1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/capability.h> 69 #include <sys/systm.h> 70 #include <sys/bio.h> 71 #include <sys/buf.h> 72 #include <sys/conf.h> 73 #include <sys/fcntl.h> 74 #include <sys/file.h> 75 #include <sys/filedesc.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/vnode.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/syslog.h> 84 #include <sys/taskqueue.h> 85 86 #include <security/audit/audit.h> 87 88 #include <geom/geom.h> 89 90 #include <ufs/ufs/dir.h> 91 #include <ufs/ufs/extattr.h> 92 #include <ufs/ufs/quota.h> 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/ufs_extern.h> 95 #include <ufs/ufs/ufsmount.h> 96 97 #include <ufs/ffs/fs.h> 98 #include <ufs/ffs/ffs_extern.h> 99 #include <ufs/ffs/softdep.h> 100 101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 102 int size, int rsize); 103 104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 105 static ufs2_daddr_t 106 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 107 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 108 struct vnode *, ufs2_daddr_t, long, ino_t, 109 struct workhead *); 110 static void ffs_blkfree_trim_completed(struct bio *); 111 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 112 #ifdef INVARIANTS 113 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 114 #endif 115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int, 116 int); 117 static ino_t ffs_dirpref(struct inode *); 118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 119 int, int); 120 static ufs2_daddr_t ffs_hashalloc 121 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 123 int); 124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 125 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 126 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 127 128 /* 129 * Allocate a block in the filesystem. 130 * 131 * The size of the requested block is given, which must be some 132 * multiple of fs_fsize and <= fs_bsize. 133 * A preference may be optionally specified. If a preference is given 134 * the following hierarchy is used to allocate a block: 135 * 1) allocate the requested block. 136 * 2) allocate a rotationally optimal block in the same cylinder. 137 * 3) allocate a block in the same cylinder group. 138 * 4) quadradically rehash into other cylinder groups, until an 139 * available block is located. 140 * If no block preference is given the following hierarchy is used 141 * to allocate a block: 142 * 1) allocate a block in the cylinder group that contains the 143 * inode for the file. 144 * 2) quadradically rehash into other cylinder groups, until an 145 * available block is located. 146 */ 147 int 148 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 149 struct inode *ip; 150 ufs2_daddr_t lbn, bpref; 151 int size, flags; 152 struct ucred *cred; 153 ufs2_daddr_t *bnp; 154 { 155 struct fs *fs; 156 struct ufsmount *ump; 157 ufs2_daddr_t bno; 158 u_int cg, reclaimed; 159 static struct timeval lastfail; 160 static int curfail; 161 int64_t delta; 162 #ifdef QUOTA 163 int error; 164 #endif 165 166 *bnp = 0; 167 fs = ip->i_fs; 168 ump = ip->i_ump; 169 mtx_assert(UFS_MTX(ump), MA_OWNED); 170 #ifdef INVARIANTS 171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 172 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 173 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 174 fs->fs_fsmnt); 175 panic("ffs_alloc: bad size"); 176 } 177 if (cred == NOCRED) 178 panic("ffs_alloc: missing credential"); 179 #endif /* INVARIANTS */ 180 reclaimed = 0; 181 retry: 182 #ifdef QUOTA 183 UFS_UNLOCK(ump); 184 error = chkdq(ip, btodb(size), cred, 0); 185 if (error) 186 return (error); 187 UFS_LOCK(ump); 188 #endif 189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 190 goto nospace; 191 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 192 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 193 goto nospace; 194 if (bpref >= fs->fs_size) 195 bpref = 0; 196 if (bpref == 0) 197 cg = ino_to_cg(fs, ip->i_number); 198 else 199 cg = dtog(fs, bpref); 200 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 201 if (bno > 0) { 202 delta = btodb(size); 203 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 204 if (flags & IO_EXT) 205 ip->i_flag |= IN_CHANGE; 206 else 207 ip->i_flag |= IN_CHANGE | IN_UPDATE; 208 *bnp = bno; 209 return (0); 210 } 211 nospace: 212 #ifdef QUOTA 213 UFS_UNLOCK(ump); 214 /* 215 * Restore user's disk quota because allocation failed. 216 */ 217 (void) chkdq(ip, -btodb(size), cred, FORCE); 218 UFS_LOCK(ump); 219 #endif 220 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 221 reclaimed = 1; 222 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 223 goto retry; 224 } 225 UFS_UNLOCK(ump); 226 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 227 ffs_fserr(fs, ip->i_number, "filesystem full"); 228 uprintf("\n%s: write failed, filesystem is full\n", 229 fs->fs_fsmnt); 230 } 231 return (ENOSPC); 232 } 233 234 /* 235 * Reallocate a fragment to a bigger size 236 * 237 * The number and size of the old block is given, and a preference 238 * and new size is also specified. The allocator attempts to extend 239 * the original block. Failing that, the regular block allocator is 240 * invoked to get an appropriate block. 241 */ 242 int 243 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 244 struct inode *ip; 245 ufs2_daddr_t lbprev; 246 ufs2_daddr_t bprev; 247 ufs2_daddr_t bpref; 248 int osize, nsize, flags; 249 struct ucred *cred; 250 struct buf **bpp; 251 { 252 struct vnode *vp; 253 struct fs *fs; 254 struct buf *bp; 255 struct ufsmount *ump; 256 u_int cg, request, reclaimed; 257 int error, gbflags; 258 ufs2_daddr_t bno; 259 static struct timeval lastfail; 260 static int curfail; 261 int64_t delta; 262 263 *bpp = 0; 264 vp = ITOV(ip); 265 fs = ip->i_fs; 266 bp = NULL; 267 ump = ip->i_ump; 268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 269 270 mtx_assert(UFS_MTX(ump), MA_OWNED); 271 #ifdef INVARIANTS 272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 273 panic("ffs_realloccg: allocation on suspended filesystem"); 274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 276 printf( 277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 278 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 279 nsize, fs->fs_fsmnt); 280 panic("ffs_realloccg: bad size"); 281 } 282 if (cred == NOCRED) 283 panic("ffs_realloccg: missing credential"); 284 #endif /* INVARIANTS */ 285 reclaimed = 0; 286 retry: 287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 289 goto nospace; 290 } 291 if (bprev == 0) { 292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 293 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 294 fs->fs_fsmnt); 295 panic("ffs_realloccg: bad bprev"); 296 } 297 UFS_UNLOCK(ump); 298 /* 299 * Allocate the extra space in the buffer. 300 */ 301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 302 if (error) { 303 brelse(bp); 304 return (error); 305 } 306 307 if (bp->b_blkno == bp->b_lblkno) { 308 if (lbprev >= NDADDR) 309 panic("ffs_realloccg: lbprev out of range"); 310 bp->b_blkno = fsbtodb(fs, bprev); 311 } 312 313 #ifdef QUOTA 314 error = chkdq(ip, btodb(nsize - osize), cred, 0); 315 if (error) { 316 brelse(bp); 317 return (error); 318 } 319 #endif 320 /* 321 * Check for extension in the existing location. 322 */ 323 cg = dtog(fs, bprev); 324 UFS_LOCK(ump); 325 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 326 if (bno) { 327 if (bp->b_blkno != fsbtodb(fs, bno)) 328 panic("ffs_realloccg: bad blockno"); 329 delta = btodb(nsize - osize); 330 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 331 if (flags & IO_EXT) 332 ip->i_flag |= IN_CHANGE; 333 else 334 ip->i_flag |= IN_CHANGE | IN_UPDATE; 335 allocbuf(bp, nsize); 336 bp->b_flags |= B_DONE; 337 vfs_bio_bzero_buf(bp, osize, nsize - osize); 338 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 339 vfs_bio_set_valid(bp, osize, nsize - osize); 340 *bpp = bp; 341 return (0); 342 } 343 /* 344 * Allocate a new disk location. 345 */ 346 if (bpref >= fs->fs_size) 347 bpref = 0; 348 switch ((int)fs->fs_optim) { 349 case FS_OPTSPACE: 350 /* 351 * Allocate an exact sized fragment. Although this makes 352 * best use of space, we will waste time relocating it if 353 * the file continues to grow. If the fragmentation is 354 * less than half of the minimum free reserve, we choose 355 * to begin optimizing for time. 356 */ 357 request = nsize; 358 if (fs->fs_minfree <= 5 || 359 fs->fs_cstotal.cs_nffree > 360 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 361 break; 362 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 363 fs->fs_fsmnt); 364 fs->fs_optim = FS_OPTTIME; 365 break; 366 case FS_OPTTIME: 367 /* 368 * At this point we have discovered a file that is trying to 369 * grow a small fragment to a larger fragment. To save time, 370 * we allocate a full sized block, then free the unused portion. 371 * If the file continues to grow, the `ffs_fragextend' call 372 * above will be able to grow it in place without further 373 * copying. If aberrant programs cause disk fragmentation to 374 * grow within 2% of the free reserve, we choose to begin 375 * optimizing for space. 376 */ 377 request = fs->fs_bsize; 378 if (fs->fs_cstotal.cs_nffree < 379 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 380 break; 381 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 382 fs->fs_fsmnt); 383 fs->fs_optim = FS_OPTSPACE; 384 break; 385 default: 386 printf("dev = %s, optim = %ld, fs = %s\n", 387 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 388 panic("ffs_realloccg: bad optim"); 389 /* NOTREACHED */ 390 } 391 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 392 if (bno > 0) { 393 bp->b_blkno = fsbtodb(fs, bno); 394 if (!DOINGSOFTDEP(vp)) 395 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 396 ip->i_number, vp->v_type, NULL); 397 delta = btodb(nsize - osize); 398 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 399 if (flags & IO_EXT) 400 ip->i_flag |= IN_CHANGE; 401 else 402 ip->i_flag |= IN_CHANGE | IN_UPDATE; 403 allocbuf(bp, nsize); 404 bp->b_flags |= B_DONE; 405 vfs_bio_bzero_buf(bp, osize, nsize - osize); 406 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 407 vfs_bio_set_valid(bp, osize, nsize - osize); 408 *bpp = bp; 409 return (0); 410 } 411 #ifdef QUOTA 412 UFS_UNLOCK(ump); 413 /* 414 * Restore user's disk quota because allocation failed. 415 */ 416 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 417 UFS_LOCK(ump); 418 #endif 419 nospace: 420 /* 421 * no space available 422 */ 423 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 424 reclaimed = 1; 425 UFS_UNLOCK(ump); 426 if (bp) { 427 brelse(bp); 428 bp = NULL; 429 } 430 UFS_LOCK(ump); 431 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 432 goto retry; 433 } 434 UFS_UNLOCK(ump); 435 if (bp) 436 brelse(bp); 437 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 438 ffs_fserr(fs, ip->i_number, "filesystem full"); 439 uprintf("\n%s: write failed, filesystem is full\n", 440 fs->fs_fsmnt); 441 } 442 return (ENOSPC); 443 } 444 445 /* 446 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 447 * 448 * The vnode and an array of buffer pointers for a range of sequential 449 * logical blocks to be made contiguous is given. The allocator attempts 450 * to find a range of sequential blocks starting as close as possible 451 * from the end of the allocation for the logical block immediately 452 * preceding the current range. If successful, the physical block numbers 453 * in the buffer pointers and in the inode are changed to reflect the new 454 * allocation. If unsuccessful, the allocation is left unchanged. The 455 * success in doing the reallocation is returned. Note that the error 456 * return is not reflected back to the user. Rather the previous block 457 * allocation will be used. 458 */ 459 460 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 461 462 static int doasyncfree = 1; 463 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 464 465 static int doreallocblks = 1; 466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 467 468 #ifdef DEBUG 469 static volatile int prtrealloc = 0; 470 #endif 471 472 int 473 ffs_reallocblks(ap) 474 struct vop_reallocblks_args /* { 475 struct vnode *a_vp; 476 struct cluster_save *a_buflist; 477 } */ *ap; 478 { 479 480 if (doreallocblks == 0) 481 return (ENOSPC); 482 /* 483 * We can't wait in softdep prealloc as it may fsync and recurse 484 * here. Instead we simply fail to reallocate blocks if this 485 * rare condition arises. 486 */ 487 if (DOINGSOFTDEP(ap->a_vp)) 488 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 489 return (ENOSPC); 490 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 491 return (ffs_reallocblks_ufs1(ap)); 492 return (ffs_reallocblks_ufs2(ap)); 493 } 494 495 static int 496 ffs_reallocblks_ufs1(ap) 497 struct vop_reallocblks_args /* { 498 struct vnode *a_vp; 499 struct cluster_save *a_buflist; 500 } */ *ap; 501 { 502 struct fs *fs; 503 struct inode *ip; 504 struct vnode *vp; 505 struct buf *sbp, *ebp; 506 ufs1_daddr_t *bap, *sbap, *ebap = 0; 507 struct cluster_save *buflist; 508 struct ufsmount *ump; 509 ufs_lbn_t start_lbn, end_lbn; 510 ufs1_daddr_t soff, newblk, blkno; 511 ufs2_daddr_t pref; 512 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 513 int i, len, start_lvl, end_lvl, ssize; 514 515 vp = ap->a_vp; 516 ip = VTOI(vp); 517 fs = ip->i_fs; 518 ump = ip->i_ump; 519 if (fs->fs_contigsumsize <= 0) 520 return (ENOSPC); 521 buflist = ap->a_buflist; 522 len = buflist->bs_nchildren; 523 start_lbn = buflist->bs_children[0]->b_lblkno; 524 end_lbn = start_lbn + len - 1; 525 #ifdef INVARIANTS 526 for (i = 0; i < len; i++) 527 if (!ffs_checkblk(ip, 528 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 529 panic("ffs_reallocblks: unallocated block 1"); 530 for (i = 1; i < len; i++) 531 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 532 panic("ffs_reallocblks: non-logical cluster"); 533 blkno = buflist->bs_children[0]->b_blkno; 534 ssize = fsbtodb(fs, fs->fs_frag); 535 for (i = 1; i < len - 1; i++) 536 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 537 panic("ffs_reallocblks: non-physical cluster %d", i); 538 #endif 539 /* 540 * If the cluster crosses the boundary for the first indirect 541 * block, leave space for the indirect block. Indirect blocks 542 * are initially laid out in a position after the last direct 543 * block. Block reallocation would usually destroy locality by 544 * moving the indirect block out of the way to make room for 545 * data blocks if we didn't compensate here. We should also do 546 * this for other indirect block boundaries, but it is only 547 * important for the first one. 548 */ 549 if (start_lbn < NDADDR && end_lbn >= NDADDR) 550 return (ENOSPC); 551 /* 552 * If the latest allocation is in a new cylinder group, assume that 553 * the filesystem has decided to move and do not force it back to 554 * the previous cylinder group. 555 */ 556 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 557 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 558 return (ENOSPC); 559 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 560 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 561 return (ENOSPC); 562 /* 563 * Get the starting offset and block map for the first block. 564 */ 565 if (start_lvl == 0) { 566 sbap = &ip->i_din1->di_db[0]; 567 soff = start_lbn; 568 } else { 569 idp = &start_ap[start_lvl - 1]; 570 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 571 brelse(sbp); 572 return (ENOSPC); 573 } 574 sbap = (ufs1_daddr_t *)sbp->b_data; 575 soff = idp->in_off; 576 } 577 /* 578 * If the block range spans two block maps, get the second map. 579 */ 580 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 581 ssize = len; 582 } else { 583 #ifdef INVARIANTS 584 if (start_lvl > 0 && 585 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 586 panic("ffs_reallocblk: start == end"); 587 #endif 588 ssize = len - (idp->in_off + 1); 589 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 590 goto fail; 591 ebap = (ufs1_daddr_t *)ebp->b_data; 592 } 593 /* 594 * Find the preferred location for the cluster. 595 */ 596 UFS_LOCK(ump); 597 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 598 /* 599 * Search the block map looking for an allocation of the desired size. 600 */ 601 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 602 len, len, ffs_clusteralloc)) == 0) { 603 UFS_UNLOCK(ump); 604 goto fail; 605 } 606 /* 607 * We have found a new contiguous block. 608 * 609 * First we have to replace the old block pointers with the new 610 * block pointers in the inode and indirect blocks associated 611 * with the file. 612 */ 613 #ifdef DEBUG 614 if (prtrealloc) 615 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 616 (uintmax_t)ip->i_number, 617 (intmax_t)start_lbn, (intmax_t)end_lbn); 618 #endif 619 blkno = newblk; 620 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 621 if (i == ssize) { 622 bap = ebap; 623 soff = -i; 624 } 625 #ifdef INVARIANTS 626 if (!ffs_checkblk(ip, 627 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 628 panic("ffs_reallocblks: unallocated block 2"); 629 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 630 panic("ffs_reallocblks: alloc mismatch"); 631 #endif 632 #ifdef DEBUG 633 if (prtrealloc) 634 printf(" %d,", *bap); 635 #endif 636 if (DOINGSOFTDEP(vp)) { 637 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 638 softdep_setup_allocdirect(ip, start_lbn + i, 639 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 640 buflist->bs_children[i]); 641 else 642 softdep_setup_allocindir_page(ip, start_lbn + i, 643 i < ssize ? sbp : ebp, soff + i, blkno, 644 *bap, buflist->bs_children[i]); 645 } 646 *bap++ = blkno; 647 } 648 /* 649 * Next we must write out the modified inode and indirect blocks. 650 * For strict correctness, the writes should be synchronous since 651 * the old block values may have been written to disk. In practise 652 * they are almost never written, but if we are concerned about 653 * strict correctness, the `doasyncfree' flag should be set to zero. 654 * 655 * The test on `doasyncfree' should be changed to test a flag 656 * that shows whether the associated buffers and inodes have 657 * been written. The flag should be set when the cluster is 658 * started and cleared whenever the buffer or inode is flushed. 659 * We can then check below to see if it is set, and do the 660 * synchronous write only when it has been cleared. 661 */ 662 if (sbap != &ip->i_din1->di_db[0]) { 663 if (doasyncfree) 664 bdwrite(sbp); 665 else 666 bwrite(sbp); 667 } else { 668 ip->i_flag |= IN_CHANGE | IN_UPDATE; 669 if (!doasyncfree) 670 ffs_update(vp, 1); 671 } 672 if (ssize < len) { 673 if (doasyncfree) 674 bdwrite(ebp); 675 else 676 bwrite(ebp); 677 } 678 /* 679 * Last, free the old blocks and assign the new blocks to the buffers. 680 */ 681 #ifdef DEBUG 682 if (prtrealloc) 683 printf("\n\tnew:"); 684 #endif 685 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 686 if (!DOINGSOFTDEP(vp)) 687 ffs_blkfree(ump, fs, ip->i_devvp, 688 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 689 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 690 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 691 #ifdef INVARIANTS 692 if (!ffs_checkblk(ip, 693 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 694 panic("ffs_reallocblks: unallocated block 3"); 695 #endif 696 #ifdef DEBUG 697 if (prtrealloc) 698 printf(" %d,", blkno); 699 #endif 700 } 701 #ifdef DEBUG 702 if (prtrealloc) { 703 prtrealloc--; 704 printf("\n"); 705 } 706 #endif 707 return (0); 708 709 fail: 710 if (ssize < len) 711 brelse(ebp); 712 if (sbap != &ip->i_din1->di_db[0]) 713 brelse(sbp); 714 return (ENOSPC); 715 } 716 717 static int 718 ffs_reallocblks_ufs2(ap) 719 struct vop_reallocblks_args /* { 720 struct vnode *a_vp; 721 struct cluster_save *a_buflist; 722 } */ *ap; 723 { 724 struct fs *fs; 725 struct inode *ip; 726 struct vnode *vp; 727 struct buf *sbp, *ebp; 728 ufs2_daddr_t *bap, *sbap, *ebap = 0; 729 struct cluster_save *buflist; 730 struct ufsmount *ump; 731 ufs_lbn_t start_lbn, end_lbn; 732 ufs2_daddr_t soff, newblk, blkno, pref; 733 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 734 int i, len, start_lvl, end_lvl, ssize; 735 736 vp = ap->a_vp; 737 ip = VTOI(vp); 738 fs = ip->i_fs; 739 ump = ip->i_ump; 740 if (fs->fs_contigsumsize <= 0) 741 return (ENOSPC); 742 buflist = ap->a_buflist; 743 len = buflist->bs_nchildren; 744 start_lbn = buflist->bs_children[0]->b_lblkno; 745 end_lbn = start_lbn + len - 1; 746 #ifdef INVARIANTS 747 for (i = 0; i < len; i++) 748 if (!ffs_checkblk(ip, 749 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 750 panic("ffs_reallocblks: unallocated block 1"); 751 for (i = 1; i < len; i++) 752 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 753 panic("ffs_reallocblks: non-logical cluster"); 754 blkno = buflist->bs_children[0]->b_blkno; 755 ssize = fsbtodb(fs, fs->fs_frag); 756 for (i = 1; i < len - 1; i++) 757 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 758 panic("ffs_reallocblks: non-physical cluster %d", i); 759 #endif 760 /* 761 * If the cluster crosses the boundary for the first indirect 762 * block, do not move anything in it. Indirect blocks are 763 * usually initially laid out in a position between the data 764 * blocks. Block reallocation would usually destroy locality by 765 * moving the indirect block out of the way to make room for 766 * data blocks if we didn't compensate here. We should also do 767 * this for other indirect block boundaries, but it is only 768 * important for the first one. 769 */ 770 if (start_lbn < NDADDR && end_lbn >= NDADDR) 771 return (ENOSPC); 772 /* 773 * If the latest allocation is in a new cylinder group, assume that 774 * the filesystem has decided to move and do not force it back to 775 * the previous cylinder group. 776 */ 777 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 778 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 779 return (ENOSPC); 780 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 781 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 782 return (ENOSPC); 783 /* 784 * Get the starting offset and block map for the first block. 785 */ 786 if (start_lvl == 0) { 787 sbap = &ip->i_din2->di_db[0]; 788 soff = start_lbn; 789 } else { 790 idp = &start_ap[start_lvl - 1]; 791 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 792 brelse(sbp); 793 return (ENOSPC); 794 } 795 sbap = (ufs2_daddr_t *)sbp->b_data; 796 soff = idp->in_off; 797 } 798 /* 799 * If the block range spans two block maps, get the second map. 800 */ 801 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 802 ssize = len; 803 } else { 804 #ifdef INVARIANTS 805 if (start_lvl > 0 && 806 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 807 panic("ffs_reallocblk: start == end"); 808 #endif 809 ssize = len - (idp->in_off + 1); 810 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 811 goto fail; 812 ebap = (ufs2_daddr_t *)ebp->b_data; 813 } 814 /* 815 * Find the preferred location for the cluster. 816 */ 817 UFS_LOCK(ump); 818 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 819 /* 820 * Search the block map looking for an allocation of the desired size. 821 */ 822 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 823 len, len, ffs_clusteralloc)) == 0) { 824 UFS_UNLOCK(ump); 825 goto fail; 826 } 827 /* 828 * We have found a new contiguous block. 829 * 830 * First we have to replace the old block pointers with the new 831 * block pointers in the inode and indirect blocks associated 832 * with the file. 833 */ 834 #ifdef DEBUG 835 if (prtrealloc) 836 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 837 (intmax_t)start_lbn, (intmax_t)end_lbn); 838 #endif 839 blkno = newblk; 840 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 841 if (i == ssize) { 842 bap = ebap; 843 soff = -i; 844 } 845 #ifdef INVARIANTS 846 if (!ffs_checkblk(ip, 847 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 848 panic("ffs_reallocblks: unallocated block 2"); 849 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 850 panic("ffs_reallocblks: alloc mismatch"); 851 #endif 852 #ifdef DEBUG 853 if (prtrealloc) 854 printf(" %jd,", (intmax_t)*bap); 855 #endif 856 if (DOINGSOFTDEP(vp)) { 857 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 858 softdep_setup_allocdirect(ip, start_lbn + i, 859 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 860 buflist->bs_children[i]); 861 else 862 softdep_setup_allocindir_page(ip, start_lbn + i, 863 i < ssize ? sbp : ebp, soff + i, blkno, 864 *bap, buflist->bs_children[i]); 865 } 866 *bap++ = blkno; 867 } 868 /* 869 * Next we must write out the modified inode and indirect blocks. 870 * For strict correctness, the writes should be synchronous since 871 * the old block values may have been written to disk. In practise 872 * they are almost never written, but if we are concerned about 873 * strict correctness, the `doasyncfree' flag should be set to zero. 874 * 875 * The test on `doasyncfree' should be changed to test a flag 876 * that shows whether the associated buffers and inodes have 877 * been written. The flag should be set when the cluster is 878 * started and cleared whenever the buffer or inode is flushed. 879 * We can then check below to see if it is set, and do the 880 * synchronous write only when it has been cleared. 881 */ 882 if (sbap != &ip->i_din2->di_db[0]) { 883 if (doasyncfree) 884 bdwrite(sbp); 885 else 886 bwrite(sbp); 887 } else { 888 ip->i_flag |= IN_CHANGE | IN_UPDATE; 889 if (!doasyncfree) 890 ffs_update(vp, 1); 891 } 892 if (ssize < len) { 893 if (doasyncfree) 894 bdwrite(ebp); 895 else 896 bwrite(ebp); 897 } 898 /* 899 * Last, free the old blocks and assign the new blocks to the buffers. 900 */ 901 #ifdef DEBUG 902 if (prtrealloc) 903 printf("\n\tnew:"); 904 #endif 905 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 906 if (!DOINGSOFTDEP(vp)) 907 ffs_blkfree(ump, fs, ip->i_devvp, 908 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 909 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 910 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 911 #ifdef INVARIANTS 912 if (!ffs_checkblk(ip, 913 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 914 panic("ffs_reallocblks: unallocated block 3"); 915 #endif 916 #ifdef DEBUG 917 if (prtrealloc) 918 printf(" %jd,", (intmax_t)blkno); 919 #endif 920 } 921 #ifdef DEBUG 922 if (prtrealloc) { 923 prtrealloc--; 924 printf("\n"); 925 } 926 #endif 927 return (0); 928 929 fail: 930 if (ssize < len) 931 brelse(ebp); 932 if (sbap != &ip->i_din2->di_db[0]) 933 brelse(sbp); 934 return (ENOSPC); 935 } 936 937 /* 938 * Allocate an inode in the filesystem. 939 * 940 * If allocating a directory, use ffs_dirpref to select the inode. 941 * If allocating in a directory, the following hierarchy is followed: 942 * 1) allocate the preferred inode. 943 * 2) allocate an inode in the same cylinder group. 944 * 3) quadradically rehash into other cylinder groups, until an 945 * available inode is located. 946 * If no inode preference is given the following hierarchy is used 947 * to allocate an inode: 948 * 1) allocate an inode in cylinder group 0. 949 * 2) quadradically rehash into other cylinder groups, until an 950 * available inode is located. 951 */ 952 int 953 ffs_valloc(pvp, mode, cred, vpp) 954 struct vnode *pvp; 955 int mode; 956 struct ucred *cred; 957 struct vnode **vpp; 958 { 959 struct inode *pip; 960 struct fs *fs; 961 struct inode *ip; 962 struct timespec ts; 963 struct ufsmount *ump; 964 ino_t ino, ipref; 965 u_int cg; 966 int error, error1, reclaimed; 967 static struct timeval lastfail; 968 static int curfail; 969 970 *vpp = NULL; 971 pip = VTOI(pvp); 972 fs = pip->i_fs; 973 ump = pip->i_ump; 974 975 UFS_LOCK(ump); 976 reclaimed = 0; 977 retry: 978 if (fs->fs_cstotal.cs_nifree == 0) 979 goto noinodes; 980 981 if ((mode & IFMT) == IFDIR) 982 ipref = ffs_dirpref(pip); 983 else 984 ipref = pip->i_number; 985 if (ipref >= fs->fs_ncg * fs->fs_ipg) 986 ipref = 0; 987 cg = ino_to_cg(fs, ipref); 988 /* 989 * Track number of dirs created one after another 990 * in a same cg without intervening by files. 991 */ 992 if ((mode & IFMT) == IFDIR) { 993 if (fs->fs_contigdirs[cg] < 255) 994 fs->fs_contigdirs[cg]++; 995 } else { 996 if (fs->fs_contigdirs[cg] > 0) 997 fs->fs_contigdirs[cg]--; 998 } 999 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1000 (allocfcn_t *)ffs_nodealloccg); 1001 if (ino == 0) 1002 goto noinodes; 1003 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1004 if (error) { 1005 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1006 FFSV_FORCEINSMQ); 1007 ffs_vfree(pvp, ino, mode); 1008 if (error1 == 0) { 1009 ip = VTOI(*vpp); 1010 if (ip->i_mode) 1011 goto dup_alloc; 1012 ip->i_flag |= IN_MODIFIED; 1013 vput(*vpp); 1014 } 1015 return (error); 1016 } 1017 ip = VTOI(*vpp); 1018 if (ip->i_mode) { 1019 dup_alloc: 1020 printf("mode = 0%o, inum = %lu, fs = %s\n", 1021 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 1022 panic("ffs_valloc: dup alloc"); 1023 } 1024 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1025 printf("free inode %s/%lu had %ld blocks\n", 1026 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1027 DIP_SET(ip, i_blocks, 0); 1028 } 1029 ip->i_flags = 0; 1030 DIP_SET(ip, i_flags, 0); 1031 /* 1032 * Set up a new generation number for this inode. 1033 */ 1034 if (ip->i_gen == 0 || ++ip->i_gen == 0) 1035 ip->i_gen = arc4random() / 2 + 1; 1036 DIP_SET(ip, i_gen, ip->i_gen); 1037 if (fs->fs_magic == FS_UFS2_MAGIC) { 1038 vfs_timestamp(&ts); 1039 ip->i_din2->di_birthtime = ts.tv_sec; 1040 ip->i_din2->di_birthnsec = ts.tv_nsec; 1041 } 1042 ufs_prepare_reclaim(*vpp); 1043 ip->i_flag = 0; 1044 (*vpp)->v_vflag = 0; 1045 (*vpp)->v_type = VNON; 1046 if (fs->fs_magic == FS_UFS2_MAGIC) 1047 (*vpp)->v_op = &ffs_vnodeops2; 1048 else 1049 (*vpp)->v_op = &ffs_vnodeops1; 1050 return (0); 1051 noinodes: 1052 if (reclaimed == 0) { 1053 reclaimed = 1; 1054 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1055 goto retry; 1056 } 1057 UFS_UNLOCK(ump); 1058 if (ppsratecheck(&lastfail, &curfail, 1)) { 1059 ffs_fserr(fs, pip->i_number, "out of inodes"); 1060 uprintf("\n%s: create/symlink failed, no inodes free\n", 1061 fs->fs_fsmnt); 1062 } 1063 return (ENOSPC); 1064 } 1065 1066 /* 1067 * Find a cylinder group to place a directory. 1068 * 1069 * The policy implemented by this algorithm is to allocate a 1070 * directory inode in the same cylinder group as its parent 1071 * directory, but also to reserve space for its files inodes 1072 * and data. Restrict the number of directories which may be 1073 * allocated one after another in the same cylinder group 1074 * without intervening allocation of files. 1075 * 1076 * If we allocate a first level directory then force allocation 1077 * in another cylinder group. 1078 */ 1079 static ino_t 1080 ffs_dirpref(pip) 1081 struct inode *pip; 1082 { 1083 struct fs *fs; 1084 int cg, prefcg, dirsize, cgsize; 1085 u_int avgifree, avgbfree, avgndir, curdirsize; 1086 u_int minifree, minbfree, maxndir; 1087 u_int mincg, minndir; 1088 u_int maxcontigdirs; 1089 1090 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1091 fs = pip->i_fs; 1092 1093 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1094 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1095 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1096 1097 /* 1098 * Force allocation in another cg if creating a first level dir. 1099 */ 1100 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1101 if (ITOV(pip)->v_vflag & VV_ROOT) { 1102 prefcg = arc4random() % fs->fs_ncg; 1103 mincg = prefcg; 1104 minndir = fs->fs_ipg; 1105 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1106 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1107 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1108 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1109 mincg = cg; 1110 minndir = fs->fs_cs(fs, cg).cs_ndir; 1111 } 1112 for (cg = 0; cg < prefcg; cg++) 1113 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1114 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1115 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1116 mincg = cg; 1117 minndir = fs->fs_cs(fs, cg).cs_ndir; 1118 } 1119 return ((ino_t)(fs->fs_ipg * mincg)); 1120 } 1121 1122 /* 1123 * Count various limits which used for 1124 * optimal allocation of a directory inode. 1125 */ 1126 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1127 minifree = avgifree - avgifree / 4; 1128 if (minifree < 1) 1129 minifree = 1; 1130 minbfree = avgbfree - avgbfree / 4; 1131 if (minbfree < 1) 1132 minbfree = 1; 1133 cgsize = fs->fs_fsize * fs->fs_fpg; 1134 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1135 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1136 if (dirsize < curdirsize) 1137 dirsize = curdirsize; 1138 if (dirsize <= 0) 1139 maxcontigdirs = 0; /* dirsize overflowed */ 1140 else 1141 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1142 if (fs->fs_avgfpdir > 0) 1143 maxcontigdirs = min(maxcontigdirs, 1144 fs->fs_ipg / fs->fs_avgfpdir); 1145 if (maxcontigdirs == 0) 1146 maxcontigdirs = 1; 1147 1148 /* 1149 * Limit number of dirs in one cg and reserve space for 1150 * regular files, but only if we have no deficit in 1151 * inodes or space. 1152 * 1153 * We are trying to find a suitable cylinder group nearby 1154 * our preferred cylinder group to place a new directory. 1155 * We scan from our preferred cylinder group forward looking 1156 * for a cylinder group that meets our criterion. If we get 1157 * to the final cylinder group and do not find anything, 1158 * we start scanning backwards from our preferred cylinder 1159 * group. The ideal would be to alternate looking forward 1160 * and backward, but that is just too complex to code for 1161 * the gain it would get. The most likely place where the 1162 * backward scan would take effect is when we start near 1163 * the end of the filesystem and do not find anything from 1164 * where we are to the end. In that case, scanning backward 1165 * will likely find us a suitable cylinder group much closer 1166 * to our desired location than if we were to start scanning 1167 * forward from the beginning of the filesystem. 1168 */ 1169 prefcg = ino_to_cg(fs, pip->i_number); 1170 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1171 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1172 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1173 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1174 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1175 return ((ino_t)(fs->fs_ipg * cg)); 1176 } 1177 for (cg = prefcg - 1; cg >= 0; cg--) 1178 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1179 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1180 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1181 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1182 return ((ino_t)(fs->fs_ipg * cg)); 1183 } 1184 /* 1185 * This is a backstop when we have deficit in space. 1186 */ 1187 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1188 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1189 return ((ino_t)(fs->fs_ipg * cg)); 1190 for (cg = prefcg - 1; cg >= 0; cg--) 1191 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1192 break; 1193 return ((ino_t)(fs->fs_ipg * cg)); 1194 } 1195 1196 /* 1197 * Select the desired position for the next block in a file. The file is 1198 * logically divided into sections. The first section is composed of the 1199 * direct blocks and the next fs_maxbpg blocks. Each additional section 1200 * contains fs_maxbpg blocks. 1201 * 1202 * If no blocks have been allocated in the first section, the policy is to 1203 * request a block in the same cylinder group as the inode that describes 1204 * the file. The first indirect is allocated immediately following the last 1205 * direct block and the data blocks for the first indirect immediately 1206 * follow it. 1207 * 1208 * If no blocks have been allocated in any other section, the indirect 1209 * block(s) are allocated in the same cylinder group as its inode in an 1210 * area reserved immediately following the inode blocks. The policy for 1211 * the data blocks is to place them in a cylinder group with a greater than 1212 * average number of free blocks. An appropriate cylinder group is found 1213 * by using a rotor that sweeps the cylinder groups. When a new group of 1214 * blocks is needed, the sweep begins in the cylinder group following the 1215 * cylinder group from which the previous allocation was made. The sweep 1216 * continues until a cylinder group with greater than the average number 1217 * of free blocks is found. If the allocation is for the first block in an 1218 * indirect block or the previous block is a hole, then the information on 1219 * the previous allocation is unavailable; here a best guess is made based 1220 * on the logical block number being allocated. 1221 * 1222 * If a section is already partially allocated, the policy is to 1223 * allocate blocks contiguously within the section if possible. 1224 */ 1225 ufs2_daddr_t 1226 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1227 struct inode *ip; 1228 ufs_lbn_t lbn; 1229 int indx; 1230 ufs1_daddr_t *bap; 1231 { 1232 struct fs *fs; 1233 u_int cg, inocg; 1234 u_int avgbfree, startcg; 1235 ufs2_daddr_t pref; 1236 1237 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1238 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1239 fs = ip->i_fs; 1240 /* 1241 * Allocation of indirect blocks is indicated by passing negative 1242 * values in indx: -1 for single indirect, -2 for double indirect, 1243 * -3 for triple indirect. As noted below, we attempt to allocate 1244 * the first indirect inline with the file data. For all later 1245 * indirect blocks, the data is often allocated in other cylinder 1246 * groups. However to speed random file access and to speed up 1247 * fsck, the filesystem reserves the first fs_metaspace blocks 1248 * (typically half of fs_minfree) of the data area of each cylinder 1249 * group to hold these later indirect blocks. 1250 */ 1251 inocg = ino_to_cg(fs, ip->i_number); 1252 if (indx < 0) { 1253 /* 1254 * Our preference for indirect blocks is the zone at the 1255 * beginning of the inode's cylinder group data area that 1256 * we try to reserve for indirect blocks. 1257 */ 1258 pref = cgmeta(fs, inocg); 1259 /* 1260 * If we are allocating the first indirect block, try to 1261 * place it immediately following the last direct block. 1262 */ 1263 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1264 ip->i_din1->di_db[NDADDR - 1] != 0) 1265 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag; 1266 return (pref); 1267 } 1268 /* 1269 * If we are allocating the first data block in the first indirect 1270 * block and the indirect has been allocated in the data block area, 1271 * try to place it immediately following the indirect block. 1272 */ 1273 if (lbn == NDADDR) { 1274 pref = ip->i_din1->di_ib[0]; 1275 if (pref != 0 && pref >= cgdata(fs, inocg) && 1276 pref < cgbase(fs, inocg + 1)) 1277 return (pref + fs->fs_frag); 1278 } 1279 /* 1280 * If we are at the beginning of a file, or we have already allocated 1281 * the maximum number of blocks per cylinder group, or we do not 1282 * have a block allocated immediately preceeding us, then we need 1283 * to decide where to start allocating new blocks. 1284 */ 1285 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1286 /* 1287 * If we are allocating a directory data block, we want 1288 * to place it in the metadata area. 1289 */ 1290 if ((ip->i_mode & IFMT) == IFDIR) 1291 return (cgmeta(fs, inocg)); 1292 /* 1293 * Until we fill all the direct and all the first indirect's 1294 * blocks, we try to allocate in the data area of the inode's 1295 * cylinder group. 1296 */ 1297 if (lbn < NDADDR + NINDIR(fs)) 1298 return (cgdata(fs, inocg)); 1299 /* 1300 * Find a cylinder with greater than average number of 1301 * unused data blocks. 1302 */ 1303 if (indx == 0 || bap[indx - 1] == 0) 1304 startcg = inocg + lbn / fs->fs_maxbpg; 1305 else 1306 startcg = dtog(fs, bap[indx - 1]) + 1; 1307 startcg %= fs->fs_ncg; 1308 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1309 for (cg = startcg; cg < fs->fs_ncg; cg++) 1310 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1311 fs->fs_cgrotor = cg; 1312 return (cgdata(fs, cg)); 1313 } 1314 for (cg = 0; cg <= startcg; cg++) 1315 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1316 fs->fs_cgrotor = cg; 1317 return (cgdata(fs, cg)); 1318 } 1319 return (0); 1320 } 1321 /* 1322 * Otherwise, we just always try to lay things out contiguously. 1323 */ 1324 return (bap[indx - 1] + fs->fs_frag); 1325 } 1326 1327 /* 1328 * Same as above, but for UFS2 1329 */ 1330 ufs2_daddr_t 1331 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1332 struct inode *ip; 1333 ufs_lbn_t lbn; 1334 int indx; 1335 ufs2_daddr_t *bap; 1336 { 1337 struct fs *fs; 1338 u_int cg, inocg; 1339 u_int avgbfree, startcg; 1340 ufs2_daddr_t pref; 1341 1342 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1343 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1344 fs = ip->i_fs; 1345 /* 1346 * Allocation of indirect blocks is indicated by passing negative 1347 * values in indx: -1 for single indirect, -2 for double indirect, 1348 * -3 for triple indirect. As noted below, we attempt to allocate 1349 * the first indirect inline with the file data. For all later 1350 * indirect blocks, the data is often allocated in other cylinder 1351 * groups. However to speed random file access and to speed up 1352 * fsck, the filesystem reserves the first fs_metaspace blocks 1353 * (typically half of fs_minfree) of the data area of each cylinder 1354 * group to hold these later indirect blocks. 1355 */ 1356 inocg = ino_to_cg(fs, ip->i_number); 1357 if (indx < 0) { 1358 /* 1359 * Our preference for indirect blocks is the zone at the 1360 * beginning of the inode's cylinder group data area that 1361 * we try to reserve for indirect blocks. 1362 */ 1363 pref = cgmeta(fs, inocg); 1364 /* 1365 * If we are allocating the first indirect block, try to 1366 * place it immediately following the last direct block. 1367 */ 1368 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1369 ip->i_din2->di_db[NDADDR - 1] != 0) 1370 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag; 1371 return (pref); 1372 } 1373 /* 1374 * If we are allocating the first data block in the first indirect 1375 * block and the indirect has been allocated in the data block area, 1376 * try to place it immediately following the indirect block. 1377 */ 1378 if (lbn == NDADDR) { 1379 pref = ip->i_din2->di_ib[0]; 1380 if (pref != 0 && pref >= cgdata(fs, inocg) && 1381 pref < cgbase(fs, inocg + 1)) 1382 return (pref + fs->fs_frag); 1383 } 1384 /* 1385 * If we are at the beginning of a file, or we have already allocated 1386 * the maximum number of blocks per cylinder group, or we do not 1387 * have a block allocated immediately preceeding us, then we need 1388 * to decide where to start allocating new blocks. 1389 */ 1390 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1391 /* 1392 * If we are allocating a directory data block, we want 1393 * to place it in the metadata area. 1394 */ 1395 if ((ip->i_mode & IFMT) == IFDIR) 1396 return (cgmeta(fs, inocg)); 1397 /* 1398 * Until we fill all the direct and all the first indirect's 1399 * blocks, we try to allocate in the data area of the inode's 1400 * cylinder group. 1401 */ 1402 if (lbn < NDADDR + NINDIR(fs)) 1403 return (cgdata(fs, inocg)); 1404 /* 1405 * Find a cylinder with greater than average number of 1406 * unused data blocks. 1407 */ 1408 if (indx == 0 || bap[indx - 1] == 0) 1409 startcg = inocg + lbn / fs->fs_maxbpg; 1410 else 1411 startcg = dtog(fs, bap[indx - 1]) + 1; 1412 startcg %= fs->fs_ncg; 1413 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1414 for (cg = startcg; cg < fs->fs_ncg; cg++) 1415 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1416 fs->fs_cgrotor = cg; 1417 return (cgdata(fs, cg)); 1418 } 1419 for (cg = 0; cg <= startcg; cg++) 1420 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1421 fs->fs_cgrotor = cg; 1422 return (cgdata(fs, cg)); 1423 } 1424 return (0); 1425 } 1426 /* 1427 * Otherwise, we just always try to lay things out contiguously. 1428 */ 1429 return (bap[indx - 1] + fs->fs_frag); 1430 } 1431 1432 /* 1433 * Implement the cylinder overflow algorithm. 1434 * 1435 * The policy implemented by this algorithm is: 1436 * 1) allocate the block in its requested cylinder group. 1437 * 2) quadradically rehash on the cylinder group number. 1438 * 3) brute force search for a free block. 1439 * 1440 * Must be called with the UFS lock held. Will release the lock on success 1441 * and return with it held on failure. 1442 */ 1443 /*VARARGS5*/ 1444 static ufs2_daddr_t 1445 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1446 struct inode *ip; 1447 u_int cg; 1448 ufs2_daddr_t pref; 1449 int size; /* Search size for data blocks, mode for inodes */ 1450 int rsize; /* Real allocated size. */ 1451 allocfcn_t *allocator; 1452 { 1453 struct fs *fs; 1454 ufs2_daddr_t result; 1455 u_int i, icg = cg; 1456 1457 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1458 #ifdef INVARIANTS 1459 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1460 panic("ffs_hashalloc: allocation on suspended filesystem"); 1461 #endif 1462 fs = ip->i_fs; 1463 /* 1464 * 1: preferred cylinder group 1465 */ 1466 result = (*allocator)(ip, cg, pref, size, rsize); 1467 if (result) 1468 return (result); 1469 /* 1470 * 2: quadratic rehash 1471 */ 1472 for (i = 1; i < fs->fs_ncg; i *= 2) { 1473 cg += i; 1474 if (cg >= fs->fs_ncg) 1475 cg -= fs->fs_ncg; 1476 result = (*allocator)(ip, cg, 0, size, rsize); 1477 if (result) 1478 return (result); 1479 } 1480 /* 1481 * 3: brute force search 1482 * Note that we start at i == 2, since 0 was checked initially, 1483 * and 1 is always checked in the quadratic rehash. 1484 */ 1485 cg = (icg + 2) % fs->fs_ncg; 1486 for (i = 2; i < fs->fs_ncg; i++) { 1487 result = (*allocator)(ip, cg, 0, size, rsize); 1488 if (result) 1489 return (result); 1490 cg++; 1491 if (cg == fs->fs_ncg) 1492 cg = 0; 1493 } 1494 return (0); 1495 } 1496 1497 /* 1498 * Determine whether a fragment can be extended. 1499 * 1500 * Check to see if the necessary fragments are available, and 1501 * if they are, allocate them. 1502 */ 1503 static ufs2_daddr_t 1504 ffs_fragextend(ip, cg, bprev, osize, nsize) 1505 struct inode *ip; 1506 u_int cg; 1507 ufs2_daddr_t bprev; 1508 int osize, nsize; 1509 { 1510 struct fs *fs; 1511 struct cg *cgp; 1512 struct buf *bp; 1513 struct ufsmount *ump; 1514 int nffree; 1515 long bno; 1516 int frags, bbase; 1517 int i, error; 1518 u_int8_t *blksfree; 1519 1520 ump = ip->i_ump; 1521 fs = ip->i_fs; 1522 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1523 return (0); 1524 frags = numfrags(fs, nsize); 1525 bbase = fragnum(fs, bprev); 1526 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1527 /* cannot extend across a block boundary */ 1528 return (0); 1529 } 1530 UFS_UNLOCK(ump); 1531 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1532 (int)fs->fs_cgsize, NOCRED, &bp); 1533 if (error) 1534 goto fail; 1535 cgp = (struct cg *)bp->b_data; 1536 if (!cg_chkmagic(cgp)) 1537 goto fail; 1538 bp->b_xflags |= BX_BKGRDWRITE; 1539 cgp->cg_old_time = cgp->cg_time = time_second; 1540 bno = dtogd(fs, bprev); 1541 blksfree = cg_blksfree(cgp); 1542 for (i = numfrags(fs, osize); i < frags; i++) 1543 if (isclr(blksfree, bno + i)) 1544 goto fail; 1545 /* 1546 * the current fragment can be extended 1547 * deduct the count on fragment being extended into 1548 * increase the count on the remaining fragment (if any) 1549 * allocate the extended piece 1550 */ 1551 for (i = frags; i < fs->fs_frag - bbase; i++) 1552 if (isclr(blksfree, bno + i)) 1553 break; 1554 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1555 if (i != frags) 1556 cgp->cg_frsum[i - frags]++; 1557 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1558 clrbit(blksfree, bno + i); 1559 cgp->cg_cs.cs_nffree--; 1560 nffree++; 1561 } 1562 UFS_LOCK(ump); 1563 fs->fs_cstotal.cs_nffree -= nffree; 1564 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1565 fs->fs_fmod = 1; 1566 ACTIVECLEAR(fs, cg); 1567 UFS_UNLOCK(ump); 1568 if (DOINGSOFTDEP(ITOV(ip))) 1569 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1570 frags, numfrags(fs, osize)); 1571 bdwrite(bp); 1572 return (bprev); 1573 1574 fail: 1575 brelse(bp); 1576 UFS_LOCK(ump); 1577 return (0); 1578 1579 } 1580 1581 /* 1582 * Determine whether a block can be allocated. 1583 * 1584 * Check to see if a block of the appropriate size is available, 1585 * and if it is, allocate it. 1586 */ 1587 static ufs2_daddr_t 1588 ffs_alloccg(ip, cg, bpref, size, rsize) 1589 struct inode *ip; 1590 u_int cg; 1591 ufs2_daddr_t bpref; 1592 int size; 1593 int rsize; 1594 { 1595 struct fs *fs; 1596 struct cg *cgp; 1597 struct buf *bp; 1598 struct ufsmount *ump; 1599 ufs1_daddr_t bno; 1600 ufs2_daddr_t blkno; 1601 int i, allocsiz, error, frags; 1602 u_int8_t *blksfree; 1603 1604 ump = ip->i_ump; 1605 fs = ip->i_fs; 1606 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1607 return (0); 1608 UFS_UNLOCK(ump); 1609 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1610 (int)fs->fs_cgsize, NOCRED, &bp); 1611 if (error) 1612 goto fail; 1613 cgp = (struct cg *)bp->b_data; 1614 if (!cg_chkmagic(cgp) || 1615 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1616 goto fail; 1617 bp->b_xflags |= BX_BKGRDWRITE; 1618 cgp->cg_old_time = cgp->cg_time = time_second; 1619 if (size == fs->fs_bsize) { 1620 UFS_LOCK(ump); 1621 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1622 ACTIVECLEAR(fs, cg); 1623 UFS_UNLOCK(ump); 1624 bdwrite(bp); 1625 return (blkno); 1626 } 1627 /* 1628 * check to see if any fragments are already available 1629 * allocsiz is the size which will be allocated, hacking 1630 * it down to a smaller size if necessary 1631 */ 1632 blksfree = cg_blksfree(cgp); 1633 frags = numfrags(fs, size); 1634 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1635 if (cgp->cg_frsum[allocsiz] != 0) 1636 break; 1637 if (allocsiz == fs->fs_frag) { 1638 /* 1639 * no fragments were available, so a block will be 1640 * allocated, and hacked up 1641 */ 1642 if (cgp->cg_cs.cs_nbfree == 0) 1643 goto fail; 1644 UFS_LOCK(ump); 1645 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1646 ACTIVECLEAR(fs, cg); 1647 UFS_UNLOCK(ump); 1648 bdwrite(bp); 1649 return (blkno); 1650 } 1651 KASSERT(size == rsize, 1652 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1653 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1654 if (bno < 0) 1655 goto fail; 1656 for (i = 0; i < frags; i++) 1657 clrbit(blksfree, bno + i); 1658 cgp->cg_cs.cs_nffree -= frags; 1659 cgp->cg_frsum[allocsiz]--; 1660 if (frags != allocsiz) 1661 cgp->cg_frsum[allocsiz - frags]++; 1662 UFS_LOCK(ump); 1663 fs->fs_cstotal.cs_nffree -= frags; 1664 fs->fs_cs(fs, cg).cs_nffree -= frags; 1665 fs->fs_fmod = 1; 1666 blkno = cgbase(fs, cg) + bno; 1667 ACTIVECLEAR(fs, cg); 1668 UFS_UNLOCK(ump); 1669 if (DOINGSOFTDEP(ITOV(ip))) 1670 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1671 bdwrite(bp); 1672 return (blkno); 1673 1674 fail: 1675 brelse(bp); 1676 UFS_LOCK(ump); 1677 return (0); 1678 } 1679 1680 /* 1681 * Allocate a block in a cylinder group. 1682 * 1683 * This algorithm implements the following policy: 1684 * 1) allocate the requested block. 1685 * 2) allocate a rotationally optimal block in the same cylinder. 1686 * 3) allocate the next available block on the block rotor for the 1687 * specified cylinder group. 1688 * Note that this routine only allocates fs_bsize blocks; these 1689 * blocks may be fragmented by the routine that allocates them. 1690 */ 1691 static ufs2_daddr_t 1692 ffs_alloccgblk(ip, bp, bpref, size) 1693 struct inode *ip; 1694 struct buf *bp; 1695 ufs2_daddr_t bpref; 1696 int size; 1697 { 1698 struct fs *fs; 1699 struct cg *cgp; 1700 struct ufsmount *ump; 1701 ufs1_daddr_t bno; 1702 ufs2_daddr_t blkno; 1703 u_int8_t *blksfree; 1704 int i, cgbpref; 1705 1706 fs = ip->i_fs; 1707 ump = ip->i_ump; 1708 mtx_assert(UFS_MTX(ump), MA_OWNED); 1709 cgp = (struct cg *)bp->b_data; 1710 blksfree = cg_blksfree(cgp); 1711 if (bpref == 0) { 1712 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1713 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1714 /* map bpref to correct zone in this cg */ 1715 if (bpref < cgdata(fs, cgbpref)) 1716 bpref = cgmeta(fs, cgp->cg_cgx); 1717 else 1718 bpref = cgdata(fs, cgp->cg_cgx); 1719 } 1720 /* 1721 * if the requested block is available, use it 1722 */ 1723 bno = dtogd(fs, blknum(fs, bpref)); 1724 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1725 goto gotit; 1726 /* 1727 * Take the next available block in this cylinder group. 1728 */ 1729 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1730 if (bno < 0) 1731 return (0); 1732 /* Update cg_rotor only if allocated from the data zone */ 1733 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1734 cgp->cg_rotor = bno; 1735 gotit: 1736 blkno = fragstoblks(fs, bno); 1737 ffs_clrblock(fs, blksfree, (long)blkno); 1738 ffs_clusteracct(fs, cgp, blkno, -1); 1739 cgp->cg_cs.cs_nbfree--; 1740 fs->fs_cstotal.cs_nbfree--; 1741 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1742 fs->fs_fmod = 1; 1743 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1744 /* 1745 * If the caller didn't want the whole block free the frags here. 1746 */ 1747 size = numfrags(fs, size); 1748 if (size != fs->fs_frag) { 1749 bno = dtogd(fs, blkno); 1750 for (i = size; i < fs->fs_frag; i++) 1751 setbit(blksfree, bno + i); 1752 i = fs->fs_frag - size; 1753 cgp->cg_cs.cs_nffree += i; 1754 fs->fs_cstotal.cs_nffree += i; 1755 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1756 fs->fs_fmod = 1; 1757 cgp->cg_frsum[i]++; 1758 } 1759 /* XXX Fixme. */ 1760 UFS_UNLOCK(ump); 1761 if (DOINGSOFTDEP(ITOV(ip))) 1762 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1763 size, 0); 1764 UFS_LOCK(ump); 1765 return (blkno); 1766 } 1767 1768 /* 1769 * Determine whether a cluster can be allocated. 1770 * 1771 * We do not currently check for optimal rotational layout if there 1772 * are multiple choices in the same cylinder group. Instead we just 1773 * take the first one that we find following bpref. 1774 */ 1775 static ufs2_daddr_t 1776 ffs_clusteralloc(ip, cg, bpref, len, unused) 1777 struct inode *ip; 1778 u_int cg; 1779 ufs2_daddr_t bpref; 1780 int len; 1781 int unused; 1782 { 1783 struct fs *fs; 1784 struct cg *cgp; 1785 struct buf *bp; 1786 struct ufsmount *ump; 1787 int i, run, bit, map, got; 1788 ufs2_daddr_t bno; 1789 u_char *mapp; 1790 int32_t *lp; 1791 u_int8_t *blksfree; 1792 1793 fs = ip->i_fs; 1794 ump = ip->i_ump; 1795 if (fs->fs_maxcluster[cg] < len) 1796 return (0); 1797 UFS_UNLOCK(ump); 1798 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1799 NOCRED, &bp)) 1800 goto fail_lock; 1801 cgp = (struct cg *)bp->b_data; 1802 if (!cg_chkmagic(cgp)) 1803 goto fail_lock; 1804 bp->b_xflags |= BX_BKGRDWRITE; 1805 /* 1806 * Check to see if a cluster of the needed size (or bigger) is 1807 * available in this cylinder group. 1808 */ 1809 lp = &cg_clustersum(cgp)[len]; 1810 for (i = len; i <= fs->fs_contigsumsize; i++) 1811 if (*lp++ > 0) 1812 break; 1813 if (i > fs->fs_contigsumsize) { 1814 /* 1815 * This is the first time looking for a cluster in this 1816 * cylinder group. Update the cluster summary information 1817 * to reflect the true maximum sized cluster so that 1818 * future cluster allocation requests can avoid reading 1819 * the cylinder group map only to find no clusters. 1820 */ 1821 lp = &cg_clustersum(cgp)[len - 1]; 1822 for (i = len - 1; i > 0; i--) 1823 if (*lp-- > 0) 1824 break; 1825 UFS_LOCK(ump); 1826 fs->fs_maxcluster[cg] = i; 1827 goto fail; 1828 } 1829 /* 1830 * Search the cluster map to find a big enough cluster. 1831 * We take the first one that we find, even if it is larger 1832 * than we need as we prefer to get one close to the previous 1833 * block allocation. We do not search before the current 1834 * preference point as we do not want to allocate a block 1835 * that is allocated before the previous one (as we will 1836 * then have to wait for another pass of the elevator 1837 * algorithm before it will be read). We prefer to fail and 1838 * be recalled to try an allocation in the next cylinder group. 1839 */ 1840 if (dtog(fs, bpref) != cg) 1841 bpref = cgdata(fs, cg); 1842 else 1843 bpref = blknum(fs, bpref); 1844 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1845 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1846 map = *mapp++; 1847 bit = 1 << (bpref % NBBY); 1848 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1849 if ((map & bit) == 0) { 1850 run = 0; 1851 } else { 1852 run++; 1853 if (run == len) 1854 break; 1855 } 1856 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1857 bit <<= 1; 1858 } else { 1859 map = *mapp++; 1860 bit = 1; 1861 } 1862 } 1863 if (got >= cgp->cg_nclusterblks) 1864 goto fail_lock; 1865 /* 1866 * Allocate the cluster that we have found. 1867 */ 1868 blksfree = cg_blksfree(cgp); 1869 for (i = 1; i <= len; i++) 1870 if (!ffs_isblock(fs, blksfree, got - run + i)) 1871 panic("ffs_clusteralloc: map mismatch"); 1872 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1873 if (dtog(fs, bno) != cg) 1874 panic("ffs_clusteralloc: allocated out of group"); 1875 len = blkstofrags(fs, len); 1876 UFS_LOCK(ump); 1877 for (i = 0; i < len; i += fs->fs_frag) 1878 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1879 panic("ffs_clusteralloc: lost block"); 1880 ACTIVECLEAR(fs, cg); 1881 UFS_UNLOCK(ump); 1882 bdwrite(bp); 1883 return (bno); 1884 1885 fail_lock: 1886 UFS_LOCK(ump); 1887 fail: 1888 brelse(bp); 1889 return (0); 1890 } 1891 1892 static inline struct buf * 1893 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1894 { 1895 struct fs *fs; 1896 1897 fs = ip->i_fs; 1898 return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, 1899 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 1900 gbflags)); 1901 } 1902 1903 /* 1904 * Determine whether an inode can be allocated. 1905 * 1906 * Check to see if an inode is available, and if it is, 1907 * allocate it using the following policy: 1908 * 1) allocate the requested inode. 1909 * 2) allocate the next available inode after the requested 1910 * inode in the specified cylinder group. 1911 */ 1912 static ufs2_daddr_t 1913 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1914 struct inode *ip; 1915 u_int cg; 1916 ufs2_daddr_t ipref; 1917 int mode; 1918 int unused; 1919 { 1920 struct fs *fs; 1921 struct cg *cgp; 1922 struct buf *bp, *ibp; 1923 struct ufsmount *ump; 1924 u_int8_t *inosused, *loc; 1925 struct ufs2_dinode *dp2; 1926 int error, start, len, i; 1927 u_int32_t old_initediblk; 1928 1929 fs = ip->i_fs; 1930 ump = ip->i_ump; 1931 check_nifree: 1932 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1933 return (0); 1934 UFS_UNLOCK(ump); 1935 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1936 (int)fs->fs_cgsize, NOCRED, &bp); 1937 if (error) { 1938 brelse(bp); 1939 UFS_LOCK(ump); 1940 return (0); 1941 } 1942 cgp = (struct cg *)bp->b_data; 1943 restart: 1944 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1945 brelse(bp); 1946 UFS_LOCK(ump); 1947 return (0); 1948 } 1949 bp->b_xflags |= BX_BKGRDWRITE; 1950 inosused = cg_inosused(cgp); 1951 if (ipref) { 1952 ipref %= fs->fs_ipg; 1953 if (isclr(inosused, ipref)) 1954 goto gotit; 1955 } 1956 start = cgp->cg_irotor / NBBY; 1957 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1958 loc = memcchr(&inosused[start], 0xff, len); 1959 if (loc == NULL) { 1960 len = start + 1; 1961 start = 0; 1962 loc = memcchr(&inosused[start], 0xff, len); 1963 if (loc == NULL) { 1964 printf("cg = %d, irotor = %ld, fs = %s\n", 1965 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1966 panic("ffs_nodealloccg: map corrupted"); 1967 /* NOTREACHED */ 1968 } 1969 } 1970 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 1971 gotit: 1972 /* 1973 * Check to see if we need to initialize more inodes. 1974 */ 1975 if (fs->fs_magic == FS_UFS2_MAGIC && 1976 ipref + INOPB(fs) > cgp->cg_initediblk && 1977 cgp->cg_initediblk < cgp->cg_niblk) { 1978 old_initediblk = cgp->cg_initediblk; 1979 1980 /* 1981 * Free the cylinder group lock before writing the 1982 * initialized inode block. Entering the 1983 * babarrierwrite() with the cylinder group lock 1984 * causes lock order violation between the lock and 1985 * snaplk. 1986 * 1987 * Another thread can decide to initialize the same 1988 * inode block, but whichever thread first gets the 1989 * cylinder group lock after writing the newly 1990 * allocated inode block will update it and the other 1991 * will realize that it has lost and leave the 1992 * cylinder group unchanged. 1993 */ 1994 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 1995 brelse(bp); 1996 if (ibp == NULL) { 1997 /* 1998 * The inode block buffer is already owned by 1999 * another thread, which must initialize it. 2000 * Wait on the buffer to allow another thread 2001 * to finish the updates, with dropped cg 2002 * buffer lock, then retry. 2003 */ 2004 ibp = getinobuf(ip, cg, old_initediblk, 0); 2005 brelse(ibp); 2006 UFS_LOCK(ump); 2007 goto check_nifree; 2008 } 2009 bzero(ibp->b_data, (int)fs->fs_bsize); 2010 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2011 for (i = 0; i < INOPB(fs); i++) { 2012 dp2->di_gen = arc4random() / 2 + 1; 2013 dp2++; 2014 } 2015 /* 2016 * Rather than adding a soft updates dependency to ensure 2017 * that the new inode block is written before it is claimed 2018 * by the cylinder group map, we just do a barrier write 2019 * here. The barrier write will ensure that the inode block 2020 * gets written before the updated cylinder group map can be 2021 * written. The barrier write should only slow down bulk 2022 * loading of newly created filesystems. 2023 */ 2024 babarrierwrite(ibp); 2025 2026 /* 2027 * After the inode block is written, try to update the 2028 * cg initediblk pointer. If another thread beat us 2029 * to it, then leave it unchanged as the other thread 2030 * has already set it correctly. 2031 */ 2032 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 2033 (int)fs->fs_cgsize, NOCRED, &bp); 2034 UFS_LOCK(ump); 2035 ACTIVECLEAR(fs, cg); 2036 UFS_UNLOCK(ump); 2037 if (error != 0) { 2038 brelse(bp); 2039 return (error); 2040 } 2041 cgp = (struct cg *)bp->b_data; 2042 if (cgp->cg_initediblk == old_initediblk) 2043 cgp->cg_initediblk += INOPB(fs); 2044 goto restart; 2045 } 2046 cgp->cg_old_time = cgp->cg_time = time_second; 2047 cgp->cg_irotor = ipref; 2048 UFS_LOCK(ump); 2049 ACTIVECLEAR(fs, cg); 2050 setbit(inosused, ipref); 2051 cgp->cg_cs.cs_nifree--; 2052 fs->fs_cstotal.cs_nifree--; 2053 fs->fs_cs(fs, cg).cs_nifree--; 2054 fs->fs_fmod = 1; 2055 if ((mode & IFMT) == IFDIR) { 2056 cgp->cg_cs.cs_ndir++; 2057 fs->fs_cstotal.cs_ndir++; 2058 fs->fs_cs(fs, cg).cs_ndir++; 2059 } 2060 UFS_UNLOCK(ump); 2061 if (DOINGSOFTDEP(ITOV(ip))) 2062 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2063 bdwrite(bp); 2064 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2065 } 2066 2067 /* 2068 * Free a block or fragment. 2069 * 2070 * The specified block or fragment is placed back in the 2071 * free map. If a fragment is deallocated, a possible 2072 * block reassembly is checked. 2073 */ 2074 static void 2075 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2076 struct ufsmount *ump; 2077 struct fs *fs; 2078 struct vnode *devvp; 2079 ufs2_daddr_t bno; 2080 long size; 2081 ino_t inum; 2082 struct workhead *dephd; 2083 { 2084 struct mount *mp; 2085 struct cg *cgp; 2086 struct buf *bp; 2087 ufs1_daddr_t fragno, cgbno; 2088 ufs2_daddr_t cgblkno; 2089 int i, blk, frags, bbase; 2090 u_int cg; 2091 u_int8_t *blksfree; 2092 struct cdev *dev; 2093 2094 cg = dtog(fs, bno); 2095 if (devvp->v_type == VREG) { 2096 /* devvp is a snapshot */ 2097 dev = VTOI(devvp)->i_devvp->v_rdev; 2098 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 2099 } else { 2100 /* devvp is a normal disk device */ 2101 dev = devvp->v_rdev; 2102 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 2103 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2104 } 2105 #ifdef INVARIANTS 2106 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2107 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2108 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2109 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2110 size, fs->fs_fsmnt); 2111 panic("ffs_blkfree_cg: bad size"); 2112 } 2113 #endif 2114 if ((u_int)bno >= fs->fs_size) { 2115 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2116 (u_long)inum); 2117 ffs_fserr(fs, inum, "bad block"); 2118 return; 2119 } 2120 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2121 brelse(bp); 2122 return; 2123 } 2124 cgp = (struct cg *)bp->b_data; 2125 if (!cg_chkmagic(cgp)) { 2126 brelse(bp); 2127 return; 2128 } 2129 bp->b_xflags |= BX_BKGRDWRITE; 2130 cgp->cg_old_time = cgp->cg_time = time_second; 2131 cgbno = dtogd(fs, bno); 2132 blksfree = cg_blksfree(cgp); 2133 UFS_LOCK(ump); 2134 if (size == fs->fs_bsize) { 2135 fragno = fragstoblks(fs, cgbno); 2136 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2137 if (devvp->v_type == VREG) { 2138 UFS_UNLOCK(ump); 2139 /* devvp is a snapshot */ 2140 brelse(bp); 2141 return; 2142 } 2143 printf("dev = %s, block = %jd, fs = %s\n", 2144 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2145 panic("ffs_blkfree_cg: freeing free block"); 2146 } 2147 ffs_setblock(fs, blksfree, fragno); 2148 ffs_clusteracct(fs, cgp, fragno, 1); 2149 cgp->cg_cs.cs_nbfree++; 2150 fs->fs_cstotal.cs_nbfree++; 2151 fs->fs_cs(fs, cg).cs_nbfree++; 2152 } else { 2153 bbase = cgbno - fragnum(fs, cgbno); 2154 /* 2155 * decrement the counts associated with the old frags 2156 */ 2157 blk = blkmap(fs, blksfree, bbase); 2158 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2159 /* 2160 * deallocate the fragment 2161 */ 2162 frags = numfrags(fs, size); 2163 for (i = 0; i < frags; i++) { 2164 if (isset(blksfree, cgbno + i)) { 2165 printf("dev = %s, block = %jd, fs = %s\n", 2166 devtoname(dev), (intmax_t)(bno + i), 2167 fs->fs_fsmnt); 2168 panic("ffs_blkfree_cg: freeing free frag"); 2169 } 2170 setbit(blksfree, cgbno + i); 2171 } 2172 cgp->cg_cs.cs_nffree += i; 2173 fs->fs_cstotal.cs_nffree += i; 2174 fs->fs_cs(fs, cg).cs_nffree += i; 2175 /* 2176 * add back in counts associated with the new frags 2177 */ 2178 blk = blkmap(fs, blksfree, bbase); 2179 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2180 /* 2181 * if a complete block has been reassembled, account for it 2182 */ 2183 fragno = fragstoblks(fs, bbase); 2184 if (ffs_isblock(fs, blksfree, fragno)) { 2185 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2186 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2187 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2188 ffs_clusteracct(fs, cgp, fragno, 1); 2189 cgp->cg_cs.cs_nbfree++; 2190 fs->fs_cstotal.cs_nbfree++; 2191 fs->fs_cs(fs, cg).cs_nbfree++; 2192 } 2193 } 2194 fs->fs_fmod = 1; 2195 ACTIVECLEAR(fs, cg); 2196 UFS_UNLOCK(ump); 2197 mp = UFSTOVFS(ump); 2198 if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG) 2199 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2200 numfrags(fs, size), dephd); 2201 bdwrite(bp); 2202 } 2203 2204 TASKQUEUE_DEFINE_THREAD(ffs_trim); 2205 2206 struct ffs_blkfree_trim_params { 2207 struct task task; 2208 struct ufsmount *ump; 2209 struct vnode *devvp; 2210 ufs2_daddr_t bno; 2211 long size; 2212 ino_t inum; 2213 struct workhead *pdephd; 2214 struct workhead dephd; 2215 }; 2216 2217 static void 2218 ffs_blkfree_trim_task(ctx, pending) 2219 void *ctx; 2220 int pending; 2221 { 2222 struct ffs_blkfree_trim_params *tp; 2223 2224 tp = ctx; 2225 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2226 tp->inum, tp->pdephd); 2227 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2228 free(tp, M_TEMP); 2229 } 2230 2231 static void 2232 ffs_blkfree_trim_completed(bip) 2233 struct bio *bip; 2234 { 2235 struct ffs_blkfree_trim_params *tp; 2236 2237 tp = bip->bio_caller2; 2238 g_destroy_bio(bip); 2239 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2240 taskqueue_enqueue(taskqueue_ffs_trim, &tp->task); 2241 } 2242 2243 void 2244 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2245 struct ufsmount *ump; 2246 struct fs *fs; 2247 struct vnode *devvp; 2248 ufs2_daddr_t bno; 2249 long size; 2250 ino_t inum; 2251 enum vtype vtype; 2252 struct workhead *dephd; 2253 { 2254 struct mount *mp; 2255 struct bio *bip; 2256 struct ffs_blkfree_trim_params *tp; 2257 2258 /* 2259 * Check to see if a snapshot wants to claim the block. 2260 * Check that devvp is a normal disk device, not a snapshot, 2261 * it has a snapshot(s) associated with it, and one of the 2262 * snapshots wants to claim the block. 2263 */ 2264 if (devvp->v_type != VREG && 2265 (devvp->v_vflag & VV_COPYONWRITE) && 2266 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2267 return; 2268 } 2269 /* 2270 * Nothing to delay if TRIM is disabled, or the operation is 2271 * performed on the snapshot. 2272 */ 2273 if (!ump->um_candelete || devvp->v_type == VREG) { 2274 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2275 return; 2276 } 2277 2278 /* 2279 * Postpone the set of the free bit in the cg bitmap until the 2280 * BIO_DELETE is completed. Otherwise, due to disk queue 2281 * reordering, TRIM might be issued after we reuse the block 2282 * and write some new data into it. 2283 */ 2284 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2285 tp->ump = ump; 2286 tp->devvp = devvp; 2287 tp->bno = bno; 2288 tp->size = size; 2289 tp->inum = inum; 2290 if (dephd != NULL) { 2291 LIST_INIT(&tp->dephd); 2292 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2293 tp->pdephd = &tp->dephd; 2294 } else 2295 tp->pdephd = NULL; 2296 2297 bip = g_alloc_bio(); 2298 bip->bio_cmd = BIO_DELETE; 2299 bip->bio_offset = dbtob(fsbtodb(fs, bno)); 2300 bip->bio_done = ffs_blkfree_trim_completed; 2301 bip->bio_length = size; 2302 bip->bio_caller2 = tp; 2303 2304 mp = UFSTOVFS(ump); 2305 vn_start_secondary_write(NULL, &mp, 0); 2306 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private); 2307 } 2308 2309 #ifdef INVARIANTS 2310 /* 2311 * Verify allocation of a block or fragment. Returns true if block or 2312 * fragment is allocated, false if it is free. 2313 */ 2314 static int 2315 ffs_checkblk(ip, bno, size) 2316 struct inode *ip; 2317 ufs2_daddr_t bno; 2318 long size; 2319 { 2320 struct fs *fs; 2321 struct cg *cgp; 2322 struct buf *bp; 2323 ufs1_daddr_t cgbno; 2324 int i, error, frags, free; 2325 u_int8_t *blksfree; 2326 2327 fs = ip->i_fs; 2328 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2329 printf("bsize = %ld, size = %ld, fs = %s\n", 2330 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2331 panic("ffs_checkblk: bad size"); 2332 } 2333 if ((u_int)bno >= fs->fs_size) 2334 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2335 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 2336 (int)fs->fs_cgsize, NOCRED, &bp); 2337 if (error) 2338 panic("ffs_checkblk: cg bread failed"); 2339 cgp = (struct cg *)bp->b_data; 2340 if (!cg_chkmagic(cgp)) 2341 panic("ffs_checkblk: cg magic mismatch"); 2342 bp->b_xflags |= BX_BKGRDWRITE; 2343 blksfree = cg_blksfree(cgp); 2344 cgbno = dtogd(fs, bno); 2345 if (size == fs->fs_bsize) { 2346 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2347 } else { 2348 frags = numfrags(fs, size); 2349 for (free = 0, i = 0; i < frags; i++) 2350 if (isset(blksfree, cgbno + i)) 2351 free++; 2352 if (free != 0 && free != frags) 2353 panic("ffs_checkblk: partially free fragment"); 2354 } 2355 brelse(bp); 2356 return (!free); 2357 } 2358 #endif /* INVARIANTS */ 2359 2360 /* 2361 * Free an inode. 2362 */ 2363 int 2364 ffs_vfree(pvp, ino, mode) 2365 struct vnode *pvp; 2366 ino_t ino; 2367 int mode; 2368 { 2369 struct inode *ip; 2370 2371 if (DOINGSOFTDEP(pvp)) { 2372 softdep_freefile(pvp, ino, mode); 2373 return (0); 2374 } 2375 ip = VTOI(pvp); 2376 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode, 2377 NULL)); 2378 } 2379 2380 /* 2381 * Do the actual free operation. 2382 * The specified inode is placed back in the free map. 2383 */ 2384 int 2385 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2386 struct ufsmount *ump; 2387 struct fs *fs; 2388 struct vnode *devvp; 2389 ino_t ino; 2390 int mode; 2391 struct workhead *wkhd; 2392 { 2393 struct cg *cgp; 2394 struct buf *bp; 2395 ufs2_daddr_t cgbno; 2396 int error; 2397 u_int cg; 2398 u_int8_t *inosused; 2399 struct cdev *dev; 2400 2401 cg = ino_to_cg(fs, ino); 2402 if (devvp->v_type == VREG) { 2403 /* devvp is a snapshot */ 2404 dev = VTOI(devvp)->i_devvp->v_rdev; 2405 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2406 } else { 2407 /* devvp is a normal disk device */ 2408 dev = devvp->v_rdev; 2409 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2410 } 2411 if (ino >= fs->fs_ipg * fs->fs_ncg) 2412 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2413 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2414 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2415 brelse(bp); 2416 return (error); 2417 } 2418 cgp = (struct cg *)bp->b_data; 2419 if (!cg_chkmagic(cgp)) { 2420 brelse(bp); 2421 return (0); 2422 } 2423 bp->b_xflags |= BX_BKGRDWRITE; 2424 cgp->cg_old_time = cgp->cg_time = time_second; 2425 inosused = cg_inosused(cgp); 2426 ino %= fs->fs_ipg; 2427 if (isclr(inosused, ino)) { 2428 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2429 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2430 if (fs->fs_ronly == 0) 2431 panic("ffs_freefile: freeing free inode"); 2432 } 2433 clrbit(inosused, ino); 2434 if (ino < cgp->cg_irotor) 2435 cgp->cg_irotor = ino; 2436 cgp->cg_cs.cs_nifree++; 2437 UFS_LOCK(ump); 2438 fs->fs_cstotal.cs_nifree++; 2439 fs->fs_cs(fs, cg).cs_nifree++; 2440 if ((mode & IFMT) == IFDIR) { 2441 cgp->cg_cs.cs_ndir--; 2442 fs->fs_cstotal.cs_ndir--; 2443 fs->fs_cs(fs, cg).cs_ndir--; 2444 } 2445 fs->fs_fmod = 1; 2446 ACTIVECLEAR(fs, cg); 2447 UFS_UNLOCK(ump); 2448 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG) 2449 softdep_setup_inofree(UFSTOVFS(ump), bp, 2450 ino + cg * fs->fs_ipg, wkhd); 2451 bdwrite(bp); 2452 return (0); 2453 } 2454 2455 /* 2456 * Check to see if a file is free. 2457 */ 2458 int 2459 ffs_checkfreefile(fs, devvp, ino) 2460 struct fs *fs; 2461 struct vnode *devvp; 2462 ino_t ino; 2463 { 2464 struct cg *cgp; 2465 struct buf *bp; 2466 ufs2_daddr_t cgbno; 2467 int ret; 2468 u_int cg; 2469 u_int8_t *inosused; 2470 2471 cg = ino_to_cg(fs, ino); 2472 if (devvp->v_type == VREG) { 2473 /* devvp is a snapshot */ 2474 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2475 } else { 2476 /* devvp is a normal disk device */ 2477 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2478 } 2479 if (ino >= fs->fs_ipg * fs->fs_ncg) 2480 return (1); 2481 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2482 brelse(bp); 2483 return (1); 2484 } 2485 cgp = (struct cg *)bp->b_data; 2486 if (!cg_chkmagic(cgp)) { 2487 brelse(bp); 2488 return (1); 2489 } 2490 inosused = cg_inosused(cgp); 2491 ino %= fs->fs_ipg; 2492 ret = isclr(inosused, ino); 2493 brelse(bp); 2494 return (ret); 2495 } 2496 2497 /* 2498 * Find a block of the specified size in the specified cylinder group. 2499 * 2500 * It is a panic if a request is made to find a block if none are 2501 * available. 2502 */ 2503 static ufs1_daddr_t 2504 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2505 struct fs *fs; 2506 struct cg *cgp; 2507 ufs2_daddr_t bpref; 2508 int allocsiz; 2509 { 2510 ufs1_daddr_t bno; 2511 int start, len, loc, i; 2512 int blk, field, subfield, pos; 2513 u_int8_t *blksfree; 2514 2515 /* 2516 * find the fragment by searching through the free block 2517 * map for an appropriate bit pattern 2518 */ 2519 if (bpref) 2520 start = dtogd(fs, bpref) / NBBY; 2521 else 2522 start = cgp->cg_frotor / NBBY; 2523 blksfree = cg_blksfree(cgp); 2524 len = howmany(fs->fs_fpg, NBBY) - start; 2525 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2526 fragtbl[fs->fs_frag], 2527 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2528 if (loc == 0) { 2529 len = start + 1; 2530 start = 0; 2531 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2532 fragtbl[fs->fs_frag], 2533 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2534 if (loc == 0) { 2535 printf("start = %d, len = %d, fs = %s\n", 2536 start, len, fs->fs_fsmnt); 2537 panic("ffs_alloccg: map corrupted"); 2538 /* NOTREACHED */ 2539 } 2540 } 2541 bno = (start + len - loc) * NBBY; 2542 cgp->cg_frotor = bno; 2543 /* 2544 * found the byte in the map 2545 * sift through the bits to find the selected frag 2546 */ 2547 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2548 blk = blkmap(fs, blksfree, bno); 2549 blk <<= 1; 2550 field = around[allocsiz]; 2551 subfield = inside[allocsiz]; 2552 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2553 if ((blk & field) == subfield) 2554 return (bno + pos); 2555 field <<= 1; 2556 subfield <<= 1; 2557 } 2558 } 2559 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2560 panic("ffs_alloccg: block not in map"); 2561 return (-1); 2562 } 2563 2564 /* 2565 * Fserr prints the name of a filesystem with an error diagnostic. 2566 * 2567 * The form of the error message is: 2568 * fs: error message 2569 */ 2570 void 2571 ffs_fserr(fs, inum, cp) 2572 struct fs *fs; 2573 ino_t inum; 2574 char *cp; 2575 { 2576 struct thread *td = curthread; /* XXX */ 2577 struct proc *p = td->td_proc; 2578 2579 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2580 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2581 fs->fs_fsmnt, cp); 2582 } 2583 2584 /* 2585 * This function provides the capability for the fsck program to 2586 * update an active filesystem. Fourteen operations are provided: 2587 * 2588 * adjrefcnt(inode, amt) - adjusts the reference count on the 2589 * specified inode by the specified amount. Under normal 2590 * operation the count should always go down. Decrementing 2591 * the count to zero will cause the inode to be freed. 2592 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2593 * inode by the specified amount. 2594 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2595 * adjust the superblock summary. 2596 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2597 * are marked as free. Inodes should never have to be marked 2598 * as in use. 2599 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2600 * are marked as free. Inodes should never have to be marked 2601 * as in use. 2602 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2603 * are marked as free. Blocks should never have to be marked 2604 * as in use. 2605 * setflags(flags, set/clear) - the fs_flags field has the specified 2606 * flags set (second parameter +1) or cleared (second parameter -1). 2607 * setcwd(dirinode) - set the current directory to dirinode in the 2608 * filesystem associated with the snapshot. 2609 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2610 * in the current directory is oldvalue then change it to newvalue. 2611 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2612 * with nameptr in the current directory is oldvalue then unlink it. 2613 * 2614 * The following functions may only be used on a quiescent filesystem 2615 * by the soft updates journal. They are not safe to be run on an active 2616 * filesystem. 2617 * 2618 * setinode(inode, dip) - the specified disk inode is replaced with the 2619 * contents pointed to by dip. 2620 * setbufoutput(fd, flags) - output associated with the specified file 2621 * descriptor (which must reference the character device supporting 2622 * the filesystem) switches from using physio to running through the 2623 * buffer cache when flags is set to 1. The descriptor reverts to 2624 * physio for output when flags is set to zero. 2625 */ 2626 2627 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2628 2629 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2630 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2631 2632 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2633 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2634 2635 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2636 sysctl_ffs_fsck, "Adjust number of directories"); 2637 2638 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2639 sysctl_ffs_fsck, "Adjust number of free blocks"); 2640 2641 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2642 sysctl_ffs_fsck, "Adjust number of free inodes"); 2643 2644 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2645 sysctl_ffs_fsck, "Adjust number of free frags"); 2646 2647 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2648 sysctl_ffs_fsck, "Adjust number of free clusters"); 2649 2650 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2651 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2652 2653 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2654 sysctl_ffs_fsck, "Free Range of File Inodes"); 2655 2656 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2657 sysctl_ffs_fsck, "Free Range of Blocks"); 2658 2659 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2660 sysctl_ffs_fsck, "Change Filesystem Flags"); 2661 2662 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2663 sysctl_ffs_fsck, "Set Current Working Directory"); 2664 2665 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2666 sysctl_ffs_fsck, "Change Value of .. Entry"); 2667 2668 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2669 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2670 2671 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2672 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2673 2674 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2675 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2676 2677 #define DEBUG 1 2678 #ifdef DEBUG 2679 static int fsckcmds = 0; 2680 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2681 #endif /* DEBUG */ 2682 2683 static int buffered_write(struct file *, struct uio *, struct ucred *, 2684 int, struct thread *); 2685 2686 static int 2687 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2688 { 2689 struct thread *td = curthread; 2690 struct fsck_cmd cmd; 2691 struct ufsmount *ump; 2692 struct vnode *vp, *vpold, *dvp, *fdvp; 2693 struct inode *ip, *dp; 2694 struct mount *mp; 2695 struct fs *fs; 2696 ufs2_daddr_t blkno; 2697 long blkcnt, blksize; 2698 struct filedesc *fdp; 2699 struct file *fp, *vfp; 2700 int filetype, error; 2701 static struct fileops *origops, bufferedops; 2702 2703 if (req->newlen > sizeof cmd) 2704 return (EBADRPC); 2705 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2706 return (error); 2707 if (cmd.version != FFS_CMD_VERSION) 2708 return (ERPCMISMATCH); 2709 if ((error = getvnode(td->td_proc->p_fd, cmd.handle, CAP_FSCK, 2710 &fp)) != 0) 2711 return (error); 2712 vp = fp->f_data; 2713 if (vp->v_type != VREG && vp->v_type != VDIR) { 2714 fdrop(fp, td); 2715 return (EINVAL); 2716 } 2717 vn_start_write(vp, &mp, V_WAIT); 2718 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2719 vn_finished_write(mp); 2720 fdrop(fp, td); 2721 return (EINVAL); 2722 } 2723 ump = VFSTOUFS(mp); 2724 if ((mp->mnt_flag & MNT_RDONLY) && 2725 ump->um_fsckpid != td->td_proc->p_pid) { 2726 vn_finished_write(mp); 2727 fdrop(fp, td); 2728 return (EROFS); 2729 } 2730 fs = ump->um_fs; 2731 filetype = IFREG; 2732 2733 switch (oidp->oid_number) { 2734 2735 case FFS_SET_FLAGS: 2736 #ifdef DEBUG 2737 if (fsckcmds) 2738 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2739 cmd.size > 0 ? "set" : "clear"); 2740 #endif /* DEBUG */ 2741 if (cmd.size > 0) 2742 fs->fs_flags |= (long)cmd.value; 2743 else 2744 fs->fs_flags &= ~(long)cmd.value; 2745 break; 2746 2747 case FFS_ADJ_REFCNT: 2748 #ifdef DEBUG 2749 if (fsckcmds) { 2750 printf("%s: adjust inode %jd link count by %jd\n", 2751 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2752 (intmax_t)cmd.size); 2753 } 2754 #endif /* DEBUG */ 2755 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2756 break; 2757 ip = VTOI(vp); 2758 ip->i_nlink += cmd.size; 2759 DIP_SET(ip, i_nlink, ip->i_nlink); 2760 ip->i_effnlink += cmd.size; 2761 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2762 error = ffs_update(vp, 1); 2763 if (DOINGSOFTDEP(vp)) 2764 softdep_change_linkcnt(ip); 2765 vput(vp); 2766 break; 2767 2768 case FFS_ADJ_BLKCNT: 2769 #ifdef DEBUG 2770 if (fsckcmds) { 2771 printf("%s: adjust inode %jd block count by %jd\n", 2772 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2773 (intmax_t)cmd.size); 2774 } 2775 #endif /* DEBUG */ 2776 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2777 break; 2778 ip = VTOI(vp); 2779 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2780 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2781 error = ffs_update(vp, 1); 2782 vput(vp); 2783 break; 2784 2785 case FFS_DIR_FREE: 2786 filetype = IFDIR; 2787 /* fall through */ 2788 2789 case FFS_FILE_FREE: 2790 #ifdef DEBUG 2791 if (fsckcmds) { 2792 if (cmd.size == 1) 2793 printf("%s: free %s inode %ju\n", 2794 mp->mnt_stat.f_mntonname, 2795 filetype == IFDIR ? "directory" : "file", 2796 (uintmax_t)cmd.value); 2797 else 2798 printf("%s: free %s inodes %ju-%ju\n", 2799 mp->mnt_stat.f_mntonname, 2800 filetype == IFDIR ? "directory" : "file", 2801 (uintmax_t)cmd.value, 2802 (uintmax_t)(cmd.value + cmd.size - 1)); 2803 } 2804 #endif /* DEBUG */ 2805 while (cmd.size > 0) { 2806 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2807 cmd.value, filetype, NULL))) 2808 break; 2809 cmd.size -= 1; 2810 cmd.value += 1; 2811 } 2812 break; 2813 2814 case FFS_BLK_FREE: 2815 #ifdef DEBUG 2816 if (fsckcmds) { 2817 if (cmd.size == 1) 2818 printf("%s: free block %jd\n", 2819 mp->mnt_stat.f_mntonname, 2820 (intmax_t)cmd.value); 2821 else 2822 printf("%s: free blocks %jd-%jd\n", 2823 mp->mnt_stat.f_mntonname, 2824 (intmax_t)cmd.value, 2825 (intmax_t)cmd.value + cmd.size - 1); 2826 } 2827 #endif /* DEBUG */ 2828 blkno = cmd.value; 2829 blkcnt = cmd.size; 2830 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2831 while (blkcnt > 0) { 2832 if (blksize > blkcnt) 2833 blksize = blkcnt; 2834 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2835 blksize * fs->fs_fsize, ROOTINO, VDIR, NULL); 2836 blkno += blksize; 2837 blkcnt -= blksize; 2838 blksize = fs->fs_frag; 2839 } 2840 break; 2841 2842 /* 2843 * Adjust superblock summaries. fsck(8) is expected to 2844 * submit deltas when necessary. 2845 */ 2846 case FFS_ADJ_NDIR: 2847 #ifdef DEBUG 2848 if (fsckcmds) { 2849 printf("%s: adjust number of directories by %jd\n", 2850 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2851 } 2852 #endif /* DEBUG */ 2853 fs->fs_cstotal.cs_ndir += cmd.value; 2854 break; 2855 2856 case FFS_ADJ_NBFREE: 2857 #ifdef DEBUG 2858 if (fsckcmds) { 2859 printf("%s: adjust number of free blocks by %+jd\n", 2860 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2861 } 2862 #endif /* DEBUG */ 2863 fs->fs_cstotal.cs_nbfree += cmd.value; 2864 break; 2865 2866 case FFS_ADJ_NIFREE: 2867 #ifdef DEBUG 2868 if (fsckcmds) { 2869 printf("%s: adjust number of free inodes by %+jd\n", 2870 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2871 } 2872 #endif /* DEBUG */ 2873 fs->fs_cstotal.cs_nifree += cmd.value; 2874 break; 2875 2876 case FFS_ADJ_NFFREE: 2877 #ifdef DEBUG 2878 if (fsckcmds) { 2879 printf("%s: adjust number of free frags by %+jd\n", 2880 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2881 } 2882 #endif /* DEBUG */ 2883 fs->fs_cstotal.cs_nffree += cmd.value; 2884 break; 2885 2886 case FFS_ADJ_NUMCLUSTERS: 2887 #ifdef DEBUG 2888 if (fsckcmds) { 2889 printf("%s: adjust number of free clusters by %+jd\n", 2890 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2891 } 2892 #endif /* DEBUG */ 2893 fs->fs_cstotal.cs_numclusters += cmd.value; 2894 break; 2895 2896 case FFS_SET_CWD: 2897 #ifdef DEBUG 2898 if (fsckcmds) { 2899 printf("%s: set current directory to inode %jd\n", 2900 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2901 } 2902 #endif /* DEBUG */ 2903 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2904 break; 2905 AUDIT_ARG_VNODE1(vp); 2906 if ((error = change_dir(vp, td)) != 0) { 2907 vput(vp); 2908 break; 2909 } 2910 VOP_UNLOCK(vp, 0); 2911 fdp = td->td_proc->p_fd; 2912 FILEDESC_XLOCK(fdp); 2913 vpold = fdp->fd_cdir; 2914 fdp->fd_cdir = vp; 2915 FILEDESC_XUNLOCK(fdp); 2916 vrele(vpold); 2917 break; 2918 2919 case FFS_SET_DOTDOT: 2920 #ifdef DEBUG 2921 if (fsckcmds) { 2922 printf("%s: change .. in cwd from %jd to %jd\n", 2923 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2924 (intmax_t)cmd.size); 2925 } 2926 #endif /* DEBUG */ 2927 /* 2928 * First we have to get and lock the parent directory 2929 * to which ".." points. 2930 */ 2931 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2932 if (error) 2933 break; 2934 /* 2935 * Now we get and lock the child directory containing "..". 2936 */ 2937 FILEDESC_SLOCK(td->td_proc->p_fd); 2938 dvp = td->td_proc->p_fd->fd_cdir; 2939 FILEDESC_SUNLOCK(td->td_proc->p_fd); 2940 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 2941 vput(fdvp); 2942 break; 2943 } 2944 dp = VTOI(dvp); 2945 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 2946 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 2947 DT_DIR, 0); 2948 cache_purge(fdvp); 2949 cache_purge(dvp); 2950 vput(dvp); 2951 vput(fdvp); 2952 break; 2953 2954 case FFS_UNLINK: 2955 #ifdef DEBUG 2956 if (fsckcmds) { 2957 char buf[32]; 2958 2959 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 2960 strncpy(buf, "Name_too_long", 32); 2961 printf("%s: unlink %s (inode %jd)\n", 2962 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 2963 } 2964 #endif /* DEBUG */ 2965 /* 2966 * kern_unlinkat will do its own start/finish writes and 2967 * they do not nest, so drop ours here. Setting mp == NULL 2968 * indicates that vn_finished_write is not needed down below. 2969 */ 2970 vn_finished_write(mp); 2971 mp = NULL; 2972 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 2973 UIO_USERSPACE, (ino_t)cmd.size); 2974 break; 2975 2976 case FFS_SET_INODE: 2977 if (ump->um_fsckpid != td->td_proc->p_pid) { 2978 error = EPERM; 2979 break; 2980 } 2981 #ifdef DEBUG 2982 if (fsckcmds) { 2983 printf("%s: update inode %jd\n", 2984 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2985 } 2986 #endif /* DEBUG */ 2987 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2988 break; 2989 AUDIT_ARG_VNODE1(vp); 2990 ip = VTOI(vp); 2991 if (ip->i_ump->um_fstype == UFS1) 2992 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 2993 sizeof(struct ufs1_dinode)); 2994 else 2995 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 2996 sizeof(struct ufs2_dinode)); 2997 if (error) { 2998 vput(vp); 2999 break; 3000 } 3001 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3002 error = ffs_update(vp, 1); 3003 vput(vp); 3004 break; 3005 3006 case FFS_SET_BUFOUTPUT: 3007 if (ump->um_fsckpid != td->td_proc->p_pid) { 3008 error = EPERM; 3009 break; 3010 } 3011 if (VTOI(vp)->i_ump != ump) { 3012 error = EINVAL; 3013 break; 3014 } 3015 #ifdef DEBUG 3016 if (fsckcmds) { 3017 printf("%s: %s buffered output for descriptor %jd\n", 3018 mp->mnt_stat.f_mntonname, 3019 cmd.size == 1 ? "enable" : "disable", 3020 (intmax_t)cmd.value); 3021 } 3022 #endif /* DEBUG */ 3023 if ((error = getvnode(td->td_proc->p_fd, cmd.value, 3024 CAP_FSCK, &vfp)) != 0) 3025 break; 3026 if (vfp->f_vnode->v_type != VCHR) { 3027 fdrop(vfp, td); 3028 error = EINVAL; 3029 break; 3030 } 3031 if (origops == NULL) { 3032 origops = vfp->f_ops; 3033 bcopy((void *)origops, (void *)&bufferedops, 3034 sizeof(bufferedops)); 3035 bufferedops.fo_write = buffered_write; 3036 } 3037 if (cmd.size == 1) 3038 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3039 (uintptr_t)&bufferedops); 3040 else 3041 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3042 (uintptr_t)origops); 3043 fdrop(vfp, td); 3044 break; 3045 3046 default: 3047 #ifdef DEBUG 3048 if (fsckcmds) { 3049 printf("Invalid request %d from fsck\n", 3050 oidp->oid_number); 3051 } 3052 #endif /* DEBUG */ 3053 error = EINVAL; 3054 break; 3055 3056 } 3057 fdrop(fp, td); 3058 vn_finished_write(mp); 3059 return (error); 3060 } 3061 3062 /* 3063 * Function to switch a descriptor to use the buffer cache to stage 3064 * its I/O. This is needed so that writes to the filesystem device 3065 * will give snapshots a chance to copy modified blocks for which it 3066 * needs to retain copies. 3067 */ 3068 static int 3069 buffered_write(fp, uio, active_cred, flags, td) 3070 struct file *fp; 3071 struct uio *uio; 3072 struct ucred *active_cred; 3073 int flags; 3074 struct thread *td; 3075 { 3076 struct vnode *devvp, *vp; 3077 struct inode *ip; 3078 struct buf *bp; 3079 struct fs *fs; 3080 struct filedesc *fdp; 3081 int error; 3082 daddr_t lbn; 3083 3084 /* 3085 * The devvp is associated with the /dev filesystem. To discover 3086 * the filesystem with which the device is associated, we depend 3087 * on the application setting the current directory to a location 3088 * within the filesystem being written. Yes, this is an ugly hack. 3089 */ 3090 devvp = fp->f_vnode; 3091 if (!vn_isdisk(devvp, NULL)) 3092 return (EINVAL); 3093 fdp = td->td_proc->p_fd; 3094 FILEDESC_SLOCK(fdp); 3095 vp = fdp->fd_cdir; 3096 vref(vp); 3097 FILEDESC_SUNLOCK(fdp); 3098 vn_lock(vp, LK_SHARED | LK_RETRY); 3099 /* 3100 * Check that the current directory vnode indeed belongs to 3101 * UFS before trying to dereference UFS-specific v_data fields. 3102 */ 3103 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3104 vput(vp); 3105 return (EINVAL); 3106 } 3107 ip = VTOI(vp); 3108 if (ip->i_devvp != devvp) { 3109 vput(vp); 3110 return (EINVAL); 3111 } 3112 fs = ip->i_fs; 3113 vput(vp); 3114 foffset_lock_uio(fp, uio, flags); 3115 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3116 #ifdef DEBUG 3117 if (fsckcmds) { 3118 printf("%s: buffered write for block %jd\n", 3119 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3120 } 3121 #endif /* DEBUG */ 3122 /* 3123 * All I/O must be contained within a filesystem block, start on 3124 * a fragment boundary, and be a multiple of fragments in length. 3125 */ 3126 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3127 fragoff(fs, uio->uio_offset) != 0 || 3128 fragoff(fs, uio->uio_resid) != 0) { 3129 error = EINVAL; 3130 goto out; 3131 } 3132 lbn = numfrags(fs, uio->uio_offset); 3133 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3134 bp->b_flags |= B_RELBUF; 3135 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3136 brelse(bp); 3137 goto out; 3138 } 3139 error = bwrite(bp); 3140 out: 3141 VOP_UNLOCK(devvp, 0); 3142 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3143 return (error); 3144 } 3145