); 1809 if (DOINGSOFTDEP(ITOV(ip))) 1810 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1811 bdwrite(bp); 1812 if (ibp != NULL) 1813 bawrite(ibp); 1814 return (cg * fs->fs_ipg + ipref); 1815 } 1816 1817 /* 1818 * check if a block is free 1819 */ 1820 static int 1821 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 1822 { 1823 1824 switch ((int)fs->fs_frag) { 1825 case 8: 1826 return (cp[h] == 0); 1827 case 4: 1828 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 1829 case 2: 1830 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 1831 case 1: 1832 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 1833 default: 1834 panic("ffs_isfreeblock"); 1835 } 1836 return (0); 1837 } 1838 1839 /* 1840 * Free a block or fragment. 1841 * 1842 * The specified block or fragment is placed back in the 1843 * free map. If a fragment is deallocated, a possible 1844 * block reassembly is checked. 1845 */ 1846 void 1847 ffs_blkfree(ump, fs, devvp, bno, size, inum) 1848 struct ufsmount *ump; 1849 struct fs *fs; 1850 struct vnode *devvp; 1851 ufs2_daddr_t bno; 1852 long size; 1853 ino_t inum; 1854 { 1855 struct cg *cgp; 1856 struct buf *bp; 1857 ufs1_daddr_t fragno, cgbno; 1858 ufs2_daddr_t cgblkno; 1859 int i, cg, blk, frags, bbase; 1860 u_int8_t *blksfree; 1861 struct cdev *dev; 1862 1863 cg = dtog(fs, bno); 1864 if (devvp->v_type == VREG) { 1865 /* devvp is a snapshot */ 1866 dev = VTOI(devvp)->i_devvp->v_rdev; 1867 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1868 } else { 1869 /* devvp is a normal disk device */ 1870 dev = devvp->v_rdev; 1871 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1872 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1873 if ((devvp->v_vflag & VV_COPYONWRITE) && 1874 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1875 return; 1876 } 1877 #ifdef INVARIANTS 1878 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1879 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1880 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1881 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1882 size, fs->fs_fsmnt); 1883 panic("ffs_blkfree: bad size"); 1884 } 1885 #endif 1886 if ((u_int)bno >= fs->fs_size) { 1887 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1888 (u_long)inum); 1889 ffs_fserr(fs, inum, "bad block"); 1890 return; 1891 } 1892 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 1893 brelse(bp); 1894 return; 1895 } 1896 cgp = (struct cg *)bp->b_data; 1897 if (!cg_chkmagic(cgp)) { 1898 brelse(bp); 1899 return; 1900 } 1901 bp->b_xflags |= BX_BKGRDWRITE; 1902 cgp->cg_old_time = cgp->cg_time = time_second; 1903 cgbno = dtogd(fs, bno); 1904 blksfree = cg_blksfree(cgp); 1905 UFS_LOCK(ump); 1906 if (size == fs->fs_bsize) { 1907 fragno = fragstoblks(fs, cgbno); 1908 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1909 if (devvp->v_type == VREG) { 1910 UFS_UNLOCK(ump); 1911 /* devvp is a snapshot */ 1912 brelse(bp); 1913 return; 1914 } 1915 printf("dev = %s, block = %jd, fs = %s\n", 1916 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1917 panic("ffs_blkfree: freeing free block"); 1918 } 1919 ffs_setblock(fs, blksfree, fragno); 1920 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1921 cgp->cg_cs.cs_nbfree++; 1922 fs->fs_cstotal.cs_nbfree++; 1923 fs->fs_cs(fs, cg).cs_nbfree++; 1924 } else { 1925 bbase = cgbno - fragnum(fs, cgbno); 1926 /* 1927 * decrement the counts associated with the old frags 1928 */ 1929 blk = blkmap(fs, blksfree, bbase); 1930 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1931 /* 1932 * deallocate the fragment 1933 */ 1934 frags = numfrags(fs, size); 1935 for (i = 0; i < frags; i++) { 1936 if (isset(blksfree, cgbno + i)) { 1937 printf("dev = %s, block = %jd, fs = %s\n", 1938 devtoname(dev), (intmax_t)(bno + i), 1939 fs->fs_fsmnt); 1940 panic("ffs_blkfree: freeing free frag"); 1941 } 1942 setbit(blksfree, cgbno + i); 1943 } 1944 cgp->cg_cs.cs_nffree += i; 1945 fs->fs_cstotal.cs_nffree += i; 1946 fs->fs_cs(fs, cg).cs_nffree += i; 1947 /* 1948 * add back in counts associated with the new frags 1949 */ 1950 blk = blkmap(fs, blksfree, bbase); 1951 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1952 /* 1953 * if a complete block has been reassembled, account for it 1954 */ 1955 fragno = fragstoblks(fs, bbase); 1956 if (ffs_isblock(fs, blksfree, fragno)) { 1957 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1958 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1959 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1960 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1961 cgp->cg_cs.cs_nbfree++; 1962 fs->fs_cstotal.cs_nbfree++; 1963 fs->fs_cs(fs, cg).cs_nbfree++; 1964 } 1965 } 1966 fs->fs_fmod = 1; 1967 ACTIVECLEAR(fs, cg); 1968 UFS_UNLOCK(ump); 1969 bdwrite(bp); 1970 } 1971 1972 #ifdef INVARIANTS 1973 /* 1974 * Verify allocation of a block or fragment. Returns true if block or 1975 * fragment is allocated, false if it is free. 1976 */ 1977 static int 1978 ffs_checkblk(ip, bno, size) 1979 struct inode *ip; 1980 ufs2_daddr_t bno; 1981 long size; 1982 { 1983 struct fs *fs; 1984 struct cg *cgp; 1985 struct buf *bp; 1986 ufs1_daddr_t cgbno; 1987 int i, error, frags, free; 1988 u_int8_t *blksfree; 1989 1990 fs = ip->i_fs; 1991 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1992 printf("bsize = %ld, size = %ld, fs = %s\n", 1993 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1994 panic("ffs_checkblk: bad size"); 1995 } 1996 if ((u_int)bno >= fs->fs_size) 1997 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 1998 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1999 (int)fs->fs_cgsize, NOCRED, &bp); 2000 if (error) 2001 panic("ffs_checkblk: cg bread failed"); 2002 cgp = (struct cg *)bp->b_data; 2003 if (!cg_chkmagic(cgp)) 2004 panic("ffs_checkblk: cg magic mismatch"); 2005 bp->b_xflags |= BX_BKGRDWRITE; 2006 blksfree = cg_blksfree(cgp); 2007 cgbno = dtogd(fs, bno); 2008 if (size == fs->fs_bsize) { 2009 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2010 } else { 2011 frags = numfrags(fs, size); 2012 for (free = 0, i = 0; i < frags; i++) 2013 if (isset(blksfree, cgbno + i)) 2014 free++; 2015 if (free != 0 && free != frags) 2016 panic("ffs_checkblk: partially free fragment"); 2017 } 2018 brelse(bp); 2019 return (!free); 2020 } 2021 #endif /* INVARIANTS */ 2022 2023 /* 2024 * Free an inode. 2025 */ 2026 int 2027 ffs_vfree(pvp, ino, mode) 2028 struct vnode *pvp; 2029 ino_t ino; 2030 int mode; 2031 { 2032 struct inode *ip; 2033 2034 if (DOINGSOFTDEP(pvp)) { 2035 softdep_freefile(pvp, ino, mode); 2036 return (0); 2037 } 2038 ip = VTOI(pvp); 2039 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode)); 2040 } 2041 2042 /* 2043 * Do the actual free operation. 2044 * The specified inode is placed back in the free map. 2045 */ 2046 int 2047 ffs_freefile(ump, fs, devvp, ino, mode) 2048 struct ufsmount *ump; 2049 struct fs *fs; 2050 struct vnode *devvp; 2051 ino_t ino; 2052 int mode; 2053 { 2054 struct cg *cgp; 2055 struct buf *bp; 2056 ufs2_daddr_t cgbno; 2057 int error, cg; 2058 u_int8_t *inosused; 2059 struct cdev *dev; 2060 2061 cg = ino_to_cg(fs, ino); 2062 if (devvp->v_type == VREG) { 2063 /* devvp is a snapshot */ 2064 dev = VTOI(devvp)->i_devvp->v_rdev; 2065 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2066 } else { 2067 /* devvp is a normal disk device */ 2068 dev = devvp->v_rdev; 2069 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2070 } 2071 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2072 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 2073 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 2074 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2075 brelse(bp); 2076 return (error); 2077 } 2078 cgp = (struct cg *)bp->b_data; 2079 if (!cg_chkmagic(cgp)) { 2080 brelse(bp); 2081 return (0); 2082 } 2083 bp->b_xflags |= BX_BKGRDWRITE; 2084 cgp->cg_old_time = cgp->cg_time = time_second; 2085 inosused = cg_inosused(cgp); 2086 ino %= fs->fs_ipg; 2087 if (isclr(inosused, ino)) { 2088 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev), 2089 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt); 2090 if (fs->fs_ronly == 0) 2091 panic("ffs_freefile: freeing free inode"); 2092 } 2093 clrbit(inosused, ino); 2094 if (ino < cgp->cg_irotor) 2095 cgp->cg_irotor = ino; 2096 cgp->cg_cs.cs_nifree++; 2097 UFS_LOCK(ump); 2098 fs->fs_cstotal.cs_nifree++; 2099 fs->fs_cs(fs, cg).cs_nifree++; 2100 if ((mode & IFMT) == IFDIR) { 2101 cgp->cg_cs.cs_ndir--; 2102 fs->fs_cstotal.cs_ndir--; 2103 fs->fs_cs(fs, cg).cs_ndir--; 2104 } 2105 fs->fs_fmod = 1; 2106 ACTIVECLEAR(fs, cg); 2107 UFS_UNLOCK(ump); 2108 bdwrite(bp); 2109 return (0); 2110 } 2111 2112 /* 2113 * Check to see if a file is free. 2114 */ 2115 int 2116 ffs_checkfreefile(fs, devvp, ino) 2117 struct fs *fs; 2118 struct vnode *devvp; 2119 ino_t ino; 2120 { 2121 struct cg *cgp; 2122 struct buf *bp; 2123 ufs2_daddr_t cgbno; 2124 int ret, cg; 2125 u_int8_t *inosused; 2126 2127 cg = ino_to_cg(fs, ino); 2128 if (devvp->v_type == VREG) { 2129 /* devvp is a snapshot */ 2130 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2131 } else { 2132 /* devvp is a normal disk device */ 2133 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2134 } 2135 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2136 return (1); 2137 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2138 brelse(bp); 2139 return (1); 2140 } 2141 cgp = (struct cg *)bp->b_data; 2142 if (!cg_chkmagic(cgp)) { 2143 brelse(bp); 2144 return (1); 2145 } 2146 inosused = cg_inosused(cgp); 2147 ino %= fs->fs_ipg; 2148 ret = isclr(inosused, ino); 2149 brelse(bp); 2150 return (ret); 2151 } 2152 2153 /* 2154 * Find a block of the specified size in the specified cylinder group. 2155 * 2156 * It is a panic if a request is made to find a block if none are 2157 * available. 2158 */ 2159 static ufs1_daddr_t 2160 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2161 struct fs *fs; 2162 struct cg *cgp; 2163 ufs2_daddr_t bpref; 2164 int allocsiz; 2165 { 2166 ufs1_daddr_t bno; 2167 int start, len, loc, i; 2168 int blk, field, subfield, pos; 2169 u_int8_t *blksfree; 2170 2171 /* 2172 * find the fragment by searching through the free block 2173 * map for an appropriate bit pattern 2174 */ 2175 if (bpref) 2176 start = dtogd(fs, bpref) / NBBY; 2177 else 2178 start = cgp->cg_frotor / NBBY; 2179 blksfree = cg_blksfree(cgp); 2180 len = howmany(fs->fs_fpg, NBBY) - start; 2181 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2182 fragtbl[fs->fs_frag], 2183 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2184 if (loc == 0) { 2185 len = start + 1; 2186 start = 0; 2187 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2188 fragtbl[fs->fs_frag], 2189 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2190 if (loc == 0) { 2191 printf("start = %d, len = %d, fs = %s\n", 2192 start, len, fs->fs_fsmnt); 2193 panic("ffs_alloccg: map corrupted"); 2194 /* NOTREACHED */ 2195 } 2196 } 2197 bno = (start + len - loc) * NBBY; 2198 cgp->cg_frotor = bno; 2199 /* 2200 * found the byte in the map 2201 * sift through the bits to find the selected frag 2202 */ 2203 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2204 blk = blkmap(fs, blksfree, bno); 2205 blk <<= 1; 2206 field = around[allocsiz]; 2207 subfield = inside[allocsiz]; 2208 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2209 if ((blk & field) == subfield) 2210 return (bno + pos); 2211 field <<= 1; 2212 subfield <<= 1; 2213 } 2214 } 2215 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2216 panic("ffs_alloccg: block not in map"); 2217 return (-1); 2218 } 2219 2220 /* 2221 * Update the cluster map because of an allocation or free. 2222 * 2223 * Cnt == 1 means free; cnt == -1 means allocating. 2224 */ 2225 void 2226 ffs_clusteracct(ump, fs, cgp, blkno, cnt) 2227 struct ufsmount *ump; 2228 struct fs *fs; 2229 struct cg *cgp; 2230 ufs1_daddr_t blkno; 2231 int cnt; 2232 { 2233 int32_t *sump; 2234 int32_t *lp; 2235 u_char *freemapp, *mapp; 2236 int i, start, end, forw, back, map, bit; 2237 2238 mtx_assert(UFS_MTX(ump), MA_OWNED); 2239 2240 if (fs->fs_contigsumsize <= 0) 2241 return; 2242 freemapp = cg_clustersfree(cgp); 2243 sump = cg_clustersum(cgp); 2244 /* 2245 * Allocate or clear the actual block. 2246 */ 2247 if (cnt > 0) 2248 setbit(freemapp, blkno); 2249 else 2250 clrbit(freemapp, blkno); 2251 /* 2252 * Find the size of the cluster going forward. 2253 */ 2254 start = blkno + 1; 2255 end = start + fs->fs_contigsumsize; 2256 if (end >= cgp->cg_nclusterblks) 2257 end = cgp->cg_nclusterblks; 2258 mapp = &freemapp[start / NBBY]; 2259 map = *mapp++; 2260 bit = 1 << (start % NBBY); 2261 for (i = start; i < end; i++) { 2262 if ((map & bit) == 0) 2263 break; 2264 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2265 bit <<= 1; 2266 } else { 2267 map = *mapp++; 2268 bit = 1; 2269 } 2270 } 2271 forw = i - start; 2272 /* 2273 * Find the size of the cluster going backward. 2274 */ 2275 start = blkno - 1; 2276 end = start - fs->fs_contigsumsize; 2277 if (end < 0) 2278 end = -1; 2279 mapp = &freemapp[start / NBBY]; 2280 map = *mapp--; 2281 bit = 1 << (start % NBBY); 2282 for (i = start; i > end; i--) { 2283 if ((map & bit) == 0) 2284 break; 2285 if ((i & (NBBY - 1)) != 0) { 2286 bit >>= 1; 2287 } else { 2288 map = *mapp--; 2289 bit = 1 << (NBBY - 1); 2290 } 2291 } 2292 back = start - i; 2293 /* 2294 * Account for old cluster and the possibly new forward and 2295 * back clusters. 2296 */ 2297 i = back + forw + 1; 2298 if (i > fs->fs_contigsumsize) 2299 i = fs->fs_contigsumsize; 2300 sump[i] += cnt; 2301 if (back > 0) 2302 sump[back] -= cnt; 2303 if (forw > 0) 2304 sump[forw] -= cnt; 2305 /* 2306 * Update cluster summary information. 2307 */ 2308 lp = &sump[fs->fs_contigsumsize]; 2309 for (i = fs->fs_contigsumsize; i > 0; i--) 2310 if (*lp-- > 0) 2311 break; 2312 fs->fs_maxcluster[cgp->cg_cgx] = i; 2313 } 2314 2315 /* 2316 * Fserr prints the name of a filesystem with an error diagnostic. 2317 * 2318 * The form of the error message is: 2319 * fs: error message 2320 */ 2321 static void 2322 ffs_fserr(fs, inum, cp) 2323 struct fs *fs; 2324 ino_t inum; 2325 char *cp; 2326 { 2327 struct thread *td = curthread; /* XXX */ 2328 struct proc *p = td->td_proc; 2329 2330 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2331 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp); 2332 } 2333 2334 /* 2335 * This function provides the capability for the fsck program to 2336 * update an active filesystem. Fourteen operations are provided: 2337 * 2338 * adjrefcnt(inode, amt) - adjusts the reference count on the 2339 * specified inode by the specified amount. Under normal 2340 * operation the count should always go down. Decrementing 2341 * the count to zero will cause the inode to be freed. 2342 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2343 * by the specifed amount. 2344 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2345 * adjust the superblock summary. 2346 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2347 * are marked as free. Inodes should never have to be marked 2348 * as in use. 2349 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2350 * are marked as free. Inodes should never have to be marked 2351 * as in use. 2352 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2353 * are marked as free. Blocks should never have to be marked 2354 * as in use. 2355 * setflags(flags, set/clear) - the fs_flags field has the specified 2356 * flags set (second parameter +1) or cleared (second parameter -1). 2357 * setcwd(dirinode) - set the current directory to dirinode in the 2358 * filesystem associated with the snapshot. 2359 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2360 * in the current directory is oldvalue then change it to newvalue. 2361 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2362 * with nameptr in the current directory is oldvalue then unlink it. 2363 */ 2364 2365 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2366 2367 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2368 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2369 2370 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2371 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2372 2373 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2374 sysctl_ffs_fsck, "Adjust number of directories"); 2375 2376 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2377 sysctl_ffs_fsck, "Adjust number of free blocks"); 2378 2379 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2380 sysctl_ffs_fsck, "Adjust number of free inodes"); 2381 2382 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2383 sysctl_ffs_fsck, "Adjust number of free frags"); 2384 2385 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2386 sysctl_ffs_fsck, "Adjust number of free clusters"); 2387 2388 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2389 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2390 2391 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2392 sysctl_ffs_fsck, "Free Range of File Inodes"); 2393 2394 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2395 sysctl_ffs_fsck, "Free Range of Blocks"); 2396 2397 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2398 sysctl_ffs_fsck, "Change Filesystem Flags"); 2399 2400 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2401 sysctl_ffs_fsck, "Set Current Working Directory"); 2402 2403 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2404 sysctl_ffs_fsck, "Change Value of .. Entry"); 2405 2406 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2407 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2408 2409 #ifdef DEBUG 2410 static int fsckcmds = 0; 2411 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2412 #endif /* DEBUG */ 2413 2414 static int 2415 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2416 { 2417 struct thread *td = curthread; 2418 struct fsck_cmd cmd; 2419 struct ufsmount *ump; 2420 struct vnode *vp, *vpold, *dvp, *fdvp; 2421 struct inode *ip, *dp; 2422 struct mount *mp; 2423 struct fs *fs; 2424 ufs2_daddr_t blkno; 2425 long blkcnt, blksize; 2426 struct filedesc *fdp; 2427 struct file *fp; 2428 int vfslocked, filetype, error; 2429 2430 if (req->newlen > sizeof cmd) 2431 return (EBADRPC); 2432 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2433 return (error); 2434 if (cmd.version != FFS_CMD_VERSION) 2435 return (ERPCMISMATCH); 2436 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2437 return (error); 2438 vp = fp->f_data; 2439 if (vp->v_type != VREG && vp->v_type != VDIR) { 2440 fdrop(fp, td); 2441 return (EINVAL); 2442 } 2443 vn_start_write(vp, &mp, V_WAIT); 2444 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2445 vn_finished_write(mp); 2446 fdrop(fp, td); 2447 return (EINVAL); 2448 } 2449 if (mp->mnt_flag & MNT_RDONLY) { 2450 vn_finished_write(mp); 2451 fdrop(fp, td); 2452 return (EROFS); 2453 } 2454 ump = VFSTOUFS(mp); 2455 fs = ump->um_fs; 2456 filetype = IFREG; 2457 2458 switch (oidp->oid_number) { 2459 2460 case FFS_SET_FLAGS: 2461 #ifdef DEBUG 2462 if (fsckcmds) 2463 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2464 cmd.size > 0 ? "set" : "clear"); 2465 #endif /* DEBUG */ 2466 if (cmd.size > 0) 2467 fs->fs_flags |= (long)cmd.value; 2468 else 2469 fs->fs_flags &= ~(long)cmd.value; 2470 break; 2471 2472 case FFS_ADJ_REFCNT: 2473 #ifdef DEBUG 2474 if (fsckcmds) { 2475 printf("%s: adjust inode %jd count by %jd\n", 2476 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2477 (intmax_t)cmd.size); 2478 } 2479 #endif /* DEBUG */ 2480 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2481 break; 2482 ip = VTOI(vp); 2483 ip->i_nlink += cmd.size; 2484 DIP_SET(ip, i_nlink, ip->i_nlink); 2485 ip->i_effnlink += cmd.size; 2486 ip->i_flag |= IN_CHANGE; 2487 if (DOINGSOFTDEP(vp)) 2488 softdep_change_linkcnt(ip); 2489 vput(vp); 2490 break; 2491 2492 case FFS_ADJ_BLKCNT: 2493 #ifdef DEBUG 2494 if (fsckcmds) { 2495 printf("%s: adjust inode %jd block count by %jd\n", 2496 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2497 (intmax_t)cmd.size); 2498 } 2499 #endif /* DEBUG */ 2500 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2501 break; 2502 ip = VTOI(vp); 2503 if (ip->i_flag & IN_SPACECOUNTED) { 2504 UFS_LOCK(ump); 2505 fs->fs_pendingblocks += cmd.size; 2506 UFS_UNLOCK(ump); 2507 } 2508 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2509 ip->i_flag |= IN_CHANGE; 2510 vput(vp); 2511 break; 2512 2513 case FFS_DIR_FREE: 2514 filetype = IFDIR; 2515 /* fall through */ 2516 2517 case FFS_FILE_FREE: 2518 #ifdef DEBUG 2519 if (fsckcmds) { 2520 if (cmd.size == 1) 2521 printf("%s: free %s inode %d\n", 2522 mp->mnt_stat.f_mntonname, 2523 filetype == IFDIR ? "directory" : "file", 2524 (ino_t)cmd.value); 2525 else 2526 printf("%s: free %s inodes %d-%d\n", 2527 mp->mnt_stat.f_mntonname, 2528 filetype == IFDIR ? "directory" : "file", 2529 (ino_t)cmd.value, 2530 (ino_t)(cmd.value + cmd.size - 1)); 2531 } 2532 #endif /* DEBUG */ 2533 while (cmd.size > 0) { 2534 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2535 cmd.value, filetype))) 2536 break; 2537 cmd.size -= 1; 2538 cmd.value += 1; 2539 } 2540 break; 2541 2542 case FFS_BLK_FREE: 2543 #ifdef DEBUG 2544 if (fsckcmds) { 2545 if (cmd.size == 1) 2546 printf("%s: free block %jd\n", 2547 mp->mnt_stat.f_mntonname, 2548 (intmax_t)cmd.value); 2549 else 2550 printf("%s: free blocks %jd-%jd\n", 2551 mp->mnt_stat.f_mntonname, 2552 (intmax_t)cmd.value, 2553 (intmax_t)cmd.value + cmd.size - 1); 2554 } 2555 #endif /* DEBUG */ 2556 blkno = cmd.value; 2557 blkcnt = cmd.size; 2558 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2559 while (blkcnt > 0) { 2560 if (blksize > blkcnt) 2561 blksize = blkcnt; 2562 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2563 blksize * fs->fs_fsize, ROOTINO); 2564 blkno += blksize; 2565 blkcnt -= blksize; 2566 blksize = fs->fs_frag; 2567 } 2568 break; 2569 2570 /* 2571 * Adjust superblock summaries. fsck(8) is expected to 2572 * submit deltas when necessary. 2573 */ 2574 case FFS_ADJ_NDIR: 2575 #ifdef DEBUG 2576 if (fsckcmds) { 2577 printf("%s: adjust number of directories by %jd\n", 2578 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2579 } 2580 #endif /* DEBUG */ 2581 fs->fs_cstotal.cs_ndir += cmd.value; 2582 break; 2583 2584 case FFS_ADJ_NBFREE: 2585 #ifdef DEBUG 2586 if (fsckcmds) { 2587 printf("%s: adjust number of free blocks by %+jd\n", 2588 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2589 } 2590 #endif /* DEBUG */ 2591 fs->fs_cstotal.cs_nbfree += cmd.value; 2592 break; 2593 2594 case FFS_ADJ_NIFREE: 2595 #ifdef DEBUG 2596 if (fsckcmds) { 2597 printf("%s: adjust number of free inodes by %+jd\n", 2598 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2599 } 2600 #endif /* DEBUG */ 2601 fs->fs_cstotal.cs_nifree += cmd.value; 2602 break; 2603 2604 case FFS_ADJ_NFFREE: 2605 #ifdef DEBUG 2606 if (fsckcmds) { 2607 printf("%s: adjust number of free frags by %+jd\n", 2608 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2609 } 2610 #endif /* DEBUG */ 2611 fs->fs_cstotal.cs_nffree += cmd.value; 2612 break; 2613 2614 case FFS_ADJ_NUMCLUSTERS: 2615 #ifdef DEBUG 2616 if (fsckcmds) { 2617 printf("%s: adjust number of free clusters by %+jd\n", 2618 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2619 } 2620 #endif /* DEBUG */ 2621 fs->fs_cstotal.cs_numclusters += cmd.value; 2622 break; 2623 2624 case FFS_SET_CWD: 2625 #ifdef DEBUG 2626 if (fsckcmds) { 2627 printf("%s: set current directory to inode %jd\n", 2628 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2629 } 2630 #endif /* DEBUG */ 2631 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2632 break; 2633 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2634 AUDIT_ARG_VNODE1(vp); 2635 if ((error = change_dir(vp, td)) != 0) { 2636 vput(vp); 2637 VFS_UNLOCK_GIANT(vfslocked); 2638 break; 2639 } 2640 VOP_UNLOCK(vp, 0); 2641 VFS_UNLOCK_GIANT(vfslocked); 2642 fdp = td->td_proc->p_fd; 2643 FILEDESC_XLOCK(fdp); 2644 vpold = fdp->fd_cdir; 2645 fdp->fd_cdir = vp; 2646 FILEDESC_XUNLOCK(fdp); 2647 vfslocked = VFS_LOCK_GIANT(vpold->v_mount); 2648 vrele(vpold); 2649 VFS_UNLOCK_GIANT(vfslocked); 2650 break; 2651 2652 case FFS_SET_DOTDOT: 2653 #ifdef DEBUG 2654 if (fsckcmds) { 2655 printf("%s: change .. in cwd from %jd to %jd\n", 2656 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2657 (intmax_t)cmd.size); 2658 } 2659 #endif /* DEBUG */ 2660 /* 2661 * First we have to get and lock the parent directory 2662 * to which ".." points. 2663 */ 2664 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2665 if (error) 2666 break; 2667 /* 2668 * Now we get and lock the child directory containing "..". 2669 */ 2670 FILEDESC_SLOCK(td->td_proc->p_fd); 2671 dvp = td->td_proc->p_fd->fd_cdir; 2672 FILEDESC_SUNLOCK(td->td_proc->p_fd); 2673 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 2674 vput(fdvp); 2675 break; 2676 } 2677 dp = VTOI(dvp); 2678 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 2679 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 2680 DT_DIR, 0); 2681 cache_purge(fdvp); 2682 cache_purge(dvp); 2683 vput(dvp); 2684 vput(fdvp); 2685 break; 2686 2687 case FFS_UNLINK: 2688 #ifdef DEBUG 2689 if (fsckcmds) { 2690 char buf[32]; 2691 2692 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 2693 strncpy(buf, "Name_too_long", 32); 2694 printf("%s: unlink %s (inode %jd)\n", 2695 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 2696 } 2697 #endif /* DEBUG */ 2698 /* 2699 * kern_unlinkat will do its own start/finish writes and 2700 * they do not nest, so drop ours here. Setting mp == NULL 2701 * indicates that vn_finished_write is not needed down below. 2702 */ 2703 vn_finished_write(mp); 2704 mp = NULL; 2705 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 2706 UIO_USERSPACE, (ino_t)cmd.size); 2707 break; 2708 2709 default: 2710 #ifdef DEBUG 2711 if (fsckcmds) { 2712 printf("Invalid request %d from fsck\n", 2713 oidp->oid_number); 2714 } 2715 #endif /* DEBUG */ 2716 error = EINVAL; 2717 break; 2718 2719 } 2720 fdrop(fp, td); 2721 vn_finished_write(mp); 2722 return (error); 2723 } 2724