1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bio.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/file.h> 73 #include <sys/filedesc.h> 74 #include <sys/proc.h> 75 #include <sys/vnode.h> 76 #include <sys/mount.h> 77 #include <sys/kernel.h> 78 #include <sys/sysctl.h> 79 #include <sys/syslog.h> 80 81 #include <ufs/ufs/extattr.h> 82 #include <ufs/ufs/quota.h> 83 #include <ufs/ufs/inode.h> 84 #include <ufs/ufs/ufs_extern.h> 85 #include <ufs/ufs/ufsmount.h> 86 87 #include <ufs/ffs/fs.h> 88 #include <ufs/ffs/ffs_extern.h> 89 90 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref, 91 int size); 92 93 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int); 94 static ufs2_daddr_t 95 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t); 96 #ifdef DIAGNOSTIC 97 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 98 #endif 99 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int); 100 static void ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *, 101 ufs1_daddr_t, int); 102 static ino_t ffs_dirpref(struct inode *); 103 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int); 104 static void ffs_fserr(struct fs *, ino_t, char *); 105 static ufs2_daddr_t ffs_hashalloc 106 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *); 107 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int); 108 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 109 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 110 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 111 112 /* 113 * Allocate a block in the filesystem. 114 * 115 * The size of the requested block is given, which must be some 116 * multiple of fs_fsize and <= fs_bsize. 117 * A preference may be optionally specified. If a preference is given 118 * the following hierarchy is used to allocate a block: 119 * 1) allocate the requested block. 120 * 2) allocate a rotationally optimal block in the same cylinder. 121 * 3) allocate a block in the same cylinder group. 122 * 4) quadradically rehash into other cylinder groups, until an 123 * available block is located. 124 * If no block preference is given the following heirarchy is used 125 * to allocate a block: 126 * 1) allocate a block in the cylinder group that contains the 127 * inode for the file. 128 * 2) quadradically rehash into other cylinder groups, until an 129 * available block is located. 130 */ 131 int 132 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 133 struct inode *ip; 134 ufs2_daddr_t lbn, bpref; 135 int size; 136 struct ucred *cred; 137 ufs2_daddr_t *bnp; 138 { 139 struct fs *fs; 140 struct ufsmount *ump; 141 ufs2_daddr_t bno; 142 int cg, reclaimed; 143 #ifdef QUOTA 144 int error; 145 #endif 146 147 *bnp = 0; 148 fs = ip->i_fs; 149 ump = ip->i_ump; 150 mtx_assert(UFS_MTX(ump), MA_OWNED); 151 #ifdef DIAGNOSTIC 152 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 153 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 154 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 155 fs->fs_fsmnt); 156 panic("ffs_alloc: bad size"); 157 } 158 if (cred == NOCRED) 159 panic("ffs_alloc: missing credential"); 160 #endif /* DIAGNOSTIC */ 161 reclaimed = 0; 162 retry: 163 #ifdef QUOTA 164 UFS_UNLOCK(ump); 165 error = chkdq(ip, btodb(size), cred, 0); 166 if (error) 167 return (error); 168 UFS_LOCK(ump); 169 #endif 170 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 171 goto nospace; 172 if (suser_cred(cred, SUSER_ALLOWJAIL) && 173 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 174 goto nospace; 175 if (bpref >= fs->fs_size) 176 bpref = 0; 177 if (bpref == 0) 178 cg = ino_to_cg(fs, ip->i_number); 179 else 180 cg = dtog(fs, bpref); 181 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 182 if (bno > 0) { 183 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + btodb(size)); 184 ip->i_flag |= IN_CHANGE | IN_UPDATE; 185 *bnp = bno; 186 return (0); 187 } 188 #ifdef QUOTA 189 UFS_UNLOCK(ump); 190 /* 191 * Restore user's disk quota because allocation failed. 192 */ 193 (void) chkdq(ip, -btodb(size), cred, FORCE); 194 UFS_LOCK(ump); 195 #endif 196 nospace: 197 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 198 reclaimed = 1; 199 softdep_request_cleanup(fs, ITOV(ip)); 200 goto retry; 201 } 202 UFS_UNLOCK(ump); 203 ffs_fserr(fs, ip->i_number, "filesystem full"); 204 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); 205 return (ENOSPC); 206 } 207 208 /* 209 * Reallocate a fragment to a bigger size 210 * 211 * The number and size of the old block is given, and a preference 212 * and new size is also specified. The allocator attempts to extend 213 * the original block. Failing that, the regular block allocator is 214 * invoked to get an appropriate block. 215 */ 216 int 217 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp) 218 struct inode *ip; 219 ufs2_daddr_t lbprev; 220 ufs2_daddr_t bprev; 221 ufs2_daddr_t bpref; 222 int osize, nsize; 223 struct ucred *cred; 224 struct buf **bpp; 225 { 226 struct vnode *vp; 227 struct fs *fs; 228 struct buf *bp; 229 struct ufsmount *ump; 230 int cg, request, error, reclaimed; 231 ufs2_daddr_t bno; 232 233 *bpp = 0; 234 vp = ITOV(ip); 235 fs = ip->i_fs; 236 bp = NULL; 237 ump = ip->i_ump; 238 mtx_assert(UFS_MTX(ump), MA_OWNED); 239 #ifdef DIAGNOSTIC 240 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 241 panic("ffs_realloccg: allocation on suspended filesystem"); 242 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 243 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 244 printf( 245 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 246 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 247 nsize, fs->fs_fsmnt); 248 panic("ffs_realloccg: bad size"); 249 } 250 if (cred == NOCRED) 251 panic("ffs_realloccg: missing credential"); 252 #endif /* DIAGNOSTIC */ 253 reclaimed = 0; 254 retry: 255 if (suser_cred(cred, SUSER_ALLOWJAIL) && 256 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 257 goto nospace; 258 } 259 if (bprev == 0) { 260 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 261 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 262 fs->fs_fsmnt); 263 panic("ffs_realloccg: bad bprev"); 264 } 265 UFS_UNLOCK(ump); 266 /* 267 * Allocate the extra space in the buffer. 268 */ 269 error = bread(vp, lbprev, osize, NOCRED, &bp); 270 if (error) { 271 brelse(bp); 272 return (error); 273 } 274 275 if (bp->b_blkno == bp->b_lblkno) { 276 if (lbprev >= NDADDR) 277 panic("ffs_realloccg: lbprev out of range"); 278 bp->b_blkno = fsbtodb(fs, bprev); 279 } 280 281 #ifdef QUOTA 282 error = chkdq(ip, btodb(nsize - osize), cred, 0); 283 if (error) { 284 brelse(bp); 285 return (error); 286 } 287 #endif 288 /* 289 * Check for extension in the existing location. 290 */ 291 cg = dtog(fs, bprev); 292 UFS_LOCK(ump); 293 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 294 if (bno) { 295 if (bp->b_blkno != fsbtodb(fs, bno)) 296 panic("ffs_realloccg: bad blockno"); 297 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + btodb(nsize - osize)); 298 ip->i_flag |= IN_CHANGE | IN_UPDATE; 299 allocbuf(bp, nsize); 300 bp->b_flags |= B_DONE; 301 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO) 302 bzero((char *)bp->b_data + osize, nsize - osize); 303 else 304 vfs_bio_clrbuf(bp); 305 *bpp = bp; 306 return (0); 307 } 308 /* 309 * Allocate a new disk location. 310 */ 311 if (bpref >= fs->fs_size) 312 bpref = 0; 313 switch ((int)fs->fs_optim) { 314 case FS_OPTSPACE: 315 /* 316 * Allocate an exact sized fragment. Although this makes 317 * best use of space, we will waste time relocating it if 318 * the file continues to grow. If the fragmentation is 319 * less than half of the minimum free reserve, we choose 320 * to begin optimizing for time. 321 */ 322 request = nsize; 323 if (fs->fs_minfree <= 5 || 324 fs->fs_cstotal.cs_nffree > 325 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 326 break; 327 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 328 fs->fs_fsmnt); 329 fs->fs_optim = FS_OPTTIME; 330 break; 331 case FS_OPTTIME: 332 /* 333 * At this point we have discovered a file that is trying to 334 * grow a small fragment to a larger fragment. To save time, 335 * we allocate a full sized block, then free the unused portion. 336 * If the file continues to grow, the `ffs_fragextend' call 337 * above will be able to grow it in place without further 338 * copying. If aberrant programs cause disk fragmentation to 339 * grow within 2% of the free reserve, we choose to begin 340 * optimizing for space. 341 */ 342 request = fs->fs_bsize; 343 if (fs->fs_cstotal.cs_nffree < 344 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 345 break; 346 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 347 fs->fs_fsmnt); 348 fs->fs_optim = FS_OPTSPACE; 349 break; 350 default: 351 printf("dev = %s, optim = %ld, fs = %s\n", 352 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 353 panic("ffs_realloccg: bad optim"); 354 /* NOTREACHED */ 355 } 356 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 357 if (bno > 0) { 358 bp->b_blkno = fsbtodb(fs, bno); 359 if (!DOINGSOFTDEP(vp)) 360 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 361 ip->i_number); 362 if (nsize < request) 363 ffs_blkfree(ump, fs, ip->i_devvp, 364 bno + numfrags(fs, nsize), 365 (long)(request - nsize), ip->i_number); 366 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + btodb(nsize - osize)); 367 ip->i_flag |= IN_CHANGE | IN_UPDATE; 368 allocbuf(bp, nsize); 369 bp->b_flags |= B_DONE; 370 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO) 371 bzero((char *)bp->b_data + osize, nsize - osize); 372 else 373 vfs_bio_clrbuf(bp); 374 *bpp = bp; 375 return (0); 376 } 377 #ifdef QUOTA 378 UFS_UNLOCK(ump); 379 /* 380 * Restore user's disk quota because allocation failed. 381 */ 382 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 383 UFS_LOCK(ump); 384 #endif 385 nospace: 386 /* 387 * no space available 388 */ 389 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 390 reclaimed = 1; 391 softdep_request_cleanup(fs, vp); 392 UFS_UNLOCK(ump); 393 if (bp) 394 brelse(bp); 395 UFS_LOCK(ump); 396 goto retry; 397 } 398 UFS_UNLOCK(ump); 399 if (bp) 400 brelse(bp); 401 ffs_fserr(fs, ip->i_number, "filesystem full"); 402 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); 403 return (ENOSPC); 404 } 405 406 /* 407 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 408 * 409 * The vnode and an array of buffer pointers for a range of sequential 410 * logical blocks to be made contiguous is given. The allocator attempts 411 * to find a range of sequential blocks starting as close as possible 412 * from the end of the allocation for the logical block immediately 413 * preceding the current range. If successful, the physical block numbers 414 * in the buffer pointers and in the inode are changed to reflect the new 415 * allocation. If unsuccessful, the allocation is left unchanged. The 416 * success in doing the reallocation is returned. Note that the error 417 * return is not reflected back to the user. Rather the previous block 418 * allocation will be used. 419 */ 420 421 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 422 423 static int doasyncfree = 1; 424 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 425 426 static int doreallocblks = 1; 427 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 428 429 #ifdef DEBUG 430 static volatile int prtrealloc = 0; 431 #endif 432 433 int 434 ffs_reallocblks(ap) 435 struct vop_reallocblks_args /* { 436 struct vnode *a_vp; 437 struct cluster_save *a_buflist; 438 } */ *ap; 439 { 440 441 if (doreallocblks == 0) 442 return (ENOSPC); 443 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 444 return (ffs_reallocblks_ufs1(ap)); 445 return (ffs_reallocblks_ufs2(ap)); 446 } 447 448 static int 449 ffs_reallocblks_ufs1(ap) 450 struct vop_reallocblks_args /* { 451 struct vnode *a_vp; 452 struct cluster_save *a_buflist; 453 } */ *ap; 454 { 455 struct fs *fs; 456 struct inode *ip; 457 struct vnode *vp; 458 struct buf *sbp, *ebp; 459 ufs1_daddr_t *bap, *sbap, *ebap = 0; 460 struct cluster_save *buflist; 461 struct ufsmount *ump; 462 ufs_lbn_t start_lbn, end_lbn; 463 ufs1_daddr_t soff, newblk, blkno; 464 ufs2_daddr_t pref; 465 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 466 int i, len, start_lvl, end_lvl, ssize; 467 468 vp = ap->a_vp; 469 ip = VTOI(vp); 470 fs = ip->i_fs; 471 ump = ip->i_ump; 472 if (fs->fs_contigsumsize <= 0) 473 return (ENOSPC); 474 buflist = ap->a_buflist; 475 len = buflist->bs_nchildren; 476 start_lbn = buflist->bs_children[0]->b_lblkno; 477 end_lbn = start_lbn + len - 1; 478 #ifdef DIAGNOSTIC 479 for (i = 0; i < len; i++) 480 if (!ffs_checkblk(ip, 481 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 482 panic("ffs_reallocblks: unallocated block 1"); 483 for (i = 1; i < len; i++) 484 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 485 panic("ffs_reallocblks: non-logical cluster"); 486 blkno = buflist->bs_children[0]->b_blkno; 487 ssize = fsbtodb(fs, fs->fs_frag); 488 for (i = 1; i < len - 1; i++) 489 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 490 panic("ffs_reallocblks: non-physical cluster %d", i); 491 #endif 492 /* 493 * If the latest allocation is in a new cylinder group, assume that 494 * the filesystem has decided to move and do not force it back to 495 * the previous cylinder group. 496 */ 497 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 498 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 499 return (ENOSPC); 500 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 501 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 502 return (ENOSPC); 503 /* 504 * Get the starting offset and block map for the first block. 505 */ 506 if (start_lvl == 0) { 507 sbap = &ip->i_din1->di_db[0]; 508 soff = start_lbn; 509 } else { 510 idp = &start_ap[start_lvl - 1]; 511 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 512 brelse(sbp); 513 return (ENOSPC); 514 } 515 sbap = (ufs1_daddr_t *)sbp->b_data; 516 soff = idp->in_off; 517 } 518 /* 519 * If the block range spans two block maps, get the second map. 520 */ 521 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 522 ssize = len; 523 } else { 524 #ifdef DIAGNOSTIC 525 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 526 panic("ffs_reallocblk: start == end"); 527 #endif 528 ssize = len - (idp->in_off + 1); 529 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 530 goto fail; 531 ebap = (ufs1_daddr_t *)ebp->b_data; 532 } 533 /* 534 * Find the preferred location for the cluster. 535 */ 536 UFS_LOCK(ump); 537 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 538 /* 539 * Search the block map looking for an allocation of the desired size. 540 */ 541 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 542 len, ffs_clusteralloc)) == 0) { 543 UFS_UNLOCK(ump); 544 goto fail; 545 } 546 /* 547 * We have found a new contiguous block. 548 * 549 * First we have to replace the old block pointers with the new 550 * block pointers in the inode and indirect blocks associated 551 * with the file. 552 */ 553 #ifdef DEBUG 554 if (prtrealloc) 555 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 556 (intmax_t)start_lbn, (intmax_t)end_lbn); 557 #endif 558 blkno = newblk; 559 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 560 if (i == ssize) { 561 bap = ebap; 562 soff = -i; 563 } 564 #ifdef DIAGNOSTIC 565 if (!ffs_checkblk(ip, 566 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 567 panic("ffs_reallocblks: unallocated block 2"); 568 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 569 panic("ffs_reallocblks: alloc mismatch"); 570 #endif 571 #ifdef DEBUG 572 if (prtrealloc) 573 printf(" %d,", *bap); 574 #endif 575 if (DOINGSOFTDEP(vp)) { 576 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 577 softdep_setup_allocdirect(ip, start_lbn + i, 578 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 579 buflist->bs_children[i]); 580 else 581 softdep_setup_allocindir_page(ip, start_lbn + i, 582 i < ssize ? sbp : ebp, soff + i, blkno, 583 *bap, buflist->bs_children[i]); 584 } 585 *bap++ = blkno; 586 } 587 /* 588 * Next we must write out the modified inode and indirect blocks. 589 * For strict correctness, the writes should be synchronous since 590 * the old block values may have been written to disk. In practise 591 * they are almost never written, but if we are concerned about 592 * strict correctness, the `doasyncfree' flag should be set to zero. 593 * 594 * The test on `doasyncfree' should be changed to test a flag 595 * that shows whether the associated buffers and inodes have 596 * been written. The flag should be set when the cluster is 597 * started and cleared whenever the buffer or inode is flushed. 598 * We can then check below to see if it is set, and do the 599 * synchronous write only when it has been cleared. 600 */ 601 if (sbap != &ip->i_din1->di_db[0]) { 602 if (doasyncfree) 603 bdwrite(sbp); 604 else 605 bwrite(sbp); 606 } else { 607 ip->i_flag |= IN_CHANGE | IN_UPDATE; 608 if (!doasyncfree) 609 ffs_update(vp, 1); 610 } 611 if (ssize < len) { 612 if (doasyncfree) 613 bdwrite(ebp); 614 else 615 bwrite(ebp); 616 } 617 /* 618 * Last, free the old blocks and assign the new blocks to the buffers. 619 */ 620 #ifdef DEBUG 621 if (prtrealloc) 622 printf("\n\tnew:"); 623 #endif 624 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 625 if (!DOINGSOFTDEP(vp)) 626 ffs_blkfree(ump, fs, ip->i_devvp, 627 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 628 fs->fs_bsize, ip->i_number); 629 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 630 #ifdef DIAGNOSTIC 631 if (!ffs_checkblk(ip, 632 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 633 panic("ffs_reallocblks: unallocated block 3"); 634 #endif 635 #ifdef DEBUG 636 if (prtrealloc) 637 printf(" %d,", blkno); 638 #endif 639 } 640 #ifdef DEBUG 641 if (prtrealloc) { 642 prtrealloc--; 643 printf("\n"); 644 } 645 #endif 646 return (0); 647 648 fail: 649 if (ssize < len) 650 brelse(ebp); 651 if (sbap != &ip->i_din1->di_db[0]) 652 brelse(sbp); 653 return (ENOSPC); 654 } 655 656 static int 657 ffs_reallocblks_ufs2(ap) 658 struct vop_reallocblks_args /* { 659 struct vnode *a_vp; 660 struct cluster_save *a_buflist; 661 } */ *ap; 662 { 663 struct fs *fs; 664 struct inode *ip; 665 struct vnode *vp; 666 struct buf *sbp, *ebp; 667 ufs2_daddr_t *bap, *sbap, *ebap = 0; 668 struct cluster_save *buflist; 669 struct ufsmount *ump; 670 ufs_lbn_t start_lbn, end_lbn; 671 ufs2_daddr_t soff, newblk, blkno, pref; 672 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 673 int i, len, start_lvl, end_lvl, ssize; 674 675 vp = ap->a_vp; 676 ip = VTOI(vp); 677 fs = ip->i_fs; 678 ump = ip->i_ump; 679 if (fs->fs_contigsumsize <= 0) 680 return (ENOSPC); 681 buflist = ap->a_buflist; 682 len = buflist->bs_nchildren; 683 start_lbn = buflist->bs_children[0]->b_lblkno; 684 end_lbn = start_lbn + len - 1; 685 #ifdef DIAGNOSTIC 686 for (i = 0; i < len; i++) 687 if (!ffs_checkblk(ip, 688 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 689 panic("ffs_reallocblks: unallocated block 1"); 690 for (i = 1; i < len; i++) 691 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 692 panic("ffs_reallocblks: non-logical cluster"); 693 blkno = buflist->bs_children[0]->b_blkno; 694 ssize = fsbtodb(fs, fs->fs_frag); 695 for (i = 1; i < len - 1; i++) 696 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 697 panic("ffs_reallocblks: non-physical cluster %d", i); 698 #endif 699 /* 700 * If the latest allocation is in a new cylinder group, assume that 701 * the filesystem has decided to move and do not force it back to 702 * the previous cylinder group. 703 */ 704 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 705 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 706 return (ENOSPC); 707 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 708 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 709 return (ENOSPC); 710 /* 711 * Get the starting offset and block map for the first block. 712 */ 713 if (start_lvl == 0) { 714 sbap = &ip->i_din2->di_db[0]; 715 soff = start_lbn; 716 } else { 717 idp = &start_ap[start_lvl - 1]; 718 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 719 brelse(sbp); 720 return (ENOSPC); 721 } 722 sbap = (ufs2_daddr_t *)sbp->b_data; 723 soff = idp->in_off; 724 } 725 /* 726 * If the block range spans two block maps, get the second map. 727 */ 728 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 729 ssize = len; 730 } else { 731 #ifdef DIAGNOSTIC 732 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 733 panic("ffs_reallocblk: start == end"); 734 #endif 735 ssize = len - (idp->in_off + 1); 736 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 737 goto fail; 738 ebap = (ufs2_daddr_t *)ebp->b_data; 739 } 740 /* 741 * Find the preferred location for the cluster. 742 */ 743 UFS_LOCK(ump); 744 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 745 /* 746 * Search the block map looking for an allocation of the desired size. 747 */ 748 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 749 len, ffs_clusteralloc)) == 0) { 750 UFS_UNLOCK(ump); 751 goto fail; 752 } 753 /* 754 * We have found a new contiguous block. 755 * 756 * First we have to replace the old block pointers with the new 757 * block pointers in the inode and indirect blocks associated 758 * with the file. 759 */ 760 #ifdef DEBUG 761 if (prtrealloc) 762 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 763 (intmax_t)start_lbn, (intmax_t)end_lbn); 764 #endif 765 blkno = newblk; 766 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 767 if (i == ssize) { 768 bap = ebap; 769 soff = -i; 770 } 771 #ifdef DIAGNOSTIC 772 if (!ffs_checkblk(ip, 773 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 774 panic("ffs_reallocblks: unallocated block 2"); 775 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 776 panic("ffs_reallocblks: alloc mismatch"); 777 #endif 778 #ifdef DEBUG 779 if (prtrealloc) 780 printf(" %jd,", (intmax_t)*bap); 781 #endif 782 if (DOINGSOFTDEP(vp)) { 783 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 784 softdep_setup_allocdirect(ip, start_lbn + i, 785 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 786 buflist->bs_children[i]); 787 else 788 softdep_setup_allocindir_page(ip, start_lbn + i, 789 i < ssize ? sbp : ebp, soff + i, blkno, 790 *bap, buflist->bs_children[i]); 791 } 792 *bap++ = blkno; 793 } 794 /* 795 * Next we must write out the modified inode and indirect blocks. 796 * For strict correctness, the writes should be synchronous since 797 * the old block values may have been written to disk. In practise 798 * they are almost never written, but if we are concerned about 799 * strict correctness, the `doasyncfree' flag should be set to zero. 800 * 801 * The test on `doasyncfree' should be changed to test a flag 802 * that shows whether the associated buffers and inodes have 803 * been written. The flag should be set when the cluster is 804 * started and cleared whenever the buffer or inode is flushed. 805 * We can then check below to see if it is set, and do the 806 * synchronous write only when it has been cleared. 807 */ 808 if (sbap != &ip->i_din2->di_db[0]) { 809 if (doasyncfree) 810 bdwrite(sbp); 811 else 812 bwrite(sbp); 813 } else { 814 ip->i_flag |= IN_CHANGE | IN_UPDATE; 815 if (!doasyncfree) 816 ffs_update(vp, 1); 817 } 818 if (ssize < len) { 819 if (doasyncfree) 820 bdwrite(ebp); 821 else 822 bwrite(ebp); 823 } 824 /* 825 * Last, free the old blocks and assign the new blocks to the buffers. 826 */ 827 #ifdef DEBUG 828 if (prtrealloc) 829 printf("\n\tnew:"); 830 #endif 831 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 832 if (!DOINGSOFTDEP(vp)) 833 ffs_blkfree(ump, fs, ip->i_devvp, 834 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 835 fs->fs_bsize, ip->i_number); 836 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 837 #ifdef DIAGNOSTIC 838 if (!ffs_checkblk(ip, 839 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 840 panic("ffs_reallocblks: unallocated block 3"); 841 #endif 842 #ifdef DEBUG 843 if (prtrealloc) 844 printf(" %jd,", (intmax_t)blkno); 845 #endif 846 } 847 #ifdef DEBUG 848 if (prtrealloc) { 849 prtrealloc--; 850 printf("\n"); 851 } 852 #endif 853 return (0); 854 855 fail: 856 if (ssize < len) 857 brelse(ebp); 858 if (sbap != &ip->i_din2->di_db[0]) 859 brelse(sbp); 860 return (ENOSPC); 861 } 862 863 /* 864 * Allocate an inode in the filesystem. 865 * 866 * If allocating a directory, use ffs_dirpref to select the inode. 867 * If allocating in a directory, the following hierarchy is followed: 868 * 1) allocate the preferred inode. 869 * 2) allocate an inode in the same cylinder group. 870 * 3) quadradically rehash into other cylinder groups, until an 871 * available inode is located. 872 * If no inode preference is given the following heirarchy is used 873 * to allocate an inode: 874 * 1) allocate an inode in cylinder group 0. 875 * 2) quadradically rehash into other cylinder groups, until an 876 * available inode is located. 877 */ 878 int 879 ffs_valloc(pvp, mode, cred, vpp) 880 struct vnode *pvp; 881 int mode; 882 struct ucred *cred; 883 struct vnode **vpp; 884 { 885 struct inode *pip; 886 struct fs *fs; 887 struct inode *ip; 888 struct timespec ts; 889 struct ufsmount *ump; 890 ino_t ino, ipref; 891 int cg, error; 892 893 *vpp = NULL; 894 pip = VTOI(pvp); 895 fs = pip->i_fs; 896 ump = pip->i_ump; 897 898 UFS_LOCK(ump); 899 if (fs->fs_cstotal.cs_nifree == 0) 900 goto noinodes; 901 902 if ((mode & IFMT) == IFDIR) 903 ipref = ffs_dirpref(pip); 904 else 905 ipref = pip->i_number; 906 if (ipref >= fs->fs_ncg * fs->fs_ipg) 907 ipref = 0; 908 cg = ino_to_cg(fs, ipref); 909 /* 910 * Track number of dirs created one after another 911 * in a same cg without intervening by files. 912 */ 913 if ((mode & IFMT) == IFDIR) { 914 if (fs->fs_contigdirs[cg] < 255) 915 fs->fs_contigdirs[cg]++; 916 } else { 917 if (fs->fs_contigdirs[cg] > 0) 918 fs->fs_contigdirs[cg]--; 919 } 920 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 921 (allocfcn_t *)ffs_nodealloccg); 922 if (ino == 0) 923 goto noinodes; 924 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 925 if (error) { 926 ffs_vfree(pvp, ino, mode); 927 return (error); 928 } 929 ip = VTOI(*vpp); 930 if (ip->i_mode) { 931 printf("mode = 0%o, inum = %lu, fs = %s\n", 932 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 933 panic("ffs_valloc: dup alloc"); 934 } 935 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 936 printf("free inode %s/%lu had %ld blocks\n", 937 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 938 DIP_SET(ip, i_blocks, 0); 939 } 940 ip->i_flags = 0; 941 DIP_SET(ip, i_flags, 0); 942 /* 943 * Set up a new generation number for this inode. 944 */ 945 if (ip->i_gen == 0 || ++ip->i_gen == 0) 946 ip->i_gen = arc4random() / 2 + 1; 947 DIP_SET(ip, i_gen, ip->i_gen); 948 if (fs->fs_magic == FS_UFS2_MAGIC) { 949 vfs_timestamp(&ts); 950 ip->i_din2->di_birthtime = ts.tv_sec; 951 ip->i_din2->di_birthnsec = ts.tv_nsec; 952 } 953 return (0); 954 noinodes: 955 UFS_UNLOCK(ump); 956 ffs_fserr(fs, pip->i_number, "out of inodes"); 957 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 958 return (ENOSPC); 959 } 960 961 /* 962 * Find a cylinder group to place a directory. 963 * 964 * The policy implemented by this algorithm is to allocate a 965 * directory inode in the same cylinder group as its parent 966 * directory, but also to reserve space for its files inodes 967 * and data. Restrict the number of directories which may be 968 * allocated one after another in the same cylinder group 969 * without intervening allocation of files. 970 * 971 * If we allocate a first level directory then force allocation 972 * in another cylinder group. 973 */ 974 static ino_t 975 ffs_dirpref(pip) 976 struct inode *pip; 977 { 978 struct fs *fs; 979 int cg, prefcg, dirsize, cgsize; 980 int avgifree, avgbfree, avgndir, curdirsize; 981 int minifree, minbfree, maxndir; 982 int mincg, minndir; 983 int maxcontigdirs; 984 985 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 986 fs = pip->i_fs; 987 988 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 989 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 990 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 991 992 /* 993 * Force allocation in another cg if creating a first level dir. 994 */ 995 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 996 if (ITOV(pip)->v_vflag & VV_ROOT) { 997 prefcg = arc4random() % fs->fs_ncg; 998 mincg = prefcg; 999 minndir = fs->fs_ipg; 1000 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1001 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1002 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1003 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1004 mincg = cg; 1005 minndir = fs->fs_cs(fs, cg).cs_ndir; 1006 } 1007 for (cg = 0; cg < prefcg; cg++) 1008 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1009 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1010 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1011 mincg = cg; 1012 minndir = fs->fs_cs(fs, cg).cs_ndir; 1013 } 1014 return ((ino_t)(fs->fs_ipg * mincg)); 1015 } 1016 1017 /* 1018 * Count various limits which used for 1019 * optimal allocation of a directory inode. 1020 */ 1021 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1022 minifree = avgifree - avgifree / 4; 1023 if (minifree < 1) 1024 minifree = 1; 1025 minbfree = avgbfree - avgbfree / 4; 1026 if (minbfree < 1) 1027 minbfree = 1; 1028 cgsize = fs->fs_fsize * fs->fs_fpg; 1029 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1030 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1031 if (dirsize < curdirsize) 1032 dirsize = curdirsize; 1033 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1034 if (fs->fs_avgfpdir > 0) 1035 maxcontigdirs = min(maxcontigdirs, 1036 fs->fs_ipg / fs->fs_avgfpdir); 1037 if (maxcontigdirs == 0) 1038 maxcontigdirs = 1; 1039 1040 /* 1041 * Limit number of dirs in one cg and reserve space for 1042 * regular files, but only if we have no deficit in 1043 * inodes or space. 1044 */ 1045 prefcg = ino_to_cg(fs, pip->i_number); 1046 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1047 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1048 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1049 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1050 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1051 return ((ino_t)(fs->fs_ipg * cg)); 1052 } 1053 for (cg = 0; cg < prefcg; cg++) 1054 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1055 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1056 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1057 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1058 return ((ino_t)(fs->fs_ipg * cg)); 1059 } 1060 /* 1061 * This is a backstop when we have deficit in space. 1062 */ 1063 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1064 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1065 return ((ino_t)(fs->fs_ipg * cg)); 1066 for (cg = 0; cg < prefcg; cg++) 1067 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1068 break; 1069 return ((ino_t)(fs->fs_ipg * cg)); 1070 } 1071 1072 /* 1073 * Select the desired position for the next block in a file. The file is 1074 * logically divided into sections. The first section is composed of the 1075 * direct blocks. Each additional section contains fs_maxbpg blocks. 1076 * 1077 * If no blocks have been allocated in the first section, the policy is to 1078 * request a block in the same cylinder group as the inode that describes 1079 * the file. If no blocks have been allocated in any other section, the 1080 * policy is to place the section in a cylinder group with a greater than 1081 * average number of free blocks. An appropriate cylinder group is found 1082 * by using a rotor that sweeps the cylinder groups. When a new group of 1083 * blocks is needed, the sweep begins in the cylinder group following the 1084 * cylinder group from which the previous allocation was made. The sweep 1085 * continues until a cylinder group with greater than the average number 1086 * of free blocks is found. If the allocation is for the first block in an 1087 * indirect block, the information on the previous allocation is unavailable; 1088 * here a best guess is made based upon the logical block number being 1089 * allocated. 1090 * 1091 * If a section is already partially allocated, the policy is to 1092 * contiguously allocate fs_maxcontig blocks. The end of one of these 1093 * contiguous blocks and the beginning of the next is laid out 1094 * contiguously if possible. 1095 */ 1096 ufs2_daddr_t 1097 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1098 struct inode *ip; 1099 ufs_lbn_t lbn; 1100 int indx; 1101 ufs1_daddr_t *bap; 1102 { 1103 struct fs *fs; 1104 int cg; 1105 int avgbfree, startcg; 1106 1107 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1108 fs = ip->i_fs; 1109 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1110 if (lbn < NDADDR + NINDIR(fs)) { 1111 cg = ino_to_cg(fs, ip->i_number); 1112 return (cgbase(fs, cg) + fs->fs_frag); 1113 } 1114 /* 1115 * Find a cylinder with greater than average number of 1116 * unused data blocks. 1117 */ 1118 if (indx == 0 || bap[indx - 1] == 0) 1119 startcg = 1120 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1121 else 1122 startcg = dtog(fs, bap[indx - 1]) + 1; 1123 startcg %= fs->fs_ncg; 1124 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1125 for (cg = startcg; cg < fs->fs_ncg; cg++) 1126 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1127 fs->fs_cgrotor = cg; 1128 return (cgbase(fs, cg) + fs->fs_frag); 1129 } 1130 for (cg = 0; cg <= startcg; cg++) 1131 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1132 fs->fs_cgrotor = cg; 1133 return (cgbase(fs, cg) + fs->fs_frag); 1134 } 1135 return (0); 1136 } 1137 /* 1138 * We just always try to lay things out contiguously. 1139 */ 1140 return (bap[indx - 1] + fs->fs_frag); 1141 } 1142 1143 /* 1144 * Same as above, but for UFS2 1145 */ 1146 ufs2_daddr_t 1147 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1148 struct inode *ip; 1149 ufs_lbn_t lbn; 1150 int indx; 1151 ufs2_daddr_t *bap; 1152 { 1153 struct fs *fs; 1154 int cg; 1155 int avgbfree, startcg; 1156 1157 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1158 fs = ip->i_fs; 1159 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1160 if (lbn < NDADDR + NINDIR(fs)) { 1161 cg = ino_to_cg(fs, ip->i_number); 1162 return (cgbase(fs, cg) + fs->fs_frag); 1163 } 1164 /* 1165 * Find a cylinder with greater than average number of 1166 * unused data blocks. 1167 */ 1168 if (indx == 0 || bap[indx - 1] == 0) 1169 startcg = 1170 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1171 else 1172 startcg = dtog(fs, bap[indx - 1]) + 1; 1173 startcg %= fs->fs_ncg; 1174 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1175 for (cg = startcg; cg < fs->fs_ncg; cg++) 1176 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1177 fs->fs_cgrotor = cg; 1178 return (cgbase(fs, cg) + fs->fs_frag); 1179 } 1180 for (cg = 0; cg <= startcg; cg++) 1181 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1182 fs->fs_cgrotor = cg; 1183 return (cgbase(fs, cg) + fs->fs_frag); 1184 } 1185 return (0); 1186 } 1187 /* 1188 * We just always try to lay things out contiguously. 1189 */ 1190 return (bap[indx - 1] + fs->fs_frag); 1191 } 1192 1193 /* 1194 * Implement the cylinder overflow algorithm. 1195 * 1196 * The policy implemented by this algorithm is: 1197 * 1) allocate the block in its requested cylinder group. 1198 * 2) quadradically rehash on the cylinder group number. 1199 * 3) brute force search for a free block. 1200 * 1201 * Must be called with the UFS lock held. Will release the lock on success 1202 * and return with it held on failure. 1203 */ 1204 /*VARARGS5*/ 1205 static ufs2_daddr_t 1206 ffs_hashalloc(ip, cg, pref, size, allocator) 1207 struct inode *ip; 1208 int cg; 1209 ufs2_daddr_t pref; 1210 int size; /* size for data blocks, mode for inodes */ 1211 allocfcn_t *allocator; 1212 { 1213 struct fs *fs; 1214 ufs2_daddr_t result; 1215 int i, icg = cg; 1216 1217 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1218 #ifdef DIAGNOSTIC 1219 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1220 panic("ffs_hashalloc: allocation on suspended filesystem"); 1221 #endif 1222 fs = ip->i_fs; 1223 /* 1224 * 1: preferred cylinder group 1225 */ 1226 result = (*allocator)(ip, cg, pref, size); 1227 if (result) 1228 return (result); 1229 /* 1230 * 2: quadratic rehash 1231 */ 1232 for (i = 1; i < fs->fs_ncg; i *= 2) { 1233 cg += i; 1234 if (cg >= fs->fs_ncg) 1235 cg -= fs->fs_ncg; 1236 result = (*allocator)(ip, cg, 0, size); 1237 if (result) 1238 return (result); 1239 } 1240 /* 1241 * 3: brute force search 1242 * Note that we start at i == 2, since 0 was checked initially, 1243 * and 1 is always checked in the quadratic rehash. 1244 */ 1245 cg = (icg + 2) % fs->fs_ncg; 1246 for (i = 2; i < fs->fs_ncg; i++) { 1247 result = (*allocator)(ip, cg, 0, size); 1248 if (result) 1249 return (result); 1250 cg++; 1251 if (cg == fs->fs_ncg) 1252 cg = 0; 1253 } 1254 return (0); 1255 } 1256 1257 /* 1258 * Determine whether a fragment can be extended. 1259 * 1260 * Check to see if the necessary fragments are available, and 1261 * if they are, allocate them. 1262 */ 1263 static ufs2_daddr_t 1264 ffs_fragextend(ip, cg, bprev, osize, nsize) 1265 struct inode *ip; 1266 int cg; 1267 ufs2_daddr_t bprev; 1268 int osize, nsize; 1269 { 1270 struct fs *fs; 1271 struct cg *cgp; 1272 struct buf *bp; 1273 struct ufsmount *ump; 1274 int nffree; 1275 long bno; 1276 int frags, bbase; 1277 int i, error; 1278 u_int8_t *blksfree; 1279 1280 ump = ip->i_ump; 1281 fs = ip->i_fs; 1282 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1283 return (0); 1284 frags = numfrags(fs, nsize); 1285 bbase = fragnum(fs, bprev); 1286 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1287 /* cannot extend across a block boundary */ 1288 return (0); 1289 } 1290 UFS_UNLOCK(ump); 1291 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1292 (int)fs->fs_cgsize, NOCRED, &bp); 1293 if (error) 1294 goto fail; 1295 cgp = (struct cg *)bp->b_data; 1296 if (!cg_chkmagic(cgp)) 1297 goto fail; 1298 bp->b_xflags |= BX_BKGRDWRITE; 1299 cgp->cg_old_time = cgp->cg_time = time_second; 1300 bno = dtogd(fs, bprev); 1301 blksfree = cg_blksfree(cgp); 1302 for (i = numfrags(fs, osize); i < frags; i++) 1303 if (isclr(blksfree, bno + i)) 1304 goto fail; 1305 /* 1306 * the current fragment can be extended 1307 * deduct the count on fragment being extended into 1308 * increase the count on the remaining fragment (if any) 1309 * allocate the extended piece 1310 */ 1311 for (i = frags; i < fs->fs_frag - bbase; i++) 1312 if (isclr(blksfree, bno + i)) 1313 break; 1314 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1315 if (i != frags) 1316 cgp->cg_frsum[i - frags]++; 1317 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1318 clrbit(blksfree, bno + i); 1319 cgp->cg_cs.cs_nffree--; 1320 nffree++; 1321 } 1322 UFS_LOCK(ump); 1323 fs->fs_cstotal.cs_nffree -= nffree; 1324 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1325 fs->fs_fmod = 1; 1326 ACTIVECLEAR(fs, cg); 1327 UFS_UNLOCK(ump); 1328 if (DOINGSOFTDEP(ITOV(ip))) 1329 softdep_setup_blkmapdep(bp, fs, bprev); 1330 bdwrite(bp); 1331 return (bprev); 1332 1333 fail: 1334 brelse(bp); 1335 UFS_LOCK(ump); 1336 return (0); 1337 1338 } 1339 1340 /* 1341 * Determine whether a block can be allocated. 1342 * 1343 * Check to see if a block of the appropriate size is available, 1344 * and if it is, allocate it. 1345 */ 1346 static ufs2_daddr_t 1347 ffs_alloccg(ip, cg, bpref, size) 1348 struct inode *ip; 1349 int cg; 1350 ufs2_daddr_t bpref; 1351 int size; 1352 { 1353 struct fs *fs; 1354 struct cg *cgp; 1355 struct buf *bp; 1356 struct ufsmount *ump; 1357 ufs1_daddr_t bno; 1358 ufs2_daddr_t blkno; 1359 int i, allocsiz, error, frags; 1360 u_int8_t *blksfree; 1361 1362 ump = ip->i_ump; 1363 fs = ip->i_fs; 1364 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1365 return (0); 1366 UFS_UNLOCK(ump); 1367 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1368 (int)fs->fs_cgsize, NOCRED, &bp); 1369 if (error) 1370 goto fail; 1371 cgp = (struct cg *)bp->b_data; 1372 if (!cg_chkmagic(cgp) || 1373 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1374 goto fail; 1375 bp->b_xflags |= BX_BKGRDWRITE; 1376 cgp->cg_old_time = cgp->cg_time = time_second; 1377 if (size == fs->fs_bsize) { 1378 UFS_LOCK(ump); 1379 blkno = ffs_alloccgblk(ip, bp, bpref); 1380 ACTIVECLEAR(fs, cg); 1381 UFS_UNLOCK(ump); 1382 bdwrite(bp); 1383 return (blkno); 1384 } 1385 /* 1386 * check to see if any fragments are already available 1387 * allocsiz is the size which will be allocated, hacking 1388 * it down to a smaller size if necessary 1389 */ 1390 blksfree = cg_blksfree(cgp); 1391 frags = numfrags(fs, size); 1392 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1393 if (cgp->cg_frsum[allocsiz] != 0) 1394 break; 1395 if (allocsiz == fs->fs_frag) { 1396 /* 1397 * no fragments were available, so a block will be 1398 * allocated, and hacked up 1399 */ 1400 if (cgp->cg_cs.cs_nbfree == 0) 1401 goto fail; 1402 UFS_LOCK(ump); 1403 blkno = ffs_alloccgblk(ip, bp, bpref); 1404 bno = dtogd(fs, blkno); 1405 for (i = frags; i < fs->fs_frag; i++) 1406 setbit(blksfree, bno + i); 1407 i = fs->fs_frag - frags; 1408 cgp->cg_cs.cs_nffree += i; 1409 fs->fs_cstotal.cs_nffree += i; 1410 fs->fs_cs(fs, cg).cs_nffree += i; 1411 fs->fs_fmod = 1; 1412 cgp->cg_frsum[i]++; 1413 ACTIVECLEAR(fs, cg); 1414 UFS_UNLOCK(ump); 1415 bdwrite(bp); 1416 return (blkno); 1417 } 1418 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1419 if (bno < 0) 1420 goto fail; 1421 for (i = 0; i < frags; i++) 1422 clrbit(blksfree, bno + i); 1423 cgp->cg_cs.cs_nffree -= frags; 1424 cgp->cg_frsum[allocsiz]--; 1425 if (frags != allocsiz) 1426 cgp->cg_frsum[allocsiz - frags]++; 1427 UFS_LOCK(ump); 1428 fs->fs_cstotal.cs_nffree -= frags; 1429 fs->fs_cs(fs, cg).cs_nffree -= frags; 1430 fs->fs_fmod = 1; 1431 blkno = cgbase(fs, cg) + bno; 1432 ACTIVECLEAR(fs, cg); 1433 UFS_UNLOCK(ump); 1434 if (DOINGSOFTDEP(ITOV(ip))) 1435 softdep_setup_blkmapdep(bp, fs, blkno); 1436 bdwrite(bp); 1437 return (blkno); 1438 1439 fail: 1440 brelse(bp); 1441 UFS_LOCK(ump); 1442 return (0); 1443 } 1444 1445 /* 1446 * Allocate a block in a cylinder group. 1447 * 1448 * This algorithm implements the following policy: 1449 * 1) allocate the requested block. 1450 * 2) allocate a rotationally optimal block in the same cylinder. 1451 * 3) allocate the next available block on the block rotor for the 1452 * specified cylinder group. 1453 * Note that this routine only allocates fs_bsize blocks; these 1454 * blocks may be fragmented by the routine that allocates them. 1455 */ 1456 static ufs2_daddr_t 1457 ffs_alloccgblk(ip, bp, bpref) 1458 struct inode *ip; 1459 struct buf *bp; 1460 ufs2_daddr_t bpref; 1461 { 1462 struct fs *fs; 1463 struct cg *cgp; 1464 struct ufsmount *ump; 1465 ufs1_daddr_t bno; 1466 ufs2_daddr_t blkno; 1467 u_int8_t *blksfree; 1468 1469 fs = ip->i_fs; 1470 ump = ip->i_ump; 1471 mtx_assert(UFS_MTX(ump), MA_OWNED); 1472 cgp = (struct cg *)bp->b_data; 1473 blksfree = cg_blksfree(cgp); 1474 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1475 bpref = cgp->cg_rotor; 1476 } else { 1477 bpref = blknum(fs, bpref); 1478 bno = dtogd(fs, bpref); 1479 /* 1480 * if the requested block is available, use it 1481 */ 1482 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1483 goto gotit; 1484 } 1485 /* 1486 * Take the next available block in this cylinder group. 1487 */ 1488 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1489 if (bno < 0) 1490 return (0); 1491 cgp->cg_rotor = bno; 1492 gotit: 1493 blkno = fragstoblks(fs, bno); 1494 ffs_clrblock(fs, blksfree, (long)blkno); 1495 ffs_clusteracct(ump, fs, cgp, blkno, -1); 1496 cgp->cg_cs.cs_nbfree--; 1497 fs->fs_cstotal.cs_nbfree--; 1498 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1499 fs->fs_fmod = 1; 1500 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1501 /* XXX Fixme. */ 1502 UFS_UNLOCK(ump); 1503 if (DOINGSOFTDEP(ITOV(ip))) 1504 softdep_setup_blkmapdep(bp, fs, blkno); 1505 UFS_LOCK(ump); 1506 return (blkno); 1507 } 1508 1509 /* 1510 * Determine whether a cluster can be allocated. 1511 * 1512 * We do not currently check for optimal rotational layout if there 1513 * are multiple choices in the same cylinder group. Instead we just 1514 * take the first one that we find following bpref. 1515 */ 1516 static ufs2_daddr_t 1517 ffs_clusteralloc(ip, cg, bpref, len) 1518 struct inode *ip; 1519 int cg; 1520 ufs2_daddr_t bpref; 1521 int len; 1522 { 1523 struct fs *fs; 1524 struct cg *cgp; 1525 struct buf *bp; 1526 struct ufsmount *ump; 1527 int i, run, bit, map, got; 1528 ufs2_daddr_t bno; 1529 u_char *mapp; 1530 int32_t *lp; 1531 u_int8_t *blksfree; 1532 1533 fs = ip->i_fs; 1534 ump = ip->i_ump; 1535 if (fs->fs_maxcluster[cg] < len) 1536 return (0); 1537 UFS_UNLOCK(ump); 1538 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1539 NOCRED, &bp)) 1540 goto fail_lock; 1541 cgp = (struct cg *)bp->b_data; 1542 if (!cg_chkmagic(cgp)) 1543 goto fail_lock; 1544 bp->b_xflags |= BX_BKGRDWRITE; 1545 /* 1546 * Check to see if a cluster of the needed size (or bigger) is 1547 * available in this cylinder group. 1548 */ 1549 lp = &cg_clustersum(cgp)[len]; 1550 for (i = len; i <= fs->fs_contigsumsize; i++) 1551 if (*lp++ > 0) 1552 break; 1553 if (i > fs->fs_contigsumsize) { 1554 /* 1555 * This is the first time looking for a cluster in this 1556 * cylinder group. Update the cluster summary information 1557 * to reflect the true maximum sized cluster so that 1558 * future cluster allocation requests can avoid reading 1559 * the cylinder group map only to find no clusters. 1560 */ 1561 lp = &cg_clustersum(cgp)[len - 1]; 1562 for (i = len - 1; i > 0; i--) 1563 if (*lp-- > 0) 1564 break; 1565 UFS_LOCK(ump); 1566 fs->fs_maxcluster[cg] = i; 1567 goto fail; 1568 } 1569 /* 1570 * Search the cluster map to find a big enough cluster. 1571 * We take the first one that we find, even if it is larger 1572 * than we need as we prefer to get one close to the previous 1573 * block allocation. We do not search before the current 1574 * preference point as we do not want to allocate a block 1575 * that is allocated before the previous one (as we will 1576 * then have to wait for another pass of the elevator 1577 * algorithm before it will be read). We prefer to fail and 1578 * be recalled to try an allocation in the next cylinder group. 1579 */ 1580 if (dtog(fs, bpref) != cg) 1581 bpref = 0; 1582 else 1583 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1584 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1585 map = *mapp++; 1586 bit = 1 << (bpref % NBBY); 1587 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1588 if ((map & bit) == 0) { 1589 run = 0; 1590 } else { 1591 run++; 1592 if (run == len) 1593 break; 1594 } 1595 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1596 bit <<= 1; 1597 } else { 1598 map = *mapp++; 1599 bit = 1; 1600 } 1601 } 1602 if (got >= cgp->cg_nclusterblks) 1603 goto fail_lock; 1604 /* 1605 * Allocate the cluster that we have found. 1606 */ 1607 blksfree = cg_blksfree(cgp); 1608 for (i = 1; i <= len; i++) 1609 if (!ffs_isblock(fs, blksfree, got - run + i)) 1610 panic("ffs_clusteralloc: map mismatch"); 1611 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1612 if (dtog(fs, bno) != cg) 1613 panic("ffs_clusteralloc: allocated out of group"); 1614 len = blkstofrags(fs, len); 1615 UFS_LOCK(ump); 1616 for (i = 0; i < len; i += fs->fs_frag) 1617 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1618 panic("ffs_clusteralloc: lost block"); 1619 ACTIVECLEAR(fs, cg); 1620 UFS_UNLOCK(ump); 1621 bdwrite(bp); 1622 return (bno); 1623 1624 fail_lock: 1625 UFS_LOCK(ump); 1626 fail: 1627 brelse(bp); 1628 return (0); 1629 } 1630 1631 /* 1632 * Determine whether an inode can be allocated. 1633 * 1634 * Check to see if an inode is available, and if it is, 1635 * allocate it using the following policy: 1636 * 1) allocate the requested inode. 1637 * 2) allocate the next available inode after the requested 1638 * inode in the specified cylinder group. 1639 */ 1640 static ufs2_daddr_t 1641 ffs_nodealloccg(ip, cg, ipref, mode) 1642 struct inode *ip; 1643 int cg; 1644 ufs2_daddr_t ipref; 1645 int mode; 1646 { 1647 struct fs *fs; 1648 struct cg *cgp; 1649 struct buf *bp, *ibp; 1650 struct ufsmount *ump; 1651 u_int8_t *inosused; 1652 struct ufs2_dinode *dp2; 1653 int error, start, len, loc, map, i; 1654 1655 fs = ip->i_fs; 1656 ump = ip->i_ump; 1657 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1658 return (0); 1659 UFS_UNLOCK(ump); 1660 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1661 (int)fs->fs_cgsize, NOCRED, &bp); 1662 if (error) { 1663 brelse(bp); 1664 UFS_LOCK(ump); 1665 return (0); 1666 } 1667 cgp = (struct cg *)bp->b_data; 1668 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1669 brelse(bp); 1670 UFS_LOCK(ump); 1671 return (0); 1672 } 1673 bp->b_xflags |= BX_BKGRDWRITE; 1674 cgp->cg_old_time = cgp->cg_time = time_second; 1675 inosused = cg_inosused(cgp); 1676 if (ipref) { 1677 ipref %= fs->fs_ipg; 1678 if (isclr(inosused, ipref)) 1679 goto gotit; 1680 } 1681 start = cgp->cg_irotor / NBBY; 1682 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1683 loc = skpc(0xff, len, &inosused[start]); 1684 if (loc == 0) { 1685 len = start + 1; 1686 start = 0; 1687 loc = skpc(0xff, len, &inosused[0]); 1688 if (loc == 0) { 1689 printf("cg = %d, irotor = %ld, fs = %s\n", 1690 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1691 panic("ffs_nodealloccg: map corrupted"); 1692 /* NOTREACHED */ 1693 } 1694 } 1695 i = start + len - loc; 1696 map = inosused[i]; 1697 ipref = i * NBBY; 1698 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1699 if ((map & i) == 0) { 1700 cgp->cg_irotor = ipref; 1701 goto gotit; 1702 } 1703 } 1704 printf("fs = %s\n", fs->fs_fsmnt); 1705 panic("ffs_nodealloccg: block not in map"); 1706 /* NOTREACHED */ 1707 gotit: 1708 /* 1709 * Check to see if we need to initialize more inodes. 1710 */ 1711 ibp = NULL; 1712 if (fs->fs_magic == FS_UFS2_MAGIC && 1713 ipref + INOPB(fs) > cgp->cg_initediblk && 1714 cgp->cg_initediblk < cgp->cg_niblk) { 1715 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1716 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1717 (int)fs->fs_bsize, 0, 0, 0); 1718 bzero(ibp->b_data, (int)fs->fs_bsize); 1719 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1720 for (i = 0; i < INOPB(fs); i++) { 1721 dp2->di_gen = arc4random() / 2 + 1; 1722 dp2++; 1723 } 1724 cgp->cg_initediblk += INOPB(fs); 1725 } 1726 UFS_LOCK(ump); 1727 ACTIVECLEAR(fs, cg); 1728 setbit(inosused, ipref); 1729 cgp->cg_cs.cs_nifree--; 1730 fs->fs_cstotal.cs_nifree--; 1731 fs->fs_cs(fs, cg).cs_nifree--; 1732 fs->fs_fmod = 1; 1733 if ((mode & IFMT) == IFDIR) { 1734 cgp->cg_cs.cs_ndir++; 1735 fs->fs_cstotal.cs_ndir++; 1736 fs->fs_cs(fs, cg).cs_ndir++; 1737 } 1738 UFS_UNLOCK(ump); 1739 if (DOINGSOFTDEP(ITOV(ip))) 1740 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1741 bdwrite(bp); 1742 if (ibp != NULL) 1743 bawrite(ibp); 1744 return (cg * fs->fs_ipg + ipref); 1745 } 1746 1747 /* 1748 * check if a block is free 1749 */ 1750 static int 1751 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 1752 { 1753 1754 switch ((int)fs->fs_frag) { 1755 case 8: 1756 return (cp[h] == 0); 1757 case 4: 1758 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 1759 case 2: 1760 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 1761 case 1: 1762 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 1763 default: 1764 panic("ffs_isfreeblock"); 1765 } 1766 return (0); 1767 } 1768 1769 /* 1770 * Free a block or fragment. 1771 * 1772 * The specified block or fragment is placed back in the 1773 * free map. If a fragment is deallocated, a possible 1774 * block reassembly is checked. 1775 */ 1776 void 1777 ffs_blkfree(ump, fs, devvp, bno, size, inum) 1778 struct ufsmount *ump; 1779 struct fs *fs; 1780 struct vnode *devvp; 1781 ufs2_daddr_t bno; 1782 long size; 1783 ino_t inum; 1784 { 1785 struct cg *cgp; 1786 struct buf *bp; 1787 ufs1_daddr_t fragno, cgbno; 1788 ufs2_daddr_t cgblkno; 1789 int i, cg, blk, frags, bbase; 1790 u_int8_t *blksfree; 1791 struct cdev *dev; 1792 1793 cg = dtog(fs, bno); 1794 if (devvp->v_type != VCHR) { 1795 /* devvp is a snapshot */ 1796 dev = VTOI(devvp)->i_devvp->v_rdev; 1797 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1798 } else { 1799 /* devvp is a normal disk device */ 1800 dev = devvp->v_rdev; 1801 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1802 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1803 if ((devvp->v_vflag & VV_COPYONWRITE) && 1804 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1805 return; 1806 } 1807 #ifdef DIAGNOSTIC 1808 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1809 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1810 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1811 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1812 size, fs->fs_fsmnt); 1813 panic("ffs_blkfree: bad size"); 1814 } 1815 #endif 1816 if ((u_int)bno >= fs->fs_size) { 1817 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1818 (u_long)inum); 1819 ffs_fserr(fs, inum, "bad block"); 1820 return; 1821 } 1822 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 1823 brelse(bp); 1824 return; 1825 } 1826 cgp = (struct cg *)bp->b_data; 1827 if (!cg_chkmagic(cgp)) { 1828 brelse(bp); 1829 return; 1830 } 1831 bp->b_xflags |= BX_BKGRDWRITE; 1832 cgp->cg_old_time = cgp->cg_time = time_second; 1833 cgbno = dtogd(fs, bno); 1834 blksfree = cg_blksfree(cgp); 1835 UFS_LOCK(ump); 1836 if (size == fs->fs_bsize) { 1837 fragno = fragstoblks(fs, cgbno); 1838 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1839 if (devvp->v_type != VCHR) { 1840 UFS_UNLOCK(ump); 1841 /* devvp is a snapshot */ 1842 brelse(bp); 1843 return; 1844 } 1845 printf("dev = %s, block = %jd, fs = %s\n", 1846 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1847 panic("ffs_blkfree: freeing free block"); 1848 } 1849 ffs_setblock(fs, blksfree, fragno); 1850 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1851 cgp->cg_cs.cs_nbfree++; 1852 fs->fs_cstotal.cs_nbfree++; 1853 fs->fs_cs(fs, cg).cs_nbfree++; 1854 } else { 1855 bbase = cgbno - fragnum(fs, cgbno); 1856 /* 1857 * decrement the counts associated with the old frags 1858 */ 1859 blk = blkmap(fs, blksfree, bbase); 1860 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1861 /* 1862 * deallocate the fragment 1863 */ 1864 frags = numfrags(fs, size); 1865 for (i = 0; i < frags; i++) { 1866 if (isset(blksfree, cgbno + i)) { 1867 printf("dev = %s, block = %jd, fs = %s\n", 1868 devtoname(dev), (intmax_t)(bno + i), 1869 fs->fs_fsmnt); 1870 panic("ffs_blkfree: freeing free frag"); 1871 } 1872 setbit(blksfree, cgbno + i); 1873 } 1874 cgp->cg_cs.cs_nffree += i; 1875 fs->fs_cstotal.cs_nffree += i; 1876 fs->fs_cs(fs, cg).cs_nffree += i; 1877 /* 1878 * add back in counts associated with the new frags 1879 */ 1880 blk = blkmap(fs, blksfree, bbase); 1881 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1882 /* 1883 * if a complete block has been reassembled, account for it 1884 */ 1885 fragno = fragstoblks(fs, bbase); 1886 if (ffs_isblock(fs, blksfree, fragno)) { 1887 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1888 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1889 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1890 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1891 cgp->cg_cs.cs_nbfree++; 1892 fs->fs_cstotal.cs_nbfree++; 1893 fs->fs_cs(fs, cg).cs_nbfree++; 1894 } 1895 } 1896 fs->fs_fmod = 1; 1897 ACTIVECLEAR(fs, cg); 1898 UFS_UNLOCK(ump); 1899 bdwrite(bp); 1900 } 1901 1902 #ifdef DIAGNOSTIC 1903 /* 1904 * Verify allocation of a block or fragment. Returns true if block or 1905 * fragment is allocated, false if it is free. 1906 */ 1907 static int 1908 ffs_checkblk(ip, bno, size) 1909 struct inode *ip; 1910 ufs2_daddr_t bno; 1911 long size; 1912 { 1913 struct fs *fs; 1914 struct cg *cgp; 1915 struct buf *bp; 1916 ufs1_daddr_t cgbno; 1917 int i, error, frags, free; 1918 u_int8_t *blksfree; 1919 1920 fs = ip->i_fs; 1921 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1922 printf("bsize = %ld, size = %ld, fs = %s\n", 1923 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1924 panic("ffs_checkblk: bad size"); 1925 } 1926 if ((u_int)bno >= fs->fs_size) 1927 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 1928 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1929 (int)fs->fs_cgsize, NOCRED, &bp); 1930 if (error) 1931 panic("ffs_checkblk: cg bread failed"); 1932 cgp = (struct cg *)bp->b_data; 1933 if (!cg_chkmagic(cgp)) 1934 panic("ffs_checkblk: cg magic mismatch"); 1935 bp->b_xflags |= BX_BKGRDWRITE; 1936 blksfree = cg_blksfree(cgp); 1937 cgbno = dtogd(fs, bno); 1938 if (size == fs->fs_bsize) { 1939 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 1940 } else { 1941 frags = numfrags(fs, size); 1942 for (free = 0, i = 0; i < frags; i++) 1943 if (isset(blksfree, cgbno + i)) 1944 free++; 1945 if (free != 0 && free != frags) 1946 panic("ffs_checkblk: partially free fragment"); 1947 } 1948 brelse(bp); 1949 return (!free); 1950 } 1951 #endif /* DIAGNOSTIC */ 1952 1953 /* 1954 * Free an inode. 1955 */ 1956 int 1957 ffs_vfree(pvp, ino, mode) 1958 struct vnode *pvp; 1959 ino_t ino; 1960 int mode; 1961 { 1962 struct inode *ip; 1963 1964 if (DOINGSOFTDEP(pvp)) { 1965 softdep_freefile(pvp, ino, mode); 1966 return (0); 1967 } 1968 ip = VTOI(pvp); 1969 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode)); 1970 } 1971 1972 /* 1973 * Do the actual free operation. 1974 * The specified inode is placed back in the free map. 1975 */ 1976 int 1977 ffs_freefile(ump, fs, devvp, ino, mode) 1978 struct ufsmount *ump; 1979 struct fs *fs; 1980 struct vnode *devvp; 1981 ino_t ino; 1982 int mode; 1983 { 1984 struct cg *cgp; 1985 struct buf *bp; 1986 ufs2_daddr_t cgbno; 1987 int error, cg; 1988 u_int8_t *inosused; 1989 struct cdev *dev; 1990 1991 cg = ino_to_cg(fs, ino); 1992 if (devvp->v_type != VCHR) { 1993 /* devvp is a snapshot */ 1994 dev = VTOI(devvp)->i_devvp->v_rdev; 1995 cgbno = fragstoblks(fs, cgtod(fs, cg)); 1996 } else { 1997 /* devvp is a normal disk device */ 1998 dev = devvp->v_rdev; 1999 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2000 } 2001 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2002 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 2003 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 2004 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2005 brelse(bp); 2006 return (error); 2007 } 2008 cgp = (struct cg *)bp->b_data; 2009 if (!cg_chkmagic(cgp)) { 2010 brelse(bp); 2011 return (0); 2012 } 2013 bp->b_xflags |= BX_BKGRDWRITE; 2014 cgp->cg_old_time = cgp->cg_time = time_second; 2015 inosused = cg_inosused(cgp); 2016 ino %= fs->fs_ipg; 2017 if (isclr(inosused, ino)) { 2018 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev), 2019 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt); 2020 if (fs->fs_ronly == 0) 2021 panic("ffs_freefile: freeing free inode"); 2022 } 2023 clrbit(inosused, ino); 2024 if (ino < cgp->cg_irotor) 2025 cgp->cg_irotor = ino; 2026 cgp->cg_cs.cs_nifree++; 2027 UFS_LOCK(ump); 2028 fs->fs_cstotal.cs_nifree++; 2029 fs->fs_cs(fs, cg).cs_nifree++; 2030 if ((mode & IFMT) == IFDIR) { 2031 cgp->cg_cs.cs_ndir--; 2032 fs->fs_cstotal.cs_ndir--; 2033 fs->fs_cs(fs, cg).cs_ndir--; 2034 } 2035 fs->fs_fmod = 1; 2036 ACTIVECLEAR(fs, cg); 2037 UFS_UNLOCK(ump); 2038 bdwrite(bp); 2039 return (0); 2040 } 2041 2042 /* 2043 * Check to see if a file is free. 2044 */ 2045 int 2046 ffs_checkfreefile(fs, devvp, ino) 2047 struct fs *fs; 2048 struct vnode *devvp; 2049 ino_t ino; 2050 { 2051 struct cg *cgp; 2052 struct buf *bp; 2053 ufs2_daddr_t cgbno; 2054 int ret, cg; 2055 u_int8_t *inosused; 2056 2057 cg = ino_to_cg(fs, ino); 2058 if (devvp->v_type != VCHR) { 2059 /* devvp is a snapshot */ 2060 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2061 } else { 2062 /* devvp is a normal disk device */ 2063 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2064 } 2065 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2066 return (1); 2067 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2068 brelse(bp); 2069 return (1); 2070 } 2071 cgp = (struct cg *)bp->b_data; 2072 if (!cg_chkmagic(cgp)) { 2073 brelse(bp); 2074 return (1); 2075 } 2076 inosused = cg_inosused(cgp); 2077 ino %= fs->fs_ipg; 2078 ret = isclr(inosused, ino); 2079 brelse(bp); 2080 return (ret); 2081 } 2082 2083 /* 2084 * Find a block of the specified size in the specified cylinder group. 2085 * 2086 * It is a panic if a request is made to find a block if none are 2087 * available. 2088 */ 2089 static ufs1_daddr_t 2090 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2091 struct fs *fs; 2092 struct cg *cgp; 2093 ufs2_daddr_t bpref; 2094 int allocsiz; 2095 { 2096 ufs1_daddr_t bno; 2097 int start, len, loc, i; 2098 int blk, field, subfield, pos; 2099 u_int8_t *blksfree; 2100 2101 /* 2102 * find the fragment by searching through the free block 2103 * map for an appropriate bit pattern 2104 */ 2105 if (bpref) 2106 start = dtogd(fs, bpref) / NBBY; 2107 else 2108 start = cgp->cg_frotor / NBBY; 2109 blksfree = cg_blksfree(cgp); 2110 len = howmany(fs->fs_fpg, NBBY) - start; 2111 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2112 (u_char *)fragtbl[fs->fs_frag], 2113 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2114 if (loc == 0) { 2115 len = start + 1; 2116 start = 0; 2117 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2118 (u_char *)fragtbl[fs->fs_frag], 2119 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2120 if (loc == 0) { 2121 printf("start = %d, len = %d, fs = %s\n", 2122 start, len, fs->fs_fsmnt); 2123 panic("ffs_alloccg: map corrupted"); 2124 /* NOTREACHED */ 2125 } 2126 } 2127 bno = (start + len - loc) * NBBY; 2128 cgp->cg_frotor = bno; 2129 /* 2130 * found the byte in the map 2131 * sift through the bits to find the selected frag 2132 */ 2133 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2134 blk = blkmap(fs, blksfree, bno); 2135 blk <<= 1; 2136 field = around[allocsiz]; 2137 subfield = inside[allocsiz]; 2138 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2139 if ((blk & field) == subfield) 2140 return (bno + pos); 2141 field <<= 1; 2142 subfield <<= 1; 2143 } 2144 } 2145 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2146 panic("ffs_alloccg: block not in map"); 2147 return (-1); 2148 } 2149 2150 /* 2151 * Update the cluster map because of an allocation or free. 2152 * 2153 * Cnt == 1 means free; cnt == -1 means allocating. 2154 */ 2155 void 2156 ffs_clusteracct(ump, fs, cgp, blkno, cnt) 2157 struct ufsmount *ump; 2158 struct fs *fs; 2159 struct cg *cgp; 2160 ufs1_daddr_t blkno; 2161 int cnt; 2162 { 2163 int32_t *sump; 2164 int32_t *lp; 2165 u_char *freemapp, *mapp; 2166 int i, start, end, forw, back, map, bit; 2167 2168 mtx_assert(UFS_MTX(ump), MA_OWNED); 2169 2170 if (fs->fs_contigsumsize <= 0) 2171 return; 2172 freemapp = cg_clustersfree(cgp); 2173 sump = cg_clustersum(cgp); 2174 /* 2175 * Allocate or clear the actual block. 2176 */ 2177 if (cnt > 0) 2178 setbit(freemapp, blkno); 2179 else 2180 clrbit(freemapp, blkno); 2181 /* 2182 * Find the size of the cluster going forward. 2183 */ 2184 start = blkno + 1; 2185 end = start + fs->fs_contigsumsize; 2186 if (end >= cgp->cg_nclusterblks) 2187 end = cgp->cg_nclusterblks; 2188 mapp = &freemapp[start / NBBY]; 2189 map = *mapp++; 2190 bit = 1 << (start % NBBY); 2191 for (i = start; i < end; i++) { 2192 if ((map & bit) == 0) 2193 break; 2194 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2195 bit <<= 1; 2196 } else { 2197 map = *mapp++; 2198 bit = 1; 2199 } 2200 } 2201 forw = i - start; 2202 /* 2203 * Find the size of the cluster going backward. 2204 */ 2205 start = blkno - 1; 2206 end = start - fs->fs_contigsumsize; 2207 if (end < 0) 2208 end = -1; 2209 mapp = &freemapp[start / NBBY]; 2210 map = *mapp--; 2211 bit = 1 << (start % NBBY); 2212 for (i = start; i > end; i--) { 2213 if ((map & bit) == 0) 2214 break; 2215 if ((i & (NBBY - 1)) != 0) { 2216 bit >>= 1; 2217 } else { 2218 map = *mapp--; 2219 bit = 1 << (NBBY - 1); 2220 } 2221 } 2222 back = start - i; 2223 /* 2224 * Account for old cluster and the possibly new forward and 2225 * back clusters. 2226 */ 2227 i = back + forw + 1; 2228 if (i > fs->fs_contigsumsize) 2229 i = fs->fs_contigsumsize; 2230 sump[i] += cnt; 2231 if (back > 0) 2232 sump[back] -= cnt; 2233 if (forw > 0) 2234 sump[forw] -= cnt; 2235 /* 2236 * Update cluster summary information. 2237 */ 2238 lp = &sump[fs->fs_contigsumsize]; 2239 for (i = fs->fs_contigsumsize; i > 0; i--) 2240 if (*lp-- > 0) 2241 break; 2242 fs->fs_maxcluster[cgp->cg_cgx] = i; 2243 } 2244 2245 /* 2246 * Fserr prints the name of a filesystem with an error diagnostic. 2247 * 2248 * The form of the error message is: 2249 * fs: error message 2250 */ 2251 static void 2252 ffs_fserr(fs, inum, cp) 2253 struct fs *fs; 2254 ino_t inum; 2255 char *cp; 2256 { 2257 struct thread *td = curthread; /* XXX */ 2258 struct proc *p = td->td_proc; 2259 2260 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2261 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp); 2262 } 2263 2264 /* 2265 * This function provides the capability for the fsck program to 2266 * update an active filesystem. Six operations are provided: 2267 * 2268 * adjrefcnt(inode, amt) - adjusts the reference count on the 2269 * specified inode by the specified amount. Under normal 2270 * operation the count should always go down. Decrementing 2271 * the count to zero will cause the inode to be freed. 2272 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2273 * by the specifed amount. 2274 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2275 * are marked as free. Inodes should never have to be marked 2276 * as in use. 2277 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2278 * are marked as free. Inodes should never have to be marked 2279 * as in use. 2280 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2281 * are marked as free. Blocks should never have to be marked 2282 * as in use. 2283 * setflags(flags, set/clear) - the fs_flags field has the specified 2284 * flags set (second parameter +1) or cleared (second parameter -1). 2285 */ 2286 2287 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2288 2289 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2290 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2291 2292 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2293 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2294 2295 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2296 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2297 2298 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2299 sysctl_ffs_fsck, "Free Range of File Inodes"); 2300 2301 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2302 sysctl_ffs_fsck, "Free Range of Blocks"); 2303 2304 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2305 sysctl_ffs_fsck, "Change Filesystem Flags"); 2306 2307 #ifdef DEBUG 2308 static int fsckcmds = 0; 2309 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2310 #endif /* DEBUG */ 2311 2312 static int 2313 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2314 { 2315 struct fsck_cmd cmd; 2316 struct ufsmount *ump; 2317 struct vnode *vp; 2318 struct inode *ip; 2319 struct mount *mp; 2320 struct fs *fs; 2321 ufs2_daddr_t blkno; 2322 long blkcnt, blksize; 2323 struct file *fp; 2324 int filetype, error; 2325 2326 if (req->newlen > sizeof cmd) 2327 return (EBADRPC); 2328 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2329 return (error); 2330 if (cmd.version != FFS_CMD_VERSION) 2331 return (ERPCMISMATCH); 2332 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2333 return (error); 2334 vn_start_write(fp->f_data, &mp, V_WAIT); 2335 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2336 vn_finished_write(mp); 2337 fdrop(fp, curthread); 2338 return (EINVAL); 2339 } 2340 if (mp->mnt_flag & MNT_RDONLY) { 2341 vn_finished_write(mp); 2342 fdrop(fp, curthread); 2343 return (EROFS); 2344 } 2345 ump = VFSTOUFS(mp); 2346 fs = ump->um_fs; 2347 filetype = IFREG; 2348 2349 switch (oidp->oid_number) { 2350 2351 case FFS_SET_FLAGS: 2352 #ifdef DEBUG 2353 if (fsckcmds) 2354 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2355 cmd.size > 0 ? "set" : "clear"); 2356 #endif /* DEBUG */ 2357 if (cmd.size > 0) 2358 fs->fs_flags |= (long)cmd.value; 2359 else 2360 fs->fs_flags &= ~(long)cmd.value; 2361 break; 2362 2363 case FFS_ADJ_REFCNT: 2364 #ifdef DEBUG 2365 if (fsckcmds) { 2366 printf("%s: adjust inode %jd count by %jd\n", 2367 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2368 (intmax_t)cmd.size); 2369 } 2370 #endif /* DEBUG */ 2371 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2372 break; 2373 ip = VTOI(vp); 2374 ip->i_nlink += cmd.size; 2375 DIP_SET(ip, i_nlink, ip->i_nlink); 2376 ip->i_effnlink += cmd.size; 2377 ip->i_flag |= IN_CHANGE; 2378 if (DOINGSOFTDEP(vp)) 2379 softdep_change_linkcnt(ip); 2380 vput(vp); 2381 break; 2382 2383 case FFS_ADJ_BLKCNT: 2384 #ifdef DEBUG 2385 if (fsckcmds) { 2386 printf("%s: adjust inode %jd block count by %jd\n", 2387 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2388 (intmax_t)cmd.size); 2389 } 2390 #endif /* DEBUG */ 2391 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2392 break; 2393 ip = VTOI(vp); 2394 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2395 ip->i_flag |= IN_CHANGE; 2396 vput(vp); 2397 break; 2398 2399 case FFS_DIR_FREE: 2400 filetype = IFDIR; 2401 /* fall through */ 2402 2403 case FFS_FILE_FREE: 2404 #ifdef DEBUG 2405 if (fsckcmds) { 2406 if (cmd.size == 1) 2407 printf("%s: free %s inode %d\n", 2408 mp->mnt_stat.f_mntonname, 2409 filetype == IFDIR ? "directory" : "file", 2410 (ino_t)cmd.value); 2411 else 2412 printf("%s: free %s inodes %d-%d\n", 2413 mp->mnt_stat.f_mntonname, 2414 filetype == IFDIR ? "directory" : "file", 2415 (ino_t)cmd.value, 2416 (ino_t)(cmd.value + cmd.size - 1)); 2417 } 2418 #endif /* DEBUG */ 2419 while (cmd.size > 0) { 2420 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2421 cmd.value, filetype))) 2422 break; 2423 cmd.size -= 1; 2424 cmd.value += 1; 2425 } 2426 break; 2427 2428 case FFS_BLK_FREE: 2429 #ifdef DEBUG 2430 if (fsckcmds) { 2431 if (cmd.size == 1) 2432 printf("%s: free block %jd\n", 2433 mp->mnt_stat.f_mntonname, 2434 (intmax_t)cmd.value); 2435 else 2436 printf("%s: free blocks %jd-%jd\n", 2437 mp->mnt_stat.f_mntonname, 2438 (intmax_t)cmd.value, 2439 (intmax_t)cmd.value + cmd.size - 1); 2440 } 2441 #endif /* DEBUG */ 2442 blkno = cmd.value; 2443 blkcnt = cmd.size; 2444 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2445 while (blkcnt > 0) { 2446 if (blksize > blkcnt) 2447 blksize = blkcnt; 2448 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2449 blksize * fs->fs_fsize, ROOTINO); 2450 blkno += blksize; 2451 blkcnt -= blksize; 2452 blksize = fs->fs_frag; 2453 } 2454 break; 2455 2456 default: 2457 #ifdef DEBUG 2458 if (fsckcmds) { 2459 printf("Invalid request %d from fsck\n", 2460 oidp->oid_number); 2461 } 2462 #endif /* DEBUG */ 2463 error = EINVAL; 2464 break; 2465 2466 } 2467 fdrop(fp, curthread); 2468 vn_finished_write(mp); 2469 return (error); 2470 } 2471