1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/systm.h> 72 #include <sys/bio.h> 73 #include <sys/buf.h> 74 #include <sys/conf.h> 75 #include <sys/fcntl.h> 76 #include <sys/file.h> 77 #include <sys/filedesc.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/vnode.h> 81 #include <sys/mount.h> 82 #include <sys/kernel.h> 83 #include <sys/syscallsubr.h> 84 #include <sys/sysctl.h> 85 #include <sys/syslog.h> 86 #include <sys/taskqueue.h> 87 88 #include <security/audit/audit.h> 89 90 #include <geom/geom.h> 91 #include <geom/geom_vfs.h> 92 93 #include <ufs/ufs/dir.h> 94 #include <ufs/ufs/extattr.h> 95 #include <ufs/ufs/quota.h> 96 #include <ufs/ufs/inode.h> 97 #include <ufs/ufs/ufs_extern.h> 98 #include <ufs/ufs/ufsmount.h> 99 100 #include <ufs/ffs/fs.h> 101 #include <ufs/ffs/ffs_extern.h> 102 #include <ufs/ffs/softdep.h> 103 104 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 105 int size, int rsize); 106 107 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 108 static ufs2_daddr_t 109 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 110 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 111 struct vnode *, ufs2_daddr_t, long, ino_t, 112 struct workhead *); 113 #ifdef INVARIANTS 114 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 115 #endif 116 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 117 static ino_t ffs_dirpref(struct inode *); 118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 119 int, int); 120 static ufs2_daddr_t ffs_hashalloc 121 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 123 int); 124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 125 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 126 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 127 static void ffs_ckhash_cg(struct buf *); 128 129 /* 130 * Allocate a block in the filesystem. 131 * 132 * The size of the requested block is given, which must be some 133 * multiple of fs_fsize and <= fs_bsize. 134 * A preference may be optionally specified. If a preference is given 135 * the following hierarchy is used to allocate a block: 136 * 1) allocate the requested block. 137 * 2) allocate a rotationally optimal block in the same cylinder. 138 * 3) allocate a block in the same cylinder group. 139 * 4) quadradically rehash into other cylinder groups, until an 140 * available block is located. 141 * If no block preference is given the following hierarchy is used 142 * to allocate a block: 143 * 1) allocate a block in the cylinder group that contains the 144 * inode for the file. 145 * 2) quadradically rehash into other cylinder groups, until an 146 * available block is located. 147 */ 148 int 149 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 150 struct inode *ip; 151 ufs2_daddr_t lbn, bpref; 152 int size, flags; 153 struct ucred *cred; 154 ufs2_daddr_t *bnp; 155 { 156 struct fs *fs; 157 struct ufsmount *ump; 158 ufs2_daddr_t bno; 159 u_int cg, reclaimed; 160 static struct timeval lastfail; 161 static int curfail; 162 int64_t delta; 163 #ifdef QUOTA 164 int error; 165 #endif 166 167 *bnp = 0; 168 ump = ITOUMP(ip); 169 fs = ump->um_fs; 170 mtx_assert(UFS_MTX(ump), MA_OWNED); 171 #ifdef INVARIANTS 172 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 173 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 174 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 175 fs->fs_fsmnt); 176 panic("ffs_alloc: bad size"); 177 } 178 if (cred == NOCRED) 179 panic("ffs_alloc: missing credential"); 180 #endif /* INVARIANTS */ 181 reclaimed = 0; 182 retry: 183 #ifdef QUOTA 184 UFS_UNLOCK(ump); 185 error = chkdq(ip, btodb(size), cred, 0); 186 if (error) 187 return (error); 188 UFS_LOCK(ump); 189 #endif 190 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 191 goto nospace; 192 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 193 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 194 goto nospace; 195 if (bpref >= fs->fs_size) 196 bpref = 0; 197 if (bpref == 0) 198 cg = ino_to_cg(fs, ip->i_number); 199 else 200 cg = dtog(fs, bpref); 201 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 202 if (bno > 0) { 203 delta = btodb(size); 204 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 205 if (flags & IO_EXT) 206 ip->i_flag |= IN_CHANGE; 207 else 208 ip->i_flag |= IN_CHANGE | IN_UPDATE; 209 *bnp = bno; 210 return (0); 211 } 212 nospace: 213 #ifdef QUOTA 214 UFS_UNLOCK(ump); 215 /* 216 * Restore user's disk quota because allocation failed. 217 */ 218 (void) chkdq(ip, -btodb(size), cred, FORCE); 219 UFS_LOCK(ump); 220 #endif 221 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 222 reclaimed = 1; 223 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 224 goto retry; 225 } 226 UFS_UNLOCK(ump); 227 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 228 ffs_fserr(fs, ip->i_number, "filesystem full"); 229 uprintf("\n%s: write failed, filesystem is full\n", 230 fs->fs_fsmnt); 231 } 232 return (ENOSPC); 233 } 234 235 /* 236 * Reallocate a fragment to a bigger size 237 * 238 * The number and size of the old block is given, and a preference 239 * and new size is also specified. The allocator attempts to extend 240 * the original block. Failing that, the regular block allocator is 241 * invoked to get an appropriate block. 242 */ 243 int 244 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 245 struct inode *ip; 246 ufs2_daddr_t lbprev; 247 ufs2_daddr_t bprev; 248 ufs2_daddr_t bpref; 249 int osize, nsize, flags; 250 struct ucred *cred; 251 struct buf **bpp; 252 { 253 struct vnode *vp; 254 struct fs *fs; 255 struct buf *bp; 256 struct ufsmount *ump; 257 u_int cg, request, reclaimed; 258 int error, gbflags; 259 ufs2_daddr_t bno; 260 static struct timeval lastfail; 261 static int curfail; 262 int64_t delta; 263 264 vp = ITOV(ip); 265 ump = ITOUMP(ip); 266 fs = ump->um_fs; 267 bp = NULL; 268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 269 270 mtx_assert(UFS_MTX(ump), MA_OWNED); 271 #ifdef INVARIANTS 272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 273 panic("ffs_realloccg: allocation on suspended filesystem"); 274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 276 printf( 277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 278 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 279 nsize, fs->fs_fsmnt); 280 panic("ffs_realloccg: bad size"); 281 } 282 if (cred == NOCRED) 283 panic("ffs_realloccg: missing credential"); 284 #endif /* INVARIANTS */ 285 reclaimed = 0; 286 retry: 287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 289 goto nospace; 290 } 291 if (bprev == 0) { 292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 293 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 294 fs->fs_fsmnt); 295 panic("ffs_realloccg: bad bprev"); 296 } 297 UFS_UNLOCK(ump); 298 /* 299 * Allocate the extra space in the buffer. 300 */ 301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 302 if (error) { 303 brelse(bp); 304 return (error); 305 } 306 307 if (bp->b_blkno == bp->b_lblkno) { 308 if (lbprev >= UFS_NDADDR) 309 panic("ffs_realloccg: lbprev out of range"); 310 bp->b_blkno = fsbtodb(fs, bprev); 311 } 312 313 #ifdef QUOTA 314 error = chkdq(ip, btodb(nsize - osize), cred, 0); 315 if (error) { 316 brelse(bp); 317 return (error); 318 } 319 #endif 320 /* 321 * Check for extension in the existing location. 322 */ 323 *bpp = NULL; 324 cg = dtog(fs, bprev); 325 UFS_LOCK(ump); 326 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 327 if (bno) { 328 if (bp->b_blkno != fsbtodb(fs, bno)) 329 panic("ffs_realloccg: bad blockno"); 330 delta = btodb(nsize - osize); 331 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 332 if (flags & IO_EXT) 333 ip->i_flag |= IN_CHANGE; 334 else 335 ip->i_flag |= IN_CHANGE | IN_UPDATE; 336 allocbuf(bp, nsize); 337 bp->b_flags |= B_DONE; 338 vfs_bio_bzero_buf(bp, osize, nsize - osize); 339 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 340 vfs_bio_set_valid(bp, osize, nsize - osize); 341 *bpp = bp; 342 return (0); 343 } 344 /* 345 * Allocate a new disk location. 346 */ 347 if (bpref >= fs->fs_size) 348 bpref = 0; 349 switch ((int)fs->fs_optim) { 350 case FS_OPTSPACE: 351 /* 352 * Allocate an exact sized fragment. Although this makes 353 * best use of space, we will waste time relocating it if 354 * the file continues to grow. If the fragmentation is 355 * less than half of the minimum free reserve, we choose 356 * to begin optimizing for time. 357 */ 358 request = nsize; 359 if (fs->fs_minfree <= 5 || 360 fs->fs_cstotal.cs_nffree > 361 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 362 break; 363 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 364 fs->fs_fsmnt); 365 fs->fs_optim = FS_OPTTIME; 366 break; 367 case FS_OPTTIME: 368 /* 369 * At this point we have discovered a file that is trying to 370 * grow a small fragment to a larger fragment. To save time, 371 * we allocate a full sized block, then free the unused portion. 372 * If the file continues to grow, the `ffs_fragextend' call 373 * above will be able to grow it in place without further 374 * copying. If aberrant programs cause disk fragmentation to 375 * grow within 2% of the free reserve, we choose to begin 376 * optimizing for space. 377 */ 378 request = fs->fs_bsize; 379 if (fs->fs_cstotal.cs_nffree < 380 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 381 break; 382 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 383 fs->fs_fsmnt); 384 fs->fs_optim = FS_OPTSPACE; 385 break; 386 default: 387 printf("dev = %s, optim = %ld, fs = %s\n", 388 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 389 panic("ffs_realloccg: bad optim"); 390 /* NOTREACHED */ 391 } 392 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 393 if (bno > 0) { 394 bp->b_blkno = fsbtodb(fs, bno); 395 if (!DOINGSOFTDEP(vp)) 396 /* 397 * The usual case is that a smaller fragment that 398 * was just allocated has been replaced with a bigger 399 * fragment or a full-size block. If it is marked as 400 * B_DELWRI, the current contents have not been written 401 * to disk. It is possible that the block was written 402 * earlier, but very uncommon. If the block has never 403 * been written, there is no need to send a BIO_DELETE 404 * for it when it is freed. The gain from avoiding the 405 * TRIMs for the common case of unwritten blocks far 406 * exceeds the cost of the write amplification for the 407 * uncommon case of failing to send a TRIM for a block 408 * that had been written. 409 */ 410 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 411 ip->i_number, vp->v_type, NULL, 412 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM : SINGLETON); 413 delta = btodb(nsize - osize); 414 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 415 if (flags & IO_EXT) 416 ip->i_flag |= IN_CHANGE; 417 else 418 ip->i_flag |= IN_CHANGE | IN_UPDATE; 419 allocbuf(bp, nsize); 420 bp->b_flags |= B_DONE; 421 vfs_bio_bzero_buf(bp, osize, nsize - osize); 422 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 423 vfs_bio_set_valid(bp, osize, nsize - osize); 424 *bpp = bp; 425 return (0); 426 } 427 #ifdef QUOTA 428 UFS_UNLOCK(ump); 429 /* 430 * Restore user's disk quota because allocation failed. 431 */ 432 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 433 UFS_LOCK(ump); 434 #endif 435 nospace: 436 /* 437 * no space available 438 */ 439 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 440 reclaimed = 1; 441 UFS_UNLOCK(ump); 442 if (bp) { 443 brelse(bp); 444 bp = NULL; 445 } 446 UFS_LOCK(ump); 447 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 448 goto retry; 449 } 450 UFS_UNLOCK(ump); 451 if (bp) 452 brelse(bp); 453 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 454 ffs_fserr(fs, ip->i_number, "filesystem full"); 455 uprintf("\n%s: write failed, filesystem is full\n", 456 fs->fs_fsmnt); 457 } 458 return (ENOSPC); 459 } 460 461 /* 462 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 463 * 464 * The vnode and an array of buffer pointers for a range of sequential 465 * logical blocks to be made contiguous is given. The allocator attempts 466 * to find a range of sequential blocks starting as close as possible 467 * from the end of the allocation for the logical block immediately 468 * preceding the current range. If successful, the physical block numbers 469 * in the buffer pointers and in the inode are changed to reflect the new 470 * allocation. If unsuccessful, the allocation is left unchanged. The 471 * success in doing the reallocation is returned. Note that the error 472 * return is not reflected back to the user. Rather the previous block 473 * allocation will be used. 474 */ 475 476 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 477 478 static int doasyncfree = 1; 479 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 480 "do not force synchronous writes when blocks are reallocated"); 481 482 static int doreallocblks = 1; 483 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 484 "enable block reallocation"); 485 486 static int maxclustersearch = 10; 487 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 488 0, "max number of cylinder group to search for contigous blocks"); 489 490 #ifdef DEBUG 491 static volatile int prtrealloc = 0; 492 #endif 493 494 int 495 ffs_reallocblks(ap) 496 struct vop_reallocblks_args /* { 497 struct vnode *a_vp; 498 struct cluster_save *a_buflist; 499 } */ *ap; 500 { 501 struct ufsmount *ump; 502 503 /* 504 * If the underlying device can do deletes, then skip reallocating 505 * the blocks of this file into contiguous sequences. Devices that 506 * benefit from BIO_DELETE also benefit from not moving the data. 507 * These devices are flash and therefore work less well with this 508 * optimization. Also skip if reallocblks has been disabled globally. 509 */ 510 ump = ap->a_vp->v_mount->mnt_data; 511 if (((ump->um_flags) & UM_CANDELETE) != 0 || doreallocblks == 0) 512 return (ENOSPC); 513 514 /* 515 * We can't wait in softdep prealloc as it may fsync and recurse 516 * here. Instead we simply fail to reallocate blocks if this 517 * rare condition arises. 518 */ 519 if (DOINGSOFTDEP(ap->a_vp)) 520 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 521 return (ENOSPC); 522 if (ump->um_fstype == UFS1) 523 return (ffs_reallocblks_ufs1(ap)); 524 return (ffs_reallocblks_ufs2(ap)); 525 } 526 527 static int 528 ffs_reallocblks_ufs1(ap) 529 struct vop_reallocblks_args /* { 530 struct vnode *a_vp; 531 struct cluster_save *a_buflist; 532 } */ *ap; 533 { 534 struct fs *fs; 535 struct inode *ip; 536 struct vnode *vp; 537 struct buf *sbp, *ebp, *bp; 538 ufs1_daddr_t *bap, *sbap, *ebap; 539 struct cluster_save *buflist; 540 struct ufsmount *ump; 541 ufs_lbn_t start_lbn, end_lbn; 542 ufs1_daddr_t soff, newblk, blkno; 543 ufs2_daddr_t pref; 544 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 545 int i, cg, len, start_lvl, end_lvl, ssize; 546 547 vp = ap->a_vp; 548 ip = VTOI(vp); 549 ump = ITOUMP(ip); 550 fs = ump->um_fs; 551 /* 552 * If we are not tracking block clusters or if we have less than 4% 553 * free blocks left, then do not attempt to cluster. Running with 554 * less than 5% free block reserve is not recommended and those that 555 * choose to do so do not expect to have good file layout. 556 */ 557 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 558 return (ENOSPC); 559 buflist = ap->a_buflist; 560 len = buflist->bs_nchildren; 561 start_lbn = buflist->bs_children[0]->b_lblkno; 562 end_lbn = start_lbn + len - 1; 563 #ifdef INVARIANTS 564 for (i = 0; i < len; i++) 565 if (!ffs_checkblk(ip, 566 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 567 panic("ffs_reallocblks: unallocated block 1"); 568 for (i = 1; i < len; i++) 569 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 570 panic("ffs_reallocblks: non-logical cluster"); 571 blkno = buflist->bs_children[0]->b_blkno; 572 ssize = fsbtodb(fs, fs->fs_frag); 573 for (i = 1; i < len - 1; i++) 574 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 575 panic("ffs_reallocblks: non-physical cluster %d", i); 576 #endif 577 /* 578 * If the cluster crosses the boundary for the first indirect 579 * block, leave space for the indirect block. Indirect blocks 580 * are initially laid out in a position after the last direct 581 * block. Block reallocation would usually destroy locality by 582 * moving the indirect block out of the way to make room for 583 * data blocks if we didn't compensate here. We should also do 584 * this for other indirect block boundaries, but it is only 585 * important for the first one. 586 */ 587 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 588 return (ENOSPC); 589 /* 590 * If the latest allocation is in a new cylinder group, assume that 591 * the filesystem has decided to move and do not force it back to 592 * the previous cylinder group. 593 */ 594 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 595 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 596 return (ENOSPC); 597 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 598 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 599 return (ENOSPC); 600 /* 601 * Get the starting offset and block map for the first block. 602 */ 603 if (start_lvl == 0) { 604 sbap = &ip->i_din1->di_db[0]; 605 soff = start_lbn; 606 } else { 607 idp = &start_ap[start_lvl - 1]; 608 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 609 brelse(sbp); 610 return (ENOSPC); 611 } 612 sbap = (ufs1_daddr_t *)sbp->b_data; 613 soff = idp->in_off; 614 } 615 /* 616 * If the block range spans two block maps, get the second map. 617 */ 618 ebap = NULL; 619 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 620 ssize = len; 621 } else { 622 #ifdef INVARIANTS 623 if (start_lvl > 0 && 624 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 625 panic("ffs_reallocblk: start == end"); 626 #endif 627 ssize = len - (idp->in_off + 1); 628 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 629 goto fail; 630 ebap = (ufs1_daddr_t *)ebp->b_data; 631 } 632 /* 633 * Find the preferred location for the cluster. If we have not 634 * previously failed at this endeavor, then follow our standard 635 * preference calculation. If we have failed at it, then pick up 636 * where we last ended our search. 637 */ 638 UFS_LOCK(ump); 639 if (ip->i_nextclustercg == -1) 640 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 641 else 642 pref = cgdata(fs, ip->i_nextclustercg); 643 /* 644 * Search the block map looking for an allocation of the desired size. 645 * To avoid wasting too much time, we limit the number of cylinder 646 * groups that we will search. 647 */ 648 cg = dtog(fs, pref); 649 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 650 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 651 break; 652 cg += 1; 653 if (cg >= fs->fs_ncg) 654 cg = 0; 655 } 656 /* 657 * If we have failed in our search, record where we gave up for 658 * next time. Otherwise, fall back to our usual search citerion. 659 */ 660 if (newblk == 0) { 661 ip->i_nextclustercg = cg; 662 UFS_UNLOCK(ump); 663 goto fail; 664 } 665 ip->i_nextclustercg = -1; 666 /* 667 * We have found a new contiguous block. 668 * 669 * First we have to replace the old block pointers with the new 670 * block pointers in the inode and indirect blocks associated 671 * with the file. 672 */ 673 #ifdef DEBUG 674 if (prtrealloc) 675 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 676 (uintmax_t)ip->i_number, 677 (intmax_t)start_lbn, (intmax_t)end_lbn); 678 #endif 679 blkno = newblk; 680 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 681 if (i == ssize) { 682 bap = ebap; 683 soff = -i; 684 } 685 #ifdef INVARIANTS 686 if (!ffs_checkblk(ip, 687 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 688 panic("ffs_reallocblks: unallocated block 2"); 689 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 690 panic("ffs_reallocblks: alloc mismatch"); 691 #endif 692 #ifdef DEBUG 693 if (prtrealloc) 694 printf(" %d,", *bap); 695 #endif 696 if (DOINGSOFTDEP(vp)) { 697 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 698 softdep_setup_allocdirect(ip, start_lbn + i, 699 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 700 buflist->bs_children[i]); 701 else 702 softdep_setup_allocindir_page(ip, start_lbn + i, 703 i < ssize ? sbp : ebp, soff + i, blkno, 704 *bap, buflist->bs_children[i]); 705 } 706 *bap++ = blkno; 707 } 708 /* 709 * Next we must write out the modified inode and indirect blocks. 710 * For strict correctness, the writes should be synchronous since 711 * the old block values may have been written to disk. In practise 712 * they are almost never written, but if we are concerned about 713 * strict correctness, the `doasyncfree' flag should be set to zero. 714 * 715 * The test on `doasyncfree' should be changed to test a flag 716 * that shows whether the associated buffers and inodes have 717 * been written. The flag should be set when the cluster is 718 * started and cleared whenever the buffer or inode is flushed. 719 * We can then check below to see if it is set, and do the 720 * synchronous write only when it has been cleared. 721 */ 722 if (sbap != &ip->i_din1->di_db[0]) { 723 if (doasyncfree) 724 bdwrite(sbp); 725 else 726 bwrite(sbp); 727 } else { 728 ip->i_flag |= IN_CHANGE | IN_UPDATE; 729 if (!doasyncfree) 730 ffs_update(vp, 1); 731 } 732 if (ssize < len) { 733 if (doasyncfree) 734 bdwrite(ebp); 735 else 736 bwrite(ebp); 737 } 738 /* 739 * Last, free the old blocks and assign the new blocks to the buffers. 740 */ 741 #ifdef DEBUG 742 if (prtrealloc) 743 printf("\n\tnew:"); 744 #endif 745 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 746 bp = buflist->bs_children[i]; 747 if (!DOINGSOFTDEP(vp)) 748 /* 749 * The usual case is that a set of N-contiguous blocks 750 * that was just allocated has been replaced with a 751 * set of N+1-contiguous blocks. If they are marked as 752 * B_DELWRI, the current contents have not been written 753 * to disk. It is possible that the blocks were written 754 * earlier, but very uncommon. If the blocks have never 755 * been written, there is no need to send a BIO_DELETE 756 * for them when they are freed. The gain from avoiding 757 * the TRIMs for the common case of unwritten blocks 758 * far exceeds the cost of the write amplification for 759 * the uncommon case of failing to send a TRIM for the 760 * blocks that had been written. 761 */ 762 ffs_blkfree(ump, fs, ump->um_devvp, 763 dbtofsb(fs, bp->b_blkno), 764 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 765 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM : SINGLETON); 766 bp->b_blkno = fsbtodb(fs, blkno); 767 #ifdef INVARIANTS 768 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 769 panic("ffs_reallocblks: unallocated block 3"); 770 #endif 771 #ifdef DEBUG 772 if (prtrealloc) 773 printf(" %d,", blkno); 774 #endif 775 } 776 #ifdef DEBUG 777 if (prtrealloc) { 778 prtrealloc--; 779 printf("\n"); 780 } 781 #endif 782 return (0); 783 784 fail: 785 if (ssize < len) 786 brelse(ebp); 787 if (sbap != &ip->i_din1->di_db[0]) 788 brelse(sbp); 789 return (ENOSPC); 790 } 791 792 static int 793 ffs_reallocblks_ufs2(ap) 794 struct vop_reallocblks_args /* { 795 struct vnode *a_vp; 796 struct cluster_save *a_buflist; 797 } */ *ap; 798 { 799 struct fs *fs; 800 struct inode *ip; 801 struct vnode *vp; 802 struct buf *sbp, *ebp, *bp; 803 ufs2_daddr_t *bap, *sbap, *ebap; 804 struct cluster_save *buflist; 805 struct ufsmount *ump; 806 ufs_lbn_t start_lbn, end_lbn; 807 ufs2_daddr_t soff, newblk, blkno, pref; 808 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 809 int i, cg, len, start_lvl, end_lvl, ssize; 810 811 vp = ap->a_vp; 812 ip = VTOI(vp); 813 ump = ITOUMP(ip); 814 fs = ump->um_fs; 815 /* 816 * If we are not tracking block clusters or if we have less than 4% 817 * free blocks left, then do not attempt to cluster. Running with 818 * less than 5% free block reserve is not recommended and those that 819 * choose to do so do not expect to have good file layout. 820 */ 821 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 822 return (ENOSPC); 823 buflist = ap->a_buflist; 824 len = buflist->bs_nchildren; 825 start_lbn = buflist->bs_children[0]->b_lblkno; 826 end_lbn = start_lbn + len - 1; 827 #ifdef INVARIANTS 828 for (i = 0; i < len; i++) 829 if (!ffs_checkblk(ip, 830 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 831 panic("ffs_reallocblks: unallocated block 1"); 832 for (i = 1; i < len; i++) 833 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 834 panic("ffs_reallocblks: non-logical cluster"); 835 blkno = buflist->bs_children[0]->b_blkno; 836 ssize = fsbtodb(fs, fs->fs_frag); 837 for (i = 1; i < len - 1; i++) 838 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 839 panic("ffs_reallocblks: non-physical cluster %d", i); 840 #endif 841 /* 842 * If the cluster crosses the boundary for the first indirect 843 * block, do not move anything in it. Indirect blocks are 844 * usually initially laid out in a position between the data 845 * blocks. Block reallocation would usually destroy locality by 846 * moving the indirect block out of the way to make room for 847 * data blocks if we didn't compensate here. We should also do 848 * this for other indirect block boundaries, but it is only 849 * important for the first one. 850 */ 851 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 852 return (ENOSPC); 853 /* 854 * If the latest allocation is in a new cylinder group, assume that 855 * the filesystem has decided to move and do not force it back to 856 * the previous cylinder group. 857 */ 858 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 859 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 860 return (ENOSPC); 861 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 862 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 863 return (ENOSPC); 864 /* 865 * Get the starting offset and block map for the first block. 866 */ 867 if (start_lvl == 0) { 868 sbap = &ip->i_din2->di_db[0]; 869 soff = start_lbn; 870 } else { 871 idp = &start_ap[start_lvl - 1]; 872 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 873 brelse(sbp); 874 return (ENOSPC); 875 } 876 sbap = (ufs2_daddr_t *)sbp->b_data; 877 soff = idp->in_off; 878 } 879 /* 880 * If the block range spans two block maps, get the second map. 881 */ 882 ebap = NULL; 883 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 884 ssize = len; 885 } else { 886 #ifdef INVARIANTS 887 if (start_lvl > 0 && 888 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 889 panic("ffs_reallocblk: start == end"); 890 #endif 891 ssize = len - (idp->in_off + 1); 892 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 893 goto fail; 894 ebap = (ufs2_daddr_t *)ebp->b_data; 895 } 896 /* 897 * Find the preferred location for the cluster. If we have not 898 * previously failed at this endeavor, then follow our standard 899 * preference calculation. If we have failed at it, then pick up 900 * where we last ended our search. 901 */ 902 UFS_LOCK(ump); 903 if (ip->i_nextclustercg == -1) 904 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 905 else 906 pref = cgdata(fs, ip->i_nextclustercg); 907 /* 908 * Search the block map looking for an allocation of the desired size. 909 * To avoid wasting too much time, we limit the number of cylinder 910 * groups that we will search. 911 */ 912 cg = dtog(fs, pref); 913 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 914 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 915 break; 916 cg += 1; 917 if (cg >= fs->fs_ncg) 918 cg = 0; 919 } 920 /* 921 * If we have failed in our search, record where we gave up for 922 * next time. Otherwise, fall back to our usual search citerion. 923 */ 924 if (newblk == 0) { 925 ip->i_nextclustercg = cg; 926 UFS_UNLOCK(ump); 927 goto fail; 928 } 929 ip->i_nextclustercg = -1; 930 /* 931 * We have found a new contiguous block. 932 * 933 * First we have to replace the old block pointers with the new 934 * block pointers in the inode and indirect blocks associated 935 * with the file. 936 */ 937 #ifdef DEBUG 938 if (prtrealloc) 939 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 940 (intmax_t)start_lbn, (intmax_t)end_lbn); 941 #endif 942 blkno = newblk; 943 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 944 if (i == ssize) { 945 bap = ebap; 946 soff = -i; 947 } 948 #ifdef INVARIANTS 949 if (!ffs_checkblk(ip, 950 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 951 panic("ffs_reallocblks: unallocated block 2"); 952 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 953 panic("ffs_reallocblks: alloc mismatch"); 954 #endif 955 #ifdef DEBUG 956 if (prtrealloc) 957 printf(" %jd,", (intmax_t)*bap); 958 #endif 959 if (DOINGSOFTDEP(vp)) { 960 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 961 softdep_setup_allocdirect(ip, start_lbn + i, 962 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 963 buflist->bs_children[i]); 964 else 965 softdep_setup_allocindir_page(ip, start_lbn + i, 966 i < ssize ? sbp : ebp, soff + i, blkno, 967 *bap, buflist->bs_children[i]); 968 } 969 *bap++ = blkno; 970 } 971 /* 972 * Next we must write out the modified inode and indirect blocks. 973 * For strict correctness, the writes should be synchronous since 974 * the old block values may have been written to disk. In practise 975 * they are almost never written, but if we are concerned about 976 * strict correctness, the `doasyncfree' flag should be set to zero. 977 * 978 * The test on `doasyncfree' should be changed to test a flag 979 * that shows whether the associated buffers and inodes have 980 * been written. The flag should be set when the cluster is 981 * started and cleared whenever the buffer or inode is flushed. 982 * We can then check below to see if it is set, and do the 983 * synchronous write only when it has been cleared. 984 */ 985 if (sbap != &ip->i_din2->di_db[0]) { 986 if (doasyncfree) 987 bdwrite(sbp); 988 else 989 bwrite(sbp); 990 } else { 991 ip->i_flag |= IN_CHANGE | IN_UPDATE; 992 if (!doasyncfree) 993 ffs_update(vp, 1); 994 } 995 if (ssize < len) { 996 if (doasyncfree) 997 bdwrite(ebp); 998 else 999 bwrite(ebp); 1000 } 1001 /* 1002 * Last, free the old blocks and assign the new blocks to the buffers. 1003 */ 1004 #ifdef DEBUG 1005 if (prtrealloc) 1006 printf("\n\tnew:"); 1007 #endif 1008 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1009 bp = buflist->bs_children[i]; 1010 if (!DOINGSOFTDEP(vp)) 1011 /* 1012 * The usual case is that a set of N-contiguous blocks 1013 * that was just allocated has been replaced with a 1014 * set of N+1-contiguous blocks. If they are marked as 1015 * B_DELWRI, the current contents have not been written 1016 * to disk. It is possible that the blocks were written 1017 * earlier, but very uncommon. If the blocks have never 1018 * been written, there is no need to send a BIO_DELETE 1019 * for them when they are freed. The gain from avoiding 1020 * the TRIMs for the common case of unwritten blocks 1021 * far exceeds the cost of the write amplification for 1022 * the uncommon case of failing to send a TRIM for the 1023 * blocks that had been written. 1024 */ 1025 ffs_blkfree(ump, fs, ump->um_devvp, 1026 dbtofsb(fs, bp->b_blkno), 1027 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1028 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM : SINGLETON); 1029 bp->b_blkno = fsbtodb(fs, blkno); 1030 #ifdef INVARIANTS 1031 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1032 panic("ffs_reallocblks: unallocated block 3"); 1033 #endif 1034 #ifdef DEBUG 1035 if (prtrealloc) 1036 printf(" %jd,", (intmax_t)blkno); 1037 #endif 1038 } 1039 #ifdef DEBUG 1040 if (prtrealloc) { 1041 prtrealloc--; 1042 printf("\n"); 1043 } 1044 #endif 1045 return (0); 1046 1047 fail: 1048 if (ssize < len) 1049 brelse(ebp); 1050 if (sbap != &ip->i_din2->di_db[0]) 1051 brelse(sbp); 1052 return (ENOSPC); 1053 } 1054 1055 /* 1056 * Allocate an inode in the filesystem. 1057 * 1058 * If allocating a directory, use ffs_dirpref to select the inode. 1059 * If allocating in a directory, the following hierarchy is followed: 1060 * 1) allocate the preferred inode. 1061 * 2) allocate an inode in the same cylinder group. 1062 * 3) quadradically rehash into other cylinder groups, until an 1063 * available inode is located. 1064 * If no inode preference is given the following hierarchy is used 1065 * to allocate an inode: 1066 * 1) allocate an inode in cylinder group 0. 1067 * 2) quadradically rehash into other cylinder groups, until an 1068 * available inode is located. 1069 */ 1070 int 1071 ffs_valloc(pvp, mode, cred, vpp) 1072 struct vnode *pvp; 1073 int mode; 1074 struct ucred *cred; 1075 struct vnode **vpp; 1076 { 1077 struct inode *pip; 1078 struct fs *fs; 1079 struct inode *ip; 1080 struct timespec ts; 1081 struct ufsmount *ump; 1082 ino_t ino, ipref; 1083 u_int cg; 1084 int error, error1, reclaimed; 1085 static struct timeval lastfail; 1086 static int curfail; 1087 1088 *vpp = NULL; 1089 pip = VTOI(pvp); 1090 ump = ITOUMP(pip); 1091 fs = ump->um_fs; 1092 1093 UFS_LOCK(ump); 1094 reclaimed = 0; 1095 retry: 1096 if (fs->fs_cstotal.cs_nifree == 0) 1097 goto noinodes; 1098 1099 if ((mode & IFMT) == IFDIR) 1100 ipref = ffs_dirpref(pip); 1101 else 1102 ipref = pip->i_number; 1103 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1104 ipref = 0; 1105 cg = ino_to_cg(fs, ipref); 1106 /* 1107 * Track number of dirs created one after another 1108 * in a same cg without intervening by files. 1109 */ 1110 if ((mode & IFMT) == IFDIR) { 1111 if (fs->fs_contigdirs[cg] < 255) 1112 fs->fs_contigdirs[cg]++; 1113 } else { 1114 if (fs->fs_contigdirs[cg] > 0) 1115 fs->fs_contigdirs[cg]--; 1116 } 1117 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1118 (allocfcn_t *)ffs_nodealloccg); 1119 if (ino == 0) 1120 goto noinodes; 1121 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1122 if (error) { 1123 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1124 FFSV_FORCEINSMQ); 1125 ffs_vfree(pvp, ino, mode); 1126 if (error1 == 0) { 1127 ip = VTOI(*vpp); 1128 if (ip->i_mode) 1129 goto dup_alloc; 1130 ip->i_flag |= IN_MODIFIED; 1131 vput(*vpp); 1132 } 1133 return (error); 1134 } 1135 ip = VTOI(*vpp); 1136 if (ip->i_mode) { 1137 dup_alloc: 1138 printf("mode = 0%o, inum = %ju, fs = %s\n", 1139 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1140 panic("ffs_valloc: dup alloc"); 1141 } 1142 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1143 printf("free inode %s/%lu had %ld blocks\n", 1144 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1145 DIP_SET(ip, i_blocks, 0); 1146 } 1147 ip->i_flags = 0; 1148 DIP_SET(ip, i_flags, 0); 1149 /* 1150 * Set up a new generation number for this inode. 1151 */ 1152 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1153 ip->i_gen = arc4random(); 1154 DIP_SET(ip, i_gen, ip->i_gen); 1155 if (fs->fs_magic == FS_UFS2_MAGIC) { 1156 vfs_timestamp(&ts); 1157 ip->i_din2->di_birthtime = ts.tv_sec; 1158 ip->i_din2->di_birthnsec = ts.tv_nsec; 1159 } 1160 ufs_prepare_reclaim(*vpp); 1161 ip->i_flag = 0; 1162 (*vpp)->v_vflag = 0; 1163 (*vpp)->v_type = VNON; 1164 if (fs->fs_magic == FS_UFS2_MAGIC) { 1165 (*vpp)->v_op = &ffs_vnodeops2; 1166 ip->i_flag |= IN_UFS2; 1167 } else { 1168 (*vpp)->v_op = &ffs_vnodeops1; 1169 } 1170 return (0); 1171 noinodes: 1172 if (reclaimed == 0) { 1173 reclaimed = 1; 1174 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1175 goto retry; 1176 } 1177 UFS_UNLOCK(ump); 1178 if (ppsratecheck(&lastfail, &curfail, 1)) { 1179 ffs_fserr(fs, pip->i_number, "out of inodes"); 1180 uprintf("\n%s: create/symlink failed, no inodes free\n", 1181 fs->fs_fsmnt); 1182 } 1183 return (ENOSPC); 1184 } 1185 1186 /* 1187 * Find a cylinder group to place a directory. 1188 * 1189 * The policy implemented by this algorithm is to allocate a 1190 * directory inode in the same cylinder group as its parent 1191 * directory, but also to reserve space for its files inodes 1192 * and data. Restrict the number of directories which may be 1193 * allocated one after another in the same cylinder group 1194 * without intervening allocation of files. 1195 * 1196 * If we allocate a first level directory then force allocation 1197 * in another cylinder group. 1198 */ 1199 static ino_t 1200 ffs_dirpref(pip) 1201 struct inode *pip; 1202 { 1203 struct fs *fs; 1204 int cg, prefcg, dirsize, cgsize; 1205 u_int avgifree, avgbfree, avgndir, curdirsize; 1206 u_int minifree, minbfree, maxndir; 1207 u_int mincg, minndir; 1208 u_int maxcontigdirs; 1209 1210 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1211 fs = ITOFS(pip); 1212 1213 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1214 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1215 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1216 1217 /* 1218 * Force allocation in another cg if creating a first level dir. 1219 */ 1220 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1221 if (ITOV(pip)->v_vflag & VV_ROOT) { 1222 prefcg = arc4random() % fs->fs_ncg; 1223 mincg = prefcg; 1224 minndir = fs->fs_ipg; 1225 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1226 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1227 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1228 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1229 mincg = cg; 1230 minndir = fs->fs_cs(fs, cg).cs_ndir; 1231 } 1232 for (cg = 0; cg < prefcg; cg++) 1233 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1234 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1235 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1236 mincg = cg; 1237 minndir = fs->fs_cs(fs, cg).cs_ndir; 1238 } 1239 return ((ino_t)(fs->fs_ipg * mincg)); 1240 } 1241 1242 /* 1243 * Count various limits which used for 1244 * optimal allocation of a directory inode. 1245 */ 1246 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1247 minifree = avgifree - avgifree / 4; 1248 if (minifree < 1) 1249 minifree = 1; 1250 minbfree = avgbfree - avgbfree / 4; 1251 if (minbfree < 1) 1252 minbfree = 1; 1253 cgsize = fs->fs_fsize * fs->fs_fpg; 1254 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1255 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1256 if (dirsize < curdirsize) 1257 dirsize = curdirsize; 1258 if (dirsize <= 0) 1259 maxcontigdirs = 0; /* dirsize overflowed */ 1260 else 1261 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1262 if (fs->fs_avgfpdir > 0) 1263 maxcontigdirs = min(maxcontigdirs, 1264 fs->fs_ipg / fs->fs_avgfpdir); 1265 if (maxcontigdirs == 0) 1266 maxcontigdirs = 1; 1267 1268 /* 1269 * Limit number of dirs in one cg and reserve space for 1270 * regular files, but only if we have no deficit in 1271 * inodes or space. 1272 * 1273 * We are trying to find a suitable cylinder group nearby 1274 * our preferred cylinder group to place a new directory. 1275 * We scan from our preferred cylinder group forward looking 1276 * for a cylinder group that meets our criterion. If we get 1277 * to the final cylinder group and do not find anything, 1278 * we start scanning forwards from the beginning of the 1279 * filesystem. While it might seem sensible to start scanning 1280 * backwards or even to alternate looking forward and backward, 1281 * this approach fails badly when the filesystem is nearly full. 1282 * Specifically, we first search all the areas that have no space 1283 * and finally try the one preceding that. We repeat this on 1284 * every request and in the case of the final block end up 1285 * searching the entire filesystem. By jumping to the front 1286 * of the filesystem, our future forward searches always look 1287 * in new cylinder groups so finds every possible block after 1288 * one pass over the filesystem. 1289 */ 1290 prefcg = ino_to_cg(fs, pip->i_number); 1291 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1292 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1293 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1294 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1295 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1296 return ((ino_t)(fs->fs_ipg * cg)); 1297 } 1298 for (cg = 0; cg < prefcg; cg++) 1299 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1300 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1301 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1302 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1303 return ((ino_t)(fs->fs_ipg * cg)); 1304 } 1305 /* 1306 * This is a backstop when we have deficit in space. 1307 */ 1308 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1309 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1310 return ((ino_t)(fs->fs_ipg * cg)); 1311 for (cg = 0; cg < prefcg; cg++) 1312 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1313 break; 1314 return ((ino_t)(fs->fs_ipg * cg)); 1315 } 1316 1317 /* 1318 * Select the desired position for the next block in a file. The file is 1319 * logically divided into sections. The first section is composed of the 1320 * direct blocks and the next fs_maxbpg blocks. Each additional section 1321 * contains fs_maxbpg blocks. 1322 * 1323 * If no blocks have been allocated in the first section, the policy is to 1324 * request a block in the same cylinder group as the inode that describes 1325 * the file. The first indirect is allocated immediately following the last 1326 * direct block and the data blocks for the first indirect immediately 1327 * follow it. 1328 * 1329 * If no blocks have been allocated in any other section, the indirect 1330 * block(s) are allocated in the same cylinder group as its inode in an 1331 * area reserved immediately following the inode blocks. The policy for 1332 * the data blocks is to place them in a cylinder group with a greater than 1333 * average number of free blocks. An appropriate cylinder group is found 1334 * by using a rotor that sweeps the cylinder groups. When a new group of 1335 * blocks is needed, the sweep begins in the cylinder group following the 1336 * cylinder group from which the previous allocation was made. The sweep 1337 * continues until a cylinder group with greater than the average number 1338 * of free blocks is found. If the allocation is for the first block in an 1339 * indirect block or the previous block is a hole, then the information on 1340 * the previous allocation is unavailable; here a best guess is made based 1341 * on the logical block number being allocated. 1342 * 1343 * If a section is already partially allocated, the policy is to 1344 * allocate blocks contiguously within the section if possible. 1345 */ 1346 ufs2_daddr_t 1347 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1348 struct inode *ip; 1349 ufs_lbn_t lbn; 1350 int indx; 1351 ufs1_daddr_t *bap; 1352 { 1353 struct fs *fs; 1354 u_int cg, inocg; 1355 u_int avgbfree, startcg; 1356 ufs2_daddr_t pref; 1357 1358 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1359 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1360 fs = ITOFS(ip); 1361 /* 1362 * Allocation of indirect blocks is indicated by passing negative 1363 * values in indx: -1 for single indirect, -2 for double indirect, 1364 * -3 for triple indirect. As noted below, we attempt to allocate 1365 * the first indirect inline with the file data. For all later 1366 * indirect blocks, the data is often allocated in other cylinder 1367 * groups. However to speed random file access and to speed up 1368 * fsck, the filesystem reserves the first fs_metaspace blocks 1369 * (typically half of fs_minfree) of the data area of each cylinder 1370 * group to hold these later indirect blocks. 1371 */ 1372 inocg = ino_to_cg(fs, ip->i_number); 1373 if (indx < 0) { 1374 /* 1375 * Our preference for indirect blocks is the zone at the 1376 * beginning of the inode's cylinder group data area that 1377 * we try to reserve for indirect blocks. 1378 */ 1379 pref = cgmeta(fs, inocg); 1380 /* 1381 * If we are allocating the first indirect block, try to 1382 * place it immediately following the last direct block. 1383 */ 1384 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1385 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1386 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1387 return (pref); 1388 } 1389 /* 1390 * If we are allocating the first data block in the first indirect 1391 * block and the indirect has been allocated in the data block area, 1392 * try to place it immediately following the indirect block. 1393 */ 1394 if (lbn == UFS_NDADDR) { 1395 pref = ip->i_din1->di_ib[0]; 1396 if (pref != 0 && pref >= cgdata(fs, inocg) && 1397 pref < cgbase(fs, inocg + 1)) 1398 return (pref + fs->fs_frag); 1399 } 1400 /* 1401 * If we are at the beginning of a file, or we have already allocated 1402 * the maximum number of blocks per cylinder group, or we do not 1403 * have a block allocated immediately preceding us, then we need 1404 * to decide where to start allocating new blocks. 1405 */ 1406 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1407 /* 1408 * If we are allocating a directory data block, we want 1409 * to place it in the metadata area. 1410 */ 1411 if ((ip->i_mode & IFMT) == IFDIR) 1412 return (cgmeta(fs, inocg)); 1413 /* 1414 * Until we fill all the direct and all the first indirect's 1415 * blocks, we try to allocate in the data area of the inode's 1416 * cylinder group. 1417 */ 1418 if (lbn < UFS_NDADDR + NINDIR(fs)) 1419 return (cgdata(fs, inocg)); 1420 /* 1421 * Find a cylinder with greater than average number of 1422 * unused data blocks. 1423 */ 1424 if (indx == 0 || bap[indx - 1] == 0) 1425 startcg = inocg + lbn / fs->fs_maxbpg; 1426 else 1427 startcg = dtog(fs, bap[indx - 1]) + 1; 1428 startcg %= fs->fs_ncg; 1429 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1430 for (cg = startcg; cg < fs->fs_ncg; cg++) 1431 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1432 fs->fs_cgrotor = cg; 1433 return (cgdata(fs, cg)); 1434 } 1435 for (cg = 0; cg <= startcg; cg++) 1436 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1437 fs->fs_cgrotor = cg; 1438 return (cgdata(fs, cg)); 1439 } 1440 return (0); 1441 } 1442 /* 1443 * Otherwise, we just always try to lay things out contiguously. 1444 */ 1445 return (bap[indx - 1] + fs->fs_frag); 1446 } 1447 1448 /* 1449 * Same as above, but for UFS2 1450 */ 1451 ufs2_daddr_t 1452 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1453 struct inode *ip; 1454 ufs_lbn_t lbn; 1455 int indx; 1456 ufs2_daddr_t *bap; 1457 { 1458 struct fs *fs; 1459 u_int cg, inocg; 1460 u_int avgbfree, startcg; 1461 ufs2_daddr_t pref; 1462 1463 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1464 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1465 fs = ITOFS(ip); 1466 /* 1467 * Allocation of indirect blocks is indicated by passing negative 1468 * values in indx: -1 for single indirect, -2 for double indirect, 1469 * -3 for triple indirect. As noted below, we attempt to allocate 1470 * the first indirect inline with the file data. For all later 1471 * indirect blocks, the data is often allocated in other cylinder 1472 * groups. However to speed random file access and to speed up 1473 * fsck, the filesystem reserves the first fs_metaspace blocks 1474 * (typically half of fs_minfree) of the data area of each cylinder 1475 * group to hold these later indirect blocks. 1476 */ 1477 inocg = ino_to_cg(fs, ip->i_number); 1478 if (indx < 0) { 1479 /* 1480 * Our preference for indirect blocks is the zone at the 1481 * beginning of the inode's cylinder group data area that 1482 * we try to reserve for indirect blocks. 1483 */ 1484 pref = cgmeta(fs, inocg); 1485 /* 1486 * If we are allocating the first indirect block, try to 1487 * place it immediately following the last direct block. 1488 */ 1489 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1490 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1491 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1492 return (pref); 1493 } 1494 /* 1495 * If we are allocating the first data block in the first indirect 1496 * block and the indirect has been allocated in the data block area, 1497 * try to place it immediately following the indirect block. 1498 */ 1499 if (lbn == UFS_NDADDR) { 1500 pref = ip->i_din2->di_ib[0]; 1501 if (pref != 0 && pref >= cgdata(fs, inocg) && 1502 pref < cgbase(fs, inocg + 1)) 1503 return (pref + fs->fs_frag); 1504 } 1505 /* 1506 * If we are at the beginning of a file, or we have already allocated 1507 * the maximum number of blocks per cylinder group, or we do not 1508 * have a block allocated immediately preceding us, then we need 1509 * to decide where to start allocating new blocks. 1510 */ 1511 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1512 /* 1513 * If we are allocating a directory data block, we want 1514 * to place it in the metadata area. 1515 */ 1516 if ((ip->i_mode & IFMT) == IFDIR) 1517 return (cgmeta(fs, inocg)); 1518 /* 1519 * Until we fill all the direct and all the first indirect's 1520 * blocks, we try to allocate in the data area of the inode's 1521 * cylinder group. 1522 */ 1523 if (lbn < UFS_NDADDR + NINDIR(fs)) 1524 return (cgdata(fs, inocg)); 1525 /* 1526 * Find a cylinder with greater than average number of 1527 * unused data blocks. 1528 */ 1529 if (indx == 0 || bap[indx - 1] == 0) 1530 startcg = inocg + lbn / fs->fs_maxbpg; 1531 else 1532 startcg = dtog(fs, bap[indx - 1]) + 1; 1533 startcg %= fs->fs_ncg; 1534 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1535 for (cg = startcg; cg < fs->fs_ncg; cg++) 1536 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1537 fs->fs_cgrotor = cg; 1538 return (cgdata(fs, cg)); 1539 } 1540 for (cg = 0; cg <= startcg; cg++) 1541 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1542 fs->fs_cgrotor = cg; 1543 return (cgdata(fs, cg)); 1544 } 1545 return (0); 1546 } 1547 /* 1548 * Otherwise, we just always try to lay things out contiguously. 1549 */ 1550 return (bap[indx - 1] + fs->fs_frag); 1551 } 1552 1553 /* 1554 * Implement the cylinder overflow algorithm. 1555 * 1556 * The policy implemented by this algorithm is: 1557 * 1) allocate the block in its requested cylinder group. 1558 * 2) quadradically rehash on the cylinder group number. 1559 * 3) brute force search for a free block. 1560 * 1561 * Must be called with the UFS lock held. Will release the lock on success 1562 * and return with it held on failure. 1563 */ 1564 /*VARARGS5*/ 1565 static ufs2_daddr_t 1566 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1567 struct inode *ip; 1568 u_int cg; 1569 ufs2_daddr_t pref; 1570 int size; /* Search size for data blocks, mode for inodes */ 1571 int rsize; /* Real allocated size. */ 1572 allocfcn_t *allocator; 1573 { 1574 struct fs *fs; 1575 ufs2_daddr_t result; 1576 u_int i, icg = cg; 1577 1578 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1579 #ifdef INVARIANTS 1580 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1581 panic("ffs_hashalloc: allocation on suspended filesystem"); 1582 #endif 1583 fs = ITOFS(ip); 1584 /* 1585 * 1: preferred cylinder group 1586 */ 1587 result = (*allocator)(ip, cg, pref, size, rsize); 1588 if (result) 1589 return (result); 1590 /* 1591 * 2: quadratic rehash 1592 */ 1593 for (i = 1; i < fs->fs_ncg; i *= 2) { 1594 cg += i; 1595 if (cg >= fs->fs_ncg) 1596 cg -= fs->fs_ncg; 1597 result = (*allocator)(ip, cg, 0, size, rsize); 1598 if (result) 1599 return (result); 1600 } 1601 /* 1602 * 3: brute force search 1603 * Note that we start at i == 2, since 0 was checked initially, 1604 * and 1 is always checked in the quadratic rehash. 1605 */ 1606 cg = (icg + 2) % fs->fs_ncg; 1607 for (i = 2; i < fs->fs_ncg; i++) { 1608 result = (*allocator)(ip, cg, 0, size, rsize); 1609 if (result) 1610 return (result); 1611 cg++; 1612 if (cg == fs->fs_ncg) 1613 cg = 0; 1614 } 1615 return (0); 1616 } 1617 1618 /* 1619 * Determine whether a fragment can be extended. 1620 * 1621 * Check to see if the necessary fragments are available, and 1622 * if they are, allocate them. 1623 */ 1624 static ufs2_daddr_t 1625 ffs_fragextend(ip, cg, bprev, osize, nsize) 1626 struct inode *ip; 1627 u_int cg; 1628 ufs2_daddr_t bprev; 1629 int osize, nsize; 1630 { 1631 struct fs *fs; 1632 struct cg *cgp; 1633 struct buf *bp; 1634 struct ufsmount *ump; 1635 int nffree; 1636 long bno; 1637 int frags, bbase; 1638 int i, error; 1639 u_int8_t *blksfree; 1640 1641 ump = ITOUMP(ip); 1642 fs = ump->um_fs; 1643 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1644 return (0); 1645 frags = numfrags(fs, nsize); 1646 bbase = fragnum(fs, bprev); 1647 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1648 /* cannot extend across a block boundary */ 1649 return (0); 1650 } 1651 UFS_UNLOCK(ump); 1652 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) 1653 goto fail; 1654 bno = dtogd(fs, bprev); 1655 blksfree = cg_blksfree(cgp); 1656 for (i = numfrags(fs, osize); i < frags; i++) 1657 if (isclr(blksfree, bno + i)) 1658 goto fail; 1659 /* 1660 * the current fragment can be extended 1661 * deduct the count on fragment being extended into 1662 * increase the count on the remaining fragment (if any) 1663 * allocate the extended piece 1664 */ 1665 for (i = frags; i < fs->fs_frag - bbase; i++) 1666 if (isclr(blksfree, bno + i)) 1667 break; 1668 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1669 if (i != frags) 1670 cgp->cg_frsum[i - frags]++; 1671 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1672 clrbit(blksfree, bno + i); 1673 cgp->cg_cs.cs_nffree--; 1674 nffree++; 1675 } 1676 UFS_LOCK(ump); 1677 fs->fs_cstotal.cs_nffree -= nffree; 1678 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1679 fs->fs_fmod = 1; 1680 ACTIVECLEAR(fs, cg); 1681 UFS_UNLOCK(ump); 1682 if (DOINGSOFTDEP(ITOV(ip))) 1683 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1684 frags, numfrags(fs, osize)); 1685 bdwrite(bp); 1686 return (bprev); 1687 1688 fail: 1689 brelse(bp); 1690 UFS_LOCK(ump); 1691 return (0); 1692 1693 } 1694 1695 /* 1696 * Determine whether a block can be allocated. 1697 * 1698 * Check to see if a block of the appropriate size is available, 1699 * and if it is, allocate it. 1700 */ 1701 static ufs2_daddr_t 1702 ffs_alloccg(ip, cg, bpref, size, rsize) 1703 struct inode *ip; 1704 u_int cg; 1705 ufs2_daddr_t bpref; 1706 int size; 1707 int rsize; 1708 { 1709 struct fs *fs; 1710 struct cg *cgp; 1711 struct buf *bp; 1712 struct ufsmount *ump; 1713 ufs1_daddr_t bno; 1714 ufs2_daddr_t blkno; 1715 int i, allocsiz, error, frags; 1716 u_int8_t *blksfree; 1717 1718 ump = ITOUMP(ip); 1719 fs = ump->um_fs; 1720 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1721 return (0); 1722 UFS_UNLOCK(ump); 1723 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || 1724 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1725 goto fail; 1726 if (size == fs->fs_bsize) { 1727 UFS_LOCK(ump); 1728 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1729 ACTIVECLEAR(fs, cg); 1730 UFS_UNLOCK(ump); 1731 bdwrite(bp); 1732 return (blkno); 1733 } 1734 /* 1735 * check to see if any fragments are already available 1736 * allocsiz is the size which will be allocated, hacking 1737 * it down to a smaller size if necessary 1738 */ 1739 blksfree = cg_blksfree(cgp); 1740 frags = numfrags(fs, size); 1741 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1742 if (cgp->cg_frsum[allocsiz] != 0) 1743 break; 1744 if (allocsiz == fs->fs_frag) { 1745 /* 1746 * no fragments were available, so a block will be 1747 * allocated, and hacked up 1748 */ 1749 if (cgp->cg_cs.cs_nbfree == 0) 1750 goto fail; 1751 UFS_LOCK(ump); 1752 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1753 ACTIVECLEAR(fs, cg); 1754 UFS_UNLOCK(ump); 1755 bdwrite(bp); 1756 return (blkno); 1757 } 1758 KASSERT(size == rsize, 1759 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1760 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1761 if (bno < 0) 1762 goto fail; 1763 for (i = 0; i < frags; i++) 1764 clrbit(blksfree, bno + i); 1765 cgp->cg_cs.cs_nffree -= frags; 1766 cgp->cg_frsum[allocsiz]--; 1767 if (frags != allocsiz) 1768 cgp->cg_frsum[allocsiz - frags]++; 1769 UFS_LOCK(ump); 1770 fs->fs_cstotal.cs_nffree -= frags; 1771 fs->fs_cs(fs, cg).cs_nffree -= frags; 1772 fs->fs_fmod = 1; 1773 blkno = cgbase(fs, cg) + bno; 1774 ACTIVECLEAR(fs, cg); 1775 UFS_UNLOCK(ump); 1776 if (DOINGSOFTDEP(ITOV(ip))) 1777 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1778 bdwrite(bp); 1779 return (blkno); 1780 1781 fail: 1782 brelse(bp); 1783 UFS_LOCK(ump); 1784 return (0); 1785 } 1786 1787 /* 1788 * Allocate a block in a cylinder group. 1789 * 1790 * This algorithm implements the following policy: 1791 * 1) allocate the requested block. 1792 * 2) allocate a rotationally optimal block in the same cylinder. 1793 * 3) allocate the next available block on the block rotor for the 1794 * specified cylinder group. 1795 * Note that this routine only allocates fs_bsize blocks; these 1796 * blocks may be fragmented by the routine that allocates them. 1797 */ 1798 static ufs2_daddr_t 1799 ffs_alloccgblk(ip, bp, bpref, size) 1800 struct inode *ip; 1801 struct buf *bp; 1802 ufs2_daddr_t bpref; 1803 int size; 1804 { 1805 struct fs *fs; 1806 struct cg *cgp; 1807 struct ufsmount *ump; 1808 ufs1_daddr_t bno; 1809 ufs2_daddr_t blkno; 1810 u_int8_t *blksfree; 1811 int i, cgbpref; 1812 1813 ump = ITOUMP(ip); 1814 fs = ump->um_fs; 1815 mtx_assert(UFS_MTX(ump), MA_OWNED); 1816 cgp = (struct cg *)bp->b_data; 1817 blksfree = cg_blksfree(cgp); 1818 if (bpref == 0) { 1819 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1820 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1821 /* map bpref to correct zone in this cg */ 1822 if (bpref < cgdata(fs, cgbpref)) 1823 bpref = cgmeta(fs, cgp->cg_cgx); 1824 else 1825 bpref = cgdata(fs, cgp->cg_cgx); 1826 } 1827 /* 1828 * if the requested block is available, use it 1829 */ 1830 bno = dtogd(fs, blknum(fs, bpref)); 1831 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1832 goto gotit; 1833 /* 1834 * Take the next available block in this cylinder group. 1835 */ 1836 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1837 if (bno < 0) 1838 return (0); 1839 /* Update cg_rotor only if allocated from the data zone */ 1840 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1841 cgp->cg_rotor = bno; 1842 gotit: 1843 blkno = fragstoblks(fs, bno); 1844 ffs_clrblock(fs, blksfree, (long)blkno); 1845 ffs_clusteracct(fs, cgp, blkno, -1); 1846 cgp->cg_cs.cs_nbfree--; 1847 fs->fs_cstotal.cs_nbfree--; 1848 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1849 fs->fs_fmod = 1; 1850 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1851 /* 1852 * If the caller didn't want the whole block free the frags here. 1853 */ 1854 size = numfrags(fs, size); 1855 if (size != fs->fs_frag) { 1856 bno = dtogd(fs, blkno); 1857 for (i = size; i < fs->fs_frag; i++) 1858 setbit(blksfree, bno + i); 1859 i = fs->fs_frag - size; 1860 cgp->cg_cs.cs_nffree += i; 1861 fs->fs_cstotal.cs_nffree += i; 1862 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1863 fs->fs_fmod = 1; 1864 cgp->cg_frsum[i]++; 1865 } 1866 /* XXX Fixme. */ 1867 UFS_UNLOCK(ump); 1868 if (DOINGSOFTDEP(ITOV(ip))) 1869 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1870 UFS_LOCK(ump); 1871 return (blkno); 1872 } 1873 1874 /* 1875 * Determine whether a cluster can be allocated. 1876 * 1877 * We do not currently check for optimal rotational layout if there 1878 * are multiple choices in the same cylinder group. Instead we just 1879 * take the first one that we find following bpref. 1880 */ 1881 static ufs2_daddr_t 1882 ffs_clusteralloc(ip, cg, bpref, len) 1883 struct inode *ip; 1884 u_int cg; 1885 ufs2_daddr_t bpref; 1886 int len; 1887 { 1888 struct fs *fs; 1889 struct cg *cgp; 1890 struct buf *bp; 1891 struct ufsmount *ump; 1892 int i, run, bit, map, got, error; 1893 ufs2_daddr_t bno; 1894 u_char *mapp; 1895 int32_t *lp; 1896 u_int8_t *blksfree; 1897 1898 ump = ITOUMP(ip); 1899 fs = ump->um_fs; 1900 if (fs->fs_maxcluster[cg] < len) 1901 return (0); 1902 UFS_UNLOCK(ump); 1903 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1904 UFS_LOCK(ump); 1905 return (0); 1906 } 1907 /* 1908 * Check to see if a cluster of the needed size (or bigger) is 1909 * available in this cylinder group. 1910 */ 1911 lp = &cg_clustersum(cgp)[len]; 1912 for (i = len; i <= fs->fs_contigsumsize; i++) 1913 if (*lp++ > 0) 1914 break; 1915 if (i > fs->fs_contigsumsize) { 1916 /* 1917 * This is the first time looking for a cluster in this 1918 * cylinder group. Update the cluster summary information 1919 * to reflect the true maximum sized cluster so that 1920 * future cluster allocation requests can avoid reading 1921 * the cylinder group map only to find no clusters. 1922 */ 1923 lp = &cg_clustersum(cgp)[len - 1]; 1924 for (i = len - 1; i > 0; i--) 1925 if (*lp-- > 0) 1926 break; 1927 UFS_LOCK(ump); 1928 fs->fs_maxcluster[cg] = i; 1929 brelse(bp); 1930 return (0); 1931 } 1932 /* 1933 * Search the cluster map to find a big enough cluster. 1934 * We take the first one that we find, even if it is larger 1935 * than we need as we prefer to get one close to the previous 1936 * block allocation. We do not search before the current 1937 * preference point as we do not want to allocate a block 1938 * that is allocated before the previous one (as we will 1939 * then have to wait for another pass of the elevator 1940 * algorithm before it will be read). We prefer to fail and 1941 * be recalled to try an allocation in the next cylinder group. 1942 */ 1943 if (dtog(fs, bpref) != cg) 1944 bpref = cgdata(fs, cg); 1945 else 1946 bpref = blknum(fs, bpref); 1947 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1948 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1949 map = *mapp++; 1950 bit = 1 << (bpref % NBBY); 1951 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1952 if ((map & bit) == 0) { 1953 run = 0; 1954 } else { 1955 run++; 1956 if (run == len) 1957 break; 1958 } 1959 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1960 bit <<= 1; 1961 } else { 1962 map = *mapp++; 1963 bit = 1; 1964 } 1965 } 1966 if (got >= cgp->cg_nclusterblks) { 1967 UFS_LOCK(ump); 1968 brelse(bp); 1969 return (0); 1970 } 1971 /* 1972 * Allocate the cluster that we have found. 1973 */ 1974 blksfree = cg_blksfree(cgp); 1975 for (i = 1; i <= len; i++) 1976 if (!ffs_isblock(fs, blksfree, got - run + i)) 1977 panic("ffs_clusteralloc: map mismatch"); 1978 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1979 if (dtog(fs, bno) != cg) 1980 panic("ffs_clusteralloc: allocated out of group"); 1981 len = blkstofrags(fs, len); 1982 UFS_LOCK(ump); 1983 for (i = 0; i < len; i += fs->fs_frag) 1984 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1985 panic("ffs_clusteralloc: lost block"); 1986 ACTIVECLEAR(fs, cg); 1987 UFS_UNLOCK(ump); 1988 bdwrite(bp); 1989 return (bno); 1990 } 1991 1992 static inline struct buf * 1993 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1994 { 1995 struct fs *fs; 1996 1997 fs = ITOFS(ip); 1998 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 1999 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2000 gbflags)); 2001 } 2002 2003 /* 2004 * Synchronous inode initialization is needed only when barrier writes do not 2005 * work as advertised, and will impose a heavy cost on file creation in a newly 2006 * created filesystem. 2007 */ 2008 static int doasyncinodeinit = 1; 2009 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2010 &doasyncinodeinit, 0, 2011 "Perform inode block initialization using asynchronous writes"); 2012 2013 /* 2014 * Determine whether an inode can be allocated. 2015 * 2016 * Check to see if an inode is available, and if it is, 2017 * allocate it using the following policy: 2018 * 1) allocate the requested inode. 2019 * 2) allocate the next available inode after the requested 2020 * inode in the specified cylinder group. 2021 */ 2022 static ufs2_daddr_t 2023 ffs_nodealloccg(ip, cg, ipref, mode, unused) 2024 struct inode *ip; 2025 u_int cg; 2026 ufs2_daddr_t ipref; 2027 int mode; 2028 int unused; 2029 { 2030 struct fs *fs; 2031 struct cg *cgp; 2032 struct buf *bp, *ibp; 2033 struct ufsmount *ump; 2034 u_int8_t *inosused, *loc; 2035 struct ufs2_dinode *dp2; 2036 int error, start, len, i; 2037 u_int32_t old_initediblk; 2038 2039 ump = ITOUMP(ip); 2040 fs = ump->um_fs; 2041 check_nifree: 2042 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2043 return (0); 2044 UFS_UNLOCK(ump); 2045 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 2046 UFS_LOCK(ump); 2047 return (0); 2048 } 2049 restart: 2050 if (cgp->cg_cs.cs_nifree == 0) { 2051 brelse(bp); 2052 UFS_LOCK(ump); 2053 return (0); 2054 } 2055 inosused = cg_inosused(cgp); 2056 if (ipref) { 2057 ipref %= fs->fs_ipg; 2058 if (isclr(inosused, ipref)) 2059 goto gotit; 2060 } 2061 start = cgp->cg_irotor / NBBY; 2062 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2063 loc = memcchr(&inosused[start], 0xff, len); 2064 if (loc == NULL) { 2065 len = start + 1; 2066 start = 0; 2067 loc = memcchr(&inosused[start], 0xff, len); 2068 if (loc == NULL) { 2069 printf("cg = %d, irotor = %ld, fs = %s\n", 2070 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2071 panic("ffs_nodealloccg: map corrupted"); 2072 /* NOTREACHED */ 2073 } 2074 } 2075 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2076 gotit: 2077 /* 2078 * Check to see if we need to initialize more inodes. 2079 */ 2080 if (fs->fs_magic == FS_UFS2_MAGIC && 2081 ipref + INOPB(fs) > cgp->cg_initediblk && 2082 cgp->cg_initediblk < cgp->cg_niblk) { 2083 old_initediblk = cgp->cg_initediblk; 2084 2085 /* 2086 * Free the cylinder group lock before writing the 2087 * initialized inode block. Entering the 2088 * babarrierwrite() with the cylinder group lock 2089 * causes lock order violation between the lock and 2090 * snaplk. 2091 * 2092 * Another thread can decide to initialize the same 2093 * inode block, but whichever thread first gets the 2094 * cylinder group lock after writing the newly 2095 * allocated inode block will update it and the other 2096 * will realize that it has lost and leave the 2097 * cylinder group unchanged. 2098 */ 2099 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2100 brelse(bp); 2101 if (ibp == NULL) { 2102 /* 2103 * The inode block buffer is already owned by 2104 * another thread, which must initialize it. 2105 * Wait on the buffer to allow another thread 2106 * to finish the updates, with dropped cg 2107 * buffer lock, then retry. 2108 */ 2109 ibp = getinobuf(ip, cg, old_initediblk, 0); 2110 brelse(ibp); 2111 UFS_LOCK(ump); 2112 goto check_nifree; 2113 } 2114 bzero(ibp->b_data, (int)fs->fs_bsize); 2115 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2116 for (i = 0; i < INOPB(fs); i++) { 2117 while (dp2->di_gen == 0) 2118 dp2->di_gen = arc4random(); 2119 dp2++; 2120 } 2121 2122 /* 2123 * Rather than adding a soft updates dependency to ensure 2124 * that the new inode block is written before it is claimed 2125 * by the cylinder group map, we just do a barrier write 2126 * here. The barrier write will ensure that the inode block 2127 * gets written before the updated cylinder group map can be 2128 * written. The barrier write should only slow down bulk 2129 * loading of newly created filesystems. 2130 */ 2131 if (doasyncinodeinit) 2132 babarrierwrite(ibp); 2133 else 2134 bwrite(ibp); 2135 2136 /* 2137 * After the inode block is written, try to update the 2138 * cg initediblk pointer. If another thread beat us 2139 * to it, then leave it unchanged as the other thread 2140 * has already set it correctly. 2141 */ 2142 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); 2143 UFS_LOCK(ump); 2144 ACTIVECLEAR(fs, cg); 2145 UFS_UNLOCK(ump); 2146 if (error != 0) 2147 return (error); 2148 if (cgp->cg_initediblk == old_initediblk) 2149 cgp->cg_initediblk += INOPB(fs); 2150 goto restart; 2151 } 2152 cgp->cg_irotor = ipref; 2153 UFS_LOCK(ump); 2154 ACTIVECLEAR(fs, cg); 2155 setbit(inosused, ipref); 2156 cgp->cg_cs.cs_nifree--; 2157 fs->fs_cstotal.cs_nifree--; 2158 fs->fs_cs(fs, cg).cs_nifree--; 2159 fs->fs_fmod = 1; 2160 if ((mode & IFMT) == IFDIR) { 2161 cgp->cg_cs.cs_ndir++; 2162 fs->fs_cstotal.cs_ndir++; 2163 fs->fs_cs(fs, cg).cs_ndir++; 2164 } 2165 UFS_UNLOCK(ump); 2166 if (DOINGSOFTDEP(ITOV(ip))) 2167 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2168 bdwrite(bp); 2169 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2170 } 2171 2172 /* 2173 * Free a block or fragment. 2174 * 2175 * The specified block or fragment is placed back in the 2176 * free map. If a fragment is deallocated, a possible 2177 * block reassembly is checked. 2178 */ 2179 static void 2180 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2181 struct ufsmount *ump; 2182 struct fs *fs; 2183 struct vnode *devvp; 2184 ufs2_daddr_t bno; 2185 long size; 2186 ino_t inum; 2187 struct workhead *dephd; 2188 { 2189 struct mount *mp; 2190 struct cg *cgp; 2191 struct buf *bp; 2192 ufs1_daddr_t fragno, cgbno; 2193 int i, blk, frags, bbase, error; 2194 u_int cg; 2195 u_int8_t *blksfree; 2196 struct cdev *dev; 2197 2198 cg = dtog(fs, bno); 2199 if (devvp->v_type == VREG) { 2200 /* devvp is a snapshot */ 2201 MPASS(devvp->v_mount->mnt_data == ump); 2202 dev = ump->um_devvp->v_rdev; 2203 } else if (devvp->v_type == VCHR) { 2204 /* devvp is a normal disk device */ 2205 dev = devvp->v_rdev; 2206 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2207 } else 2208 return; 2209 #ifdef INVARIANTS 2210 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2211 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2212 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2213 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2214 size, fs->fs_fsmnt); 2215 panic("ffs_blkfree_cg: bad size"); 2216 } 2217 #endif 2218 if ((u_int)bno >= fs->fs_size) { 2219 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2220 (u_long)inum); 2221 ffs_fserr(fs, inum, "bad block"); 2222 return; 2223 } 2224 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2225 return; 2226 cgbno = dtogd(fs, bno); 2227 blksfree = cg_blksfree(cgp); 2228 UFS_LOCK(ump); 2229 if (size == fs->fs_bsize) { 2230 fragno = fragstoblks(fs, cgbno); 2231 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2232 if (devvp->v_type == VREG) { 2233 UFS_UNLOCK(ump); 2234 /* devvp is a snapshot */ 2235 brelse(bp); 2236 return; 2237 } 2238 printf("dev = %s, block = %jd, fs = %s\n", 2239 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2240 panic("ffs_blkfree_cg: freeing free block"); 2241 } 2242 ffs_setblock(fs, blksfree, fragno); 2243 ffs_clusteracct(fs, cgp, fragno, 1); 2244 cgp->cg_cs.cs_nbfree++; 2245 fs->fs_cstotal.cs_nbfree++; 2246 fs->fs_cs(fs, cg).cs_nbfree++; 2247 } else { 2248 bbase = cgbno - fragnum(fs, cgbno); 2249 /* 2250 * decrement the counts associated with the old frags 2251 */ 2252 blk = blkmap(fs, blksfree, bbase); 2253 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2254 /* 2255 * deallocate the fragment 2256 */ 2257 frags = numfrags(fs, size); 2258 for (i = 0; i < frags; i++) { 2259 if (isset(blksfree, cgbno + i)) { 2260 printf("dev = %s, block = %jd, fs = %s\n", 2261 devtoname(dev), (intmax_t)(bno + i), 2262 fs->fs_fsmnt); 2263 panic("ffs_blkfree_cg: freeing free frag"); 2264 } 2265 setbit(blksfree, cgbno + i); 2266 } 2267 cgp->cg_cs.cs_nffree += i; 2268 fs->fs_cstotal.cs_nffree += i; 2269 fs->fs_cs(fs, cg).cs_nffree += i; 2270 /* 2271 * add back in counts associated with the new frags 2272 */ 2273 blk = blkmap(fs, blksfree, bbase); 2274 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2275 /* 2276 * if a complete block has been reassembled, account for it 2277 */ 2278 fragno = fragstoblks(fs, bbase); 2279 if (ffs_isblock(fs, blksfree, fragno)) { 2280 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2281 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2282 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2283 ffs_clusteracct(fs, cgp, fragno, 1); 2284 cgp->cg_cs.cs_nbfree++; 2285 fs->fs_cstotal.cs_nbfree++; 2286 fs->fs_cs(fs, cg).cs_nbfree++; 2287 } 2288 } 2289 fs->fs_fmod = 1; 2290 ACTIVECLEAR(fs, cg); 2291 UFS_UNLOCK(ump); 2292 mp = UFSTOVFS(ump); 2293 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2294 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2295 numfrags(fs, size), dephd); 2296 bdwrite(bp); 2297 } 2298 2299 /* 2300 * Structures and routines associated with trim management. 2301 */ 2302 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2303 2304 #define TRIMLIST_HASH(ump, inum) \ 2305 (&(ump)->um_trimhash[(inum) & (ump)->um_trimlisthashsize]) 2306 2307 static void ffs_blkfree_trim_completed(struct buf *); 2308 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2309 2310 struct ffs_blkfree_trim_params { 2311 struct task task; 2312 struct ufsmount *ump; 2313 struct vnode *devvp; 2314 ufs2_daddr_t bno; 2315 long size; 2316 ino_t inum; 2317 struct workhead *pdephd; 2318 struct workhead dephd; 2319 }; 2320 2321 static void 2322 ffs_blkfree_trim_task(ctx, pending) 2323 void *ctx; 2324 int pending; 2325 { 2326 struct ffs_blkfree_trim_params *tp; 2327 2328 tp = ctx; 2329 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2330 tp->inum, tp->pdephd); 2331 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2332 atomic_add_int(&tp->ump->um_trim_inflight, -1); 2333 free(tp, M_TRIM); 2334 } 2335 2336 static void 2337 ffs_blkfree_trim_completed(bp) 2338 struct buf *bp; 2339 { 2340 struct ffs_blkfree_trim_params *tp; 2341 2342 tp = bp->b_fsprivate1; 2343 free(bp, M_TRIM); 2344 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2345 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2346 } 2347 2348 void 2349 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, trimtype) 2350 struct ufsmount *ump; 2351 struct fs *fs; 2352 struct vnode *devvp; 2353 ufs2_daddr_t bno; 2354 long size; 2355 ino_t inum; 2356 enum vtype vtype; 2357 struct workhead *dephd; 2358 int trimtype; 2359 { 2360 struct mount *mp; 2361 struct buf *bp; 2362 struct ffs_blkfree_trim_params *tp; 2363 2364 /* 2365 * Check to see if a snapshot wants to claim the block. 2366 * Check that devvp is a normal disk device, not a snapshot, 2367 * it has a snapshot(s) associated with it, and one of the 2368 * snapshots wants to claim the block. 2369 */ 2370 if (devvp->v_type == VCHR && 2371 (devvp->v_vflag & VV_COPYONWRITE) && 2372 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2373 return; 2374 } 2375 /* 2376 * Nothing to delay if TRIM is not required for this block or TRIM 2377 * is disabled or the operation is performed on a snapshot. 2378 */ 2379 if (trimtype == NOTRIM || ((ump->um_flags & UM_CANDELETE) == 0) || 2380 devvp->v_type == VREG) { 2381 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2382 return; 2383 } 2384 2385 /* 2386 * Postpone the set of the free bit in the cg bitmap until the 2387 * BIO_DELETE is completed. Otherwise, due to disk queue 2388 * reordering, TRIM might be issued after we reuse the block 2389 * and write some new data into it. 2390 */ 2391 atomic_add_int(&ump->um_trim_inflight, 1); 2392 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2393 tp->ump = ump; 2394 tp->devvp = devvp; 2395 tp->bno = bno; 2396 tp->size = size; 2397 tp->inum = inum; 2398 if (dephd != NULL) { 2399 LIST_INIT(&tp->dephd); 2400 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2401 tp->pdephd = &tp->dephd; 2402 } else 2403 tp->pdephd = NULL; 2404 2405 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2406 bp->b_iocmd = BIO_DELETE; 2407 bp->b_iooffset = dbtob(fsbtodb(fs, bno)); 2408 bp->b_iodone = ffs_blkfree_trim_completed; 2409 bp->b_bcount = size; 2410 bp->b_fsprivate1 = tp; 2411 2412 mp = UFSTOVFS(ump); 2413 vn_start_secondary_write(NULL, &mp, 0); 2414 g_vfs_strategy(ump->um_bo, bp); 2415 } 2416 2417 #ifdef INVARIANTS 2418 /* 2419 * Verify allocation of a block or fragment. Returns true if block or 2420 * fragment is allocated, false if it is free. 2421 */ 2422 static int 2423 ffs_checkblk(ip, bno, size) 2424 struct inode *ip; 2425 ufs2_daddr_t bno; 2426 long size; 2427 { 2428 struct fs *fs; 2429 struct cg *cgp; 2430 struct buf *bp; 2431 ufs1_daddr_t cgbno; 2432 int i, error, frags, free; 2433 u_int8_t *blksfree; 2434 2435 fs = ITOFS(ip); 2436 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2437 printf("bsize = %ld, size = %ld, fs = %s\n", 2438 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2439 panic("ffs_checkblk: bad size"); 2440 } 2441 if ((u_int)bno >= fs->fs_size) 2442 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2443 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); 2444 if (error) 2445 panic("ffs_checkblk: cylinder group read failed"); 2446 blksfree = cg_blksfree(cgp); 2447 cgbno = dtogd(fs, bno); 2448 if (size == fs->fs_bsize) { 2449 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2450 } else { 2451 frags = numfrags(fs, size); 2452 for (free = 0, i = 0; i < frags; i++) 2453 if (isset(blksfree, cgbno + i)) 2454 free++; 2455 if (free != 0 && free != frags) 2456 panic("ffs_checkblk: partially free fragment"); 2457 } 2458 brelse(bp); 2459 return (!free); 2460 } 2461 #endif /* INVARIANTS */ 2462 2463 /* 2464 * Free an inode. 2465 */ 2466 int 2467 ffs_vfree(pvp, ino, mode) 2468 struct vnode *pvp; 2469 ino_t ino; 2470 int mode; 2471 { 2472 struct ufsmount *ump; 2473 2474 if (DOINGSOFTDEP(pvp)) { 2475 softdep_freefile(pvp, ino, mode); 2476 return (0); 2477 } 2478 ump = VFSTOUFS(pvp->v_mount); 2479 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2480 } 2481 2482 /* 2483 * Do the actual free operation. 2484 * The specified inode is placed back in the free map. 2485 */ 2486 int 2487 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2488 struct ufsmount *ump; 2489 struct fs *fs; 2490 struct vnode *devvp; 2491 ino_t ino; 2492 int mode; 2493 struct workhead *wkhd; 2494 { 2495 struct cg *cgp; 2496 struct buf *bp; 2497 int error; 2498 u_int cg; 2499 u_int8_t *inosused; 2500 struct cdev *dev; 2501 2502 cg = ino_to_cg(fs, ino); 2503 if (devvp->v_type == VREG) { 2504 /* devvp is a snapshot */ 2505 MPASS(devvp->v_mount->mnt_data == ump); 2506 dev = ump->um_devvp->v_rdev; 2507 } else if (devvp->v_type == VCHR) { 2508 /* devvp is a normal disk device */ 2509 dev = devvp->v_rdev; 2510 } else { 2511 bp = NULL; 2512 return (0); 2513 } 2514 if (ino >= fs->fs_ipg * fs->fs_ncg) 2515 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2516 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2517 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2518 return (error); 2519 inosused = cg_inosused(cgp); 2520 ino %= fs->fs_ipg; 2521 if (isclr(inosused, ino)) { 2522 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2523 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2524 if (fs->fs_ronly == 0) 2525 panic("ffs_freefile: freeing free inode"); 2526 } 2527 clrbit(inosused, ino); 2528 if (ino < cgp->cg_irotor) 2529 cgp->cg_irotor = ino; 2530 cgp->cg_cs.cs_nifree++; 2531 UFS_LOCK(ump); 2532 fs->fs_cstotal.cs_nifree++; 2533 fs->fs_cs(fs, cg).cs_nifree++; 2534 if ((mode & IFMT) == IFDIR) { 2535 cgp->cg_cs.cs_ndir--; 2536 fs->fs_cstotal.cs_ndir--; 2537 fs->fs_cs(fs, cg).cs_ndir--; 2538 } 2539 fs->fs_fmod = 1; 2540 ACTIVECLEAR(fs, cg); 2541 UFS_UNLOCK(ump); 2542 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2543 softdep_setup_inofree(UFSTOVFS(ump), bp, 2544 ino + cg * fs->fs_ipg, wkhd); 2545 bdwrite(bp); 2546 return (0); 2547 } 2548 2549 /* 2550 * Check to see if a file is free. 2551 * Used to check for allocated files in snapshots. 2552 */ 2553 int 2554 ffs_checkfreefile(fs, devvp, ino) 2555 struct fs *fs; 2556 struct vnode *devvp; 2557 ino_t ino; 2558 { 2559 struct cg *cgp; 2560 struct buf *bp; 2561 int ret, error; 2562 u_int cg; 2563 u_int8_t *inosused; 2564 2565 cg = ino_to_cg(fs, ino); 2566 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2567 return (1); 2568 if (ino >= fs->fs_ipg * fs->fs_ncg) 2569 return (1); 2570 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2571 return (1); 2572 inosused = cg_inosused(cgp); 2573 ino %= fs->fs_ipg; 2574 ret = isclr(inosused, ino); 2575 brelse(bp); 2576 return (ret); 2577 } 2578 2579 /* 2580 * Find a block of the specified size in the specified cylinder group. 2581 * 2582 * It is a panic if a request is made to find a block if none are 2583 * available. 2584 */ 2585 static ufs1_daddr_t 2586 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2587 struct fs *fs; 2588 struct cg *cgp; 2589 ufs2_daddr_t bpref; 2590 int allocsiz; 2591 { 2592 ufs1_daddr_t bno; 2593 int start, len, loc, i; 2594 int blk, field, subfield, pos; 2595 u_int8_t *blksfree; 2596 2597 /* 2598 * find the fragment by searching through the free block 2599 * map for an appropriate bit pattern 2600 */ 2601 if (bpref) 2602 start = dtogd(fs, bpref) / NBBY; 2603 else 2604 start = cgp->cg_frotor / NBBY; 2605 blksfree = cg_blksfree(cgp); 2606 len = howmany(fs->fs_fpg, NBBY) - start; 2607 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2608 fragtbl[fs->fs_frag], 2609 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2610 if (loc == 0) { 2611 len = start + 1; 2612 start = 0; 2613 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2614 fragtbl[fs->fs_frag], 2615 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2616 if (loc == 0) { 2617 printf("start = %d, len = %d, fs = %s\n", 2618 start, len, fs->fs_fsmnt); 2619 panic("ffs_alloccg: map corrupted"); 2620 /* NOTREACHED */ 2621 } 2622 } 2623 bno = (start + len - loc) * NBBY; 2624 cgp->cg_frotor = bno; 2625 /* 2626 * found the byte in the map 2627 * sift through the bits to find the selected frag 2628 */ 2629 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2630 blk = blkmap(fs, blksfree, bno); 2631 blk <<= 1; 2632 field = around[allocsiz]; 2633 subfield = inside[allocsiz]; 2634 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2635 if ((blk & field) == subfield) 2636 return (bno + pos); 2637 field <<= 1; 2638 subfield <<= 1; 2639 } 2640 } 2641 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2642 panic("ffs_alloccg: block not in map"); 2643 return (-1); 2644 } 2645 2646 static const struct statfs * 2647 ffs_getmntstat(struct vnode *devvp) 2648 { 2649 2650 if (devvp->v_type == VCHR) 2651 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2652 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2653 } 2654 2655 /* 2656 * Fetch and verify a cylinder group. 2657 */ 2658 int 2659 ffs_getcg(fs, devvp, cg, bpp, cgpp) 2660 struct fs *fs; 2661 struct vnode *devvp; 2662 u_int cg; 2663 struct buf **bpp; 2664 struct cg **cgpp; 2665 { 2666 struct buf *bp; 2667 struct cg *cgp; 2668 const struct statfs *sfs; 2669 int flags, error; 2670 2671 *bpp = NULL; 2672 *cgpp = NULL; 2673 flags = 0; 2674 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2675 flags |= GB_CKHASH; 2676 error = breadn_flags(devvp, devvp->v_type == VREG ? 2677 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), 2678 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, 2679 ffs_ckhash_cg, &bp); 2680 if (error != 0) 2681 return (error); 2682 cgp = (struct cg *)bp->b_data; 2683 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 2684 (bp->b_flags & B_CKHASH) != 0 && 2685 cgp->cg_ckhash != bp->b_ckhash) { 2686 sfs = ffs_getmntstat(devvp); 2687 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2688 "0x%x != bp: 0x%jx\n", 2689 devvp->v_type == VCHR ? "" : "snapshot of ", 2690 sfs->f_mntfromname, sfs->f_mntonname, 2691 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2692 bp->b_flags &= ~B_CKHASH; 2693 bp->b_flags |= B_INVAL | B_NOCACHE; 2694 brelse(bp); 2695 return (EIO); 2696 } 2697 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2698 sfs = ffs_getmntstat(devvp); 2699 printf("UFS %s%s (%s)", 2700 devvp->v_type == VCHR ? "" : "snapshot of ", 2701 sfs->f_mntfromname, sfs->f_mntonname); 2702 if (!cg_chkmagic(cgp)) 2703 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 2704 cg, cgp->cg_magic, CG_MAGIC); 2705 else 2706 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 2707 cgp->cg_cgx); 2708 bp->b_flags &= ~B_CKHASH; 2709 bp->b_flags |= B_INVAL | B_NOCACHE; 2710 brelse(bp); 2711 return (EIO); 2712 } 2713 bp->b_flags &= ~B_CKHASH; 2714 bp->b_xflags |= BX_BKGRDWRITE; 2715 /* 2716 * If we are using check hashes on the cylinder group then we want 2717 * to limit changing the cylinder group time to when we are actually 2718 * going to write it to disk so that its check hash remains correct 2719 * in memory. If the CK_CYLGRP flag is set the time is updated in 2720 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 2721 * update the time here as we have done historically. 2722 */ 2723 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2724 bp->b_xflags |= BX_CYLGRP; 2725 else 2726 cgp->cg_old_time = cgp->cg_time = time_second; 2727 *bpp = bp; 2728 *cgpp = cgp; 2729 return (0); 2730 } 2731 2732 static void 2733 ffs_ckhash_cg(bp) 2734 struct buf *bp; 2735 { 2736 uint32_t ckhash; 2737 struct cg *cgp; 2738 2739 cgp = (struct cg *)bp->b_data; 2740 ckhash = cgp->cg_ckhash; 2741 cgp->cg_ckhash = 0; 2742 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2743 cgp->cg_ckhash = ckhash; 2744 } 2745 2746 /* 2747 * Fserr prints the name of a filesystem with an error diagnostic. 2748 * 2749 * The form of the error message is: 2750 * fs: error message 2751 */ 2752 void 2753 ffs_fserr(fs, inum, cp) 2754 struct fs *fs; 2755 ino_t inum; 2756 char *cp; 2757 { 2758 struct thread *td = curthread; /* XXX */ 2759 struct proc *p = td->td_proc; 2760 2761 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2762 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2763 fs->fs_fsmnt, cp); 2764 } 2765 2766 /* 2767 * This function provides the capability for the fsck program to 2768 * update an active filesystem. Fourteen operations are provided: 2769 * 2770 * adjrefcnt(inode, amt) - adjusts the reference count on the 2771 * specified inode by the specified amount. Under normal 2772 * operation the count should always go down. Decrementing 2773 * the count to zero will cause the inode to be freed. 2774 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2775 * inode by the specified amount. 2776 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2777 * adjust the superblock summary. 2778 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2779 * are marked as free. Inodes should never have to be marked 2780 * as in use. 2781 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2782 * are marked as free. Inodes should never have to be marked 2783 * as in use. 2784 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2785 * are marked as free. Blocks should never have to be marked 2786 * as in use. 2787 * setflags(flags, set/clear) - the fs_flags field has the specified 2788 * flags set (second parameter +1) or cleared (second parameter -1). 2789 * setcwd(dirinode) - set the current directory to dirinode in the 2790 * filesystem associated with the snapshot. 2791 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2792 * in the current directory is oldvalue then change it to newvalue. 2793 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2794 * with nameptr in the current directory is oldvalue then unlink it. 2795 * 2796 * The following functions may only be used on a quiescent filesystem 2797 * by the soft updates journal. They are not safe to be run on an active 2798 * filesystem. 2799 * 2800 * setinode(inode, dip) - the specified disk inode is replaced with the 2801 * contents pointed to by dip. 2802 * setbufoutput(fd, flags) - output associated with the specified file 2803 * descriptor (which must reference the character device supporting 2804 * the filesystem) switches from using physio to running through the 2805 * buffer cache when flags is set to 1. The descriptor reverts to 2806 * physio for output when flags is set to zero. 2807 */ 2808 2809 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2810 2811 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2812 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2813 2814 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2815 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2816 2817 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2818 sysctl_ffs_fsck, "Adjust number of directories"); 2819 2820 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2821 sysctl_ffs_fsck, "Adjust number of free blocks"); 2822 2823 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2824 sysctl_ffs_fsck, "Adjust number of free inodes"); 2825 2826 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2827 sysctl_ffs_fsck, "Adjust number of free frags"); 2828 2829 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2830 sysctl_ffs_fsck, "Adjust number of free clusters"); 2831 2832 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2833 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2834 2835 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2836 sysctl_ffs_fsck, "Free Range of File Inodes"); 2837 2838 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2839 sysctl_ffs_fsck, "Free Range of Blocks"); 2840 2841 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2842 sysctl_ffs_fsck, "Change Filesystem Flags"); 2843 2844 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2845 sysctl_ffs_fsck, "Set Current Working Directory"); 2846 2847 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2848 sysctl_ffs_fsck, "Change Value of .. Entry"); 2849 2850 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2851 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2852 2853 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2854 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2855 2856 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2857 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2858 2859 #define DEBUG 1 2860 #ifdef DEBUG 2861 static int fsckcmds = 0; 2862 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2863 #endif /* DEBUG */ 2864 2865 static int buffered_write(struct file *, struct uio *, struct ucred *, 2866 int, struct thread *); 2867 2868 static int 2869 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2870 { 2871 struct thread *td = curthread; 2872 struct fsck_cmd cmd; 2873 struct ufsmount *ump; 2874 struct vnode *vp, *dvp, *fdvp; 2875 struct inode *ip, *dp; 2876 struct mount *mp; 2877 struct fs *fs; 2878 ufs2_daddr_t blkno; 2879 long blkcnt, blksize; 2880 struct file *fp, *vfp; 2881 cap_rights_t rights; 2882 int filetype, trimtype, error; 2883 static struct fileops *origops, bufferedops; 2884 2885 if (req->newlen > sizeof cmd) 2886 return (EBADRPC); 2887 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2888 return (error); 2889 if (cmd.version != FFS_CMD_VERSION) 2890 return (ERPCMISMATCH); 2891 if ((error = getvnode(td, cmd.handle, 2892 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 2893 return (error); 2894 vp = fp->f_data; 2895 if (vp->v_type != VREG && vp->v_type != VDIR) { 2896 fdrop(fp, td); 2897 return (EINVAL); 2898 } 2899 vn_start_write(vp, &mp, V_WAIT); 2900 if (mp == NULL || 2901 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2902 vn_finished_write(mp); 2903 fdrop(fp, td); 2904 return (EINVAL); 2905 } 2906 ump = VFSTOUFS(mp); 2907 if ((mp->mnt_flag & MNT_RDONLY) && 2908 ump->um_fsckpid != td->td_proc->p_pid) { 2909 vn_finished_write(mp); 2910 fdrop(fp, td); 2911 return (EROFS); 2912 } 2913 fs = ump->um_fs; 2914 filetype = IFREG; 2915 2916 switch (oidp->oid_number) { 2917 2918 case FFS_SET_FLAGS: 2919 #ifdef DEBUG 2920 if (fsckcmds) 2921 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2922 cmd.size > 0 ? "set" : "clear"); 2923 #endif /* DEBUG */ 2924 if (cmd.size > 0) 2925 fs->fs_flags |= (long)cmd.value; 2926 else 2927 fs->fs_flags &= ~(long)cmd.value; 2928 break; 2929 2930 case FFS_ADJ_REFCNT: 2931 #ifdef DEBUG 2932 if (fsckcmds) { 2933 printf("%s: adjust inode %jd link count by %jd\n", 2934 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2935 (intmax_t)cmd.size); 2936 } 2937 #endif /* DEBUG */ 2938 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2939 break; 2940 ip = VTOI(vp); 2941 ip->i_nlink += cmd.size; 2942 DIP_SET(ip, i_nlink, ip->i_nlink); 2943 ip->i_effnlink += cmd.size; 2944 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2945 error = ffs_update(vp, 1); 2946 if (DOINGSOFTDEP(vp)) 2947 softdep_change_linkcnt(ip); 2948 vput(vp); 2949 break; 2950 2951 case FFS_ADJ_BLKCNT: 2952 #ifdef DEBUG 2953 if (fsckcmds) { 2954 printf("%s: adjust inode %jd block count by %jd\n", 2955 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2956 (intmax_t)cmd.size); 2957 } 2958 #endif /* DEBUG */ 2959 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2960 break; 2961 ip = VTOI(vp); 2962 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2963 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2964 error = ffs_update(vp, 1); 2965 vput(vp); 2966 break; 2967 2968 case FFS_DIR_FREE: 2969 filetype = IFDIR; 2970 /* fall through */ 2971 2972 case FFS_FILE_FREE: 2973 #ifdef DEBUG 2974 if (fsckcmds) { 2975 if (cmd.size == 1) 2976 printf("%s: free %s inode %ju\n", 2977 mp->mnt_stat.f_mntonname, 2978 filetype == IFDIR ? "directory" : "file", 2979 (uintmax_t)cmd.value); 2980 else 2981 printf("%s: free %s inodes %ju-%ju\n", 2982 mp->mnt_stat.f_mntonname, 2983 filetype == IFDIR ? "directory" : "file", 2984 (uintmax_t)cmd.value, 2985 (uintmax_t)(cmd.value + cmd.size - 1)); 2986 } 2987 #endif /* DEBUG */ 2988 while (cmd.size > 0) { 2989 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2990 cmd.value, filetype, NULL))) 2991 break; 2992 cmd.size -= 1; 2993 cmd.value += 1; 2994 } 2995 break; 2996 2997 case FFS_BLK_FREE: 2998 #ifdef DEBUG 2999 if (fsckcmds) { 3000 if (cmd.size == 1) 3001 printf("%s: free block %jd\n", 3002 mp->mnt_stat.f_mntonname, 3003 (intmax_t)cmd.value); 3004 else 3005 printf("%s: free blocks %jd-%jd\n", 3006 mp->mnt_stat.f_mntonname, 3007 (intmax_t)cmd.value, 3008 (intmax_t)cmd.value + cmd.size - 1); 3009 } 3010 #endif /* DEBUG */ 3011 blkno = cmd.value; 3012 blkcnt = cmd.size; 3013 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3014 trimtype = (blksize < blkcnt) ? STARTFREE : SINGLETON; 3015 while (blkcnt > 0) { 3016 if (blksize > blkcnt) 3017 blksize = blkcnt; 3018 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3019 blksize * fs->fs_fsize, UFS_ROOTINO, 3020 VDIR, NULL, trimtype); 3021 blkno += blksize; 3022 blkcnt -= blksize; 3023 blksize = fs->fs_frag; 3024 trimtype = (blksize < blkcnt) ? CONTINUEFREE : ENDFREE; 3025 } 3026 break; 3027 3028 /* 3029 * Adjust superblock summaries. fsck(8) is expected to 3030 * submit deltas when necessary. 3031 */ 3032 case FFS_ADJ_NDIR: 3033 #ifdef DEBUG 3034 if (fsckcmds) { 3035 printf("%s: adjust number of directories by %jd\n", 3036 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3037 } 3038 #endif /* DEBUG */ 3039 fs->fs_cstotal.cs_ndir += cmd.value; 3040 break; 3041 3042 case FFS_ADJ_NBFREE: 3043 #ifdef DEBUG 3044 if (fsckcmds) { 3045 printf("%s: adjust number of free blocks by %+jd\n", 3046 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3047 } 3048 #endif /* DEBUG */ 3049 fs->fs_cstotal.cs_nbfree += cmd.value; 3050 break; 3051 3052 case FFS_ADJ_NIFREE: 3053 #ifdef DEBUG 3054 if (fsckcmds) { 3055 printf("%s: adjust number of free inodes by %+jd\n", 3056 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3057 } 3058 #endif /* DEBUG */ 3059 fs->fs_cstotal.cs_nifree += cmd.value; 3060 break; 3061 3062 case FFS_ADJ_NFFREE: 3063 #ifdef DEBUG 3064 if (fsckcmds) { 3065 printf("%s: adjust number of free frags by %+jd\n", 3066 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3067 } 3068 #endif /* DEBUG */ 3069 fs->fs_cstotal.cs_nffree += cmd.value; 3070 break; 3071 3072 case FFS_ADJ_NUMCLUSTERS: 3073 #ifdef DEBUG 3074 if (fsckcmds) { 3075 printf("%s: adjust number of free clusters by %+jd\n", 3076 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3077 } 3078 #endif /* DEBUG */ 3079 fs->fs_cstotal.cs_numclusters += cmd.value; 3080 break; 3081 3082 case FFS_SET_CWD: 3083 #ifdef DEBUG 3084 if (fsckcmds) { 3085 printf("%s: set current directory to inode %jd\n", 3086 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3087 } 3088 #endif /* DEBUG */ 3089 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3090 break; 3091 AUDIT_ARG_VNODE1(vp); 3092 if ((error = change_dir(vp, td)) != 0) { 3093 vput(vp); 3094 break; 3095 } 3096 VOP_UNLOCK(vp, 0); 3097 pwd_chdir(td, vp); 3098 break; 3099 3100 case FFS_SET_DOTDOT: 3101 #ifdef DEBUG 3102 if (fsckcmds) { 3103 printf("%s: change .. in cwd from %jd to %jd\n", 3104 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3105 (intmax_t)cmd.size); 3106 } 3107 #endif /* DEBUG */ 3108 /* 3109 * First we have to get and lock the parent directory 3110 * to which ".." points. 3111 */ 3112 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3113 if (error) 3114 break; 3115 /* 3116 * Now we get and lock the child directory containing "..". 3117 */ 3118 FILEDESC_SLOCK(td->td_proc->p_fd); 3119 dvp = td->td_proc->p_fd->fd_cdir; 3120 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3121 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3122 vput(fdvp); 3123 break; 3124 } 3125 dp = VTOI(dvp); 3126 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3127 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3128 DT_DIR, 0); 3129 cache_purge(fdvp); 3130 cache_purge(dvp); 3131 vput(dvp); 3132 vput(fdvp); 3133 break; 3134 3135 case FFS_UNLINK: 3136 #ifdef DEBUG 3137 if (fsckcmds) { 3138 char buf[32]; 3139 3140 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3141 strncpy(buf, "Name_too_long", 32); 3142 printf("%s: unlink %s (inode %jd)\n", 3143 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3144 } 3145 #endif /* DEBUG */ 3146 /* 3147 * kern_unlinkat will do its own start/finish writes and 3148 * they do not nest, so drop ours here. Setting mp == NULL 3149 * indicates that vn_finished_write is not needed down below. 3150 */ 3151 vn_finished_write(mp); 3152 mp = NULL; 3153 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 3154 UIO_USERSPACE, (ino_t)cmd.size); 3155 break; 3156 3157 case FFS_SET_INODE: 3158 if (ump->um_fsckpid != td->td_proc->p_pid) { 3159 error = EPERM; 3160 break; 3161 } 3162 #ifdef DEBUG 3163 if (fsckcmds) { 3164 printf("%s: update inode %jd\n", 3165 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3166 } 3167 #endif /* DEBUG */ 3168 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3169 break; 3170 AUDIT_ARG_VNODE1(vp); 3171 ip = VTOI(vp); 3172 if (I_IS_UFS1(ip)) 3173 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3174 sizeof(struct ufs1_dinode)); 3175 else 3176 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3177 sizeof(struct ufs2_dinode)); 3178 if (error) { 3179 vput(vp); 3180 break; 3181 } 3182 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3183 error = ffs_update(vp, 1); 3184 vput(vp); 3185 break; 3186 3187 case FFS_SET_BUFOUTPUT: 3188 if (ump->um_fsckpid != td->td_proc->p_pid) { 3189 error = EPERM; 3190 break; 3191 } 3192 if (ITOUMP(VTOI(vp)) != ump) { 3193 error = EINVAL; 3194 break; 3195 } 3196 #ifdef DEBUG 3197 if (fsckcmds) { 3198 printf("%s: %s buffered output for descriptor %jd\n", 3199 mp->mnt_stat.f_mntonname, 3200 cmd.size == 1 ? "enable" : "disable", 3201 (intmax_t)cmd.value); 3202 } 3203 #endif /* DEBUG */ 3204 if ((error = getvnode(td, cmd.value, 3205 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3206 break; 3207 if (vfp->f_vnode->v_type != VCHR) { 3208 fdrop(vfp, td); 3209 error = EINVAL; 3210 break; 3211 } 3212 if (origops == NULL) { 3213 origops = vfp->f_ops; 3214 bcopy((void *)origops, (void *)&bufferedops, 3215 sizeof(bufferedops)); 3216 bufferedops.fo_write = buffered_write; 3217 } 3218 if (cmd.size == 1) 3219 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3220 (uintptr_t)&bufferedops); 3221 else 3222 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3223 (uintptr_t)origops); 3224 fdrop(vfp, td); 3225 break; 3226 3227 default: 3228 #ifdef DEBUG 3229 if (fsckcmds) { 3230 printf("Invalid request %d from fsck\n", 3231 oidp->oid_number); 3232 } 3233 #endif /* DEBUG */ 3234 error = EINVAL; 3235 break; 3236 3237 } 3238 fdrop(fp, td); 3239 vn_finished_write(mp); 3240 return (error); 3241 } 3242 3243 /* 3244 * Function to switch a descriptor to use the buffer cache to stage 3245 * its I/O. This is needed so that writes to the filesystem device 3246 * will give snapshots a chance to copy modified blocks for which it 3247 * needs to retain copies. 3248 */ 3249 static int 3250 buffered_write(fp, uio, active_cred, flags, td) 3251 struct file *fp; 3252 struct uio *uio; 3253 struct ucred *active_cred; 3254 int flags; 3255 struct thread *td; 3256 { 3257 struct vnode *devvp, *vp; 3258 struct inode *ip; 3259 struct buf *bp; 3260 struct fs *fs; 3261 struct filedesc *fdp; 3262 int error; 3263 daddr_t lbn; 3264 3265 /* 3266 * The devvp is associated with the /dev filesystem. To discover 3267 * the filesystem with which the device is associated, we depend 3268 * on the application setting the current directory to a location 3269 * within the filesystem being written. Yes, this is an ugly hack. 3270 */ 3271 devvp = fp->f_vnode; 3272 if (!vn_isdisk(devvp, NULL)) 3273 return (EINVAL); 3274 fdp = td->td_proc->p_fd; 3275 FILEDESC_SLOCK(fdp); 3276 vp = fdp->fd_cdir; 3277 vref(vp); 3278 FILEDESC_SUNLOCK(fdp); 3279 vn_lock(vp, LK_SHARED | LK_RETRY); 3280 /* 3281 * Check that the current directory vnode indeed belongs to 3282 * UFS before trying to dereference UFS-specific v_data fields. 3283 */ 3284 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3285 vput(vp); 3286 return (EINVAL); 3287 } 3288 ip = VTOI(vp); 3289 if (ITODEVVP(ip) != devvp) { 3290 vput(vp); 3291 return (EINVAL); 3292 } 3293 fs = ITOFS(ip); 3294 vput(vp); 3295 foffset_lock_uio(fp, uio, flags); 3296 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3297 #ifdef DEBUG 3298 if (fsckcmds) { 3299 printf("%s: buffered write for block %jd\n", 3300 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3301 } 3302 #endif /* DEBUG */ 3303 /* 3304 * All I/O must be contained within a filesystem block, start on 3305 * a fragment boundary, and be a multiple of fragments in length. 3306 */ 3307 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3308 fragoff(fs, uio->uio_offset) != 0 || 3309 fragoff(fs, uio->uio_resid) != 0) { 3310 error = EINVAL; 3311 goto out; 3312 } 3313 lbn = numfrags(fs, uio->uio_offset); 3314 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3315 bp->b_flags |= B_RELBUF; 3316 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3317 brelse(bp); 3318 goto out; 3319 } 3320 error = bwrite(bp); 3321 out: 3322 VOP_UNLOCK(devvp, 0); 3323 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3324 return (error); 3325 } 3326