1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/systm.h> 72 #include <sys/bio.h> 73 #include <sys/buf.h> 74 #include <sys/conf.h> 75 #include <sys/fcntl.h> 76 #include <sys/file.h> 77 #include <sys/filedesc.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/vnode.h> 81 #include <sys/mount.h> 82 #include <sys/kernel.h> 83 #include <sys/syscallsubr.h> 84 #include <sys/sysctl.h> 85 #include <sys/syslog.h> 86 #include <sys/taskqueue.h> 87 88 #include <security/audit/audit.h> 89 90 #include <geom/geom.h> 91 92 #include <ufs/ufs/dir.h> 93 #include <ufs/ufs/extattr.h> 94 #include <ufs/ufs/quota.h> 95 #include <ufs/ufs/inode.h> 96 #include <ufs/ufs/ufs_extern.h> 97 #include <ufs/ufs/ufsmount.h> 98 99 #include <ufs/ffs/fs.h> 100 #include <ufs/ffs/ffs_extern.h> 101 #include <ufs/ffs/softdep.h> 102 103 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 104 int size, int rsize); 105 106 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 107 static ufs2_daddr_t 108 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 109 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 110 struct vnode *, ufs2_daddr_t, long, ino_t, 111 struct workhead *); 112 static void ffs_blkfree_trim_completed(struct bio *); 113 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 114 #ifdef INVARIANTS 115 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 116 #endif 117 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 118 static ino_t ffs_dirpref(struct inode *); 119 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 120 int, int); 121 static ufs2_daddr_t ffs_hashalloc 122 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 123 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 124 int); 125 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 126 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 127 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 128 static void ffs_ckhash_cg(struct buf *); 129 130 /* 131 * Allocate a block in the filesystem. 132 * 133 * The size of the requested block is given, which must be some 134 * multiple of fs_fsize and <= fs_bsize. 135 * A preference may be optionally specified. If a preference is given 136 * the following hierarchy is used to allocate a block: 137 * 1) allocate the requested block. 138 * 2) allocate a rotationally optimal block in the same cylinder. 139 * 3) allocate a block in the same cylinder group. 140 * 4) quadradically rehash into other cylinder groups, until an 141 * available block is located. 142 * If no block preference is given the following hierarchy is used 143 * to allocate a block: 144 * 1) allocate a block in the cylinder group that contains the 145 * inode for the file. 146 * 2) quadradically rehash into other cylinder groups, until an 147 * available block is located. 148 */ 149 int 150 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 151 struct inode *ip; 152 ufs2_daddr_t lbn, bpref; 153 int size, flags; 154 struct ucred *cred; 155 ufs2_daddr_t *bnp; 156 { 157 struct fs *fs; 158 struct ufsmount *ump; 159 ufs2_daddr_t bno; 160 u_int cg, reclaimed; 161 static struct timeval lastfail; 162 static int curfail; 163 int64_t delta; 164 #ifdef QUOTA 165 int error; 166 #endif 167 168 *bnp = 0; 169 ump = ITOUMP(ip); 170 fs = ump->um_fs; 171 mtx_assert(UFS_MTX(ump), MA_OWNED); 172 #ifdef INVARIANTS 173 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 174 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 175 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 176 fs->fs_fsmnt); 177 panic("ffs_alloc: bad size"); 178 } 179 if (cred == NOCRED) 180 panic("ffs_alloc: missing credential"); 181 #endif /* INVARIANTS */ 182 reclaimed = 0; 183 retry: 184 #ifdef QUOTA 185 UFS_UNLOCK(ump); 186 error = chkdq(ip, btodb(size), cred, 0); 187 if (error) 188 return (error); 189 UFS_LOCK(ump); 190 #endif 191 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 192 goto nospace; 193 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 194 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 195 goto nospace; 196 if (bpref >= fs->fs_size) 197 bpref = 0; 198 if (bpref == 0) 199 cg = ino_to_cg(fs, ip->i_number); 200 else 201 cg = dtog(fs, bpref); 202 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 203 if (bno > 0) { 204 delta = btodb(size); 205 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 206 if (flags & IO_EXT) 207 ip->i_flag |= IN_CHANGE; 208 else 209 ip->i_flag |= IN_CHANGE | IN_UPDATE; 210 *bnp = bno; 211 return (0); 212 } 213 nospace: 214 #ifdef QUOTA 215 UFS_UNLOCK(ump); 216 /* 217 * Restore user's disk quota because allocation failed. 218 */ 219 (void) chkdq(ip, -btodb(size), cred, FORCE); 220 UFS_LOCK(ump); 221 #endif 222 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 223 reclaimed = 1; 224 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 225 goto retry; 226 } 227 UFS_UNLOCK(ump); 228 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 229 ffs_fserr(fs, ip->i_number, "filesystem full"); 230 uprintf("\n%s: write failed, filesystem is full\n", 231 fs->fs_fsmnt); 232 } 233 return (ENOSPC); 234 } 235 236 /* 237 * Reallocate a fragment to a bigger size 238 * 239 * The number and size of the old block is given, and a preference 240 * and new size is also specified. The allocator attempts to extend 241 * the original block. Failing that, the regular block allocator is 242 * invoked to get an appropriate block. 243 */ 244 int 245 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 246 struct inode *ip; 247 ufs2_daddr_t lbprev; 248 ufs2_daddr_t bprev; 249 ufs2_daddr_t bpref; 250 int osize, nsize, flags; 251 struct ucred *cred; 252 struct buf **bpp; 253 { 254 struct vnode *vp; 255 struct fs *fs; 256 struct buf *bp; 257 struct ufsmount *ump; 258 u_int cg, request, reclaimed; 259 int error, gbflags; 260 ufs2_daddr_t bno; 261 static struct timeval lastfail; 262 static int curfail; 263 int64_t delta; 264 265 vp = ITOV(ip); 266 ump = ITOUMP(ip); 267 fs = ump->um_fs; 268 bp = NULL; 269 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 270 271 mtx_assert(UFS_MTX(ump), MA_OWNED); 272 #ifdef INVARIANTS 273 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 274 panic("ffs_realloccg: allocation on suspended filesystem"); 275 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 276 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 277 printf( 278 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 279 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 280 nsize, fs->fs_fsmnt); 281 panic("ffs_realloccg: bad size"); 282 } 283 if (cred == NOCRED) 284 panic("ffs_realloccg: missing credential"); 285 #endif /* INVARIANTS */ 286 reclaimed = 0; 287 retry: 288 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 289 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 290 goto nospace; 291 } 292 if (bprev == 0) { 293 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 294 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 295 fs->fs_fsmnt); 296 panic("ffs_realloccg: bad bprev"); 297 } 298 UFS_UNLOCK(ump); 299 /* 300 * Allocate the extra space in the buffer. 301 */ 302 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 303 if (error) { 304 brelse(bp); 305 return (error); 306 } 307 308 if (bp->b_blkno == bp->b_lblkno) { 309 if (lbprev >= UFS_NDADDR) 310 panic("ffs_realloccg: lbprev out of range"); 311 bp->b_blkno = fsbtodb(fs, bprev); 312 } 313 314 #ifdef QUOTA 315 error = chkdq(ip, btodb(nsize - osize), cred, 0); 316 if (error) { 317 brelse(bp); 318 return (error); 319 } 320 #endif 321 /* 322 * Check for extension in the existing location. 323 */ 324 *bpp = NULL; 325 cg = dtog(fs, bprev); 326 UFS_LOCK(ump); 327 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 328 if (bno) { 329 if (bp->b_blkno != fsbtodb(fs, bno)) 330 panic("ffs_realloccg: bad blockno"); 331 delta = btodb(nsize - osize); 332 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 333 if (flags & IO_EXT) 334 ip->i_flag |= IN_CHANGE; 335 else 336 ip->i_flag |= IN_CHANGE | IN_UPDATE; 337 allocbuf(bp, nsize); 338 bp->b_flags |= B_DONE; 339 vfs_bio_bzero_buf(bp, osize, nsize - osize); 340 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 341 vfs_bio_set_valid(bp, osize, nsize - osize); 342 *bpp = bp; 343 return (0); 344 } 345 /* 346 * Allocate a new disk location. 347 */ 348 if (bpref >= fs->fs_size) 349 bpref = 0; 350 switch ((int)fs->fs_optim) { 351 case FS_OPTSPACE: 352 /* 353 * Allocate an exact sized fragment. Although this makes 354 * best use of space, we will waste time relocating it if 355 * the file continues to grow. If the fragmentation is 356 * less than half of the minimum free reserve, we choose 357 * to begin optimizing for time. 358 */ 359 request = nsize; 360 if (fs->fs_minfree <= 5 || 361 fs->fs_cstotal.cs_nffree > 362 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 363 break; 364 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 365 fs->fs_fsmnt); 366 fs->fs_optim = FS_OPTTIME; 367 break; 368 case FS_OPTTIME: 369 /* 370 * At this point we have discovered a file that is trying to 371 * grow a small fragment to a larger fragment. To save time, 372 * we allocate a full sized block, then free the unused portion. 373 * If the file continues to grow, the `ffs_fragextend' call 374 * above will be able to grow it in place without further 375 * copying. If aberrant programs cause disk fragmentation to 376 * grow within 2% of the free reserve, we choose to begin 377 * optimizing for space. 378 */ 379 request = fs->fs_bsize; 380 if (fs->fs_cstotal.cs_nffree < 381 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 382 break; 383 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 384 fs->fs_fsmnt); 385 fs->fs_optim = FS_OPTSPACE; 386 break; 387 default: 388 printf("dev = %s, optim = %ld, fs = %s\n", 389 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 390 panic("ffs_realloccg: bad optim"); 391 /* NOTREACHED */ 392 } 393 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 394 if (bno > 0) { 395 bp->b_blkno = fsbtodb(fs, bno); 396 if (!DOINGSOFTDEP(vp)) 397 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 398 ip->i_number, vp->v_type, NULL); 399 delta = btodb(nsize - osize); 400 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 401 if (flags & IO_EXT) 402 ip->i_flag |= IN_CHANGE; 403 else 404 ip->i_flag |= IN_CHANGE | IN_UPDATE; 405 allocbuf(bp, nsize); 406 bp->b_flags |= B_DONE; 407 vfs_bio_bzero_buf(bp, osize, nsize - osize); 408 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 409 vfs_bio_set_valid(bp, osize, nsize - osize); 410 *bpp = bp; 411 return (0); 412 } 413 #ifdef QUOTA 414 UFS_UNLOCK(ump); 415 /* 416 * Restore user's disk quota because allocation failed. 417 */ 418 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 419 UFS_LOCK(ump); 420 #endif 421 nospace: 422 /* 423 * no space available 424 */ 425 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 426 reclaimed = 1; 427 UFS_UNLOCK(ump); 428 if (bp) { 429 brelse(bp); 430 bp = NULL; 431 } 432 UFS_LOCK(ump); 433 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 434 goto retry; 435 } 436 UFS_UNLOCK(ump); 437 if (bp) 438 brelse(bp); 439 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 440 ffs_fserr(fs, ip->i_number, "filesystem full"); 441 uprintf("\n%s: write failed, filesystem is full\n", 442 fs->fs_fsmnt); 443 } 444 return (ENOSPC); 445 } 446 447 /* 448 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 449 * 450 * The vnode and an array of buffer pointers for a range of sequential 451 * logical blocks to be made contiguous is given. The allocator attempts 452 * to find a range of sequential blocks starting as close as possible 453 * from the end of the allocation for the logical block immediately 454 * preceding the current range. If successful, the physical block numbers 455 * in the buffer pointers and in the inode are changed to reflect the new 456 * allocation. If unsuccessful, the allocation is left unchanged. The 457 * success in doing the reallocation is returned. Note that the error 458 * return is not reflected back to the user. Rather the previous block 459 * allocation will be used. 460 */ 461 462 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 463 464 static int doasyncfree = 1; 465 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 466 "do not force synchronous writes when blocks are reallocated"); 467 468 static int doreallocblks = 1; 469 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 470 "enable block reallocation"); 471 472 static int maxclustersearch = 10; 473 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 474 0, "max number of cylinder group to search for contigous blocks"); 475 476 #ifdef DEBUG 477 static volatile int prtrealloc = 0; 478 #endif 479 480 int 481 ffs_reallocblks(ap) 482 struct vop_reallocblks_args /* { 483 struct vnode *a_vp; 484 struct cluster_save *a_buflist; 485 } */ *ap; 486 { 487 struct ufsmount *ump; 488 489 /* 490 * If the underlying device can do deletes, then skip reallocating 491 * the blocks of this file into contiguous sequences. Devices that 492 * benefit from BIO_DELETE also benefit from not moving the data. 493 * These devices are flash and therefore work less well with this 494 * optimization. Also skip if reallocblks has been disabled globally. 495 */ 496 ump = ap->a_vp->v_mount->mnt_data; 497 if (ump->um_candelete || doreallocblks == 0) 498 return (ENOSPC); 499 500 /* 501 * We can't wait in softdep prealloc as it may fsync and recurse 502 * here. Instead we simply fail to reallocate blocks if this 503 * rare condition arises. 504 */ 505 if (DOINGSOFTDEP(ap->a_vp)) 506 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 507 return (ENOSPC); 508 if (ump->um_fstype == UFS1) 509 return (ffs_reallocblks_ufs1(ap)); 510 return (ffs_reallocblks_ufs2(ap)); 511 } 512 513 static int 514 ffs_reallocblks_ufs1(ap) 515 struct vop_reallocblks_args /* { 516 struct vnode *a_vp; 517 struct cluster_save *a_buflist; 518 } */ *ap; 519 { 520 struct fs *fs; 521 struct inode *ip; 522 struct vnode *vp; 523 struct buf *sbp, *ebp; 524 ufs1_daddr_t *bap, *sbap, *ebap; 525 struct cluster_save *buflist; 526 struct ufsmount *ump; 527 ufs_lbn_t start_lbn, end_lbn; 528 ufs1_daddr_t soff, newblk, blkno; 529 ufs2_daddr_t pref; 530 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 531 int i, cg, len, start_lvl, end_lvl, ssize; 532 533 vp = ap->a_vp; 534 ip = VTOI(vp); 535 ump = ITOUMP(ip); 536 fs = ump->um_fs; 537 /* 538 * If we are not tracking block clusters or if we have less than 4% 539 * free blocks left, then do not attempt to cluster. Running with 540 * less than 5% free block reserve is not recommended and those that 541 * choose to do so do not expect to have good file layout. 542 */ 543 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 544 return (ENOSPC); 545 buflist = ap->a_buflist; 546 len = buflist->bs_nchildren; 547 start_lbn = buflist->bs_children[0]->b_lblkno; 548 end_lbn = start_lbn + len - 1; 549 #ifdef INVARIANTS 550 for (i = 0; i < len; i++) 551 if (!ffs_checkblk(ip, 552 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 553 panic("ffs_reallocblks: unallocated block 1"); 554 for (i = 1; i < len; i++) 555 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 556 panic("ffs_reallocblks: non-logical cluster"); 557 blkno = buflist->bs_children[0]->b_blkno; 558 ssize = fsbtodb(fs, fs->fs_frag); 559 for (i = 1; i < len - 1; i++) 560 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 561 panic("ffs_reallocblks: non-physical cluster %d", i); 562 #endif 563 /* 564 * If the cluster crosses the boundary for the first indirect 565 * block, leave space for the indirect block. Indirect blocks 566 * are initially laid out in a position after the last direct 567 * block. Block reallocation would usually destroy locality by 568 * moving the indirect block out of the way to make room for 569 * data blocks if we didn't compensate here. We should also do 570 * this for other indirect block boundaries, but it is only 571 * important for the first one. 572 */ 573 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 574 return (ENOSPC); 575 /* 576 * If the latest allocation is in a new cylinder group, assume that 577 * the filesystem has decided to move and do not force it back to 578 * the previous cylinder group. 579 */ 580 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 581 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 582 return (ENOSPC); 583 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 584 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 585 return (ENOSPC); 586 /* 587 * Get the starting offset and block map for the first block. 588 */ 589 if (start_lvl == 0) { 590 sbap = &ip->i_din1->di_db[0]; 591 soff = start_lbn; 592 } else { 593 idp = &start_ap[start_lvl - 1]; 594 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 595 brelse(sbp); 596 return (ENOSPC); 597 } 598 sbap = (ufs1_daddr_t *)sbp->b_data; 599 soff = idp->in_off; 600 } 601 /* 602 * If the block range spans two block maps, get the second map. 603 */ 604 ebap = NULL; 605 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 606 ssize = len; 607 } else { 608 #ifdef INVARIANTS 609 if (start_lvl > 0 && 610 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 611 panic("ffs_reallocblk: start == end"); 612 #endif 613 ssize = len - (idp->in_off + 1); 614 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 615 goto fail; 616 ebap = (ufs1_daddr_t *)ebp->b_data; 617 } 618 /* 619 * Find the preferred location for the cluster. If we have not 620 * previously failed at this endeavor, then follow our standard 621 * preference calculation. If we have failed at it, then pick up 622 * where we last ended our search. 623 */ 624 UFS_LOCK(ump); 625 if (ip->i_nextclustercg == -1) 626 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 627 else 628 pref = cgdata(fs, ip->i_nextclustercg); 629 /* 630 * Search the block map looking for an allocation of the desired size. 631 * To avoid wasting too much time, we limit the number of cylinder 632 * groups that we will search. 633 */ 634 cg = dtog(fs, pref); 635 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 636 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 637 break; 638 cg += 1; 639 if (cg >= fs->fs_ncg) 640 cg = 0; 641 } 642 /* 643 * If we have failed in our search, record where we gave up for 644 * next time. Otherwise, fall back to our usual search citerion. 645 */ 646 if (newblk == 0) { 647 ip->i_nextclustercg = cg; 648 UFS_UNLOCK(ump); 649 goto fail; 650 } 651 ip->i_nextclustercg = -1; 652 /* 653 * We have found a new contiguous block. 654 * 655 * First we have to replace the old block pointers with the new 656 * block pointers in the inode and indirect blocks associated 657 * with the file. 658 */ 659 #ifdef DEBUG 660 if (prtrealloc) 661 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 662 (uintmax_t)ip->i_number, 663 (intmax_t)start_lbn, (intmax_t)end_lbn); 664 #endif 665 blkno = newblk; 666 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 667 if (i == ssize) { 668 bap = ebap; 669 soff = -i; 670 } 671 #ifdef INVARIANTS 672 if (!ffs_checkblk(ip, 673 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 674 panic("ffs_reallocblks: unallocated block 2"); 675 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 676 panic("ffs_reallocblks: alloc mismatch"); 677 #endif 678 #ifdef DEBUG 679 if (prtrealloc) 680 printf(" %d,", *bap); 681 #endif 682 if (DOINGSOFTDEP(vp)) { 683 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 684 softdep_setup_allocdirect(ip, start_lbn + i, 685 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 686 buflist->bs_children[i]); 687 else 688 softdep_setup_allocindir_page(ip, start_lbn + i, 689 i < ssize ? sbp : ebp, soff + i, blkno, 690 *bap, buflist->bs_children[i]); 691 } 692 *bap++ = blkno; 693 } 694 /* 695 * Next we must write out the modified inode and indirect blocks. 696 * For strict correctness, the writes should be synchronous since 697 * the old block values may have been written to disk. In practise 698 * they are almost never written, but if we are concerned about 699 * strict correctness, the `doasyncfree' flag should be set to zero. 700 * 701 * The test on `doasyncfree' should be changed to test a flag 702 * that shows whether the associated buffers and inodes have 703 * been written. The flag should be set when the cluster is 704 * started and cleared whenever the buffer or inode is flushed. 705 * We can then check below to see if it is set, and do the 706 * synchronous write only when it has been cleared. 707 */ 708 if (sbap != &ip->i_din1->di_db[0]) { 709 if (doasyncfree) 710 bdwrite(sbp); 711 else 712 bwrite(sbp); 713 } else { 714 ip->i_flag |= IN_CHANGE | IN_UPDATE; 715 if (!doasyncfree) 716 ffs_update(vp, 1); 717 } 718 if (ssize < len) { 719 if (doasyncfree) 720 bdwrite(ebp); 721 else 722 bwrite(ebp); 723 } 724 /* 725 * Last, free the old blocks and assign the new blocks to the buffers. 726 */ 727 #ifdef DEBUG 728 if (prtrealloc) 729 printf("\n\tnew:"); 730 #endif 731 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 732 if (!DOINGSOFTDEP(vp)) 733 ffs_blkfree(ump, fs, ump->um_devvp, 734 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 735 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 736 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 737 #ifdef INVARIANTS 738 if (!ffs_checkblk(ip, 739 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 740 panic("ffs_reallocblks: unallocated block 3"); 741 #endif 742 #ifdef DEBUG 743 if (prtrealloc) 744 printf(" %d,", blkno); 745 #endif 746 } 747 #ifdef DEBUG 748 if (prtrealloc) { 749 prtrealloc--; 750 printf("\n"); 751 } 752 #endif 753 return (0); 754 755 fail: 756 if (ssize < len) 757 brelse(ebp); 758 if (sbap != &ip->i_din1->di_db[0]) 759 brelse(sbp); 760 return (ENOSPC); 761 } 762 763 static int 764 ffs_reallocblks_ufs2(ap) 765 struct vop_reallocblks_args /* { 766 struct vnode *a_vp; 767 struct cluster_save *a_buflist; 768 } */ *ap; 769 { 770 struct fs *fs; 771 struct inode *ip; 772 struct vnode *vp; 773 struct buf *sbp, *ebp; 774 ufs2_daddr_t *bap, *sbap, *ebap; 775 struct cluster_save *buflist; 776 struct ufsmount *ump; 777 ufs_lbn_t start_lbn, end_lbn; 778 ufs2_daddr_t soff, newblk, blkno, pref; 779 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 780 int i, cg, len, start_lvl, end_lvl, ssize; 781 782 vp = ap->a_vp; 783 ip = VTOI(vp); 784 ump = ITOUMP(ip); 785 fs = ump->um_fs; 786 /* 787 * If we are not tracking block clusters or if we have less than 4% 788 * free blocks left, then do not attempt to cluster. Running with 789 * less than 5% free block reserve is not recommended and those that 790 * choose to do so do not expect to have good file layout. 791 */ 792 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 793 return (ENOSPC); 794 buflist = ap->a_buflist; 795 len = buflist->bs_nchildren; 796 start_lbn = buflist->bs_children[0]->b_lblkno; 797 end_lbn = start_lbn + len - 1; 798 #ifdef INVARIANTS 799 for (i = 0; i < len; i++) 800 if (!ffs_checkblk(ip, 801 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 802 panic("ffs_reallocblks: unallocated block 1"); 803 for (i = 1; i < len; i++) 804 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 805 panic("ffs_reallocblks: non-logical cluster"); 806 blkno = buflist->bs_children[0]->b_blkno; 807 ssize = fsbtodb(fs, fs->fs_frag); 808 for (i = 1; i < len - 1; i++) 809 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 810 panic("ffs_reallocblks: non-physical cluster %d", i); 811 #endif 812 /* 813 * If the cluster crosses the boundary for the first indirect 814 * block, do not move anything in it. Indirect blocks are 815 * usually initially laid out in a position between the data 816 * blocks. Block reallocation would usually destroy locality by 817 * moving the indirect block out of the way to make room for 818 * data blocks if we didn't compensate here. We should also do 819 * this for other indirect block boundaries, but it is only 820 * important for the first one. 821 */ 822 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 823 return (ENOSPC); 824 /* 825 * If the latest allocation is in a new cylinder group, assume that 826 * the filesystem has decided to move and do not force it back to 827 * the previous cylinder group. 828 */ 829 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 830 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 831 return (ENOSPC); 832 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 833 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 834 return (ENOSPC); 835 /* 836 * Get the starting offset and block map for the first block. 837 */ 838 if (start_lvl == 0) { 839 sbap = &ip->i_din2->di_db[0]; 840 soff = start_lbn; 841 } else { 842 idp = &start_ap[start_lvl - 1]; 843 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 844 brelse(sbp); 845 return (ENOSPC); 846 } 847 sbap = (ufs2_daddr_t *)sbp->b_data; 848 soff = idp->in_off; 849 } 850 /* 851 * If the block range spans two block maps, get the second map. 852 */ 853 ebap = NULL; 854 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 855 ssize = len; 856 } else { 857 #ifdef INVARIANTS 858 if (start_lvl > 0 && 859 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 860 panic("ffs_reallocblk: start == end"); 861 #endif 862 ssize = len - (idp->in_off + 1); 863 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 864 goto fail; 865 ebap = (ufs2_daddr_t *)ebp->b_data; 866 } 867 /* 868 * Find the preferred location for the cluster. If we have not 869 * previously failed at this endeavor, then follow our standard 870 * preference calculation. If we have failed at it, then pick up 871 * where we last ended our search. 872 */ 873 UFS_LOCK(ump); 874 if (ip->i_nextclustercg == -1) 875 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 876 else 877 pref = cgdata(fs, ip->i_nextclustercg); 878 /* 879 * Search the block map looking for an allocation of the desired size. 880 * To avoid wasting too much time, we limit the number of cylinder 881 * groups that we will search. 882 */ 883 cg = dtog(fs, pref); 884 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 885 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 886 break; 887 cg += 1; 888 if (cg >= fs->fs_ncg) 889 cg = 0; 890 } 891 /* 892 * If we have failed in our search, record where we gave up for 893 * next time. Otherwise, fall back to our usual search citerion. 894 */ 895 if (newblk == 0) { 896 ip->i_nextclustercg = cg; 897 UFS_UNLOCK(ump); 898 goto fail; 899 } 900 ip->i_nextclustercg = -1; 901 /* 902 * We have found a new contiguous block. 903 * 904 * First we have to replace the old block pointers with the new 905 * block pointers in the inode and indirect blocks associated 906 * with the file. 907 */ 908 #ifdef DEBUG 909 if (prtrealloc) 910 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 911 (intmax_t)start_lbn, (intmax_t)end_lbn); 912 #endif 913 blkno = newblk; 914 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 915 if (i == ssize) { 916 bap = ebap; 917 soff = -i; 918 } 919 #ifdef INVARIANTS 920 if (!ffs_checkblk(ip, 921 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 922 panic("ffs_reallocblks: unallocated block 2"); 923 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 924 panic("ffs_reallocblks: alloc mismatch"); 925 #endif 926 #ifdef DEBUG 927 if (prtrealloc) 928 printf(" %jd,", (intmax_t)*bap); 929 #endif 930 if (DOINGSOFTDEP(vp)) { 931 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 932 softdep_setup_allocdirect(ip, start_lbn + i, 933 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 934 buflist->bs_children[i]); 935 else 936 softdep_setup_allocindir_page(ip, start_lbn + i, 937 i < ssize ? sbp : ebp, soff + i, blkno, 938 *bap, buflist->bs_children[i]); 939 } 940 *bap++ = blkno; 941 } 942 /* 943 * Next we must write out the modified inode and indirect blocks. 944 * For strict correctness, the writes should be synchronous since 945 * the old block values may have been written to disk. In practise 946 * they are almost never written, but if we are concerned about 947 * strict correctness, the `doasyncfree' flag should be set to zero. 948 * 949 * The test on `doasyncfree' should be changed to test a flag 950 * that shows whether the associated buffers and inodes have 951 * been written. The flag should be set when the cluster is 952 * started and cleared whenever the buffer or inode is flushed. 953 * We can then check below to see if it is set, and do the 954 * synchronous write only when it has been cleared. 955 */ 956 if (sbap != &ip->i_din2->di_db[0]) { 957 if (doasyncfree) 958 bdwrite(sbp); 959 else 960 bwrite(sbp); 961 } else { 962 ip->i_flag |= IN_CHANGE | IN_UPDATE; 963 if (!doasyncfree) 964 ffs_update(vp, 1); 965 } 966 if (ssize < len) { 967 if (doasyncfree) 968 bdwrite(ebp); 969 else 970 bwrite(ebp); 971 } 972 /* 973 * Last, free the old blocks and assign the new blocks to the buffers. 974 */ 975 #ifdef DEBUG 976 if (prtrealloc) 977 printf("\n\tnew:"); 978 #endif 979 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 980 if (!DOINGSOFTDEP(vp)) 981 ffs_blkfree(ump, fs, ump->um_devvp, 982 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 983 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 984 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 985 #ifdef INVARIANTS 986 if (!ffs_checkblk(ip, 987 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 988 panic("ffs_reallocblks: unallocated block 3"); 989 #endif 990 #ifdef DEBUG 991 if (prtrealloc) 992 printf(" %jd,", (intmax_t)blkno); 993 #endif 994 } 995 #ifdef DEBUG 996 if (prtrealloc) { 997 prtrealloc--; 998 printf("\n"); 999 } 1000 #endif 1001 return (0); 1002 1003 fail: 1004 if (ssize < len) 1005 brelse(ebp); 1006 if (sbap != &ip->i_din2->di_db[0]) 1007 brelse(sbp); 1008 return (ENOSPC); 1009 } 1010 1011 /* 1012 * Allocate an inode in the filesystem. 1013 * 1014 * If allocating a directory, use ffs_dirpref to select the inode. 1015 * If allocating in a directory, the following hierarchy is followed: 1016 * 1) allocate the preferred inode. 1017 * 2) allocate an inode in the same cylinder group. 1018 * 3) quadradically rehash into other cylinder groups, until an 1019 * available inode is located. 1020 * If no inode preference is given the following hierarchy is used 1021 * to allocate an inode: 1022 * 1) allocate an inode in cylinder group 0. 1023 * 2) quadradically rehash into other cylinder groups, until an 1024 * available inode is located. 1025 */ 1026 int 1027 ffs_valloc(pvp, mode, cred, vpp) 1028 struct vnode *pvp; 1029 int mode; 1030 struct ucred *cred; 1031 struct vnode **vpp; 1032 { 1033 struct inode *pip; 1034 struct fs *fs; 1035 struct inode *ip; 1036 struct timespec ts; 1037 struct ufsmount *ump; 1038 ino_t ino, ipref; 1039 u_int cg; 1040 int error, error1, reclaimed; 1041 static struct timeval lastfail; 1042 static int curfail; 1043 1044 *vpp = NULL; 1045 pip = VTOI(pvp); 1046 ump = ITOUMP(pip); 1047 fs = ump->um_fs; 1048 1049 UFS_LOCK(ump); 1050 reclaimed = 0; 1051 retry: 1052 if (fs->fs_cstotal.cs_nifree == 0) 1053 goto noinodes; 1054 1055 if ((mode & IFMT) == IFDIR) 1056 ipref = ffs_dirpref(pip); 1057 else 1058 ipref = pip->i_number; 1059 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1060 ipref = 0; 1061 cg = ino_to_cg(fs, ipref); 1062 /* 1063 * Track number of dirs created one after another 1064 * in a same cg without intervening by files. 1065 */ 1066 if ((mode & IFMT) == IFDIR) { 1067 if (fs->fs_contigdirs[cg] < 255) 1068 fs->fs_contigdirs[cg]++; 1069 } else { 1070 if (fs->fs_contigdirs[cg] > 0) 1071 fs->fs_contigdirs[cg]--; 1072 } 1073 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1074 (allocfcn_t *)ffs_nodealloccg); 1075 if (ino == 0) 1076 goto noinodes; 1077 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1078 if (error) { 1079 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1080 FFSV_FORCEINSMQ); 1081 ffs_vfree(pvp, ino, mode); 1082 if (error1 == 0) { 1083 ip = VTOI(*vpp); 1084 if (ip->i_mode) 1085 goto dup_alloc; 1086 ip->i_flag |= IN_MODIFIED; 1087 vput(*vpp); 1088 } 1089 return (error); 1090 } 1091 ip = VTOI(*vpp); 1092 if (ip->i_mode) { 1093 dup_alloc: 1094 printf("mode = 0%o, inum = %ju, fs = %s\n", 1095 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1096 panic("ffs_valloc: dup alloc"); 1097 } 1098 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1099 printf("free inode %s/%lu had %ld blocks\n", 1100 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1101 DIP_SET(ip, i_blocks, 0); 1102 } 1103 ip->i_flags = 0; 1104 DIP_SET(ip, i_flags, 0); 1105 /* 1106 * Set up a new generation number for this inode. 1107 */ 1108 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1109 ip->i_gen = arc4random(); 1110 DIP_SET(ip, i_gen, ip->i_gen); 1111 if (fs->fs_magic == FS_UFS2_MAGIC) { 1112 vfs_timestamp(&ts); 1113 ip->i_din2->di_birthtime = ts.tv_sec; 1114 ip->i_din2->di_birthnsec = ts.tv_nsec; 1115 } 1116 ufs_prepare_reclaim(*vpp); 1117 ip->i_flag = 0; 1118 (*vpp)->v_vflag = 0; 1119 (*vpp)->v_type = VNON; 1120 if (fs->fs_magic == FS_UFS2_MAGIC) { 1121 (*vpp)->v_op = &ffs_vnodeops2; 1122 ip->i_flag |= IN_UFS2; 1123 } else { 1124 (*vpp)->v_op = &ffs_vnodeops1; 1125 } 1126 return (0); 1127 noinodes: 1128 if (reclaimed == 0) { 1129 reclaimed = 1; 1130 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1131 goto retry; 1132 } 1133 UFS_UNLOCK(ump); 1134 if (ppsratecheck(&lastfail, &curfail, 1)) { 1135 ffs_fserr(fs, pip->i_number, "out of inodes"); 1136 uprintf("\n%s: create/symlink failed, no inodes free\n", 1137 fs->fs_fsmnt); 1138 } 1139 return (ENOSPC); 1140 } 1141 1142 /* 1143 * Find a cylinder group to place a directory. 1144 * 1145 * The policy implemented by this algorithm is to allocate a 1146 * directory inode in the same cylinder group as its parent 1147 * directory, but also to reserve space for its files inodes 1148 * and data. Restrict the number of directories which may be 1149 * allocated one after another in the same cylinder group 1150 * without intervening allocation of files. 1151 * 1152 * If we allocate a first level directory then force allocation 1153 * in another cylinder group. 1154 */ 1155 static ino_t 1156 ffs_dirpref(pip) 1157 struct inode *pip; 1158 { 1159 struct fs *fs; 1160 int cg, prefcg, dirsize, cgsize; 1161 u_int avgifree, avgbfree, avgndir, curdirsize; 1162 u_int minifree, minbfree, maxndir; 1163 u_int mincg, minndir; 1164 u_int maxcontigdirs; 1165 1166 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1167 fs = ITOFS(pip); 1168 1169 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1170 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1171 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1172 1173 /* 1174 * Force allocation in another cg if creating a first level dir. 1175 */ 1176 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1177 if (ITOV(pip)->v_vflag & VV_ROOT) { 1178 prefcg = arc4random() % fs->fs_ncg; 1179 mincg = prefcg; 1180 minndir = fs->fs_ipg; 1181 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1182 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1183 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1184 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1185 mincg = cg; 1186 minndir = fs->fs_cs(fs, cg).cs_ndir; 1187 } 1188 for (cg = 0; cg < prefcg; cg++) 1189 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1190 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1191 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1192 mincg = cg; 1193 minndir = fs->fs_cs(fs, cg).cs_ndir; 1194 } 1195 return ((ino_t)(fs->fs_ipg * mincg)); 1196 } 1197 1198 /* 1199 * Count various limits which used for 1200 * optimal allocation of a directory inode. 1201 */ 1202 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1203 minifree = avgifree - avgifree / 4; 1204 if (minifree < 1) 1205 minifree = 1; 1206 minbfree = avgbfree - avgbfree / 4; 1207 if (minbfree < 1) 1208 minbfree = 1; 1209 cgsize = fs->fs_fsize * fs->fs_fpg; 1210 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1211 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1212 if (dirsize < curdirsize) 1213 dirsize = curdirsize; 1214 if (dirsize <= 0) 1215 maxcontigdirs = 0; /* dirsize overflowed */ 1216 else 1217 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1218 if (fs->fs_avgfpdir > 0) 1219 maxcontigdirs = min(maxcontigdirs, 1220 fs->fs_ipg / fs->fs_avgfpdir); 1221 if (maxcontigdirs == 0) 1222 maxcontigdirs = 1; 1223 1224 /* 1225 * Limit number of dirs in one cg and reserve space for 1226 * regular files, but only if we have no deficit in 1227 * inodes or space. 1228 * 1229 * We are trying to find a suitable cylinder group nearby 1230 * our preferred cylinder group to place a new directory. 1231 * We scan from our preferred cylinder group forward looking 1232 * for a cylinder group that meets our criterion. If we get 1233 * to the final cylinder group and do not find anything, 1234 * we start scanning forwards from the beginning of the 1235 * filesystem. While it might seem sensible to start scanning 1236 * backwards or even to alternate looking forward and backward, 1237 * this approach fails badly when the filesystem is nearly full. 1238 * Specifically, we first search all the areas that have no space 1239 * and finally try the one preceding that. We repeat this on 1240 * every request and in the case of the final block end up 1241 * searching the entire filesystem. By jumping to the front 1242 * of the filesystem, our future forward searches always look 1243 * in new cylinder groups so finds every possible block after 1244 * one pass over the filesystem. 1245 */ 1246 prefcg = ino_to_cg(fs, pip->i_number); 1247 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1248 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1249 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1250 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1251 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1252 return ((ino_t)(fs->fs_ipg * cg)); 1253 } 1254 for (cg = 0; cg < prefcg; cg++) 1255 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1256 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1257 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1258 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1259 return ((ino_t)(fs->fs_ipg * cg)); 1260 } 1261 /* 1262 * This is a backstop when we have deficit in space. 1263 */ 1264 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1265 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1266 return ((ino_t)(fs->fs_ipg * cg)); 1267 for (cg = 0; cg < prefcg; cg++) 1268 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1269 break; 1270 return ((ino_t)(fs->fs_ipg * cg)); 1271 } 1272 1273 /* 1274 * Select the desired position for the next block in a file. The file is 1275 * logically divided into sections. The first section is composed of the 1276 * direct blocks and the next fs_maxbpg blocks. Each additional section 1277 * contains fs_maxbpg blocks. 1278 * 1279 * If no blocks have been allocated in the first section, the policy is to 1280 * request a block in the same cylinder group as the inode that describes 1281 * the file. The first indirect is allocated immediately following the last 1282 * direct block and the data blocks for the first indirect immediately 1283 * follow it. 1284 * 1285 * If no blocks have been allocated in any other section, the indirect 1286 * block(s) are allocated in the same cylinder group as its inode in an 1287 * area reserved immediately following the inode blocks. The policy for 1288 * the data blocks is to place them in a cylinder group with a greater than 1289 * average number of free blocks. An appropriate cylinder group is found 1290 * by using a rotor that sweeps the cylinder groups. When a new group of 1291 * blocks is needed, the sweep begins in the cylinder group following the 1292 * cylinder group from which the previous allocation was made. The sweep 1293 * continues until a cylinder group with greater than the average number 1294 * of free blocks is found. If the allocation is for the first block in an 1295 * indirect block or the previous block is a hole, then the information on 1296 * the previous allocation is unavailable; here a best guess is made based 1297 * on the logical block number being allocated. 1298 * 1299 * If a section is already partially allocated, the policy is to 1300 * allocate blocks contiguously within the section if possible. 1301 */ 1302 ufs2_daddr_t 1303 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1304 struct inode *ip; 1305 ufs_lbn_t lbn; 1306 int indx; 1307 ufs1_daddr_t *bap; 1308 { 1309 struct fs *fs; 1310 u_int cg, inocg; 1311 u_int avgbfree, startcg; 1312 ufs2_daddr_t pref; 1313 1314 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1315 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1316 fs = ITOFS(ip); 1317 /* 1318 * Allocation of indirect blocks is indicated by passing negative 1319 * values in indx: -1 for single indirect, -2 for double indirect, 1320 * -3 for triple indirect. As noted below, we attempt to allocate 1321 * the first indirect inline with the file data. For all later 1322 * indirect blocks, the data is often allocated in other cylinder 1323 * groups. However to speed random file access and to speed up 1324 * fsck, the filesystem reserves the first fs_metaspace blocks 1325 * (typically half of fs_minfree) of the data area of each cylinder 1326 * group to hold these later indirect blocks. 1327 */ 1328 inocg = ino_to_cg(fs, ip->i_number); 1329 if (indx < 0) { 1330 /* 1331 * Our preference for indirect blocks is the zone at the 1332 * beginning of the inode's cylinder group data area that 1333 * we try to reserve for indirect blocks. 1334 */ 1335 pref = cgmeta(fs, inocg); 1336 /* 1337 * If we are allocating the first indirect block, try to 1338 * place it immediately following the last direct block. 1339 */ 1340 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1341 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1342 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1343 return (pref); 1344 } 1345 /* 1346 * If we are allocating the first data block in the first indirect 1347 * block and the indirect has been allocated in the data block area, 1348 * try to place it immediately following the indirect block. 1349 */ 1350 if (lbn == UFS_NDADDR) { 1351 pref = ip->i_din1->di_ib[0]; 1352 if (pref != 0 && pref >= cgdata(fs, inocg) && 1353 pref < cgbase(fs, inocg + 1)) 1354 return (pref + fs->fs_frag); 1355 } 1356 /* 1357 * If we are at the beginning of a file, or we have already allocated 1358 * the maximum number of blocks per cylinder group, or we do not 1359 * have a block allocated immediately preceding us, then we need 1360 * to decide where to start allocating new blocks. 1361 */ 1362 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1363 /* 1364 * If we are allocating a directory data block, we want 1365 * to place it in the metadata area. 1366 */ 1367 if ((ip->i_mode & IFMT) == IFDIR) 1368 return (cgmeta(fs, inocg)); 1369 /* 1370 * Until we fill all the direct and all the first indirect's 1371 * blocks, we try to allocate in the data area of the inode's 1372 * cylinder group. 1373 */ 1374 if (lbn < UFS_NDADDR + NINDIR(fs)) 1375 return (cgdata(fs, inocg)); 1376 /* 1377 * Find a cylinder with greater than average number of 1378 * unused data blocks. 1379 */ 1380 if (indx == 0 || bap[indx - 1] == 0) 1381 startcg = inocg + lbn / fs->fs_maxbpg; 1382 else 1383 startcg = dtog(fs, bap[indx - 1]) + 1; 1384 startcg %= fs->fs_ncg; 1385 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1386 for (cg = startcg; cg < fs->fs_ncg; cg++) 1387 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1388 fs->fs_cgrotor = cg; 1389 return (cgdata(fs, cg)); 1390 } 1391 for (cg = 0; cg <= startcg; cg++) 1392 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1393 fs->fs_cgrotor = cg; 1394 return (cgdata(fs, cg)); 1395 } 1396 return (0); 1397 } 1398 /* 1399 * Otherwise, we just always try to lay things out contiguously. 1400 */ 1401 return (bap[indx - 1] + fs->fs_frag); 1402 } 1403 1404 /* 1405 * Same as above, but for UFS2 1406 */ 1407 ufs2_daddr_t 1408 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1409 struct inode *ip; 1410 ufs_lbn_t lbn; 1411 int indx; 1412 ufs2_daddr_t *bap; 1413 { 1414 struct fs *fs; 1415 u_int cg, inocg; 1416 u_int avgbfree, startcg; 1417 ufs2_daddr_t pref; 1418 1419 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1420 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1421 fs = ITOFS(ip); 1422 /* 1423 * Allocation of indirect blocks is indicated by passing negative 1424 * values in indx: -1 for single indirect, -2 for double indirect, 1425 * -3 for triple indirect. As noted below, we attempt to allocate 1426 * the first indirect inline with the file data. For all later 1427 * indirect blocks, the data is often allocated in other cylinder 1428 * groups. However to speed random file access and to speed up 1429 * fsck, the filesystem reserves the first fs_metaspace blocks 1430 * (typically half of fs_minfree) of the data area of each cylinder 1431 * group to hold these later indirect blocks. 1432 */ 1433 inocg = ino_to_cg(fs, ip->i_number); 1434 if (indx < 0) { 1435 /* 1436 * Our preference for indirect blocks is the zone at the 1437 * beginning of the inode's cylinder group data area that 1438 * we try to reserve for indirect blocks. 1439 */ 1440 pref = cgmeta(fs, inocg); 1441 /* 1442 * If we are allocating the first indirect block, try to 1443 * place it immediately following the last direct block. 1444 */ 1445 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1446 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1447 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1448 return (pref); 1449 } 1450 /* 1451 * If we are allocating the first data block in the first indirect 1452 * block and the indirect has been allocated in the data block area, 1453 * try to place it immediately following the indirect block. 1454 */ 1455 if (lbn == UFS_NDADDR) { 1456 pref = ip->i_din2->di_ib[0]; 1457 if (pref != 0 && pref >= cgdata(fs, inocg) && 1458 pref < cgbase(fs, inocg + 1)) 1459 return (pref + fs->fs_frag); 1460 } 1461 /* 1462 * If we are at the beginning of a file, or we have already allocated 1463 * the maximum number of blocks per cylinder group, or we do not 1464 * have a block allocated immediately preceding us, then we need 1465 * to decide where to start allocating new blocks. 1466 */ 1467 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1468 /* 1469 * If we are allocating a directory data block, we want 1470 * to place it in the metadata area. 1471 */ 1472 if ((ip->i_mode & IFMT) == IFDIR) 1473 return (cgmeta(fs, inocg)); 1474 /* 1475 * Until we fill all the direct and all the first indirect's 1476 * blocks, we try to allocate in the data area of the inode's 1477 * cylinder group. 1478 */ 1479 if (lbn < UFS_NDADDR + NINDIR(fs)) 1480 return (cgdata(fs, inocg)); 1481 /* 1482 * Find a cylinder with greater than average number of 1483 * unused data blocks. 1484 */ 1485 if (indx == 0 || bap[indx - 1] == 0) 1486 startcg = inocg + lbn / fs->fs_maxbpg; 1487 else 1488 startcg = dtog(fs, bap[indx - 1]) + 1; 1489 startcg %= fs->fs_ncg; 1490 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1491 for (cg = startcg; cg < fs->fs_ncg; cg++) 1492 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1493 fs->fs_cgrotor = cg; 1494 return (cgdata(fs, cg)); 1495 } 1496 for (cg = 0; cg <= startcg; cg++) 1497 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1498 fs->fs_cgrotor = cg; 1499 return (cgdata(fs, cg)); 1500 } 1501 return (0); 1502 } 1503 /* 1504 * Otherwise, we just always try to lay things out contiguously. 1505 */ 1506 return (bap[indx - 1] + fs->fs_frag); 1507 } 1508 1509 /* 1510 * Implement the cylinder overflow algorithm. 1511 * 1512 * The policy implemented by this algorithm is: 1513 * 1) allocate the block in its requested cylinder group. 1514 * 2) quadradically rehash on the cylinder group number. 1515 * 3) brute force search for a free block. 1516 * 1517 * Must be called with the UFS lock held. Will release the lock on success 1518 * and return with it held on failure. 1519 */ 1520 /*VARARGS5*/ 1521 static ufs2_daddr_t 1522 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1523 struct inode *ip; 1524 u_int cg; 1525 ufs2_daddr_t pref; 1526 int size; /* Search size for data blocks, mode for inodes */ 1527 int rsize; /* Real allocated size. */ 1528 allocfcn_t *allocator; 1529 { 1530 struct fs *fs; 1531 ufs2_daddr_t result; 1532 u_int i, icg = cg; 1533 1534 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1535 #ifdef INVARIANTS 1536 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1537 panic("ffs_hashalloc: allocation on suspended filesystem"); 1538 #endif 1539 fs = ITOFS(ip); 1540 /* 1541 * 1: preferred cylinder group 1542 */ 1543 result = (*allocator)(ip, cg, pref, size, rsize); 1544 if (result) 1545 return (result); 1546 /* 1547 * 2: quadratic rehash 1548 */ 1549 for (i = 1; i < fs->fs_ncg; i *= 2) { 1550 cg += i; 1551 if (cg >= fs->fs_ncg) 1552 cg -= fs->fs_ncg; 1553 result = (*allocator)(ip, cg, 0, size, rsize); 1554 if (result) 1555 return (result); 1556 } 1557 /* 1558 * 3: brute force search 1559 * Note that we start at i == 2, since 0 was checked initially, 1560 * and 1 is always checked in the quadratic rehash. 1561 */ 1562 cg = (icg + 2) % fs->fs_ncg; 1563 for (i = 2; i < fs->fs_ncg; i++) { 1564 result = (*allocator)(ip, cg, 0, size, rsize); 1565 if (result) 1566 return (result); 1567 cg++; 1568 if (cg == fs->fs_ncg) 1569 cg = 0; 1570 } 1571 return (0); 1572 } 1573 1574 /* 1575 * Determine whether a fragment can be extended. 1576 * 1577 * Check to see if the necessary fragments are available, and 1578 * if they are, allocate them. 1579 */ 1580 static ufs2_daddr_t 1581 ffs_fragextend(ip, cg, bprev, osize, nsize) 1582 struct inode *ip; 1583 u_int cg; 1584 ufs2_daddr_t bprev; 1585 int osize, nsize; 1586 { 1587 struct fs *fs; 1588 struct cg *cgp; 1589 struct buf *bp; 1590 struct ufsmount *ump; 1591 int nffree; 1592 long bno; 1593 int frags, bbase; 1594 int i, error; 1595 u_int8_t *blksfree; 1596 1597 ump = ITOUMP(ip); 1598 fs = ump->um_fs; 1599 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1600 return (0); 1601 frags = numfrags(fs, nsize); 1602 bbase = fragnum(fs, bprev); 1603 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1604 /* cannot extend across a block boundary */ 1605 return (0); 1606 } 1607 UFS_UNLOCK(ump); 1608 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) 1609 goto fail; 1610 bno = dtogd(fs, bprev); 1611 blksfree = cg_blksfree(cgp); 1612 for (i = numfrags(fs, osize); i < frags; i++) 1613 if (isclr(blksfree, bno + i)) 1614 goto fail; 1615 /* 1616 * the current fragment can be extended 1617 * deduct the count on fragment being extended into 1618 * increase the count on the remaining fragment (if any) 1619 * allocate the extended piece 1620 */ 1621 for (i = frags; i < fs->fs_frag - bbase; i++) 1622 if (isclr(blksfree, bno + i)) 1623 break; 1624 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1625 if (i != frags) 1626 cgp->cg_frsum[i - frags]++; 1627 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1628 clrbit(blksfree, bno + i); 1629 cgp->cg_cs.cs_nffree--; 1630 nffree++; 1631 } 1632 UFS_LOCK(ump); 1633 fs->fs_cstotal.cs_nffree -= nffree; 1634 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1635 fs->fs_fmod = 1; 1636 ACTIVECLEAR(fs, cg); 1637 UFS_UNLOCK(ump); 1638 if (DOINGSOFTDEP(ITOV(ip))) 1639 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1640 frags, numfrags(fs, osize)); 1641 bdwrite(bp); 1642 return (bprev); 1643 1644 fail: 1645 brelse(bp); 1646 UFS_LOCK(ump); 1647 return (0); 1648 1649 } 1650 1651 /* 1652 * Determine whether a block can be allocated. 1653 * 1654 * Check to see if a block of the appropriate size is available, 1655 * and if it is, allocate it. 1656 */ 1657 static ufs2_daddr_t 1658 ffs_alloccg(ip, cg, bpref, size, rsize) 1659 struct inode *ip; 1660 u_int cg; 1661 ufs2_daddr_t bpref; 1662 int size; 1663 int rsize; 1664 { 1665 struct fs *fs; 1666 struct cg *cgp; 1667 struct buf *bp; 1668 struct ufsmount *ump; 1669 ufs1_daddr_t bno; 1670 ufs2_daddr_t blkno; 1671 int i, allocsiz, error, frags; 1672 u_int8_t *blksfree; 1673 1674 ump = ITOUMP(ip); 1675 fs = ump->um_fs; 1676 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1677 return (0); 1678 UFS_UNLOCK(ump); 1679 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || 1680 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1681 goto fail; 1682 if (size == fs->fs_bsize) { 1683 UFS_LOCK(ump); 1684 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1685 ACTIVECLEAR(fs, cg); 1686 UFS_UNLOCK(ump); 1687 bdwrite(bp); 1688 return (blkno); 1689 } 1690 /* 1691 * check to see if any fragments are already available 1692 * allocsiz is the size which will be allocated, hacking 1693 * it down to a smaller size if necessary 1694 */ 1695 blksfree = cg_blksfree(cgp); 1696 frags = numfrags(fs, size); 1697 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1698 if (cgp->cg_frsum[allocsiz] != 0) 1699 break; 1700 if (allocsiz == fs->fs_frag) { 1701 /* 1702 * no fragments were available, so a block will be 1703 * allocated, and hacked up 1704 */ 1705 if (cgp->cg_cs.cs_nbfree == 0) 1706 goto fail; 1707 UFS_LOCK(ump); 1708 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1709 ACTIVECLEAR(fs, cg); 1710 UFS_UNLOCK(ump); 1711 bdwrite(bp); 1712 return (blkno); 1713 } 1714 KASSERT(size == rsize, 1715 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1716 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1717 if (bno < 0) 1718 goto fail; 1719 for (i = 0; i < frags; i++) 1720 clrbit(blksfree, bno + i); 1721 cgp->cg_cs.cs_nffree -= frags; 1722 cgp->cg_frsum[allocsiz]--; 1723 if (frags != allocsiz) 1724 cgp->cg_frsum[allocsiz - frags]++; 1725 UFS_LOCK(ump); 1726 fs->fs_cstotal.cs_nffree -= frags; 1727 fs->fs_cs(fs, cg).cs_nffree -= frags; 1728 fs->fs_fmod = 1; 1729 blkno = cgbase(fs, cg) + bno; 1730 ACTIVECLEAR(fs, cg); 1731 UFS_UNLOCK(ump); 1732 if (DOINGSOFTDEP(ITOV(ip))) 1733 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1734 bdwrite(bp); 1735 return (blkno); 1736 1737 fail: 1738 brelse(bp); 1739 UFS_LOCK(ump); 1740 return (0); 1741 } 1742 1743 /* 1744 * Allocate a block in a cylinder group. 1745 * 1746 * This algorithm implements the following policy: 1747 * 1) allocate the requested block. 1748 * 2) allocate a rotationally optimal block in the same cylinder. 1749 * 3) allocate the next available block on the block rotor for the 1750 * specified cylinder group. 1751 * Note that this routine only allocates fs_bsize blocks; these 1752 * blocks may be fragmented by the routine that allocates them. 1753 */ 1754 static ufs2_daddr_t 1755 ffs_alloccgblk(ip, bp, bpref, size) 1756 struct inode *ip; 1757 struct buf *bp; 1758 ufs2_daddr_t bpref; 1759 int size; 1760 { 1761 struct fs *fs; 1762 struct cg *cgp; 1763 struct ufsmount *ump; 1764 ufs1_daddr_t bno; 1765 ufs2_daddr_t blkno; 1766 u_int8_t *blksfree; 1767 int i, cgbpref; 1768 1769 ump = ITOUMP(ip); 1770 fs = ump->um_fs; 1771 mtx_assert(UFS_MTX(ump), MA_OWNED); 1772 cgp = (struct cg *)bp->b_data; 1773 blksfree = cg_blksfree(cgp); 1774 if (bpref == 0) { 1775 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1776 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1777 /* map bpref to correct zone in this cg */ 1778 if (bpref < cgdata(fs, cgbpref)) 1779 bpref = cgmeta(fs, cgp->cg_cgx); 1780 else 1781 bpref = cgdata(fs, cgp->cg_cgx); 1782 } 1783 /* 1784 * if the requested block is available, use it 1785 */ 1786 bno = dtogd(fs, blknum(fs, bpref)); 1787 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1788 goto gotit; 1789 /* 1790 * Take the next available block in this cylinder group. 1791 */ 1792 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1793 if (bno < 0) 1794 return (0); 1795 /* Update cg_rotor only if allocated from the data zone */ 1796 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1797 cgp->cg_rotor = bno; 1798 gotit: 1799 blkno = fragstoblks(fs, bno); 1800 ffs_clrblock(fs, blksfree, (long)blkno); 1801 ffs_clusteracct(fs, cgp, blkno, -1); 1802 cgp->cg_cs.cs_nbfree--; 1803 fs->fs_cstotal.cs_nbfree--; 1804 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1805 fs->fs_fmod = 1; 1806 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1807 /* 1808 * If the caller didn't want the whole block free the frags here. 1809 */ 1810 size = numfrags(fs, size); 1811 if (size != fs->fs_frag) { 1812 bno = dtogd(fs, blkno); 1813 for (i = size; i < fs->fs_frag; i++) 1814 setbit(blksfree, bno + i); 1815 i = fs->fs_frag - size; 1816 cgp->cg_cs.cs_nffree += i; 1817 fs->fs_cstotal.cs_nffree += i; 1818 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1819 fs->fs_fmod = 1; 1820 cgp->cg_frsum[i]++; 1821 } 1822 /* XXX Fixme. */ 1823 UFS_UNLOCK(ump); 1824 if (DOINGSOFTDEP(ITOV(ip))) 1825 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1826 size, 0); 1827 UFS_LOCK(ump); 1828 return (blkno); 1829 } 1830 1831 /* 1832 * Determine whether a cluster can be allocated. 1833 * 1834 * We do not currently check for optimal rotational layout if there 1835 * are multiple choices in the same cylinder group. Instead we just 1836 * take the first one that we find following bpref. 1837 */ 1838 static ufs2_daddr_t 1839 ffs_clusteralloc(ip, cg, bpref, len) 1840 struct inode *ip; 1841 u_int cg; 1842 ufs2_daddr_t bpref; 1843 int len; 1844 { 1845 struct fs *fs; 1846 struct cg *cgp; 1847 struct buf *bp; 1848 struct ufsmount *ump; 1849 int i, run, bit, map, got, error; 1850 ufs2_daddr_t bno; 1851 u_char *mapp; 1852 int32_t *lp; 1853 u_int8_t *blksfree; 1854 1855 ump = ITOUMP(ip); 1856 fs = ump->um_fs; 1857 if (fs->fs_maxcluster[cg] < len) 1858 return (0); 1859 UFS_UNLOCK(ump); 1860 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1861 UFS_LOCK(ump); 1862 return (0); 1863 } 1864 /* 1865 * Check to see if a cluster of the needed size (or bigger) is 1866 * available in this cylinder group. 1867 */ 1868 lp = &cg_clustersum(cgp)[len]; 1869 for (i = len; i <= fs->fs_contigsumsize; i++) 1870 if (*lp++ > 0) 1871 break; 1872 if (i > fs->fs_contigsumsize) { 1873 /* 1874 * This is the first time looking for a cluster in this 1875 * cylinder group. Update the cluster summary information 1876 * to reflect the true maximum sized cluster so that 1877 * future cluster allocation requests can avoid reading 1878 * the cylinder group map only to find no clusters. 1879 */ 1880 lp = &cg_clustersum(cgp)[len - 1]; 1881 for (i = len - 1; i > 0; i--) 1882 if (*lp-- > 0) 1883 break; 1884 UFS_LOCK(ump); 1885 fs->fs_maxcluster[cg] = i; 1886 brelse(bp); 1887 return (0); 1888 } 1889 /* 1890 * Search the cluster map to find a big enough cluster. 1891 * We take the first one that we find, even if it is larger 1892 * than we need as we prefer to get one close to the previous 1893 * block allocation. We do not search before the current 1894 * preference point as we do not want to allocate a block 1895 * that is allocated before the previous one (as we will 1896 * then have to wait for another pass of the elevator 1897 * algorithm before it will be read). We prefer to fail and 1898 * be recalled to try an allocation in the next cylinder group. 1899 */ 1900 if (dtog(fs, bpref) != cg) 1901 bpref = cgdata(fs, cg); 1902 else 1903 bpref = blknum(fs, bpref); 1904 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1905 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1906 map = *mapp++; 1907 bit = 1 << (bpref % NBBY); 1908 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1909 if ((map & bit) == 0) { 1910 run = 0; 1911 } else { 1912 run++; 1913 if (run == len) 1914 break; 1915 } 1916 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1917 bit <<= 1; 1918 } else { 1919 map = *mapp++; 1920 bit = 1; 1921 } 1922 } 1923 if (got >= cgp->cg_nclusterblks) { 1924 UFS_LOCK(ump); 1925 brelse(bp); 1926 return (0); 1927 } 1928 /* 1929 * Allocate the cluster that we have found. 1930 */ 1931 blksfree = cg_blksfree(cgp); 1932 for (i = 1; i <= len; i++) 1933 if (!ffs_isblock(fs, blksfree, got - run + i)) 1934 panic("ffs_clusteralloc: map mismatch"); 1935 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1936 if (dtog(fs, bno) != cg) 1937 panic("ffs_clusteralloc: allocated out of group"); 1938 len = blkstofrags(fs, len); 1939 UFS_LOCK(ump); 1940 for (i = 0; i < len; i += fs->fs_frag) 1941 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1942 panic("ffs_clusteralloc: lost block"); 1943 ACTIVECLEAR(fs, cg); 1944 UFS_UNLOCK(ump); 1945 bdwrite(bp); 1946 return (bno); 1947 } 1948 1949 static inline struct buf * 1950 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1951 { 1952 struct fs *fs; 1953 1954 fs = ITOFS(ip); 1955 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 1956 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 1957 gbflags)); 1958 } 1959 1960 /* 1961 * Determine whether an inode can be allocated. 1962 * 1963 * Check to see if an inode is available, and if it is, 1964 * allocate it using the following policy: 1965 * 1) allocate the requested inode. 1966 * 2) allocate the next available inode after the requested 1967 * inode in the specified cylinder group. 1968 */ 1969 static ufs2_daddr_t 1970 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1971 struct inode *ip; 1972 u_int cg; 1973 ufs2_daddr_t ipref; 1974 int mode; 1975 int unused; 1976 { 1977 struct fs *fs; 1978 struct cg *cgp; 1979 struct buf *bp, *ibp; 1980 struct ufsmount *ump; 1981 u_int8_t *inosused, *loc; 1982 struct ufs2_dinode *dp2; 1983 int error, start, len, i; 1984 u_int32_t old_initediblk; 1985 1986 ump = ITOUMP(ip); 1987 fs = ump->um_fs; 1988 check_nifree: 1989 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1990 return (0); 1991 UFS_UNLOCK(ump); 1992 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1993 UFS_LOCK(ump); 1994 return (0); 1995 } 1996 restart: 1997 if (cgp->cg_cs.cs_nifree == 0) { 1998 brelse(bp); 1999 UFS_LOCK(ump); 2000 return (0); 2001 } 2002 inosused = cg_inosused(cgp); 2003 if (ipref) { 2004 ipref %= fs->fs_ipg; 2005 if (isclr(inosused, ipref)) 2006 goto gotit; 2007 } 2008 start = cgp->cg_irotor / NBBY; 2009 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2010 loc = memcchr(&inosused[start], 0xff, len); 2011 if (loc == NULL) { 2012 len = start + 1; 2013 start = 0; 2014 loc = memcchr(&inosused[start], 0xff, len); 2015 if (loc == NULL) { 2016 printf("cg = %d, irotor = %ld, fs = %s\n", 2017 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2018 panic("ffs_nodealloccg: map corrupted"); 2019 /* NOTREACHED */ 2020 } 2021 } 2022 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2023 gotit: 2024 /* 2025 * Check to see if we need to initialize more inodes. 2026 */ 2027 if (fs->fs_magic == FS_UFS2_MAGIC && 2028 ipref + INOPB(fs) > cgp->cg_initediblk && 2029 cgp->cg_initediblk < cgp->cg_niblk) { 2030 old_initediblk = cgp->cg_initediblk; 2031 2032 /* 2033 * Free the cylinder group lock before writing the 2034 * initialized inode block. Entering the 2035 * babarrierwrite() with the cylinder group lock 2036 * causes lock order violation between the lock and 2037 * snaplk. 2038 * 2039 * Another thread can decide to initialize the same 2040 * inode block, but whichever thread first gets the 2041 * cylinder group lock after writing the newly 2042 * allocated inode block will update it and the other 2043 * will realize that it has lost and leave the 2044 * cylinder group unchanged. 2045 */ 2046 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2047 brelse(bp); 2048 if (ibp == NULL) { 2049 /* 2050 * The inode block buffer is already owned by 2051 * another thread, which must initialize it. 2052 * Wait on the buffer to allow another thread 2053 * to finish the updates, with dropped cg 2054 * buffer lock, then retry. 2055 */ 2056 ibp = getinobuf(ip, cg, old_initediblk, 0); 2057 brelse(ibp); 2058 UFS_LOCK(ump); 2059 goto check_nifree; 2060 } 2061 bzero(ibp->b_data, (int)fs->fs_bsize); 2062 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2063 for (i = 0; i < INOPB(fs); i++) { 2064 while (dp2->di_gen == 0) 2065 dp2->di_gen = arc4random(); 2066 dp2++; 2067 } 2068 /* 2069 * Rather than adding a soft updates dependency to ensure 2070 * that the new inode block is written before it is claimed 2071 * by the cylinder group map, we just do a barrier write 2072 * here. The barrier write will ensure that the inode block 2073 * gets written before the updated cylinder group map can be 2074 * written. The barrier write should only slow down bulk 2075 * loading of newly created filesystems. 2076 */ 2077 babarrierwrite(ibp); 2078 2079 /* 2080 * After the inode block is written, try to update the 2081 * cg initediblk pointer. If another thread beat us 2082 * to it, then leave it unchanged as the other thread 2083 * has already set it correctly. 2084 */ 2085 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); 2086 UFS_LOCK(ump); 2087 ACTIVECLEAR(fs, cg); 2088 UFS_UNLOCK(ump); 2089 if (error != 0) 2090 return (error); 2091 if (cgp->cg_initediblk == old_initediblk) 2092 cgp->cg_initediblk += INOPB(fs); 2093 goto restart; 2094 } 2095 cgp->cg_irotor = ipref; 2096 UFS_LOCK(ump); 2097 ACTIVECLEAR(fs, cg); 2098 setbit(inosused, ipref); 2099 cgp->cg_cs.cs_nifree--; 2100 fs->fs_cstotal.cs_nifree--; 2101 fs->fs_cs(fs, cg).cs_nifree--; 2102 fs->fs_fmod = 1; 2103 if ((mode & IFMT) == IFDIR) { 2104 cgp->cg_cs.cs_ndir++; 2105 fs->fs_cstotal.cs_ndir++; 2106 fs->fs_cs(fs, cg).cs_ndir++; 2107 } 2108 UFS_UNLOCK(ump); 2109 if (DOINGSOFTDEP(ITOV(ip))) 2110 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2111 bdwrite(bp); 2112 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2113 } 2114 2115 /* 2116 * Free a block or fragment. 2117 * 2118 * The specified block or fragment is placed back in the 2119 * free map. If a fragment is deallocated, a possible 2120 * block reassembly is checked. 2121 */ 2122 static void 2123 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2124 struct ufsmount *ump; 2125 struct fs *fs; 2126 struct vnode *devvp; 2127 ufs2_daddr_t bno; 2128 long size; 2129 ino_t inum; 2130 struct workhead *dephd; 2131 { 2132 struct mount *mp; 2133 struct cg *cgp; 2134 struct buf *bp; 2135 ufs1_daddr_t fragno, cgbno; 2136 int i, blk, frags, bbase, error; 2137 u_int cg; 2138 u_int8_t *blksfree; 2139 struct cdev *dev; 2140 2141 cg = dtog(fs, bno); 2142 if (devvp->v_type == VREG) { 2143 /* devvp is a snapshot */ 2144 MPASS(devvp->v_mount->mnt_data == ump); 2145 dev = ump->um_devvp->v_rdev; 2146 } else if (devvp->v_type == VCHR) { 2147 /* devvp is a normal disk device */ 2148 dev = devvp->v_rdev; 2149 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2150 } else 2151 return; 2152 #ifdef INVARIANTS 2153 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2154 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2155 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2156 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2157 size, fs->fs_fsmnt); 2158 panic("ffs_blkfree_cg: bad size"); 2159 } 2160 #endif 2161 if ((u_int)bno >= fs->fs_size) { 2162 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2163 (u_long)inum); 2164 ffs_fserr(fs, inum, "bad block"); 2165 return; 2166 } 2167 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2168 return; 2169 cgbno = dtogd(fs, bno); 2170 blksfree = cg_blksfree(cgp); 2171 UFS_LOCK(ump); 2172 if (size == fs->fs_bsize) { 2173 fragno = fragstoblks(fs, cgbno); 2174 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2175 if (devvp->v_type == VREG) { 2176 UFS_UNLOCK(ump); 2177 /* devvp is a snapshot */ 2178 brelse(bp); 2179 return; 2180 } 2181 printf("dev = %s, block = %jd, fs = %s\n", 2182 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2183 panic("ffs_blkfree_cg: freeing free block"); 2184 } 2185 ffs_setblock(fs, blksfree, fragno); 2186 ffs_clusteracct(fs, cgp, fragno, 1); 2187 cgp->cg_cs.cs_nbfree++; 2188 fs->fs_cstotal.cs_nbfree++; 2189 fs->fs_cs(fs, cg).cs_nbfree++; 2190 } else { 2191 bbase = cgbno - fragnum(fs, cgbno); 2192 /* 2193 * decrement the counts associated with the old frags 2194 */ 2195 blk = blkmap(fs, blksfree, bbase); 2196 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2197 /* 2198 * deallocate the fragment 2199 */ 2200 frags = numfrags(fs, size); 2201 for (i = 0; i < frags; i++) { 2202 if (isset(blksfree, cgbno + i)) { 2203 printf("dev = %s, block = %jd, fs = %s\n", 2204 devtoname(dev), (intmax_t)(bno + i), 2205 fs->fs_fsmnt); 2206 panic("ffs_blkfree_cg: freeing free frag"); 2207 } 2208 setbit(blksfree, cgbno + i); 2209 } 2210 cgp->cg_cs.cs_nffree += i; 2211 fs->fs_cstotal.cs_nffree += i; 2212 fs->fs_cs(fs, cg).cs_nffree += i; 2213 /* 2214 * add back in counts associated with the new frags 2215 */ 2216 blk = blkmap(fs, blksfree, bbase); 2217 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2218 /* 2219 * if a complete block has been reassembled, account for it 2220 */ 2221 fragno = fragstoblks(fs, bbase); 2222 if (ffs_isblock(fs, blksfree, fragno)) { 2223 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2224 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2225 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2226 ffs_clusteracct(fs, cgp, fragno, 1); 2227 cgp->cg_cs.cs_nbfree++; 2228 fs->fs_cstotal.cs_nbfree++; 2229 fs->fs_cs(fs, cg).cs_nbfree++; 2230 } 2231 } 2232 fs->fs_fmod = 1; 2233 ACTIVECLEAR(fs, cg); 2234 UFS_UNLOCK(ump); 2235 mp = UFSTOVFS(ump); 2236 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2237 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2238 numfrags(fs, size), dephd); 2239 bdwrite(bp); 2240 } 2241 2242 struct ffs_blkfree_trim_params { 2243 struct task task; 2244 struct ufsmount *ump; 2245 struct vnode *devvp; 2246 ufs2_daddr_t bno; 2247 long size; 2248 ino_t inum; 2249 struct workhead *pdephd; 2250 struct workhead dephd; 2251 }; 2252 2253 static void 2254 ffs_blkfree_trim_task(ctx, pending) 2255 void *ctx; 2256 int pending; 2257 { 2258 struct ffs_blkfree_trim_params *tp; 2259 2260 tp = ctx; 2261 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2262 tp->inum, tp->pdephd); 2263 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2264 atomic_add_int(&tp->ump->um_trim_inflight, -1); 2265 free(tp, M_TEMP); 2266 } 2267 2268 static void 2269 ffs_blkfree_trim_completed(bip) 2270 struct bio *bip; 2271 { 2272 struct ffs_blkfree_trim_params *tp; 2273 2274 tp = bip->bio_caller2; 2275 g_destroy_bio(bip); 2276 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2277 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2278 } 2279 2280 void 2281 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2282 struct ufsmount *ump; 2283 struct fs *fs; 2284 struct vnode *devvp; 2285 ufs2_daddr_t bno; 2286 long size; 2287 ino_t inum; 2288 enum vtype vtype; 2289 struct workhead *dephd; 2290 { 2291 struct mount *mp; 2292 struct bio *bip; 2293 struct ffs_blkfree_trim_params *tp; 2294 2295 /* 2296 * Check to see if a snapshot wants to claim the block. 2297 * Check that devvp is a normal disk device, not a snapshot, 2298 * it has a snapshot(s) associated with it, and one of the 2299 * snapshots wants to claim the block. 2300 */ 2301 if (devvp->v_type == VCHR && 2302 (devvp->v_vflag & VV_COPYONWRITE) && 2303 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2304 return; 2305 } 2306 /* 2307 * Nothing to delay if TRIM is disabled, or the operation is 2308 * performed on the snapshot. 2309 */ 2310 if (!ump->um_candelete || devvp->v_type == VREG) { 2311 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2312 return; 2313 } 2314 2315 /* 2316 * Postpone the set of the free bit in the cg bitmap until the 2317 * BIO_DELETE is completed. Otherwise, due to disk queue 2318 * reordering, TRIM might be issued after we reuse the block 2319 * and write some new data into it. 2320 */ 2321 atomic_add_int(&ump->um_trim_inflight, 1); 2322 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2323 tp->ump = ump; 2324 tp->devvp = devvp; 2325 tp->bno = bno; 2326 tp->size = size; 2327 tp->inum = inum; 2328 if (dephd != NULL) { 2329 LIST_INIT(&tp->dephd); 2330 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2331 tp->pdephd = &tp->dephd; 2332 } else 2333 tp->pdephd = NULL; 2334 2335 bip = g_alloc_bio(); 2336 bip->bio_cmd = BIO_DELETE; 2337 bip->bio_offset = dbtob(fsbtodb(fs, bno)); 2338 bip->bio_done = ffs_blkfree_trim_completed; 2339 bip->bio_length = size; 2340 bip->bio_caller2 = tp; 2341 2342 mp = UFSTOVFS(ump); 2343 vn_start_secondary_write(NULL, &mp, 0); 2344 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private); 2345 } 2346 2347 #ifdef INVARIANTS 2348 /* 2349 * Verify allocation of a block or fragment. Returns true if block or 2350 * fragment is allocated, false if it is free. 2351 */ 2352 static int 2353 ffs_checkblk(ip, bno, size) 2354 struct inode *ip; 2355 ufs2_daddr_t bno; 2356 long size; 2357 { 2358 struct fs *fs; 2359 struct cg *cgp; 2360 struct buf *bp; 2361 ufs1_daddr_t cgbno; 2362 int i, error, frags, free; 2363 u_int8_t *blksfree; 2364 2365 fs = ITOFS(ip); 2366 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2367 printf("bsize = %ld, size = %ld, fs = %s\n", 2368 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2369 panic("ffs_checkblk: bad size"); 2370 } 2371 if ((u_int)bno >= fs->fs_size) 2372 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2373 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); 2374 if (error) 2375 panic("ffs_checkblk: cylinder group read failed"); 2376 blksfree = cg_blksfree(cgp); 2377 cgbno = dtogd(fs, bno); 2378 if (size == fs->fs_bsize) { 2379 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2380 } else { 2381 frags = numfrags(fs, size); 2382 for (free = 0, i = 0; i < frags; i++) 2383 if (isset(blksfree, cgbno + i)) 2384 free++; 2385 if (free != 0 && free != frags) 2386 panic("ffs_checkblk: partially free fragment"); 2387 } 2388 brelse(bp); 2389 return (!free); 2390 } 2391 #endif /* INVARIANTS */ 2392 2393 /* 2394 * Free an inode. 2395 */ 2396 int 2397 ffs_vfree(pvp, ino, mode) 2398 struct vnode *pvp; 2399 ino_t ino; 2400 int mode; 2401 { 2402 struct ufsmount *ump; 2403 struct inode *ip; 2404 2405 if (DOINGSOFTDEP(pvp)) { 2406 softdep_freefile(pvp, ino, mode); 2407 return (0); 2408 } 2409 ip = VTOI(pvp); 2410 ump = VFSTOUFS(pvp->v_mount); 2411 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2412 } 2413 2414 /* 2415 * Do the actual free operation. 2416 * The specified inode is placed back in the free map. 2417 */ 2418 int 2419 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2420 struct ufsmount *ump; 2421 struct fs *fs; 2422 struct vnode *devvp; 2423 ino_t ino; 2424 int mode; 2425 struct workhead *wkhd; 2426 { 2427 struct cg *cgp; 2428 struct buf *bp; 2429 ufs2_daddr_t cgbno; 2430 int error; 2431 u_int cg; 2432 u_int8_t *inosused; 2433 struct cdev *dev; 2434 2435 cg = ino_to_cg(fs, ino); 2436 if (devvp->v_type == VREG) { 2437 /* devvp is a snapshot */ 2438 MPASS(devvp->v_mount->mnt_data == ump); 2439 dev = ump->um_devvp->v_rdev; 2440 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2441 } else if (devvp->v_type == VCHR) { 2442 /* devvp is a normal disk device */ 2443 dev = devvp->v_rdev; 2444 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2445 } else { 2446 bp = NULL; 2447 return (0); 2448 } 2449 if (ino >= fs->fs_ipg * fs->fs_ncg) 2450 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2451 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2452 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2453 return (error); 2454 inosused = cg_inosused(cgp); 2455 ino %= fs->fs_ipg; 2456 if (isclr(inosused, ino)) { 2457 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2458 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2459 if (fs->fs_ronly == 0) 2460 panic("ffs_freefile: freeing free inode"); 2461 } 2462 clrbit(inosused, ino); 2463 if (ino < cgp->cg_irotor) 2464 cgp->cg_irotor = ino; 2465 cgp->cg_cs.cs_nifree++; 2466 UFS_LOCK(ump); 2467 fs->fs_cstotal.cs_nifree++; 2468 fs->fs_cs(fs, cg).cs_nifree++; 2469 if ((mode & IFMT) == IFDIR) { 2470 cgp->cg_cs.cs_ndir--; 2471 fs->fs_cstotal.cs_ndir--; 2472 fs->fs_cs(fs, cg).cs_ndir--; 2473 } 2474 fs->fs_fmod = 1; 2475 ACTIVECLEAR(fs, cg); 2476 UFS_UNLOCK(ump); 2477 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2478 softdep_setup_inofree(UFSTOVFS(ump), bp, 2479 ino + cg * fs->fs_ipg, wkhd); 2480 bdwrite(bp); 2481 return (0); 2482 } 2483 2484 /* 2485 * Check to see if a file is free. 2486 * Used to check for allocated files in snapshots. 2487 */ 2488 int 2489 ffs_checkfreefile(fs, devvp, ino) 2490 struct fs *fs; 2491 struct vnode *devvp; 2492 ino_t ino; 2493 { 2494 struct cg *cgp; 2495 struct buf *bp; 2496 ufs2_daddr_t cgbno; 2497 int ret, error; 2498 u_int cg; 2499 u_int8_t *inosused; 2500 2501 cg = ino_to_cg(fs, ino); 2502 if (devvp->v_type == VREG) { 2503 /* devvp is a snapshot */ 2504 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2505 } else if (devvp->v_type == VCHR) { 2506 /* devvp is a normal disk device */ 2507 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2508 } else { 2509 return (1); 2510 } 2511 if (ino >= fs->fs_ipg * fs->fs_ncg) 2512 return (1); 2513 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2514 return (1); 2515 inosused = cg_inosused(cgp); 2516 ino %= fs->fs_ipg; 2517 ret = isclr(inosused, ino); 2518 brelse(bp); 2519 return (ret); 2520 } 2521 2522 /* 2523 * Find a block of the specified size in the specified cylinder group. 2524 * 2525 * It is a panic if a request is made to find a block if none are 2526 * available. 2527 */ 2528 static ufs1_daddr_t 2529 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2530 struct fs *fs; 2531 struct cg *cgp; 2532 ufs2_daddr_t bpref; 2533 int allocsiz; 2534 { 2535 ufs1_daddr_t bno; 2536 int start, len, loc, i; 2537 int blk, field, subfield, pos; 2538 u_int8_t *blksfree; 2539 2540 /* 2541 * find the fragment by searching through the free block 2542 * map for an appropriate bit pattern 2543 */ 2544 if (bpref) 2545 start = dtogd(fs, bpref) / NBBY; 2546 else 2547 start = cgp->cg_frotor / NBBY; 2548 blksfree = cg_blksfree(cgp); 2549 len = howmany(fs->fs_fpg, NBBY) - start; 2550 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2551 fragtbl[fs->fs_frag], 2552 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2553 if (loc == 0) { 2554 len = start + 1; 2555 start = 0; 2556 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2557 fragtbl[fs->fs_frag], 2558 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2559 if (loc == 0) { 2560 printf("start = %d, len = %d, fs = %s\n", 2561 start, len, fs->fs_fsmnt); 2562 panic("ffs_alloccg: map corrupted"); 2563 /* NOTREACHED */ 2564 } 2565 } 2566 bno = (start + len - loc) * NBBY; 2567 cgp->cg_frotor = bno; 2568 /* 2569 * found the byte in the map 2570 * sift through the bits to find the selected frag 2571 */ 2572 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2573 blk = blkmap(fs, blksfree, bno); 2574 blk <<= 1; 2575 field = around[allocsiz]; 2576 subfield = inside[allocsiz]; 2577 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2578 if ((blk & field) == subfield) 2579 return (bno + pos); 2580 field <<= 1; 2581 subfield <<= 1; 2582 } 2583 } 2584 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2585 panic("ffs_alloccg: block not in map"); 2586 return (-1); 2587 } 2588 2589 static const struct statfs * 2590 ffs_getmntstat(struct vnode *devvp) 2591 { 2592 2593 if (devvp->v_type == VCHR) 2594 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2595 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2596 } 2597 2598 /* 2599 * Fetch and verify a cylinder group. 2600 */ 2601 int 2602 ffs_getcg(fs, devvp, cg, bpp, cgpp) 2603 struct fs *fs; 2604 struct vnode *devvp; 2605 u_int cg; 2606 struct buf **bpp; 2607 struct cg **cgpp; 2608 { 2609 struct buf *bp; 2610 struct cg *cgp; 2611 const struct statfs *sfs; 2612 int flags, error; 2613 2614 *bpp = NULL; 2615 *cgpp = NULL; 2616 flags = 0; 2617 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2618 flags |= GB_CKHASH; 2619 error = breadn_flags(devvp, devvp->v_type == VREG ? 2620 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), 2621 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, 2622 ffs_ckhash_cg, &bp); 2623 if (error != 0) 2624 return (error); 2625 cgp = (struct cg *)bp->b_data; 2626 if (((fs->fs_metackhash & CK_CYLGRP) != 0 && 2627 (bp->b_flags & B_CKHASH) != 0 && 2628 cgp->cg_ckhash != bp->b_ckhash) || 2629 !cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2630 sfs = ffs_getmntstat(devvp); 2631 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2632 "0x%x != bp: 0x%jx\n", 2633 devvp->v_type == VCHR ? "" : "snapshot of ", 2634 sfs->f_mntfromname, sfs->f_mntonname, 2635 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2636 bp->b_flags &= ~B_CKHASH; 2637 bp->b_flags |= B_INVAL | B_NOCACHE; 2638 brelse(bp); 2639 return (EIO); 2640 } 2641 bp->b_flags &= ~B_CKHASH; 2642 bp->b_xflags |= BX_BKGRDWRITE; 2643 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2644 bp->b_xflags |= BX_CYLGRP; 2645 cgp->cg_old_time = cgp->cg_time = time_second; 2646 *bpp = bp; 2647 *cgpp = cgp; 2648 return (0); 2649 } 2650 2651 static void 2652 ffs_ckhash_cg(bp) 2653 struct buf *bp; 2654 { 2655 uint32_t ckhash; 2656 struct cg *cgp; 2657 2658 cgp = (struct cg *)bp->b_data; 2659 ckhash = cgp->cg_ckhash; 2660 cgp->cg_ckhash = 0; 2661 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2662 cgp->cg_ckhash = ckhash; 2663 } 2664 2665 /* 2666 * Fserr prints the name of a filesystem with an error diagnostic. 2667 * 2668 * The form of the error message is: 2669 * fs: error message 2670 */ 2671 void 2672 ffs_fserr(fs, inum, cp) 2673 struct fs *fs; 2674 ino_t inum; 2675 char *cp; 2676 { 2677 struct thread *td = curthread; /* XXX */ 2678 struct proc *p = td->td_proc; 2679 2680 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2681 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2682 fs->fs_fsmnt, cp); 2683 } 2684 2685 /* 2686 * This function provides the capability for the fsck program to 2687 * update an active filesystem. Fourteen operations are provided: 2688 * 2689 * adjrefcnt(inode, amt) - adjusts the reference count on the 2690 * specified inode by the specified amount. Under normal 2691 * operation the count should always go down. Decrementing 2692 * the count to zero will cause the inode to be freed. 2693 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2694 * inode by the specified amount. 2695 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2696 * adjust the superblock summary. 2697 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2698 * are marked as free. Inodes should never have to be marked 2699 * as in use. 2700 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2701 * are marked as free. Inodes should never have to be marked 2702 * as in use. 2703 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2704 * are marked as free. Blocks should never have to be marked 2705 * as in use. 2706 * setflags(flags, set/clear) - the fs_flags field has the specified 2707 * flags set (second parameter +1) or cleared (second parameter -1). 2708 * setcwd(dirinode) - set the current directory to dirinode in the 2709 * filesystem associated with the snapshot. 2710 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2711 * in the current directory is oldvalue then change it to newvalue. 2712 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2713 * with nameptr in the current directory is oldvalue then unlink it. 2714 * 2715 * The following functions may only be used on a quiescent filesystem 2716 * by the soft updates journal. They are not safe to be run on an active 2717 * filesystem. 2718 * 2719 * setinode(inode, dip) - the specified disk inode is replaced with the 2720 * contents pointed to by dip. 2721 * setbufoutput(fd, flags) - output associated with the specified file 2722 * descriptor (which must reference the character device supporting 2723 * the filesystem) switches from using physio to running through the 2724 * buffer cache when flags is set to 1. The descriptor reverts to 2725 * physio for output when flags is set to zero. 2726 */ 2727 2728 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2729 2730 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2731 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2732 2733 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2734 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2735 2736 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2737 sysctl_ffs_fsck, "Adjust number of directories"); 2738 2739 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2740 sysctl_ffs_fsck, "Adjust number of free blocks"); 2741 2742 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2743 sysctl_ffs_fsck, "Adjust number of free inodes"); 2744 2745 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2746 sysctl_ffs_fsck, "Adjust number of free frags"); 2747 2748 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2749 sysctl_ffs_fsck, "Adjust number of free clusters"); 2750 2751 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2752 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2753 2754 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2755 sysctl_ffs_fsck, "Free Range of File Inodes"); 2756 2757 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2758 sysctl_ffs_fsck, "Free Range of Blocks"); 2759 2760 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2761 sysctl_ffs_fsck, "Change Filesystem Flags"); 2762 2763 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2764 sysctl_ffs_fsck, "Set Current Working Directory"); 2765 2766 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2767 sysctl_ffs_fsck, "Change Value of .. Entry"); 2768 2769 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2770 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2771 2772 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2773 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2774 2775 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2776 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2777 2778 #define DEBUG 1 2779 #ifdef DEBUG 2780 static int fsckcmds = 0; 2781 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2782 #endif /* DEBUG */ 2783 2784 static int buffered_write(struct file *, struct uio *, struct ucred *, 2785 int, struct thread *); 2786 2787 static int 2788 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2789 { 2790 struct thread *td = curthread; 2791 struct fsck_cmd cmd; 2792 struct ufsmount *ump; 2793 struct vnode *vp, *dvp, *fdvp; 2794 struct inode *ip, *dp; 2795 struct mount *mp; 2796 struct fs *fs; 2797 ufs2_daddr_t blkno; 2798 long blkcnt, blksize; 2799 struct file *fp, *vfp; 2800 cap_rights_t rights; 2801 int filetype, error; 2802 static struct fileops *origops, bufferedops; 2803 2804 if (req->newlen > sizeof cmd) 2805 return (EBADRPC); 2806 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2807 return (error); 2808 if (cmd.version != FFS_CMD_VERSION) 2809 return (ERPCMISMATCH); 2810 if ((error = getvnode(td, cmd.handle, 2811 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 2812 return (error); 2813 vp = fp->f_data; 2814 if (vp->v_type != VREG && vp->v_type != VDIR) { 2815 fdrop(fp, td); 2816 return (EINVAL); 2817 } 2818 vn_start_write(vp, &mp, V_WAIT); 2819 if (mp == NULL || 2820 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2821 vn_finished_write(mp); 2822 fdrop(fp, td); 2823 return (EINVAL); 2824 } 2825 ump = VFSTOUFS(mp); 2826 if ((mp->mnt_flag & MNT_RDONLY) && 2827 ump->um_fsckpid != td->td_proc->p_pid) { 2828 vn_finished_write(mp); 2829 fdrop(fp, td); 2830 return (EROFS); 2831 } 2832 fs = ump->um_fs; 2833 filetype = IFREG; 2834 2835 switch (oidp->oid_number) { 2836 2837 case FFS_SET_FLAGS: 2838 #ifdef DEBUG 2839 if (fsckcmds) 2840 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2841 cmd.size > 0 ? "set" : "clear"); 2842 #endif /* DEBUG */ 2843 if (cmd.size > 0) 2844 fs->fs_flags |= (long)cmd.value; 2845 else 2846 fs->fs_flags &= ~(long)cmd.value; 2847 break; 2848 2849 case FFS_ADJ_REFCNT: 2850 #ifdef DEBUG 2851 if (fsckcmds) { 2852 printf("%s: adjust inode %jd link count by %jd\n", 2853 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2854 (intmax_t)cmd.size); 2855 } 2856 #endif /* DEBUG */ 2857 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2858 break; 2859 ip = VTOI(vp); 2860 ip->i_nlink += cmd.size; 2861 DIP_SET(ip, i_nlink, ip->i_nlink); 2862 ip->i_effnlink += cmd.size; 2863 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2864 error = ffs_update(vp, 1); 2865 if (DOINGSOFTDEP(vp)) 2866 softdep_change_linkcnt(ip); 2867 vput(vp); 2868 break; 2869 2870 case FFS_ADJ_BLKCNT: 2871 #ifdef DEBUG 2872 if (fsckcmds) { 2873 printf("%s: adjust inode %jd block count by %jd\n", 2874 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2875 (intmax_t)cmd.size); 2876 } 2877 #endif /* DEBUG */ 2878 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2879 break; 2880 ip = VTOI(vp); 2881 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2882 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2883 error = ffs_update(vp, 1); 2884 vput(vp); 2885 break; 2886 2887 case FFS_DIR_FREE: 2888 filetype = IFDIR; 2889 /* fall through */ 2890 2891 case FFS_FILE_FREE: 2892 #ifdef DEBUG 2893 if (fsckcmds) { 2894 if (cmd.size == 1) 2895 printf("%s: free %s inode %ju\n", 2896 mp->mnt_stat.f_mntonname, 2897 filetype == IFDIR ? "directory" : "file", 2898 (uintmax_t)cmd.value); 2899 else 2900 printf("%s: free %s inodes %ju-%ju\n", 2901 mp->mnt_stat.f_mntonname, 2902 filetype == IFDIR ? "directory" : "file", 2903 (uintmax_t)cmd.value, 2904 (uintmax_t)(cmd.value + cmd.size - 1)); 2905 } 2906 #endif /* DEBUG */ 2907 while (cmd.size > 0) { 2908 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2909 cmd.value, filetype, NULL))) 2910 break; 2911 cmd.size -= 1; 2912 cmd.value += 1; 2913 } 2914 break; 2915 2916 case FFS_BLK_FREE: 2917 #ifdef DEBUG 2918 if (fsckcmds) { 2919 if (cmd.size == 1) 2920 printf("%s: free block %jd\n", 2921 mp->mnt_stat.f_mntonname, 2922 (intmax_t)cmd.value); 2923 else 2924 printf("%s: free blocks %jd-%jd\n", 2925 mp->mnt_stat.f_mntonname, 2926 (intmax_t)cmd.value, 2927 (intmax_t)cmd.value + cmd.size - 1); 2928 } 2929 #endif /* DEBUG */ 2930 blkno = cmd.value; 2931 blkcnt = cmd.size; 2932 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2933 while (blkcnt > 0) { 2934 if (blksize > blkcnt) 2935 blksize = blkcnt; 2936 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2937 blksize * fs->fs_fsize, UFS_ROOTINO, VDIR, NULL); 2938 blkno += blksize; 2939 blkcnt -= blksize; 2940 blksize = fs->fs_frag; 2941 } 2942 break; 2943 2944 /* 2945 * Adjust superblock summaries. fsck(8) is expected to 2946 * submit deltas when necessary. 2947 */ 2948 case FFS_ADJ_NDIR: 2949 #ifdef DEBUG 2950 if (fsckcmds) { 2951 printf("%s: adjust number of directories by %jd\n", 2952 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2953 } 2954 #endif /* DEBUG */ 2955 fs->fs_cstotal.cs_ndir += cmd.value; 2956 break; 2957 2958 case FFS_ADJ_NBFREE: 2959 #ifdef DEBUG 2960 if (fsckcmds) { 2961 printf("%s: adjust number of free blocks by %+jd\n", 2962 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2963 } 2964 #endif /* DEBUG */ 2965 fs->fs_cstotal.cs_nbfree += cmd.value; 2966 break; 2967 2968 case FFS_ADJ_NIFREE: 2969 #ifdef DEBUG 2970 if (fsckcmds) { 2971 printf("%s: adjust number of free inodes by %+jd\n", 2972 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2973 } 2974 #endif /* DEBUG */ 2975 fs->fs_cstotal.cs_nifree += cmd.value; 2976 break; 2977 2978 case FFS_ADJ_NFFREE: 2979 #ifdef DEBUG 2980 if (fsckcmds) { 2981 printf("%s: adjust number of free frags by %+jd\n", 2982 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2983 } 2984 #endif /* DEBUG */ 2985 fs->fs_cstotal.cs_nffree += cmd.value; 2986 break; 2987 2988 case FFS_ADJ_NUMCLUSTERS: 2989 #ifdef DEBUG 2990 if (fsckcmds) { 2991 printf("%s: adjust number of free clusters by %+jd\n", 2992 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2993 } 2994 #endif /* DEBUG */ 2995 fs->fs_cstotal.cs_numclusters += cmd.value; 2996 break; 2997 2998 case FFS_SET_CWD: 2999 #ifdef DEBUG 3000 if (fsckcmds) { 3001 printf("%s: set current directory to inode %jd\n", 3002 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3003 } 3004 #endif /* DEBUG */ 3005 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3006 break; 3007 AUDIT_ARG_VNODE1(vp); 3008 if ((error = change_dir(vp, td)) != 0) { 3009 vput(vp); 3010 break; 3011 } 3012 VOP_UNLOCK(vp, 0); 3013 pwd_chdir(td, vp); 3014 break; 3015 3016 case FFS_SET_DOTDOT: 3017 #ifdef DEBUG 3018 if (fsckcmds) { 3019 printf("%s: change .. in cwd from %jd to %jd\n", 3020 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3021 (intmax_t)cmd.size); 3022 } 3023 #endif /* DEBUG */ 3024 /* 3025 * First we have to get and lock the parent directory 3026 * to which ".." points. 3027 */ 3028 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3029 if (error) 3030 break; 3031 /* 3032 * Now we get and lock the child directory containing "..". 3033 */ 3034 FILEDESC_SLOCK(td->td_proc->p_fd); 3035 dvp = td->td_proc->p_fd->fd_cdir; 3036 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3037 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3038 vput(fdvp); 3039 break; 3040 } 3041 dp = VTOI(dvp); 3042 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3043 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3044 DT_DIR, 0); 3045 cache_purge(fdvp); 3046 cache_purge(dvp); 3047 vput(dvp); 3048 vput(fdvp); 3049 break; 3050 3051 case FFS_UNLINK: 3052 #ifdef DEBUG 3053 if (fsckcmds) { 3054 char buf[32]; 3055 3056 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3057 strncpy(buf, "Name_too_long", 32); 3058 printf("%s: unlink %s (inode %jd)\n", 3059 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3060 } 3061 #endif /* DEBUG */ 3062 /* 3063 * kern_unlinkat will do its own start/finish writes and 3064 * they do not nest, so drop ours here. Setting mp == NULL 3065 * indicates that vn_finished_write is not needed down below. 3066 */ 3067 vn_finished_write(mp); 3068 mp = NULL; 3069 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 3070 UIO_USERSPACE, (ino_t)cmd.size); 3071 break; 3072 3073 case FFS_SET_INODE: 3074 if (ump->um_fsckpid != td->td_proc->p_pid) { 3075 error = EPERM; 3076 break; 3077 } 3078 #ifdef DEBUG 3079 if (fsckcmds) { 3080 printf("%s: update inode %jd\n", 3081 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3082 } 3083 #endif /* DEBUG */ 3084 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3085 break; 3086 AUDIT_ARG_VNODE1(vp); 3087 ip = VTOI(vp); 3088 if (I_IS_UFS1(ip)) 3089 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3090 sizeof(struct ufs1_dinode)); 3091 else 3092 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3093 sizeof(struct ufs2_dinode)); 3094 if (error) { 3095 vput(vp); 3096 break; 3097 } 3098 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3099 error = ffs_update(vp, 1); 3100 vput(vp); 3101 break; 3102 3103 case FFS_SET_BUFOUTPUT: 3104 if (ump->um_fsckpid != td->td_proc->p_pid) { 3105 error = EPERM; 3106 break; 3107 } 3108 if (ITOUMP(VTOI(vp)) != ump) { 3109 error = EINVAL; 3110 break; 3111 } 3112 #ifdef DEBUG 3113 if (fsckcmds) { 3114 printf("%s: %s buffered output for descriptor %jd\n", 3115 mp->mnt_stat.f_mntonname, 3116 cmd.size == 1 ? "enable" : "disable", 3117 (intmax_t)cmd.value); 3118 } 3119 #endif /* DEBUG */ 3120 if ((error = getvnode(td, cmd.value, 3121 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3122 break; 3123 if (vfp->f_vnode->v_type != VCHR) { 3124 fdrop(vfp, td); 3125 error = EINVAL; 3126 break; 3127 } 3128 if (origops == NULL) { 3129 origops = vfp->f_ops; 3130 bcopy((void *)origops, (void *)&bufferedops, 3131 sizeof(bufferedops)); 3132 bufferedops.fo_write = buffered_write; 3133 } 3134 if (cmd.size == 1) 3135 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3136 (uintptr_t)&bufferedops); 3137 else 3138 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3139 (uintptr_t)origops); 3140 fdrop(vfp, td); 3141 break; 3142 3143 default: 3144 #ifdef DEBUG 3145 if (fsckcmds) { 3146 printf("Invalid request %d from fsck\n", 3147 oidp->oid_number); 3148 } 3149 #endif /* DEBUG */ 3150 error = EINVAL; 3151 break; 3152 3153 } 3154 fdrop(fp, td); 3155 vn_finished_write(mp); 3156 return (error); 3157 } 3158 3159 /* 3160 * Function to switch a descriptor to use the buffer cache to stage 3161 * its I/O. This is needed so that writes to the filesystem device 3162 * will give snapshots a chance to copy modified blocks for which it 3163 * needs to retain copies. 3164 */ 3165 static int 3166 buffered_write(fp, uio, active_cred, flags, td) 3167 struct file *fp; 3168 struct uio *uio; 3169 struct ucred *active_cred; 3170 int flags; 3171 struct thread *td; 3172 { 3173 struct vnode *devvp, *vp; 3174 struct inode *ip; 3175 struct buf *bp; 3176 struct fs *fs; 3177 struct filedesc *fdp; 3178 int error; 3179 daddr_t lbn; 3180 3181 /* 3182 * The devvp is associated with the /dev filesystem. To discover 3183 * the filesystem with which the device is associated, we depend 3184 * on the application setting the current directory to a location 3185 * within the filesystem being written. Yes, this is an ugly hack. 3186 */ 3187 devvp = fp->f_vnode; 3188 if (!vn_isdisk(devvp, NULL)) 3189 return (EINVAL); 3190 fdp = td->td_proc->p_fd; 3191 FILEDESC_SLOCK(fdp); 3192 vp = fdp->fd_cdir; 3193 vref(vp); 3194 FILEDESC_SUNLOCK(fdp); 3195 vn_lock(vp, LK_SHARED | LK_RETRY); 3196 /* 3197 * Check that the current directory vnode indeed belongs to 3198 * UFS before trying to dereference UFS-specific v_data fields. 3199 */ 3200 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3201 vput(vp); 3202 return (EINVAL); 3203 } 3204 ip = VTOI(vp); 3205 if (ITODEVVP(ip) != devvp) { 3206 vput(vp); 3207 return (EINVAL); 3208 } 3209 fs = ITOFS(ip); 3210 vput(vp); 3211 foffset_lock_uio(fp, uio, flags); 3212 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3213 #ifdef DEBUG 3214 if (fsckcmds) { 3215 printf("%s: buffered write for block %jd\n", 3216 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3217 } 3218 #endif /* DEBUG */ 3219 /* 3220 * All I/O must be contained within a filesystem block, start on 3221 * a fragment boundary, and be a multiple of fragments in length. 3222 */ 3223 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3224 fragoff(fs, uio->uio_offset) != 0 || 3225 fragoff(fs, uio->uio_resid) != 0) { 3226 error = EINVAL; 3227 goto out; 3228 } 3229 lbn = numfrags(fs, uio->uio_offset); 3230 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3231 bp->b_flags |= B_RELBUF; 3232 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3233 brelse(bp); 3234 goto out; 3235 } 3236 error = bwrite(bp); 3237 out: 3238 VOP_UNLOCK(devvp, 0); 3239 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3240 return (error); 3241 } 3242