1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bio.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/file.h> 73 #include <sys/filedesc.h> 74 #include <sys/priv.h> 75 #include <sys/proc.h> 76 #include <sys/vnode.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 82 #include <ufs/ufs/extattr.h> 83 #include <ufs/ufs/quota.h> 84 #include <ufs/ufs/inode.h> 85 #include <ufs/ufs/ufs_extern.h> 86 #include <ufs/ufs/ufsmount.h> 87 88 #include <ufs/ffs/fs.h> 89 #include <ufs/ffs/ffs_extern.h> 90 91 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref, 92 int size); 93 94 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int); 95 static ufs2_daddr_t 96 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t); 97 #ifdef INVARIANTS 98 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 99 #endif 100 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int); 101 static void ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *, 102 ufs1_daddr_t, int); 103 static ino_t ffs_dirpref(struct inode *); 104 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int); 105 static void ffs_fserr(struct fs *, ino_t, char *); 106 static ufs2_daddr_t ffs_hashalloc 107 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *); 108 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int); 109 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 110 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 111 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 112 113 /* 114 * Allocate a block in the filesystem. 115 * 116 * The size of the requested block is given, which must be some 117 * multiple of fs_fsize and <= fs_bsize. 118 * A preference may be optionally specified. If a preference is given 119 * the following hierarchy is used to allocate a block: 120 * 1) allocate the requested block. 121 * 2) allocate a rotationally optimal block in the same cylinder. 122 * 3) allocate a block in the same cylinder group. 123 * 4) quadradically rehash into other cylinder groups, until an 124 * available block is located. 125 * If no block preference is given the following hierarchy is used 126 * to allocate a block: 127 * 1) allocate a block in the cylinder group that contains the 128 * inode for the file. 129 * 2) quadradically rehash into other cylinder groups, until an 130 * available block is located. 131 */ 132 int 133 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 134 struct inode *ip; 135 ufs2_daddr_t lbn, bpref; 136 int size; 137 struct ucred *cred; 138 ufs2_daddr_t *bnp; 139 { 140 struct fs *fs; 141 struct ufsmount *ump; 142 ufs2_daddr_t bno; 143 int cg, reclaimed; 144 static struct timeval lastfail; 145 static int curfail; 146 int64_t delta; 147 #ifdef QUOTA 148 int error; 149 #endif 150 151 *bnp = 0; 152 fs = ip->i_fs; 153 ump = ip->i_ump; 154 mtx_assert(UFS_MTX(ump), MA_OWNED); 155 #ifdef INVARIANTS 156 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 157 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 158 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 159 fs->fs_fsmnt); 160 panic("ffs_alloc: bad size"); 161 } 162 if (cred == NOCRED) 163 panic("ffs_alloc: missing credential"); 164 #endif /* INVARIANTS */ 165 reclaimed = 0; 166 retry: 167 #ifdef QUOTA 168 UFS_UNLOCK(ump); 169 error = chkdq(ip, btodb(size), cred, 0); 170 if (error) 171 return (error); 172 UFS_LOCK(ump); 173 #endif 174 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 175 goto nospace; 176 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 177 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 178 goto nospace; 179 if (bpref >= fs->fs_size) 180 bpref = 0; 181 if (bpref == 0) 182 cg = ino_to_cg(fs, ip->i_number); 183 else 184 cg = dtog(fs, bpref); 185 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 186 if (bno > 0) { 187 delta = btodb(size); 188 if (ip->i_flag & IN_SPACECOUNTED) { 189 UFS_LOCK(ump); 190 fs->fs_pendingblocks += delta; 191 UFS_UNLOCK(ump); 192 } 193 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 194 ip->i_flag |= IN_CHANGE | IN_UPDATE; 195 *bnp = bno; 196 return (0); 197 } 198 nospace: 199 #ifdef QUOTA 200 UFS_UNLOCK(ump); 201 /* 202 * Restore user's disk quota because allocation failed. 203 */ 204 (void) chkdq(ip, -btodb(size), cred, FORCE); 205 UFS_LOCK(ump); 206 #endif 207 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 208 reclaimed = 1; 209 softdep_request_cleanup(fs, ITOV(ip)); 210 goto retry; 211 } 212 UFS_UNLOCK(ump); 213 if (ppsratecheck(&lastfail, &curfail, 1)) { 214 ffs_fserr(fs, ip->i_number, "filesystem full"); 215 uprintf("\n%s: write failed, filesystem is full\n", 216 fs->fs_fsmnt); 217 } 218 return (ENOSPC); 219 } 220 221 /* 222 * Reallocate a fragment to a bigger size 223 * 224 * The number and size of the old block is given, and a preference 225 * and new size is also specified. The allocator attempts to extend 226 * the original block. Failing that, the regular block allocator is 227 * invoked to get an appropriate block. 228 */ 229 int 230 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp) 231 struct inode *ip; 232 ufs2_daddr_t lbprev; 233 ufs2_daddr_t bprev; 234 ufs2_daddr_t bpref; 235 int osize, nsize; 236 struct ucred *cred; 237 struct buf **bpp; 238 { 239 struct vnode *vp; 240 struct fs *fs; 241 struct buf *bp; 242 struct ufsmount *ump; 243 int cg, request, error, reclaimed; 244 ufs2_daddr_t bno; 245 static struct timeval lastfail; 246 static int curfail; 247 int64_t delta; 248 249 *bpp = 0; 250 vp = ITOV(ip); 251 fs = ip->i_fs; 252 bp = NULL; 253 ump = ip->i_ump; 254 mtx_assert(UFS_MTX(ump), MA_OWNED); 255 #ifdef INVARIANTS 256 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 257 panic("ffs_realloccg: allocation on suspended filesystem"); 258 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 259 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 260 printf( 261 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 262 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 263 nsize, fs->fs_fsmnt); 264 panic("ffs_realloccg: bad size"); 265 } 266 if (cred == NOCRED) 267 panic("ffs_realloccg: missing credential"); 268 #endif /* INVARIANTS */ 269 reclaimed = 0; 270 retry: 271 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 272 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 273 goto nospace; 274 } 275 if (bprev == 0) { 276 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 277 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 278 fs->fs_fsmnt); 279 panic("ffs_realloccg: bad bprev"); 280 } 281 UFS_UNLOCK(ump); 282 /* 283 * Allocate the extra space in the buffer. 284 */ 285 error = bread(vp, lbprev, osize, NOCRED, &bp); 286 if (error) { 287 brelse(bp); 288 return (error); 289 } 290 291 if (bp->b_blkno == bp->b_lblkno) { 292 if (lbprev >= NDADDR) 293 panic("ffs_realloccg: lbprev out of range"); 294 bp->b_blkno = fsbtodb(fs, bprev); 295 } 296 297 #ifdef QUOTA 298 error = chkdq(ip, btodb(nsize - osize), cred, 0); 299 if (error) { 300 brelse(bp); 301 return (error); 302 } 303 #endif 304 /* 305 * Check for extension in the existing location. 306 */ 307 cg = dtog(fs, bprev); 308 UFS_LOCK(ump); 309 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 310 if (bno) { 311 if (bp->b_blkno != fsbtodb(fs, bno)) 312 panic("ffs_realloccg: bad blockno"); 313 delta = btodb(nsize - osize); 314 if (ip->i_flag & IN_SPACECOUNTED) { 315 UFS_LOCK(ump); 316 fs->fs_pendingblocks += delta; 317 UFS_UNLOCK(ump); 318 } 319 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 320 ip->i_flag |= IN_CHANGE | IN_UPDATE; 321 allocbuf(bp, nsize); 322 bp->b_flags |= B_DONE; 323 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO) 324 bzero((char *)bp->b_data + osize, nsize - osize); 325 else 326 vfs_bio_clrbuf(bp); 327 *bpp = bp; 328 return (0); 329 } 330 /* 331 * Allocate a new disk location. 332 */ 333 if (bpref >= fs->fs_size) 334 bpref = 0; 335 switch ((int)fs->fs_optim) { 336 case FS_OPTSPACE: 337 /* 338 * Allocate an exact sized fragment. Although this makes 339 * best use of space, we will waste time relocating it if 340 * the file continues to grow. If the fragmentation is 341 * less than half of the minimum free reserve, we choose 342 * to begin optimizing for time. 343 */ 344 request = nsize; 345 if (fs->fs_minfree <= 5 || 346 fs->fs_cstotal.cs_nffree > 347 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 348 break; 349 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 350 fs->fs_fsmnt); 351 fs->fs_optim = FS_OPTTIME; 352 break; 353 case FS_OPTTIME: 354 /* 355 * At this point we have discovered a file that is trying to 356 * grow a small fragment to a larger fragment. To save time, 357 * we allocate a full sized block, then free the unused portion. 358 * If the file continues to grow, the `ffs_fragextend' call 359 * above will be able to grow it in place without further 360 * copying. If aberrant programs cause disk fragmentation to 361 * grow within 2% of the free reserve, we choose to begin 362 * optimizing for space. 363 */ 364 request = fs->fs_bsize; 365 if (fs->fs_cstotal.cs_nffree < 366 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 367 break; 368 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 369 fs->fs_fsmnt); 370 fs->fs_optim = FS_OPTSPACE; 371 break; 372 default: 373 printf("dev = %s, optim = %ld, fs = %s\n", 374 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 375 panic("ffs_realloccg: bad optim"); 376 /* NOTREACHED */ 377 } 378 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 379 if (bno > 0) { 380 bp->b_blkno = fsbtodb(fs, bno); 381 if (!DOINGSOFTDEP(vp)) 382 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 383 ip->i_number); 384 if (nsize < request) 385 ffs_blkfree(ump, fs, ip->i_devvp, 386 bno + numfrags(fs, nsize), 387 (long)(request - nsize), ip->i_number); 388 delta = btodb(nsize - osize); 389 if (ip->i_flag & IN_SPACECOUNTED) { 390 UFS_LOCK(ump); 391 fs->fs_pendingblocks += delta; 392 UFS_UNLOCK(ump); 393 } 394 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 395 ip->i_flag |= IN_CHANGE | IN_UPDATE; 396 allocbuf(bp, nsize); 397 bp->b_flags |= B_DONE; 398 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO) 399 bzero((char *)bp->b_data + osize, nsize - osize); 400 else 401 vfs_bio_clrbuf(bp); 402 *bpp = bp; 403 return (0); 404 } 405 #ifdef QUOTA 406 UFS_UNLOCK(ump); 407 /* 408 * Restore user's disk quota because allocation failed. 409 */ 410 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 411 UFS_LOCK(ump); 412 #endif 413 nospace: 414 /* 415 * no space available 416 */ 417 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 418 reclaimed = 1; 419 softdep_request_cleanup(fs, vp); 420 UFS_UNLOCK(ump); 421 if (bp) 422 brelse(bp); 423 UFS_LOCK(ump); 424 goto retry; 425 } 426 UFS_UNLOCK(ump); 427 if (bp) 428 brelse(bp); 429 if (ppsratecheck(&lastfail, &curfail, 1)) { 430 ffs_fserr(fs, ip->i_number, "filesystem full"); 431 uprintf("\n%s: write failed, filesystem is full\n", 432 fs->fs_fsmnt); 433 } 434 return (ENOSPC); 435 } 436 437 /* 438 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 439 * 440 * The vnode and an array of buffer pointers for a range of sequential 441 * logical blocks to be made contiguous is given. The allocator attempts 442 * to find a range of sequential blocks starting as close as possible 443 * from the end of the allocation for the logical block immediately 444 * preceding the current range. If successful, the physical block numbers 445 * in the buffer pointers and in the inode are changed to reflect the new 446 * allocation. If unsuccessful, the allocation is left unchanged. The 447 * success in doing the reallocation is returned. Note that the error 448 * return is not reflected back to the user. Rather the previous block 449 * allocation will be used. 450 */ 451 452 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 453 454 static int doasyncfree = 1; 455 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 456 457 static int doreallocblks = 1; 458 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 459 460 #ifdef DEBUG 461 static volatile int prtrealloc = 0; 462 #endif 463 464 int 465 ffs_reallocblks(ap) 466 struct vop_reallocblks_args /* { 467 struct vnode *a_vp; 468 struct cluster_save *a_buflist; 469 } */ *ap; 470 { 471 472 if (doreallocblks == 0) 473 return (ENOSPC); 474 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 475 return (ffs_reallocblks_ufs1(ap)); 476 return (ffs_reallocblks_ufs2(ap)); 477 } 478 479 static int 480 ffs_reallocblks_ufs1(ap) 481 struct vop_reallocblks_args /* { 482 struct vnode *a_vp; 483 struct cluster_save *a_buflist; 484 } */ *ap; 485 { 486 struct fs *fs; 487 struct inode *ip; 488 struct vnode *vp; 489 struct buf *sbp, *ebp; 490 ufs1_daddr_t *bap, *sbap, *ebap = 0; 491 struct cluster_save *buflist; 492 struct ufsmount *ump; 493 ufs_lbn_t start_lbn, end_lbn; 494 ufs1_daddr_t soff, newblk, blkno; 495 ufs2_daddr_t pref; 496 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 497 int i, len, start_lvl, end_lvl, ssize; 498 499 vp = ap->a_vp; 500 ip = VTOI(vp); 501 fs = ip->i_fs; 502 ump = ip->i_ump; 503 if (fs->fs_contigsumsize <= 0) 504 return (ENOSPC); 505 buflist = ap->a_buflist; 506 len = buflist->bs_nchildren; 507 start_lbn = buflist->bs_children[0]->b_lblkno; 508 end_lbn = start_lbn + len - 1; 509 #ifdef INVARIANTS 510 for (i = 0; i < len; i++) 511 if (!ffs_checkblk(ip, 512 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 513 panic("ffs_reallocblks: unallocated block 1"); 514 for (i = 1; i < len; i++) 515 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 516 panic("ffs_reallocblks: non-logical cluster"); 517 blkno = buflist->bs_children[0]->b_blkno; 518 ssize = fsbtodb(fs, fs->fs_frag); 519 for (i = 1; i < len - 1; i++) 520 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 521 panic("ffs_reallocblks: non-physical cluster %d", i); 522 #endif 523 /* 524 * If the latest allocation is in a new cylinder group, assume that 525 * the filesystem has decided to move and do not force it back to 526 * the previous cylinder group. 527 */ 528 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 529 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 530 return (ENOSPC); 531 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 532 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 533 return (ENOSPC); 534 /* 535 * Get the starting offset and block map for the first block. 536 */ 537 if (start_lvl == 0) { 538 sbap = &ip->i_din1->di_db[0]; 539 soff = start_lbn; 540 } else { 541 idp = &start_ap[start_lvl - 1]; 542 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 543 brelse(sbp); 544 return (ENOSPC); 545 } 546 sbap = (ufs1_daddr_t *)sbp->b_data; 547 soff = idp->in_off; 548 } 549 /* 550 * If the block range spans two block maps, get the second map. 551 */ 552 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 553 ssize = len; 554 } else { 555 #ifdef INVARIANTS 556 if (start_lvl > 0 && 557 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 558 panic("ffs_reallocblk: start == end"); 559 #endif 560 ssize = len - (idp->in_off + 1); 561 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 562 goto fail; 563 ebap = (ufs1_daddr_t *)ebp->b_data; 564 } 565 /* 566 * Find the preferred location for the cluster. 567 */ 568 UFS_LOCK(ump); 569 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 570 /* 571 * Search the block map looking for an allocation of the desired size. 572 */ 573 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 574 len, ffs_clusteralloc)) == 0) { 575 UFS_UNLOCK(ump); 576 goto fail; 577 } 578 /* 579 * We have found a new contiguous block. 580 * 581 * First we have to replace the old block pointers with the new 582 * block pointers in the inode and indirect blocks associated 583 * with the file. 584 */ 585 #ifdef DEBUG 586 if (prtrealloc) 587 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 588 (intmax_t)start_lbn, (intmax_t)end_lbn); 589 #endif 590 blkno = newblk; 591 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 592 if (i == ssize) { 593 bap = ebap; 594 soff = -i; 595 } 596 #ifdef INVARIANTS 597 if (!ffs_checkblk(ip, 598 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 599 panic("ffs_reallocblks: unallocated block 2"); 600 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 601 panic("ffs_reallocblks: alloc mismatch"); 602 #endif 603 #ifdef DEBUG 604 if (prtrealloc) 605 printf(" %d,", *bap); 606 #endif 607 if (DOINGSOFTDEP(vp)) { 608 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 609 softdep_setup_allocdirect(ip, start_lbn + i, 610 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 611 buflist->bs_children[i]); 612 else 613 softdep_setup_allocindir_page(ip, start_lbn + i, 614 i < ssize ? sbp : ebp, soff + i, blkno, 615 *bap, buflist->bs_children[i]); 616 } 617 *bap++ = blkno; 618 } 619 /* 620 * Next we must write out the modified inode and indirect blocks. 621 * For strict correctness, the writes should be synchronous since 622 * the old block values may have been written to disk. In practise 623 * they are almost never written, but if we are concerned about 624 * strict correctness, the `doasyncfree' flag should be set to zero. 625 * 626 * The test on `doasyncfree' should be changed to test a flag 627 * that shows whether the associated buffers and inodes have 628 * been written. The flag should be set when the cluster is 629 * started and cleared whenever the buffer or inode is flushed. 630 * We can then check below to see if it is set, and do the 631 * synchronous write only when it has been cleared. 632 */ 633 if (sbap != &ip->i_din1->di_db[0]) { 634 if (doasyncfree) 635 bdwrite(sbp); 636 else 637 bwrite(sbp); 638 } else { 639 ip->i_flag |= IN_CHANGE | IN_UPDATE; 640 if (!doasyncfree) 641 ffs_update(vp, 1); 642 } 643 if (ssize < len) { 644 if (doasyncfree) 645 bdwrite(ebp); 646 else 647 bwrite(ebp); 648 } 649 /* 650 * Last, free the old blocks and assign the new blocks to the buffers. 651 */ 652 #ifdef DEBUG 653 if (prtrealloc) 654 printf("\n\tnew:"); 655 #endif 656 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 657 if (!DOINGSOFTDEP(vp)) 658 ffs_blkfree(ump, fs, ip->i_devvp, 659 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 660 fs->fs_bsize, ip->i_number); 661 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 662 #ifdef INVARIANTS 663 if (!ffs_checkblk(ip, 664 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 665 panic("ffs_reallocblks: unallocated block 3"); 666 #endif 667 #ifdef DEBUG 668 if (prtrealloc) 669 printf(" %d,", blkno); 670 #endif 671 } 672 #ifdef DEBUG 673 if (prtrealloc) { 674 prtrealloc--; 675 printf("\n"); 676 } 677 #endif 678 return (0); 679 680 fail: 681 if (ssize < len) 682 brelse(ebp); 683 if (sbap != &ip->i_din1->di_db[0]) 684 brelse(sbp); 685 return (ENOSPC); 686 } 687 688 static int 689 ffs_reallocblks_ufs2(ap) 690 struct vop_reallocblks_args /* { 691 struct vnode *a_vp; 692 struct cluster_save *a_buflist; 693 } */ *ap; 694 { 695 struct fs *fs; 696 struct inode *ip; 697 struct vnode *vp; 698 struct buf *sbp, *ebp; 699 ufs2_daddr_t *bap, *sbap, *ebap = 0; 700 struct cluster_save *buflist; 701 struct ufsmount *ump; 702 ufs_lbn_t start_lbn, end_lbn; 703 ufs2_daddr_t soff, newblk, blkno, pref; 704 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 705 int i, len, start_lvl, end_lvl, ssize; 706 707 vp = ap->a_vp; 708 ip = VTOI(vp); 709 fs = ip->i_fs; 710 ump = ip->i_ump; 711 if (fs->fs_contigsumsize <= 0) 712 return (ENOSPC); 713 buflist = ap->a_buflist; 714 len = buflist->bs_nchildren; 715 start_lbn = buflist->bs_children[0]->b_lblkno; 716 end_lbn = start_lbn + len - 1; 717 #ifdef INVARIANTS 718 for (i = 0; i < len; i++) 719 if (!ffs_checkblk(ip, 720 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 721 panic("ffs_reallocblks: unallocated block 1"); 722 for (i = 1; i < len; i++) 723 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 724 panic("ffs_reallocblks: non-logical cluster"); 725 blkno = buflist->bs_children[0]->b_blkno; 726 ssize = fsbtodb(fs, fs->fs_frag); 727 for (i = 1; i < len - 1; i++) 728 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 729 panic("ffs_reallocblks: non-physical cluster %d", i); 730 #endif 731 /* 732 * If the latest allocation is in a new cylinder group, assume that 733 * the filesystem has decided to move and do not force it back to 734 * the previous cylinder group. 735 */ 736 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 737 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 738 return (ENOSPC); 739 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 740 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 741 return (ENOSPC); 742 /* 743 * Get the starting offset and block map for the first block. 744 */ 745 if (start_lvl == 0) { 746 sbap = &ip->i_din2->di_db[0]; 747 soff = start_lbn; 748 } else { 749 idp = &start_ap[start_lvl - 1]; 750 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 751 brelse(sbp); 752 return (ENOSPC); 753 } 754 sbap = (ufs2_daddr_t *)sbp->b_data; 755 soff = idp->in_off; 756 } 757 /* 758 * If the block range spans two block maps, get the second map. 759 */ 760 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 761 ssize = len; 762 } else { 763 #ifdef INVARIANTS 764 if (start_lvl > 0 && 765 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 766 panic("ffs_reallocblk: start == end"); 767 #endif 768 ssize = len - (idp->in_off + 1); 769 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 770 goto fail; 771 ebap = (ufs2_daddr_t *)ebp->b_data; 772 } 773 /* 774 * Find the preferred location for the cluster. 775 */ 776 UFS_LOCK(ump); 777 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 778 /* 779 * Search the block map looking for an allocation of the desired size. 780 */ 781 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 782 len, ffs_clusteralloc)) == 0) { 783 UFS_UNLOCK(ump); 784 goto fail; 785 } 786 /* 787 * We have found a new contiguous block. 788 * 789 * First we have to replace the old block pointers with the new 790 * block pointers in the inode and indirect blocks associated 791 * with the file. 792 */ 793 #ifdef DEBUG 794 if (prtrealloc) 795 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 796 (intmax_t)start_lbn, (intmax_t)end_lbn); 797 #endif 798 blkno = newblk; 799 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 800 if (i == ssize) { 801 bap = ebap; 802 soff = -i; 803 } 804 #ifdef INVARIANTS 805 if (!ffs_checkblk(ip, 806 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 807 panic("ffs_reallocblks: unallocated block 2"); 808 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 809 panic("ffs_reallocblks: alloc mismatch"); 810 #endif 811 #ifdef DEBUG 812 if (prtrealloc) 813 printf(" %jd,", (intmax_t)*bap); 814 #endif 815 if (DOINGSOFTDEP(vp)) { 816 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 817 softdep_setup_allocdirect(ip, start_lbn + i, 818 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 819 buflist->bs_children[i]); 820 else 821 softdep_setup_allocindir_page(ip, start_lbn + i, 822 i < ssize ? sbp : ebp, soff + i, blkno, 823 *bap, buflist->bs_children[i]); 824 } 825 *bap++ = blkno; 826 } 827 /* 828 * Next we must write out the modified inode and indirect blocks. 829 * For strict correctness, the writes should be synchronous since 830 * the old block values may have been written to disk. In practise 831 * they are almost never written, but if we are concerned about 832 * strict correctness, the `doasyncfree' flag should be set to zero. 833 * 834 * The test on `doasyncfree' should be changed to test a flag 835 * that shows whether the associated buffers and inodes have 836 * been written. The flag should be set when the cluster is 837 * started and cleared whenever the buffer or inode is flushed. 838 * We can then check below to see if it is set, and do the 839 * synchronous write only when it has been cleared. 840 */ 841 if (sbap != &ip->i_din2->di_db[0]) { 842 if (doasyncfree) 843 bdwrite(sbp); 844 else 845 bwrite(sbp); 846 } else { 847 ip->i_flag |= IN_CHANGE | IN_UPDATE; 848 if (!doasyncfree) 849 ffs_update(vp, 1); 850 } 851 if (ssize < len) { 852 if (doasyncfree) 853 bdwrite(ebp); 854 else 855 bwrite(ebp); 856 } 857 /* 858 * Last, free the old blocks and assign the new blocks to the buffers. 859 */ 860 #ifdef DEBUG 861 if (prtrealloc) 862 printf("\n\tnew:"); 863 #endif 864 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 865 if (!DOINGSOFTDEP(vp)) 866 ffs_blkfree(ump, fs, ip->i_devvp, 867 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 868 fs->fs_bsize, ip->i_number); 869 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 870 #ifdef INVARIANTS 871 if (!ffs_checkblk(ip, 872 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 873 panic("ffs_reallocblks: unallocated block 3"); 874 #endif 875 #ifdef DEBUG 876 if (prtrealloc) 877 printf(" %jd,", (intmax_t)blkno); 878 #endif 879 } 880 #ifdef DEBUG 881 if (prtrealloc) { 882 prtrealloc--; 883 printf("\n"); 884 } 885 #endif 886 return (0); 887 888 fail: 889 if (ssize < len) 890 brelse(ebp); 891 if (sbap != &ip->i_din2->di_db[0]) 892 brelse(sbp); 893 return (ENOSPC); 894 } 895 896 /* 897 * Allocate an inode in the filesystem. 898 * 899 * If allocating a directory, use ffs_dirpref to select the inode. 900 * If allocating in a directory, the following hierarchy is followed: 901 * 1) allocate the preferred inode. 902 * 2) allocate an inode in the same cylinder group. 903 * 3) quadradically rehash into other cylinder groups, until an 904 * available inode is located. 905 * If no inode preference is given the following hierarchy is used 906 * to allocate an inode: 907 * 1) allocate an inode in cylinder group 0. 908 * 2) quadradically rehash into other cylinder groups, until an 909 * available inode is located. 910 */ 911 int 912 ffs_valloc(pvp, mode, cred, vpp) 913 struct vnode *pvp; 914 int mode; 915 struct ucred *cred; 916 struct vnode **vpp; 917 { 918 struct inode *pip; 919 struct fs *fs; 920 struct inode *ip; 921 struct timespec ts; 922 struct ufsmount *ump; 923 ino_t ino, ipref; 924 int cg, error, error1; 925 static struct timeval lastfail; 926 static int curfail; 927 928 *vpp = NULL; 929 pip = VTOI(pvp); 930 fs = pip->i_fs; 931 ump = pip->i_ump; 932 933 UFS_LOCK(ump); 934 if (fs->fs_cstotal.cs_nifree == 0) 935 goto noinodes; 936 937 if ((mode & IFMT) == IFDIR) 938 ipref = ffs_dirpref(pip); 939 else 940 ipref = pip->i_number; 941 if (ipref >= fs->fs_ncg * fs->fs_ipg) 942 ipref = 0; 943 cg = ino_to_cg(fs, ipref); 944 /* 945 * Track number of dirs created one after another 946 * in a same cg without intervening by files. 947 */ 948 if ((mode & IFMT) == IFDIR) { 949 if (fs->fs_contigdirs[cg] < 255) 950 fs->fs_contigdirs[cg]++; 951 } else { 952 if (fs->fs_contigdirs[cg] > 0) 953 fs->fs_contigdirs[cg]--; 954 } 955 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 956 (allocfcn_t *)ffs_nodealloccg); 957 if (ino == 0) 958 goto noinodes; 959 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 960 if (error) { 961 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 962 FFSV_FORCEINSMQ); 963 ffs_vfree(pvp, ino, mode); 964 if (error1 == 0) { 965 ip = VTOI(*vpp); 966 if (ip->i_mode) 967 goto dup_alloc; 968 ip->i_flag |= IN_MODIFIED; 969 vput(*vpp); 970 } 971 return (error); 972 } 973 ip = VTOI(*vpp); 974 if (ip->i_mode) { 975 dup_alloc: 976 printf("mode = 0%o, inum = %lu, fs = %s\n", 977 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 978 panic("ffs_valloc: dup alloc"); 979 } 980 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 981 printf("free inode %s/%lu had %ld blocks\n", 982 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 983 DIP_SET(ip, i_blocks, 0); 984 } 985 ip->i_flags = 0; 986 DIP_SET(ip, i_flags, 0); 987 /* 988 * Set up a new generation number for this inode. 989 */ 990 if (ip->i_gen == 0 || ++ip->i_gen == 0) 991 ip->i_gen = arc4random() / 2 + 1; 992 DIP_SET(ip, i_gen, ip->i_gen); 993 if (fs->fs_magic == FS_UFS2_MAGIC) { 994 vfs_timestamp(&ts); 995 ip->i_din2->di_birthtime = ts.tv_sec; 996 ip->i_din2->di_birthnsec = ts.tv_nsec; 997 } 998 ip->i_flag = 0; 999 vnode_destroy_vobject(*vpp); 1000 (*vpp)->v_type = VNON; 1001 if (fs->fs_magic == FS_UFS2_MAGIC) 1002 (*vpp)->v_op = &ffs_vnodeops2; 1003 else 1004 (*vpp)->v_op = &ffs_vnodeops1; 1005 return (0); 1006 noinodes: 1007 UFS_UNLOCK(ump); 1008 if (ppsratecheck(&lastfail, &curfail, 1)) { 1009 ffs_fserr(fs, pip->i_number, "out of inodes"); 1010 uprintf("\n%s: create/symlink failed, no inodes free\n", 1011 fs->fs_fsmnt); 1012 } 1013 return (ENOSPC); 1014 } 1015 1016 /* 1017 * Find a cylinder group to place a directory. 1018 * 1019 * The policy implemented by this algorithm is to allocate a 1020 * directory inode in the same cylinder group as its parent 1021 * directory, but also to reserve space for its files inodes 1022 * and data. Restrict the number of directories which may be 1023 * allocated one after another in the same cylinder group 1024 * without intervening allocation of files. 1025 * 1026 * If we allocate a first level directory then force allocation 1027 * in another cylinder group. 1028 */ 1029 static ino_t 1030 ffs_dirpref(pip) 1031 struct inode *pip; 1032 { 1033 struct fs *fs; 1034 int cg, prefcg, dirsize, cgsize; 1035 int avgifree, avgbfree, avgndir, curdirsize; 1036 int minifree, minbfree, maxndir; 1037 int mincg, minndir; 1038 int maxcontigdirs; 1039 1040 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1041 fs = pip->i_fs; 1042 1043 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1044 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1045 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1046 1047 /* 1048 * Force allocation in another cg if creating a first level dir. 1049 */ 1050 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1051 if (ITOV(pip)->v_vflag & VV_ROOT) { 1052 prefcg = arc4random() % fs->fs_ncg; 1053 mincg = prefcg; 1054 minndir = fs->fs_ipg; 1055 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1056 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1057 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1058 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1059 mincg = cg; 1060 minndir = fs->fs_cs(fs, cg).cs_ndir; 1061 } 1062 for (cg = 0; cg < prefcg; cg++) 1063 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1064 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1065 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1066 mincg = cg; 1067 minndir = fs->fs_cs(fs, cg).cs_ndir; 1068 } 1069 return ((ino_t)(fs->fs_ipg * mincg)); 1070 } 1071 1072 /* 1073 * Count various limits which used for 1074 * optimal allocation of a directory inode. 1075 */ 1076 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1077 minifree = avgifree - avgifree / 4; 1078 if (minifree < 1) 1079 minifree = 1; 1080 minbfree = avgbfree - avgbfree / 4; 1081 if (minbfree < 1) 1082 minbfree = 1; 1083 cgsize = fs->fs_fsize * fs->fs_fpg; 1084 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1085 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1086 if (dirsize < curdirsize) 1087 dirsize = curdirsize; 1088 if (dirsize <= 0) 1089 maxcontigdirs = 0; /* dirsize overflowed */ 1090 else 1091 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1092 if (fs->fs_avgfpdir > 0) 1093 maxcontigdirs = min(maxcontigdirs, 1094 fs->fs_ipg / fs->fs_avgfpdir); 1095 if (maxcontigdirs == 0) 1096 maxcontigdirs = 1; 1097 1098 /* 1099 * Limit number of dirs in one cg and reserve space for 1100 * regular files, but only if we have no deficit in 1101 * inodes or space. 1102 */ 1103 prefcg = ino_to_cg(fs, pip->i_number); 1104 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1105 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1106 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1107 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1108 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1109 return ((ino_t)(fs->fs_ipg * cg)); 1110 } 1111 for (cg = 0; cg < prefcg; cg++) 1112 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1113 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1114 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1115 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1116 return ((ino_t)(fs->fs_ipg * cg)); 1117 } 1118 /* 1119 * This is a backstop when we have deficit in space. 1120 */ 1121 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1122 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1123 return ((ino_t)(fs->fs_ipg * cg)); 1124 for (cg = 0; cg < prefcg; cg++) 1125 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1126 break; 1127 return ((ino_t)(fs->fs_ipg * cg)); 1128 } 1129 1130 /* 1131 * Select the desired position for the next block in a file. The file is 1132 * logically divided into sections. The first section is composed of the 1133 * direct blocks. Each additional section contains fs_maxbpg blocks. 1134 * 1135 * If no blocks have been allocated in the first section, the policy is to 1136 * request a block in the same cylinder group as the inode that describes 1137 * the file. If no blocks have been allocated in any other section, the 1138 * policy is to place the section in a cylinder group with a greater than 1139 * average number of free blocks. An appropriate cylinder group is found 1140 * by using a rotor that sweeps the cylinder groups. When a new group of 1141 * blocks is needed, the sweep begins in the cylinder group following the 1142 * cylinder group from which the previous allocation was made. The sweep 1143 * continues until a cylinder group with greater than the average number 1144 * of free blocks is found. If the allocation is for the first block in an 1145 * indirect block, the information on the previous allocation is unavailable; 1146 * here a best guess is made based upon the logical block number being 1147 * allocated. 1148 * 1149 * If a section is already partially allocated, the policy is to 1150 * contiguously allocate fs_maxcontig blocks. The end of one of these 1151 * contiguous blocks and the beginning of the next is laid out 1152 * contiguously if possible. 1153 */ 1154 ufs2_daddr_t 1155 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1156 struct inode *ip; 1157 ufs_lbn_t lbn; 1158 int indx; 1159 ufs1_daddr_t *bap; 1160 { 1161 struct fs *fs; 1162 int cg; 1163 int avgbfree, startcg; 1164 1165 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1166 fs = ip->i_fs; 1167 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1168 if (lbn < NDADDR + NINDIR(fs)) { 1169 cg = ino_to_cg(fs, ip->i_number); 1170 return (cgbase(fs, cg) + fs->fs_frag); 1171 } 1172 /* 1173 * Find a cylinder with greater than average number of 1174 * unused data blocks. 1175 */ 1176 if (indx == 0 || bap[indx - 1] == 0) 1177 startcg = 1178 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1179 else 1180 startcg = dtog(fs, bap[indx - 1]) + 1; 1181 startcg %= fs->fs_ncg; 1182 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1183 for (cg = startcg; cg < fs->fs_ncg; cg++) 1184 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1185 fs->fs_cgrotor = cg; 1186 return (cgbase(fs, cg) + fs->fs_frag); 1187 } 1188 for (cg = 0; cg <= startcg; cg++) 1189 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1190 fs->fs_cgrotor = cg; 1191 return (cgbase(fs, cg) + fs->fs_frag); 1192 } 1193 return (0); 1194 } 1195 /* 1196 * We just always try to lay things out contiguously. 1197 */ 1198 return (bap[indx - 1] + fs->fs_frag); 1199 } 1200 1201 /* 1202 * Same as above, but for UFS2 1203 */ 1204 ufs2_daddr_t 1205 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1206 struct inode *ip; 1207 ufs_lbn_t lbn; 1208 int indx; 1209 ufs2_daddr_t *bap; 1210 { 1211 struct fs *fs; 1212 int cg; 1213 int avgbfree, startcg; 1214 1215 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1216 fs = ip->i_fs; 1217 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1218 if (lbn < NDADDR + NINDIR(fs)) { 1219 cg = ino_to_cg(fs, ip->i_number); 1220 return (cgbase(fs, cg) + fs->fs_frag); 1221 } 1222 /* 1223 * Find a cylinder with greater than average number of 1224 * unused data blocks. 1225 */ 1226 if (indx == 0 || bap[indx - 1] == 0) 1227 startcg = 1228 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1229 else 1230 startcg = dtog(fs, bap[indx - 1]) + 1; 1231 startcg %= fs->fs_ncg; 1232 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1233 for (cg = startcg; cg < fs->fs_ncg; cg++) 1234 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1235 fs->fs_cgrotor = cg; 1236 return (cgbase(fs, cg) + fs->fs_frag); 1237 } 1238 for (cg = 0; cg <= startcg; cg++) 1239 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1240 fs->fs_cgrotor = cg; 1241 return (cgbase(fs, cg) + fs->fs_frag); 1242 } 1243 return (0); 1244 } 1245 /* 1246 * We just always try to lay things out contiguously. 1247 */ 1248 return (bap[indx - 1] + fs->fs_frag); 1249 } 1250 1251 /* 1252 * Implement the cylinder overflow algorithm. 1253 * 1254 * The policy implemented by this algorithm is: 1255 * 1) allocate the block in its requested cylinder group. 1256 * 2) quadradically rehash on the cylinder group number. 1257 * 3) brute force search for a free block. 1258 * 1259 * Must be called with the UFS lock held. Will release the lock on success 1260 * and return with it held on failure. 1261 */ 1262 /*VARARGS5*/ 1263 static ufs2_daddr_t 1264 ffs_hashalloc(ip, cg, pref, size, allocator) 1265 struct inode *ip; 1266 int cg; 1267 ufs2_daddr_t pref; 1268 int size; /* size for data blocks, mode for inodes */ 1269 allocfcn_t *allocator; 1270 { 1271 struct fs *fs; 1272 ufs2_daddr_t result; 1273 int i, icg = cg; 1274 1275 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1276 #ifdef INVARIANTS 1277 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1278 panic("ffs_hashalloc: allocation on suspended filesystem"); 1279 #endif 1280 fs = ip->i_fs; 1281 /* 1282 * 1: preferred cylinder group 1283 */ 1284 result = (*allocator)(ip, cg, pref, size); 1285 if (result) 1286 return (result); 1287 /* 1288 * 2: quadratic rehash 1289 */ 1290 for (i = 1; i < fs->fs_ncg; i *= 2) { 1291 cg += i; 1292 if (cg >= fs->fs_ncg) 1293 cg -= fs->fs_ncg; 1294 result = (*allocator)(ip, cg, 0, size); 1295 if (result) 1296 return (result); 1297 } 1298 /* 1299 * 3: brute force search 1300 * Note that we start at i == 2, since 0 was checked initially, 1301 * and 1 is always checked in the quadratic rehash. 1302 */ 1303 cg = (icg + 2) % fs->fs_ncg; 1304 for (i = 2; i < fs->fs_ncg; i++) { 1305 result = (*allocator)(ip, cg, 0, size); 1306 if (result) 1307 return (result); 1308 cg++; 1309 if (cg == fs->fs_ncg) 1310 cg = 0; 1311 } 1312 return (0); 1313 } 1314 1315 /* 1316 * Determine whether a fragment can be extended. 1317 * 1318 * Check to see if the necessary fragments are available, and 1319 * if they are, allocate them. 1320 */ 1321 static ufs2_daddr_t 1322 ffs_fragextend(ip, cg, bprev, osize, nsize) 1323 struct inode *ip; 1324 int cg; 1325 ufs2_daddr_t bprev; 1326 int osize, nsize; 1327 { 1328 struct fs *fs; 1329 struct cg *cgp; 1330 struct buf *bp; 1331 struct ufsmount *ump; 1332 int nffree; 1333 long bno; 1334 int frags, bbase; 1335 int i, error; 1336 u_int8_t *blksfree; 1337 1338 ump = ip->i_ump; 1339 fs = ip->i_fs; 1340 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1341 return (0); 1342 frags = numfrags(fs, nsize); 1343 bbase = fragnum(fs, bprev); 1344 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1345 /* cannot extend across a block boundary */ 1346 return (0); 1347 } 1348 UFS_UNLOCK(ump); 1349 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1350 (int)fs->fs_cgsize, NOCRED, &bp); 1351 if (error) 1352 goto fail; 1353 cgp = (struct cg *)bp->b_data; 1354 if (!cg_chkmagic(cgp)) 1355 goto fail; 1356 bp->b_xflags |= BX_BKGRDWRITE; 1357 cgp->cg_old_time = cgp->cg_time = time_second; 1358 bno = dtogd(fs, bprev); 1359 blksfree = cg_blksfree(cgp); 1360 for (i = numfrags(fs, osize); i < frags; i++) 1361 if (isclr(blksfree, bno + i)) 1362 goto fail; 1363 /* 1364 * the current fragment can be extended 1365 * deduct the count on fragment being extended into 1366 * increase the count on the remaining fragment (if any) 1367 * allocate the extended piece 1368 */ 1369 for (i = frags; i < fs->fs_frag - bbase; i++) 1370 if (isclr(blksfree, bno + i)) 1371 break; 1372 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1373 if (i != frags) 1374 cgp->cg_frsum[i - frags]++; 1375 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1376 clrbit(blksfree, bno + i); 1377 cgp->cg_cs.cs_nffree--; 1378 nffree++; 1379 } 1380 UFS_LOCK(ump); 1381 fs->fs_cstotal.cs_nffree -= nffree; 1382 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1383 fs->fs_fmod = 1; 1384 ACTIVECLEAR(fs, cg); 1385 UFS_UNLOCK(ump); 1386 if (DOINGSOFTDEP(ITOV(ip))) 1387 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev); 1388 bdwrite(bp); 1389 return (bprev); 1390 1391 fail: 1392 brelse(bp); 1393 UFS_LOCK(ump); 1394 return (0); 1395 1396 } 1397 1398 /* 1399 * Determine whether a block can be allocated. 1400 * 1401 * Check to see if a block of the appropriate size is available, 1402 * and if it is, allocate it. 1403 */ 1404 static ufs2_daddr_t 1405 ffs_alloccg(ip, cg, bpref, size) 1406 struct inode *ip; 1407 int cg; 1408 ufs2_daddr_t bpref; 1409 int size; 1410 { 1411 struct fs *fs; 1412 struct cg *cgp; 1413 struct buf *bp; 1414 struct ufsmount *ump; 1415 ufs1_daddr_t bno; 1416 ufs2_daddr_t blkno; 1417 int i, allocsiz, error, frags; 1418 u_int8_t *blksfree; 1419 1420 ump = ip->i_ump; 1421 fs = ip->i_fs; 1422 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1423 return (0); 1424 UFS_UNLOCK(ump); 1425 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1426 (int)fs->fs_cgsize, NOCRED, &bp); 1427 if (error) 1428 goto fail; 1429 cgp = (struct cg *)bp->b_data; 1430 if (!cg_chkmagic(cgp) || 1431 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1432 goto fail; 1433 bp->b_xflags |= BX_BKGRDWRITE; 1434 cgp->cg_old_time = cgp->cg_time = time_second; 1435 if (size == fs->fs_bsize) { 1436 UFS_LOCK(ump); 1437 blkno = ffs_alloccgblk(ip, bp, bpref); 1438 ACTIVECLEAR(fs, cg); 1439 UFS_UNLOCK(ump); 1440 bdwrite(bp); 1441 return (blkno); 1442 } 1443 /* 1444 * check to see if any fragments are already available 1445 * allocsiz is the size which will be allocated, hacking 1446 * it down to a smaller size if necessary 1447 */ 1448 blksfree = cg_blksfree(cgp); 1449 frags = numfrags(fs, size); 1450 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1451 if (cgp->cg_frsum[allocsiz] != 0) 1452 break; 1453 if (allocsiz == fs->fs_frag) { 1454 /* 1455 * no fragments were available, so a block will be 1456 * allocated, and hacked up 1457 */ 1458 if (cgp->cg_cs.cs_nbfree == 0) 1459 goto fail; 1460 UFS_LOCK(ump); 1461 blkno = ffs_alloccgblk(ip, bp, bpref); 1462 bno = dtogd(fs, blkno); 1463 for (i = frags; i < fs->fs_frag; i++) 1464 setbit(blksfree, bno + i); 1465 i = fs->fs_frag - frags; 1466 cgp->cg_cs.cs_nffree += i; 1467 fs->fs_cstotal.cs_nffree += i; 1468 fs->fs_cs(fs, cg).cs_nffree += i; 1469 fs->fs_fmod = 1; 1470 cgp->cg_frsum[i]++; 1471 ACTIVECLEAR(fs, cg); 1472 UFS_UNLOCK(ump); 1473 bdwrite(bp); 1474 return (blkno); 1475 } 1476 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1477 if (bno < 0) 1478 goto fail; 1479 for (i = 0; i < frags; i++) 1480 clrbit(blksfree, bno + i); 1481 cgp->cg_cs.cs_nffree -= frags; 1482 cgp->cg_frsum[allocsiz]--; 1483 if (frags != allocsiz) 1484 cgp->cg_frsum[allocsiz - frags]++; 1485 UFS_LOCK(ump); 1486 fs->fs_cstotal.cs_nffree -= frags; 1487 fs->fs_cs(fs, cg).cs_nffree -= frags; 1488 fs->fs_fmod = 1; 1489 blkno = cgbase(fs, cg) + bno; 1490 ACTIVECLEAR(fs, cg); 1491 UFS_UNLOCK(ump); 1492 if (DOINGSOFTDEP(ITOV(ip))) 1493 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno); 1494 bdwrite(bp); 1495 return (blkno); 1496 1497 fail: 1498 brelse(bp); 1499 UFS_LOCK(ump); 1500 return (0); 1501 } 1502 1503 /* 1504 * Allocate a block in a cylinder group. 1505 * 1506 * This algorithm implements the following policy: 1507 * 1) allocate the requested block. 1508 * 2) allocate a rotationally optimal block in the same cylinder. 1509 * 3) allocate the next available block on the block rotor for the 1510 * specified cylinder group. 1511 * Note that this routine only allocates fs_bsize blocks; these 1512 * blocks may be fragmented by the routine that allocates them. 1513 */ 1514 static ufs2_daddr_t 1515 ffs_alloccgblk(ip, bp, bpref) 1516 struct inode *ip; 1517 struct buf *bp; 1518 ufs2_daddr_t bpref; 1519 { 1520 struct fs *fs; 1521 struct cg *cgp; 1522 struct ufsmount *ump; 1523 ufs1_daddr_t bno; 1524 ufs2_daddr_t blkno; 1525 u_int8_t *blksfree; 1526 1527 fs = ip->i_fs; 1528 ump = ip->i_ump; 1529 mtx_assert(UFS_MTX(ump), MA_OWNED); 1530 cgp = (struct cg *)bp->b_data; 1531 blksfree = cg_blksfree(cgp); 1532 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1533 bpref = cgp->cg_rotor; 1534 } else { 1535 bpref = blknum(fs, bpref); 1536 bno = dtogd(fs, bpref); 1537 /* 1538 * if the requested block is available, use it 1539 */ 1540 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1541 goto gotit; 1542 } 1543 /* 1544 * Take the next available block in this cylinder group. 1545 */ 1546 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1547 if (bno < 0) 1548 return (0); 1549 cgp->cg_rotor = bno; 1550 gotit: 1551 blkno = fragstoblks(fs, bno); 1552 ffs_clrblock(fs, blksfree, (long)blkno); 1553 ffs_clusteracct(ump, fs, cgp, blkno, -1); 1554 cgp->cg_cs.cs_nbfree--; 1555 fs->fs_cstotal.cs_nbfree--; 1556 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1557 fs->fs_fmod = 1; 1558 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1559 /* XXX Fixme. */ 1560 UFS_UNLOCK(ump); 1561 if (DOINGSOFTDEP(ITOV(ip))) 1562 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno); 1563 UFS_LOCK(ump); 1564 return (blkno); 1565 } 1566 1567 /* 1568 * Determine whether a cluster can be allocated. 1569 * 1570 * We do not currently check for optimal rotational layout if there 1571 * are multiple choices in the same cylinder group. Instead we just 1572 * take the first one that we find following bpref. 1573 */ 1574 static ufs2_daddr_t 1575 ffs_clusteralloc(ip, cg, bpref, len) 1576 struct inode *ip; 1577 int cg; 1578 ufs2_daddr_t bpref; 1579 int len; 1580 { 1581 struct fs *fs; 1582 struct cg *cgp; 1583 struct buf *bp; 1584 struct ufsmount *ump; 1585 int i, run, bit, map, got; 1586 ufs2_daddr_t bno; 1587 u_char *mapp; 1588 int32_t *lp; 1589 u_int8_t *blksfree; 1590 1591 fs = ip->i_fs; 1592 ump = ip->i_ump; 1593 if (fs->fs_maxcluster[cg] < len) 1594 return (0); 1595 UFS_UNLOCK(ump); 1596 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1597 NOCRED, &bp)) 1598 goto fail_lock; 1599 cgp = (struct cg *)bp->b_data; 1600 if (!cg_chkmagic(cgp)) 1601 goto fail_lock; 1602 bp->b_xflags |= BX_BKGRDWRITE; 1603 /* 1604 * Check to see if a cluster of the needed size (or bigger) is 1605 * available in this cylinder group. 1606 */ 1607 lp = &cg_clustersum(cgp)[len]; 1608 for (i = len; i <= fs->fs_contigsumsize; i++) 1609 if (*lp++ > 0) 1610 break; 1611 if (i > fs->fs_contigsumsize) { 1612 /* 1613 * This is the first time looking for a cluster in this 1614 * cylinder group. Update the cluster summary information 1615 * to reflect the true maximum sized cluster so that 1616 * future cluster allocation requests can avoid reading 1617 * the cylinder group map only to find no clusters. 1618 */ 1619 lp = &cg_clustersum(cgp)[len - 1]; 1620 for (i = len - 1; i > 0; i--) 1621 if (*lp-- > 0) 1622 break; 1623 UFS_LOCK(ump); 1624 fs->fs_maxcluster[cg] = i; 1625 goto fail; 1626 } 1627 /* 1628 * Search the cluster map to find a big enough cluster. 1629 * We take the first one that we find, even if it is larger 1630 * than we need as we prefer to get one close to the previous 1631 * block allocation. We do not search before the current 1632 * preference point as we do not want to allocate a block 1633 * that is allocated before the previous one (as we will 1634 * then have to wait for another pass of the elevator 1635 * algorithm before it will be read). We prefer to fail and 1636 * be recalled to try an allocation in the next cylinder group. 1637 */ 1638 if (dtog(fs, bpref) != cg) 1639 bpref = 0; 1640 else 1641 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1642 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1643 map = *mapp++; 1644 bit = 1 << (bpref % NBBY); 1645 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1646 if ((map & bit) == 0) { 1647 run = 0; 1648 } else { 1649 run++; 1650 if (run == len) 1651 break; 1652 } 1653 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1654 bit <<= 1; 1655 } else { 1656 map = *mapp++; 1657 bit = 1; 1658 } 1659 } 1660 if (got >= cgp->cg_nclusterblks) 1661 goto fail_lock; 1662 /* 1663 * Allocate the cluster that we have found. 1664 */ 1665 blksfree = cg_blksfree(cgp); 1666 for (i = 1; i <= len; i++) 1667 if (!ffs_isblock(fs, blksfree, got - run + i)) 1668 panic("ffs_clusteralloc: map mismatch"); 1669 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1670 if (dtog(fs, bno) != cg) 1671 panic("ffs_clusteralloc: allocated out of group"); 1672 len = blkstofrags(fs, len); 1673 UFS_LOCK(ump); 1674 for (i = 0; i < len; i += fs->fs_frag) 1675 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1676 panic("ffs_clusteralloc: lost block"); 1677 ACTIVECLEAR(fs, cg); 1678 UFS_UNLOCK(ump); 1679 bdwrite(bp); 1680 return (bno); 1681 1682 fail_lock: 1683 UFS_LOCK(ump); 1684 fail: 1685 brelse(bp); 1686 return (0); 1687 } 1688 1689 /* 1690 * Determine whether an inode can be allocated. 1691 * 1692 * Check to see if an inode is available, and if it is, 1693 * allocate it using the following policy: 1694 * 1) allocate the requested inode. 1695 * 2) allocate the next available inode after the requested 1696 * inode in the specified cylinder group. 1697 */ 1698 static ufs2_daddr_t 1699 ffs_nodealloccg(ip, cg, ipref, mode) 1700 struct inode *ip; 1701 int cg; 1702 ufs2_daddr_t ipref; 1703 int mode; 1704 { 1705 struct fs *fs; 1706 struct cg *cgp; 1707 struct buf *bp, *ibp; 1708 struct ufsmount *ump; 1709 u_int8_t *inosused; 1710 struct ufs2_dinode *dp2; 1711 int error, start, len, loc, map, i; 1712 1713 fs = ip->i_fs; 1714 ump = ip->i_ump; 1715 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1716 return (0); 1717 UFS_UNLOCK(ump); 1718 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1719 (int)fs->fs_cgsize, NOCRED, &bp); 1720 if (error) { 1721 brelse(bp); 1722 UFS_LOCK(ump); 1723 return (0); 1724 } 1725 cgp = (struct cg *)bp->b_data; 1726 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1727 brelse(bp); 1728 UFS_LOCK(ump); 1729 return (0); 1730 } 1731 bp->b_xflags |= BX_BKGRDWRITE; 1732 cgp->cg_old_time = cgp->cg_time = time_second; 1733 inosused = cg_inosused(cgp); 1734 if (ipref) { 1735 ipref %= fs->fs_ipg; 1736 if (isclr(inosused, ipref)) 1737 goto gotit; 1738 } 1739 start = cgp->cg_irotor / NBBY; 1740 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1741 loc = skpc(0xff, len, &inosused[start]); 1742 if (loc == 0) { 1743 len = start + 1; 1744 start = 0; 1745 loc = skpc(0xff, len, &inosused[0]); 1746 if (loc == 0) { 1747 printf("cg = %d, irotor = %ld, fs = %s\n", 1748 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1749 panic("ffs_nodealloccg: map corrupted"); 1750 /* NOTREACHED */ 1751 } 1752 } 1753 i = start + len - loc; 1754 map = inosused[i]; 1755 ipref = i * NBBY; 1756 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1757 if ((map & i) == 0) { 1758 cgp->cg_irotor = ipref; 1759 goto gotit; 1760 } 1761 } 1762 printf("fs = %s\n", fs->fs_fsmnt); 1763 panic("ffs_nodealloccg: block not in map"); 1764 /* NOTREACHED */ 1765 gotit: 1766 /* 1767 * Check to see if we need to initialize more inodes. 1768 */ 1769 ibp = NULL; 1770 if (fs->fs_magic == FS_UFS2_MAGIC && 1771 ipref + INOPB(fs) > cgp->cg_initediblk && 1772 cgp->cg_initediblk < cgp->cg_niblk) { 1773 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1774 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1775 (int)fs->fs_bsize, 0, 0, 0); 1776 bzero(ibp->b_data, (int)fs->fs_bsize); 1777 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1778 for (i = 0; i < INOPB(fs); i++) { 1779 dp2->di_gen = arc4random() / 2 + 1; 1780 dp2++; 1781 } 1782 cgp->cg_initediblk += INOPB(fs); 1783 } 1784 UFS_LOCK(ump); 1785 ACTIVECLEAR(fs, cg); 1786 setbit(inosused, ipref); 1787 cgp->cg_cs.cs_nifree--; 1788 fs->fs_cstotal.cs_nifree--; 1789 fs->fs_cs(fs, cg).cs_nifree--; 1790 fs->fs_fmod = 1; 1791 if ((mode & IFMT) == IFDIR) { 1792 cgp->cg_cs.cs_ndir++; 1793 fs->fs_cstotal.cs_ndir++; 1794 fs->fs_cs(fs, cg).cs_ndir++; 1795 } 1796 UFS_UNLOCK(ump); 1797 if (DOINGSOFTDEP(ITOV(ip))) 1798 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1799 bdwrite(bp); 1800 if (ibp != NULL) 1801 bawrite(ibp); 1802 return (cg * fs->fs_ipg + ipref); 1803 } 1804 1805 /* 1806 * check if a block is free 1807 */ 1808 static int 1809 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 1810 { 1811 1812 switch ((int)fs->fs_frag) { 1813 case 8: 1814 return (cp[h] == 0); 1815 case 4: 1816 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 1817 case 2: 1818 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 1819 case 1: 1820 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 1821 default: 1822 panic("ffs_isfreeblock"); 1823 } 1824 return (0); 1825 } 1826 1827 /* 1828 * Free a block or fragment. 1829 * 1830 * The specified block or fragment is placed back in the 1831 * free map. If a fragment is deallocated, a possible 1832 * block reassembly is checked. 1833 */ 1834 void 1835 ffs_blkfree(ump, fs, devvp, bno, size, inum) 1836 struct ufsmount *ump; 1837 struct fs *fs; 1838 struct vnode *devvp; 1839 ufs2_daddr_t bno; 1840 long size; 1841 ino_t inum; 1842 { 1843 struct cg *cgp; 1844 struct buf *bp; 1845 ufs1_daddr_t fragno, cgbno; 1846 ufs2_daddr_t cgblkno; 1847 int i, cg, blk, frags, bbase; 1848 u_int8_t *blksfree; 1849 struct cdev *dev; 1850 1851 cg = dtog(fs, bno); 1852 if (devvp->v_type != VCHR) { 1853 /* devvp is a snapshot */ 1854 dev = VTOI(devvp)->i_devvp->v_rdev; 1855 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1856 } else { 1857 /* devvp is a normal disk device */ 1858 dev = devvp->v_rdev; 1859 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1860 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1861 if ((devvp->v_vflag & VV_COPYONWRITE) && 1862 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1863 return; 1864 } 1865 #ifdef INVARIANTS 1866 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1867 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1868 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1869 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1870 size, fs->fs_fsmnt); 1871 panic("ffs_blkfree: bad size"); 1872 } 1873 #endif 1874 if ((u_int)bno >= fs->fs_size) { 1875 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1876 (u_long)inum); 1877 ffs_fserr(fs, inum, "bad block"); 1878 return; 1879 } 1880 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 1881 brelse(bp); 1882 return; 1883 } 1884 cgp = (struct cg *)bp->b_data; 1885 if (!cg_chkmagic(cgp)) { 1886 brelse(bp); 1887 return; 1888 } 1889 bp->b_xflags |= BX_BKGRDWRITE; 1890 cgp->cg_old_time = cgp->cg_time = time_second; 1891 cgbno = dtogd(fs, bno); 1892 blksfree = cg_blksfree(cgp); 1893 UFS_LOCK(ump); 1894 if (size == fs->fs_bsize) { 1895 fragno = fragstoblks(fs, cgbno); 1896 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1897 if (devvp->v_type != VCHR) { 1898 UFS_UNLOCK(ump); 1899 /* devvp is a snapshot */ 1900 brelse(bp); 1901 return; 1902 } 1903 printf("dev = %s, block = %jd, fs = %s\n", 1904 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1905 panic("ffs_blkfree: freeing free block"); 1906 } 1907 ffs_setblock(fs, blksfree, fragno); 1908 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1909 cgp->cg_cs.cs_nbfree++; 1910 fs->fs_cstotal.cs_nbfree++; 1911 fs->fs_cs(fs, cg).cs_nbfree++; 1912 } else { 1913 bbase = cgbno - fragnum(fs, cgbno); 1914 /* 1915 * decrement the counts associated with the old frags 1916 */ 1917 blk = blkmap(fs, blksfree, bbase); 1918 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1919 /* 1920 * deallocate the fragment 1921 */ 1922 frags = numfrags(fs, size); 1923 for (i = 0; i < frags; i++) { 1924 if (isset(blksfree, cgbno + i)) { 1925 printf("dev = %s, block = %jd, fs = %s\n", 1926 devtoname(dev), (intmax_t)(bno + i), 1927 fs->fs_fsmnt); 1928 panic("ffs_blkfree: freeing free frag"); 1929 } 1930 setbit(blksfree, cgbno + i); 1931 } 1932 cgp->cg_cs.cs_nffree += i; 1933 fs->fs_cstotal.cs_nffree += i; 1934 fs->fs_cs(fs, cg).cs_nffree += i; 1935 /* 1936 * add back in counts associated with the new frags 1937 */ 1938 blk = blkmap(fs, blksfree, bbase); 1939 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1940 /* 1941 * if a complete block has been reassembled, account for it 1942 */ 1943 fragno = fragstoblks(fs, bbase); 1944 if (ffs_isblock(fs, blksfree, fragno)) { 1945 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1946 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1947 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1948 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1949 cgp->cg_cs.cs_nbfree++; 1950 fs->fs_cstotal.cs_nbfree++; 1951 fs->fs_cs(fs, cg).cs_nbfree++; 1952 } 1953 } 1954 fs->fs_fmod = 1; 1955 ACTIVECLEAR(fs, cg); 1956 UFS_UNLOCK(ump); 1957 bdwrite(bp); 1958 } 1959 1960 #ifdef INVARIANTS 1961 /* 1962 * Verify allocation of a block or fragment. Returns true if block or 1963 * fragment is allocated, false if it is free. 1964 */ 1965 static int 1966 ffs_checkblk(ip, bno, size) 1967 struct inode *ip; 1968 ufs2_daddr_t bno; 1969 long size; 1970 { 1971 struct fs *fs; 1972 struct cg *cgp; 1973 struct buf *bp; 1974 ufs1_daddr_t cgbno; 1975 int i, error, frags, free; 1976 u_int8_t *blksfree; 1977 1978 fs = ip->i_fs; 1979 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1980 printf("bsize = %ld, size = %ld, fs = %s\n", 1981 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1982 panic("ffs_checkblk: bad size"); 1983 } 1984 if ((u_int)bno >= fs->fs_size) 1985 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 1986 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1987 (int)fs->fs_cgsize, NOCRED, &bp); 1988 if (error) 1989 panic("ffs_checkblk: cg bread failed"); 1990 cgp = (struct cg *)bp->b_data; 1991 if (!cg_chkmagic(cgp)) 1992 panic("ffs_checkblk: cg magic mismatch"); 1993 bp->b_xflags |= BX_BKGRDWRITE; 1994 blksfree = cg_blksfree(cgp); 1995 cgbno = dtogd(fs, bno); 1996 if (size == fs->fs_bsize) { 1997 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 1998 } else { 1999 frags = numfrags(fs, size); 2000 for (free = 0, i = 0; i < frags; i++) 2001 if (isset(blksfree, cgbno + i)) 2002 free++; 2003 if (free != 0 && free != frags) 2004 panic("ffs_checkblk: partially free fragment"); 2005 } 2006 brelse(bp); 2007 return (!free); 2008 } 2009 #endif /* INVARIANTS */ 2010 2011 /* 2012 * Free an inode. 2013 */ 2014 int 2015 ffs_vfree(pvp, ino, mode) 2016 struct vnode *pvp; 2017 ino_t ino; 2018 int mode; 2019 { 2020 struct inode *ip; 2021 2022 if (DOINGSOFTDEP(pvp)) { 2023 softdep_freefile(pvp, ino, mode); 2024 return (0); 2025 } 2026 ip = VTOI(pvp); 2027 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode)); 2028 } 2029 2030 /* 2031 * Do the actual free operation. 2032 * The specified inode is placed back in the free map. 2033 */ 2034 int 2035 ffs_freefile(ump, fs, devvp, ino, mode) 2036 struct ufsmount *ump; 2037 struct fs *fs; 2038 struct vnode *devvp; 2039 ino_t ino; 2040 int mode; 2041 { 2042 struct cg *cgp; 2043 struct buf *bp; 2044 ufs2_daddr_t cgbno; 2045 int error, cg; 2046 u_int8_t *inosused; 2047 struct cdev *dev; 2048 2049 cg = ino_to_cg(fs, ino); 2050 if (devvp->v_type != VCHR) { 2051 /* devvp is a snapshot */ 2052 dev = VTOI(devvp)->i_devvp->v_rdev; 2053 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2054 } else { 2055 /* devvp is a normal disk device */ 2056 dev = devvp->v_rdev; 2057 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2058 } 2059 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2060 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 2061 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 2062 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2063 brelse(bp); 2064 return (error); 2065 } 2066 cgp = (struct cg *)bp->b_data; 2067 if (!cg_chkmagic(cgp)) { 2068 brelse(bp); 2069 return (0); 2070 } 2071 bp->b_xflags |= BX_BKGRDWRITE; 2072 cgp->cg_old_time = cgp->cg_time = time_second; 2073 inosused = cg_inosused(cgp); 2074 ino %= fs->fs_ipg; 2075 if (isclr(inosused, ino)) { 2076 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev), 2077 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt); 2078 if (fs->fs_ronly == 0) 2079 panic("ffs_freefile: freeing free inode"); 2080 } 2081 clrbit(inosused, ino); 2082 if (ino < cgp->cg_irotor) 2083 cgp->cg_irotor = ino; 2084 cgp->cg_cs.cs_nifree++; 2085 UFS_LOCK(ump); 2086 fs->fs_cstotal.cs_nifree++; 2087 fs->fs_cs(fs, cg).cs_nifree++; 2088 if ((mode & IFMT) == IFDIR) { 2089 cgp->cg_cs.cs_ndir--; 2090 fs->fs_cstotal.cs_ndir--; 2091 fs->fs_cs(fs, cg).cs_ndir--; 2092 } 2093 fs->fs_fmod = 1; 2094 ACTIVECLEAR(fs, cg); 2095 UFS_UNLOCK(ump); 2096 bdwrite(bp); 2097 return (0); 2098 } 2099 2100 /* 2101 * Check to see if a file is free. 2102 */ 2103 int 2104 ffs_checkfreefile(fs, devvp, ino) 2105 struct fs *fs; 2106 struct vnode *devvp; 2107 ino_t ino; 2108 { 2109 struct cg *cgp; 2110 struct buf *bp; 2111 ufs2_daddr_t cgbno; 2112 int ret, cg; 2113 u_int8_t *inosused; 2114 2115 cg = ino_to_cg(fs, ino); 2116 if (devvp->v_type != VCHR) { 2117 /* devvp is a snapshot */ 2118 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2119 } else { 2120 /* devvp is a normal disk device */ 2121 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2122 } 2123 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2124 return (1); 2125 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2126 brelse(bp); 2127 return (1); 2128 } 2129 cgp = (struct cg *)bp->b_data; 2130 if (!cg_chkmagic(cgp)) { 2131 brelse(bp); 2132 return (1); 2133 } 2134 inosused = cg_inosused(cgp); 2135 ino %= fs->fs_ipg; 2136 ret = isclr(inosused, ino); 2137 brelse(bp); 2138 return (ret); 2139 } 2140 2141 /* 2142 * Find a block of the specified size in the specified cylinder group. 2143 * 2144 * It is a panic if a request is made to find a block if none are 2145 * available. 2146 */ 2147 static ufs1_daddr_t 2148 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2149 struct fs *fs; 2150 struct cg *cgp; 2151 ufs2_daddr_t bpref; 2152 int allocsiz; 2153 { 2154 ufs1_daddr_t bno; 2155 int start, len, loc, i; 2156 int blk, field, subfield, pos; 2157 u_int8_t *blksfree; 2158 2159 /* 2160 * find the fragment by searching through the free block 2161 * map for an appropriate bit pattern 2162 */ 2163 if (bpref) 2164 start = dtogd(fs, bpref) / NBBY; 2165 else 2166 start = cgp->cg_frotor / NBBY; 2167 blksfree = cg_blksfree(cgp); 2168 len = howmany(fs->fs_fpg, NBBY) - start; 2169 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2170 fragtbl[fs->fs_frag], 2171 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2172 if (loc == 0) { 2173 len = start + 1; 2174 start = 0; 2175 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2176 fragtbl[fs->fs_frag], 2177 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2178 if (loc == 0) { 2179 printf("start = %d, len = %d, fs = %s\n", 2180 start, len, fs->fs_fsmnt); 2181 panic("ffs_alloccg: map corrupted"); 2182 /* NOTREACHED */ 2183 } 2184 } 2185 bno = (start + len - loc) * NBBY; 2186 cgp->cg_frotor = bno; 2187 /* 2188 * found the byte in the map 2189 * sift through the bits to find the selected frag 2190 */ 2191 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2192 blk = blkmap(fs, blksfree, bno); 2193 blk <<= 1; 2194 field = around[allocsiz]; 2195 subfield = inside[allocsiz]; 2196 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2197 if ((blk & field) == subfield) 2198 return (bno + pos); 2199 field <<= 1; 2200 subfield <<= 1; 2201 } 2202 } 2203 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2204 panic("ffs_alloccg: block not in map"); 2205 return (-1); 2206 } 2207 2208 /* 2209 * Update the cluster map because of an allocation or free. 2210 * 2211 * Cnt == 1 means free; cnt == -1 means allocating. 2212 */ 2213 void 2214 ffs_clusteracct(ump, fs, cgp, blkno, cnt) 2215 struct ufsmount *ump; 2216 struct fs *fs; 2217 struct cg *cgp; 2218 ufs1_daddr_t blkno; 2219 int cnt; 2220 { 2221 int32_t *sump; 2222 int32_t *lp; 2223 u_char *freemapp, *mapp; 2224 int i, start, end, forw, back, map, bit; 2225 2226 mtx_assert(UFS_MTX(ump), MA_OWNED); 2227 2228 if (fs->fs_contigsumsize <= 0) 2229 return; 2230 freemapp = cg_clustersfree(cgp); 2231 sump = cg_clustersum(cgp); 2232 /* 2233 * Allocate or clear the actual block. 2234 */ 2235 if (cnt > 0) 2236 setbit(freemapp, blkno); 2237 else 2238 clrbit(freemapp, blkno); 2239 /* 2240 * Find the size of the cluster going forward. 2241 */ 2242 start = blkno + 1; 2243 end = start + fs->fs_contigsumsize; 2244 if (end >= cgp->cg_nclusterblks) 2245 end = cgp->cg_nclusterblks; 2246 mapp = &freemapp[start / NBBY]; 2247 map = *mapp++; 2248 bit = 1 << (start % NBBY); 2249 for (i = start; i < end; i++) { 2250 if ((map & bit) == 0) 2251 break; 2252 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2253 bit <<= 1; 2254 } else { 2255 map = *mapp++; 2256 bit = 1; 2257 } 2258 } 2259 forw = i - start; 2260 /* 2261 * Find the size of the cluster going backward. 2262 */ 2263 start = blkno - 1; 2264 end = start - fs->fs_contigsumsize; 2265 if (end < 0) 2266 end = -1; 2267 mapp = &freemapp[start / NBBY]; 2268 map = *mapp--; 2269 bit = 1 << (start % NBBY); 2270 for (i = start; i > end; i--) { 2271 if ((map & bit) == 0) 2272 break; 2273 if ((i & (NBBY - 1)) != 0) { 2274 bit >>= 1; 2275 } else { 2276 map = *mapp--; 2277 bit = 1 << (NBBY - 1); 2278 } 2279 } 2280 back = start - i; 2281 /* 2282 * Account for old cluster and the possibly new forward and 2283 * back clusters. 2284 */ 2285 i = back + forw + 1; 2286 if (i > fs->fs_contigsumsize) 2287 i = fs->fs_contigsumsize; 2288 sump[i] += cnt; 2289 if (back > 0) 2290 sump[back] -= cnt; 2291 if (forw > 0) 2292 sump[forw] -= cnt; 2293 /* 2294 * Update cluster summary information. 2295 */ 2296 lp = &sump[fs->fs_contigsumsize]; 2297 for (i = fs->fs_contigsumsize; i > 0; i--) 2298 if (*lp-- > 0) 2299 break; 2300 fs->fs_maxcluster[cgp->cg_cgx] = i; 2301 } 2302 2303 /* 2304 * Fserr prints the name of a filesystem with an error diagnostic. 2305 * 2306 * The form of the error message is: 2307 * fs: error message 2308 */ 2309 static void 2310 ffs_fserr(fs, inum, cp) 2311 struct fs *fs; 2312 ino_t inum; 2313 char *cp; 2314 { 2315 struct thread *td = curthread; /* XXX */ 2316 struct proc *p = td->td_proc; 2317 2318 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2319 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp); 2320 } 2321 2322 /* 2323 * This function provides the capability for the fsck program to 2324 * update an active filesystem. Eleven operations are provided: 2325 * 2326 * adjrefcnt(inode, amt) - adjusts the reference count on the 2327 * specified inode by the specified amount. Under normal 2328 * operation the count should always go down. Decrementing 2329 * the count to zero will cause the inode to be freed. 2330 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2331 * by the specifed amount. 2332 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2333 * adjust the superblock summary. 2334 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2335 * are marked as free. Inodes should never have to be marked 2336 * as in use. 2337 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2338 * are marked as free. Inodes should never have to be marked 2339 * as in use. 2340 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2341 * are marked as free. Blocks should never have to be marked 2342 * as in use. 2343 * setflags(flags, set/clear) - the fs_flags field has the specified 2344 * flags set (second parameter +1) or cleared (second parameter -1). 2345 */ 2346 2347 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2348 2349 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2350 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2351 2352 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2353 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2354 2355 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2356 sysctl_ffs_fsck, "Adjust number of directories"); 2357 2358 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2359 sysctl_ffs_fsck, "Adjust number of free blocks"); 2360 2361 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2362 sysctl_ffs_fsck, "Adjust number of free inodes"); 2363 2364 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2365 sysctl_ffs_fsck, "Adjust number of free frags"); 2366 2367 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2368 sysctl_ffs_fsck, "Adjust number of free clusters"); 2369 2370 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2371 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2372 2373 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2374 sysctl_ffs_fsck, "Free Range of File Inodes"); 2375 2376 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2377 sysctl_ffs_fsck, "Free Range of Blocks"); 2378 2379 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2380 sysctl_ffs_fsck, "Change Filesystem Flags"); 2381 2382 #ifdef DEBUG 2383 static int fsckcmds = 0; 2384 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2385 #endif /* DEBUG */ 2386 2387 static int 2388 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2389 { 2390 struct fsck_cmd cmd; 2391 struct ufsmount *ump; 2392 struct vnode *vp; 2393 struct inode *ip; 2394 struct mount *mp; 2395 struct fs *fs; 2396 ufs2_daddr_t blkno; 2397 long blkcnt, blksize; 2398 struct file *fp; 2399 int filetype, error; 2400 2401 if (req->newlen > sizeof cmd) 2402 return (EBADRPC); 2403 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2404 return (error); 2405 if (cmd.version != FFS_CMD_VERSION) 2406 return (ERPCMISMATCH); 2407 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2408 return (error); 2409 vn_start_write(fp->f_data, &mp, V_WAIT); 2410 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2411 vn_finished_write(mp); 2412 fdrop(fp, curthread); 2413 return (EINVAL); 2414 } 2415 if (mp->mnt_flag & MNT_RDONLY) { 2416 vn_finished_write(mp); 2417 fdrop(fp, curthread); 2418 return (EROFS); 2419 } 2420 ump = VFSTOUFS(mp); 2421 fs = ump->um_fs; 2422 filetype = IFREG; 2423 2424 switch (oidp->oid_number) { 2425 2426 case FFS_SET_FLAGS: 2427 #ifdef DEBUG 2428 if (fsckcmds) 2429 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2430 cmd.size > 0 ? "set" : "clear"); 2431 #endif /* DEBUG */ 2432 if (cmd.size > 0) 2433 fs->fs_flags |= (long)cmd.value; 2434 else 2435 fs->fs_flags &= ~(long)cmd.value; 2436 break; 2437 2438 case FFS_ADJ_REFCNT: 2439 #ifdef DEBUG 2440 if (fsckcmds) { 2441 printf("%s: adjust inode %jd count by %jd\n", 2442 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2443 (intmax_t)cmd.size); 2444 } 2445 #endif /* DEBUG */ 2446 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2447 break; 2448 ip = VTOI(vp); 2449 ip->i_nlink += cmd.size; 2450 DIP_SET(ip, i_nlink, ip->i_nlink); 2451 ip->i_effnlink += cmd.size; 2452 ip->i_flag |= IN_CHANGE; 2453 if (DOINGSOFTDEP(vp)) 2454 softdep_change_linkcnt(ip); 2455 vput(vp); 2456 break; 2457 2458 case FFS_ADJ_BLKCNT: 2459 #ifdef DEBUG 2460 if (fsckcmds) { 2461 printf("%s: adjust inode %jd block count by %jd\n", 2462 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2463 (intmax_t)cmd.size); 2464 } 2465 #endif /* DEBUG */ 2466 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2467 break; 2468 ip = VTOI(vp); 2469 if (ip->i_flag & IN_SPACECOUNTED) { 2470 UFS_LOCK(ump); 2471 fs->fs_pendingblocks += cmd.size; 2472 UFS_UNLOCK(ump); 2473 } 2474 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2475 ip->i_flag |= IN_CHANGE; 2476 vput(vp); 2477 break; 2478 2479 case FFS_DIR_FREE: 2480 filetype = IFDIR; 2481 /* fall through */ 2482 2483 case FFS_FILE_FREE: 2484 #ifdef DEBUG 2485 if (fsckcmds) { 2486 if (cmd.size == 1) 2487 printf("%s: free %s inode %d\n", 2488 mp->mnt_stat.f_mntonname, 2489 filetype == IFDIR ? "directory" : "file", 2490 (ino_t)cmd.value); 2491 else 2492 printf("%s: free %s inodes %d-%d\n", 2493 mp->mnt_stat.f_mntonname, 2494 filetype == IFDIR ? "directory" : "file", 2495 (ino_t)cmd.value, 2496 (ino_t)(cmd.value + cmd.size - 1)); 2497 } 2498 #endif /* DEBUG */ 2499 while (cmd.size > 0) { 2500 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2501 cmd.value, filetype))) 2502 break; 2503 cmd.size -= 1; 2504 cmd.value += 1; 2505 } 2506 break; 2507 2508 case FFS_BLK_FREE: 2509 #ifdef DEBUG 2510 if (fsckcmds) { 2511 if (cmd.size == 1) 2512 printf("%s: free block %jd\n", 2513 mp->mnt_stat.f_mntonname, 2514 (intmax_t)cmd.value); 2515 else 2516 printf("%s: free blocks %jd-%jd\n", 2517 mp->mnt_stat.f_mntonname, 2518 (intmax_t)cmd.value, 2519 (intmax_t)cmd.value + cmd.size - 1); 2520 } 2521 #endif /* DEBUG */ 2522 blkno = cmd.value; 2523 blkcnt = cmd.size; 2524 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2525 while (blkcnt > 0) { 2526 if (blksize > blkcnt) 2527 blksize = blkcnt; 2528 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2529 blksize * fs->fs_fsize, ROOTINO); 2530 blkno += blksize; 2531 blkcnt -= blksize; 2532 blksize = fs->fs_frag; 2533 } 2534 break; 2535 2536 /* 2537 * Adjust superblock summaries. fsck(8) is expected to 2538 * submit deltas when necessary. 2539 */ 2540 case FFS_ADJ_NDIR: 2541 #ifdef DEBUG 2542 if (fsckcmds) { 2543 printf("%s: adjust number of directories by %jd\n", 2544 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2545 } 2546 #endif /* DEBUG */ 2547 fs->fs_cstotal.cs_ndir += cmd.value; 2548 break; 2549 case FFS_ADJ_NBFREE: 2550 #ifdef DEBUG 2551 if (fsckcmds) { 2552 printf("%s: adjust number of free blocks by %+jd\n", 2553 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2554 } 2555 #endif /* DEBUG */ 2556 fs->fs_cstotal.cs_nbfree += cmd.value; 2557 break; 2558 case FFS_ADJ_NIFREE: 2559 #ifdef DEBUG 2560 if (fsckcmds) { 2561 printf("%s: adjust number of free inodes by %+jd\n", 2562 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2563 } 2564 #endif /* DEBUG */ 2565 fs->fs_cstotal.cs_nifree += cmd.value; 2566 break; 2567 case FFS_ADJ_NFFREE: 2568 #ifdef DEBUG 2569 if (fsckcmds) { 2570 printf("%s: adjust number of free frags by %+jd\n", 2571 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2572 } 2573 #endif /* DEBUG */ 2574 fs->fs_cstotal.cs_nffree += cmd.value; 2575 break; 2576 case FFS_ADJ_NUMCLUSTERS: 2577 #ifdef DEBUG 2578 if (fsckcmds) { 2579 printf("%s: adjust number of free clusters by %+jd\n", 2580 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2581 } 2582 #endif /* DEBUG */ 2583 fs->fs_cstotal.cs_numclusters += cmd.value; 2584 break; 2585 2586 default: 2587 #ifdef DEBUG 2588 if (fsckcmds) { 2589 printf("Invalid request %d from fsck\n", 2590 oidp->oid_number); 2591 } 2592 #endif /* DEBUG */ 2593 error = EINVAL; 2594 break; 2595 2596 } 2597 fdrop(fp, curthread); 2598 vn_finished_write(mp); 2599 return (error); 2600 } 2601