xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision 952d112864d8008aa87278a30a539d888a8493cd)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34  * $Id: ffs_alloc.c,v 1.32 1997/03/22 06:53:28 bde Exp $
35  */
36 
37 #include "opt_quota.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 #include <sys/mount.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/syslog.h>
48 
49 #include <vm/vm.h>
50 
51 #include <ufs/ufs/quota.h>
52 #include <ufs/ufs/inode.h>
53 #include <ufs/ufs/ufs_extern.h>
54 
55 #include <ufs/ffs/fs.h>
56 #include <ufs/ffs/ffs_extern.h>
57 
58 typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
59 				  int size));
60 
61 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
62 static ufs_daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, ufs_daddr_t));
63 static void	ffs_clusteracct	__P((struct fs *, struct cg *, ufs_daddr_t,
64 				     int));
65 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
66 	    int));
67 static ino_t	ffs_dirpref __P((struct fs *));
68 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
69 static void	ffs_fserr __P((struct fs *, u_int, char *));
70 static u_long	ffs_hashalloc
71 		    __P((struct inode *, int, long, int, allocfcn_t *));
72 static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
73 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
74 	    int));
75 
76 /*
77  * Allocate a block in the file system.
78  *
79  * The size of the requested block is given, which must be some
80  * multiple of fs_fsize and <= fs_bsize.
81  * A preference may be optionally specified. If a preference is given
82  * the following hierarchy is used to allocate a block:
83  *   1) allocate the requested block.
84  *   2) allocate a rotationally optimal block in the same cylinder.
85  *   3) allocate a block in the same cylinder group.
86  *   4) quadradically rehash into other cylinder groups, until an
87  *      available block is located.
88  * If no block preference is given the following heirarchy is used
89  * to allocate a block:
90  *   1) allocate a block in the cylinder group that contains the
91  *      inode for the file.
92  *   2) quadradically rehash into other cylinder groups, until an
93  *      available block is located.
94  */
95 int
96 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
97 	register struct inode *ip;
98 	ufs_daddr_t lbn, bpref;
99 	int size;
100 	struct ucred *cred;
101 	ufs_daddr_t *bnp;
102 {
103 	register struct fs *fs;
104 	ufs_daddr_t bno;
105 	int cg;
106 #ifdef QUOTA
107 	int error;
108 #endif
109 
110 	*bnp = 0;
111 	fs = ip->i_fs;
112 #ifdef DIAGNOSTIC
113 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
114 		printf("dev = 0x%lx, bsize = %ld, size = %d, fs = %s\n",
115 		    (u_long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
116 		panic("ffs_alloc: bad size");
117 	}
118 	if (cred == NOCRED)
119 		panic("ffs_alloc: missing credential");
120 #endif /* DIAGNOSTIC */
121 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
122 		goto nospace;
123 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
124 		goto nospace;
125 #ifdef QUOTA
126 	error = chkdq(ip, (long)btodb(size), cred, 0);
127 	if (error)
128 		return (error);
129 #endif
130 	if (bpref >= fs->fs_size)
131 		bpref = 0;
132 	if (bpref == 0)
133 		cg = ino_to_cg(fs, ip->i_number);
134 	else
135 		cg = dtog(fs, bpref);
136 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
137 					 ffs_alloccg);
138 	if (bno > 0) {
139 		ip->i_blocks += btodb(size);
140 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
141 		*bnp = bno;
142 		return (0);
143 	}
144 #ifdef QUOTA
145 	/*
146 	 * Restore user's disk quota because allocation failed.
147 	 */
148 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
149 #endif
150 nospace:
151 	ffs_fserr(fs, cred->cr_uid, "file system full");
152 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
153 	return (ENOSPC);
154 }
155 
156 /*
157  * Reallocate a fragment to a bigger size
158  *
159  * The number and size of the old block is given, and a preference
160  * and new size is also specified. The allocator attempts to extend
161  * the original block. Failing that, the regular block allocator is
162  * invoked to get an appropriate block.
163  */
164 int
165 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
166 	register struct inode *ip;
167 	ufs_daddr_t lbprev;
168 	ufs_daddr_t bpref;
169 	int osize, nsize;
170 	struct ucred *cred;
171 	struct buf **bpp;
172 {
173 	register struct fs *fs;
174 	struct buf *bp;
175 	int cg, request, error;
176 	ufs_daddr_t bprev, bno;
177 
178 	*bpp = 0;
179 	fs = ip->i_fs;
180 #ifdef DIAGNOSTIC
181 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 		printf(
184 		    "dev = 0x%lx, bsize = %ld, osize = %d, "
185 		    "nsize = %d, fs = %s\n",
186 		    (u_long)ip->i_dev, fs->fs_bsize, osize,
187 		    nsize, fs->fs_fsmnt);
188 		panic("ffs_realloccg: bad size");
189 	}
190 	if (cred == NOCRED)
191 		panic("ffs_realloccg: missing credential");
192 #endif /* DIAGNOSTIC */
193 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
194 		goto nospace;
195 	if ((bprev = ip->i_db[lbprev]) == 0) {
196 		printf("dev = 0x%lx, bsize = %ld, bprev = %ld, fs = %s\n",
197 		    (u_long) ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
198 		panic("ffs_realloccg: bad bprev");
199 	}
200 	/*
201 	 * Allocate the extra space in the buffer.
202 	 */
203 	error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
204 	if (error) {
205 		brelse(bp);
206 		return (error);
207 	}
208 
209 	if( bp->b_blkno == bp->b_lblkno) {
210 		if( lbprev >= NDADDR)
211 			panic("ffs_realloccg: lbprev out of range");
212 		bp->b_blkno = fsbtodb(fs, bprev);
213 	}
214 
215 #ifdef QUOTA
216 	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
217 	if (error) {
218 		brelse(bp);
219 		return (error);
220 	}
221 #endif
222 	/*
223 	 * Check for extension in the existing location.
224 	 */
225 	cg = dtog(fs, bprev);
226 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
227 	if (bno) {
228 		if (bp->b_blkno != fsbtodb(fs, bno))
229 			panic("ffs_realloccg: bad blockno");
230 		ip->i_blocks += btodb(nsize - osize);
231 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
232 		allocbuf(bp, nsize);
233 		bp->b_flags |= B_DONE;
234 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
235 		*bpp = bp;
236 		return (0);
237 	}
238 	/*
239 	 * Allocate a new disk location.
240 	 */
241 	if (bpref >= fs->fs_size)
242 		bpref = 0;
243 	switch ((int)fs->fs_optim) {
244 	case FS_OPTSPACE:
245 		/*
246 		 * Allocate an exact sized fragment. Although this makes
247 		 * best use of space, we will waste time relocating it if
248 		 * the file continues to grow. If the fragmentation is
249 		 * less than half of the minimum free reserve, we choose
250 		 * to begin optimizing for time.
251 		 */
252 		request = nsize;
253 		if (fs->fs_minfree <= 5 ||
254 		    fs->fs_cstotal.cs_nffree >
255 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 			break;
257 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
258 			fs->fs_fsmnt);
259 		fs->fs_optim = FS_OPTTIME;
260 		break;
261 	case FS_OPTTIME:
262 		/*
263 		 * At this point we have discovered a file that is trying to
264 		 * grow a small fragment to a larger fragment. To save time,
265 		 * we allocate a full sized block, then free the unused portion.
266 		 * If the file continues to grow, the `ffs_fragextend' call
267 		 * above will be able to grow it in place without further
268 		 * copying. If aberrant programs cause disk fragmentation to
269 		 * grow within 2% of the free reserve, we choose to begin
270 		 * optimizing for space.
271 		 */
272 		request = fs->fs_bsize;
273 		if (fs->fs_cstotal.cs_nffree <
274 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
275 			break;
276 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 			fs->fs_fsmnt);
278 		fs->fs_optim = FS_OPTSPACE;
279 		break;
280 	default:
281 		printf("dev = 0x%lx, optim = %ld, fs = %s\n",
282 		    (u_long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
283 		panic("ffs_realloccg: bad optim");
284 		/* NOTREACHED */
285 	}
286 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
287 					 ffs_alloccg);
288 	if (bno > 0) {
289 		bp->b_blkno = fsbtodb(fs, bno);
290 		ffs_blkfree(ip, bprev, (long)osize);
291 		if (nsize < request)
292 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
293 			    (long)(request - nsize));
294 		ip->i_blocks += btodb(nsize - osize);
295 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
296 		allocbuf(bp, nsize);
297 		bp->b_flags |= B_DONE;
298 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
299 		*bpp = bp;
300 		return (0);
301 	}
302 #ifdef QUOTA
303 	/*
304 	 * Restore user's disk quota because allocation failed.
305 	 */
306 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 	brelse(bp);
309 nospace:
310 	/*
311 	 * no space available
312 	 */
313 	ffs_fserr(fs, cred->cr_uid, "file system full");
314 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
315 	return (ENOSPC);
316 }
317 
318 /*
319  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
320  *
321  * The vnode and an array of buffer pointers for a range of sequential
322  * logical blocks to be made contiguous is given. The allocator attempts
323  * to find a range of sequential blocks starting as close as possible to
324  * an fs_rotdelay offset from the end of the allocation for the logical
325  * block immediately preceeding the current range. If successful, the
326  * physical block numbers in the buffer pointers and in the inode are
327  * changed to reflect the new allocation. If unsuccessful, the allocation
328  * is left unchanged. The success in doing the reallocation is returned.
329  * Note that the error return is not reflected back to the user. Rather
330  * the previous block allocation will be used.
331  */
332 static int doasyncfree = 1;
333 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
334 
335 int doreallocblks = 1;
336 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
337 
338 static int prtrealloc = 0;
339 
340 int
341 ffs_reallocblks(ap)
342 	struct vop_reallocblks_args /* {
343 		struct vnode *a_vp;
344 		struct cluster_save *a_buflist;
345 	} */ *ap;
346 {
347 #if !defined (not_yes)
348 	return (ENOSPC);
349 #else
350 	struct fs *fs;
351 	struct inode *ip;
352 	struct vnode *vp;
353 	struct buf *sbp, *ebp;
354 	ufs_daddr_t *bap, *sbap, *ebap = 0;
355 	struct cluster_save *buflist;
356 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
358 	int i, len, start_lvl, end_lvl, pref, ssize;
359 	struct timeval tv;
360 
361 	if (doreallocblks == 0)
362 		return (ENOSPC);
363 	vp = ap->a_vp;
364 	ip = VTOI(vp);
365 	fs = ip->i_fs;
366 	if (fs->fs_contigsumsize <= 0)
367 		return (ENOSPC);
368 	buflist = ap->a_buflist;
369 	len = buflist->bs_nchildren;
370 	start_lbn = buflist->bs_children[0]->b_lblkno;
371 	end_lbn = start_lbn + len - 1;
372 #ifdef DIAGNOSTIC
373 	for (i = 0; i < len; i++)
374 		if (!ffs_checkblk(ip,
375 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
376 			panic("ffs_reallocblks: unallocated block 1");
377 	for (i = 1; i < len; i++)
378 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
379 			panic("ffs_reallocblks: non-logical cluster");
380 	blkno = buflist->bs_children[0]->b_blkno;
381 	ssize = fsbtodb(fs, fs->fs_frag);
382 	for (i = 1; i < len - 1; i++)
383 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
384 			panic("ffs_reallocblks: non-physical cluster %d", i);
385 #endif
386 	/*
387 	 * If the latest allocation is in a new cylinder group, assume that
388 	 * the filesystem has decided to move and do not force it back to
389 	 * the previous cylinder group.
390 	 */
391 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
392 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
393 		return (ENOSPC);
394 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
395 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
396 		return (ENOSPC);
397 	/*
398 	 * Get the starting offset and block map for the first block.
399 	 */
400 	if (start_lvl == 0) {
401 		sbap = &ip->i_db[0];
402 		soff = start_lbn;
403 	} else {
404 		idp = &start_ap[start_lvl - 1];
405 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
406 			brelse(sbp);
407 			return (ENOSPC);
408 		}
409 		sbap = (ufs_daddr_t *)sbp->b_data;
410 		soff = idp->in_off;
411 	}
412 	/*
413 	 * Find the preferred location for the cluster.
414 	 */
415 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
416 	/*
417 	 * If the block range spans two block maps, get the second map.
418 	 */
419 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
420 		ssize = len;
421 	} else {
422 #ifdef DIAGNOSTIC
423 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
424 			panic("ffs_reallocblk: start == end");
425 #endif
426 		ssize = len - (idp->in_off + 1);
427 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
428 			goto fail;
429 		ebap = (ufs_daddr_t *)ebp->b_data;
430 	}
431 	/*
432 	 * Search the block map looking for an allocation of the desired size.
433 	 */
434 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
435 	    len, ffs_clusteralloc)) == 0)
436 		goto fail;
437 	/*
438 	 * We have found a new contiguous block.
439 	 *
440 	 * First we have to replace the old block pointers with the new
441 	 * block pointers in the inode and indirect blocks associated
442 	 * with the file.
443 	 */
444 #ifdef DEBUG
445 	if (prtrealloc)
446 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
447 		    start_lbn, end_lbn);
448 #endif
449 	blkno = newblk;
450 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
451 		if (i == ssize)
452 			bap = ebap;
453 #ifdef DIAGNOSTIC
454 		if (!ffs_checkblk(ip,
455 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
456 			panic("ffs_reallocblks: unallocated block 2");
457 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
458 			panic("ffs_reallocblks: alloc mismatch");
459 #endif
460 #ifdef DEBUG
461 		if (prtrealloc)
462 			printf(" %d,", *bap);
463 #endif
464 		*bap++ = blkno;
465 	}
466 	/*
467 	 * Next we must write out the modified inode and indirect blocks.
468 	 * For strict correctness, the writes should be synchronous since
469 	 * the old block values may have been written to disk. In practise
470 	 * they are almost never written, but if we are concerned about
471 	 * strict correctness, the `doasyncfree' flag should be set to zero.
472 	 *
473 	 * The test on `doasyncfree' should be changed to test a flag
474 	 * that shows whether the associated buffers and inodes have
475 	 * been written. The flag should be set when the cluster is
476 	 * started and cleared whenever the buffer or inode is flushed.
477 	 * We can then check below to see if it is set, and do the
478 	 * synchronous write only when it has been cleared.
479 	 */
480 	if (sbap != &ip->i_db[0]) {
481 		if (doasyncfree)
482 			bdwrite(sbp);
483 		else
484 			bwrite(sbp);
485 	} else {
486 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
487 		if (!doasyncfree) {
488 			gettime(&tv);
489 			VOP_UPDATE(vp, &tv, &tv, 1);
490 		}
491 	}
492 	if (ssize < len)
493 		if (doasyncfree)
494 			bdwrite(ebp);
495 		else
496 			bwrite(ebp);
497 	/*
498 	 * Last, free the old blocks and assign the new blocks to the buffers.
499 	 */
500 #ifdef DEBUG
501 	if (prtrealloc)
502 		printf("\n\tnew:");
503 #endif
504 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
505 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
506 		    fs->fs_bsize);
507 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
508 #ifdef DEBUG
509 		if (!ffs_checkblk(ip,
510 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
511 			panic("ffs_reallocblks: unallocated block 3");
512 		if (prtrealloc)
513 			printf(" %d,", blkno);
514 #endif
515 	}
516 #ifdef DEBUG
517 	if (prtrealloc) {
518 		prtrealloc--;
519 		printf("\n");
520 	}
521 #endif
522 	return (0);
523 
524 fail:
525 	if (ssize < len)
526 		brelse(ebp);
527 	if (sbap != &ip->i_db[0])
528 		brelse(sbp);
529 	return (ENOSPC);
530 #endif
531 }
532 
533 /*
534  * Allocate an inode in the file system.
535  *
536  * If allocating a directory, use ffs_dirpref to select the inode.
537  * If allocating in a directory, the following hierarchy is followed:
538  *   1) allocate the preferred inode.
539  *   2) allocate an inode in the same cylinder group.
540  *   3) quadradically rehash into other cylinder groups, until an
541  *      available inode is located.
542  * If no inode preference is given the following heirarchy is used
543  * to allocate an inode:
544  *   1) allocate an inode in cylinder group 0.
545  *   2) quadradically rehash into other cylinder groups, until an
546  *      available inode is located.
547  */
548 int
549 ffs_valloc(ap)
550 	struct vop_valloc_args /* {
551 		struct vnode *a_pvp;
552 		int a_mode;
553 		struct ucred *a_cred;
554 		struct vnode **a_vpp;
555 	} */ *ap;
556 {
557 	register struct vnode *pvp = ap->a_pvp;
558 	register struct inode *pip;
559 	register struct fs *fs;
560 	register struct inode *ip;
561 	mode_t mode = ap->a_mode;
562 	ino_t ino, ipref;
563 	int cg, error;
564 
565 	*ap->a_vpp = NULL;
566 	pip = VTOI(pvp);
567 	fs = pip->i_fs;
568 	if (fs->fs_cstotal.cs_nifree == 0)
569 		goto noinodes;
570 
571 	if ((mode & IFMT) == IFDIR)
572 		ipref = ffs_dirpref(fs);
573 	else
574 		ipref = pip->i_number;
575 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
576 		ipref = 0;
577 	cg = ino_to_cg(fs, ipref);
578 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
579 					(allocfcn_t *)ffs_nodealloccg);
580 	if (ino == 0)
581 		goto noinodes;
582 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
583 	if (error) {
584 		VOP_VFREE(pvp, ino, mode);
585 		return (error);
586 	}
587 	ip = VTOI(*ap->a_vpp);
588 	if (ip->i_mode) {
589 		printf("mode = 0%o, inum = %ld, fs = %s\n",
590 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
591 		panic("ffs_valloc: dup alloc");
592 	}
593 	if (ip->i_blocks) {				/* XXX */
594 		printf("free inode %s/%ld had %ld blocks\n",
595 		    fs->fs_fsmnt, ino, ip->i_blocks);
596 		ip->i_blocks = 0;
597 	}
598 	ip->i_flags = 0;
599 	/*
600 	 * Set up a new generation number for this inode.
601 	 */
602 	if (ip->i_gen == 0 || ++(ip->i_gen) == 0)
603 		ip->i_gen = random() / 2 + 1;
604 	return (0);
605 noinodes:
606 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
607 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
608 	return (ENOSPC);
609 }
610 
611 /*
612  * Find a cylinder to place a directory.
613  *
614  * The policy implemented by this algorithm is to select from
615  * among those cylinder groups with above the average number of
616  * free inodes, the one with the smallest number of directories.
617  */
618 static ino_t
619 ffs_dirpref(fs)
620 	register struct fs *fs;
621 {
622 	int cg, minndir, mincg, avgifree;
623 
624 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
625 	minndir = fs->fs_ipg;
626 	mincg = 0;
627 	for (cg = 0; cg < fs->fs_ncg; cg++)
628 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
629 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
630 			mincg = cg;
631 			minndir = fs->fs_cs(fs, cg).cs_ndir;
632 		}
633 	return ((ino_t)(fs->fs_ipg * mincg));
634 }
635 
636 /*
637  * Select the desired position for the next block in a file.  The file is
638  * logically divided into sections. The first section is composed of the
639  * direct blocks. Each additional section contains fs_maxbpg blocks.
640  *
641  * If no blocks have been allocated in the first section, the policy is to
642  * request a block in the same cylinder group as the inode that describes
643  * the file. If no blocks have been allocated in any other section, the
644  * policy is to place the section in a cylinder group with a greater than
645  * average number of free blocks.  An appropriate cylinder group is found
646  * by using a rotor that sweeps the cylinder groups. When a new group of
647  * blocks is needed, the sweep begins in the cylinder group following the
648  * cylinder group from which the previous allocation was made. The sweep
649  * continues until a cylinder group with greater than the average number
650  * of free blocks is found. If the allocation is for the first block in an
651  * indirect block, the information on the previous allocation is unavailable;
652  * here a best guess is made based upon the logical block number being
653  * allocated.
654  *
655  * If a section is already partially allocated, the policy is to
656  * contiguously allocate fs_maxcontig blocks.  The end of one of these
657  * contiguous blocks and the beginning of the next is physically separated
658  * so that the disk head will be in transit between them for at least
659  * fs_rotdelay milliseconds.  This is to allow time for the processor to
660  * schedule another I/O transfer.
661  */
662 ufs_daddr_t
663 ffs_blkpref(ip, lbn, indx, bap)
664 	struct inode *ip;
665 	ufs_daddr_t lbn;
666 	int indx;
667 	ufs_daddr_t *bap;
668 {
669 	register struct fs *fs;
670 	register int cg;
671 	int avgbfree, startcg;
672 	ufs_daddr_t nextblk;
673 
674 	fs = ip->i_fs;
675 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
676 		if (lbn < NDADDR) {
677 			cg = ino_to_cg(fs, ip->i_number);
678 			return (fs->fs_fpg * cg + fs->fs_frag);
679 		}
680 		/*
681 		 * Find a cylinder with greater than average number of
682 		 * unused data blocks.
683 		 */
684 		if (indx == 0 || bap[indx - 1] == 0)
685 			startcg =
686 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
687 		else
688 			startcg = dtog(fs, bap[indx - 1]) + 1;
689 		startcg %= fs->fs_ncg;
690 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
691 		for (cg = startcg; cg < fs->fs_ncg; cg++)
692 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
693 				fs->fs_cgrotor = cg;
694 				return (fs->fs_fpg * cg + fs->fs_frag);
695 			}
696 		for (cg = 0; cg <= startcg; cg++)
697 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
698 				fs->fs_cgrotor = cg;
699 				return (fs->fs_fpg * cg + fs->fs_frag);
700 			}
701 		return (0);
702 	}
703 	/*
704 	 * One or more previous blocks have been laid out. If less
705 	 * than fs_maxcontig previous blocks are contiguous, the
706 	 * next block is requested contiguously, otherwise it is
707 	 * requested rotationally delayed by fs_rotdelay milliseconds.
708 	 */
709 	nextblk = bap[indx - 1] + fs->fs_frag;
710 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
711 	    bap[indx - fs->fs_maxcontig] +
712 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
713 		return (nextblk);
714 	/*
715 	 * Here we convert ms of delay to frags as:
716 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
717 	 *	((sect/frag) * (ms/sec))
718 	 * then round up to the next block.
719 	 */
720 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
721 	    (NSPF(fs) * 1000), fs->fs_frag);
722 	return (nextblk);
723 }
724 
725 /*
726  * Implement the cylinder overflow algorithm.
727  *
728  * The policy implemented by this algorithm is:
729  *   1) allocate the block in its requested cylinder group.
730  *   2) quadradically rehash on the cylinder group number.
731  *   3) brute force search for a free block.
732  */
733 /*VARARGS5*/
734 static u_long
735 ffs_hashalloc(ip, cg, pref, size, allocator)
736 	struct inode *ip;
737 	int cg;
738 	long pref;
739 	int size;	/* size for data blocks, mode for inodes */
740 	allocfcn_t *allocator;
741 {
742 	register struct fs *fs;
743 	long result;	/* XXX why not same type as we return? */
744 	int i, icg = cg;
745 
746 	fs = ip->i_fs;
747 	/*
748 	 * 1: preferred cylinder group
749 	 */
750 	result = (*allocator)(ip, cg, pref, size);
751 	if (result)
752 		return (result);
753 	/*
754 	 * 2: quadratic rehash
755 	 */
756 	for (i = 1; i < fs->fs_ncg; i *= 2) {
757 		cg += i;
758 		if (cg >= fs->fs_ncg)
759 			cg -= fs->fs_ncg;
760 		result = (*allocator)(ip, cg, 0, size);
761 		if (result)
762 			return (result);
763 	}
764 	/*
765 	 * 3: brute force search
766 	 * Note that we start at i == 2, since 0 was checked initially,
767 	 * and 1 is always checked in the quadratic rehash.
768 	 */
769 	cg = (icg + 2) % fs->fs_ncg;
770 	for (i = 2; i < fs->fs_ncg; i++) {
771 		result = (*allocator)(ip, cg, 0, size);
772 		if (result)
773 			return (result);
774 		cg++;
775 		if (cg == fs->fs_ncg)
776 			cg = 0;
777 	}
778 	return (0);
779 }
780 
781 /*
782  * Determine whether a fragment can be extended.
783  *
784  * Check to see if the necessary fragments are available, and
785  * if they are, allocate them.
786  */
787 static ufs_daddr_t
788 ffs_fragextend(ip, cg, bprev, osize, nsize)
789 	struct inode *ip;
790 	int cg;
791 	long bprev;
792 	int osize, nsize;
793 {
794 	register struct fs *fs;
795 	register struct cg *cgp;
796 	struct buf *bp;
797 	long bno;
798 	int frags, bbase;
799 	int i, error;
800 
801 	fs = ip->i_fs;
802 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
803 		return (0);
804 	frags = numfrags(fs, nsize);
805 	bbase = fragnum(fs, bprev);
806 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
807 		/* cannot extend across a block boundary */
808 		return (0);
809 	}
810 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
811 		(int)fs->fs_cgsize, NOCRED, &bp);
812 	if (error) {
813 		brelse(bp);
814 		return (0);
815 	}
816 	cgp = (struct cg *)bp->b_data;
817 	if (!cg_chkmagic(cgp)) {
818 		brelse(bp);
819 		return (0);
820 	}
821 	cgp->cg_time = time.tv_sec;
822 	bno = dtogd(fs, bprev);
823 	for (i = numfrags(fs, osize); i < frags; i++)
824 		if (isclr(cg_blksfree(cgp), bno + i)) {
825 			brelse(bp);
826 			return (0);
827 		}
828 	/*
829 	 * the current fragment can be extended
830 	 * deduct the count on fragment being extended into
831 	 * increase the count on the remaining fragment (if any)
832 	 * allocate the extended piece
833 	 */
834 	for (i = frags; i < fs->fs_frag - bbase; i++)
835 		if (isclr(cg_blksfree(cgp), bno + i))
836 			break;
837 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
838 	if (i != frags)
839 		cgp->cg_frsum[i - frags]++;
840 	for (i = numfrags(fs, osize); i < frags; i++) {
841 		clrbit(cg_blksfree(cgp), bno + i);
842 		cgp->cg_cs.cs_nffree--;
843 		fs->fs_cstotal.cs_nffree--;
844 		fs->fs_cs(fs, cg).cs_nffree--;
845 	}
846 	fs->fs_fmod = 1;
847 	bdwrite(bp);
848 	return (bprev);
849 }
850 
851 /*
852  * Determine whether a block can be allocated.
853  *
854  * Check to see if a block of the appropriate size is available,
855  * and if it is, allocate it.
856  */
857 static ufs_daddr_t
858 ffs_alloccg(ip, cg, bpref, size)
859 	struct inode *ip;
860 	int cg;
861 	ufs_daddr_t bpref;
862 	int size;
863 {
864 	register struct fs *fs;
865 	register struct cg *cgp;
866 	struct buf *bp;
867 	register int i;
868 	int error, bno, frags, allocsiz;
869 
870 	fs = ip->i_fs;
871 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
872 		return (0);
873 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
874 		(int)fs->fs_cgsize, NOCRED, &bp);
875 	if (error) {
876 		brelse(bp);
877 		return (0);
878 	}
879 	cgp = (struct cg *)bp->b_data;
880 	if (!cg_chkmagic(cgp) ||
881 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
882 		brelse(bp);
883 		return (0);
884 	}
885 	cgp->cg_time = time.tv_sec;
886 	if (size == fs->fs_bsize) {
887 		bno = ffs_alloccgblk(fs, cgp, bpref);
888 		bdwrite(bp);
889 		return (bno);
890 	}
891 	/*
892 	 * check to see if any fragments are already available
893 	 * allocsiz is the size which will be allocated, hacking
894 	 * it down to a smaller size if necessary
895 	 */
896 	frags = numfrags(fs, size);
897 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
898 		if (cgp->cg_frsum[allocsiz] != 0)
899 			break;
900 	if (allocsiz == fs->fs_frag) {
901 		/*
902 		 * no fragments were available, so a block will be
903 		 * allocated, and hacked up
904 		 */
905 		if (cgp->cg_cs.cs_nbfree == 0) {
906 			brelse(bp);
907 			return (0);
908 		}
909 		bno = ffs_alloccgblk(fs, cgp, bpref);
910 		bpref = dtogd(fs, bno);
911 		for (i = frags; i < fs->fs_frag; i++)
912 			setbit(cg_blksfree(cgp), bpref + i);
913 		i = fs->fs_frag - frags;
914 		cgp->cg_cs.cs_nffree += i;
915 		fs->fs_cstotal.cs_nffree += i;
916 		fs->fs_cs(fs, cg).cs_nffree += i;
917 		fs->fs_fmod = 1;
918 		cgp->cg_frsum[i]++;
919 		bdwrite(bp);
920 		return (bno);
921 	}
922 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
923 	if (bno < 0) {
924 		brelse(bp);
925 		return (0);
926 	}
927 	for (i = 0; i < frags; i++)
928 		clrbit(cg_blksfree(cgp), bno + i);
929 	cgp->cg_cs.cs_nffree -= frags;
930 	fs->fs_cstotal.cs_nffree -= frags;
931 	fs->fs_cs(fs, cg).cs_nffree -= frags;
932 	fs->fs_fmod = 1;
933 	cgp->cg_frsum[allocsiz]--;
934 	if (frags != allocsiz)
935 		cgp->cg_frsum[allocsiz - frags]++;
936 	bdwrite(bp);
937 	return (cg * fs->fs_fpg + bno);
938 }
939 
940 /*
941  * Allocate a block in a cylinder group.
942  *
943  * This algorithm implements the following policy:
944  *   1) allocate the requested block.
945  *   2) allocate a rotationally optimal block in the same cylinder.
946  *   3) allocate the next available block on the block rotor for the
947  *      specified cylinder group.
948  * Note that this routine only allocates fs_bsize blocks; these
949  * blocks may be fragmented by the routine that allocates them.
950  */
951 static ufs_daddr_t
952 ffs_alloccgblk(fs, cgp, bpref)
953 	register struct fs *fs;
954 	register struct cg *cgp;
955 	ufs_daddr_t bpref;
956 {
957 	ufs_daddr_t bno, blkno;
958 	int cylno, pos, delta;
959 	short *cylbp;
960 	register int i;
961 
962 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
963 		bpref = cgp->cg_rotor;
964 		goto norot;
965 	}
966 	bpref = blknum(fs, bpref);
967 	bpref = dtogd(fs, bpref);
968 	/*
969 	 * if the requested block is available, use it
970 	 */
971 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
972 		bno = bpref;
973 		goto gotit;
974 	}
975 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
976 		/*
977 		 * Block layout information is not available.
978 		 * Leaving bpref unchanged means we take the
979 		 * next available free block following the one
980 		 * we just allocated. Hopefully this will at
981 		 * least hit a track cache on drives of unknown
982 		 * geometry (e.g. SCSI).
983 		 */
984 		goto norot;
985 	}
986 	/*
987 	 * check for a block available on the same cylinder
988 	 */
989 	cylno = cbtocylno(fs, bpref);
990 	if (cg_blktot(cgp)[cylno] == 0)
991 		goto norot;
992 	/*
993 	 * check the summary information to see if a block is
994 	 * available in the requested cylinder starting at the
995 	 * requested rotational position and proceeding around.
996 	 */
997 	cylbp = cg_blks(fs, cgp, cylno);
998 	pos = cbtorpos(fs, bpref);
999 	for (i = pos; i < fs->fs_nrpos; i++)
1000 		if (cylbp[i] > 0)
1001 			break;
1002 	if (i == fs->fs_nrpos)
1003 		for (i = 0; i < pos; i++)
1004 			if (cylbp[i] > 0)
1005 				break;
1006 	if (cylbp[i] > 0) {
1007 		/*
1008 		 * found a rotational position, now find the actual
1009 		 * block. A panic if none is actually there.
1010 		 */
1011 		pos = cylno % fs->fs_cpc;
1012 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1013 		if (fs_postbl(fs, pos)[i] == -1) {
1014 			printf("pos = %d, i = %d, fs = %s\n",
1015 			    pos, i, fs->fs_fsmnt);
1016 			panic("ffs_alloccgblk: cyl groups corrupted");
1017 		}
1018 		for (i = fs_postbl(fs, pos)[i];; ) {
1019 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
1020 				bno = blkstofrags(fs, (bno + i));
1021 				goto gotit;
1022 			}
1023 			delta = fs_rotbl(fs)[i];
1024 			if (delta <= 0 ||
1025 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1026 				break;
1027 			i += delta;
1028 		}
1029 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1030 		panic("ffs_alloccgblk: can't find blk in cyl");
1031 	}
1032 norot:
1033 	/*
1034 	 * no blocks in the requested cylinder, so take next
1035 	 * available one in this cylinder group.
1036 	 */
1037 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1038 	if (bno < 0)
1039 		return (0);
1040 	cgp->cg_rotor = bno;
1041 gotit:
1042 	blkno = fragstoblks(fs, bno);
1043 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1044 	ffs_clusteracct(fs, cgp, blkno, -1);
1045 	cgp->cg_cs.cs_nbfree--;
1046 	fs->fs_cstotal.cs_nbfree--;
1047 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1048 	cylno = cbtocylno(fs, bno);
1049 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1050 	cg_blktot(cgp)[cylno]--;
1051 	fs->fs_fmod = 1;
1052 	return (cgp->cg_cgx * fs->fs_fpg + bno);
1053 }
1054 
1055 #ifdef notyet
1056 /*
1057  * Determine whether a cluster can be allocated.
1058  *
1059  * We do not currently check for optimal rotational layout if there
1060  * are multiple choices in the same cylinder group. Instead we just
1061  * take the first one that we find following bpref.
1062  */
1063 static ufs_daddr_t
1064 ffs_clusteralloc(ip, cg, bpref, len)
1065 	struct inode *ip;
1066 	int cg;
1067 	ufs_daddr_t bpref;
1068 	int len;
1069 {
1070 	register struct fs *fs;
1071 	register struct cg *cgp;
1072 	struct buf *bp;
1073 	int i, got, run, bno, bit, map;
1074 	u_char *mapp;
1075 	int32_t *lp;
1076 
1077 	fs = ip->i_fs;
1078 	if (fs->fs_maxcluster[cg] < len)
1079 		return (NULL);
1080 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1081 	    NOCRED, &bp))
1082 		goto fail;
1083 	cgp = (struct cg *)bp->b_data;
1084 	if (!cg_chkmagic(cgp))
1085 		goto fail;
1086 	/*
1087 	 * Check to see if a cluster of the needed size (or bigger) is
1088 	 * available in this cylinder group.
1089 	 */
1090 	lp = &cg_clustersum(cgp)[len];
1091 	for (i = len; i <= fs->fs_contigsumsize; i++)
1092 		if (*lp++ > 0)
1093 			break;
1094 	if (i > fs->fs_contigsumsize) {
1095 		/*
1096 		 * This is the first time looking for a cluster in this
1097 		 * cylinder group. Update the cluster summary information
1098 		 * to reflect the true maximum sized cluster so that
1099 		 * future cluster allocation requests can avoid reading
1100 		 * the cylinder group map only to find no clusters.
1101 		 */
1102 		lp = &cg_clustersum(cgp)[len - 1];
1103 		for (i = len - 1; i > 0; i--)
1104 			if (*lp-- > 0)
1105 				break;
1106 		fs->fs_maxcluster[cg] = i;
1107 		goto fail;
1108 	}
1109 	/*
1110 	 * Search the cluster map to find a big enough cluster.
1111 	 * We take the first one that we find, even if it is larger
1112 	 * than we need as we prefer to get one close to the previous
1113 	 * block allocation. We do not search before the current
1114 	 * preference point as we do not want to allocate a block
1115 	 * that is allocated before the previous one (as we will
1116 	 * then have to wait for another pass of the elevator
1117 	 * algorithm before it will be read). We prefer to fail and
1118 	 * be recalled to try an allocation in the next cylinder group.
1119 	 */
1120 	if (dtog(fs, bpref) != cg)
1121 		bpref = 0;
1122 	else
1123 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1124 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1125 	map = *mapp++;
1126 	bit = 1 << (bpref % NBBY);
1127 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1128 		if ((map & bit) == 0) {
1129 			run = 0;
1130 		} else {
1131 			run++;
1132 			if (run == len)
1133 				break;
1134 		}
1135 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1136 			bit <<= 1;
1137 		} else {
1138 			map = *mapp++;
1139 			bit = 1;
1140 		}
1141 	}
1142 	if (got == cgp->cg_nclusterblks)
1143 		goto fail;
1144 	/*
1145 	 * Allocate the cluster that we have found.
1146 	 */
1147 	for (i = 1; i <= len; i++)
1148 		if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i))
1149 			panic("ffs_clusteralloc: map mismatch");
1150 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1151 	if (dtog(fs, bno) != cg)
1152 		panic("ffs_clusteralloc: allocated out of group");
1153 	len = blkstofrags(fs, len);
1154 	for (i = 0; i < len; i += fs->fs_frag)
1155 		if ((got = ffs_alloccgblk(fs, cgp, bno + i)) != bno + i)
1156 			panic("ffs_clusteralloc: lost block");
1157 	bdwrite(bp);
1158 	return (bno);
1159 
1160 fail:
1161 	brelse(bp);
1162 	return (0);
1163 }
1164 #endif
1165 
1166 /*
1167  * Determine whether an inode can be allocated.
1168  *
1169  * Check to see if an inode is available, and if it is,
1170  * allocate it using the following policy:
1171  *   1) allocate the requested inode.
1172  *   2) allocate the next available inode after the requested
1173  *      inode in the specified cylinder group.
1174  */
1175 static ino_t
1176 ffs_nodealloccg(ip, cg, ipref, mode)
1177 	struct inode *ip;
1178 	int cg;
1179 	ufs_daddr_t ipref;
1180 	int mode;
1181 {
1182 	register struct fs *fs;
1183 	register struct cg *cgp;
1184 	struct buf *bp;
1185 	int error, start, len, loc, map, i;
1186 
1187 	fs = ip->i_fs;
1188 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1189 		return (0);
1190 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1191 		(int)fs->fs_cgsize, NOCRED, &bp);
1192 	if (error) {
1193 		brelse(bp);
1194 		return (0);
1195 	}
1196 	cgp = (struct cg *)bp->b_data;
1197 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1198 		brelse(bp);
1199 		return (0);
1200 	}
1201 	cgp->cg_time = time.tv_sec;
1202 	if (ipref) {
1203 		ipref %= fs->fs_ipg;
1204 		if (isclr(cg_inosused(cgp), ipref))
1205 			goto gotit;
1206 	}
1207 	start = cgp->cg_irotor / NBBY;
1208 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1209 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1210 	if (loc == 0) {
1211 		len = start + 1;
1212 		start = 0;
1213 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1214 		if (loc == 0) {
1215 			printf("cg = %d, irotor = %ld, fs = %s\n",
1216 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
1217 			panic("ffs_nodealloccg: map corrupted");
1218 			/* NOTREACHED */
1219 		}
1220 	}
1221 	i = start + len - loc;
1222 	map = cg_inosused(cgp)[i];
1223 	ipref = i * NBBY;
1224 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1225 		if ((map & i) == 0) {
1226 			cgp->cg_irotor = ipref;
1227 			goto gotit;
1228 		}
1229 	}
1230 	printf("fs = %s\n", fs->fs_fsmnt);
1231 	panic("ffs_nodealloccg: block not in map");
1232 	/* NOTREACHED */
1233 gotit:
1234 	setbit(cg_inosused(cgp), ipref);
1235 	cgp->cg_cs.cs_nifree--;
1236 	fs->fs_cstotal.cs_nifree--;
1237 	fs->fs_cs(fs, cg).cs_nifree--;
1238 	fs->fs_fmod = 1;
1239 	if ((mode & IFMT) == IFDIR) {
1240 		cgp->cg_cs.cs_ndir++;
1241 		fs->fs_cstotal.cs_ndir++;
1242 		fs->fs_cs(fs, cg).cs_ndir++;
1243 	}
1244 	bdwrite(bp);
1245 	return (cg * fs->fs_ipg + ipref);
1246 }
1247 
1248 /*
1249  * Free a block or fragment.
1250  *
1251  * The specified block or fragment is placed back in the
1252  * free map. If a fragment is deallocated, a possible
1253  * block reassembly is checked.
1254  */
1255 void
1256 ffs_blkfree(ip, bno, size)
1257 	register struct inode *ip;
1258 	ufs_daddr_t bno;
1259 	long size;
1260 {
1261 	register struct fs *fs;
1262 	register struct cg *cgp;
1263 	struct buf *bp;
1264 	ufs_daddr_t blkno;
1265 	int i, error, cg, blk, frags, bbase;
1266 
1267 	fs = ip->i_fs;
1268 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1269 		printf("dev = 0x%lx, bsize = %ld, size = %ld, fs = %s\n",
1270 		    (u_long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1271 		panic("ffs_blkfree: bad size");
1272 	}
1273 	cg = dtog(fs, bno);
1274 	if ((u_int)bno >= fs->fs_size) {
1275 		printf("bad block %ld, ino %ld\n", bno, ip->i_number);
1276 		ffs_fserr(fs, ip->i_uid, "bad block");
1277 		return;
1278 	}
1279 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1280 		(int)fs->fs_cgsize, NOCRED, &bp);
1281 	if (error) {
1282 		brelse(bp);
1283 		return;
1284 	}
1285 	cgp = (struct cg *)bp->b_data;
1286 	if (!cg_chkmagic(cgp)) {
1287 		brelse(bp);
1288 		return;
1289 	}
1290 	cgp->cg_time = time.tv_sec;
1291 	bno = dtogd(fs, bno);
1292 	if (size == fs->fs_bsize) {
1293 		blkno = fragstoblks(fs, bno);
1294 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1295 			printf("dev = 0x%lx, block = %ld, fs = %s\n",
1296 			    (u_long) ip->i_dev, bno, fs->fs_fsmnt);
1297 			panic("ffs_blkfree: freeing free block");
1298 		}
1299 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1300 		ffs_clusteracct(fs, cgp, blkno, 1);
1301 		cgp->cg_cs.cs_nbfree++;
1302 		fs->fs_cstotal.cs_nbfree++;
1303 		fs->fs_cs(fs, cg).cs_nbfree++;
1304 		i = cbtocylno(fs, bno);
1305 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1306 		cg_blktot(cgp)[i]++;
1307 	} else {
1308 		bbase = bno - fragnum(fs, bno);
1309 		/*
1310 		 * decrement the counts associated with the old frags
1311 		 */
1312 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1313 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1314 		/*
1315 		 * deallocate the fragment
1316 		 */
1317 		frags = numfrags(fs, size);
1318 		for (i = 0; i < frags; i++) {
1319 			if (isset(cg_blksfree(cgp), bno + i)) {
1320 				printf("dev = 0x%lx, block = %ld, fs = %s\n",
1321 				    (u_long) ip->i_dev, bno + i, fs->fs_fsmnt);
1322 				panic("ffs_blkfree: freeing free frag");
1323 			}
1324 			setbit(cg_blksfree(cgp), bno + i);
1325 		}
1326 		cgp->cg_cs.cs_nffree += i;
1327 		fs->fs_cstotal.cs_nffree += i;
1328 		fs->fs_cs(fs, cg).cs_nffree += i;
1329 		/*
1330 		 * add back in counts associated with the new frags
1331 		 */
1332 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1333 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1334 		/*
1335 		 * if a complete block has been reassembled, account for it
1336 		 */
1337 		blkno = fragstoblks(fs, bbase);
1338 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1339 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1340 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1341 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1342 			ffs_clusteracct(fs, cgp, blkno, 1);
1343 			cgp->cg_cs.cs_nbfree++;
1344 			fs->fs_cstotal.cs_nbfree++;
1345 			fs->fs_cs(fs, cg).cs_nbfree++;
1346 			i = cbtocylno(fs, bbase);
1347 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1348 			cg_blktot(cgp)[i]++;
1349 		}
1350 	}
1351 	fs->fs_fmod = 1;
1352 	bdwrite(bp);
1353 }
1354 
1355 #ifdef DIAGNOSTIC
1356 /*
1357  * Verify allocation of a block or fragment. Returns true if block or
1358  * fragment is allocated, false if it is free.
1359  */
1360 int
1361 ffs_checkblk(ip, bno, size)
1362 	struct inode *ip;
1363 	ufs_daddr_t bno;
1364 	long size;
1365 {
1366 	struct fs *fs;
1367 	struct cg *cgp;
1368 	struct buf *bp;
1369 	int i, error, frags, free;
1370 
1371 	fs = ip->i_fs;
1372 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1373 		printf("bsize = %d, size = %d, fs = %s\n",
1374 		    fs->fs_bsize, size, fs->fs_fsmnt);
1375 		panic("ffs_checkblk: bad size");
1376 	}
1377 	if ((u_int)bno >= fs->fs_size)
1378 		panic("ffs_checkblk: bad block %d", bno);
1379 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1380 		(int)fs->fs_cgsize, NOCRED, &bp);
1381 	if (error)
1382 		panic("ffs_checkblk: cg bread failed");
1383 	cgp = (struct cg *)bp->b_data;
1384 	if (!cg_chkmagic(cgp))
1385 		panic("ffs_checkblk: cg magic mismatch");
1386 	bno = dtogd(fs, bno);
1387 	if (size == fs->fs_bsize) {
1388 		free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
1389 	} else {
1390 		frags = numfrags(fs, size);
1391 		for (free = 0, i = 0; i < frags; i++)
1392 			if (isset(cg_blksfree(cgp), bno + i))
1393 				free++;
1394 		if (free != 0 && free != frags)
1395 			panic("ffs_checkblk: partially free fragment");
1396 	}
1397 	brelse(bp);
1398 	return (!free);
1399 }
1400 #endif /* DIAGNOSTIC */
1401 
1402 /*
1403  * Free an inode.
1404  *
1405  * The specified inode is placed back in the free map.
1406  */
1407 int
1408 ffs_vfree(ap)
1409 	struct vop_vfree_args /* {
1410 		struct vnode *a_pvp;
1411 		ino_t a_ino;
1412 		int a_mode;
1413 	} */ *ap;
1414 {
1415 	register struct fs *fs;
1416 	register struct cg *cgp;
1417 	register struct inode *pip;
1418 	ino_t ino = ap->a_ino;
1419 	struct buf *bp;
1420 	int error, cg;
1421 
1422 	pip = VTOI(ap->a_pvp);
1423 	fs = pip->i_fs;
1424 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1425 		panic("ffs_vfree: range: dev = 0x%x, ino = %d, fs = %s",
1426 		    pip->i_dev, ino, fs->fs_fsmnt);
1427 	cg = ino_to_cg(fs, ino);
1428 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1429 		(int)fs->fs_cgsize, NOCRED, &bp);
1430 	if (error) {
1431 		brelse(bp);
1432 		return (0);
1433 	}
1434 	cgp = (struct cg *)bp->b_data;
1435 	if (!cg_chkmagic(cgp)) {
1436 		brelse(bp);
1437 		return (0);
1438 	}
1439 	cgp->cg_time = time.tv_sec;
1440 	ino %= fs->fs_ipg;
1441 	if (isclr(cg_inosused(cgp), ino)) {
1442 		printf("dev = 0x%lx, ino = %ld, fs = %s\n",
1443 		    (u_long)pip->i_dev, ino, fs->fs_fsmnt);
1444 		if (fs->fs_ronly == 0)
1445 			panic("ffs_vfree: freeing free inode");
1446 	}
1447 	clrbit(cg_inosused(cgp), ino);
1448 	if (ino < cgp->cg_irotor)
1449 		cgp->cg_irotor = ino;
1450 	cgp->cg_cs.cs_nifree++;
1451 	fs->fs_cstotal.cs_nifree++;
1452 	fs->fs_cs(fs, cg).cs_nifree++;
1453 	if ((ap->a_mode & IFMT) == IFDIR) {
1454 		cgp->cg_cs.cs_ndir--;
1455 		fs->fs_cstotal.cs_ndir--;
1456 		fs->fs_cs(fs, cg).cs_ndir--;
1457 	}
1458 	fs->fs_fmod = 1;
1459 	bdwrite(bp);
1460 	return (0);
1461 }
1462 
1463 /*
1464  * Find a block of the specified size in the specified cylinder group.
1465  *
1466  * It is a panic if a request is made to find a block if none are
1467  * available.
1468  */
1469 static ufs_daddr_t
1470 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1471 	register struct fs *fs;
1472 	register struct cg *cgp;
1473 	ufs_daddr_t bpref;
1474 	int allocsiz;
1475 {
1476 	ufs_daddr_t bno;
1477 	int start, len, loc, i;
1478 	int blk, field, subfield, pos;
1479 
1480 	/*
1481 	 * find the fragment by searching through the free block
1482 	 * map for an appropriate bit pattern
1483 	 */
1484 	if (bpref)
1485 		start = dtogd(fs, bpref) / NBBY;
1486 	else
1487 		start = cgp->cg_frotor / NBBY;
1488 	len = howmany(fs->fs_fpg, NBBY) - start;
1489 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1490 		(u_char *)fragtbl[fs->fs_frag],
1491 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1492 	if (loc == 0) {
1493 		len = start + 1;
1494 		start = 0;
1495 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1496 			(u_char *)fragtbl[fs->fs_frag],
1497 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1498 		if (loc == 0) {
1499 			printf("start = %d, len = %d, fs = %s\n",
1500 			    start, len, fs->fs_fsmnt);
1501 			panic("ffs_alloccg: map corrupted");
1502 			/* NOTREACHED */
1503 		}
1504 	}
1505 	bno = (start + len - loc) * NBBY;
1506 	cgp->cg_frotor = bno;
1507 	/*
1508 	 * found the byte in the map
1509 	 * sift through the bits to find the selected frag
1510 	 */
1511 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1512 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1513 		blk <<= 1;
1514 		field = around[allocsiz];
1515 		subfield = inside[allocsiz];
1516 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1517 			if ((blk & field) == subfield)
1518 				return (bno + pos);
1519 			field <<= 1;
1520 			subfield <<= 1;
1521 		}
1522 	}
1523 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1524 	panic("ffs_alloccg: block not in map");
1525 	return (-1);
1526 }
1527 
1528 /*
1529  * Update the cluster map because of an allocation or free.
1530  *
1531  * Cnt == 1 means free; cnt == -1 means allocating.
1532  */
1533 static void
1534 ffs_clusteracct(fs, cgp, blkno, cnt)
1535 	struct fs *fs;
1536 	struct cg *cgp;
1537 	ufs_daddr_t blkno;
1538 	int cnt;
1539 {
1540 	int32_t *sump;
1541 	int32_t *lp;
1542 	u_char *freemapp, *mapp;
1543 	int i, start, end, forw, back, map, bit;
1544 
1545 	if (fs->fs_contigsumsize <= 0)
1546 		return;
1547 	freemapp = cg_clustersfree(cgp);
1548 	sump = cg_clustersum(cgp);
1549 	/*
1550 	 * Allocate or clear the actual block.
1551 	 */
1552 	if (cnt > 0)
1553 		setbit(freemapp, blkno);
1554 	else
1555 		clrbit(freemapp, blkno);
1556 	/*
1557 	 * Find the size of the cluster going forward.
1558 	 */
1559 	start = blkno + 1;
1560 	end = start + fs->fs_contigsumsize;
1561 	if (end >= cgp->cg_nclusterblks)
1562 		end = cgp->cg_nclusterblks;
1563 	mapp = &freemapp[start / NBBY];
1564 	map = *mapp++;
1565 	bit = 1 << (start % NBBY);
1566 	for (i = start; i < end; i++) {
1567 		if ((map & bit) == 0)
1568 			break;
1569 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1570 			bit <<= 1;
1571 		} else {
1572 			map = *mapp++;
1573 			bit = 1;
1574 		}
1575 	}
1576 	forw = i - start;
1577 	/*
1578 	 * Find the size of the cluster going backward.
1579 	 */
1580 	start = blkno - 1;
1581 	end = start - fs->fs_contigsumsize;
1582 	if (end < 0)
1583 		end = -1;
1584 	mapp = &freemapp[start / NBBY];
1585 	map = *mapp--;
1586 	bit = 1 << (start % NBBY);
1587 	for (i = start; i > end; i--) {
1588 		if ((map & bit) == 0)
1589 			break;
1590 		if ((i & (NBBY - 1)) != 0) {
1591 			bit >>= 1;
1592 		} else {
1593 			map = *mapp--;
1594 			bit = 1 << (NBBY - 1);
1595 		}
1596 	}
1597 	back = start - i;
1598 	/*
1599 	 * Account for old cluster and the possibly new forward and
1600 	 * back clusters.
1601 	 */
1602 	i = back + forw + 1;
1603 	if (i > fs->fs_contigsumsize)
1604 		i = fs->fs_contigsumsize;
1605 	sump[i] += cnt;
1606 	if (back > 0)
1607 		sump[back] -= cnt;
1608 	if (forw > 0)
1609 		sump[forw] -= cnt;
1610 	/*
1611 	 * Update cluster summary information.
1612 	 */
1613 	lp = &sump[fs->fs_contigsumsize];
1614 	for (i = fs->fs_contigsumsize; i > 0; i--)
1615 		if (*lp-- > 0)
1616 			break;
1617 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1618 }
1619 
1620 /*
1621  * Fserr prints the name of a file system with an error diagnostic.
1622  *
1623  * The form of the error message is:
1624  *	fs: error message
1625  */
1626 static void
1627 ffs_fserr(fs, uid, cp)
1628 	struct fs *fs;
1629 	u_int uid;
1630 	char *cp;
1631 {
1632 	struct proc *p = curproc;	/* XXX */
1633 
1634 	log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1635 			p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1636 }
1637