1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/gsb_crc32.h> 72 #include <sys/systm.h> 73 #include <sys/bio.h> 74 #include <sys/buf.h> 75 #include <sys/conf.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/vnode.h> 82 #include <sys/mount.h> 83 #include <sys/kernel.h> 84 #include <sys/syscallsubr.h> 85 #include <sys/sysctl.h> 86 #include <sys/syslog.h> 87 #include <sys/taskqueue.h> 88 89 #include <security/audit/audit.h> 90 91 #include <geom/geom.h> 92 #include <geom/geom_vfs.h> 93 94 #include <ufs/ufs/dir.h> 95 #include <ufs/ufs/extattr.h> 96 #include <ufs/ufs/quota.h> 97 #include <ufs/ufs/inode.h> 98 #include <ufs/ufs/ufs_extern.h> 99 #include <ufs/ufs/ufsmount.h> 100 101 #include <ufs/ffs/fs.h> 102 #include <ufs/ffs/ffs_extern.h> 103 #include <ufs/ffs/softdep.h> 104 105 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 106 int size, int rsize); 107 108 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 109 static ufs2_daddr_t 110 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 111 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 112 struct vnode *, ufs2_daddr_t, long, ino_t, 113 struct workhead *); 114 #ifdef INVARIANTS 115 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 116 #endif 117 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 118 static ino_t ffs_dirpref(struct inode *); 119 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 120 int, int); 121 static ufs2_daddr_t ffs_hashalloc 122 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 123 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 124 int); 125 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 126 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 127 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 128 static void ffs_ckhash_cg(struct buf *); 129 130 /* 131 * Allocate a block in the filesystem. 132 * 133 * The size of the requested block is given, which must be some 134 * multiple of fs_fsize and <= fs_bsize. 135 * A preference may be optionally specified. If a preference is given 136 * the following hierarchy is used to allocate a block: 137 * 1) allocate the requested block. 138 * 2) allocate a rotationally optimal block in the same cylinder. 139 * 3) allocate a block in the same cylinder group. 140 * 4) quadradically rehash into other cylinder groups, until an 141 * available block is located. 142 * If no block preference is given the following hierarchy is used 143 * to allocate a block: 144 * 1) allocate a block in the cylinder group that contains the 145 * inode for the file. 146 * 2) quadradically rehash into other cylinder groups, until an 147 * available block is located. 148 */ 149 int 150 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 151 struct inode *ip; 152 ufs2_daddr_t lbn, bpref; 153 int size, flags; 154 struct ucred *cred; 155 ufs2_daddr_t *bnp; 156 { 157 struct fs *fs; 158 struct ufsmount *ump; 159 ufs2_daddr_t bno; 160 u_int cg, reclaimed; 161 int64_t delta; 162 #ifdef QUOTA 163 int error; 164 #endif 165 166 *bnp = 0; 167 ump = ITOUMP(ip); 168 fs = ump->um_fs; 169 mtx_assert(UFS_MTX(ump), MA_OWNED); 170 #ifdef INVARIANTS 171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 172 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 173 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 174 fs->fs_fsmnt); 175 panic("ffs_alloc: bad size"); 176 } 177 if (cred == NOCRED) 178 panic("ffs_alloc: missing credential"); 179 #endif /* INVARIANTS */ 180 reclaimed = 0; 181 retry: 182 #ifdef QUOTA 183 UFS_UNLOCK(ump); 184 error = chkdq(ip, btodb(size), cred, 0); 185 if (error) 186 return (error); 187 UFS_LOCK(ump); 188 #endif 189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 190 goto nospace; 191 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 192 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 193 goto nospace; 194 if (bpref >= fs->fs_size) 195 bpref = 0; 196 if (bpref == 0) 197 cg = ino_to_cg(fs, ip->i_number); 198 else 199 cg = dtog(fs, bpref); 200 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 201 if (bno > 0) { 202 delta = btodb(size); 203 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 204 if (flags & IO_EXT) 205 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 206 else 207 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 208 *bnp = bno; 209 return (0); 210 } 211 nospace: 212 #ifdef QUOTA 213 UFS_UNLOCK(ump); 214 /* 215 * Restore user's disk quota because allocation failed. 216 */ 217 (void) chkdq(ip, -btodb(size), cred, FORCE); 218 UFS_LOCK(ump); 219 #endif 220 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 221 reclaimed = 1; 222 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 223 goto retry; 224 } 225 if (reclaimed > 0 && 226 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 227 UFS_UNLOCK(ump); 228 ffs_fserr(fs, ip->i_number, "filesystem full"); 229 uprintf("\n%s: write failed, filesystem is full\n", 230 fs->fs_fsmnt); 231 } else { 232 UFS_UNLOCK(ump); 233 } 234 return (ENOSPC); 235 } 236 237 /* 238 * Reallocate a fragment to a bigger size 239 * 240 * The number and size of the old block is given, and a preference 241 * and new size is also specified. The allocator attempts to extend 242 * the original block. Failing that, the regular block allocator is 243 * invoked to get an appropriate block. 244 */ 245 int 246 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 247 struct inode *ip; 248 ufs2_daddr_t lbprev; 249 ufs2_daddr_t bprev; 250 ufs2_daddr_t bpref; 251 int osize, nsize, flags; 252 struct ucred *cred; 253 struct buf **bpp; 254 { 255 struct vnode *vp; 256 struct fs *fs; 257 struct buf *bp; 258 struct ufsmount *ump; 259 u_int cg, request, reclaimed; 260 int error, gbflags; 261 ufs2_daddr_t bno; 262 int64_t delta; 263 264 vp = ITOV(ip); 265 ump = ITOUMP(ip); 266 fs = ump->um_fs; 267 bp = NULL; 268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 269 270 mtx_assert(UFS_MTX(ump), MA_OWNED); 271 #ifdef INVARIANTS 272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 273 panic("ffs_realloccg: allocation on suspended filesystem"); 274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 276 printf( 277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 278 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 279 nsize, fs->fs_fsmnt); 280 panic("ffs_realloccg: bad size"); 281 } 282 if (cred == NOCRED) 283 panic("ffs_realloccg: missing credential"); 284 #endif /* INVARIANTS */ 285 reclaimed = 0; 286 retry: 287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 289 goto nospace; 290 } 291 if (bprev == 0) { 292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 293 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 294 fs->fs_fsmnt); 295 panic("ffs_realloccg: bad bprev"); 296 } 297 UFS_UNLOCK(ump); 298 /* 299 * Allocate the extra space in the buffer. 300 */ 301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 302 if (error) { 303 return (error); 304 } 305 306 if (bp->b_blkno == bp->b_lblkno) { 307 if (lbprev >= UFS_NDADDR) 308 panic("ffs_realloccg: lbprev out of range"); 309 bp->b_blkno = fsbtodb(fs, bprev); 310 } 311 312 #ifdef QUOTA 313 error = chkdq(ip, btodb(nsize - osize), cred, 0); 314 if (error) { 315 brelse(bp); 316 return (error); 317 } 318 #endif 319 /* 320 * Check for extension in the existing location. 321 */ 322 *bpp = NULL; 323 cg = dtog(fs, bprev); 324 UFS_LOCK(ump); 325 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 326 if (bno) { 327 if (bp->b_blkno != fsbtodb(fs, bno)) 328 panic("ffs_realloccg: bad blockno"); 329 delta = btodb(nsize - osize); 330 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 331 if (flags & IO_EXT) 332 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 333 else 334 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 335 allocbuf(bp, nsize); 336 bp->b_flags |= B_DONE; 337 vfs_bio_bzero_buf(bp, osize, nsize - osize); 338 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 339 vfs_bio_set_valid(bp, osize, nsize - osize); 340 *bpp = bp; 341 return (0); 342 } 343 /* 344 * Allocate a new disk location. 345 */ 346 if (bpref >= fs->fs_size) 347 bpref = 0; 348 switch ((int)fs->fs_optim) { 349 case FS_OPTSPACE: 350 /* 351 * Allocate an exact sized fragment. Although this makes 352 * best use of space, we will waste time relocating it if 353 * the file continues to grow. If the fragmentation is 354 * less than half of the minimum free reserve, we choose 355 * to begin optimizing for time. 356 */ 357 request = nsize; 358 if (fs->fs_minfree <= 5 || 359 fs->fs_cstotal.cs_nffree > 360 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 361 break; 362 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 363 fs->fs_fsmnt); 364 fs->fs_optim = FS_OPTTIME; 365 break; 366 case FS_OPTTIME: 367 /* 368 * At this point we have discovered a file that is trying to 369 * grow a small fragment to a larger fragment. To save time, 370 * we allocate a full sized block, then free the unused portion. 371 * If the file continues to grow, the `ffs_fragextend' call 372 * above will be able to grow it in place without further 373 * copying. If aberrant programs cause disk fragmentation to 374 * grow within 2% of the free reserve, we choose to begin 375 * optimizing for space. 376 */ 377 request = fs->fs_bsize; 378 if (fs->fs_cstotal.cs_nffree < 379 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 380 break; 381 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 382 fs->fs_fsmnt); 383 fs->fs_optim = FS_OPTSPACE; 384 break; 385 default: 386 printf("dev = %s, optim = %ld, fs = %s\n", 387 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 388 panic("ffs_realloccg: bad optim"); 389 /* NOTREACHED */ 390 } 391 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 392 if (bno > 0) { 393 bp->b_blkno = fsbtodb(fs, bno); 394 if (!DOINGSOFTDEP(vp)) 395 /* 396 * The usual case is that a smaller fragment that 397 * was just allocated has been replaced with a bigger 398 * fragment or a full-size block. If it is marked as 399 * B_DELWRI, the current contents have not been written 400 * to disk. It is possible that the block was written 401 * earlier, but very uncommon. If the block has never 402 * been written, there is no need to send a BIO_DELETE 403 * for it when it is freed. The gain from avoiding the 404 * TRIMs for the common case of unwritten blocks far 405 * exceeds the cost of the write amplification for the 406 * uncommon case of failing to send a TRIM for a block 407 * that had been written. 408 */ 409 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 410 ip->i_number, vp->v_type, NULL, 411 (bp->b_flags & B_DELWRI) != 0 ? 412 NOTRIM_KEY : SINGLETON_KEY); 413 delta = btodb(nsize - osize); 414 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 415 if (flags & IO_EXT) 416 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 417 else 418 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 419 allocbuf(bp, nsize); 420 bp->b_flags |= B_DONE; 421 vfs_bio_bzero_buf(bp, osize, nsize - osize); 422 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 423 vfs_bio_set_valid(bp, osize, nsize - osize); 424 *bpp = bp; 425 return (0); 426 } 427 #ifdef QUOTA 428 UFS_UNLOCK(ump); 429 /* 430 * Restore user's disk quota because allocation failed. 431 */ 432 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 433 UFS_LOCK(ump); 434 #endif 435 nospace: 436 /* 437 * no space available 438 */ 439 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 440 reclaimed = 1; 441 UFS_UNLOCK(ump); 442 if (bp) { 443 brelse(bp); 444 bp = NULL; 445 } 446 UFS_LOCK(ump); 447 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 448 goto retry; 449 } 450 if (reclaimed > 0 && 451 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 452 UFS_UNLOCK(ump); 453 ffs_fserr(fs, ip->i_number, "filesystem full"); 454 uprintf("\n%s: write failed, filesystem is full\n", 455 fs->fs_fsmnt); 456 } else { 457 UFS_UNLOCK(ump); 458 } 459 if (bp) 460 brelse(bp); 461 return (ENOSPC); 462 } 463 464 /* 465 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 466 * 467 * The vnode and an array of buffer pointers for a range of sequential 468 * logical blocks to be made contiguous is given. The allocator attempts 469 * to find a range of sequential blocks starting as close as possible 470 * from the end of the allocation for the logical block immediately 471 * preceding the current range. If successful, the physical block numbers 472 * in the buffer pointers and in the inode are changed to reflect the new 473 * allocation. If unsuccessful, the allocation is left unchanged. The 474 * success in doing the reallocation is returned. Note that the error 475 * return is not reflected back to the user. Rather the previous block 476 * allocation will be used. 477 */ 478 479 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 480 481 static int doasyncfree = 1; 482 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 483 "do not force synchronous writes when blocks are reallocated"); 484 485 static int doreallocblks = 1; 486 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 487 "enable block reallocation"); 488 489 static int dotrimcons = 1; 490 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 491 "enable BIO_DELETE / TRIM consolidation"); 492 493 static int maxclustersearch = 10; 494 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 495 0, "max number of cylinder group to search for contigous blocks"); 496 497 #ifdef DIAGNOSTIC 498 static int prtrealloc = 0; 499 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 500 "print out FFS filesystem block reallocation operations"); 501 #endif 502 503 int 504 ffs_reallocblks(ap) 505 struct vop_reallocblks_args /* { 506 struct vnode *a_vp; 507 struct cluster_save *a_buflist; 508 } */ *ap; 509 { 510 struct ufsmount *ump; 511 512 /* 513 * We used to skip reallocating the blocks of a file into a 514 * contiguous sequence if the underlying flash device requested 515 * BIO_DELETE notifications, because devices that benefit from 516 * BIO_DELETE also benefit from not moving the data. However, 517 * the destination for the data is usually moved before the data 518 * is written to the initially allocated location, so we rarely 519 * suffer the penalty of extra writes. With the addition of the 520 * consolidation of contiguous blocks into single BIO_DELETE 521 * operations, having fewer but larger contiguous blocks reduces 522 * the number of (slow and expensive) BIO_DELETE operations. So 523 * when doing BIO_DELETE consolidation, we do block reallocation. 524 * 525 * Skip if reallocblks has been disabled globally. 526 */ 527 ump = ap->a_vp->v_mount->mnt_data; 528 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 529 doreallocblks == 0) 530 return (ENOSPC); 531 532 /* 533 * We can't wait in softdep prealloc as it may fsync and recurse 534 * here. Instead we simply fail to reallocate blocks if this 535 * rare condition arises. 536 */ 537 if (DOINGSOFTDEP(ap->a_vp)) 538 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 539 return (ENOSPC); 540 if (ump->um_fstype == UFS1) 541 return (ffs_reallocblks_ufs1(ap)); 542 return (ffs_reallocblks_ufs2(ap)); 543 } 544 545 static int 546 ffs_reallocblks_ufs1(ap) 547 struct vop_reallocblks_args /* { 548 struct vnode *a_vp; 549 struct cluster_save *a_buflist; 550 } */ *ap; 551 { 552 struct fs *fs; 553 struct inode *ip; 554 struct vnode *vp; 555 struct buf *sbp, *ebp, *bp; 556 ufs1_daddr_t *bap, *sbap, *ebap; 557 struct cluster_save *buflist; 558 struct ufsmount *ump; 559 ufs_lbn_t start_lbn, end_lbn; 560 ufs1_daddr_t soff, newblk, blkno; 561 ufs2_daddr_t pref; 562 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 563 int i, cg, len, start_lvl, end_lvl, ssize; 564 565 vp = ap->a_vp; 566 ip = VTOI(vp); 567 ump = ITOUMP(ip); 568 fs = ump->um_fs; 569 /* 570 * If we are not tracking block clusters or if we have less than 4% 571 * free blocks left, then do not attempt to cluster. Running with 572 * less than 5% free block reserve is not recommended and those that 573 * choose to do so do not expect to have good file layout. 574 */ 575 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 576 return (ENOSPC); 577 buflist = ap->a_buflist; 578 len = buflist->bs_nchildren; 579 start_lbn = buflist->bs_children[0]->b_lblkno; 580 end_lbn = start_lbn + len - 1; 581 #ifdef INVARIANTS 582 for (i = 0; i < len; i++) 583 if (!ffs_checkblk(ip, 584 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 585 panic("ffs_reallocblks: unallocated block 1"); 586 for (i = 1; i < len; i++) 587 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 588 panic("ffs_reallocblks: non-logical cluster"); 589 blkno = buflist->bs_children[0]->b_blkno; 590 ssize = fsbtodb(fs, fs->fs_frag); 591 for (i = 1; i < len - 1; i++) 592 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 593 panic("ffs_reallocblks: non-physical cluster %d", i); 594 #endif 595 /* 596 * If the cluster crosses the boundary for the first indirect 597 * block, leave space for the indirect block. Indirect blocks 598 * are initially laid out in a position after the last direct 599 * block. Block reallocation would usually destroy locality by 600 * moving the indirect block out of the way to make room for 601 * data blocks if we didn't compensate here. We should also do 602 * this for other indirect block boundaries, but it is only 603 * important for the first one. 604 */ 605 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 606 return (ENOSPC); 607 /* 608 * If the latest allocation is in a new cylinder group, assume that 609 * the filesystem has decided to move and do not force it back to 610 * the previous cylinder group. 611 */ 612 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 613 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 614 return (ENOSPC); 615 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 616 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 617 return (ENOSPC); 618 /* 619 * Get the starting offset and block map for the first block. 620 */ 621 if (start_lvl == 0) { 622 sbap = &ip->i_din1->di_db[0]; 623 soff = start_lbn; 624 } else { 625 idp = &start_ap[start_lvl - 1]; 626 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 627 brelse(sbp); 628 return (ENOSPC); 629 } 630 sbap = (ufs1_daddr_t *)sbp->b_data; 631 soff = idp->in_off; 632 } 633 /* 634 * If the block range spans two block maps, get the second map. 635 */ 636 ebap = NULL; 637 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 638 ssize = len; 639 } else { 640 #ifdef INVARIANTS 641 if (start_lvl > 0 && 642 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 643 panic("ffs_reallocblk: start == end"); 644 #endif 645 ssize = len - (idp->in_off + 1); 646 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 647 goto fail; 648 ebap = (ufs1_daddr_t *)ebp->b_data; 649 } 650 /* 651 * Find the preferred location for the cluster. If we have not 652 * previously failed at this endeavor, then follow our standard 653 * preference calculation. If we have failed at it, then pick up 654 * where we last ended our search. 655 */ 656 UFS_LOCK(ump); 657 if (ip->i_nextclustercg == -1) 658 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 659 else 660 pref = cgdata(fs, ip->i_nextclustercg); 661 /* 662 * Search the block map looking for an allocation of the desired size. 663 * To avoid wasting too much time, we limit the number of cylinder 664 * groups that we will search. 665 */ 666 cg = dtog(fs, pref); 667 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 668 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 669 break; 670 cg += 1; 671 if (cg >= fs->fs_ncg) 672 cg = 0; 673 } 674 /* 675 * If we have failed in our search, record where we gave up for 676 * next time. Otherwise, fall back to our usual search citerion. 677 */ 678 if (newblk == 0) { 679 ip->i_nextclustercg = cg; 680 UFS_UNLOCK(ump); 681 goto fail; 682 } 683 ip->i_nextclustercg = -1; 684 /* 685 * We have found a new contiguous block. 686 * 687 * First we have to replace the old block pointers with the new 688 * block pointers in the inode and indirect blocks associated 689 * with the file. 690 */ 691 #ifdef DIAGNOSTIC 692 if (prtrealloc) 693 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 694 (uintmax_t)ip->i_number, 695 (intmax_t)start_lbn, (intmax_t)end_lbn); 696 #endif 697 blkno = newblk; 698 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 699 if (i == ssize) { 700 bap = ebap; 701 soff = -i; 702 } 703 #ifdef INVARIANTS 704 if (!ffs_checkblk(ip, 705 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 706 panic("ffs_reallocblks: unallocated block 2"); 707 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 708 panic("ffs_reallocblks: alloc mismatch"); 709 #endif 710 #ifdef DIAGNOSTIC 711 if (prtrealloc) 712 printf(" %d,", *bap); 713 #endif 714 if (DOINGSOFTDEP(vp)) { 715 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 716 softdep_setup_allocdirect(ip, start_lbn + i, 717 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 718 buflist->bs_children[i]); 719 else 720 softdep_setup_allocindir_page(ip, start_lbn + i, 721 i < ssize ? sbp : ebp, soff + i, blkno, 722 *bap, buflist->bs_children[i]); 723 } 724 *bap++ = blkno; 725 } 726 /* 727 * Next we must write out the modified inode and indirect blocks. 728 * For strict correctness, the writes should be synchronous since 729 * the old block values may have been written to disk. In practise 730 * they are almost never written, but if we are concerned about 731 * strict correctness, the `doasyncfree' flag should be set to zero. 732 * 733 * The test on `doasyncfree' should be changed to test a flag 734 * that shows whether the associated buffers and inodes have 735 * been written. The flag should be set when the cluster is 736 * started and cleared whenever the buffer or inode is flushed. 737 * We can then check below to see if it is set, and do the 738 * synchronous write only when it has been cleared. 739 */ 740 if (sbap != &ip->i_din1->di_db[0]) { 741 if (doasyncfree) 742 bdwrite(sbp); 743 else 744 bwrite(sbp); 745 } else { 746 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 747 if (!doasyncfree) 748 ffs_update(vp, 1); 749 } 750 if (ssize < len) { 751 if (doasyncfree) 752 bdwrite(ebp); 753 else 754 bwrite(ebp); 755 } 756 /* 757 * Last, free the old blocks and assign the new blocks to the buffers. 758 */ 759 #ifdef DIAGNOSTIC 760 if (prtrealloc) 761 printf("\n\tnew:"); 762 #endif 763 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 764 bp = buflist->bs_children[i]; 765 if (!DOINGSOFTDEP(vp)) 766 /* 767 * The usual case is that a set of N-contiguous blocks 768 * that was just allocated has been replaced with a 769 * set of N+1-contiguous blocks. If they are marked as 770 * B_DELWRI, the current contents have not been written 771 * to disk. It is possible that the blocks were written 772 * earlier, but very uncommon. If the blocks have never 773 * been written, there is no need to send a BIO_DELETE 774 * for them when they are freed. The gain from avoiding 775 * the TRIMs for the common case of unwritten blocks 776 * far exceeds the cost of the write amplification for 777 * the uncommon case of failing to send a TRIM for the 778 * blocks that had been written. 779 */ 780 ffs_blkfree(ump, fs, ump->um_devvp, 781 dbtofsb(fs, bp->b_blkno), 782 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 783 (bp->b_flags & B_DELWRI) != 0 ? 784 NOTRIM_KEY : SINGLETON_KEY); 785 bp->b_blkno = fsbtodb(fs, blkno); 786 #ifdef INVARIANTS 787 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 788 panic("ffs_reallocblks: unallocated block 3"); 789 #endif 790 #ifdef DIAGNOSTIC 791 if (prtrealloc) 792 printf(" %d,", blkno); 793 #endif 794 } 795 #ifdef DIAGNOSTIC 796 if (prtrealloc) { 797 prtrealloc--; 798 printf("\n"); 799 } 800 #endif 801 return (0); 802 803 fail: 804 if (ssize < len) 805 brelse(ebp); 806 if (sbap != &ip->i_din1->di_db[0]) 807 brelse(sbp); 808 return (ENOSPC); 809 } 810 811 static int 812 ffs_reallocblks_ufs2(ap) 813 struct vop_reallocblks_args /* { 814 struct vnode *a_vp; 815 struct cluster_save *a_buflist; 816 } */ *ap; 817 { 818 struct fs *fs; 819 struct inode *ip; 820 struct vnode *vp; 821 struct buf *sbp, *ebp, *bp; 822 ufs2_daddr_t *bap, *sbap, *ebap; 823 struct cluster_save *buflist; 824 struct ufsmount *ump; 825 ufs_lbn_t start_lbn, end_lbn; 826 ufs2_daddr_t soff, newblk, blkno, pref; 827 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 828 int i, cg, len, start_lvl, end_lvl, ssize; 829 830 vp = ap->a_vp; 831 ip = VTOI(vp); 832 ump = ITOUMP(ip); 833 fs = ump->um_fs; 834 /* 835 * If we are not tracking block clusters or if we have less than 4% 836 * free blocks left, then do not attempt to cluster. Running with 837 * less than 5% free block reserve is not recommended and those that 838 * choose to do so do not expect to have good file layout. 839 */ 840 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 841 return (ENOSPC); 842 buflist = ap->a_buflist; 843 len = buflist->bs_nchildren; 844 start_lbn = buflist->bs_children[0]->b_lblkno; 845 end_lbn = start_lbn + len - 1; 846 #ifdef INVARIANTS 847 for (i = 0; i < len; i++) 848 if (!ffs_checkblk(ip, 849 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 850 panic("ffs_reallocblks: unallocated block 1"); 851 for (i = 1; i < len; i++) 852 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 853 panic("ffs_reallocblks: non-logical cluster"); 854 blkno = buflist->bs_children[0]->b_blkno; 855 ssize = fsbtodb(fs, fs->fs_frag); 856 for (i = 1; i < len - 1; i++) 857 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 858 panic("ffs_reallocblks: non-physical cluster %d", i); 859 #endif 860 /* 861 * If the cluster crosses the boundary for the first indirect 862 * block, do not move anything in it. Indirect blocks are 863 * usually initially laid out in a position between the data 864 * blocks. Block reallocation would usually destroy locality by 865 * moving the indirect block out of the way to make room for 866 * data blocks if we didn't compensate here. We should also do 867 * this for other indirect block boundaries, but it is only 868 * important for the first one. 869 */ 870 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 871 return (ENOSPC); 872 /* 873 * If the latest allocation is in a new cylinder group, assume that 874 * the filesystem has decided to move and do not force it back to 875 * the previous cylinder group. 876 */ 877 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 878 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 879 return (ENOSPC); 880 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 881 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 882 return (ENOSPC); 883 /* 884 * Get the starting offset and block map for the first block. 885 */ 886 if (start_lvl == 0) { 887 sbap = &ip->i_din2->di_db[0]; 888 soff = start_lbn; 889 } else { 890 idp = &start_ap[start_lvl - 1]; 891 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 892 brelse(sbp); 893 return (ENOSPC); 894 } 895 sbap = (ufs2_daddr_t *)sbp->b_data; 896 soff = idp->in_off; 897 } 898 /* 899 * If the block range spans two block maps, get the second map. 900 */ 901 ebap = NULL; 902 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 903 ssize = len; 904 } else { 905 #ifdef INVARIANTS 906 if (start_lvl > 0 && 907 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 908 panic("ffs_reallocblk: start == end"); 909 #endif 910 ssize = len - (idp->in_off + 1); 911 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 912 goto fail; 913 ebap = (ufs2_daddr_t *)ebp->b_data; 914 } 915 /* 916 * Find the preferred location for the cluster. If we have not 917 * previously failed at this endeavor, then follow our standard 918 * preference calculation. If we have failed at it, then pick up 919 * where we last ended our search. 920 */ 921 UFS_LOCK(ump); 922 if (ip->i_nextclustercg == -1) 923 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 924 else 925 pref = cgdata(fs, ip->i_nextclustercg); 926 /* 927 * Search the block map looking for an allocation of the desired size. 928 * To avoid wasting too much time, we limit the number of cylinder 929 * groups that we will search. 930 */ 931 cg = dtog(fs, pref); 932 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 933 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 934 break; 935 cg += 1; 936 if (cg >= fs->fs_ncg) 937 cg = 0; 938 } 939 /* 940 * If we have failed in our search, record where we gave up for 941 * next time. Otherwise, fall back to our usual search citerion. 942 */ 943 if (newblk == 0) { 944 ip->i_nextclustercg = cg; 945 UFS_UNLOCK(ump); 946 goto fail; 947 } 948 ip->i_nextclustercg = -1; 949 /* 950 * We have found a new contiguous block. 951 * 952 * First we have to replace the old block pointers with the new 953 * block pointers in the inode and indirect blocks associated 954 * with the file. 955 */ 956 #ifdef DIAGNOSTIC 957 if (prtrealloc) 958 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 959 (intmax_t)start_lbn, (intmax_t)end_lbn); 960 #endif 961 blkno = newblk; 962 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 963 if (i == ssize) { 964 bap = ebap; 965 soff = -i; 966 } 967 #ifdef INVARIANTS 968 if (!ffs_checkblk(ip, 969 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 970 panic("ffs_reallocblks: unallocated block 2"); 971 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 972 panic("ffs_reallocblks: alloc mismatch"); 973 #endif 974 #ifdef DIAGNOSTIC 975 if (prtrealloc) 976 printf(" %jd,", (intmax_t)*bap); 977 #endif 978 if (DOINGSOFTDEP(vp)) { 979 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 980 softdep_setup_allocdirect(ip, start_lbn + i, 981 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 982 buflist->bs_children[i]); 983 else 984 softdep_setup_allocindir_page(ip, start_lbn + i, 985 i < ssize ? sbp : ebp, soff + i, blkno, 986 *bap, buflist->bs_children[i]); 987 } 988 *bap++ = blkno; 989 } 990 /* 991 * Next we must write out the modified inode and indirect blocks. 992 * For strict correctness, the writes should be synchronous since 993 * the old block values may have been written to disk. In practise 994 * they are almost never written, but if we are concerned about 995 * strict correctness, the `doasyncfree' flag should be set to zero. 996 * 997 * The test on `doasyncfree' should be changed to test a flag 998 * that shows whether the associated buffers and inodes have 999 * been written. The flag should be set when the cluster is 1000 * started and cleared whenever the buffer or inode is flushed. 1001 * We can then check below to see if it is set, and do the 1002 * synchronous write only when it has been cleared. 1003 */ 1004 if (sbap != &ip->i_din2->di_db[0]) { 1005 if (doasyncfree) 1006 bdwrite(sbp); 1007 else 1008 bwrite(sbp); 1009 } else { 1010 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1011 if (!doasyncfree) 1012 ffs_update(vp, 1); 1013 } 1014 if (ssize < len) { 1015 if (doasyncfree) 1016 bdwrite(ebp); 1017 else 1018 bwrite(ebp); 1019 } 1020 /* 1021 * Last, free the old blocks and assign the new blocks to the buffers. 1022 */ 1023 #ifdef DIAGNOSTIC 1024 if (prtrealloc) 1025 printf("\n\tnew:"); 1026 #endif 1027 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1028 bp = buflist->bs_children[i]; 1029 if (!DOINGSOFTDEP(vp)) 1030 /* 1031 * The usual case is that a set of N-contiguous blocks 1032 * that was just allocated has been replaced with a 1033 * set of N+1-contiguous blocks. If they are marked as 1034 * B_DELWRI, the current contents have not been written 1035 * to disk. It is possible that the blocks were written 1036 * earlier, but very uncommon. If the blocks have never 1037 * been written, there is no need to send a BIO_DELETE 1038 * for them when they are freed. The gain from avoiding 1039 * the TRIMs for the common case of unwritten blocks 1040 * far exceeds the cost of the write amplification for 1041 * the uncommon case of failing to send a TRIM for the 1042 * blocks that had been written. 1043 */ 1044 ffs_blkfree(ump, fs, ump->um_devvp, 1045 dbtofsb(fs, bp->b_blkno), 1046 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1047 (bp->b_flags & B_DELWRI) != 0 ? 1048 NOTRIM_KEY : SINGLETON_KEY); 1049 bp->b_blkno = fsbtodb(fs, blkno); 1050 #ifdef INVARIANTS 1051 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1052 panic("ffs_reallocblks: unallocated block 3"); 1053 #endif 1054 #ifdef DIAGNOSTIC 1055 if (prtrealloc) 1056 printf(" %jd,", (intmax_t)blkno); 1057 #endif 1058 } 1059 #ifdef DIAGNOSTIC 1060 if (prtrealloc) { 1061 prtrealloc--; 1062 printf("\n"); 1063 } 1064 #endif 1065 return (0); 1066 1067 fail: 1068 if (ssize < len) 1069 brelse(ebp); 1070 if (sbap != &ip->i_din2->di_db[0]) 1071 brelse(sbp); 1072 return (ENOSPC); 1073 } 1074 1075 /* 1076 * Allocate an inode in the filesystem. 1077 * 1078 * If allocating a directory, use ffs_dirpref to select the inode. 1079 * If allocating in a directory, the following hierarchy is followed: 1080 * 1) allocate the preferred inode. 1081 * 2) allocate an inode in the same cylinder group. 1082 * 3) quadradically rehash into other cylinder groups, until an 1083 * available inode is located. 1084 * If no inode preference is given the following hierarchy is used 1085 * to allocate an inode: 1086 * 1) allocate an inode in cylinder group 0. 1087 * 2) quadradically rehash into other cylinder groups, until an 1088 * available inode is located. 1089 */ 1090 int 1091 ffs_valloc(pvp, mode, cred, vpp) 1092 struct vnode *pvp; 1093 int mode; 1094 struct ucred *cred; 1095 struct vnode **vpp; 1096 { 1097 struct inode *pip; 1098 struct fs *fs; 1099 struct inode *ip; 1100 struct timespec ts; 1101 struct ufsmount *ump; 1102 ino_t ino, ipref; 1103 u_int cg; 1104 int error, error1, reclaimed; 1105 1106 *vpp = NULL; 1107 pip = VTOI(pvp); 1108 ump = ITOUMP(pip); 1109 fs = ump->um_fs; 1110 1111 UFS_LOCK(ump); 1112 reclaimed = 0; 1113 retry: 1114 if (fs->fs_cstotal.cs_nifree == 0) 1115 goto noinodes; 1116 1117 if ((mode & IFMT) == IFDIR) 1118 ipref = ffs_dirpref(pip); 1119 else 1120 ipref = pip->i_number; 1121 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1122 ipref = 0; 1123 cg = ino_to_cg(fs, ipref); 1124 /* 1125 * Track number of dirs created one after another 1126 * in a same cg without intervening by files. 1127 */ 1128 if ((mode & IFMT) == IFDIR) { 1129 if (fs->fs_contigdirs[cg] < 255) 1130 fs->fs_contigdirs[cg]++; 1131 } else { 1132 if (fs->fs_contigdirs[cg] > 0) 1133 fs->fs_contigdirs[cg]--; 1134 } 1135 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1136 (allocfcn_t *)ffs_nodealloccg); 1137 if (ino == 0) 1138 goto noinodes; 1139 1140 /* 1141 * Get rid of the cached old vnode, force allocation of a new vnode 1142 * for this inode. 1143 */ 1144 error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, FFSV_REPLACE); 1145 if (error) { 1146 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1147 FFSV_FORCEINSMQ | FFSV_REPLACE); 1148 ffs_vfree(pvp, ino, mode); 1149 if (error1 == 0) { 1150 ip = VTOI(*vpp); 1151 if (ip->i_mode) 1152 goto dup_alloc; 1153 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 1154 vput(*vpp); 1155 } 1156 return (error); 1157 } 1158 ip = VTOI(*vpp); 1159 if (ip->i_mode) { 1160 dup_alloc: 1161 printf("mode = 0%o, inum = %ju, fs = %s\n", 1162 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1163 panic("ffs_valloc: dup alloc"); 1164 } 1165 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1166 printf("free inode %s/%lu had %ld blocks\n", 1167 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1168 DIP_SET(ip, i_blocks, 0); 1169 } 1170 ip->i_flags = 0; 1171 DIP_SET(ip, i_flags, 0); 1172 /* 1173 * Set up a new generation number for this inode. 1174 */ 1175 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1176 ip->i_gen = arc4random(); 1177 DIP_SET(ip, i_gen, ip->i_gen); 1178 if (fs->fs_magic == FS_UFS2_MAGIC) { 1179 vfs_timestamp(&ts); 1180 ip->i_din2->di_birthtime = ts.tv_sec; 1181 ip->i_din2->di_birthnsec = ts.tv_nsec; 1182 } 1183 ip->i_flag = 0; 1184 (*vpp)->v_vflag = 0; 1185 (*vpp)->v_type = VNON; 1186 if (fs->fs_magic == FS_UFS2_MAGIC) { 1187 (*vpp)->v_op = &ffs_vnodeops2; 1188 UFS_INODE_SET_FLAG(ip, IN_UFS2); 1189 } else { 1190 (*vpp)->v_op = &ffs_vnodeops1; 1191 } 1192 return (0); 1193 noinodes: 1194 if (reclaimed == 0) { 1195 reclaimed = 1; 1196 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1197 goto retry; 1198 } 1199 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 1200 UFS_UNLOCK(ump); 1201 ffs_fserr(fs, pip->i_number, "out of inodes"); 1202 uprintf("\n%s: create/symlink failed, no inodes free\n", 1203 fs->fs_fsmnt); 1204 } else { 1205 UFS_UNLOCK(ump); 1206 } 1207 return (ENOSPC); 1208 } 1209 1210 /* 1211 * Find a cylinder group to place a directory. 1212 * 1213 * The policy implemented by this algorithm is to allocate a 1214 * directory inode in the same cylinder group as its parent 1215 * directory, but also to reserve space for its files inodes 1216 * and data. Restrict the number of directories which may be 1217 * allocated one after another in the same cylinder group 1218 * without intervening allocation of files. 1219 * 1220 * If we allocate a first level directory then force allocation 1221 * in another cylinder group. 1222 */ 1223 static ino_t 1224 ffs_dirpref(pip) 1225 struct inode *pip; 1226 { 1227 struct fs *fs; 1228 int cg, prefcg, dirsize, cgsize; 1229 u_int avgifree, avgbfree, avgndir, curdirsize; 1230 u_int minifree, minbfree, maxndir; 1231 u_int mincg, minndir; 1232 u_int maxcontigdirs; 1233 1234 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1235 fs = ITOFS(pip); 1236 1237 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1238 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1239 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1240 1241 /* 1242 * Force allocation in another cg if creating a first level dir. 1243 */ 1244 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1245 if (ITOV(pip)->v_vflag & VV_ROOT) { 1246 prefcg = arc4random() % fs->fs_ncg; 1247 mincg = prefcg; 1248 minndir = fs->fs_ipg; 1249 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1250 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1251 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1252 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1253 mincg = cg; 1254 minndir = fs->fs_cs(fs, cg).cs_ndir; 1255 } 1256 for (cg = 0; cg < prefcg; cg++) 1257 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1258 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1259 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1260 mincg = cg; 1261 minndir = fs->fs_cs(fs, cg).cs_ndir; 1262 } 1263 return ((ino_t)(fs->fs_ipg * mincg)); 1264 } 1265 1266 /* 1267 * Count various limits which used for 1268 * optimal allocation of a directory inode. 1269 */ 1270 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1271 minifree = avgifree - avgifree / 4; 1272 if (minifree < 1) 1273 minifree = 1; 1274 minbfree = avgbfree - avgbfree / 4; 1275 if (minbfree < 1) 1276 minbfree = 1; 1277 cgsize = fs->fs_fsize * fs->fs_fpg; 1278 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1279 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1280 if (dirsize < curdirsize) 1281 dirsize = curdirsize; 1282 if (dirsize <= 0) 1283 maxcontigdirs = 0; /* dirsize overflowed */ 1284 else 1285 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1286 if (fs->fs_avgfpdir > 0) 1287 maxcontigdirs = min(maxcontigdirs, 1288 fs->fs_ipg / fs->fs_avgfpdir); 1289 if (maxcontigdirs == 0) 1290 maxcontigdirs = 1; 1291 1292 /* 1293 * Limit number of dirs in one cg and reserve space for 1294 * regular files, but only if we have no deficit in 1295 * inodes or space. 1296 * 1297 * We are trying to find a suitable cylinder group nearby 1298 * our preferred cylinder group to place a new directory. 1299 * We scan from our preferred cylinder group forward looking 1300 * for a cylinder group that meets our criterion. If we get 1301 * to the final cylinder group and do not find anything, 1302 * we start scanning forwards from the beginning of the 1303 * filesystem. While it might seem sensible to start scanning 1304 * backwards or even to alternate looking forward and backward, 1305 * this approach fails badly when the filesystem is nearly full. 1306 * Specifically, we first search all the areas that have no space 1307 * and finally try the one preceding that. We repeat this on 1308 * every request and in the case of the final block end up 1309 * searching the entire filesystem. By jumping to the front 1310 * of the filesystem, our future forward searches always look 1311 * in new cylinder groups so finds every possible block after 1312 * one pass over the filesystem. 1313 */ 1314 prefcg = ino_to_cg(fs, pip->i_number); 1315 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1316 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1317 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1318 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1319 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1320 return ((ino_t)(fs->fs_ipg * cg)); 1321 } 1322 for (cg = 0; cg < prefcg; cg++) 1323 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1324 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1325 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1326 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1327 return ((ino_t)(fs->fs_ipg * cg)); 1328 } 1329 /* 1330 * This is a backstop when we have deficit in space. 1331 */ 1332 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1333 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1334 return ((ino_t)(fs->fs_ipg * cg)); 1335 for (cg = 0; cg < prefcg; cg++) 1336 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1337 break; 1338 return ((ino_t)(fs->fs_ipg * cg)); 1339 } 1340 1341 /* 1342 * Select the desired position for the next block in a file. The file is 1343 * logically divided into sections. The first section is composed of the 1344 * direct blocks and the next fs_maxbpg blocks. Each additional section 1345 * contains fs_maxbpg blocks. 1346 * 1347 * If no blocks have been allocated in the first section, the policy is to 1348 * request a block in the same cylinder group as the inode that describes 1349 * the file. The first indirect is allocated immediately following the last 1350 * direct block and the data blocks for the first indirect immediately 1351 * follow it. 1352 * 1353 * If no blocks have been allocated in any other section, the indirect 1354 * block(s) are allocated in the same cylinder group as its inode in an 1355 * area reserved immediately following the inode blocks. The policy for 1356 * the data blocks is to place them in a cylinder group with a greater than 1357 * average number of free blocks. An appropriate cylinder group is found 1358 * by using a rotor that sweeps the cylinder groups. When a new group of 1359 * blocks is needed, the sweep begins in the cylinder group following the 1360 * cylinder group from which the previous allocation was made. The sweep 1361 * continues until a cylinder group with greater than the average number 1362 * of free blocks is found. If the allocation is for the first block in an 1363 * indirect block or the previous block is a hole, then the information on 1364 * the previous allocation is unavailable; here a best guess is made based 1365 * on the logical block number being allocated. 1366 * 1367 * If a section is already partially allocated, the policy is to 1368 * allocate blocks contiguously within the section if possible. 1369 */ 1370 ufs2_daddr_t 1371 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1372 struct inode *ip; 1373 ufs_lbn_t lbn; 1374 int indx; 1375 ufs1_daddr_t *bap; 1376 { 1377 struct fs *fs; 1378 u_int cg, inocg; 1379 u_int avgbfree, startcg; 1380 ufs2_daddr_t pref, prevbn; 1381 1382 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1383 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1384 fs = ITOFS(ip); 1385 /* 1386 * Allocation of indirect blocks is indicated by passing negative 1387 * values in indx: -1 for single indirect, -2 for double indirect, 1388 * -3 for triple indirect. As noted below, we attempt to allocate 1389 * the first indirect inline with the file data. For all later 1390 * indirect blocks, the data is often allocated in other cylinder 1391 * groups. However to speed random file access and to speed up 1392 * fsck, the filesystem reserves the first fs_metaspace blocks 1393 * (typically half of fs_minfree) of the data area of each cylinder 1394 * group to hold these later indirect blocks. 1395 */ 1396 inocg = ino_to_cg(fs, ip->i_number); 1397 if (indx < 0) { 1398 /* 1399 * Our preference for indirect blocks is the zone at the 1400 * beginning of the inode's cylinder group data area that 1401 * we try to reserve for indirect blocks. 1402 */ 1403 pref = cgmeta(fs, inocg); 1404 /* 1405 * If we are allocating the first indirect block, try to 1406 * place it immediately following the last direct block. 1407 */ 1408 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1409 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1410 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1411 return (pref); 1412 } 1413 /* 1414 * If we are allocating the first data block in the first indirect 1415 * block and the indirect has been allocated in the data block area, 1416 * try to place it immediately following the indirect block. 1417 */ 1418 if (lbn == UFS_NDADDR) { 1419 pref = ip->i_din1->di_ib[0]; 1420 if (pref != 0 && pref >= cgdata(fs, inocg) && 1421 pref < cgbase(fs, inocg + 1)) 1422 return (pref + fs->fs_frag); 1423 } 1424 /* 1425 * If we are at the beginning of a file, or we have already allocated 1426 * the maximum number of blocks per cylinder group, or we do not 1427 * have a block allocated immediately preceding us, then we need 1428 * to decide where to start allocating new blocks. 1429 */ 1430 if (indx == 0) { 1431 prevbn = 0; 1432 } else { 1433 prevbn = bap[indx - 1]; 1434 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1435 fs->fs_bsize) != 0) 1436 prevbn = 0; 1437 } 1438 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1439 /* 1440 * If we are allocating a directory data block, we want 1441 * to place it in the metadata area. 1442 */ 1443 if ((ip->i_mode & IFMT) == IFDIR) 1444 return (cgmeta(fs, inocg)); 1445 /* 1446 * Until we fill all the direct and all the first indirect's 1447 * blocks, we try to allocate in the data area of the inode's 1448 * cylinder group. 1449 */ 1450 if (lbn < UFS_NDADDR + NINDIR(fs)) 1451 return (cgdata(fs, inocg)); 1452 /* 1453 * Find a cylinder with greater than average number of 1454 * unused data blocks. 1455 */ 1456 if (indx == 0 || prevbn == 0) 1457 startcg = inocg + lbn / fs->fs_maxbpg; 1458 else 1459 startcg = dtog(fs, prevbn) + 1; 1460 startcg %= fs->fs_ncg; 1461 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1462 for (cg = startcg; cg < fs->fs_ncg; cg++) 1463 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1464 fs->fs_cgrotor = cg; 1465 return (cgdata(fs, cg)); 1466 } 1467 for (cg = 0; cg <= startcg; cg++) 1468 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1469 fs->fs_cgrotor = cg; 1470 return (cgdata(fs, cg)); 1471 } 1472 return (0); 1473 } 1474 /* 1475 * Otherwise, we just always try to lay things out contiguously. 1476 */ 1477 return (prevbn + fs->fs_frag); 1478 } 1479 1480 /* 1481 * Same as above, but for UFS2 1482 */ 1483 ufs2_daddr_t 1484 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1485 struct inode *ip; 1486 ufs_lbn_t lbn; 1487 int indx; 1488 ufs2_daddr_t *bap; 1489 { 1490 struct fs *fs; 1491 u_int cg, inocg; 1492 u_int avgbfree, startcg; 1493 ufs2_daddr_t pref, prevbn; 1494 1495 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1496 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1497 fs = ITOFS(ip); 1498 /* 1499 * Allocation of indirect blocks is indicated by passing negative 1500 * values in indx: -1 for single indirect, -2 for double indirect, 1501 * -3 for triple indirect. As noted below, we attempt to allocate 1502 * the first indirect inline with the file data. For all later 1503 * indirect blocks, the data is often allocated in other cylinder 1504 * groups. However to speed random file access and to speed up 1505 * fsck, the filesystem reserves the first fs_metaspace blocks 1506 * (typically half of fs_minfree) of the data area of each cylinder 1507 * group to hold these later indirect blocks. 1508 */ 1509 inocg = ino_to_cg(fs, ip->i_number); 1510 if (indx < 0) { 1511 /* 1512 * Our preference for indirect blocks is the zone at the 1513 * beginning of the inode's cylinder group data area that 1514 * we try to reserve for indirect blocks. 1515 */ 1516 pref = cgmeta(fs, inocg); 1517 /* 1518 * If we are allocating the first indirect block, try to 1519 * place it immediately following the last direct block. 1520 */ 1521 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1522 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1523 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1524 return (pref); 1525 } 1526 /* 1527 * If we are allocating the first data block in the first indirect 1528 * block and the indirect has been allocated in the data block area, 1529 * try to place it immediately following the indirect block. 1530 */ 1531 if (lbn == UFS_NDADDR) { 1532 pref = ip->i_din2->di_ib[0]; 1533 if (pref != 0 && pref >= cgdata(fs, inocg) && 1534 pref < cgbase(fs, inocg + 1)) 1535 return (pref + fs->fs_frag); 1536 } 1537 /* 1538 * If we are at the beginning of a file, or we have already allocated 1539 * the maximum number of blocks per cylinder group, or we do not 1540 * have a block allocated immediately preceding us, then we need 1541 * to decide where to start allocating new blocks. 1542 */ 1543 if (indx == 0) { 1544 prevbn = 0; 1545 } else { 1546 prevbn = bap[indx - 1]; 1547 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1548 fs->fs_bsize) != 0) 1549 prevbn = 0; 1550 } 1551 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1552 /* 1553 * If we are allocating a directory data block, we want 1554 * to place it in the metadata area. 1555 */ 1556 if ((ip->i_mode & IFMT) == IFDIR) 1557 return (cgmeta(fs, inocg)); 1558 /* 1559 * Until we fill all the direct and all the first indirect's 1560 * blocks, we try to allocate in the data area of the inode's 1561 * cylinder group. 1562 */ 1563 if (lbn < UFS_NDADDR + NINDIR(fs)) 1564 return (cgdata(fs, inocg)); 1565 /* 1566 * Find a cylinder with greater than average number of 1567 * unused data blocks. 1568 */ 1569 if (indx == 0 || prevbn == 0) 1570 startcg = inocg + lbn / fs->fs_maxbpg; 1571 else 1572 startcg = dtog(fs, prevbn) + 1; 1573 startcg %= fs->fs_ncg; 1574 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1575 for (cg = startcg; cg < fs->fs_ncg; cg++) 1576 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1577 fs->fs_cgrotor = cg; 1578 return (cgdata(fs, cg)); 1579 } 1580 for (cg = 0; cg <= startcg; cg++) 1581 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1582 fs->fs_cgrotor = cg; 1583 return (cgdata(fs, cg)); 1584 } 1585 return (0); 1586 } 1587 /* 1588 * Otherwise, we just always try to lay things out contiguously. 1589 */ 1590 return (prevbn + fs->fs_frag); 1591 } 1592 1593 /* 1594 * Implement the cylinder overflow algorithm. 1595 * 1596 * The policy implemented by this algorithm is: 1597 * 1) allocate the block in its requested cylinder group. 1598 * 2) quadradically rehash on the cylinder group number. 1599 * 3) brute force search for a free block. 1600 * 1601 * Must be called with the UFS lock held. Will release the lock on success 1602 * and return with it held on failure. 1603 */ 1604 /*VARARGS5*/ 1605 static ufs2_daddr_t 1606 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1607 struct inode *ip; 1608 u_int cg; 1609 ufs2_daddr_t pref; 1610 int size; /* Search size for data blocks, mode for inodes */ 1611 int rsize; /* Real allocated size. */ 1612 allocfcn_t *allocator; 1613 { 1614 struct fs *fs; 1615 ufs2_daddr_t result; 1616 u_int i, icg = cg; 1617 1618 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1619 #ifdef INVARIANTS 1620 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1621 panic("ffs_hashalloc: allocation on suspended filesystem"); 1622 #endif 1623 fs = ITOFS(ip); 1624 /* 1625 * 1: preferred cylinder group 1626 */ 1627 result = (*allocator)(ip, cg, pref, size, rsize); 1628 if (result) 1629 return (result); 1630 /* 1631 * 2: quadratic rehash 1632 */ 1633 for (i = 1; i < fs->fs_ncg; i *= 2) { 1634 cg += i; 1635 if (cg >= fs->fs_ncg) 1636 cg -= fs->fs_ncg; 1637 result = (*allocator)(ip, cg, 0, size, rsize); 1638 if (result) 1639 return (result); 1640 } 1641 /* 1642 * 3: brute force search 1643 * Note that we start at i == 2, since 0 was checked initially, 1644 * and 1 is always checked in the quadratic rehash. 1645 */ 1646 cg = (icg + 2) % fs->fs_ncg; 1647 for (i = 2; i < fs->fs_ncg; i++) { 1648 result = (*allocator)(ip, cg, 0, size, rsize); 1649 if (result) 1650 return (result); 1651 cg++; 1652 if (cg == fs->fs_ncg) 1653 cg = 0; 1654 } 1655 return (0); 1656 } 1657 1658 /* 1659 * Determine whether a fragment can be extended. 1660 * 1661 * Check to see if the necessary fragments are available, and 1662 * if they are, allocate them. 1663 */ 1664 static ufs2_daddr_t 1665 ffs_fragextend(ip, cg, bprev, osize, nsize) 1666 struct inode *ip; 1667 u_int cg; 1668 ufs2_daddr_t bprev; 1669 int osize, nsize; 1670 { 1671 struct fs *fs; 1672 struct cg *cgp; 1673 struct buf *bp; 1674 struct ufsmount *ump; 1675 int nffree; 1676 long bno; 1677 int frags, bbase; 1678 int i, error; 1679 u_int8_t *blksfree; 1680 1681 ump = ITOUMP(ip); 1682 fs = ump->um_fs; 1683 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1684 return (0); 1685 frags = numfrags(fs, nsize); 1686 bbase = fragnum(fs, bprev); 1687 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1688 /* cannot extend across a block boundary */ 1689 return (0); 1690 } 1691 UFS_UNLOCK(ump); 1692 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) 1693 goto fail; 1694 bno = dtogd(fs, bprev); 1695 blksfree = cg_blksfree(cgp); 1696 for (i = numfrags(fs, osize); i < frags; i++) 1697 if (isclr(blksfree, bno + i)) 1698 goto fail; 1699 /* 1700 * the current fragment can be extended 1701 * deduct the count on fragment being extended into 1702 * increase the count on the remaining fragment (if any) 1703 * allocate the extended piece 1704 */ 1705 for (i = frags; i < fs->fs_frag - bbase; i++) 1706 if (isclr(blksfree, bno + i)) 1707 break; 1708 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1709 if (i != frags) 1710 cgp->cg_frsum[i - frags]++; 1711 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1712 clrbit(blksfree, bno + i); 1713 cgp->cg_cs.cs_nffree--; 1714 nffree++; 1715 } 1716 UFS_LOCK(ump); 1717 fs->fs_cstotal.cs_nffree -= nffree; 1718 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1719 fs->fs_fmod = 1; 1720 ACTIVECLEAR(fs, cg); 1721 UFS_UNLOCK(ump); 1722 if (DOINGSOFTDEP(ITOV(ip))) 1723 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1724 frags, numfrags(fs, osize)); 1725 bdwrite(bp); 1726 return (bprev); 1727 1728 fail: 1729 brelse(bp); 1730 UFS_LOCK(ump); 1731 return (0); 1732 1733 } 1734 1735 /* 1736 * Determine whether a block can be allocated. 1737 * 1738 * Check to see if a block of the appropriate size is available, 1739 * and if it is, allocate it. 1740 */ 1741 static ufs2_daddr_t 1742 ffs_alloccg(ip, cg, bpref, size, rsize) 1743 struct inode *ip; 1744 u_int cg; 1745 ufs2_daddr_t bpref; 1746 int size; 1747 int rsize; 1748 { 1749 struct fs *fs; 1750 struct cg *cgp; 1751 struct buf *bp; 1752 struct ufsmount *ump; 1753 ufs1_daddr_t bno; 1754 ufs2_daddr_t blkno; 1755 int i, allocsiz, error, frags; 1756 u_int8_t *blksfree; 1757 1758 ump = ITOUMP(ip); 1759 fs = ump->um_fs; 1760 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1761 return (0); 1762 UFS_UNLOCK(ump); 1763 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 || 1764 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1765 goto fail; 1766 if (size == fs->fs_bsize) { 1767 UFS_LOCK(ump); 1768 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1769 ACTIVECLEAR(fs, cg); 1770 UFS_UNLOCK(ump); 1771 bdwrite(bp); 1772 return (blkno); 1773 } 1774 /* 1775 * check to see if any fragments are already available 1776 * allocsiz is the size which will be allocated, hacking 1777 * it down to a smaller size if necessary 1778 */ 1779 blksfree = cg_blksfree(cgp); 1780 frags = numfrags(fs, size); 1781 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1782 if (cgp->cg_frsum[allocsiz] != 0) 1783 break; 1784 if (allocsiz == fs->fs_frag) { 1785 /* 1786 * no fragments were available, so a block will be 1787 * allocated, and hacked up 1788 */ 1789 if (cgp->cg_cs.cs_nbfree == 0) 1790 goto fail; 1791 UFS_LOCK(ump); 1792 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1793 ACTIVECLEAR(fs, cg); 1794 UFS_UNLOCK(ump); 1795 bdwrite(bp); 1796 return (blkno); 1797 } 1798 KASSERT(size == rsize, 1799 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1800 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1801 if (bno < 0) 1802 goto fail; 1803 for (i = 0; i < frags; i++) 1804 clrbit(blksfree, bno + i); 1805 cgp->cg_cs.cs_nffree -= frags; 1806 cgp->cg_frsum[allocsiz]--; 1807 if (frags != allocsiz) 1808 cgp->cg_frsum[allocsiz - frags]++; 1809 UFS_LOCK(ump); 1810 fs->fs_cstotal.cs_nffree -= frags; 1811 fs->fs_cs(fs, cg).cs_nffree -= frags; 1812 fs->fs_fmod = 1; 1813 blkno = cgbase(fs, cg) + bno; 1814 ACTIVECLEAR(fs, cg); 1815 UFS_UNLOCK(ump); 1816 if (DOINGSOFTDEP(ITOV(ip))) 1817 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1818 bdwrite(bp); 1819 return (blkno); 1820 1821 fail: 1822 brelse(bp); 1823 UFS_LOCK(ump); 1824 return (0); 1825 } 1826 1827 /* 1828 * Allocate a block in a cylinder group. 1829 * 1830 * This algorithm implements the following policy: 1831 * 1) allocate the requested block. 1832 * 2) allocate a rotationally optimal block in the same cylinder. 1833 * 3) allocate the next available block on the block rotor for the 1834 * specified cylinder group. 1835 * Note that this routine only allocates fs_bsize blocks; these 1836 * blocks may be fragmented by the routine that allocates them. 1837 */ 1838 static ufs2_daddr_t 1839 ffs_alloccgblk(ip, bp, bpref, size) 1840 struct inode *ip; 1841 struct buf *bp; 1842 ufs2_daddr_t bpref; 1843 int size; 1844 { 1845 struct fs *fs; 1846 struct cg *cgp; 1847 struct ufsmount *ump; 1848 ufs1_daddr_t bno; 1849 ufs2_daddr_t blkno; 1850 u_int8_t *blksfree; 1851 int i, cgbpref; 1852 1853 ump = ITOUMP(ip); 1854 fs = ump->um_fs; 1855 mtx_assert(UFS_MTX(ump), MA_OWNED); 1856 cgp = (struct cg *)bp->b_data; 1857 blksfree = cg_blksfree(cgp); 1858 if (bpref == 0) { 1859 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1860 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1861 /* map bpref to correct zone in this cg */ 1862 if (bpref < cgdata(fs, cgbpref)) 1863 bpref = cgmeta(fs, cgp->cg_cgx); 1864 else 1865 bpref = cgdata(fs, cgp->cg_cgx); 1866 } 1867 /* 1868 * if the requested block is available, use it 1869 */ 1870 bno = dtogd(fs, blknum(fs, bpref)); 1871 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1872 goto gotit; 1873 /* 1874 * Take the next available block in this cylinder group. 1875 */ 1876 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1877 if (bno < 0) 1878 return (0); 1879 /* Update cg_rotor only if allocated from the data zone */ 1880 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1881 cgp->cg_rotor = bno; 1882 gotit: 1883 blkno = fragstoblks(fs, bno); 1884 ffs_clrblock(fs, blksfree, (long)blkno); 1885 ffs_clusteracct(fs, cgp, blkno, -1); 1886 cgp->cg_cs.cs_nbfree--; 1887 fs->fs_cstotal.cs_nbfree--; 1888 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1889 fs->fs_fmod = 1; 1890 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1891 /* 1892 * If the caller didn't want the whole block free the frags here. 1893 */ 1894 size = numfrags(fs, size); 1895 if (size != fs->fs_frag) { 1896 bno = dtogd(fs, blkno); 1897 for (i = size; i < fs->fs_frag; i++) 1898 setbit(blksfree, bno + i); 1899 i = fs->fs_frag - size; 1900 cgp->cg_cs.cs_nffree += i; 1901 fs->fs_cstotal.cs_nffree += i; 1902 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1903 fs->fs_fmod = 1; 1904 cgp->cg_frsum[i]++; 1905 } 1906 /* XXX Fixme. */ 1907 UFS_UNLOCK(ump); 1908 if (DOINGSOFTDEP(ITOV(ip))) 1909 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1910 UFS_LOCK(ump); 1911 return (blkno); 1912 } 1913 1914 /* 1915 * Determine whether a cluster can be allocated. 1916 * 1917 * We do not currently check for optimal rotational layout if there 1918 * are multiple choices in the same cylinder group. Instead we just 1919 * take the first one that we find following bpref. 1920 */ 1921 static ufs2_daddr_t 1922 ffs_clusteralloc(ip, cg, bpref, len) 1923 struct inode *ip; 1924 u_int cg; 1925 ufs2_daddr_t bpref; 1926 int len; 1927 { 1928 struct fs *fs; 1929 struct cg *cgp; 1930 struct buf *bp; 1931 struct ufsmount *ump; 1932 int i, run, bit, map, got, error; 1933 ufs2_daddr_t bno; 1934 u_char *mapp; 1935 int32_t *lp; 1936 u_int8_t *blksfree; 1937 1938 ump = ITOUMP(ip); 1939 fs = ump->um_fs; 1940 if (fs->fs_maxcluster[cg] < len) 1941 return (0); 1942 UFS_UNLOCK(ump); 1943 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 1944 UFS_LOCK(ump); 1945 return (0); 1946 } 1947 /* 1948 * Check to see if a cluster of the needed size (or bigger) is 1949 * available in this cylinder group. 1950 */ 1951 lp = &cg_clustersum(cgp)[len]; 1952 for (i = len; i <= fs->fs_contigsumsize; i++) 1953 if (*lp++ > 0) 1954 break; 1955 if (i > fs->fs_contigsumsize) { 1956 /* 1957 * This is the first time looking for a cluster in this 1958 * cylinder group. Update the cluster summary information 1959 * to reflect the true maximum sized cluster so that 1960 * future cluster allocation requests can avoid reading 1961 * the cylinder group map only to find no clusters. 1962 */ 1963 lp = &cg_clustersum(cgp)[len - 1]; 1964 for (i = len - 1; i > 0; i--) 1965 if (*lp-- > 0) 1966 break; 1967 UFS_LOCK(ump); 1968 fs->fs_maxcluster[cg] = i; 1969 brelse(bp); 1970 return (0); 1971 } 1972 /* 1973 * Search the cluster map to find a big enough cluster. 1974 * We take the first one that we find, even if it is larger 1975 * than we need as we prefer to get one close to the previous 1976 * block allocation. We do not search before the current 1977 * preference point as we do not want to allocate a block 1978 * that is allocated before the previous one (as we will 1979 * then have to wait for another pass of the elevator 1980 * algorithm before it will be read). We prefer to fail and 1981 * be recalled to try an allocation in the next cylinder group. 1982 */ 1983 if (dtog(fs, bpref) != cg) 1984 bpref = cgdata(fs, cg); 1985 else 1986 bpref = blknum(fs, bpref); 1987 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1988 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1989 map = *mapp++; 1990 bit = 1 << (bpref % NBBY); 1991 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1992 if ((map & bit) == 0) { 1993 run = 0; 1994 } else { 1995 run++; 1996 if (run == len) 1997 break; 1998 } 1999 if ((got & (NBBY - 1)) != (NBBY - 1)) { 2000 bit <<= 1; 2001 } else { 2002 map = *mapp++; 2003 bit = 1; 2004 } 2005 } 2006 if (got >= cgp->cg_nclusterblks) { 2007 UFS_LOCK(ump); 2008 brelse(bp); 2009 return (0); 2010 } 2011 /* 2012 * Allocate the cluster that we have found. 2013 */ 2014 blksfree = cg_blksfree(cgp); 2015 for (i = 1; i <= len; i++) 2016 if (!ffs_isblock(fs, blksfree, got - run + i)) 2017 panic("ffs_clusteralloc: map mismatch"); 2018 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 2019 if (dtog(fs, bno) != cg) 2020 panic("ffs_clusteralloc: allocated out of group"); 2021 len = blkstofrags(fs, len); 2022 UFS_LOCK(ump); 2023 for (i = 0; i < len; i += fs->fs_frag) 2024 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2025 panic("ffs_clusteralloc: lost block"); 2026 ACTIVECLEAR(fs, cg); 2027 UFS_UNLOCK(ump); 2028 bdwrite(bp); 2029 return (bno); 2030 } 2031 2032 static inline struct buf * 2033 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 2034 { 2035 struct fs *fs; 2036 2037 fs = ITOFS(ip); 2038 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2039 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2040 gbflags)); 2041 } 2042 2043 /* 2044 * Synchronous inode initialization is needed only when barrier writes do not 2045 * work as advertised, and will impose a heavy cost on file creation in a newly 2046 * created filesystem. 2047 */ 2048 static int doasyncinodeinit = 1; 2049 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2050 &doasyncinodeinit, 0, 2051 "Perform inode block initialization using asynchronous writes"); 2052 2053 /* 2054 * Determine whether an inode can be allocated. 2055 * 2056 * Check to see if an inode is available, and if it is, 2057 * allocate it using the following policy: 2058 * 1) allocate the requested inode. 2059 * 2) allocate the next available inode after the requested 2060 * inode in the specified cylinder group. 2061 */ 2062 static ufs2_daddr_t 2063 ffs_nodealloccg(ip, cg, ipref, mode, unused) 2064 struct inode *ip; 2065 u_int cg; 2066 ufs2_daddr_t ipref; 2067 int mode; 2068 int unused; 2069 { 2070 struct fs *fs; 2071 struct cg *cgp; 2072 struct buf *bp, *ibp; 2073 struct ufsmount *ump; 2074 u_int8_t *inosused, *loc; 2075 struct ufs2_dinode *dp2; 2076 int error, start, len, i; 2077 u_int32_t old_initediblk; 2078 2079 ump = ITOUMP(ip); 2080 fs = ump->um_fs; 2081 check_nifree: 2082 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2083 return (0); 2084 UFS_UNLOCK(ump); 2085 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 2086 UFS_LOCK(ump); 2087 return (0); 2088 } 2089 restart: 2090 if (cgp->cg_cs.cs_nifree == 0) { 2091 brelse(bp); 2092 UFS_LOCK(ump); 2093 return (0); 2094 } 2095 inosused = cg_inosused(cgp); 2096 if (ipref) { 2097 ipref %= fs->fs_ipg; 2098 if (isclr(inosused, ipref)) 2099 goto gotit; 2100 } 2101 start = cgp->cg_irotor / NBBY; 2102 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2103 loc = memcchr(&inosused[start], 0xff, len); 2104 if (loc == NULL) { 2105 len = start + 1; 2106 start = 0; 2107 loc = memcchr(&inosused[start], 0xff, len); 2108 if (loc == NULL) { 2109 printf("cg = %d, irotor = %ld, fs = %s\n", 2110 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2111 panic("ffs_nodealloccg: map corrupted"); 2112 /* NOTREACHED */ 2113 } 2114 } 2115 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2116 gotit: 2117 /* 2118 * Check to see if we need to initialize more inodes. 2119 */ 2120 if (fs->fs_magic == FS_UFS2_MAGIC && 2121 ipref + INOPB(fs) > cgp->cg_initediblk && 2122 cgp->cg_initediblk < cgp->cg_niblk) { 2123 old_initediblk = cgp->cg_initediblk; 2124 2125 /* 2126 * Free the cylinder group lock before writing the 2127 * initialized inode block. Entering the 2128 * babarrierwrite() with the cylinder group lock 2129 * causes lock order violation between the lock and 2130 * snaplk. 2131 * 2132 * Another thread can decide to initialize the same 2133 * inode block, but whichever thread first gets the 2134 * cylinder group lock after writing the newly 2135 * allocated inode block will update it and the other 2136 * will realize that it has lost and leave the 2137 * cylinder group unchanged. 2138 */ 2139 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2140 brelse(bp); 2141 if (ibp == NULL) { 2142 /* 2143 * The inode block buffer is already owned by 2144 * another thread, which must initialize it. 2145 * Wait on the buffer to allow another thread 2146 * to finish the updates, with dropped cg 2147 * buffer lock, then retry. 2148 */ 2149 ibp = getinobuf(ip, cg, old_initediblk, 0); 2150 brelse(ibp); 2151 UFS_LOCK(ump); 2152 goto check_nifree; 2153 } 2154 bzero(ibp->b_data, (int)fs->fs_bsize); 2155 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2156 for (i = 0; i < INOPB(fs); i++) { 2157 while (dp2->di_gen == 0) 2158 dp2->di_gen = arc4random(); 2159 dp2++; 2160 } 2161 2162 /* 2163 * Rather than adding a soft updates dependency to ensure 2164 * that the new inode block is written before it is claimed 2165 * by the cylinder group map, we just do a barrier write 2166 * here. The barrier write will ensure that the inode block 2167 * gets written before the updated cylinder group map can be 2168 * written. The barrier write should only slow down bulk 2169 * loading of newly created filesystems. 2170 */ 2171 if (doasyncinodeinit) 2172 babarrierwrite(ibp); 2173 else 2174 bwrite(ibp); 2175 2176 /* 2177 * After the inode block is written, try to update the 2178 * cg initediblk pointer. If another thread beat us 2179 * to it, then leave it unchanged as the other thread 2180 * has already set it correctly. 2181 */ 2182 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2183 UFS_LOCK(ump); 2184 ACTIVECLEAR(fs, cg); 2185 UFS_UNLOCK(ump); 2186 if (error != 0) 2187 return (error); 2188 if (cgp->cg_initediblk == old_initediblk) 2189 cgp->cg_initediblk += INOPB(fs); 2190 goto restart; 2191 } 2192 cgp->cg_irotor = ipref; 2193 UFS_LOCK(ump); 2194 ACTIVECLEAR(fs, cg); 2195 setbit(inosused, ipref); 2196 cgp->cg_cs.cs_nifree--; 2197 fs->fs_cstotal.cs_nifree--; 2198 fs->fs_cs(fs, cg).cs_nifree--; 2199 fs->fs_fmod = 1; 2200 if ((mode & IFMT) == IFDIR) { 2201 cgp->cg_cs.cs_ndir++; 2202 fs->fs_cstotal.cs_ndir++; 2203 fs->fs_cs(fs, cg).cs_ndir++; 2204 } 2205 UFS_UNLOCK(ump); 2206 if (DOINGSOFTDEP(ITOV(ip))) 2207 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2208 bdwrite(bp); 2209 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2210 } 2211 2212 /* 2213 * Free a block or fragment. 2214 * 2215 * The specified block or fragment is placed back in the 2216 * free map. If a fragment is deallocated, a possible 2217 * block reassembly is checked. 2218 */ 2219 static void 2220 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2221 struct ufsmount *ump; 2222 struct fs *fs; 2223 struct vnode *devvp; 2224 ufs2_daddr_t bno; 2225 long size; 2226 ino_t inum; 2227 struct workhead *dephd; 2228 { 2229 struct mount *mp; 2230 struct cg *cgp; 2231 struct buf *bp; 2232 ufs1_daddr_t fragno, cgbno; 2233 int i, blk, frags, bbase, error; 2234 u_int cg; 2235 u_int8_t *blksfree; 2236 struct cdev *dev; 2237 2238 cg = dtog(fs, bno); 2239 if (devvp->v_type == VREG) { 2240 /* devvp is a snapshot */ 2241 MPASS(devvp->v_mount->mnt_data == ump); 2242 dev = ump->um_devvp->v_rdev; 2243 } else if (devvp->v_type == VCHR) { 2244 /* devvp is a normal disk device */ 2245 dev = devvp->v_rdev; 2246 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2247 } else 2248 return; 2249 #ifdef INVARIANTS 2250 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2251 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2252 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2253 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2254 size, fs->fs_fsmnt); 2255 panic("ffs_blkfree_cg: bad size"); 2256 } 2257 #endif 2258 if ((u_int)bno >= fs->fs_size) { 2259 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2260 (u_long)inum); 2261 ffs_fserr(fs, inum, "bad block"); 2262 return; 2263 } 2264 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0) 2265 return; 2266 cgbno = dtogd(fs, bno); 2267 blksfree = cg_blksfree(cgp); 2268 UFS_LOCK(ump); 2269 if (size == fs->fs_bsize) { 2270 fragno = fragstoblks(fs, cgbno); 2271 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2272 if (devvp->v_type == VREG) { 2273 UFS_UNLOCK(ump); 2274 /* devvp is a snapshot */ 2275 brelse(bp); 2276 return; 2277 } 2278 printf("dev = %s, block = %jd, fs = %s\n", 2279 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2280 panic("ffs_blkfree_cg: freeing free block"); 2281 } 2282 ffs_setblock(fs, blksfree, fragno); 2283 ffs_clusteracct(fs, cgp, fragno, 1); 2284 cgp->cg_cs.cs_nbfree++; 2285 fs->fs_cstotal.cs_nbfree++; 2286 fs->fs_cs(fs, cg).cs_nbfree++; 2287 } else { 2288 bbase = cgbno - fragnum(fs, cgbno); 2289 /* 2290 * decrement the counts associated with the old frags 2291 */ 2292 blk = blkmap(fs, blksfree, bbase); 2293 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2294 /* 2295 * deallocate the fragment 2296 */ 2297 frags = numfrags(fs, size); 2298 for (i = 0; i < frags; i++) { 2299 if (isset(blksfree, cgbno + i)) { 2300 printf("dev = %s, block = %jd, fs = %s\n", 2301 devtoname(dev), (intmax_t)(bno + i), 2302 fs->fs_fsmnt); 2303 panic("ffs_blkfree_cg: freeing free frag"); 2304 } 2305 setbit(blksfree, cgbno + i); 2306 } 2307 cgp->cg_cs.cs_nffree += i; 2308 fs->fs_cstotal.cs_nffree += i; 2309 fs->fs_cs(fs, cg).cs_nffree += i; 2310 /* 2311 * add back in counts associated with the new frags 2312 */ 2313 blk = blkmap(fs, blksfree, bbase); 2314 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2315 /* 2316 * if a complete block has been reassembled, account for it 2317 */ 2318 fragno = fragstoblks(fs, bbase); 2319 if (ffs_isblock(fs, blksfree, fragno)) { 2320 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2321 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2322 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2323 ffs_clusteracct(fs, cgp, fragno, 1); 2324 cgp->cg_cs.cs_nbfree++; 2325 fs->fs_cstotal.cs_nbfree++; 2326 fs->fs_cs(fs, cg).cs_nbfree++; 2327 } 2328 } 2329 fs->fs_fmod = 1; 2330 ACTIVECLEAR(fs, cg); 2331 UFS_UNLOCK(ump); 2332 mp = UFSTOVFS(ump); 2333 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2334 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2335 numfrags(fs, size), dephd); 2336 bdwrite(bp); 2337 } 2338 2339 /* 2340 * Structures and routines associated with trim management. 2341 * 2342 * The following requests are passed to trim_lookup to indicate 2343 * the actions that should be taken. 2344 */ 2345 #define NEW 1 /* if found, error else allocate and hash it */ 2346 #define OLD 2 /* if not found, error, else return it */ 2347 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2348 #define DONE 4 /* if not found, error else unhash and return it */ 2349 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2350 2351 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2352 2353 #define TRIMLIST_HASH(ump, key) \ 2354 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2355 2356 /* 2357 * These structures describe each of the block free requests aggregated 2358 * together to make up a trim request. 2359 */ 2360 struct trim_blkreq { 2361 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2362 ufs2_daddr_t bno; 2363 long size; 2364 struct workhead *pdephd; 2365 struct workhead dephd; 2366 }; 2367 2368 /* 2369 * Description of a trim request. 2370 */ 2371 struct ffs_blkfree_trim_params { 2372 TAILQ_HEAD(, trim_blkreq) blklist; 2373 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2374 struct task task; 2375 struct ufsmount *ump; 2376 struct vnode *devvp; 2377 ino_t inum; 2378 ufs2_daddr_t bno; 2379 long size; 2380 long key; 2381 }; 2382 2383 static void ffs_blkfree_trim_completed(struct buf *); 2384 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2385 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2386 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int); 2387 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2388 2389 /* 2390 * Called on trim completion to start a task to free the associated block(s). 2391 */ 2392 static void 2393 ffs_blkfree_trim_completed(bp) 2394 struct buf *bp; 2395 { 2396 struct ffs_blkfree_trim_params *tp; 2397 2398 tp = bp->b_fsprivate1; 2399 free(bp, M_TRIM); 2400 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2401 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2402 } 2403 2404 /* 2405 * Trim completion task that free associated block(s). 2406 */ 2407 static void 2408 ffs_blkfree_trim_task(ctx, pending) 2409 void *ctx; 2410 int pending; 2411 { 2412 struct ffs_blkfree_trim_params *tp; 2413 struct trim_blkreq *blkelm; 2414 struct ufsmount *ump; 2415 2416 tp = ctx; 2417 ump = tp->ump; 2418 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2419 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2420 blkelm->size, tp->inum, blkelm->pdephd); 2421 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2422 free(blkelm, M_TRIM); 2423 } 2424 vn_finished_secondary_write(UFSTOVFS(ump)); 2425 UFS_LOCK(ump); 2426 ump->um_trim_inflight -= 1; 2427 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2428 UFS_UNLOCK(ump); 2429 free(tp, M_TRIM); 2430 } 2431 2432 /* 2433 * Lookup a trim request by inode number. 2434 * Allocate if requested (NEW, REPLACE, SINGLE). 2435 */ 2436 static struct ffs_blkfree_trim_params * 2437 trim_lookup(ump, devvp, bno, size, inum, key, alloctype) 2438 struct ufsmount *ump; 2439 struct vnode *devvp; 2440 ufs2_daddr_t bno; 2441 long size; 2442 ino_t inum; 2443 u_long key; 2444 int alloctype; 2445 { 2446 struct trimlist_hashhead *tphashhead; 2447 struct ffs_blkfree_trim_params *tp, *ntp; 2448 2449 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2450 if (alloctype != SINGLE) { 2451 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2452 UFS_LOCK(ump); 2453 tphashhead = TRIMLIST_HASH(ump, key); 2454 LIST_FOREACH(tp, tphashhead, hashlist) 2455 if (key == tp->key) 2456 break; 2457 } 2458 switch (alloctype) { 2459 case NEW: 2460 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2461 break; 2462 case OLD: 2463 KASSERT(tp != NULL, 2464 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2465 UFS_UNLOCK(ump); 2466 free(ntp, M_TRIM); 2467 return (tp); 2468 case REPLACE: 2469 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2470 LIST_REMOVE(tp, hashlist); 2471 /* tp will be freed by caller */ 2472 break; 2473 case DONE: 2474 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2475 LIST_REMOVE(tp, hashlist); 2476 UFS_UNLOCK(ump); 2477 free(ntp, M_TRIM); 2478 return (tp); 2479 } 2480 TAILQ_INIT(&ntp->blklist); 2481 ntp->ump = ump; 2482 ntp->devvp = devvp; 2483 ntp->bno = bno; 2484 ntp->size = size; 2485 ntp->inum = inum; 2486 ntp->key = key; 2487 if (alloctype != SINGLE) { 2488 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2489 UFS_UNLOCK(ump); 2490 } 2491 return (ntp); 2492 } 2493 2494 /* 2495 * Dispatch a trim request. 2496 */ 2497 static void 2498 ffs_blkfree_sendtrim(tp) 2499 struct ffs_blkfree_trim_params *tp; 2500 { 2501 struct ufsmount *ump; 2502 struct mount *mp; 2503 struct buf *bp; 2504 2505 /* 2506 * Postpone the set of the free bit in the cg bitmap until the 2507 * BIO_DELETE is completed. Otherwise, due to disk queue 2508 * reordering, TRIM might be issued after we reuse the block 2509 * and write some new data into it. 2510 */ 2511 ump = tp->ump; 2512 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2513 bp->b_iocmd = BIO_DELETE; 2514 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2515 bp->b_iodone = ffs_blkfree_trim_completed; 2516 bp->b_bcount = tp->size; 2517 bp->b_fsprivate1 = tp; 2518 UFS_LOCK(ump); 2519 ump->um_trim_total += 1; 2520 ump->um_trim_inflight += 1; 2521 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2522 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2523 UFS_UNLOCK(ump); 2524 2525 mp = UFSTOVFS(ump); 2526 vn_start_secondary_write(NULL, &mp, 0); 2527 g_vfs_strategy(ump->um_bo, bp); 2528 } 2529 2530 /* 2531 * Allocate a new key to use to identify a range of blocks. 2532 */ 2533 u_long 2534 ffs_blkrelease_start(ump, devvp, inum) 2535 struct ufsmount *ump; 2536 struct vnode *devvp; 2537 ino_t inum; 2538 { 2539 static u_long masterkey; 2540 u_long key; 2541 2542 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2543 return (SINGLETON_KEY); 2544 do { 2545 key = atomic_fetchadd_long(&masterkey, 1); 2546 } while (key < FIRST_VALID_KEY); 2547 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2548 return (key); 2549 } 2550 2551 /* 2552 * Deallocate a key that has been used to identify a range of blocks. 2553 */ 2554 void 2555 ffs_blkrelease_finish(ump, key) 2556 struct ufsmount *ump; 2557 u_long key; 2558 { 2559 struct ffs_blkfree_trim_params *tp; 2560 2561 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2562 return; 2563 /* 2564 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2565 * a file deletion is active, specifically after a call 2566 * to ffs_blkrelease_start() but before the call to 2567 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2568 * have handed out SINGLETON_KEY rather than starting a 2569 * collection sequence. Thus if we get a SINGLETON_KEY 2570 * passed to ffs_blkrelease_finish(), we just return rather 2571 * than trying to finish the nonexistent sequence. 2572 */ 2573 if (key == SINGLETON_KEY) { 2574 #ifdef INVARIANTS 2575 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2576 ump->um_mountp->mnt_stat.f_mntonname); 2577 #endif 2578 return; 2579 } 2580 /* 2581 * We are done with sending blocks using this key. Look up the key 2582 * using the DONE alloctype (in tp) to request that it be unhashed 2583 * as we will not be adding to it. If the key has never been used, 2584 * tp->size will be zero, so we can just free tp. Otherwise the call 2585 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2586 * tp to be issued (and then tp to be freed). 2587 */ 2588 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2589 if (tp->size == 0) 2590 free(tp, M_TRIM); 2591 else 2592 ffs_blkfree_sendtrim(tp); 2593 } 2594 2595 /* 2596 * Setup to free a block or fragment. 2597 * 2598 * Check for snapshots that might want to claim the block. 2599 * If trims are requested, prepare a trim request. Attempt to 2600 * aggregate consecutive blocks into a single trim request. 2601 */ 2602 void 2603 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key) 2604 struct ufsmount *ump; 2605 struct fs *fs; 2606 struct vnode *devvp; 2607 ufs2_daddr_t bno; 2608 long size; 2609 ino_t inum; 2610 enum vtype vtype; 2611 struct workhead *dephd; 2612 u_long key; 2613 { 2614 struct ffs_blkfree_trim_params *tp, *ntp; 2615 struct trim_blkreq *blkelm; 2616 2617 /* 2618 * Check to see if a snapshot wants to claim the block. 2619 * Check that devvp is a normal disk device, not a snapshot, 2620 * it has a snapshot(s) associated with it, and one of the 2621 * snapshots wants to claim the block. 2622 */ 2623 if (devvp->v_type == VCHR && 2624 (devvp->v_vflag & VV_COPYONWRITE) && 2625 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2626 return; 2627 } 2628 /* 2629 * Nothing to delay if TRIM is not required for this block or TRIM 2630 * is disabled or the operation is performed on a snapshot. 2631 */ 2632 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2633 devvp->v_type == VREG) { 2634 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2635 return; 2636 } 2637 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2638 blkelm->bno = bno; 2639 blkelm->size = size; 2640 if (dephd == NULL) { 2641 blkelm->pdephd = NULL; 2642 } else { 2643 LIST_INIT(&blkelm->dephd); 2644 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2645 blkelm->pdephd = &blkelm->dephd; 2646 } 2647 if (key == SINGLETON_KEY) { 2648 /* 2649 * Just a single non-contiguous piece. Use the SINGLE 2650 * alloctype to return a trim request that will not be 2651 * hashed for future lookup. 2652 */ 2653 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2654 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2655 ffs_blkfree_sendtrim(tp); 2656 return; 2657 } 2658 /* 2659 * The callers of this function are not tracking whether or not 2660 * the blocks are contiguous. They are just saying that they 2661 * are freeing a set of blocks. It is this code that determines 2662 * the pieces of that range that are actually contiguous. 2663 * 2664 * Calling ffs_blkrelease_start() will have created an entry 2665 * that we will use. 2666 */ 2667 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2668 if (tp->size == 0) { 2669 /* 2670 * First block of a potential range, set block and size 2671 * for the trim block. 2672 */ 2673 tp->bno = bno; 2674 tp->size = size; 2675 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2676 return; 2677 } 2678 /* 2679 * If this block is a continuation of the range (either 2680 * follows at the end or preceeds in the front) then we 2681 * add it to the front or back of the list and return. 2682 * 2683 * If it is not a continuation of the trim that we were 2684 * building, using the REPLACE alloctype, we request that 2685 * the old trim request (still in tp) be unhashed and a 2686 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2687 * call causes the block range described by tp to be issued 2688 * (and then tp to be freed). 2689 */ 2690 if (bno + numfrags(fs, size) == tp->bno) { 2691 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2692 tp->bno = bno; 2693 tp->size += size; 2694 return; 2695 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2696 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2697 tp->size += size; 2698 return; 2699 } 2700 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2701 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2702 ffs_blkfree_sendtrim(tp); 2703 } 2704 2705 #ifdef INVARIANTS 2706 /* 2707 * Verify allocation of a block or fragment. Returns true if block or 2708 * fragment is allocated, false if it is free. 2709 */ 2710 static int 2711 ffs_checkblk(ip, bno, size) 2712 struct inode *ip; 2713 ufs2_daddr_t bno; 2714 long size; 2715 { 2716 struct fs *fs; 2717 struct cg *cgp; 2718 struct buf *bp; 2719 ufs1_daddr_t cgbno; 2720 int i, error, frags, free; 2721 u_int8_t *blksfree; 2722 2723 fs = ITOFS(ip); 2724 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2725 printf("bsize = %ld, size = %ld, fs = %s\n", 2726 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2727 panic("ffs_checkblk: bad size"); 2728 } 2729 if ((u_int)bno >= fs->fs_size) 2730 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2731 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp); 2732 if (error) 2733 panic("ffs_checkblk: cylinder group read failed"); 2734 blksfree = cg_blksfree(cgp); 2735 cgbno = dtogd(fs, bno); 2736 if (size == fs->fs_bsize) { 2737 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2738 } else { 2739 frags = numfrags(fs, size); 2740 for (free = 0, i = 0; i < frags; i++) 2741 if (isset(blksfree, cgbno + i)) 2742 free++; 2743 if (free != 0 && free != frags) 2744 panic("ffs_checkblk: partially free fragment"); 2745 } 2746 brelse(bp); 2747 return (!free); 2748 } 2749 #endif /* INVARIANTS */ 2750 2751 /* 2752 * Free an inode. 2753 */ 2754 int 2755 ffs_vfree(pvp, ino, mode) 2756 struct vnode *pvp; 2757 ino_t ino; 2758 int mode; 2759 { 2760 struct ufsmount *ump; 2761 2762 if (DOINGSOFTDEP(pvp)) { 2763 softdep_freefile(pvp, ino, mode); 2764 return (0); 2765 } 2766 ump = VFSTOUFS(pvp->v_mount); 2767 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2768 } 2769 2770 /* 2771 * Do the actual free operation. 2772 * The specified inode is placed back in the free map. 2773 */ 2774 int 2775 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2776 struct ufsmount *ump; 2777 struct fs *fs; 2778 struct vnode *devvp; 2779 ino_t ino; 2780 int mode; 2781 struct workhead *wkhd; 2782 { 2783 struct cg *cgp; 2784 struct buf *bp; 2785 int error; 2786 u_int cg; 2787 u_int8_t *inosused; 2788 struct cdev *dev; 2789 ino_t cgino; 2790 2791 cg = ino_to_cg(fs, ino); 2792 if (devvp->v_type == VREG) { 2793 /* devvp is a snapshot */ 2794 MPASS(devvp->v_mount->mnt_data == ump); 2795 dev = ump->um_devvp->v_rdev; 2796 } else if (devvp->v_type == VCHR) { 2797 /* devvp is a normal disk device */ 2798 dev = devvp->v_rdev; 2799 } else { 2800 bp = NULL; 2801 return (0); 2802 } 2803 if (ino >= fs->fs_ipg * fs->fs_ncg) 2804 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2805 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2806 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0) 2807 return (error); 2808 inosused = cg_inosused(cgp); 2809 cgino = ino % fs->fs_ipg; 2810 if (isclr(inosused, cgino)) { 2811 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2812 (uintmax_t)ino, fs->fs_fsmnt); 2813 if (fs->fs_ronly == 0) 2814 panic("ffs_freefile: freeing free inode"); 2815 } 2816 clrbit(inosused, cgino); 2817 if (cgino < cgp->cg_irotor) 2818 cgp->cg_irotor = cgino; 2819 cgp->cg_cs.cs_nifree++; 2820 UFS_LOCK(ump); 2821 fs->fs_cstotal.cs_nifree++; 2822 fs->fs_cs(fs, cg).cs_nifree++; 2823 if ((mode & IFMT) == IFDIR) { 2824 cgp->cg_cs.cs_ndir--; 2825 fs->fs_cstotal.cs_ndir--; 2826 fs->fs_cs(fs, cg).cs_ndir--; 2827 } 2828 fs->fs_fmod = 1; 2829 ACTIVECLEAR(fs, cg); 2830 UFS_UNLOCK(ump); 2831 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2832 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd); 2833 bdwrite(bp); 2834 return (0); 2835 } 2836 2837 /* 2838 * Check to see if a file is free. 2839 * Used to check for allocated files in snapshots. 2840 */ 2841 int 2842 ffs_checkfreefile(fs, devvp, ino) 2843 struct fs *fs; 2844 struct vnode *devvp; 2845 ino_t ino; 2846 { 2847 struct cg *cgp; 2848 struct buf *bp; 2849 int ret, error; 2850 u_int cg; 2851 u_int8_t *inosused; 2852 2853 cg = ino_to_cg(fs, ino); 2854 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2855 return (1); 2856 if (ino >= fs->fs_ipg * fs->fs_ncg) 2857 return (1); 2858 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0) 2859 return (1); 2860 inosused = cg_inosused(cgp); 2861 ino %= fs->fs_ipg; 2862 ret = isclr(inosused, ino); 2863 brelse(bp); 2864 return (ret); 2865 } 2866 2867 /* 2868 * Find a block of the specified size in the specified cylinder group. 2869 * 2870 * It is a panic if a request is made to find a block if none are 2871 * available. 2872 */ 2873 static ufs1_daddr_t 2874 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2875 struct fs *fs; 2876 struct cg *cgp; 2877 ufs2_daddr_t bpref; 2878 int allocsiz; 2879 { 2880 ufs1_daddr_t bno; 2881 int start, len, loc, i; 2882 int blk, field, subfield, pos; 2883 u_int8_t *blksfree; 2884 2885 /* 2886 * find the fragment by searching through the free block 2887 * map for an appropriate bit pattern 2888 */ 2889 if (bpref) 2890 start = dtogd(fs, bpref) / NBBY; 2891 else 2892 start = cgp->cg_frotor / NBBY; 2893 blksfree = cg_blksfree(cgp); 2894 len = howmany(fs->fs_fpg, NBBY) - start; 2895 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2896 fragtbl[fs->fs_frag], 2897 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2898 if (loc == 0) { 2899 len = start + 1; 2900 start = 0; 2901 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2902 fragtbl[fs->fs_frag], 2903 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2904 if (loc == 0) { 2905 printf("start = %d, len = %d, fs = %s\n", 2906 start, len, fs->fs_fsmnt); 2907 panic("ffs_alloccg: map corrupted"); 2908 /* NOTREACHED */ 2909 } 2910 } 2911 bno = (start + len - loc) * NBBY; 2912 cgp->cg_frotor = bno; 2913 /* 2914 * found the byte in the map 2915 * sift through the bits to find the selected frag 2916 */ 2917 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2918 blk = blkmap(fs, blksfree, bno); 2919 blk <<= 1; 2920 field = around[allocsiz]; 2921 subfield = inside[allocsiz]; 2922 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2923 if ((blk & field) == subfield) 2924 return (bno + pos); 2925 field <<= 1; 2926 subfield <<= 1; 2927 } 2928 } 2929 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2930 panic("ffs_alloccg: block not in map"); 2931 return (-1); 2932 } 2933 2934 static const struct statfs * 2935 ffs_getmntstat(struct vnode *devvp) 2936 { 2937 2938 if (devvp->v_type == VCHR) 2939 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2940 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2941 } 2942 2943 /* 2944 * Fetch and verify a cylinder group. 2945 */ 2946 int 2947 ffs_getcg(fs, devvp, cg, flags, bpp, cgpp) 2948 struct fs *fs; 2949 struct vnode *devvp; 2950 u_int cg; 2951 int flags; 2952 struct buf **bpp; 2953 struct cg **cgpp; 2954 { 2955 struct buf *bp; 2956 struct cg *cgp; 2957 const struct statfs *sfs; 2958 daddr_t blkno; 2959 int error; 2960 2961 *bpp = NULL; 2962 *cgpp = NULL; 2963 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2964 flags |= GB_CKHASH; 2965 if (devvp->v_type == VREG) 2966 blkno = fragstoblks(fs, cgtod(fs, cg)); 2967 else 2968 blkno = fsbtodb(fs, cgtod(fs, cg)); 2969 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL, 2970 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp); 2971 if (error != 0) 2972 return (error); 2973 cgp = (struct cg *)bp->b_data; 2974 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 2975 (bp->b_flags & B_CKHASH) != 0 && 2976 cgp->cg_ckhash != bp->b_ckhash) { 2977 sfs = ffs_getmntstat(devvp); 2978 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2979 "0x%x != bp: 0x%jx\n", 2980 devvp->v_type == VCHR ? "" : "snapshot of ", 2981 sfs->f_mntfromname, sfs->f_mntonname, 2982 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2983 bp->b_flags &= ~B_CKHASH; 2984 bp->b_flags |= B_INVAL | B_NOCACHE; 2985 brelse(bp); 2986 return (EIO); 2987 } 2988 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2989 sfs = ffs_getmntstat(devvp); 2990 printf("UFS %s%s (%s)", 2991 devvp->v_type == VCHR ? "" : "snapshot of ", 2992 sfs->f_mntfromname, sfs->f_mntonname); 2993 if (!cg_chkmagic(cgp)) 2994 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 2995 cg, cgp->cg_magic, CG_MAGIC); 2996 else 2997 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 2998 cgp->cg_cgx); 2999 bp->b_flags &= ~B_CKHASH; 3000 bp->b_flags |= B_INVAL | B_NOCACHE; 3001 brelse(bp); 3002 return (EIO); 3003 } 3004 bp->b_flags &= ~B_CKHASH; 3005 bp->b_xflags |= BX_BKGRDWRITE; 3006 /* 3007 * If we are using check hashes on the cylinder group then we want 3008 * to limit changing the cylinder group time to when we are actually 3009 * going to write it to disk so that its check hash remains correct 3010 * in memory. If the CK_CYLGRP flag is set the time is updated in 3011 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 3012 * update the time here as we have done historically. 3013 */ 3014 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3015 bp->b_xflags |= BX_CYLGRP; 3016 else 3017 cgp->cg_old_time = cgp->cg_time = time_second; 3018 *bpp = bp; 3019 *cgpp = cgp; 3020 return (0); 3021 } 3022 3023 static void 3024 ffs_ckhash_cg(bp) 3025 struct buf *bp; 3026 { 3027 uint32_t ckhash; 3028 struct cg *cgp; 3029 3030 cgp = (struct cg *)bp->b_data; 3031 ckhash = cgp->cg_ckhash; 3032 cgp->cg_ckhash = 0; 3033 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3034 cgp->cg_ckhash = ckhash; 3035 } 3036 3037 /* 3038 * Fserr prints the name of a filesystem with an error diagnostic. 3039 * 3040 * The form of the error message is: 3041 * fs: error message 3042 */ 3043 void 3044 ffs_fserr(fs, inum, cp) 3045 struct fs *fs; 3046 ino_t inum; 3047 char *cp; 3048 { 3049 struct thread *td = curthread; /* XXX */ 3050 struct proc *p = td->td_proc; 3051 3052 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3053 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3054 fs->fs_fsmnt, cp); 3055 } 3056 3057 /* 3058 * This function provides the capability for the fsck program to 3059 * update an active filesystem. Fourteen operations are provided: 3060 * 3061 * adjrefcnt(inode, amt) - adjusts the reference count on the 3062 * specified inode by the specified amount. Under normal 3063 * operation the count should always go down. Decrementing 3064 * the count to zero will cause the inode to be freed. 3065 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3066 * inode by the specified amount. 3067 * adjsize(inode, size) - set the size of the inode to the 3068 * specified size. 3069 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3070 * adjust the superblock summary. 3071 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3072 * are marked as free. Inodes should never have to be marked 3073 * as in use. 3074 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3075 * are marked as free. Inodes should never have to be marked 3076 * as in use. 3077 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3078 * are marked as free. Blocks should never have to be marked 3079 * as in use. 3080 * setflags(flags, set/clear) - the fs_flags field has the specified 3081 * flags set (second parameter +1) or cleared (second parameter -1). 3082 * setcwd(dirinode) - set the current directory to dirinode in the 3083 * filesystem associated with the snapshot. 3084 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3085 * in the current directory is oldvalue then change it to newvalue. 3086 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3087 * with nameptr in the current directory is oldvalue then unlink it. 3088 * 3089 * The following functions may only be used on a quiescent filesystem 3090 * by the soft updates journal. They are not safe to be run on an active 3091 * filesystem. 3092 * 3093 * setinode(inode, dip) - the specified disk inode is replaced with the 3094 * contents pointed to by dip. 3095 * setbufoutput(fd, flags) - output associated with the specified file 3096 * descriptor (which must reference the character device supporting 3097 * the filesystem) switches from using physio to running through the 3098 * buffer cache when flags is set to 1. The descriptor reverts to 3099 * physio for output when flags is set to zero. 3100 */ 3101 3102 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3103 3104 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 3105 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 3106 3107 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 3108 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 3109 3110 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, CTLFLAG_WR, 3111 sysctl_ffs_fsck, "Set the inode size"); 3112 3113 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 3114 sysctl_ffs_fsck, "Adjust number of directories"); 3115 3116 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 3117 sysctl_ffs_fsck, "Adjust number of free blocks"); 3118 3119 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 3120 sysctl_ffs_fsck, "Adjust number of free inodes"); 3121 3122 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 3123 sysctl_ffs_fsck, "Adjust number of free frags"); 3124 3125 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 3126 sysctl_ffs_fsck, "Adjust number of free clusters"); 3127 3128 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 3129 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 3130 3131 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 3132 sysctl_ffs_fsck, "Free Range of File Inodes"); 3133 3134 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 3135 sysctl_ffs_fsck, "Free Range of Blocks"); 3136 3137 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 3138 sysctl_ffs_fsck, "Change Filesystem Flags"); 3139 3140 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 3141 sysctl_ffs_fsck, "Set Current Working Directory"); 3142 3143 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 3144 sysctl_ffs_fsck, "Change Value of .. Entry"); 3145 3146 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 3147 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 3148 3149 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 3150 sysctl_ffs_fsck, "Update an On-Disk Inode"); 3151 3152 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 3153 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 3154 3155 #ifdef DIAGNOSTIC 3156 static int fsckcmds = 0; 3157 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3158 "print out fsck_ffs-based filesystem update commands"); 3159 #endif /* DIAGNOSTIC */ 3160 3161 static int buffered_write(struct file *, struct uio *, struct ucred *, 3162 int, struct thread *); 3163 3164 static int 3165 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3166 { 3167 struct thread *td = curthread; 3168 struct fsck_cmd cmd; 3169 struct ufsmount *ump; 3170 struct vnode *vp, *dvp, *fdvp; 3171 struct inode *ip, *dp; 3172 struct mount *mp; 3173 struct fs *fs; 3174 ufs2_daddr_t blkno; 3175 long blkcnt, blksize; 3176 u_long key; 3177 struct file *fp, *vfp; 3178 cap_rights_t rights; 3179 int filetype, error; 3180 static struct fileops *origops, bufferedops; 3181 3182 if (req->newlen > sizeof cmd) 3183 return (EBADRPC); 3184 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 3185 return (error); 3186 if (cmd.version != FFS_CMD_VERSION) 3187 return (ERPCMISMATCH); 3188 if ((error = getvnode(td, cmd.handle, 3189 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 3190 return (error); 3191 vp = fp->f_data; 3192 if (vp->v_type != VREG && vp->v_type != VDIR) { 3193 fdrop(fp, td); 3194 return (EINVAL); 3195 } 3196 vn_start_write(vp, &mp, V_WAIT); 3197 if (mp == NULL || 3198 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3199 vn_finished_write(mp); 3200 fdrop(fp, td); 3201 return (EINVAL); 3202 } 3203 ump = VFSTOUFS(mp); 3204 if ((mp->mnt_flag & MNT_RDONLY) && 3205 ump->um_fsckpid != td->td_proc->p_pid) { 3206 vn_finished_write(mp); 3207 fdrop(fp, td); 3208 return (EROFS); 3209 } 3210 fs = ump->um_fs; 3211 filetype = IFREG; 3212 3213 switch (oidp->oid_number) { 3214 3215 case FFS_SET_FLAGS: 3216 #ifdef DIAGNOSTIC 3217 if (fsckcmds) 3218 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3219 cmd.size > 0 ? "set" : "clear"); 3220 #endif /* DIAGNOSTIC */ 3221 if (cmd.size > 0) 3222 fs->fs_flags |= (long)cmd.value; 3223 else 3224 fs->fs_flags &= ~(long)cmd.value; 3225 break; 3226 3227 case FFS_ADJ_REFCNT: 3228 #ifdef DIAGNOSTIC 3229 if (fsckcmds) { 3230 printf("%s: adjust inode %jd link count by %jd\n", 3231 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3232 (intmax_t)cmd.size); 3233 } 3234 #endif /* DIAGNOSTIC */ 3235 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3236 break; 3237 ip = VTOI(vp); 3238 ip->i_nlink += cmd.size; 3239 DIP_SET(ip, i_nlink, ip->i_nlink); 3240 ip->i_effnlink += cmd.size; 3241 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3242 error = ffs_update(vp, 1); 3243 if (DOINGSOFTDEP(vp)) 3244 softdep_change_linkcnt(ip); 3245 vput(vp); 3246 break; 3247 3248 case FFS_ADJ_BLKCNT: 3249 #ifdef DIAGNOSTIC 3250 if (fsckcmds) { 3251 printf("%s: adjust inode %jd block count by %jd\n", 3252 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3253 (intmax_t)cmd.size); 3254 } 3255 #endif /* DIAGNOSTIC */ 3256 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3257 break; 3258 ip = VTOI(vp); 3259 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3260 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3261 error = ffs_update(vp, 1); 3262 vput(vp); 3263 break; 3264 3265 case FFS_SET_SIZE: 3266 #ifdef DIAGNOSTIC 3267 if (fsckcmds) { 3268 printf("%s: set inode %jd size to %jd\n", 3269 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3270 (intmax_t)cmd.size); 3271 } 3272 #endif /* DIAGNOSTIC */ 3273 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3274 break; 3275 ip = VTOI(vp); 3276 DIP_SET(ip, i_size, cmd.size); 3277 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3278 error = ffs_update(vp, 1); 3279 vput(vp); 3280 break; 3281 3282 case FFS_DIR_FREE: 3283 filetype = IFDIR; 3284 /* fall through */ 3285 3286 case FFS_FILE_FREE: 3287 #ifdef DIAGNOSTIC 3288 if (fsckcmds) { 3289 if (cmd.size == 1) 3290 printf("%s: free %s inode %ju\n", 3291 mp->mnt_stat.f_mntonname, 3292 filetype == IFDIR ? "directory" : "file", 3293 (uintmax_t)cmd.value); 3294 else 3295 printf("%s: free %s inodes %ju-%ju\n", 3296 mp->mnt_stat.f_mntonname, 3297 filetype == IFDIR ? "directory" : "file", 3298 (uintmax_t)cmd.value, 3299 (uintmax_t)(cmd.value + cmd.size - 1)); 3300 } 3301 #endif /* DIAGNOSTIC */ 3302 while (cmd.size > 0) { 3303 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3304 cmd.value, filetype, NULL))) 3305 break; 3306 cmd.size -= 1; 3307 cmd.value += 1; 3308 } 3309 break; 3310 3311 case FFS_BLK_FREE: 3312 #ifdef DIAGNOSTIC 3313 if (fsckcmds) { 3314 if (cmd.size == 1) 3315 printf("%s: free block %jd\n", 3316 mp->mnt_stat.f_mntonname, 3317 (intmax_t)cmd.value); 3318 else 3319 printf("%s: free blocks %jd-%jd\n", 3320 mp->mnt_stat.f_mntonname, 3321 (intmax_t)cmd.value, 3322 (intmax_t)cmd.value + cmd.size - 1); 3323 } 3324 #endif /* DIAGNOSTIC */ 3325 blkno = cmd.value; 3326 blkcnt = cmd.size; 3327 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3328 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3329 while (blkcnt > 0) { 3330 if (blkcnt < blksize) 3331 blksize = blkcnt; 3332 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3333 blksize * fs->fs_fsize, UFS_ROOTINO, 3334 VDIR, NULL, key); 3335 blkno += blksize; 3336 blkcnt -= blksize; 3337 blksize = fs->fs_frag; 3338 } 3339 ffs_blkrelease_finish(ump, key); 3340 break; 3341 3342 /* 3343 * Adjust superblock summaries. fsck(8) is expected to 3344 * submit deltas when necessary. 3345 */ 3346 case FFS_ADJ_NDIR: 3347 #ifdef DIAGNOSTIC 3348 if (fsckcmds) { 3349 printf("%s: adjust number of directories by %jd\n", 3350 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3351 } 3352 #endif /* DIAGNOSTIC */ 3353 fs->fs_cstotal.cs_ndir += cmd.value; 3354 break; 3355 3356 case FFS_ADJ_NBFREE: 3357 #ifdef DIAGNOSTIC 3358 if (fsckcmds) { 3359 printf("%s: adjust number of free blocks by %+jd\n", 3360 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3361 } 3362 #endif /* DIAGNOSTIC */ 3363 fs->fs_cstotal.cs_nbfree += cmd.value; 3364 break; 3365 3366 case FFS_ADJ_NIFREE: 3367 #ifdef DIAGNOSTIC 3368 if (fsckcmds) { 3369 printf("%s: adjust number of free inodes by %+jd\n", 3370 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3371 } 3372 #endif /* DIAGNOSTIC */ 3373 fs->fs_cstotal.cs_nifree += cmd.value; 3374 break; 3375 3376 case FFS_ADJ_NFFREE: 3377 #ifdef DIAGNOSTIC 3378 if (fsckcmds) { 3379 printf("%s: adjust number of free frags by %+jd\n", 3380 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3381 } 3382 #endif /* DIAGNOSTIC */ 3383 fs->fs_cstotal.cs_nffree += cmd.value; 3384 break; 3385 3386 case FFS_ADJ_NUMCLUSTERS: 3387 #ifdef DIAGNOSTIC 3388 if (fsckcmds) { 3389 printf("%s: adjust number of free clusters by %+jd\n", 3390 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3391 } 3392 #endif /* DIAGNOSTIC */ 3393 fs->fs_cstotal.cs_numclusters += cmd.value; 3394 break; 3395 3396 case FFS_SET_CWD: 3397 #ifdef DIAGNOSTIC 3398 if (fsckcmds) { 3399 printf("%s: set current directory to inode %jd\n", 3400 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3401 } 3402 #endif /* DIAGNOSTIC */ 3403 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3404 break; 3405 AUDIT_ARG_VNODE1(vp); 3406 if ((error = change_dir(vp, td)) != 0) { 3407 vput(vp); 3408 break; 3409 } 3410 VOP_UNLOCK(vp); 3411 pwd_chdir(td, vp); 3412 break; 3413 3414 case FFS_SET_DOTDOT: 3415 #ifdef DIAGNOSTIC 3416 if (fsckcmds) { 3417 printf("%s: change .. in cwd from %jd to %jd\n", 3418 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3419 (intmax_t)cmd.size); 3420 } 3421 #endif /* DIAGNOSTIC */ 3422 /* 3423 * First we have to get and lock the parent directory 3424 * to which ".." points. 3425 */ 3426 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3427 if (error) 3428 break; 3429 /* 3430 * Now we get and lock the child directory containing "..". 3431 */ 3432 FILEDESC_SLOCK(td->td_proc->p_fd); 3433 dvp = td->td_proc->p_fd->fd_cdir; 3434 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3435 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3436 vput(fdvp); 3437 break; 3438 } 3439 dp = VTOI(dvp); 3440 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3441 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3442 DT_DIR, 0); 3443 cache_purge(fdvp); 3444 cache_purge(dvp); 3445 vput(dvp); 3446 vput(fdvp); 3447 break; 3448 3449 case FFS_UNLINK: 3450 #ifdef DIAGNOSTIC 3451 if (fsckcmds) { 3452 char buf[32]; 3453 3454 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3455 strncpy(buf, "Name_too_long", 32); 3456 printf("%s: unlink %s (inode %jd)\n", 3457 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3458 } 3459 #endif /* DIAGNOSTIC */ 3460 /* 3461 * kern_funlinkat will do its own start/finish writes and 3462 * they do not nest, so drop ours here. Setting mp == NULL 3463 * indicates that vn_finished_write is not needed down below. 3464 */ 3465 vn_finished_write(mp); 3466 mp = NULL; 3467 error = kern_funlinkat(td, AT_FDCWD, 3468 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3469 0, (ino_t)cmd.size); 3470 break; 3471 3472 case FFS_SET_INODE: 3473 if (ump->um_fsckpid != td->td_proc->p_pid) { 3474 error = EPERM; 3475 break; 3476 } 3477 #ifdef DIAGNOSTIC 3478 if (fsckcmds) { 3479 printf("%s: update inode %jd\n", 3480 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3481 } 3482 #endif /* DIAGNOSTIC */ 3483 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3484 break; 3485 AUDIT_ARG_VNODE1(vp); 3486 ip = VTOI(vp); 3487 if (I_IS_UFS1(ip)) 3488 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3489 sizeof(struct ufs1_dinode)); 3490 else 3491 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3492 sizeof(struct ufs2_dinode)); 3493 if (error) { 3494 vput(vp); 3495 break; 3496 } 3497 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3498 error = ffs_update(vp, 1); 3499 vput(vp); 3500 break; 3501 3502 case FFS_SET_BUFOUTPUT: 3503 if (ump->um_fsckpid != td->td_proc->p_pid) { 3504 error = EPERM; 3505 break; 3506 } 3507 if (ITOUMP(VTOI(vp)) != ump) { 3508 error = EINVAL; 3509 break; 3510 } 3511 #ifdef DIAGNOSTIC 3512 if (fsckcmds) { 3513 printf("%s: %s buffered output for descriptor %jd\n", 3514 mp->mnt_stat.f_mntonname, 3515 cmd.size == 1 ? "enable" : "disable", 3516 (intmax_t)cmd.value); 3517 } 3518 #endif /* DIAGNOSTIC */ 3519 if ((error = getvnode(td, cmd.value, 3520 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3521 break; 3522 if (vfp->f_vnode->v_type != VCHR) { 3523 fdrop(vfp, td); 3524 error = EINVAL; 3525 break; 3526 } 3527 if (origops == NULL) { 3528 origops = vfp->f_ops; 3529 bcopy((void *)origops, (void *)&bufferedops, 3530 sizeof(bufferedops)); 3531 bufferedops.fo_write = buffered_write; 3532 } 3533 if (cmd.size == 1) 3534 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3535 (uintptr_t)&bufferedops); 3536 else 3537 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3538 (uintptr_t)origops); 3539 fdrop(vfp, td); 3540 break; 3541 3542 default: 3543 #ifdef DIAGNOSTIC 3544 if (fsckcmds) { 3545 printf("Invalid request %d from fsck\n", 3546 oidp->oid_number); 3547 } 3548 #endif /* DIAGNOSTIC */ 3549 error = EINVAL; 3550 break; 3551 3552 } 3553 fdrop(fp, td); 3554 vn_finished_write(mp); 3555 return (error); 3556 } 3557 3558 /* 3559 * Function to switch a descriptor to use the buffer cache to stage 3560 * its I/O. This is needed so that writes to the filesystem device 3561 * will give snapshots a chance to copy modified blocks for which it 3562 * needs to retain copies. 3563 */ 3564 static int 3565 buffered_write(fp, uio, active_cred, flags, td) 3566 struct file *fp; 3567 struct uio *uio; 3568 struct ucred *active_cred; 3569 int flags; 3570 struct thread *td; 3571 { 3572 struct vnode *devvp, *vp; 3573 struct inode *ip; 3574 struct buf *bp; 3575 struct fs *fs; 3576 struct filedesc *fdp; 3577 int error; 3578 daddr_t lbn; 3579 3580 /* 3581 * The devvp is associated with the /dev filesystem. To discover 3582 * the filesystem with which the device is associated, we depend 3583 * on the application setting the current directory to a location 3584 * within the filesystem being written. Yes, this is an ugly hack. 3585 */ 3586 devvp = fp->f_vnode; 3587 if (!vn_isdisk(devvp, NULL)) 3588 return (EINVAL); 3589 fdp = td->td_proc->p_fd; 3590 FILEDESC_SLOCK(fdp); 3591 vp = fdp->fd_cdir; 3592 vref(vp); 3593 FILEDESC_SUNLOCK(fdp); 3594 vn_lock(vp, LK_SHARED | LK_RETRY); 3595 /* 3596 * Check that the current directory vnode indeed belongs to 3597 * UFS before trying to dereference UFS-specific v_data fields. 3598 */ 3599 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3600 vput(vp); 3601 return (EINVAL); 3602 } 3603 ip = VTOI(vp); 3604 if (ITODEVVP(ip) != devvp) { 3605 vput(vp); 3606 return (EINVAL); 3607 } 3608 fs = ITOFS(ip); 3609 vput(vp); 3610 foffset_lock_uio(fp, uio, flags); 3611 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3612 #ifdef DIAGNOSTIC 3613 if (fsckcmds) { 3614 printf("%s: buffered write for block %jd\n", 3615 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3616 } 3617 #endif /* DIAGNOSTIC */ 3618 /* 3619 * All I/O must be contained within a filesystem block, start on 3620 * a fragment boundary, and be a multiple of fragments in length. 3621 */ 3622 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3623 fragoff(fs, uio->uio_offset) != 0 || 3624 fragoff(fs, uio->uio_resid) != 0) { 3625 error = EINVAL; 3626 goto out; 3627 } 3628 lbn = numfrags(fs, uio->uio_offset); 3629 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3630 bp->b_flags |= B_RELBUF; 3631 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3632 brelse(bp); 3633 goto out; 3634 } 3635 error = bwrite(bp); 3636 out: 3637 VOP_UNLOCK(devvp); 3638 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3639 return (error); 3640 } 3641