1 /* 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_quota.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/buf.h> 42 #include <sys/conf.h> 43 #include <sys/proc.h> 44 #include <sys/vnode.h> 45 #include <sys/mount.h> 46 #include <sys/kernel.h> 47 #include <sys/sysctl.h> 48 #include <sys/syslog.h> 49 50 #include <ufs/ufs/quota.h> 51 #include <ufs/ufs/inode.h> 52 #include <ufs/ufs/ufs_extern.h> 53 #include <ufs/ufs/ufsmount.h> 54 55 #include <ufs/ffs/fs.h> 56 #include <ufs/ffs/ffs_extern.h> 57 58 typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref, 59 int size)); 60 61 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int)); 62 static ufs_daddr_t 63 ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t)); 64 #ifdef DIAGNOSTIC 65 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long)); 66 #endif 67 static void ffs_clusteracct __P((struct fs *, struct cg *, ufs_daddr_t, 68 int)); 69 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, 70 int)); 71 static ino_t ffs_dirpref __P((struct fs *)); 72 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int)); 73 static void ffs_fserr __P((struct fs *, u_int, char *)); 74 static u_long ffs_hashalloc 75 __P((struct inode *, int, long, int, allocfcn_t *)); 76 static ino_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int)); 77 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t, 78 int)); 79 80 /* 81 * Allocate a block in the file system. 82 * 83 * The size of the requested block is given, which must be some 84 * multiple of fs_fsize and <= fs_bsize. 85 * A preference may be optionally specified. If a preference is given 86 * the following hierarchy is used to allocate a block: 87 * 1) allocate the requested block. 88 * 2) allocate a rotationally optimal block in the same cylinder. 89 * 3) allocate a block in the same cylinder group. 90 * 4) quadradically rehash into other cylinder groups, until an 91 * available block is located. 92 * If no block preference is given the following heirarchy is used 93 * to allocate a block: 94 * 1) allocate a block in the cylinder group that contains the 95 * inode for the file. 96 * 2) quadradically rehash into other cylinder groups, until an 97 * available block is located. 98 */ 99 int 100 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 101 register struct inode *ip; 102 ufs_daddr_t lbn, bpref; 103 int size; 104 struct ucred *cred; 105 ufs_daddr_t *bnp; 106 { 107 register struct fs *fs; 108 ufs_daddr_t bno; 109 int cg; 110 #ifdef QUOTA 111 int error; 112 #endif 113 114 *bnp = 0; 115 fs = ip->i_fs; 116 #ifdef DIAGNOSTIC 117 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 118 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 119 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 120 fs->fs_fsmnt); 121 panic("ffs_alloc: bad size"); 122 } 123 if (cred == NOCRED) 124 panic("ffs_alloc: missing credential"); 125 #endif /* DIAGNOSTIC */ 126 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 127 goto nospace; 128 if (cred->cr_uid != 0 && 129 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 130 goto nospace; 131 #ifdef QUOTA 132 error = chkdq(ip, (long)btodb(size), cred, 0); 133 if (error) 134 return (error); 135 #endif 136 if (bpref >= fs->fs_size) 137 bpref = 0; 138 if (bpref == 0) 139 cg = ino_to_cg(fs, ip->i_number); 140 else 141 cg = dtog(fs, bpref); 142 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, 143 ffs_alloccg); 144 if (bno > 0) { 145 ip->i_blocks += btodb(size); 146 ip->i_flag |= IN_CHANGE | IN_UPDATE; 147 *bnp = bno; 148 return (0); 149 } 150 #ifdef QUOTA 151 /* 152 * Restore user's disk quota because allocation failed. 153 */ 154 (void) chkdq(ip, (long)-btodb(size), cred, FORCE); 155 #endif 156 nospace: 157 ffs_fserr(fs, cred->cr_uid, "file system full"); 158 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 159 return (ENOSPC); 160 } 161 162 /* 163 * Reallocate a fragment to a bigger size 164 * 165 * The number and size of the old block is given, and a preference 166 * and new size is also specified. The allocator attempts to extend 167 * the original block. Failing that, the regular block allocator is 168 * invoked to get an appropriate block. 169 */ 170 int 171 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp) 172 register struct inode *ip; 173 ufs_daddr_t lbprev; 174 ufs_daddr_t bpref; 175 int osize, nsize; 176 struct ucred *cred; 177 struct buf **bpp; 178 { 179 register struct fs *fs; 180 struct buf *bp; 181 int cg, request, error; 182 ufs_daddr_t bprev, bno; 183 184 *bpp = 0; 185 fs = ip->i_fs; 186 #ifdef DIAGNOSTIC 187 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 188 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 189 printf( 190 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 191 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 192 nsize, fs->fs_fsmnt); 193 panic("ffs_realloccg: bad size"); 194 } 195 if (cred == NOCRED) 196 panic("ffs_realloccg: missing credential"); 197 #endif /* DIAGNOSTIC */ 198 if (cred->cr_uid != 0 && 199 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) 200 goto nospace; 201 if ((bprev = ip->i_db[lbprev]) == 0) { 202 printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n", 203 devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev, 204 fs->fs_fsmnt); 205 panic("ffs_realloccg: bad bprev"); 206 } 207 /* 208 * Allocate the extra space in the buffer. 209 */ 210 error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp); 211 if (error) { 212 brelse(bp); 213 return (error); 214 } 215 216 if( bp->b_blkno == bp->b_lblkno) { 217 if( lbprev >= NDADDR) 218 panic("ffs_realloccg: lbprev out of range"); 219 bp->b_blkno = fsbtodb(fs, bprev); 220 } 221 222 #ifdef QUOTA 223 error = chkdq(ip, (long)btodb(nsize - osize), cred, 0); 224 if (error) { 225 brelse(bp); 226 return (error); 227 } 228 #endif 229 /* 230 * Check for extension in the existing location. 231 */ 232 cg = dtog(fs, bprev); 233 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize); 234 if (bno) { 235 if (bp->b_blkno != fsbtodb(fs, bno)) 236 panic("ffs_realloccg: bad blockno"); 237 ip->i_blocks += btodb(nsize - osize); 238 ip->i_flag |= IN_CHANGE | IN_UPDATE; 239 allocbuf(bp, nsize); 240 bp->b_flags |= B_DONE; 241 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 242 *bpp = bp; 243 return (0); 244 } 245 /* 246 * Allocate a new disk location. 247 */ 248 if (bpref >= fs->fs_size) 249 bpref = 0; 250 switch ((int)fs->fs_optim) { 251 case FS_OPTSPACE: 252 /* 253 * Allocate an exact sized fragment. Although this makes 254 * best use of space, we will waste time relocating it if 255 * the file continues to grow. If the fragmentation is 256 * less than half of the minimum free reserve, we choose 257 * to begin optimizing for time. 258 */ 259 request = nsize; 260 if (fs->fs_minfree <= 5 || 261 fs->fs_cstotal.cs_nffree > 262 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 263 break; 264 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 265 fs->fs_fsmnt); 266 fs->fs_optim = FS_OPTTIME; 267 break; 268 case FS_OPTTIME: 269 /* 270 * At this point we have discovered a file that is trying to 271 * grow a small fragment to a larger fragment. To save time, 272 * we allocate a full sized block, then free the unused portion. 273 * If the file continues to grow, the `ffs_fragextend' call 274 * above will be able to grow it in place without further 275 * copying. If aberrant programs cause disk fragmentation to 276 * grow within 2% of the free reserve, we choose to begin 277 * optimizing for space. 278 */ 279 request = fs->fs_bsize; 280 if (fs->fs_cstotal.cs_nffree < 281 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 282 break; 283 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 284 fs->fs_fsmnt); 285 fs->fs_optim = FS_OPTSPACE; 286 break; 287 default: 288 printf("dev = %s, optim = %ld, fs = %s\n", 289 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 290 panic("ffs_realloccg: bad optim"); 291 /* NOTREACHED */ 292 } 293 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request, 294 ffs_alloccg); 295 if (bno > 0) { 296 bp->b_blkno = fsbtodb(fs, bno); 297 if (!DOINGSOFTDEP(ITOV(ip))) 298 ffs_blkfree(ip, bprev, (long)osize); 299 if (nsize < request) 300 ffs_blkfree(ip, bno + numfrags(fs, nsize), 301 (long)(request - nsize)); 302 ip->i_blocks += btodb(nsize - osize); 303 ip->i_flag |= IN_CHANGE | IN_UPDATE; 304 allocbuf(bp, nsize); 305 bp->b_flags |= B_DONE; 306 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 307 *bpp = bp; 308 return (0); 309 } 310 #ifdef QUOTA 311 /* 312 * Restore user's disk quota because allocation failed. 313 */ 314 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); 315 #endif 316 brelse(bp); 317 nospace: 318 /* 319 * no space available 320 */ 321 ffs_fserr(fs, cred->cr_uid, "file system full"); 322 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 323 return (ENOSPC); 324 } 325 326 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 327 328 /* 329 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 330 * 331 * The vnode and an array of buffer pointers for a range of sequential 332 * logical blocks to be made contiguous is given. The allocator attempts 333 * to find a range of sequential blocks starting as close as possible to 334 * an fs_rotdelay offset from the end of the allocation for the logical 335 * block immediately preceeding the current range. If successful, the 336 * physical block numbers in the buffer pointers and in the inode are 337 * changed to reflect the new allocation. If unsuccessful, the allocation 338 * is left unchanged. The success in doing the reallocation is returned. 339 * Note that the error return is not reflected back to the user. Rather 340 * the previous block allocation will be used. 341 */ 342 static int doasyncfree = 1; 343 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 344 345 static int doreallocblks = 1; 346 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 347 348 #ifdef DEBUG 349 static volatile int prtrealloc = 0; 350 #endif 351 352 int 353 ffs_reallocblks(ap) 354 struct vop_reallocblks_args /* { 355 struct vnode *a_vp; 356 struct cluster_save *a_buflist; 357 } */ *ap; 358 { 359 struct fs *fs; 360 struct inode *ip; 361 struct vnode *vp; 362 struct buf *sbp, *ebp; 363 ufs_daddr_t *bap, *sbap, *ebap = 0; 364 struct cluster_save *buflist; 365 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno; 366 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 367 int i, len, start_lvl, end_lvl, pref, ssize; 368 369 if (doreallocblks == 0) 370 return (ENOSPC); 371 vp = ap->a_vp; 372 ip = VTOI(vp); 373 fs = ip->i_fs; 374 if (fs->fs_contigsumsize <= 0) 375 return (ENOSPC); 376 buflist = ap->a_buflist; 377 len = buflist->bs_nchildren; 378 start_lbn = buflist->bs_children[0]->b_lblkno; 379 end_lbn = start_lbn + len - 1; 380 #ifdef DIAGNOSTIC 381 for (i = 0; i < len; i++) 382 if (!ffs_checkblk(ip, 383 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 384 panic("ffs_reallocblks: unallocated block 1"); 385 for (i = 1; i < len; i++) 386 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 387 panic("ffs_reallocblks: non-logical cluster"); 388 blkno = buflist->bs_children[0]->b_blkno; 389 ssize = fsbtodb(fs, fs->fs_frag); 390 for (i = 1; i < len - 1; i++) 391 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 392 panic("ffs_reallocblks: non-physical cluster %d", i); 393 #endif 394 /* 395 * If the latest allocation is in a new cylinder group, assume that 396 * the filesystem has decided to move and do not force it back to 397 * the previous cylinder group. 398 */ 399 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 400 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 401 return (ENOSPC); 402 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 403 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 404 return (ENOSPC); 405 /* 406 * Get the starting offset and block map for the first block. 407 */ 408 if (start_lvl == 0) { 409 sbap = &ip->i_db[0]; 410 soff = start_lbn; 411 } else { 412 idp = &start_ap[start_lvl - 1]; 413 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 414 brelse(sbp); 415 return (ENOSPC); 416 } 417 sbap = (ufs_daddr_t *)sbp->b_data; 418 soff = idp->in_off; 419 } 420 /* 421 * Find the preferred location for the cluster. 422 */ 423 pref = ffs_blkpref(ip, start_lbn, soff, sbap); 424 /* 425 * If the block range spans two block maps, get the second map. 426 */ 427 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 428 ssize = len; 429 } else { 430 #ifdef DIAGNOSTIC 431 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 432 panic("ffs_reallocblk: start == end"); 433 #endif 434 ssize = len - (idp->in_off + 1); 435 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 436 goto fail; 437 ebap = (ufs_daddr_t *)ebp->b_data; 438 } 439 /* 440 * Search the block map looking for an allocation of the desired size. 441 */ 442 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref, 443 len, ffs_clusteralloc)) == 0) 444 goto fail; 445 /* 446 * We have found a new contiguous block. 447 * 448 * First we have to replace the old block pointers with the new 449 * block pointers in the inode and indirect blocks associated 450 * with the file. 451 */ 452 #ifdef DEBUG 453 if (prtrealloc) 454 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number, 455 start_lbn, end_lbn); 456 #endif 457 blkno = newblk; 458 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 459 if (i == ssize) { 460 bap = ebap; 461 soff = -i; 462 } 463 #ifdef DIAGNOSTIC 464 if (!ffs_checkblk(ip, 465 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 466 panic("ffs_reallocblks: unallocated block 2"); 467 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 468 panic("ffs_reallocblks: alloc mismatch"); 469 #endif 470 #ifdef DEBUG 471 if (prtrealloc) 472 printf(" %d,", *bap); 473 #endif 474 if (DOINGSOFTDEP(vp)) { 475 if (sbap == &ip->i_db[0] && i < ssize) 476 softdep_setup_allocdirect(ip, start_lbn + i, 477 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 478 buflist->bs_children[i]); 479 else 480 softdep_setup_allocindir_page(ip, start_lbn + i, 481 i < ssize ? sbp : ebp, soff + i, blkno, 482 *bap, buflist->bs_children[i]); 483 } 484 *bap++ = blkno; 485 } 486 /* 487 * Next we must write out the modified inode and indirect blocks. 488 * For strict correctness, the writes should be synchronous since 489 * the old block values may have been written to disk. In practise 490 * they are almost never written, but if we are concerned about 491 * strict correctness, the `doasyncfree' flag should be set to zero. 492 * 493 * The test on `doasyncfree' should be changed to test a flag 494 * that shows whether the associated buffers and inodes have 495 * been written. The flag should be set when the cluster is 496 * started and cleared whenever the buffer or inode is flushed. 497 * We can then check below to see if it is set, and do the 498 * synchronous write only when it has been cleared. 499 */ 500 if (sbap != &ip->i_db[0]) { 501 if (doasyncfree) 502 bdwrite(sbp); 503 else 504 bwrite(sbp); 505 } else { 506 ip->i_flag |= IN_CHANGE | IN_UPDATE; 507 if (!doasyncfree) 508 UFS_UPDATE(vp, 1); 509 } 510 if (ssize < len) { 511 if (doasyncfree) 512 bdwrite(ebp); 513 else 514 bwrite(ebp); 515 } 516 /* 517 * Last, free the old blocks and assign the new blocks to the buffers. 518 */ 519 #ifdef DEBUG 520 if (prtrealloc) 521 printf("\n\tnew:"); 522 #endif 523 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 524 if (!DOINGSOFTDEP(vp)) 525 ffs_blkfree(ip, 526 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 527 fs->fs_bsize); 528 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 529 #ifdef DIAGNOSTIC 530 if (!ffs_checkblk(ip, 531 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 532 panic("ffs_reallocblks: unallocated block 3"); 533 #endif 534 #ifdef DEBUG 535 if (prtrealloc) 536 printf(" %d,", blkno); 537 #endif 538 } 539 #ifdef DEBUG 540 if (prtrealloc) { 541 prtrealloc--; 542 printf("\n"); 543 } 544 #endif 545 return (0); 546 547 fail: 548 if (ssize < len) 549 brelse(ebp); 550 if (sbap != &ip->i_db[0]) 551 brelse(sbp); 552 return (ENOSPC); 553 } 554 555 /* 556 * Allocate an inode in the file system. 557 * 558 * If allocating a directory, use ffs_dirpref to select the inode. 559 * If allocating in a directory, the following hierarchy is followed: 560 * 1) allocate the preferred inode. 561 * 2) allocate an inode in the same cylinder group. 562 * 3) quadradically rehash into other cylinder groups, until an 563 * available inode is located. 564 * If no inode preference is given the following heirarchy is used 565 * to allocate an inode: 566 * 1) allocate an inode in cylinder group 0. 567 * 2) quadradically rehash into other cylinder groups, until an 568 * available inode is located. 569 */ 570 int 571 ffs_valloc(pvp, mode, cred, vpp) 572 struct vnode *pvp; 573 int mode; 574 struct ucred *cred; 575 struct vnode **vpp; 576 { 577 register struct inode *pip; 578 register struct fs *fs; 579 register struct inode *ip; 580 ino_t ino, ipref; 581 int cg, error; 582 583 *vpp = NULL; 584 pip = VTOI(pvp); 585 fs = pip->i_fs; 586 if (fs->fs_cstotal.cs_nifree == 0) 587 goto noinodes; 588 589 if ((mode & IFMT) == IFDIR) 590 ipref = ffs_dirpref(fs); 591 else 592 ipref = pip->i_number; 593 if (ipref >= fs->fs_ncg * fs->fs_ipg) 594 ipref = 0; 595 cg = ino_to_cg(fs, ipref); 596 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, 597 (allocfcn_t *)ffs_nodealloccg); 598 if (ino == 0) 599 goto noinodes; 600 error = VFS_VGET(pvp->v_mount, ino, vpp); 601 if (error) { 602 UFS_VFREE(pvp, ino, mode); 603 return (error); 604 } 605 ip = VTOI(*vpp); 606 if (ip->i_mode) { 607 printf("mode = 0%o, inum = %lu, fs = %s\n", 608 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 609 panic("ffs_valloc: dup alloc"); 610 } 611 if (ip->i_blocks) { /* XXX */ 612 printf("free inode %s/%lu had %ld blocks\n", 613 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks); 614 ip->i_blocks = 0; 615 } 616 ip->i_flags = 0; 617 /* 618 * Set up a new generation number for this inode. 619 */ 620 if (ip->i_gen == 0 || ++ip->i_gen == 0) 621 ip->i_gen = random() / 2 + 1; 622 return (0); 623 noinodes: 624 ffs_fserr(fs, cred->cr_uid, "out of inodes"); 625 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 626 return (ENOSPC); 627 } 628 629 /* 630 * Find a cylinder to place a directory. 631 * 632 * The policy implemented by this algorithm is to select from 633 * among those cylinder groups with above the average number of 634 * free inodes, the one with the smallest number of directories. 635 */ 636 static ino_t 637 ffs_dirpref(fs) 638 register struct fs *fs; 639 { 640 int cg, minndir, mincg, avgifree; 641 642 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 643 minndir = fs->fs_ipg; 644 mincg = 0; 645 for (cg = 0; cg < fs->fs_ncg; cg++) 646 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 647 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 648 mincg = cg; 649 minndir = fs->fs_cs(fs, cg).cs_ndir; 650 } 651 return ((ino_t)(fs->fs_ipg * mincg)); 652 } 653 654 /* 655 * Select the desired position for the next block in a file. The file is 656 * logically divided into sections. The first section is composed of the 657 * direct blocks. Each additional section contains fs_maxbpg blocks. 658 * 659 * If no blocks have been allocated in the first section, the policy is to 660 * request a block in the same cylinder group as the inode that describes 661 * the file. If no blocks have been allocated in any other section, the 662 * policy is to place the section in a cylinder group with a greater than 663 * average number of free blocks. An appropriate cylinder group is found 664 * by using a rotor that sweeps the cylinder groups. When a new group of 665 * blocks is needed, the sweep begins in the cylinder group following the 666 * cylinder group from which the previous allocation was made. The sweep 667 * continues until a cylinder group with greater than the average number 668 * of free blocks is found. If the allocation is for the first block in an 669 * indirect block, the information on the previous allocation is unavailable; 670 * here a best guess is made based upon the logical block number being 671 * allocated. 672 * 673 * If a section is already partially allocated, the policy is to 674 * contiguously allocate fs_maxcontig blocks. The end of one of these 675 * contiguous blocks and the beginning of the next is physically separated 676 * so that the disk head will be in transit between them for at least 677 * fs_rotdelay milliseconds. This is to allow time for the processor to 678 * schedule another I/O transfer. 679 */ 680 ufs_daddr_t 681 ffs_blkpref(ip, lbn, indx, bap) 682 struct inode *ip; 683 ufs_daddr_t lbn; 684 int indx; 685 ufs_daddr_t *bap; 686 { 687 register struct fs *fs; 688 register int cg; 689 int avgbfree, startcg; 690 ufs_daddr_t nextblk; 691 692 fs = ip->i_fs; 693 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 694 if (lbn < NDADDR + NINDIR(fs)) { 695 cg = ino_to_cg(fs, ip->i_number); 696 return (fs->fs_fpg * cg + fs->fs_frag); 697 } 698 /* 699 * Find a cylinder with greater than average number of 700 * unused data blocks. 701 */ 702 if (indx == 0 || bap[indx - 1] == 0) 703 startcg = 704 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 705 else 706 startcg = dtog(fs, bap[indx - 1]) + 1; 707 startcg %= fs->fs_ncg; 708 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 709 for (cg = startcg; cg < fs->fs_ncg; cg++) 710 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 711 fs->fs_cgrotor = cg; 712 return (fs->fs_fpg * cg + fs->fs_frag); 713 } 714 for (cg = 0; cg <= startcg; cg++) 715 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 716 fs->fs_cgrotor = cg; 717 return (fs->fs_fpg * cg + fs->fs_frag); 718 } 719 return (0); 720 } 721 /* 722 * One or more previous blocks have been laid out. If less 723 * than fs_maxcontig previous blocks are contiguous, the 724 * next block is requested contiguously, otherwise it is 725 * requested rotationally delayed by fs_rotdelay milliseconds. 726 */ 727 nextblk = bap[indx - 1] + fs->fs_frag; 728 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig || 729 bap[indx - fs->fs_maxcontig] + 730 blkstofrags(fs, fs->fs_maxcontig) != nextblk) 731 return (nextblk); 732 /* 733 * Here we convert ms of delay to frags as: 734 * (frags) = (ms) * (rev/sec) * (sect/rev) / 735 * ((sect/frag) * (ms/sec)) 736 * then round up to the next block. 737 */ 738 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 739 (NSPF(fs) * 1000), fs->fs_frag); 740 return (nextblk); 741 } 742 743 /* 744 * Implement the cylinder overflow algorithm. 745 * 746 * The policy implemented by this algorithm is: 747 * 1) allocate the block in its requested cylinder group. 748 * 2) quadradically rehash on the cylinder group number. 749 * 3) brute force search for a free block. 750 */ 751 /*VARARGS5*/ 752 static u_long 753 ffs_hashalloc(ip, cg, pref, size, allocator) 754 struct inode *ip; 755 int cg; 756 long pref; 757 int size; /* size for data blocks, mode for inodes */ 758 allocfcn_t *allocator; 759 { 760 register struct fs *fs; 761 long result; /* XXX why not same type as we return? */ 762 int i, icg = cg; 763 764 fs = ip->i_fs; 765 /* 766 * 1: preferred cylinder group 767 */ 768 result = (*allocator)(ip, cg, pref, size); 769 if (result) 770 return (result); 771 /* 772 * 2: quadratic rehash 773 */ 774 for (i = 1; i < fs->fs_ncg; i *= 2) { 775 cg += i; 776 if (cg >= fs->fs_ncg) 777 cg -= fs->fs_ncg; 778 result = (*allocator)(ip, cg, 0, size); 779 if (result) 780 return (result); 781 } 782 /* 783 * 3: brute force search 784 * Note that we start at i == 2, since 0 was checked initially, 785 * and 1 is always checked in the quadratic rehash. 786 */ 787 cg = (icg + 2) % fs->fs_ncg; 788 for (i = 2; i < fs->fs_ncg; i++) { 789 result = (*allocator)(ip, cg, 0, size); 790 if (result) 791 return (result); 792 cg++; 793 if (cg == fs->fs_ncg) 794 cg = 0; 795 } 796 return (0); 797 } 798 799 /* 800 * Determine whether a fragment can be extended. 801 * 802 * Check to see if the necessary fragments are available, and 803 * if they are, allocate them. 804 */ 805 static ufs_daddr_t 806 ffs_fragextend(ip, cg, bprev, osize, nsize) 807 struct inode *ip; 808 int cg; 809 long bprev; 810 int osize, nsize; 811 { 812 register struct fs *fs; 813 register struct cg *cgp; 814 struct buf *bp; 815 long bno; 816 int frags, bbase; 817 int i, error; 818 u_int8_t *blksfree; 819 820 fs = ip->i_fs; 821 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 822 return (0); 823 frags = numfrags(fs, nsize); 824 bbase = fragnum(fs, bprev); 825 if (bbase > fragnum(fs, (bprev + frags - 1))) { 826 /* cannot extend across a block boundary */ 827 return (0); 828 } 829 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 830 (int)fs->fs_cgsize, NOCRED, &bp); 831 if (error) { 832 brelse(bp); 833 return (0); 834 } 835 cgp = (struct cg *)bp->b_data; 836 if (!cg_chkmagic(cgp)) { 837 brelse(bp); 838 return (0); 839 } 840 bp->b_xflags |= BX_BKGRDWRITE; 841 cgp->cg_time = time_second; 842 bno = dtogd(fs, bprev); 843 blksfree = cg_blksfree(cgp); 844 for (i = numfrags(fs, osize); i < frags; i++) 845 if (isclr(blksfree, bno + i)) { 846 brelse(bp); 847 return (0); 848 } 849 /* 850 * the current fragment can be extended 851 * deduct the count on fragment being extended into 852 * increase the count on the remaining fragment (if any) 853 * allocate the extended piece 854 */ 855 for (i = frags; i < fs->fs_frag - bbase; i++) 856 if (isclr(blksfree, bno + i)) 857 break; 858 cgp->cg_frsum[i - numfrags(fs, osize)]--; 859 if (i != frags) 860 cgp->cg_frsum[i - frags]++; 861 for (i = numfrags(fs, osize); i < frags; i++) { 862 clrbit(blksfree, bno + i); 863 cgp->cg_cs.cs_nffree--; 864 fs->fs_cstotal.cs_nffree--; 865 fs->fs_cs(fs, cg).cs_nffree--; 866 } 867 fs->fs_fmod = 1; 868 if (DOINGSOFTDEP(ITOV(ip))) 869 softdep_setup_blkmapdep(bp, fs, bprev); 870 bdwrite(bp); 871 return (bprev); 872 } 873 874 /* 875 * Determine whether a block can be allocated. 876 * 877 * Check to see if a block of the appropriate size is available, 878 * and if it is, allocate it. 879 */ 880 static ufs_daddr_t 881 ffs_alloccg(ip, cg, bpref, size) 882 struct inode *ip; 883 int cg; 884 ufs_daddr_t bpref; 885 int size; 886 { 887 register struct fs *fs; 888 register struct cg *cgp; 889 struct buf *bp; 890 register int i; 891 ufs_daddr_t bno, blkno; 892 int allocsiz, error, frags; 893 u_int8_t *blksfree; 894 895 fs = ip->i_fs; 896 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 897 return (0); 898 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 899 (int)fs->fs_cgsize, NOCRED, &bp); 900 if (error) { 901 brelse(bp); 902 return (0); 903 } 904 cgp = (struct cg *)bp->b_data; 905 if (!cg_chkmagic(cgp) || 906 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 907 brelse(bp); 908 return (0); 909 } 910 bp->b_xflags |= BX_BKGRDWRITE; 911 cgp->cg_time = time_second; 912 if (size == fs->fs_bsize) { 913 bno = ffs_alloccgblk(ip, bp, bpref); 914 bdwrite(bp); 915 return (bno); 916 } 917 /* 918 * check to see if any fragments are already available 919 * allocsiz is the size which will be allocated, hacking 920 * it down to a smaller size if necessary 921 */ 922 blksfree = cg_blksfree(cgp); 923 frags = numfrags(fs, size); 924 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 925 if (cgp->cg_frsum[allocsiz] != 0) 926 break; 927 if (allocsiz == fs->fs_frag) { 928 /* 929 * no fragments were available, so a block will be 930 * allocated, and hacked up 931 */ 932 if (cgp->cg_cs.cs_nbfree == 0) { 933 brelse(bp); 934 return (0); 935 } 936 bno = ffs_alloccgblk(ip, bp, bpref); 937 bpref = dtogd(fs, bno); 938 for (i = frags; i < fs->fs_frag; i++) 939 setbit(blksfree, bpref + i); 940 i = fs->fs_frag - frags; 941 cgp->cg_cs.cs_nffree += i; 942 fs->fs_cstotal.cs_nffree += i; 943 fs->fs_cs(fs, cg).cs_nffree += i; 944 fs->fs_fmod = 1; 945 cgp->cg_frsum[i]++; 946 bdwrite(bp); 947 return (bno); 948 } 949 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 950 if (bno < 0) { 951 brelse(bp); 952 return (0); 953 } 954 for (i = 0; i < frags; i++) 955 clrbit(blksfree, bno + i); 956 cgp->cg_cs.cs_nffree -= frags; 957 fs->fs_cstotal.cs_nffree -= frags; 958 fs->fs_cs(fs, cg).cs_nffree -= frags; 959 fs->fs_fmod = 1; 960 cgp->cg_frsum[allocsiz]--; 961 if (frags != allocsiz) 962 cgp->cg_frsum[allocsiz - frags]++; 963 blkno = cg * fs->fs_fpg + bno; 964 if (DOINGSOFTDEP(ITOV(ip))) 965 softdep_setup_blkmapdep(bp, fs, blkno); 966 bdwrite(bp); 967 return ((u_long)blkno); 968 } 969 970 /* 971 * Allocate a block in a cylinder group. 972 * 973 * This algorithm implements the following policy: 974 * 1) allocate the requested block. 975 * 2) allocate a rotationally optimal block in the same cylinder. 976 * 3) allocate the next available block on the block rotor for the 977 * specified cylinder group. 978 * Note that this routine only allocates fs_bsize blocks; these 979 * blocks may be fragmented by the routine that allocates them. 980 */ 981 static ufs_daddr_t 982 ffs_alloccgblk(ip, bp, bpref) 983 struct inode *ip; 984 struct buf *bp; 985 ufs_daddr_t bpref; 986 { 987 struct fs *fs; 988 struct cg *cgp; 989 ufs_daddr_t bno, blkno; 990 int cylno, pos, delta; 991 short *cylbp; 992 register int i; 993 u_int8_t *blksfree; 994 995 fs = ip->i_fs; 996 cgp = (struct cg *)bp->b_data; 997 blksfree = cg_blksfree(cgp); 998 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 999 bpref = cgp->cg_rotor; 1000 goto norot; 1001 } 1002 bpref = blknum(fs, bpref); 1003 bpref = dtogd(fs, bpref); 1004 /* 1005 * if the requested block is available, use it 1006 */ 1007 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) { 1008 bno = bpref; 1009 goto gotit; 1010 } 1011 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) { 1012 /* 1013 * Block layout information is not available. 1014 * Leaving bpref unchanged means we take the 1015 * next available free block following the one 1016 * we just allocated. Hopefully this will at 1017 * least hit a track cache on drives of unknown 1018 * geometry (e.g. SCSI). 1019 */ 1020 goto norot; 1021 } 1022 /* 1023 * check for a block available on the same cylinder 1024 */ 1025 cylno = cbtocylno(fs, bpref); 1026 if (cg_blktot(cgp)[cylno] == 0) 1027 goto norot; 1028 /* 1029 * check the summary information to see if a block is 1030 * available in the requested cylinder starting at the 1031 * requested rotational position and proceeding around. 1032 */ 1033 cylbp = cg_blks(fs, cgp, cylno); 1034 pos = cbtorpos(fs, bpref); 1035 for (i = pos; i < fs->fs_nrpos; i++) 1036 if (cylbp[i] > 0) 1037 break; 1038 if (i == fs->fs_nrpos) 1039 for (i = 0; i < pos; i++) 1040 if (cylbp[i] > 0) 1041 break; 1042 if (cylbp[i] > 0) { 1043 /* 1044 * found a rotational position, now find the actual 1045 * block. A panic if none is actually there. 1046 */ 1047 pos = cylno % fs->fs_cpc; 1048 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 1049 if (fs_postbl(fs, pos)[i] == -1) { 1050 printf("pos = %d, i = %d, fs = %s\n", 1051 pos, i, fs->fs_fsmnt); 1052 panic("ffs_alloccgblk: cyl groups corrupted"); 1053 } 1054 for (i = fs_postbl(fs, pos)[i];; ) { 1055 if (ffs_isblock(fs, blksfree, bno + i)) { 1056 bno = blkstofrags(fs, (bno + i)); 1057 goto gotit; 1058 } 1059 delta = fs_rotbl(fs)[i]; 1060 if (delta <= 0 || 1061 delta + i > fragstoblks(fs, fs->fs_fpg)) 1062 break; 1063 i += delta; 1064 } 1065 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 1066 panic("ffs_alloccgblk: can't find blk in cyl"); 1067 } 1068 norot: 1069 /* 1070 * no blocks in the requested cylinder, so take next 1071 * available one in this cylinder group. 1072 */ 1073 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1074 if (bno < 0) 1075 return (0); 1076 cgp->cg_rotor = bno; 1077 gotit: 1078 blkno = fragstoblks(fs, bno); 1079 ffs_clrblock(fs, blksfree, (long)blkno); 1080 ffs_clusteracct(fs, cgp, blkno, -1); 1081 cgp->cg_cs.cs_nbfree--; 1082 fs->fs_cstotal.cs_nbfree--; 1083 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1084 cylno = cbtocylno(fs, bno); 1085 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 1086 cg_blktot(cgp)[cylno]--; 1087 fs->fs_fmod = 1; 1088 blkno = cgp->cg_cgx * fs->fs_fpg + bno; 1089 if (DOINGSOFTDEP(ITOV(ip))) 1090 softdep_setup_blkmapdep(bp, fs, blkno); 1091 return (blkno); 1092 } 1093 1094 /* 1095 * Determine whether a cluster can be allocated. 1096 * 1097 * We do not currently check for optimal rotational layout if there 1098 * are multiple choices in the same cylinder group. Instead we just 1099 * take the first one that we find following bpref. 1100 */ 1101 static ufs_daddr_t 1102 ffs_clusteralloc(ip, cg, bpref, len) 1103 struct inode *ip; 1104 int cg; 1105 ufs_daddr_t bpref; 1106 int len; 1107 { 1108 register struct fs *fs; 1109 register struct cg *cgp; 1110 struct buf *bp; 1111 int i, got, run, bno, bit, map; 1112 u_char *mapp; 1113 int32_t *lp; 1114 u_int8_t *blksfree; 1115 1116 fs = ip->i_fs; 1117 if (fs->fs_maxcluster[cg] < len) 1118 return (0); 1119 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1120 NOCRED, &bp)) 1121 goto fail; 1122 cgp = (struct cg *)bp->b_data; 1123 if (!cg_chkmagic(cgp)) 1124 goto fail; 1125 bp->b_xflags |= BX_BKGRDWRITE; 1126 /* 1127 * Check to see if a cluster of the needed size (or bigger) is 1128 * available in this cylinder group. 1129 */ 1130 lp = &cg_clustersum(cgp)[len]; 1131 for (i = len; i <= fs->fs_contigsumsize; i++) 1132 if (*lp++ > 0) 1133 break; 1134 if (i > fs->fs_contigsumsize) { 1135 /* 1136 * This is the first time looking for a cluster in this 1137 * cylinder group. Update the cluster summary information 1138 * to reflect the true maximum sized cluster so that 1139 * future cluster allocation requests can avoid reading 1140 * the cylinder group map only to find no clusters. 1141 */ 1142 lp = &cg_clustersum(cgp)[len - 1]; 1143 for (i = len - 1; i > 0; i--) 1144 if (*lp-- > 0) 1145 break; 1146 fs->fs_maxcluster[cg] = i; 1147 goto fail; 1148 } 1149 /* 1150 * Search the cluster map to find a big enough cluster. 1151 * We take the first one that we find, even if it is larger 1152 * than we need as we prefer to get one close to the previous 1153 * block allocation. We do not search before the current 1154 * preference point as we do not want to allocate a block 1155 * that is allocated before the previous one (as we will 1156 * then have to wait for another pass of the elevator 1157 * algorithm before it will be read). We prefer to fail and 1158 * be recalled to try an allocation in the next cylinder group. 1159 */ 1160 if (dtog(fs, bpref) != cg) 1161 bpref = 0; 1162 else 1163 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1164 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1165 map = *mapp++; 1166 bit = 1 << (bpref % NBBY); 1167 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1168 if ((map & bit) == 0) { 1169 run = 0; 1170 } else { 1171 run++; 1172 if (run == len) 1173 break; 1174 } 1175 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1176 bit <<= 1; 1177 } else { 1178 map = *mapp++; 1179 bit = 1; 1180 } 1181 } 1182 if (got >= cgp->cg_nclusterblks) 1183 goto fail; 1184 /* 1185 * Allocate the cluster that we have found. 1186 */ 1187 blksfree = cg_blksfree(cgp); 1188 for (i = 1; i <= len; i++) 1189 if (!ffs_isblock(fs, blksfree, got - run + i)) 1190 panic("ffs_clusteralloc: map mismatch"); 1191 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1); 1192 if (dtog(fs, bno) != cg) 1193 panic("ffs_clusteralloc: allocated out of group"); 1194 len = blkstofrags(fs, len); 1195 for (i = 0; i < len; i += fs->fs_frag) 1196 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i) 1197 panic("ffs_clusteralloc: lost block"); 1198 bdwrite(bp); 1199 return (bno); 1200 1201 fail: 1202 brelse(bp); 1203 return (0); 1204 } 1205 1206 /* 1207 * Determine whether an inode can be allocated. 1208 * 1209 * Check to see if an inode is available, and if it is, 1210 * allocate it using the following policy: 1211 * 1) allocate the requested inode. 1212 * 2) allocate the next available inode after the requested 1213 * inode in the specified cylinder group. 1214 */ 1215 static ino_t 1216 ffs_nodealloccg(ip, cg, ipref, mode) 1217 struct inode *ip; 1218 int cg; 1219 ufs_daddr_t ipref; 1220 int mode; 1221 { 1222 register struct fs *fs; 1223 register struct cg *cgp; 1224 struct buf *bp; 1225 u_int8_t *inosused; 1226 int error, start, len, loc, map, i; 1227 1228 fs = ip->i_fs; 1229 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1230 return (0); 1231 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1232 (int)fs->fs_cgsize, NOCRED, &bp); 1233 if (error) { 1234 brelse(bp); 1235 return (0); 1236 } 1237 cgp = (struct cg *)bp->b_data; 1238 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1239 brelse(bp); 1240 return (0); 1241 } 1242 bp->b_xflags |= BX_BKGRDWRITE; 1243 cgp->cg_time = time_second; 1244 inosused = cg_inosused(cgp); 1245 if (ipref) { 1246 ipref %= fs->fs_ipg; 1247 if (isclr(inosused, ipref)) 1248 goto gotit; 1249 } 1250 start = cgp->cg_irotor / NBBY; 1251 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1252 loc = skpc(0xff, len, &inosused[start]); 1253 if (loc == 0) { 1254 len = start + 1; 1255 start = 0; 1256 loc = skpc(0xff, len, &inosused[0]); 1257 if (loc == 0) { 1258 printf("cg = %d, irotor = %ld, fs = %s\n", 1259 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1260 panic("ffs_nodealloccg: map corrupted"); 1261 /* NOTREACHED */ 1262 } 1263 } 1264 i = start + len - loc; 1265 map = inosused[i]; 1266 ipref = i * NBBY; 1267 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1268 if ((map & i) == 0) { 1269 cgp->cg_irotor = ipref; 1270 goto gotit; 1271 } 1272 } 1273 printf("fs = %s\n", fs->fs_fsmnt); 1274 panic("ffs_nodealloccg: block not in map"); 1275 /* NOTREACHED */ 1276 gotit: 1277 if (DOINGSOFTDEP(ITOV(ip))) 1278 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1279 setbit(inosused, ipref); 1280 cgp->cg_cs.cs_nifree--; 1281 fs->fs_cstotal.cs_nifree--; 1282 fs->fs_cs(fs, cg).cs_nifree--; 1283 fs->fs_fmod = 1; 1284 if ((mode & IFMT) == IFDIR) { 1285 cgp->cg_cs.cs_ndir++; 1286 fs->fs_cstotal.cs_ndir++; 1287 fs->fs_cs(fs, cg).cs_ndir++; 1288 } 1289 bdwrite(bp); 1290 return (cg * fs->fs_ipg + ipref); 1291 } 1292 1293 /* 1294 * Free a block or fragment. 1295 * 1296 * The specified block or fragment is placed back in the 1297 * free map. If a fragment is deallocated, a possible 1298 * block reassembly is checked. 1299 */ 1300 void 1301 ffs_blkfree(ip, bno, size) 1302 register struct inode *ip; 1303 ufs_daddr_t bno; 1304 long size; 1305 { 1306 register struct fs *fs; 1307 register struct cg *cgp; 1308 struct buf *bp; 1309 ufs_daddr_t blkno; 1310 int i, error, cg, blk, frags, bbase; 1311 u_int8_t *blksfree; 1312 1313 fs = ip->i_fs; 1314 VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size); 1315 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1316 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1317 printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n", 1318 devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size, 1319 fs->fs_fsmnt); 1320 panic("ffs_blkfree: bad size"); 1321 } 1322 cg = dtog(fs, bno); 1323 if ((u_int)bno >= fs->fs_size) { 1324 printf("bad block %ld, ino %lu\n", 1325 (long)bno, (u_long)ip->i_number); 1326 ffs_fserr(fs, ip->i_uid, "bad block"); 1327 return; 1328 } 1329 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1330 (int)fs->fs_cgsize, NOCRED, &bp); 1331 if (error) { 1332 brelse(bp); 1333 return; 1334 } 1335 cgp = (struct cg *)bp->b_data; 1336 if (!cg_chkmagic(cgp)) { 1337 brelse(bp); 1338 return; 1339 } 1340 bp->b_xflags |= BX_BKGRDWRITE; 1341 cgp->cg_time = time_second; 1342 bno = dtogd(fs, bno); 1343 blksfree = cg_blksfree(cgp); 1344 if (size == fs->fs_bsize) { 1345 blkno = fragstoblks(fs, bno); 1346 if (!ffs_isfreeblock(fs, blksfree, blkno)) { 1347 printf("dev = %s, block = %ld, fs = %s\n", 1348 devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt); 1349 panic("ffs_blkfree: freeing free block"); 1350 } 1351 ffs_setblock(fs, blksfree, blkno); 1352 ffs_clusteracct(fs, cgp, blkno, 1); 1353 cgp->cg_cs.cs_nbfree++; 1354 fs->fs_cstotal.cs_nbfree++; 1355 fs->fs_cs(fs, cg).cs_nbfree++; 1356 i = cbtocylno(fs, bno); 1357 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 1358 cg_blktot(cgp)[i]++; 1359 } else { 1360 bbase = bno - fragnum(fs, bno); 1361 /* 1362 * decrement the counts associated with the old frags 1363 */ 1364 blk = blkmap(fs, blksfree, bbase); 1365 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1366 /* 1367 * deallocate the fragment 1368 */ 1369 frags = numfrags(fs, size); 1370 for (i = 0; i < frags; i++) { 1371 if (isset(blksfree, bno + i)) { 1372 printf("dev = %s, block = %ld, fs = %s\n", 1373 devtoname(ip->i_dev), (long)(bno + i), 1374 fs->fs_fsmnt); 1375 panic("ffs_blkfree: freeing free frag"); 1376 } 1377 setbit(blksfree, bno + i); 1378 } 1379 cgp->cg_cs.cs_nffree += i; 1380 fs->fs_cstotal.cs_nffree += i; 1381 fs->fs_cs(fs, cg).cs_nffree += i; 1382 /* 1383 * add back in counts associated with the new frags 1384 */ 1385 blk = blkmap(fs, blksfree, bbase); 1386 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1387 /* 1388 * if a complete block has been reassembled, account for it 1389 */ 1390 blkno = fragstoblks(fs, bbase); 1391 if (ffs_isblock(fs, blksfree, blkno)) { 1392 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1393 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1394 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1395 ffs_clusteracct(fs, cgp, blkno, 1); 1396 cgp->cg_cs.cs_nbfree++; 1397 fs->fs_cstotal.cs_nbfree++; 1398 fs->fs_cs(fs, cg).cs_nbfree++; 1399 i = cbtocylno(fs, bbase); 1400 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 1401 cg_blktot(cgp)[i]++; 1402 } 1403 } 1404 fs->fs_fmod = 1; 1405 bdwrite(bp); 1406 } 1407 1408 #ifdef DIAGNOSTIC 1409 /* 1410 * Verify allocation of a block or fragment. Returns true if block or 1411 * fragment is allocated, false if it is free. 1412 */ 1413 static int 1414 ffs_checkblk(ip, bno, size) 1415 struct inode *ip; 1416 ufs_daddr_t bno; 1417 long size; 1418 { 1419 struct fs *fs; 1420 struct cg *cgp; 1421 struct buf *bp; 1422 int i, error, frags, free; 1423 u_int8_t *blksfree; 1424 1425 fs = ip->i_fs; 1426 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1427 printf("bsize = %ld, size = %ld, fs = %s\n", 1428 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1429 panic("ffs_checkblk: bad size"); 1430 } 1431 if ((u_int)bno >= fs->fs_size) 1432 panic("ffs_checkblk: bad block %d", bno); 1433 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1434 (int)fs->fs_cgsize, NOCRED, &bp); 1435 if (error) 1436 panic("ffs_checkblk: cg bread failed"); 1437 cgp = (struct cg *)bp->b_data; 1438 if (!cg_chkmagic(cgp)) 1439 panic("ffs_checkblk: cg magic mismatch"); 1440 bp->b_xflags |= BX_BKGRDWRITE; 1441 blksfree = cg_blksfree(cgp); 1442 bno = dtogd(fs, bno); 1443 if (size == fs->fs_bsize) { 1444 free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno)); 1445 } else { 1446 frags = numfrags(fs, size); 1447 for (free = 0, i = 0; i < frags; i++) 1448 if (isset(blksfree, bno + i)) 1449 free++; 1450 if (free != 0 && free != frags) 1451 panic("ffs_checkblk: partially free fragment"); 1452 } 1453 brelse(bp); 1454 return (!free); 1455 } 1456 #endif /* DIAGNOSTIC */ 1457 1458 /* 1459 * Free an inode. 1460 */ 1461 int 1462 ffs_vfree( pvp, ino, mode) 1463 struct vnode *pvp; 1464 ino_t ino; 1465 int mode; 1466 { 1467 if (DOINGSOFTDEP(pvp)) { 1468 softdep_freefile(pvp, ino, mode); 1469 return (0); 1470 } 1471 return (ffs_freefile(pvp, ino, mode)); 1472 } 1473 1474 /* 1475 * Do the actual free operation. 1476 * The specified inode is placed back in the free map. 1477 */ 1478 int 1479 ffs_freefile( pvp, ino, mode) 1480 struct vnode *pvp; 1481 ino_t ino; 1482 int mode; 1483 { 1484 register struct fs *fs; 1485 register struct cg *cgp; 1486 register struct inode *pip; 1487 struct buf *bp; 1488 int error, cg; 1489 u_int8_t *inosused; 1490 1491 pip = VTOI(pvp); 1492 fs = pip->i_fs; 1493 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1494 panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s", 1495 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt); 1496 cg = ino_to_cg(fs, ino); 1497 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1498 (int)fs->fs_cgsize, NOCRED, &bp); 1499 if (error) { 1500 brelse(bp); 1501 return (error); 1502 } 1503 cgp = (struct cg *)bp->b_data; 1504 if (!cg_chkmagic(cgp)) { 1505 brelse(bp); 1506 return (0); 1507 } 1508 bp->b_xflags |= BX_BKGRDWRITE; 1509 cgp->cg_time = time_second; 1510 inosused = cg_inosused(cgp); 1511 ino %= fs->fs_ipg; 1512 if (isclr(inosused, ino)) { 1513 printf("dev = %s, ino = %lu, fs = %s\n", 1514 devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt); 1515 if (fs->fs_ronly == 0) 1516 panic("ffs_vfree: freeing free inode"); 1517 } 1518 clrbit(inosused, ino); 1519 if (ino < cgp->cg_irotor) 1520 cgp->cg_irotor = ino; 1521 cgp->cg_cs.cs_nifree++; 1522 fs->fs_cstotal.cs_nifree++; 1523 fs->fs_cs(fs, cg).cs_nifree++; 1524 if ((mode & IFMT) == IFDIR) { 1525 cgp->cg_cs.cs_ndir--; 1526 fs->fs_cstotal.cs_ndir--; 1527 fs->fs_cs(fs, cg).cs_ndir--; 1528 } 1529 fs->fs_fmod = 1; 1530 bdwrite(bp); 1531 return (0); 1532 } 1533 1534 /* 1535 * Find a block of the specified size in the specified cylinder group. 1536 * 1537 * It is a panic if a request is made to find a block if none are 1538 * available. 1539 */ 1540 static ufs_daddr_t 1541 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1542 register struct fs *fs; 1543 register struct cg *cgp; 1544 ufs_daddr_t bpref; 1545 int allocsiz; 1546 { 1547 ufs_daddr_t bno; 1548 int start, len, loc, i; 1549 int blk, field, subfield, pos; 1550 u_int8_t *blksfree; 1551 1552 /* 1553 * find the fragment by searching through the free block 1554 * map for an appropriate bit pattern 1555 */ 1556 if (bpref) 1557 start = dtogd(fs, bpref) / NBBY; 1558 else 1559 start = cgp->cg_frotor / NBBY; 1560 blksfree = cg_blksfree(cgp); 1561 len = howmany(fs->fs_fpg, NBBY) - start; 1562 loc = scanc((u_int)len, (u_char *)&blksfree[start], 1563 (u_char *)fragtbl[fs->fs_frag], 1564 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1565 if (loc == 0) { 1566 len = start + 1; 1567 start = 0; 1568 loc = scanc((u_int)len, (u_char *)&blksfree[0], 1569 (u_char *)fragtbl[fs->fs_frag], 1570 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1571 if (loc == 0) { 1572 printf("start = %d, len = %d, fs = %s\n", 1573 start, len, fs->fs_fsmnt); 1574 panic("ffs_alloccg: map corrupted"); 1575 /* NOTREACHED */ 1576 } 1577 } 1578 bno = (start + len - loc) * NBBY; 1579 cgp->cg_frotor = bno; 1580 /* 1581 * found the byte in the map 1582 * sift through the bits to find the selected frag 1583 */ 1584 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1585 blk = blkmap(fs, blksfree, bno); 1586 blk <<= 1; 1587 field = around[allocsiz]; 1588 subfield = inside[allocsiz]; 1589 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1590 if ((blk & field) == subfield) 1591 return (bno + pos); 1592 field <<= 1; 1593 subfield <<= 1; 1594 } 1595 } 1596 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 1597 panic("ffs_alloccg: block not in map"); 1598 return (-1); 1599 } 1600 1601 /* 1602 * Update the cluster map because of an allocation or free. 1603 * 1604 * Cnt == 1 means free; cnt == -1 means allocating. 1605 */ 1606 static void 1607 ffs_clusteracct(fs, cgp, blkno, cnt) 1608 struct fs *fs; 1609 struct cg *cgp; 1610 ufs_daddr_t blkno; 1611 int cnt; 1612 { 1613 int32_t *sump; 1614 int32_t *lp; 1615 u_char *freemapp, *mapp; 1616 int i, start, end, forw, back, map, bit; 1617 1618 if (fs->fs_contigsumsize <= 0) 1619 return; 1620 freemapp = cg_clustersfree(cgp); 1621 sump = cg_clustersum(cgp); 1622 /* 1623 * Allocate or clear the actual block. 1624 */ 1625 if (cnt > 0) 1626 setbit(freemapp, blkno); 1627 else 1628 clrbit(freemapp, blkno); 1629 /* 1630 * Find the size of the cluster going forward. 1631 */ 1632 start = blkno + 1; 1633 end = start + fs->fs_contigsumsize; 1634 if (end >= cgp->cg_nclusterblks) 1635 end = cgp->cg_nclusterblks; 1636 mapp = &freemapp[start / NBBY]; 1637 map = *mapp++; 1638 bit = 1 << (start % NBBY); 1639 for (i = start; i < end; i++) { 1640 if ((map & bit) == 0) 1641 break; 1642 if ((i & (NBBY - 1)) != (NBBY - 1)) { 1643 bit <<= 1; 1644 } else { 1645 map = *mapp++; 1646 bit = 1; 1647 } 1648 } 1649 forw = i - start; 1650 /* 1651 * Find the size of the cluster going backward. 1652 */ 1653 start = blkno - 1; 1654 end = start - fs->fs_contigsumsize; 1655 if (end < 0) 1656 end = -1; 1657 mapp = &freemapp[start / NBBY]; 1658 map = *mapp--; 1659 bit = 1 << (start % NBBY); 1660 for (i = start; i > end; i--) { 1661 if ((map & bit) == 0) 1662 break; 1663 if ((i & (NBBY - 1)) != 0) { 1664 bit >>= 1; 1665 } else { 1666 map = *mapp--; 1667 bit = 1 << (NBBY - 1); 1668 } 1669 } 1670 back = start - i; 1671 /* 1672 * Account for old cluster and the possibly new forward and 1673 * back clusters. 1674 */ 1675 i = back + forw + 1; 1676 if (i > fs->fs_contigsumsize) 1677 i = fs->fs_contigsumsize; 1678 sump[i] += cnt; 1679 if (back > 0) 1680 sump[back] -= cnt; 1681 if (forw > 0) 1682 sump[forw] -= cnt; 1683 /* 1684 * Update cluster summary information. 1685 */ 1686 lp = &sump[fs->fs_contigsumsize]; 1687 for (i = fs->fs_contigsumsize; i > 0; i--) 1688 if (*lp-- > 0) 1689 break; 1690 fs->fs_maxcluster[cgp->cg_cgx] = i; 1691 } 1692 1693 /* 1694 * Fserr prints the name of a file system with an error diagnostic. 1695 * 1696 * The form of the error message is: 1697 * fs: error message 1698 */ 1699 static void 1700 ffs_fserr(fs, uid, cp) 1701 struct fs *fs; 1702 u_int uid; 1703 char *cp; 1704 { 1705 struct proc *p = curproc; /* XXX */ 1706 1707 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1, 1708 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp); 1709 } 1710