1 /* 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 34 * $Id: ffs_alloc.c,v 1.57 1999/05/06 18:13:11 peter Exp $ 35 */ 36 37 #include "opt_quota.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/buf.h> 42 #include <sys/proc.h> 43 #include <sys/vnode.h> 44 #include <sys/mount.h> 45 #include <sys/kernel.h> 46 #include <sys/sysctl.h> 47 #include <sys/syslog.h> 48 49 #include <ufs/ufs/quota.h> 50 #include <ufs/ufs/inode.h> 51 #include <ufs/ufs/ufs_extern.h> 52 #include <ufs/ufs/ufsmount.h> 53 54 #include <ufs/ffs/fs.h> 55 #include <ufs/ffs/ffs_extern.h> 56 57 typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref, 58 int size)); 59 60 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int)); 61 static ufs_daddr_t 62 ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t)); 63 #ifdef DIAGNOSTIC 64 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long)); 65 #endif 66 static void ffs_clusteracct __P((struct fs *, struct cg *, ufs_daddr_t, 67 int)); 68 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, 69 int)); 70 static ino_t ffs_dirpref __P((struct fs *)); 71 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int)); 72 static void ffs_fserr __P((struct fs *, u_int, char *)); 73 static u_long ffs_hashalloc 74 __P((struct inode *, int, long, int, allocfcn_t *)); 75 static ino_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int)); 76 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t, 77 int)); 78 79 /* 80 * Allocate a block in the file system. 81 * 82 * The size of the requested block is given, which must be some 83 * multiple of fs_fsize and <= fs_bsize. 84 * A preference may be optionally specified. If a preference is given 85 * the following hierarchy is used to allocate a block: 86 * 1) allocate the requested block. 87 * 2) allocate a rotationally optimal block in the same cylinder. 88 * 3) allocate a block in the same cylinder group. 89 * 4) quadradically rehash into other cylinder groups, until an 90 * available block is located. 91 * If no block preference is given the following heirarchy is used 92 * to allocate a block: 93 * 1) allocate a block in the cylinder group that contains the 94 * inode for the file. 95 * 2) quadradically rehash into other cylinder groups, until an 96 * available block is located. 97 */ 98 int 99 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 100 register struct inode *ip; 101 ufs_daddr_t lbn, bpref; 102 int size; 103 struct ucred *cred; 104 ufs_daddr_t *bnp; 105 { 106 register struct fs *fs; 107 ufs_daddr_t bno; 108 int cg; 109 #ifdef QUOTA 110 int error; 111 #endif 112 113 *bnp = 0; 114 fs = ip->i_fs; 115 #ifdef DIAGNOSTIC 116 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 117 printf("dev = 0x%lx, bsize = %ld, size = %d, fs = %s\n", 118 (u_long)ip->i_dev, (long)fs->fs_bsize, size, fs->fs_fsmnt); 119 panic("ffs_alloc: bad size"); 120 } 121 if (cred == NOCRED) 122 panic("ffs_alloc: missing credential"); 123 #endif /* DIAGNOSTIC */ 124 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 125 goto nospace; 126 if (cred->cr_uid != 0 && 127 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 128 goto nospace; 129 #ifdef QUOTA 130 error = chkdq(ip, (long)btodb(size), cred, 0); 131 if (error) 132 return (error); 133 #endif 134 if (bpref >= fs->fs_size) 135 bpref = 0; 136 if (bpref == 0) 137 cg = ino_to_cg(fs, ip->i_number); 138 else 139 cg = dtog(fs, bpref); 140 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, 141 ffs_alloccg); 142 if (bno > 0) { 143 ip->i_blocks += btodb(size); 144 ip->i_flag |= IN_CHANGE | IN_UPDATE; 145 *bnp = bno; 146 return (0); 147 } 148 #ifdef QUOTA 149 /* 150 * Restore user's disk quota because allocation failed. 151 */ 152 (void) chkdq(ip, (long)-btodb(size), cred, FORCE); 153 #endif 154 nospace: 155 ffs_fserr(fs, cred->cr_uid, "file system full"); 156 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 157 return (ENOSPC); 158 } 159 160 /* 161 * Reallocate a fragment to a bigger size 162 * 163 * The number and size of the old block is given, and a preference 164 * and new size is also specified. The allocator attempts to extend 165 * the original block. Failing that, the regular block allocator is 166 * invoked to get an appropriate block. 167 */ 168 int 169 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp) 170 register struct inode *ip; 171 ufs_daddr_t lbprev; 172 ufs_daddr_t bpref; 173 int osize, nsize; 174 struct ucred *cred; 175 struct buf **bpp; 176 { 177 register struct fs *fs; 178 struct buf *bp; 179 int cg, request, error; 180 ufs_daddr_t bprev, bno; 181 182 *bpp = 0; 183 fs = ip->i_fs; 184 #ifdef DIAGNOSTIC 185 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 186 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 187 printf( 188 "dev = 0x%lx, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 189 (u_long)ip->i_dev, (long)fs->fs_bsize, osize, 190 nsize, fs->fs_fsmnt); 191 panic("ffs_realloccg: bad size"); 192 } 193 if (cred == NOCRED) 194 panic("ffs_realloccg: missing credential"); 195 #endif /* DIAGNOSTIC */ 196 if (cred->cr_uid != 0 && 197 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) 198 goto nospace; 199 if ((bprev = ip->i_db[lbprev]) == 0) { 200 printf("dev = 0x%lx, bsize = %ld, bprev = %ld, fs = %s\n", 201 (u_long)ip->i_dev, (long)fs->fs_bsize, (long)bprev, 202 fs->fs_fsmnt); 203 panic("ffs_realloccg: bad bprev"); 204 } 205 /* 206 * Allocate the extra space in the buffer. 207 */ 208 error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp); 209 if (error) { 210 brelse(bp); 211 return (error); 212 } 213 214 if( bp->b_blkno == bp->b_lblkno) { 215 if( lbprev >= NDADDR) 216 panic("ffs_realloccg: lbprev out of range"); 217 bp->b_blkno = fsbtodb(fs, bprev); 218 } 219 220 #ifdef QUOTA 221 error = chkdq(ip, (long)btodb(nsize - osize), cred, 0); 222 if (error) { 223 brelse(bp); 224 return (error); 225 } 226 #endif 227 /* 228 * Check for extension in the existing location. 229 */ 230 cg = dtog(fs, bprev); 231 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize); 232 if (bno) { 233 if (bp->b_blkno != fsbtodb(fs, bno)) 234 panic("ffs_realloccg: bad blockno"); 235 ip->i_blocks += btodb(nsize - osize); 236 ip->i_flag |= IN_CHANGE | IN_UPDATE; 237 allocbuf(bp, nsize); 238 bp->b_flags |= B_DONE; 239 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 240 *bpp = bp; 241 return (0); 242 } 243 /* 244 * Allocate a new disk location. 245 */ 246 if (bpref >= fs->fs_size) 247 bpref = 0; 248 switch ((int)fs->fs_optim) { 249 case FS_OPTSPACE: 250 /* 251 * Allocate an exact sized fragment. Although this makes 252 * best use of space, we will waste time relocating it if 253 * the file continues to grow. If the fragmentation is 254 * less than half of the minimum free reserve, we choose 255 * to begin optimizing for time. 256 */ 257 request = nsize; 258 if (fs->fs_minfree <= 5 || 259 fs->fs_cstotal.cs_nffree > 260 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 261 break; 262 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 263 fs->fs_fsmnt); 264 fs->fs_optim = FS_OPTTIME; 265 break; 266 case FS_OPTTIME: 267 /* 268 * At this point we have discovered a file that is trying to 269 * grow a small fragment to a larger fragment. To save time, 270 * we allocate a full sized block, then free the unused portion. 271 * If the file continues to grow, the `ffs_fragextend' call 272 * above will be able to grow it in place without further 273 * copying. If aberrant programs cause disk fragmentation to 274 * grow within 2% of the free reserve, we choose to begin 275 * optimizing for space. 276 */ 277 request = fs->fs_bsize; 278 if (fs->fs_cstotal.cs_nffree < 279 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 280 break; 281 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 282 fs->fs_fsmnt); 283 fs->fs_optim = FS_OPTSPACE; 284 break; 285 default: 286 printf("dev = 0x%lx, optim = %ld, fs = %s\n", 287 (u_long)ip->i_dev, (long)fs->fs_optim, fs->fs_fsmnt); 288 panic("ffs_realloccg: bad optim"); 289 /* NOTREACHED */ 290 } 291 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request, 292 ffs_alloccg); 293 if (bno > 0) { 294 bp->b_blkno = fsbtodb(fs, bno); 295 if (!DOINGSOFTDEP(ITOV(ip))) 296 ffs_blkfree(ip, bprev, (long)osize); 297 if (nsize < request) 298 ffs_blkfree(ip, bno + numfrags(fs, nsize), 299 (long)(request - nsize)); 300 ip->i_blocks += btodb(nsize - osize); 301 ip->i_flag |= IN_CHANGE | IN_UPDATE; 302 allocbuf(bp, nsize); 303 bp->b_flags |= B_DONE; 304 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 305 *bpp = bp; 306 return (0); 307 } 308 #ifdef QUOTA 309 /* 310 * Restore user's disk quota because allocation failed. 311 */ 312 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); 313 #endif 314 brelse(bp); 315 nospace: 316 /* 317 * no space available 318 */ 319 ffs_fserr(fs, cred->cr_uid, "file system full"); 320 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 321 return (ENOSPC); 322 } 323 324 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 325 326 /* 327 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 328 * 329 * The vnode and an array of buffer pointers for a range of sequential 330 * logical blocks to be made contiguous is given. The allocator attempts 331 * to find a range of sequential blocks starting as close as possible to 332 * an fs_rotdelay offset from the end of the allocation for the logical 333 * block immediately preceeding the current range. If successful, the 334 * physical block numbers in the buffer pointers and in the inode are 335 * changed to reflect the new allocation. If unsuccessful, the allocation 336 * is left unchanged. The success in doing the reallocation is returned. 337 * Note that the error return is not reflected back to the user. Rather 338 * the previous block allocation will be used. 339 */ 340 static int doasyncfree = 1; 341 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 342 343 static int doreallocblks = 1; 344 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 345 346 #ifdef DEBUG 347 static volatile int prtrealloc = 0; 348 #endif 349 350 int 351 ffs_reallocblks(ap) 352 struct vop_reallocblks_args /* { 353 struct vnode *a_vp; 354 struct cluster_save *a_buflist; 355 } */ *ap; 356 { 357 struct fs *fs; 358 struct inode *ip; 359 struct vnode *vp; 360 struct buf *sbp, *ebp; 361 ufs_daddr_t *bap, *sbap, *ebap = 0; 362 struct cluster_save *buflist; 363 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno; 364 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 365 int i, len, start_lvl, end_lvl, pref, ssize; 366 367 if (doreallocblks == 0) 368 return (ENOSPC); 369 vp = ap->a_vp; 370 ip = VTOI(vp); 371 fs = ip->i_fs; 372 if (fs->fs_contigsumsize <= 0) 373 return (ENOSPC); 374 buflist = ap->a_buflist; 375 len = buflist->bs_nchildren; 376 start_lbn = buflist->bs_children[0]->b_lblkno; 377 end_lbn = start_lbn + len - 1; 378 #ifdef DIAGNOSTIC 379 for (i = 0; i < len; i++) 380 if (!ffs_checkblk(ip, 381 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 382 panic("ffs_reallocblks: unallocated block 1"); 383 for (i = 1; i < len; i++) 384 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 385 panic("ffs_reallocblks: non-logical cluster"); 386 blkno = buflist->bs_children[0]->b_blkno; 387 ssize = fsbtodb(fs, fs->fs_frag); 388 for (i = 1; i < len - 1; i++) 389 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 390 panic("ffs_reallocblks: non-physical cluster %d", i); 391 #endif 392 /* 393 * If the latest allocation is in a new cylinder group, assume that 394 * the filesystem has decided to move and do not force it back to 395 * the previous cylinder group. 396 */ 397 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 398 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 399 return (ENOSPC); 400 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 401 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 402 return (ENOSPC); 403 /* 404 * Get the starting offset and block map for the first block. 405 */ 406 if (start_lvl == 0) { 407 sbap = &ip->i_db[0]; 408 soff = start_lbn; 409 } else { 410 idp = &start_ap[start_lvl - 1]; 411 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 412 brelse(sbp); 413 return (ENOSPC); 414 } 415 sbap = (ufs_daddr_t *)sbp->b_data; 416 soff = idp->in_off; 417 } 418 /* 419 * Find the preferred location for the cluster. 420 */ 421 pref = ffs_blkpref(ip, start_lbn, soff, sbap); 422 /* 423 * If the block range spans two block maps, get the second map. 424 */ 425 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 426 ssize = len; 427 } else { 428 #ifdef DIAGNOSTIC 429 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 430 panic("ffs_reallocblk: start == end"); 431 #endif 432 ssize = len - (idp->in_off + 1); 433 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 434 goto fail; 435 ebap = (ufs_daddr_t *)ebp->b_data; 436 } 437 /* 438 * Search the block map looking for an allocation of the desired size. 439 */ 440 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref, 441 len, ffs_clusteralloc)) == 0) 442 goto fail; 443 /* 444 * We have found a new contiguous block. 445 * 446 * First we have to replace the old block pointers with the new 447 * block pointers in the inode and indirect blocks associated 448 * with the file. 449 */ 450 #ifdef DEBUG 451 if (prtrealloc) 452 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number, 453 start_lbn, end_lbn); 454 #endif 455 blkno = newblk; 456 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 457 if (i == ssize) { 458 bap = ebap; 459 soff = -i; 460 } 461 #ifdef DIAGNOSTIC 462 if (!ffs_checkblk(ip, 463 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 464 panic("ffs_reallocblks: unallocated block 2"); 465 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 466 panic("ffs_reallocblks: alloc mismatch"); 467 #endif 468 #ifdef DEBUG 469 if (prtrealloc) 470 printf(" %d,", *bap); 471 #endif 472 if (DOINGSOFTDEP(vp)) { 473 if (sbap == &ip->i_db[0] && i < ssize) 474 softdep_setup_allocdirect(ip, start_lbn + i, 475 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 476 buflist->bs_children[i]); 477 else 478 softdep_setup_allocindir_page(ip, start_lbn + i, 479 i < ssize ? sbp : ebp, soff + i, blkno, 480 *bap, buflist->bs_children[i]); 481 } 482 *bap++ = blkno; 483 } 484 /* 485 * Next we must write out the modified inode and indirect blocks. 486 * For strict correctness, the writes should be synchronous since 487 * the old block values may have been written to disk. In practise 488 * they are almost never written, but if we are concerned about 489 * strict correctness, the `doasyncfree' flag should be set to zero. 490 * 491 * The test on `doasyncfree' should be changed to test a flag 492 * that shows whether the associated buffers and inodes have 493 * been written. The flag should be set when the cluster is 494 * started and cleared whenever the buffer or inode is flushed. 495 * We can then check below to see if it is set, and do the 496 * synchronous write only when it has been cleared. 497 */ 498 if (sbap != &ip->i_db[0]) { 499 if (doasyncfree) 500 bdwrite(sbp); 501 else 502 bwrite(sbp); 503 } else { 504 ip->i_flag |= IN_CHANGE | IN_UPDATE; 505 if (!doasyncfree) 506 UFS_UPDATE(vp, 1); 507 } 508 if (ssize < len) { 509 if (doasyncfree) 510 bdwrite(ebp); 511 else 512 bwrite(ebp); 513 } 514 /* 515 * Last, free the old blocks and assign the new blocks to the buffers. 516 */ 517 #ifdef DEBUG 518 if (prtrealloc) 519 printf("\n\tnew:"); 520 #endif 521 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 522 if (!DOINGSOFTDEP(vp)) 523 ffs_blkfree(ip, 524 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 525 fs->fs_bsize); 526 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 527 #ifdef DEBUG 528 if (!ffs_checkblk(ip, 529 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 530 panic("ffs_reallocblks: unallocated block 3"); 531 if (prtrealloc) 532 printf(" %d,", blkno); 533 #endif 534 } 535 #ifdef DEBUG 536 if (prtrealloc) { 537 prtrealloc--; 538 printf("\n"); 539 } 540 #endif 541 return (0); 542 543 fail: 544 if (ssize < len) 545 brelse(ebp); 546 if (sbap != &ip->i_db[0]) 547 brelse(sbp); 548 return (ENOSPC); 549 } 550 551 /* 552 * Allocate an inode in the file system. 553 * 554 * If allocating a directory, use ffs_dirpref to select the inode. 555 * If allocating in a directory, the following hierarchy is followed: 556 * 1) allocate the preferred inode. 557 * 2) allocate an inode in the same cylinder group. 558 * 3) quadradically rehash into other cylinder groups, until an 559 * available inode is located. 560 * If no inode preference is given the following heirarchy is used 561 * to allocate an inode: 562 * 1) allocate an inode in cylinder group 0. 563 * 2) quadradically rehash into other cylinder groups, until an 564 * available inode is located. 565 */ 566 int 567 ffs_valloc(pvp, mode, cred, vpp) 568 struct vnode *pvp; 569 int mode; 570 struct ucred *cred; 571 struct vnode **vpp; 572 { 573 register struct inode *pip; 574 register struct fs *fs; 575 register struct inode *ip; 576 ino_t ino, ipref; 577 int cg, error; 578 579 *vpp = NULL; 580 pip = VTOI(pvp); 581 fs = pip->i_fs; 582 if (fs->fs_cstotal.cs_nifree == 0) 583 goto noinodes; 584 585 if ((mode & IFMT) == IFDIR) 586 ipref = ffs_dirpref(fs); 587 else 588 ipref = pip->i_number; 589 if (ipref >= fs->fs_ncg * fs->fs_ipg) 590 ipref = 0; 591 cg = ino_to_cg(fs, ipref); 592 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, 593 (allocfcn_t *)ffs_nodealloccg); 594 if (ino == 0) 595 goto noinodes; 596 error = VFS_VGET(pvp->v_mount, ino, vpp); 597 if (error) { 598 UFS_VFREE(pvp, ino, mode); 599 return (error); 600 } 601 ip = VTOI(*vpp); 602 if (ip->i_mode) { 603 printf("mode = 0%o, inum = %lu, fs = %s\n", 604 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 605 panic("ffs_valloc: dup alloc"); 606 } 607 if (ip->i_blocks) { /* XXX */ 608 printf("free inode %s/%lu had %ld blocks\n", 609 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks); 610 ip->i_blocks = 0; 611 } 612 ip->i_flags = 0; 613 /* 614 * Set up a new generation number for this inode. 615 */ 616 if (ip->i_gen == 0 || ++ip->i_gen == 0) 617 ip->i_gen = random() / 2 + 1; 618 return (0); 619 noinodes: 620 ffs_fserr(fs, cred->cr_uid, "out of inodes"); 621 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 622 return (ENOSPC); 623 } 624 625 /* 626 * Find a cylinder to place a directory. 627 * 628 * The policy implemented by this algorithm is to select from 629 * among those cylinder groups with above the average number of 630 * free inodes, the one with the smallest number of directories. 631 */ 632 static ino_t 633 ffs_dirpref(fs) 634 register struct fs *fs; 635 { 636 int cg, minndir, mincg, avgifree; 637 638 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 639 minndir = fs->fs_ipg; 640 mincg = 0; 641 for (cg = 0; cg < fs->fs_ncg; cg++) 642 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 643 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 644 mincg = cg; 645 minndir = fs->fs_cs(fs, cg).cs_ndir; 646 } 647 return ((ino_t)(fs->fs_ipg * mincg)); 648 } 649 650 /* 651 * Select the desired position for the next block in a file. The file is 652 * logically divided into sections. The first section is composed of the 653 * direct blocks. Each additional section contains fs_maxbpg blocks. 654 * 655 * If no blocks have been allocated in the first section, the policy is to 656 * request a block in the same cylinder group as the inode that describes 657 * the file. If no blocks have been allocated in any other section, the 658 * policy is to place the section in a cylinder group with a greater than 659 * average number of free blocks. An appropriate cylinder group is found 660 * by using a rotor that sweeps the cylinder groups. When a new group of 661 * blocks is needed, the sweep begins in the cylinder group following the 662 * cylinder group from which the previous allocation was made. The sweep 663 * continues until a cylinder group with greater than the average number 664 * of free blocks is found. If the allocation is for the first block in an 665 * indirect block, the information on the previous allocation is unavailable; 666 * here a best guess is made based upon the logical block number being 667 * allocated. 668 * 669 * If a section is already partially allocated, the policy is to 670 * contiguously allocate fs_maxcontig blocks. The end of one of these 671 * contiguous blocks and the beginning of the next is physically separated 672 * so that the disk head will be in transit between them for at least 673 * fs_rotdelay milliseconds. This is to allow time for the processor to 674 * schedule another I/O transfer. 675 */ 676 ufs_daddr_t 677 ffs_blkpref(ip, lbn, indx, bap) 678 struct inode *ip; 679 ufs_daddr_t lbn; 680 int indx; 681 ufs_daddr_t *bap; 682 { 683 register struct fs *fs; 684 register int cg; 685 int avgbfree, startcg; 686 ufs_daddr_t nextblk; 687 688 fs = ip->i_fs; 689 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 690 if (lbn < NDADDR) { 691 cg = ino_to_cg(fs, ip->i_number); 692 return (fs->fs_fpg * cg + fs->fs_frag); 693 } 694 /* 695 * Find a cylinder with greater than average number of 696 * unused data blocks. 697 */ 698 if (indx == 0 || bap[indx - 1] == 0) 699 startcg = 700 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 701 else 702 startcg = dtog(fs, bap[indx - 1]) + 1; 703 startcg %= fs->fs_ncg; 704 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 705 for (cg = startcg; cg < fs->fs_ncg; cg++) 706 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 707 fs->fs_cgrotor = cg; 708 return (fs->fs_fpg * cg + fs->fs_frag); 709 } 710 for (cg = 0; cg <= startcg; cg++) 711 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 712 fs->fs_cgrotor = cg; 713 return (fs->fs_fpg * cg + fs->fs_frag); 714 } 715 return (0); 716 } 717 /* 718 * One or more previous blocks have been laid out. If less 719 * than fs_maxcontig previous blocks are contiguous, the 720 * next block is requested contiguously, otherwise it is 721 * requested rotationally delayed by fs_rotdelay milliseconds. 722 */ 723 nextblk = bap[indx - 1] + fs->fs_frag; 724 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig || 725 bap[indx - fs->fs_maxcontig] + 726 blkstofrags(fs, fs->fs_maxcontig) != nextblk) 727 return (nextblk); 728 /* 729 * Here we convert ms of delay to frags as: 730 * (frags) = (ms) * (rev/sec) * (sect/rev) / 731 * ((sect/frag) * (ms/sec)) 732 * then round up to the next block. 733 */ 734 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 735 (NSPF(fs) * 1000), fs->fs_frag); 736 return (nextblk); 737 } 738 739 /* 740 * Implement the cylinder overflow algorithm. 741 * 742 * The policy implemented by this algorithm is: 743 * 1) allocate the block in its requested cylinder group. 744 * 2) quadradically rehash on the cylinder group number. 745 * 3) brute force search for a free block. 746 */ 747 /*VARARGS5*/ 748 static u_long 749 ffs_hashalloc(ip, cg, pref, size, allocator) 750 struct inode *ip; 751 int cg; 752 long pref; 753 int size; /* size for data blocks, mode for inodes */ 754 allocfcn_t *allocator; 755 { 756 register struct fs *fs; 757 long result; /* XXX why not same type as we return? */ 758 int i, icg = cg; 759 760 fs = ip->i_fs; 761 /* 762 * 1: preferred cylinder group 763 */ 764 result = (*allocator)(ip, cg, pref, size); 765 if (result) 766 return (result); 767 /* 768 * 2: quadratic rehash 769 */ 770 for (i = 1; i < fs->fs_ncg; i *= 2) { 771 cg += i; 772 if (cg >= fs->fs_ncg) 773 cg -= fs->fs_ncg; 774 result = (*allocator)(ip, cg, 0, size); 775 if (result) 776 return (result); 777 } 778 /* 779 * 3: brute force search 780 * Note that we start at i == 2, since 0 was checked initially, 781 * and 1 is always checked in the quadratic rehash. 782 */ 783 cg = (icg + 2) % fs->fs_ncg; 784 for (i = 2; i < fs->fs_ncg; i++) { 785 result = (*allocator)(ip, cg, 0, size); 786 if (result) 787 return (result); 788 cg++; 789 if (cg == fs->fs_ncg) 790 cg = 0; 791 } 792 return (0); 793 } 794 795 /* 796 * Determine whether a fragment can be extended. 797 * 798 * Check to see if the necessary fragments are available, and 799 * if they are, allocate them. 800 */ 801 static ufs_daddr_t 802 ffs_fragextend(ip, cg, bprev, osize, nsize) 803 struct inode *ip; 804 int cg; 805 long bprev; 806 int osize, nsize; 807 { 808 register struct fs *fs; 809 register struct cg *cgp; 810 struct buf *bp; 811 long bno; 812 int frags, bbase; 813 int i, error; 814 815 fs = ip->i_fs; 816 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 817 return (0); 818 frags = numfrags(fs, nsize); 819 bbase = fragnum(fs, bprev); 820 if (bbase > fragnum(fs, (bprev + frags - 1))) { 821 /* cannot extend across a block boundary */ 822 return (0); 823 } 824 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 825 (int)fs->fs_cgsize, NOCRED, &bp); 826 if (error) { 827 brelse(bp); 828 return (0); 829 } 830 cgp = (struct cg *)bp->b_data; 831 if (!cg_chkmagic(cgp)) { 832 brelse(bp); 833 return (0); 834 } 835 cgp->cg_time = time_second; 836 bno = dtogd(fs, bprev); 837 for (i = numfrags(fs, osize); i < frags; i++) 838 if (isclr(cg_blksfree(cgp), bno + i)) { 839 brelse(bp); 840 return (0); 841 } 842 /* 843 * the current fragment can be extended 844 * deduct the count on fragment being extended into 845 * increase the count on the remaining fragment (if any) 846 * allocate the extended piece 847 */ 848 for (i = frags; i < fs->fs_frag - bbase; i++) 849 if (isclr(cg_blksfree(cgp), bno + i)) 850 break; 851 cgp->cg_frsum[i - numfrags(fs, osize)]--; 852 if (i != frags) 853 cgp->cg_frsum[i - frags]++; 854 for (i = numfrags(fs, osize); i < frags; i++) { 855 clrbit(cg_blksfree(cgp), bno + i); 856 cgp->cg_cs.cs_nffree--; 857 fs->fs_cstotal.cs_nffree--; 858 fs->fs_cs(fs, cg).cs_nffree--; 859 } 860 fs->fs_fmod = 1; 861 if (DOINGSOFTDEP(ITOV(ip))) 862 softdep_setup_blkmapdep(bp, fs, bprev); 863 bdwrite(bp); 864 return (bprev); 865 } 866 867 /* 868 * Determine whether a block can be allocated. 869 * 870 * Check to see if a block of the appropriate size is available, 871 * and if it is, allocate it. 872 */ 873 static ufs_daddr_t 874 ffs_alloccg(ip, cg, bpref, size) 875 struct inode *ip; 876 int cg; 877 ufs_daddr_t bpref; 878 int size; 879 { 880 register struct fs *fs; 881 register struct cg *cgp; 882 struct buf *bp; 883 register int i; 884 ufs_daddr_t bno, blkno; 885 int allocsiz, error, frags; 886 887 fs = ip->i_fs; 888 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 889 return (0); 890 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 891 (int)fs->fs_cgsize, NOCRED, &bp); 892 if (error) { 893 brelse(bp); 894 return (0); 895 } 896 cgp = (struct cg *)bp->b_data; 897 if (!cg_chkmagic(cgp) || 898 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 899 brelse(bp); 900 return (0); 901 } 902 cgp->cg_time = time_second; 903 if (size == fs->fs_bsize) { 904 bno = ffs_alloccgblk(ip, bp, bpref); 905 bdwrite(bp); 906 return (bno); 907 } 908 /* 909 * check to see if any fragments are already available 910 * allocsiz is the size which will be allocated, hacking 911 * it down to a smaller size if necessary 912 */ 913 frags = numfrags(fs, size); 914 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 915 if (cgp->cg_frsum[allocsiz] != 0) 916 break; 917 if (allocsiz == fs->fs_frag) { 918 /* 919 * no fragments were available, so a block will be 920 * allocated, and hacked up 921 */ 922 if (cgp->cg_cs.cs_nbfree == 0) { 923 brelse(bp); 924 return (0); 925 } 926 bno = ffs_alloccgblk(ip, bp, bpref); 927 bpref = dtogd(fs, bno); 928 for (i = frags; i < fs->fs_frag; i++) 929 setbit(cg_blksfree(cgp), bpref + i); 930 i = fs->fs_frag - frags; 931 cgp->cg_cs.cs_nffree += i; 932 fs->fs_cstotal.cs_nffree += i; 933 fs->fs_cs(fs, cg).cs_nffree += i; 934 fs->fs_fmod = 1; 935 cgp->cg_frsum[i]++; 936 bdwrite(bp); 937 return (bno); 938 } 939 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 940 if (bno < 0) { 941 brelse(bp); 942 return (0); 943 } 944 for (i = 0; i < frags; i++) 945 clrbit(cg_blksfree(cgp), bno + i); 946 cgp->cg_cs.cs_nffree -= frags; 947 fs->fs_cstotal.cs_nffree -= frags; 948 fs->fs_cs(fs, cg).cs_nffree -= frags; 949 fs->fs_fmod = 1; 950 cgp->cg_frsum[allocsiz]--; 951 if (frags != allocsiz) 952 cgp->cg_frsum[allocsiz - frags]++; 953 blkno = cg * fs->fs_fpg + bno; 954 if (DOINGSOFTDEP(ITOV(ip))) 955 softdep_setup_blkmapdep(bp, fs, blkno); 956 bdwrite(bp); 957 return ((u_long)blkno); 958 } 959 960 /* 961 * Allocate a block in a cylinder group. 962 * 963 * This algorithm implements the following policy: 964 * 1) allocate the requested block. 965 * 2) allocate a rotationally optimal block in the same cylinder. 966 * 3) allocate the next available block on the block rotor for the 967 * specified cylinder group. 968 * Note that this routine only allocates fs_bsize blocks; these 969 * blocks may be fragmented by the routine that allocates them. 970 */ 971 static ufs_daddr_t 972 ffs_alloccgblk(ip, bp, bpref) 973 struct inode *ip; 974 struct buf *bp; 975 ufs_daddr_t bpref; 976 { 977 struct fs *fs; 978 struct cg *cgp; 979 ufs_daddr_t bno, blkno; 980 int cylno, pos, delta; 981 short *cylbp; 982 register int i; 983 984 fs = ip->i_fs; 985 cgp = (struct cg *)bp->b_data; 986 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 987 bpref = cgp->cg_rotor; 988 goto norot; 989 } 990 bpref = blknum(fs, bpref); 991 bpref = dtogd(fs, bpref); 992 /* 993 * if the requested block is available, use it 994 */ 995 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 996 bno = bpref; 997 goto gotit; 998 } 999 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) { 1000 /* 1001 * Block layout information is not available. 1002 * Leaving bpref unchanged means we take the 1003 * next available free block following the one 1004 * we just allocated. Hopefully this will at 1005 * least hit a track cache on drives of unknown 1006 * geometry (e.g. SCSI). 1007 */ 1008 goto norot; 1009 } 1010 /* 1011 * check for a block available on the same cylinder 1012 */ 1013 cylno = cbtocylno(fs, bpref); 1014 if (cg_blktot(cgp)[cylno] == 0) 1015 goto norot; 1016 /* 1017 * check the summary information to see if a block is 1018 * available in the requested cylinder starting at the 1019 * requested rotational position and proceeding around. 1020 */ 1021 cylbp = cg_blks(fs, cgp, cylno); 1022 pos = cbtorpos(fs, bpref); 1023 for (i = pos; i < fs->fs_nrpos; i++) 1024 if (cylbp[i] > 0) 1025 break; 1026 if (i == fs->fs_nrpos) 1027 for (i = 0; i < pos; i++) 1028 if (cylbp[i] > 0) 1029 break; 1030 if (cylbp[i] > 0) { 1031 /* 1032 * found a rotational position, now find the actual 1033 * block. A panic if none is actually there. 1034 */ 1035 pos = cylno % fs->fs_cpc; 1036 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 1037 if (fs_postbl(fs, pos)[i] == -1) { 1038 printf("pos = %d, i = %d, fs = %s\n", 1039 pos, i, fs->fs_fsmnt); 1040 panic("ffs_alloccgblk: cyl groups corrupted"); 1041 } 1042 for (i = fs_postbl(fs, pos)[i];; ) { 1043 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) { 1044 bno = blkstofrags(fs, (bno + i)); 1045 goto gotit; 1046 } 1047 delta = fs_rotbl(fs)[i]; 1048 if (delta <= 0 || 1049 delta + i > fragstoblks(fs, fs->fs_fpg)) 1050 break; 1051 i += delta; 1052 } 1053 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 1054 panic("ffs_alloccgblk: can't find blk in cyl"); 1055 } 1056 norot: 1057 /* 1058 * no blocks in the requested cylinder, so take next 1059 * available one in this cylinder group. 1060 */ 1061 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1062 if (bno < 0) 1063 return (0); 1064 cgp->cg_rotor = bno; 1065 gotit: 1066 blkno = fragstoblks(fs, bno); 1067 ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno); 1068 ffs_clusteracct(fs, cgp, blkno, -1); 1069 cgp->cg_cs.cs_nbfree--; 1070 fs->fs_cstotal.cs_nbfree--; 1071 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1072 cylno = cbtocylno(fs, bno); 1073 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 1074 cg_blktot(cgp)[cylno]--; 1075 fs->fs_fmod = 1; 1076 blkno = cgp->cg_cgx * fs->fs_fpg + bno; 1077 if (DOINGSOFTDEP(ITOV(ip))) 1078 softdep_setup_blkmapdep(bp, fs, blkno); 1079 return (blkno); 1080 } 1081 1082 /* 1083 * Determine whether a cluster can be allocated. 1084 * 1085 * We do not currently check for optimal rotational layout if there 1086 * are multiple choices in the same cylinder group. Instead we just 1087 * take the first one that we find following bpref. 1088 */ 1089 static ufs_daddr_t 1090 ffs_clusteralloc(ip, cg, bpref, len) 1091 struct inode *ip; 1092 int cg; 1093 ufs_daddr_t bpref; 1094 int len; 1095 { 1096 register struct fs *fs; 1097 register struct cg *cgp; 1098 struct buf *bp; 1099 int i, got, run, bno, bit, map; 1100 u_char *mapp; 1101 int32_t *lp; 1102 1103 fs = ip->i_fs; 1104 if (fs->fs_maxcluster[cg] < len) 1105 return (NULL); 1106 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1107 NOCRED, &bp)) 1108 goto fail; 1109 cgp = (struct cg *)bp->b_data; 1110 if (!cg_chkmagic(cgp)) 1111 goto fail; 1112 /* 1113 * Check to see if a cluster of the needed size (or bigger) is 1114 * available in this cylinder group. 1115 */ 1116 lp = &cg_clustersum(cgp)[len]; 1117 for (i = len; i <= fs->fs_contigsumsize; i++) 1118 if (*lp++ > 0) 1119 break; 1120 if (i > fs->fs_contigsumsize) { 1121 /* 1122 * This is the first time looking for a cluster in this 1123 * cylinder group. Update the cluster summary information 1124 * to reflect the true maximum sized cluster so that 1125 * future cluster allocation requests can avoid reading 1126 * the cylinder group map only to find no clusters. 1127 */ 1128 lp = &cg_clustersum(cgp)[len - 1]; 1129 for (i = len - 1; i > 0; i--) 1130 if (*lp-- > 0) 1131 break; 1132 fs->fs_maxcluster[cg] = i; 1133 goto fail; 1134 } 1135 /* 1136 * Search the cluster map to find a big enough cluster. 1137 * We take the first one that we find, even if it is larger 1138 * than we need as we prefer to get one close to the previous 1139 * block allocation. We do not search before the current 1140 * preference point as we do not want to allocate a block 1141 * that is allocated before the previous one (as we will 1142 * then have to wait for another pass of the elevator 1143 * algorithm before it will be read). We prefer to fail and 1144 * be recalled to try an allocation in the next cylinder group. 1145 */ 1146 if (dtog(fs, bpref) != cg) 1147 bpref = 0; 1148 else 1149 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1150 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1151 map = *mapp++; 1152 bit = 1 << (bpref % NBBY); 1153 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1154 if ((map & bit) == 0) { 1155 run = 0; 1156 } else { 1157 run++; 1158 if (run == len) 1159 break; 1160 } 1161 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1162 bit <<= 1; 1163 } else { 1164 map = *mapp++; 1165 bit = 1; 1166 } 1167 } 1168 if (got >= cgp->cg_nclusterblks) 1169 goto fail; 1170 /* 1171 * Allocate the cluster that we have found. 1172 */ 1173 for (i = 1; i <= len; i++) 1174 if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i)) 1175 panic("ffs_clusteralloc: map mismatch"); 1176 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1); 1177 if (dtog(fs, bno) != cg) 1178 panic("ffs_clusteralloc: allocated out of group"); 1179 len = blkstofrags(fs, len); 1180 for (i = 0; i < len; i += fs->fs_frag) 1181 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i) 1182 panic("ffs_clusteralloc: lost block"); 1183 bdwrite(bp); 1184 return (bno); 1185 1186 fail: 1187 brelse(bp); 1188 return (0); 1189 } 1190 1191 /* 1192 * Determine whether an inode can be allocated. 1193 * 1194 * Check to see if an inode is available, and if it is, 1195 * allocate it using the following policy: 1196 * 1) allocate the requested inode. 1197 * 2) allocate the next available inode after the requested 1198 * inode in the specified cylinder group. 1199 */ 1200 static ino_t 1201 ffs_nodealloccg(ip, cg, ipref, mode) 1202 struct inode *ip; 1203 int cg; 1204 ufs_daddr_t ipref; 1205 int mode; 1206 { 1207 register struct fs *fs; 1208 register struct cg *cgp; 1209 struct buf *bp; 1210 int error, start, len, loc, map, i; 1211 1212 fs = ip->i_fs; 1213 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1214 return (0); 1215 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1216 (int)fs->fs_cgsize, NOCRED, &bp); 1217 if (error) { 1218 brelse(bp); 1219 return (0); 1220 } 1221 cgp = (struct cg *)bp->b_data; 1222 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1223 brelse(bp); 1224 return (0); 1225 } 1226 cgp->cg_time = time_second; 1227 if (ipref) { 1228 ipref %= fs->fs_ipg; 1229 if (isclr(cg_inosused(cgp), ipref)) 1230 goto gotit; 1231 } 1232 start = cgp->cg_irotor / NBBY; 1233 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1234 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 1235 if (loc == 0) { 1236 len = start + 1; 1237 start = 0; 1238 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 1239 if (loc == 0) { 1240 printf("cg = %d, irotor = %ld, fs = %s\n", 1241 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1242 panic("ffs_nodealloccg: map corrupted"); 1243 /* NOTREACHED */ 1244 } 1245 } 1246 i = start + len - loc; 1247 map = cg_inosused(cgp)[i]; 1248 ipref = i * NBBY; 1249 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1250 if ((map & i) == 0) { 1251 cgp->cg_irotor = ipref; 1252 goto gotit; 1253 } 1254 } 1255 printf("fs = %s\n", fs->fs_fsmnt); 1256 panic("ffs_nodealloccg: block not in map"); 1257 /* NOTREACHED */ 1258 gotit: 1259 if (DOINGSOFTDEP(ITOV(ip))) 1260 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1261 setbit(cg_inosused(cgp), ipref); 1262 cgp->cg_cs.cs_nifree--; 1263 fs->fs_cstotal.cs_nifree--; 1264 fs->fs_cs(fs, cg).cs_nifree--; 1265 fs->fs_fmod = 1; 1266 if ((mode & IFMT) == IFDIR) { 1267 cgp->cg_cs.cs_ndir++; 1268 fs->fs_cstotal.cs_ndir++; 1269 fs->fs_cs(fs, cg).cs_ndir++; 1270 } 1271 bdwrite(bp); 1272 return (cg * fs->fs_ipg + ipref); 1273 } 1274 1275 /* 1276 * Free a block or fragment. 1277 * 1278 * The specified block or fragment is placed back in the 1279 * free map. If a fragment is deallocated, a possible 1280 * block reassembly is checked. 1281 */ 1282 void 1283 ffs_blkfree(ip, bno, size) 1284 register struct inode *ip; 1285 ufs_daddr_t bno; 1286 long size; 1287 { 1288 register struct fs *fs; 1289 register struct cg *cgp; 1290 struct buf *bp; 1291 ufs_daddr_t blkno; 1292 int i, error, cg, blk, frags, bbase; 1293 1294 fs = ip->i_fs; 1295 VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size); 1296 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1297 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1298 printf("dev=0x%lx, bno = %d, bsize = %d, size = %ld, fs = %s\n", 1299 (u_long)ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt); 1300 panic("ffs_blkfree: bad size"); 1301 } 1302 cg = dtog(fs, bno); 1303 if ((u_int)bno >= fs->fs_size) { 1304 printf("bad block %ld, ino %lu\n", 1305 (long)bno, (u_long)ip->i_number); 1306 ffs_fserr(fs, ip->i_uid, "bad block"); 1307 return; 1308 } 1309 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1310 (int)fs->fs_cgsize, NOCRED, &bp); 1311 if (error) { 1312 brelse(bp); 1313 return; 1314 } 1315 cgp = (struct cg *)bp->b_data; 1316 if (!cg_chkmagic(cgp)) { 1317 brelse(bp); 1318 return; 1319 } 1320 cgp->cg_time = time_second; 1321 bno = dtogd(fs, bno); 1322 if (size == fs->fs_bsize) { 1323 blkno = fragstoblks(fs, bno); 1324 if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) { 1325 printf("dev = 0x%lx, block = %ld, fs = %s\n", 1326 (u_long)ip->i_dev, (long)bno, fs->fs_fsmnt); 1327 panic("ffs_blkfree: freeing free block"); 1328 } 1329 ffs_setblock(fs, cg_blksfree(cgp), blkno); 1330 ffs_clusteracct(fs, cgp, blkno, 1); 1331 cgp->cg_cs.cs_nbfree++; 1332 fs->fs_cstotal.cs_nbfree++; 1333 fs->fs_cs(fs, cg).cs_nbfree++; 1334 i = cbtocylno(fs, bno); 1335 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 1336 cg_blktot(cgp)[i]++; 1337 } else { 1338 bbase = bno - fragnum(fs, bno); 1339 /* 1340 * decrement the counts associated with the old frags 1341 */ 1342 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1343 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1344 /* 1345 * deallocate the fragment 1346 */ 1347 frags = numfrags(fs, size); 1348 for (i = 0; i < frags; i++) { 1349 if (isset(cg_blksfree(cgp), bno + i)) { 1350 printf("dev = 0x%lx, block = %ld, fs = %s\n", 1351 (u_long)ip->i_dev, (long)(bno + i), 1352 fs->fs_fsmnt); 1353 panic("ffs_blkfree: freeing free frag"); 1354 } 1355 setbit(cg_blksfree(cgp), bno + i); 1356 } 1357 cgp->cg_cs.cs_nffree += i; 1358 fs->fs_cstotal.cs_nffree += i; 1359 fs->fs_cs(fs, cg).cs_nffree += i; 1360 /* 1361 * add back in counts associated with the new frags 1362 */ 1363 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1364 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1365 /* 1366 * if a complete block has been reassembled, account for it 1367 */ 1368 blkno = fragstoblks(fs, bbase); 1369 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) { 1370 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1371 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1372 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1373 ffs_clusteracct(fs, cgp, blkno, 1); 1374 cgp->cg_cs.cs_nbfree++; 1375 fs->fs_cstotal.cs_nbfree++; 1376 fs->fs_cs(fs, cg).cs_nbfree++; 1377 i = cbtocylno(fs, bbase); 1378 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 1379 cg_blktot(cgp)[i]++; 1380 } 1381 } 1382 fs->fs_fmod = 1; 1383 bdwrite(bp); 1384 } 1385 1386 #ifdef DIAGNOSTIC 1387 /* 1388 * Verify allocation of a block or fragment. Returns true if block or 1389 * fragment is allocated, false if it is free. 1390 */ 1391 static int 1392 ffs_checkblk(ip, bno, size) 1393 struct inode *ip; 1394 ufs_daddr_t bno; 1395 long size; 1396 { 1397 struct fs *fs; 1398 struct cg *cgp; 1399 struct buf *bp; 1400 int i, error, frags, free; 1401 1402 fs = ip->i_fs; 1403 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1404 printf("bsize = %ld, size = %ld, fs = %s\n", 1405 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1406 panic("ffs_checkblk: bad size"); 1407 } 1408 if ((u_int)bno >= fs->fs_size) 1409 panic("ffs_checkblk: bad block %d", bno); 1410 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1411 (int)fs->fs_cgsize, NOCRED, &bp); 1412 if (error) 1413 panic("ffs_checkblk: cg bread failed"); 1414 cgp = (struct cg *)bp->b_data; 1415 if (!cg_chkmagic(cgp)) 1416 panic("ffs_checkblk: cg magic mismatch"); 1417 bno = dtogd(fs, bno); 1418 if (size == fs->fs_bsize) { 1419 free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 1420 } else { 1421 frags = numfrags(fs, size); 1422 for (free = 0, i = 0; i < frags; i++) 1423 if (isset(cg_blksfree(cgp), bno + i)) 1424 free++; 1425 if (free != 0 && free != frags) 1426 panic("ffs_checkblk: partially free fragment"); 1427 } 1428 brelse(bp); 1429 return (!free); 1430 } 1431 #endif /* DIAGNOSTIC */ 1432 1433 /* 1434 * Free an inode. 1435 */ 1436 int 1437 ffs_vfree( pvp, ino, mode) 1438 struct vnode *pvp; 1439 ino_t ino; 1440 int mode; 1441 { 1442 if (DOINGSOFTDEP(pvp)) { 1443 softdep_freefile(pvp, ino, mode); 1444 return (0); 1445 } 1446 return (ffs_freefile(pvp, ino, mode)); 1447 } 1448 1449 /* 1450 * Do the actual free operation. 1451 * The specified inode is placed back in the free map. 1452 */ 1453 int 1454 ffs_freefile( pvp, ino, mode) 1455 struct vnode *pvp; 1456 ino_t ino; 1457 int mode; 1458 { 1459 register struct fs *fs; 1460 register struct cg *cgp; 1461 register struct inode *pip; 1462 struct buf *bp; 1463 int error, cg; 1464 1465 pip = VTOI(pvp); 1466 fs = pip->i_fs; 1467 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1468 panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s", 1469 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt); 1470 cg = ino_to_cg(fs, ino); 1471 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1472 (int)fs->fs_cgsize, NOCRED, &bp); 1473 if (error) { 1474 brelse(bp); 1475 return (error); 1476 } 1477 cgp = (struct cg *)bp->b_data; 1478 if (!cg_chkmagic(cgp)) { 1479 brelse(bp); 1480 return (0); 1481 } 1482 cgp->cg_time = time_second; 1483 ino %= fs->fs_ipg; 1484 if (isclr(cg_inosused(cgp), ino)) { 1485 printf("dev = 0x%lx, ino = %lu, fs = %s\n", 1486 (u_long)pip->i_dev, (u_long)ino, fs->fs_fsmnt); 1487 if (fs->fs_ronly == 0) 1488 panic("ffs_vfree: freeing free inode"); 1489 } 1490 clrbit(cg_inosused(cgp), ino); 1491 if (ino < cgp->cg_irotor) 1492 cgp->cg_irotor = ino; 1493 cgp->cg_cs.cs_nifree++; 1494 fs->fs_cstotal.cs_nifree++; 1495 fs->fs_cs(fs, cg).cs_nifree++; 1496 if ((mode & IFMT) == IFDIR) { 1497 cgp->cg_cs.cs_ndir--; 1498 fs->fs_cstotal.cs_ndir--; 1499 fs->fs_cs(fs, cg).cs_ndir--; 1500 } 1501 fs->fs_fmod = 1; 1502 bdwrite(bp); 1503 return (0); 1504 } 1505 1506 /* 1507 * Find a block of the specified size in the specified cylinder group. 1508 * 1509 * It is a panic if a request is made to find a block if none are 1510 * available. 1511 */ 1512 static ufs_daddr_t 1513 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1514 register struct fs *fs; 1515 register struct cg *cgp; 1516 ufs_daddr_t bpref; 1517 int allocsiz; 1518 { 1519 ufs_daddr_t bno; 1520 int start, len, loc, i; 1521 int blk, field, subfield, pos; 1522 1523 /* 1524 * find the fragment by searching through the free block 1525 * map for an appropriate bit pattern 1526 */ 1527 if (bpref) 1528 start = dtogd(fs, bpref) / NBBY; 1529 else 1530 start = cgp->cg_frotor / NBBY; 1531 len = howmany(fs->fs_fpg, NBBY) - start; 1532 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start], 1533 (u_char *)fragtbl[fs->fs_frag], 1534 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1535 if (loc == 0) { 1536 len = start + 1; 1537 start = 0; 1538 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0], 1539 (u_char *)fragtbl[fs->fs_frag], 1540 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1541 if (loc == 0) { 1542 printf("start = %d, len = %d, fs = %s\n", 1543 start, len, fs->fs_fsmnt); 1544 panic("ffs_alloccg: map corrupted"); 1545 /* NOTREACHED */ 1546 } 1547 } 1548 bno = (start + len - loc) * NBBY; 1549 cgp->cg_frotor = bno; 1550 /* 1551 * found the byte in the map 1552 * sift through the bits to find the selected frag 1553 */ 1554 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1555 blk = blkmap(fs, cg_blksfree(cgp), bno); 1556 blk <<= 1; 1557 field = around[allocsiz]; 1558 subfield = inside[allocsiz]; 1559 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1560 if ((blk & field) == subfield) 1561 return (bno + pos); 1562 field <<= 1; 1563 subfield <<= 1; 1564 } 1565 } 1566 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 1567 panic("ffs_alloccg: block not in map"); 1568 return (-1); 1569 } 1570 1571 /* 1572 * Update the cluster map because of an allocation or free. 1573 * 1574 * Cnt == 1 means free; cnt == -1 means allocating. 1575 */ 1576 static void 1577 ffs_clusteracct(fs, cgp, blkno, cnt) 1578 struct fs *fs; 1579 struct cg *cgp; 1580 ufs_daddr_t blkno; 1581 int cnt; 1582 { 1583 int32_t *sump; 1584 int32_t *lp; 1585 u_char *freemapp, *mapp; 1586 int i, start, end, forw, back, map, bit; 1587 1588 if (fs->fs_contigsumsize <= 0) 1589 return; 1590 freemapp = cg_clustersfree(cgp); 1591 sump = cg_clustersum(cgp); 1592 /* 1593 * Allocate or clear the actual block. 1594 */ 1595 if (cnt > 0) 1596 setbit(freemapp, blkno); 1597 else 1598 clrbit(freemapp, blkno); 1599 /* 1600 * Find the size of the cluster going forward. 1601 */ 1602 start = blkno + 1; 1603 end = start + fs->fs_contigsumsize; 1604 if (end >= cgp->cg_nclusterblks) 1605 end = cgp->cg_nclusterblks; 1606 mapp = &freemapp[start / NBBY]; 1607 map = *mapp++; 1608 bit = 1 << (start % NBBY); 1609 for (i = start; i < end; i++) { 1610 if ((map & bit) == 0) 1611 break; 1612 if ((i & (NBBY - 1)) != (NBBY - 1)) { 1613 bit <<= 1; 1614 } else { 1615 map = *mapp++; 1616 bit = 1; 1617 } 1618 } 1619 forw = i - start; 1620 /* 1621 * Find the size of the cluster going backward. 1622 */ 1623 start = blkno - 1; 1624 end = start - fs->fs_contigsumsize; 1625 if (end < 0) 1626 end = -1; 1627 mapp = &freemapp[start / NBBY]; 1628 map = *mapp--; 1629 bit = 1 << (start % NBBY); 1630 for (i = start; i > end; i--) { 1631 if ((map & bit) == 0) 1632 break; 1633 if ((i & (NBBY - 1)) != 0) { 1634 bit >>= 1; 1635 } else { 1636 map = *mapp--; 1637 bit = 1 << (NBBY - 1); 1638 } 1639 } 1640 back = start - i; 1641 /* 1642 * Account for old cluster and the possibly new forward and 1643 * back clusters. 1644 */ 1645 i = back + forw + 1; 1646 if (i > fs->fs_contigsumsize) 1647 i = fs->fs_contigsumsize; 1648 sump[i] += cnt; 1649 if (back > 0) 1650 sump[back] -= cnt; 1651 if (forw > 0) 1652 sump[forw] -= cnt; 1653 /* 1654 * Update cluster summary information. 1655 */ 1656 lp = &sump[fs->fs_contigsumsize]; 1657 for (i = fs->fs_contigsumsize; i > 0; i--) 1658 if (*lp-- > 0) 1659 break; 1660 fs->fs_maxcluster[cgp->cg_cgx] = i; 1661 } 1662 1663 /* 1664 * Fserr prints the name of a file system with an error diagnostic. 1665 * 1666 * The form of the error message is: 1667 * fs: error message 1668 */ 1669 static void 1670 ffs_fserr(fs, uid, cp) 1671 struct fs *fs; 1672 u_int uid; 1673 char *cp; 1674 { 1675 struct proc *p = curproc; /* XXX */ 1676 1677 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1, 1678 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp); 1679 } 1680