1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/systm.h> 72 #include <sys/bio.h> 73 #include <sys/buf.h> 74 #include <sys/conf.h> 75 #include <sys/fcntl.h> 76 #include <sys/file.h> 77 #include <sys/filedesc.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/vnode.h> 81 #include <sys/mount.h> 82 #include <sys/kernel.h> 83 #include <sys/syscallsubr.h> 84 #include <sys/sysctl.h> 85 #include <sys/syslog.h> 86 #include <sys/taskqueue.h> 87 88 #include <security/audit/audit.h> 89 90 #include <geom/geom.h> 91 #include <geom/geom_vfs.h> 92 93 #include <ufs/ufs/dir.h> 94 #include <ufs/ufs/extattr.h> 95 #include <ufs/ufs/quota.h> 96 #include <ufs/ufs/inode.h> 97 #include <ufs/ufs/ufs_extern.h> 98 #include <ufs/ufs/ufsmount.h> 99 100 #include <ufs/ffs/fs.h> 101 #include <ufs/ffs/ffs_extern.h> 102 #include <ufs/ffs/softdep.h> 103 104 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 105 int size, int rsize); 106 107 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 108 static ufs2_daddr_t 109 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 110 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 111 struct vnode *, ufs2_daddr_t, long, ino_t, 112 struct workhead *); 113 #ifdef INVARIANTS 114 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 115 #endif 116 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 117 static ino_t ffs_dirpref(struct inode *); 118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 119 int, int); 120 static ufs2_daddr_t ffs_hashalloc 121 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 123 int); 124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 125 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 126 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 127 static void ffs_ckhash_cg(struct buf *); 128 129 /* 130 * Allocate a block in the filesystem. 131 * 132 * The size of the requested block is given, which must be some 133 * multiple of fs_fsize and <= fs_bsize. 134 * A preference may be optionally specified. If a preference is given 135 * the following hierarchy is used to allocate a block: 136 * 1) allocate the requested block. 137 * 2) allocate a rotationally optimal block in the same cylinder. 138 * 3) allocate a block in the same cylinder group. 139 * 4) quadradically rehash into other cylinder groups, until an 140 * available block is located. 141 * If no block preference is given the following hierarchy is used 142 * to allocate a block: 143 * 1) allocate a block in the cylinder group that contains the 144 * inode for the file. 145 * 2) quadradically rehash into other cylinder groups, until an 146 * available block is located. 147 */ 148 int 149 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 150 struct inode *ip; 151 ufs2_daddr_t lbn, bpref; 152 int size, flags; 153 struct ucred *cred; 154 ufs2_daddr_t *bnp; 155 { 156 struct fs *fs; 157 struct ufsmount *ump; 158 ufs2_daddr_t bno; 159 u_int cg, reclaimed; 160 static struct timeval lastfail; 161 static int curfail; 162 int64_t delta; 163 #ifdef QUOTA 164 int error; 165 #endif 166 167 *bnp = 0; 168 ump = ITOUMP(ip); 169 fs = ump->um_fs; 170 mtx_assert(UFS_MTX(ump), MA_OWNED); 171 #ifdef INVARIANTS 172 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 173 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 174 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 175 fs->fs_fsmnt); 176 panic("ffs_alloc: bad size"); 177 } 178 if (cred == NOCRED) 179 panic("ffs_alloc: missing credential"); 180 #endif /* INVARIANTS */ 181 reclaimed = 0; 182 retry: 183 #ifdef QUOTA 184 UFS_UNLOCK(ump); 185 error = chkdq(ip, btodb(size), cred, 0); 186 if (error) 187 return (error); 188 UFS_LOCK(ump); 189 #endif 190 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 191 goto nospace; 192 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 193 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 194 goto nospace; 195 if (bpref >= fs->fs_size) 196 bpref = 0; 197 if (bpref == 0) 198 cg = ino_to_cg(fs, ip->i_number); 199 else 200 cg = dtog(fs, bpref); 201 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 202 if (bno > 0) { 203 delta = btodb(size); 204 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 205 if (flags & IO_EXT) 206 ip->i_flag |= IN_CHANGE; 207 else 208 ip->i_flag |= IN_CHANGE | IN_UPDATE; 209 *bnp = bno; 210 return (0); 211 } 212 nospace: 213 #ifdef QUOTA 214 UFS_UNLOCK(ump); 215 /* 216 * Restore user's disk quota because allocation failed. 217 */ 218 (void) chkdq(ip, -btodb(size), cred, FORCE); 219 UFS_LOCK(ump); 220 #endif 221 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 222 reclaimed = 1; 223 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 224 goto retry; 225 } 226 UFS_UNLOCK(ump); 227 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 228 ffs_fserr(fs, ip->i_number, "filesystem full"); 229 uprintf("\n%s: write failed, filesystem is full\n", 230 fs->fs_fsmnt); 231 } 232 return (ENOSPC); 233 } 234 235 /* 236 * Reallocate a fragment to a bigger size 237 * 238 * The number and size of the old block is given, and a preference 239 * and new size is also specified. The allocator attempts to extend 240 * the original block. Failing that, the regular block allocator is 241 * invoked to get an appropriate block. 242 */ 243 int 244 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 245 struct inode *ip; 246 ufs2_daddr_t lbprev; 247 ufs2_daddr_t bprev; 248 ufs2_daddr_t bpref; 249 int osize, nsize, flags; 250 struct ucred *cred; 251 struct buf **bpp; 252 { 253 struct vnode *vp; 254 struct fs *fs; 255 struct buf *bp; 256 struct ufsmount *ump; 257 u_int cg, request, reclaimed; 258 int error, gbflags; 259 ufs2_daddr_t bno; 260 static struct timeval lastfail; 261 static int curfail; 262 int64_t delta; 263 264 vp = ITOV(ip); 265 ump = ITOUMP(ip); 266 fs = ump->um_fs; 267 bp = NULL; 268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 269 270 mtx_assert(UFS_MTX(ump), MA_OWNED); 271 #ifdef INVARIANTS 272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 273 panic("ffs_realloccg: allocation on suspended filesystem"); 274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 276 printf( 277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 278 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 279 nsize, fs->fs_fsmnt); 280 panic("ffs_realloccg: bad size"); 281 } 282 if (cred == NOCRED) 283 panic("ffs_realloccg: missing credential"); 284 #endif /* INVARIANTS */ 285 reclaimed = 0; 286 retry: 287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 289 goto nospace; 290 } 291 if (bprev == 0) { 292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 293 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 294 fs->fs_fsmnt); 295 panic("ffs_realloccg: bad bprev"); 296 } 297 UFS_UNLOCK(ump); 298 /* 299 * Allocate the extra space in the buffer. 300 */ 301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 302 if (error) { 303 brelse(bp); 304 return (error); 305 } 306 307 if (bp->b_blkno == bp->b_lblkno) { 308 if (lbprev >= UFS_NDADDR) 309 panic("ffs_realloccg: lbprev out of range"); 310 bp->b_blkno = fsbtodb(fs, bprev); 311 } 312 313 #ifdef QUOTA 314 error = chkdq(ip, btodb(nsize - osize), cred, 0); 315 if (error) { 316 brelse(bp); 317 return (error); 318 } 319 #endif 320 /* 321 * Check for extension in the existing location. 322 */ 323 *bpp = NULL; 324 cg = dtog(fs, bprev); 325 UFS_LOCK(ump); 326 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 327 if (bno) { 328 if (bp->b_blkno != fsbtodb(fs, bno)) 329 panic("ffs_realloccg: bad blockno"); 330 delta = btodb(nsize - osize); 331 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 332 if (flags & IO_EXT) 333 ip->i_flag |= IN_CHANGE; 334 else 335 ip->i_flag |= IN_CHANGE | IN_UPDATE; 336 allocbuf(bp, nsize); 337 bp->b_flags |= B_DONE; 338 vfs_bio_bzero_buf(bp, osize, nsize - osize); 339 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 340 vfs_bio_set_valid(bp, osize, nsize - osize); 341 *bpp = bp; 342 return (0); 343 } 344 /* 345 * Allocate a new disk location. 346 */ 347 if (bpref >= fs->fs_size) 348 bpref = 0; 349 switch ((int)fs->fs_optim) { 350 case FS_OPTSPACE: 351 /* 352 * Allocate an exact sized fragment. Although this makes 353 * best use of space, we will waste time relocating it if 354 * the file continues to grow. If the fragmentation is 355 * less than half of the minimum free reserve, we choose 356 * to begin optimizing for time. 357 */ 358 request = nsize; 359 if (fs->fs_minfree <= 5 || 360 fs->fs_cstotal.cs_nffree > 361 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 362 break; 363 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 364 fs->fs_fsmnt); 365 fs->fs_optim = FS_OPTTIME; 366 break; 367 case FS_OPTTIME: 368 /* 369 * At this point we have discovered a file that is trying to 370 * grow a small fragment to a larger fragment. To save time, 371 * we allocate a full sized block, then free the unused portion. 372 * If the file continues to grow, the `ffs_fragextend' call 373 * above will be able to grow it in place without further 374 * copying. If aberrant programs cause disk fragmentation to 375 * grow within 2% of the free reserve, we choose to begin 376 * optimizing for space. 377 */ 378 request = fs->fs_bsize; 379 if (fs->fs_cstotal.cs_nffree < 380 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 381 break; 382 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 383 fs->fs_fsmnt); 384 fs->fs_optim = FS_OPTSPACE; 385 break; 386 default: 387 printf("dev = %s, optim = %ld, fs = %s\n", 388 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 389 panic("ffs_realloccg: bad optim"); 390 /* NOTREACHED */ 391 } 392 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 393 if (bno > 0) { 394 bp->b_blkno = fsbtodb(fs, bno); 395 if (!DOINGSOFTDEP(vp)) 396 /* 397 * The usual case is that a smaller fragment that 398 * was just allocated has been replaced with a bigger 399 * fragment or a full-size block. If it is marked as 400 * B_DELWRI, the current contents have not been written 401 * to disk. It is possible that the block was written 402 * earlier, but very uncommon. If the block has never 403 * been written, there is no need to send a BIO_DELETE 404 * for it when it is freed. The gain from avoiding the 405 * TRIMs for the common case of unwritten blocks far 406 * exceeds the cost of the write amplification for the 407 * uncommon case of failing to send a TRIM for a block 408 * that had been written. 409 */ 410 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 411 ip->i_number, vp->v_type, NULL, 412 (bp->b_flags & B_DELWRI) != 0 ? 413 NOTRIM_KEY : SINGLETON_KEY); 414 delta = btodb(nsize - osize); 415 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 416 if (flags & IO_EXT) 417 ip->i_flag |= IN_CHANGE; 418 else 419 ip->i_flag |= IN_CHANGE | IN_UPDATE; 420 allocbuf(bp, nsize); 421 bp->b_flags |= B_DONE; 422 vfs_bio_bzero_buf(bp, osize, nsize - osize); 423 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 424 vfs_bio_set_valid(bp, osize, nsize - osize); 425 *bpp = bp; 426 return (0); 427 } 428 #ifdef QUOTA 429 UFS_UNLOCK(ump); 430 /* 431 * Restore user's disk quota because allocation failed. 432 */ 433 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 434 UFS_LOCK(ump); 435 #endif 436 nospace: 437 /* 438 * no space available 439 */ 440 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 441 reclaimed = 1; 442 UFS_UNLOCK(ump); 443 if (bp) { 444 brelse(bp); 445 bp = NULL; 446 } 447 UFS_LOCK(ump); 448 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 449 goto retry; 450 } 451 UFS_UNLOCK(ump); 452 if (bp) 453 brelse(bp); 454 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 455 ffs_fserr(fs, ip->i_number, "filesystem full"); 456 uprintf("\n%s: write failed, filesystem is full\n", 457 fs->fs_fsmnt); 458 } 459 return (ENOSPC); 460 } 461 462 /* 463 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 464 * 465 * The vnode and an array of buffer pointers for a range of sequential 466 * logical blocks to be made contiguous is given. The allocator attempts 467 * to find a range of sequential blocks starting as close as possible 468 * from the end of the allocation for the logical block immediately 469 * preceding the current range. If successful, the physical block numbers 470 * in the buffer pointers and in the inode are changed to reflect the new 471 * allocation. If unsuccessful, the allocation is left unchanged. The 472 * success in doing the reallocation is returned. Note that the error 473 * return is not reflected back to the user. Rather the previous block 474 * allocation will be used. 475 */ 476 477 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 478 479 static int doasyncfree = 1; 480 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 481 "do not force synchronous writes when blocks are reallocated"); 482 483 static int doreallocblks = 1; 484 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 485 "enable block reallocation"); 486 487 static int dotrimcons = 1; 488 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 489 "enable BIO_DELETE / TRIM consolidation"); 490 491 static int maxclustersearch = 10; 492 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 493 0, "max number of cylinder group to search for contigous blocks"); 494 495 #ifdef DIAGNOSTIC 496 static int prtrealloc = 0; 497 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 498 "print out FFS filesystem block reallocation operations"); 499 #endif 500 501 int 502 ffs_reallocblks(ap) 503 struct vop_reallocblks_args /* { 504 struct vnode *a_vp; 505 struct cluster_save *a_buflist; 506 } */ *ap; 507 { 508 struct ufsmount *ump; 509 510 /* 511 * We used to skip reallocating the blocks of a file into a 512 * contiguous sequence if the underlying flash device requested 513 * BIO_DELETE notifications, because devices that benefit from 514 * BIO_DELETE also benefit from not moving the data. However, 515 * the destination for the data is usually moved before the data 516 * is written to the initially allocated location, so we rarely 517 * suffer the penalty of extra writes. With the addition of the 518 * consolidation of contiguous blocks into single BIO_DELETE 519 * operations, having fewer but larger contiguous blocks reduces 520 * the number of (slow and expensive) BIO_DELETE operations. So 521 * when doing BIO_DELETE consolidation, we do block reallocation. 522 * 523 * Skip if reallocblks has been disabled globally. 524 */ 525 ump = ap->a_vp->v_mount->mnt_data; 526 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 527 doreallocblks == 0) 528 return (ENOSPC); 529 530 /* 531 * We can't wait in softdep prealloc as it may fsync and recurse 532 * here. Instead we simply fail to reallocate blocks if this 533 * rare condition arises. 534 */ 535 if (DOINGSOFTDEP(ap->a_vp)) 536 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 537 return (ENOSPC); 538 if (ump->um_fstype == UFS1) 539 return (ffs_reallocblks_ufs1(ap)); 540 return (ffs_reallocblks_ufs2(ap)); 541 } 542 543 static int 544 ffs_reallocblks_ufs1(ap) 545 struct vop_reallocblks_args /* { 546 struct vnode *a_vp; 547 struct cluster_save *a_buflist; 548 } */ *ap; 549 { 550 struct fs *fs; 551 struct inode *ip; 552 struct vnode *vp; 553 struct buf *sbp, *ebp, *bp; 554 ufs1_daddr_t *bap, *sbap, *ebap; 555 struct cluster_save *buflist; 556 struct ufsmount *ump; 557 ufs_lbn_t start_lbn, end_lbn; 558 ufs1_daddr_t soff, newblk, blkno; 559 ufs2_daddr_t pref; 560 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 561 int i, cg, len, start_lvl, end_lvl, ssize; 562 563 vp = ap->a_vp; 564 ip = VTOI(vp); 565 ump = ITOUMP(ip); 566 fs = ump->um_fs; 567 /* 568 * If we are not tracking block clusters or if we have less than 4% 569 * free blocks left, then do not attempt to cluster. Running with 570 * less than 5% free block reserve is not recommended and those that 571 * choose to do so do not expect to have good file layout. 572 */ 573 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 574 return (ENOSPC); 575 buflist = ap->a_buflist; 576 len = buflist->bs_nchildren; 577 start_lbn = buflist->bs_children[0]->b_lblkno; 578 end_lbn = start_lbn + len - 1; 579 #ifdef INVARIANTS 580 for (i = 0; i < len; i++) 581 if (!ffs_checkblk(ip, 582 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 583 panic("ffs_reallocblks: unallocated block 1"); 584 for (i = 1; i < len; i++) 585 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 586 panic("ffs_reallocblks: non-logical cluster"); 587 blkno = buflist->bs_children[0]->b_blkno; 588 ssize = fsbtodb(fs, fs->fs_frag); 589 for (i = 1; i < len - 1; i++) 590 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 591 panic("ffs_reallocblks: non-physical cluster %d", i); 592 #endif 593 /* 594 * If the cluster crosses the boundary for the first indirect 595 * block, leave space for the indirect block. Indirect blocks 596 * are initially laid out in a position after the last direct 597 * block. Block reallocation would usually destroy locality by 598 * moving the indirect block out of the way to make room for 599 * data blocks if we didn't compensate here. We should also do 600 * this for other indirect block boundaries, but it is only 601 * important for the first one. 602 */ 603 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 604 return (ENOSPC); 605 /* 606 * If the latest allocation is in a new cylinder group, assume that 607 * the filesystem has decided to move and do not force it back to 608 * the previous cylinder group. 609 */ 610 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 611 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 612 return (ENOSPC); 613 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 614 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 615 return (ENOSPC); 616 /* 617 * Get the starting offset and block map for the first block. 618 */ 619 if (start_lvl == 0) { 620 sbap = &ip->i_din1->di_db[0]; 621 soff = start_lbn; 622 } else { 623 idp = &start_ap[start_lvl - 1]; 624 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 625 brelse(sbp); 626 return (ENOSPC); 627 } 628 sbap = (ufs1_daddr_t *)sbp->b_data; 629 soff = idp->in_off; 630 } 631 /* 632 * If the block range spans two block maps, get the second map. 633 */ 634 ebap = NULL; 635 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 636 ssize = len; 637 } else { 638 #ifdef INVARIANTS 639 if (start_lvl > 0 && 640 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 641 panic("ffs_reallocblk: start == end"); 642 #endif 643 ssize = len - (idp->in_off + 1); 644 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 645 goto fail; 646 ebap = (ufs1_daddr_t *)ebp->b_data; 647 } 648 /* 649 * Find the preferred location for the cluster. If we have not 650 * previously failed at this endeavor, then follow our standard 651 * preference calculation. If we have failed at it, then pick up 652 * where we last ended our search. 653 */ 654 UFS_LOCK(ump); 655 if (ip->i_nextclustercg == -1) 656 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 657 else 658 pref = cgdata(fs, ip->i_nextclustercg); 659 /* 660 * Search the block map looking for an allocation of the desired size. 661 * To avoid wasting too much time, we limit the number of cylinder 662 * groups that we will search. 663 */ 664 cg = dtog(fs, pref); 665 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 666 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 667 break; 668 cg += 1; 669 if (cg >= fs->fs_ncg) 670 cg = 0; 671 } 672 /* 673 * If we have failed in our search, record where we gave up for 674 * next time. Otherwise, fall back to our usual search citerion. 675 */ 676 if (newblk == 0) { 677 ip->i_nextclustercg = cg; 678 UFS_UNLOCK(ump); 679 goto fail; 680 } 681 ip->i_nextclustercg = -1; 682 /* 683 * We have found a new contiguous block. 684 * 685 * First we have to replace the old block pointers with the new 686 * block pointers in the inode and indirect blocks associated 687 * with the file. 688 */ 689 #ifdef DIAGNOSTIC 690 if (prtrealloc) 691 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 692 (uintmax_t)ip->i_number, 693 (intmax_t)start_lbn, (intmax_t)end_lbn); 694 #endif 695 blkno = newblk; 696 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 697 if (i == ssize) { 698 bap = ebap; 699 soff = -i; 700 } 701 #ifdef INVARIANTS 702 if (!ffs_checkblk(ip, 703 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 704 panic("ffs_reallocblks: unallocated block 2"); 705 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 706 panic("ffs_reallocblks: alloc mismatch"); 707 #endif 708 #ifdef DIAGNOSTIC 709 if (prtrealloc) 710 printf(" %d,", *bap); 711 #endif 712 if (DOINGSOFTDEP(vp)) { 713 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 714 softdep_setup_allocdirect(ip, start_lbn + i, 715 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 716 buflist->bs_children[i]); 717 else 718 softdep_setup_allocindir_page(ip, start_lbn + i, 719 i < ssize ? sbp : ebp, soff + i, blkno, 720 *bap, buflist->bs_children[i]); 721 } 722 *bap++ = blkno; 723 } 724 /* 725 * Next we must write out the modified inode and indirect blocks. 726 * For strict correctness, the writes should be synchronous since 727 * the old block values may have been written to disk. In practise 728 * they are almost never written, but if we are concerned about 729 * strict correctness, the `doasyncfree' flag should be set to zero. 730 * 731 * The test on `doasyncfree' should be changed to test a flag 732 * that shows whether the associated buffers and inodes have 733 * been written. The flag should be set when the cluster is 734 * started and cleared whenever the buffer or inode is flushed. 735 * We can then check below to see if it is set, and do the 736 * synchronous write only when it has been cleared. 737 */ 738 if (sbap != &ip->i_din1->di_db[0]) { 739 if (doasyncfree) 740 bdwrite(sbp); 741 else 742 bwrite(sbp); 743 } else { 744 ip->i_flag |= IN_CHANGE | IN_UPDATE; 745 if (!doasyncfree) 746 ffs_update(vp, 1); 747 } 748 if (ssize < len) { 749 if (doasyncfree) 750 bdwrite(ebp); 751 else 752 bwrite(ebp); 753 } 754 /* 755 * Last, free the old blocks and assign the new blocks to the buffers. 756 */ 757 #ifdef DIAGNOSTIC 758 if (prtrealloc) 759 printf("\n\tnew:"); 760 #endif 761 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 762 bp = buflist->bs_children[i]; 763 if (!DOINGSOFTDEP(vp)) 764 /* 765 * The usual case is that a set of N-contiguous blocks 766 * that was just allocated has been replaced with a 767 * set of N+1-contiguous blocks. If they are marked as 768 * B_DELWRI, the current contents have not been written 769 * to disk. It is possible that the blocks were written 770 * earlier, but very uncommon. If the blocks have never 771 * been written, there is no need to send a BIO_DELETE 772 * for them when they are freed. The gain from avoiding 773 * the TRIMs for the common case of unwritten blocks 774 * far exceeds the cost of the write amplification for 775 * the uncommon case of failing to send a TRIM for the 776 * blocks that had been written. 777 */ 778 ffs_blkfree(ump, fs, ump->um_devvp, 779 dbtofsb(fs, bp->b_blkno), 780 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 781 (bp->b_flags & B_DELWRI) != 0 ? 782 NOTRIM_KEY : SINGLETON_KEY); 783 bp->b_blkno = fsbtodb(fs, blkno); 784 #ifdef INVARIANTS 785 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 786 panic("ffs_reallocblks: unallocated block 3"); 787 #endif 788 #ifdef DIAGNOSTIC 789 if (prtrealloc) 790 printf(" %d,", blkno); 791 #endif 792 } 793 #ifdef DIAGNOSTIC 794 if (prtrealloc) { 795 prtrealloc--; 796 printf("\n"); 797 } 798 #endif 799 return (0); 800 801 fail: 802 if (ssize < len) 803 brelse(ebp); 804 if (sbap != &ip->i_din1->di_db[0]) 805 brelse(sbp); 806 return (ENOSPC); 807 } 808 809 static int 810 ffs_reallocblks_ufs2(ap) 811 struct vop_reallocblks_args /* { 812 struct vnode *a_vp; 813 struct cluster_save *a_buflist; 814 } */ *ap; 815 { 816 struct fs *fs; 817 struct inode *ip; 818 struct vnode *vp; 819 struct buf *sbp, *ebp, *bp; 820 ufs2_daddr_t *bap, *sbap, *ebap; 821 struct cluster_save *buflist; 822 struct ufsmount *ump; 823 ufs_lbn_t start_lbn, end_lbn; 824 ufs2_daddr_t soff, newblk, blkno, pref; 825 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 826 int i, cg, len, start_lvl, end_lvl, ssize; 827 828 vp = ap->a_vp; 829 ip = VTOI(vp); 830 ump = ITOUMP(ip); 831 fs = ump->um_fs; 832 /* 833 * If we are not tracking block clusters or if we have less than 4% 834 * free blocks left, then do not attempt to cluster. Running with 835 * less than 5% free block reserve is not recommended and those that 836 * choose to do so do not expect to have good file layout. 837 */ 838 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 839 return (ENOSPC); 840 buflist = ap->a_buflist; 841 len = buflist->bs_nchildren; 842 start_lbn = buflist->bs_children[0]->b_lblkno; 843 end_lbn = start_lbn + len - 1; 844 #ifdef INVARIANTS 845 for (i = 0; i < len; i++) 846 if (!ffs_checkblk(ip, 847 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 848 panic("ffs_reallocblks: unallocated block 1"); 849 for (i = 1; i < len; i++) 850 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 851 panic("ffs_reallocblks: non-logical cluster"); 852 blkno = buflist->bs_children[0]->b_blkno; 853 ssize = fsbtodb(fs, fs->fs_frag); 854 for (i = 1; i < len - 1; i++) 855 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 856 panic("ffs_reallocblks: non-physical cluster %d", i); 857 #endif 858 /* 859 * If the cluster crosses the boundary for the first indirect 860 * block, do not move anything in it. Indirect blocks are 861 * usually initially laid out in a position between the data 862 * blocks. Block reallocation would usually destroy locality by 863 * moving the indirect block out of the way to make room for 864 * data blocks if we didn't compensate here. We should also do 865 * this for other indirect block boundaries, but it is only 866 * important for the first one. 867 */ 868 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 869 return (ENOSPC); 870 /* 871 * If the latest allocation is in a new cylinder group, assume that 872 * the filesystem has decided to move and do not force it back to 873 * the previous cylinder group. 874 */ 875 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 876 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 877 return (ENOSPC); 878 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 879 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 880 return (ENOSPC); 881 /* 882 * Get the starting offset and block map for the first block. 883 */ 884 if (start_lvl == 0) { 885 sbap = &ip->i_din2->di_db[0]; 886 soff = start_lbn; 887 } else { 888 idp = &start_ap[start_lvl - 1]; 889 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 890 brelse(sbp); 891 return (ENOSPC); 892 } 893 sbap = (ufs2_daddr_t *)sbp->b_data; 894 soff = idp->in_off; 895 } 896 /* 897 * If the block range spans two block maps, get the second map. 898 */ 899 ebap = NULL; 900 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 901 ssize = len; 902 } else { 903 #ifdef INVARIANTS 904 if (start_lvl > 0 && 905 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 906 panic("ffs_reallocblk: start == end"); 907 #endif 908 ssize = len - (idp->in_off + 1); 909 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 910 goto fail; 911 ebap = (ufs2_daddr_t *)ebp->b_data; 912 } 913 /* 914 * Find the preferred location for the cluster. If we have not 915 * previously failed at this endeavor, then follow our standard 916 * preference calculation. If we have failed at it, then pick up 917 * where we last ended our search. 918 */ 919 UFS_LOCK(ump); 920 if (ip->i_nextclustercg == -1) 921 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 922 else 923 pref = cgdata(fs, ip->i_nextclustercg); 924 /* 925 * Search the block map looking for an allocation of the desired size. 926 * To avoid wasting too much time, we limit the number of cylinder 927 * groups that we will search. 928 */ 929 cg = dtog(fs, pref); 930 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 931 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 932 break; 933 cg += 1; 934 if (cg >= fs->fs_ncg) 935 cg = 0; 936 } 937 /* 938 * If we have failed in our search, record where we gave up for 939 * next time. Otherwise, fall back to our usual search citerion. 940 */ 941 if (newblk == 0) { 942 ip->i_nextclustercg = cg; 943 UFS_UNLOCK(ump); 944 goto fail; 945 } 946 ip->i_nextclustercg = -1; 947 /* 948 * We have found a new contiguous block. 949 * 950 * First we have to replace the old block pointers with the new 951 * block pointers in the inode and indirect blocks associated 952 * with the file. 953 */ 954 #ifdef DIAGNOSTIC 955 if (prtrealloc) 956 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 957 (intmax_t)start_lbn, (intmax_t)end_lbn); 958 #endif 959 blkno = newblk; 960 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 961 if (i == ssize) { 962 bap = ebap; 963 soff = -i; 964 } 965 #ifdef INVARIANTS 966 if (!ffs_checkblk(ip, 967 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 968 panic("ffs_reallocblks: unallocated block 2"); 969 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 970 panic("ffs_reallocblks: alloc mismatch"); 971 #endif 972 #ifdef DIAGNOSTIC 973 if (prtrealloc) 974 printf(" %jd,", (intmax_t)*bap); 975 #endif 976 if (DOINGSOFTDEP(vp)) { 977 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 978 softdep_setup_allocdirect(ip, start_lbn + i, 979 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 980 buflist->bs_children[i]); 981 else 982 softdep_setup_allocindir_page(ip, start_lbn + i, 983 i < ssize ? sbp : ebp, soff + i, blkno, 984 *bap, buflist->bs_children[i]); 985 } 986 *bap++ = blkno; 987 } 988 /* 989 * Next we must write out the modified inode and indirect blocks. 990 * For strict correctness, the writes should be synchronous since 991 * the old block values may have been written to disk. In practise 992 * they are almost never written, but if we are concerned about 993 * strict correctness, the `doasyncfree' flag should be set to zero. 994 * 995 * The test on `doasyncfree' should be changed to test a flag 996 * that shows whether the associated buffers and inodes have 997 * been written. The flag should be set when the cluster is 998 * started and cleared whenever the buffer or inode is flushed. 999 * We can then check below to see if it is set, and do the 1000 * synchronous write only when it has been cleared. 1001 */ 1002 if (sbap != &ip->i_din2->di_db[0]) { 1003 if (doasyncfree) 1004 bdwrite(sbp); 1005 else 1006 bwrite(sbp); 1007 } else { 1008 ip->i_flag |= IN_CHANGE | IN_UPDATE; 1009 if (!doasyncfree) 1010 ffs_update(vp, 1); 1011 } 1012 if (ssize < len) { 1013 if (doasyncfree) 1014 bdwrite(ebp); 1015 else 1016 bwrite(ebp); 1017 } 1018 /* 1019 * Last, free the old blocks and assign the new blocks to the buffers. 1020 */ 1021 #ifdef DIAGNOSTIC 1022 if (prtrealloc) 1023 printf("\n\tnew:"); 1024 #endif 1025 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1026 bp = buflist->bs_children[i]; 1027 if (!DOINGSOFTDEP(vp)) 1028 /* 1029 * The usual case is that a set of N-contiguous blocks 1030 * that was just allocated has been replaced with a 1031 * set of N+1-contiguous blocks. If they are marked as 1032 * B_DELWRI, the current contents have not been written 1033 * to disk. It is possible that the blocks were written 1034 * earlier, but very uncommon. If the blocks have never 1035 * been written, there is no need to send a BIO_DELETE 1036 * for them when they are freed. The gain from avoiding 1037 * the TRIMs for the common case of unwritten blocks 1038 * far exceeds the cost of the write amplification for 1039 * the uncommon case of failing to send a TRIM for the 1040 * blocks that had been written. 1041 */ 1042 ffs_blkfree(ump, fs, ump->um_devvp, 1043 dbtofsb(fs, bp->b_blkno), 1044 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1045 (bp->b_flags & B_DELWRI) != 0 ? 1046 NOTRIM_KEY : SINGLETON_KEY); 1047 bp->b_blkno = fsbtodb(fs, blkno); 1048 #ifdef INVARIANTS 1049 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1050 panic("ffs_reallocblks: unallocated block 3"); 1051 #endif 1052 #ifdef DIAGNOSTIC 1053 if (prtrealloc) 1054 printf(" %jd,", (intmax_t)blkno); 1055 #endif 1056 } 1057 #ifdef DIAGNOSTIC 1058 if (prtrealloc) { 1059 prtrealloc--; 1060 printf("\n"); 1061 } 1062 #endif 1063 return (0); 1064 1065 fail: 1066 if (ssize < len) 1067 brelse(ebp); 1068 if (sbap != &ip->i_din2->di_db[0]) 1069 brelse(sbp); 1070 return (ENOSPC); 1071 } 1072 1073 /* 1074 * Allocate an inode in the filesystem. 1075 * 1076 * If allocating a directory, use ffs_dirpref to select the inode. 1077 * If allocating in a directory, the following hierarchy is followed: 1078 * 1) allocate the preferred inode. 1079 * 2) allocate an inode in the same cylinder group. 1080 * 3) quadradically rehash into other cylinder groups, until an 1081 * available inode is located. 1082 * If no inode preference is given the following hierarchy is used 1083 * to allocate an inode: 1084 * 1) allocate an inode in cylinder group 0. 1085 * 2) quadradically rehash into other cylinder groups, until an 1086 * available inode is located. 1087 */ 1088 int 1089 ffs_valloc(pvp, mode, cred, vpp) 1090 struct vnode *pvp; 1091 int mode; 1092 struct ucred *cred; 1093 struct vnode **vpp; 1094 { 1095 struct inode *pip; 1096 struct fs *fs; 1097 struct inode *ip; 1098 struct timespec ts; 1099 struct ufsmount *ump; 1100 ino_t ino, ipref; 1101 u_int cg; 1102 int error, error1, reclaimed; 1103 static struct timeval lastfail; 1104 static int curfail; 1105 1106 *vpp = NULL; 1107 pip = VTOI(pvp); 1108 ump = ITOUMP(pip); 1109 fs = ump->um_fs; 1110 1111 UFS_LOCK(ump); 1112 reclaimed = 0; 1113 retry: 1114 if (fs->fs_cstotal.cs_nifree == 0) 1115 goto noinodes; 1116 1117 if ((mode & IFMT) == IFDIR) 1118 ipref = ffs_dirpref(pip); 1119 else 1120 ipref = pip->i_number; 1121 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1122 ipref = 0; 1123 cg = ino_to_cg(fs, ipref); 1124 /* 1125 * Track number of dirs created one after another 1126 * in a same cg without intervening by files. 1127 */ 1128 if ((mode & IFMT) == IFDIR) { 1129 if (fs->fs_contigdirs[cg] < 255) 1130 fs->fs_contigdirs[cg]++; 1131 } else { 1132 if (fs->fs_contigdirs[cg] > 0) 1133 fs->fs_contigdirs[cg]--; 1134 } 1135 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1136 (allocfcn_t *)ffs_nodealloccg); 1137 if (ino == 0) 1138 goto noinodes; 1139 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1140 if (error) { 1141 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1142 FFSV_FORCEINSMQ); 1143 ffs_vfree(pvp, ino, mode); 1144 if (error1 == 0) { 1145 ip = VTOI(*vpp); 1146 if (ip->i_mode) 1147 goto dup_alloc; 1148 ip->i_flag |= IN_MODIFIED; 1149 vput(*vpp); 1150 } 1151 return (error); 1152 } 1153 ip = VTOI(*vpp); 1154 if (ip->i_mode) { 1155 dup_alloc: 1156 printf("mode = 0%o, inum = %ju, fs = %s\n", 1157 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1158 panic("ffs_valloc: dup alloc"); 1159 } 1160 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1161 printf("free inode %s/%lu had %ld blocks\n", 1162 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1163 DIP_SET(ip, i_blocks, 0); 1164 } 1165 ip->i_flags = 0; 1166 DIP_SET(ip, i_flags, 0); 1167 /* 1168 * Set up a new generation number for this inode. 1169 */ 1170 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1171 ip->i_gen = arc4random(); 1172 DIP_SET(ip, i_gen, ip->i_gen); 1173 if (fs->fs_magic == FS_UFS2_MAGIC) { 1174 vfs_timestamp(&ts); 1175 ip->i_din2->di_birthtime = ts.tv_sec; 1176 ip->i_din2->di_birthnsec = ts.tv_nsec; 1177 } 1178 ufs_prepare_reclaim(*vpp); 1179 ip->i_flag = 0; 1180 (*vpp)->v_vflag = 0; 1181 (*vpp)->v_type = VNON; 1182 if (fs->fs_magic == FS_UFS2_MAGIC) { 1183 (*vpp)->v_op = &ffs_vnodeops2; 1184 ip->i_flag |= IN_UFS2; 1185 } else { 1186 (*vpp)->v_op = &ffs_vnodeops1; 1187 } 1188 return (0); 1189 noinodes: 1190 if (reclaimed == 0) { 1191 reclaimed = 1; 1192 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1193 goto retry; 1194 } 1195 UFS_UNLOCK(ump); 1196 if (ppsratecheck(&lastfail, &curfail, 1)) { 1197 ffs_fserr(fs, pip->i_number, "out of inodes"); 1198 uprintf("\n%s: create/symlink failed, no inodes free\n", 1199 fs->fs_fsmnt); 1200 } 1201 return (ENOSPC); 1202 } 1203 1204 /* 1205 * Find a cylinder group to place a directory. 1206 * 1207 * The policy implemented by this algorithm is to allocate a 1208 * directory inode in the same cylinder group as its parent 1209 * directory, but also to reserve space for its files inodes 1210 * and data. Restrict the number of directories which may be 1211 * allocated one after another in the same cylinder group 1212 * without intervening allocation of files. 1213 * 1214 * If we allocate a first level directory then force allocation 1215 * in another cylinder group. 1216 */ 1217 static ino_t 1218 ffs_dirpref(pip) 1219 struct inode *pip; 1220 { 1221 struct fs *fs; 1222 int cg, prefcg, dirsize, cgsize; 1223 u_int avgifree, avgbfree, avgndir, curdirsize; 1224 u_int minifree, minbfree, maxndir; 1225 u_int mincg, minndir; 1226 u_int maxcontigdirs; 1227 1228 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1229 fs = ITOFS(pip); 1230 1231 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1232 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1233 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1234 1235 /* 1236 * Force allocation in another cg if creating a first level dir. 1237 */ 1238 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1239 if (ITOV(pip)->v_vflag & VV_ROOT) { 1240 prefcg = arc4random() % fs->fs_ncg; 1241 mincg = prefcg; 1242 minndir = fs->fs_ipg; 1243 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1244 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1245 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1246 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1247 mincg = cg; 1248 minndir = fs->fs_cs(fs, cg).cs_ndir; 1249 } 1250 for (cg = 0; cg < prefcg; cg++) 1251 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1252 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1253 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1254 mincg = cg; 1255 minndir = fs->fs_cs(fs, cg).cs_ndir; 1256 } 1257 return ((ino_t)(fs->fs_ipg * mincg)); 1258 } 1259 1260 /* 1261 * Count various limits which used for 1262 * optimal allocation of a directory inode. 1263 */ 1264 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1265 minifree = avgifree - avgifree / 4; 1266 if (minifree < 1) 1267 minifree = 1; 1268 minbfree = avgbfree - avgbfree / 4; 1269 if (minbfree < 1) 1270 minbfree = 1; 1271 cgsize = fs->fs_fsize * fs->fs_fpg; 1272 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1273 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1274 if (dirsize < curdirsize) 1275 dirsize = curdirsize; 1276 if (dirsize <= 0) 1277 maxcontigdirs = 0; /* dirsize overflowed */ 1278 else 1279 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1280 if (fs->fs_avgfpdir > 0) 1281 maxcontigdirs = min(maxcontigdirs, 1282 fs->fs_ipg / fs->fs_avgfpdir); 1283 if (maxcontigdirs == 0) 1284 maxcontigdirs = 1; 1285 1286 /* 1287 * Limit number of dirs in one cg and reserve space for 1288 * regular files, but only if we have no deficit in 1289 * inodes or space. 1290 * 1291 * We are trying to find a suitable cylinder group nearby 1292 * our preferred cylinder group to place a new directory. 1293 * We scan from our preferred cylinder group forward looking 1294 * for a cylinder group that meets our criterion. If we get 1295 * to the final cylinder group and do not find anything, 1296 * we start scanning forwards from the beginning of the 1297 * filesystem. While it might seem sensible to start scanning 1298 * backwards or even to alternate looking forward and backward, 1299 * this approach fails badly when the filesystem is nearly full. 1300 * Specifically, we first search all the areas that have no space 1301 * and finally try the one preceding that. We repeat this on 1302 * every request and in the case of the final block end up 1303 * searching the entire filesystem. By jumping to the front 1304 * of the filesystem, our future forward searches always look 1305 * in new cylinder groups so finds every possible block after 1306 * one pass over the filesystem. 1307 */ 1308 prefcg = ino_to_cg(fs, pip->i_number); 1309 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1310 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1311 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1312 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1313 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1314 return ((ino_t)(fs->fs_ipg * cg)); 1315 } 1316 for (cg = 0; cg < prefcg; cg++) 1317 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1318 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1319 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1320 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1321 return ((ino_t)(fs->fs_ipg * cg)); 1322 } 1323 /* 1324 * This is a backstop when we have deficit in space. 1325 */ 1326 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1327 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1328 return ((ino_t)(fs->fs_ipg * cg)); 1329 for (cg = 0; cg < prefcg; cg++) 1330 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1331 break; 1332 return ((ino_t)(fs->fs_ipg * cg)); 1333 } 1334 1335 /* 1336 * Select the desired position for the next block in a file. The file is 1337 * logically divided into sections. The first section is composed of the 1338 * direct blocks and the next fs_maxbpg blocks. Each additional section 1339 * contains fs_maxbpg blocks. 1340 * 1341 * If no blocks have been allocated in the first section, the policy is to 1342 * request a block in the same cylinder group as the inode that describes 1343 * the file. The first indirect is allocated immediately following the last 1344 * direct block and the data blocks for the first indirect immediately 1345 * follow it. 1346 * 1347 * If no blocks have been allocated in any other section, the indirect 1348 * block(s) are allocated in the same cylinder group as its inode in an 1349 * area reserved immediately following the inode blocks. The policy for 1350 * the data blocks is to place them in a cylinder group with a greater than 1351 * average number of free blocks. An appropriate cylinder group is found 1352 * by using a rotor that sweeps the cylinder groups. When a new group of 1353 * blocks is needed, the sweep begins in the cylinder group following the 1354 * cylinder group from which the previous allocation was made. The sweep 1355 * continues until a cylinder group with greater than the average number 1356 * of free blocks is found. If the allocation is for the first block in an 1357 * indirect block or the previous block is a hole, then the information on 1358 * the previous allocation is unavailable; here a best guess is made based 1359 * on the logical block number being allocated. 1360 * 1361 * If a section is already partially allocated, the policy is to 1362 * allocate blocks contiguously within the section if possible. 1363 */ 1364 ufs2_daddr_t 1365 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1366 struct inode *ip; 1367 ufs_lbn_t lbn; 1368 int indx; 1369 ufs1_daddr_t *bap; 1370 { 1371 struct fs *fs; 1372 u_int cg, inocg; 1373 u_int avgbfree, startcg; 1374 ufs2_daddr_t pref; 1375 1376 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1377 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1378 fs = ITOFS(ip); 1379 /* 1380 * Allocation of indirect blocks is indicated by passing negative 1381 * values in indx: -1 for single indirect, -2 for double indirect, 1382 * -3 for triple indirect. As noted below, we attempt to allocate 1383 * the first indirect inline with the file data. For all later 1384 * indirect blocks, the data is often allocated in other cylinder 1385 * groups. However to speed random file access and to speed up 1386 * fsck, the filesystem reserves the first fs_metaspace blocks 1387 * (typically half of fs_minfree) of the data area of each cylinder 1388 * group to hold these later indirect blocks. 1389 */ 1390 inocg = ino_to_cg(fs, ip->i_number); 1391 if (indx < 0) { 1392 /* 1393 * Our preference for indirect blocks is the zone at the 1394 * beginning of the inode's cylinder group data area that 1395 * we try to reserve for indirect blocks. 1396 */ 1397 pref = cgmeta(fs, inocg); 1398 /* 1399 * If we are allocating the first indirect block, try to 1400 * place it immediately following the last direct block. 1401 */ 1402 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1403 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1404 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1405 return (pref); 1406 } 1407 /* 1408 * If we are allocating the first data block in the first indirect 1409 * block and the indirect has been allocated in the data block area, 1410 * try to place it immediately following the indirect block. 1411 */ 1412 if (lbn == UFS_NDADDR) { 1413 pref = ip->i_din1->di_ib[0]; 1414 if (pref != 0 && pref >= cgdata(fs, inocg) && 1415 pref < cgbase(fs, inocg + 1)) 1416 return (pref + fs->fs_frag); 1417 } 1418 /* 1419 * If we are at the beginning of a file, or we have already allocated 1420 * the maximum number of blocks per cylinder group, or we do not 1421 * have a block allocated immediately preceding us, then we need 1422 * to decide where to start allocating new blocks. 1423 */ 1424 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1425 /* 1426 * If we are allocating a directory data block, we want 1427 * to place it in the metadata area. 1428 */ 1429 if ((ip->i_mode & IFMT) == IFDIR) 1430 return (cgmeta(fs, inocg)); 1431 /* 1432 * Until we fill all the direct and all the first indirect's 1433 * blocks, we try to allocate in the data area of the inode's 1434 * cylinder group. 1435 */ 1436 if (lbn < UFS_NDADDR + NINDIR(fs)) 1437 return (cgdata(fs, inocg)); 1438 /* 1439 * Find a cylinder with greater than average number of 1440 * unused data blocks. 1441 */ 1442 if (indx == 0 || bap[indx - 1] == 0) 1443 startcg = inocg + lbn / fs->fs_maxbpg; 1444 else 1445 startcg = dtog(fs, bap[indx - 1]) + 1; 1446 startcg %= fs->fs_ncg; 1447 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1448 for (cg = startcg; cg < fs->fs_ncg; cg++) 1449 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1450 fs->fs_cgrotor = cg; 1451 return (cgdata(fs, cg)); 1452 } 1453 for (cg = 0; cg <= startcg; cg++) 1454 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1455 fs->fs_cgrotor = cg; 1456 return (cgdata(fs, cg)); 1457 } 1458 return (0); 1459 } 1460 /* 1461 * Otherwise, we just always try to lay things out contiguously. 1462 */ 1463 return (bap[indx - 1] + fs->fs_frag); 1464 } 1465 1466 /* 1467 * Same as above, but for UFS2 1468 */ 1469 ufs2_daddr_t 1470 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1471 struct inode *ip; 1472 ufs_lbn_t lbn; 1473 int indx; 1474 ufs2_daddr_t *bap; 1475 { 1476 struct fs *fs; 1477 u_int cg, inocg; 1478 u_int avgbfree, startcg; 1479 ufs2_daddr_t pref; 1480 1481 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1482 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1483 fs = ITOFS(ip); 1484 /* 1485 * Allocation of indirect blocks is indicated by passing negative 1486 * values in indx: -1 for single indirect, -2 for double indirect, 1487 * -3 for triple indirect. As noted below, we attempt to allocate 1488 * the first indirect inline with the file data. For all later 1489 * indirect blocks, the data is often allocated in other cylinder 1490 * groups. However to speed random file access and to speed up 1491 * fsck, the filesystem reserves the first fs_metaspace blocks 1492 * (typically half of fs_minfree) of the data area of each cylinder 1493 * group to hold these later indirect blocks. 1494 */ 1495 inocg = ino_to_cg(fs, ip->i_number); 1496 if (indx < 0) { 1497 /* 1498 * Our preference for indirect blocks is the zone at the 1499 * beginning of the inode's cylinder group data area that 1500 * we try to reserve for indirect blocks. 1501 */ 1502 pref = cgmeta(fs, inocg); 1503 /* 1504 * If we are allocating the first indirect block, try to 1505 * place it immediately following the last direct block. 1506 */ 1507 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1508 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1509 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1510 return (pref); 1511 } 1512 /* 1513 * If we are allocating the first data block in the first indirect 1514 * block and the indirect has been allocated in the data block area, 1515 * try to place it immediately following the indirect block. 1516 */ 1517 if (lbn == UFS_NDADDR) { 1518 pref = ip->i_din2->di_ib[0]; 1519 if (pref != 0 && pref >= cgdata(fs, inocg) && 1520 pref < cgbase(fs, inocg + 1)) 1521 return (pref + fs->fs_frag); 1522 } 1523 /* 1524 * If we are at the beginning of a file, or we have already allocated 1525 * the maximum number of blocks per cylinder group, or we do not 1526 * have a block allocated immediately preceding us, then we need 1527 * to decide where to start allocating new blocks. 1528 */ 1529 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1530 /* 1531 * If we are allocating a directory data block, we want 1532 * to place it in the metadata area. 1533 */ 1534 if ((ip->i_mode & IFMT) == IFDIR) 1535 return (cgmeta(fs, inocg)); 1536 /* 1537 * Until we fill all the direct and all the first indirect's 1538 * blocks, we try to allocate in the data area of the inode's 1539 * cylinder group. 1540 */ 1541 if (lbn < UFS_NDADDR + NINDIR(fs)) 1542 return (cgdata(fs, inocg)); 1543 /* 1544 * Find a cylinder with greater than average number of 1545 * unused data blocks. 1546 */ 1547 if (indx == 0 || bap[indx - 1] == 0) 1548 startcg = inocg + lbn / fs->fs_maxbpg; 1549 else 1550 startcg = dtog(fs, bap[indx - 1]) + 1; 1551 startcg %= fs->fs_ncg; 1552 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1553 for (cg = startcg; cg < fs->fs_ncg; cg++) 1554 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1555 fs->fs_cgrotor = cg; 1556 return (cgdata(fs, cg)); 1557 } 1558 for (cg = 0; cg <= startcg; cg++) 1559 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1560 fs->fs_cgrotor = cg; 1561 return (cgdata(fs, cg)); 1562 } 1563 return (0); 1564 } 1565 /* 1566 * Otherwise, we just always try to lay things out contiguously. 1567 */ 1568 return (bap[indx - 1] + fs->fs_frag); 1569 } 1570 1571 /* 1572 * Implement the cylinder overflow algorithm. 1573 * 1574 * The policy implemented by this algorithm is: 1575 * 1) allocate the block in its requested cylinder group. 1576 * 2) quadradically rehash on the cylinder group number. 1577 * 3) brute force search for a free block. 1578 * 1579 * Must be called with the UFS lock held. Will release the lock on success 1580 * and return with it held on failure. 1581 */ 1582 /*VARARGS5*/ 1583 static ufs2_daddr_t 1584 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1585 struct inode *ip; 1586 u_int cg; 1587 ufs2_daddr_t pref; 1588 int size; /* Search size for data blocks, mode for inodes */ 1589 int rsize; /* Real allocated size. */ 1590 allocfcn_t *allocator; 1591 { 1592 struct fs *fs; 1593 ufs2_daddr_t result; 1594 u_int i, icg = cg; 1595 1596 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1597 #ifdef INVARIANTS 1598 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1599 panic("ffs_hashalloc: allocation on suspended filesystem"); 1600 #endif 1601 fs = ITOFS(ip); 1602 /* 1603 * 1: preferred cylinder group 1604 */ 1605 result = (*allocator)(ip, cg, pref, size, rsize); 1606 if (result) 1607 return (result); 1608 /* 1609 * 2: quadratic rehash 1610 */ 1611 for (i = 1; i < fs->fs_ncg; i *= 2) { 1612 cg += i; 1613 if (cg >= fs->fs_ncg) 1614 cg -= fs->fs_ncg; 1615 result = (*allocator)(ip, cg, 0, size, rsize); 1616 if (result) 1617 return (result); 1618 } 1619 /* 1620 * 3: brute force search 1621 * Note that we start at i == 2, since 0 was checked initially, 1622 * and 1 is always checked in the quadratic rehash. 1623 */ 1624 cg = (icg + 2) % fs->fs_ncg; 1625 for (i = 2; i < fs->fs_ncg; i++) { 1626 result = (*allocator)(ip, cg, 0, size, rsize); 1627 if (result) 1628 return (result); 1629 cg++; 1630 if (cg == fs->fs_ncg) 1631 cg = 0; 1632 } 1633 return (0); 1634 } 1635 1636 /* 1637 * Determine whether a fragment can be extended. 1638 * 1639 * Check to see if the necessary fragments are available, and 1640 * if they are, allocate them. 1641 */ 1642 static ufs2_daddr_t 1643 ffs_fragextend(ip, cg, bprev, osize, nsize) 1644 struct inode *ip; 1645 u_int cg; 1646 ufs2_daddr_t bprev; 1647 int osize, nsize; 1648 { 1649 struct fs *fs; 1650 struct cg *cgp; 1651 struct buf *bp; 1652 struct ufsmount *ump; 1653 int nffree; 1654 long bno; 1655 int frags, bbase; 1656 int i, error; 1657 u_int8_t *blksfree; 1658 1659 ump = ITOUMP(ip); 1660 fs = ump->um_fs; 1661 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1662 return (0); 1663 frags = numfrags(fs, nsize); 1664 bbase = fragnum(fs, bprev); 1665 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1666 /* cannot extend across a block boundary */ 1667 return (0); 1668 } 1669 UFS_UNLOCK(ump); 1670 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) 1671 goto fail; 1672 bno = dtogd(fs, bprev); 1673 blksfree = cg_blksfree(cgp); 1674 for (i = numfrags(fs, osize); i < frags; i++) 1675 if (isclr(blksfree, bno + i)) 1676 goto fail; 1677 /* 1678 * the current fragment can be extended 1679 * deduct the count on fragment being extended into 1680 * increase the count on the remaining fragment (if any) 1681 * allocate the extended piece 1682 */ 1683 for (i = frags; i < fs->fs_frag - bbase; i++) 1684 if (isclr(blksfree, bno + i)) 1685 break; 1686 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1687 if (i != frags) 1688 cgp->cg_frsum[i - frags]++; 1689 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1690 clrbit(blksfree, bno + i); 1691 cgp->cg_cs.cs_nffree--; 1692 nffree++; 1693 } 1694 UFS_LOCK(ump); 1695 fs->fs_cstotal.cs_nffree -= nffree; 1696 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1697 fs->fs_fmod = 1; 1698 ACTIVECLEAR(fs, cg); 1699 UFS_UNLOCK(ump); 1700 if (DOINGSOFTDEP(ITOV(ip))) 1701 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1702 frags, numfrags(fs, osize)); 1703 bdwrite(bp); 1704 return (bprev); 1705 1706 fail: 1707 brelse(bp); 1708 UFS_LOCK(ump); 1709 return (0); 1710 1711 } 1712 1713 /* 1714 * Determine whether a block can be allocated. 1715 * 1716 * Check to see if a block of the appropriate size is available, 1717 * and if it is, allocate it. 1718 */ 1719 static ufs2_daddr_t 1720 ffs_alloccg(ip, cg, bpref, size, rsize) 1721 struct inode *ip; 1722 u_int cg; 1723 ufs2_daddr_t bpref; 1724 int size; 1725 int rsize; 1726 { 1727 struct fs *fs; 1728 struct cg *cgp; 1729 struct buf *bp; 1730 struct ufsmount *ump; 1731 ufs1_daddr_t bno; 1732 ufs2_daddr_t blkno; 1733 int i, allocsiz, error, frags; 1734 u_int8_t *blksfree; 1735 1736 ump = ITOUMP(ip); 1737 fs = ump->um_fs; 1738 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1739 return (0); 1740 UFS_UNLOCK(ump); 1741 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || 1742 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1743 goto fail; 1744 if (size == fs->fs_bsize) { 1745 UFS_LOCK(ump); 1746 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1747 ACTIVECLEAR(fs, cg); 1748 UFS_UNLOCK(ump); 1749 bdwrite(bp); 1750 return (blkno); 1751 } 1752 /* 1753 * check to see if any fragments are already available 1754 * allocsiz is the size which will be allocated, hacking 1755 * it down to a smaller size if necessary 1756 */ 1757 blksfree = cg_blksfree(cgp); 1758 frags = numfrags(fs, size); 1759 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1760 if (cgp->cg_frsum[allocsiz] != 0) 1761 break; 1762 if (allocsiz == fs->fs_frag) { 1763 /* 1764 * no fragments were available, so a block will be 1765 * allocated, and hacked up 1766 */ 1767 if (cgp->cg_cs.cs_nbfree == 0) 1768 goto fail; 1769 UFS_LOCK(ump); 1770 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1771 ACTIVECLEAR(fs, cg); 1772 UFS_UNLOCK(ump); 1773 bdwrite(bp); 1774 return (blkno); 1775 } 1776 KASSERT(size == rsize, 1777 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1778 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1779 if (bno < 0) 1780 goto fail; 1781 for (i = 0; i < frags; i++) 1782 clrbit(blksfree, bno + i); 1783 cgp->cg_cs.cs_nffree -= frags; 1784 cgp->cg_frsum[allocsiz]--; 1785 if (frags != allocsiz) 1786 cgp->cg_frsum[allocsiz - frags]++; 1787 UFS_LOCK(ump); 1788 fs->fs_cstotal.cs_nffree -= frags; 1789 fs->fs_cs(fs, cg).cs_nffree -= frags; 1790 fs->fs_fmod = 1; 1791 blkno = cgbase(fs, cg) + bno; 1792 ACTIVECLEAR(fs, cg); 1793 UFS_UNLOCK(ump); 1794 if (DOINGSOFTDEP(ITOV(ip))) 1795 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1796 bdwrite(bp); 1797 return (blkno); 1798 1799 fail: 1800 brelse(bp); 1801 UFS_LOCK(ump); 1802 return (0); 1803 } 1804 1805 /* 1806 * Allocate a block in a cylinder group. 1807 * 1808 * This algorithm implements the following policy: 1809 * 1) allocate the requested block. 1810 * 2) allocate a rotationally optimal block in the same cylinder. 1811 * 3) allocate the next available block on the block rotor for the 1812 * specified cylinder group. 1813 * Note that this routine only allocates fs_bsize blocks; these 1814 * blocks may be fragmented by the routine that allocates them. 1815 */ 1816 static ufs2_daddr_t 1817 ffs_alloccgblk(ip, bp, bpref, size) 1818 struct inode *ip; 1819 struct buf *bp; 1820 ufs2_daddr_t bpref; 1821 int size; 1822 { 1823 struct fs *fs; 1824 struct cg *cgp; 1825 struct ufsmount *ump; 1826 ufs1_daddr_t bno; 1827 ufs2_daddr_t blkno; 1828 u_int8_t *blksfree; 1829 int i, cgbpref; 1830 1831 ump = ITOUMP(ip); 1832 fs = ump->um_fs; 1833 mtx_assert(UFS_MTX(ump), MA_OWNED); 1834 cgp = (struct cg *)bp->b_data; 1835 blksfree = cg_blksfree(cgp); 1836 if (bpref == 0) { 1837 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1838 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1839 /* map bpref to correct zone in this cg */ 1840 if (bpref < cgdata(fs, cgbpref)) 1841 bpref = cgmeta(fs, cgp->cg_cgx); 1842 else 1843 bpref = cgdata(fs, cgp->cg_cgx); 1844 } 1845 /* 1846 * if the requested block is available, use it 1847 */ 1848 bno = dtogd(fs, blknum(fs, bpref)); 1849 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1850 goto gotit; 1851 /* 1852 * Take the next available block in this cylinder group. 1853 */ 1854 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1855 if (bno < 0) 1856 return (0); 1857 /* Update cg_rotor only if allocated from the data zone */ 1858 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1859 cgp->cg_rotor = bno; 1860 gotit: 1861 blkno = fragstoblks(fs, bno); 1862 ffs_clrblock(fs, blksfree, (long)blkno); 1863 ffs_clusteracct(fs, cgp, blkno, -1); 1864 cgp->cg_cs.cs_nbfree--; 1865 fs->fs_cstotal.cs_nbfree--; 1866 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1867 fs->fs_fmod = 1; 1868 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1869 /* 1870 * If the caller didn't want the whole block free the frags here. 1871 */ 1872 size = numfrags(fs, size); 1873 if (size != fs->fs_frag) { 1874 bno = dtogd(fs, blkno); 1875 for (i = size; i < fs->fs_frag; i++) 1876 setbit(blksfree, bno + i); 1877 i = fs->fs_frag - size; 1878 cgp->cg_cs.cs_nffree += i; 1879 fs->fs_cstotal.cs_nffree += i; 1880 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1881 fs->fs_fmod = 1; 1882 cgp->cg_frsum[i]++; 1883 } 1884 /* XXX Fixme. */ 1885 UFS_UNLOCK(ump); 1886 if (DOINGSOFTDEP(ITOV(ip))) 1887 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1888 UFS_LOCK(ump); 1889 return (blkno); 1890 } 1891 1892 /* 1893 * Determine whether a cluster can be allocated. 1894 * 1895 * We do not currently check for optimal rotational layout if there 1896 * are multiple choices in the same cylinder group. Instead we just 1897 * take the first one that we find following bpref. 1898 */ 1899 static ufs2_daddr_t 1900 ffs_clusteralloc(ip, cg, bpref, len) 1901 struct inode *ip; 1902 u_int cg; 1903 ufs2_daddr_t bpref; 1904 int len; 1905 { 1906 struct fs *fs; 1907 struct cg *cgp; 1908 struct buf *bp; 1909 struct ufsmount *ump; 1910 int i, run, bit, map, got, error; 1911 ufs2_daddr_t bno; 1912 u_char *mapp; 1913 int32_t *lp; 1914 u_int8_t *blksfree; 1915 1916 ump = ITOUMP(ip); 1917 fs = ump->um_fs; 1918 if (fs->fs_maxcluster[cg] < len) 1919 return (0); 1920 UFS_UNLOCK(ump); 1921 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1922 UFS_LOCK(ump); 1923 return (0); 1924 } 1925 /* 1926 * Check to see if a cluster of the needed size (or bigger) is 1927 * available in this cylinder group. 1928 */ 1929 lp = &cg_clustersum(cgp)[len]; 1930 for (i = len; i <= fs->fs_contigsumsize; i++) 1931 if (*lp++ > 0) 1932 break; 1933 if (i > fs->fs_contigsumsize) { 1934 /* 1935 * This is the first time looking for a cluster in this 1936 * cylinder group. Update the cluster summary information 1937 * to reflect the true maximum sized cluster so that 1938 * future cluster allocation requests can avoid reading 1939 * the cylinder group map only to find no clusters. 1940 */ 1941 lp = &cg_clustersum(cgp)[len - 1]; 1942 for (i = len - 1; i > 0; i--) 1943 if (*lp-- > 0) 1944 break; 1945 UFS_LOCK(ump); 1946 fs->fs_maxcluster[cg] = i; 1947 brelse(bp); 1948 return (0); 1949 } 1950 /* 1951 * Search the cluster map to find a big enough cluster. 1952 * We take the first one that we find, even if it is larger 1953 * than we need as we prefer to get one close to the previous 1954 * block allocation. We do not search before the current 1955 * preference point as we do not want to allocate a block 1956 * that is allocated before the previous one (as we will 1957 * then have to wait for another pass of the elevator 1958 * algorithm before it will be read). We prefer to fail and 1959 * be recalled to try an allocation in the next cylinder group. 1960 */ 1961 if (dtog(fs, bpref) != cg) 1962 bpref = cgdata(fs, cg); 1963 else 1964 bpref = blknum(fs, bpref); 1965 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1966 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1967 map = *mapp++; 1968 bit = 1 << (bpref % NBBY); 1969 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1970 if ((map & bit) == 0) { 1971 run = 0; 1972 } else { 1973 run++; 1974 if (run == len) 1975 break; 1976 } 1977 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1978 bit <<= 1; 1979 } else { 1980 map = *mapp++; 1981 bit = 1; 1982 } 1983 } 1984 if (got >= cgp->cg_nclusterblks) { 1985 UFS_LOCK(ump); 1986 brelse(bp); 1987 return (0); 1988 } 1989 /* 1990 * Allocate the cluster that we have found. 1991 */ 1992 blksfree = cg_blksfree(cgp); 1993 for (i = 1; i <= len; i++) 1994 if (!ffs_isblock(fs, blksfree, got - run + i)) 1995 panic("ffs_clusteralloc: map mismatch"); 1996 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1997 if (dtog(fs, bno) != cg) 1998 panic("ffs_clusteralloc: allocated out of group"); 1999 len = blkstofrags(fs, len); 2000 UFS_LOCK(ump); 2001 for (i = 0; i < len; i += fs->fs_frag) 2002 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2003 panic("ffs_clusteralloc: lost block"); 2004 ACTIVECLEAR(fs, cg); 2005 UFS_UNLOCK(ump); 2006 bdwrite(bp); 2007 return (bno); 2008 } 2009 2010 static inline struct buf * 2011 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 2012 { 2013 struct fs *fs; 2014 2015 fs = ITOFS(ip); 2016 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2017 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2018 gbflags)); 2019 } 2020 2021 /* 2022 * Synchronous inode initialization is needed only when barrier writes do not 2023 * work as advertised, and will impose a heavy cost on file creation in a newly 2024 * created filesystem. 2025 */ 2026 static int doasyncinodeinit = 1; 2027 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2028 &doasyncinodeinit, 0, 2029 "Perform inode block initialization using asynchronous writes"); 2030 2031 /* 2032 * Determine whether an inode can be allocated. 2033 * 2034 * Check to see if an inode is available, and if it is, 2035 * allocate it using the following policy: 2036 * 1) allocate the requested inode. 2037 * 2) allocate the next available inode after the requested 2038 * inode in the specified cylinder group. 2039 */ 2040 static ufs2_daddr_t 2041 ffs_nodealloccg(ip, cg, ipref, mode, unused) 2042 struct inode *ip; 2043 u_int cg; 2044 ufs2_daddr_t ipref; 2045 int mode; 2046 int unused; 2047 { 2048 struct fs *fs; 2049 struct cg *cgp; 2050 struct buf *bp, *ibp; 2051 struct ufsmount *ump; 2052 u_int8_t *inosused, *loc; 2053 struct ufs2_dinode *dp2; 2054 int error, start, len, i; 2055 u_int32_t old_initediblk; 2056 2057 ump = ITOUMP(ip); 2058 fs = ump->um_fs; 2059 check_nifree: 2060 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2061 return (0); 2062 UFS_UNLOCK(ump); 2063 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 2064 UFS_LOCK(ump); 2065 return (0); 2066 } 2067 restart: 2068 if (cgp->cg_cs.cs_nifree == 0) { 2069 brelse(bp); 2070 UFS_LOCK(ump); 2071 return (0); 2072 } 2073 inosused = cg_inosused(cgp); 2074 if (ipref) { 2075 ipref %= fs->fs_ipg; 2076 if (isclr(inosused, ipref)) 2077 goto gotit; 2078 } 2079 start = cgp->cg_irotor / NBBY; 2080 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2081 loc = memcchr(&inosused[start], 0xff, len); 2082 if (loc == NULL) { 2083 len = start + 1; 2084 start = 0; 2085 loc = memcchr(&inosused[start], 0xff, len); 2086 if (loc == NULL) { 2087 printf("cg = %d, irotor = %ld, fs = %s\n", 2088 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2089 panic("ffs_nodealloccg: map corrupted"); 2090 /* NOTREACHED */ 2091 } 2092 } 2093 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2094 gotit: 2095 /* 2096 * Check to see if we need to initialize more inodes. 2097 */ 2098 if (fs->fs_magic == FS_UFS2_MAGIC && 2099 ipref + INOPB(fs) > cgp->cg_initediblk && 2100 cgp->cg_initediblk < cgp->cg_niblk) { 2101 old_initediblk = cgp->cg_initediblk; 2102 2103 /* 2104 * Free the cylinder group lock before writing the 2105 * initialized inode block. Entering the 2106 * babarrierwrite() with the cylinder group lock 2107 * causes lock order violation between the lock and 2108 * snaplk. 2109 * 2110 * Another thread can decide to initialize the same 2111 * inode block, but whichever thread first gets the 2112 * cylinder group lock after writing the newly 2113 * allocated inode block will update it and the other 2114 * will realize that it has lost and leave the 2115 * cylinder group unchanged. 2116 */ 2117 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2118 brelse(bp); 2119 if (ibp == NULL) { 2120 /* 2121 * The inode block buffer is already owned by 2122 * another thread, which must initialize it. 2123 * Wait on the buffer to allow another thread 2124 * to finish the updates, with dropped cg 2125 * buffer lock, then retry. 2126 */ 2127 ibp = getinobuf(ip, cg, old_initediblk, 0); 2128 brelse(ibp); 2129 UFS_LOCK(ump); 2130 goto check_nifree; 2131 } 2132 bzero(ibp->b_data, (int)fs->fs_bsize); 2133 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2134 for (i = 0; i < INOPB(fs); i++) { 2135 while (dp2->di_gen == 0) 2136 dp2->di_gen = arc4random(); 2137 dp2++; 2138 } 2139 2140 /* 2141 * Rather than adding a soft updates dependency to ensure 2142 * that the new inode block is written before it is claimed 2143 * by the cylinder group map, we just do a barrier write 2144 * here. The barrier write will ensure that the inode block 2145 * gets written before the updated cylinder group map can be 2146 * written. The barrier write should only slow down bulk 2147 * loading of newly created filesystems. 2148 */ 2149 if (doasyncinodeinit) 2150 babarrierwrite(ibp); 2151 else 2152 bwrite(ibp); 2153 2154 /* 2155 * After the inode block is written, try to update the 2156 * cg initediblk pointer. If another thread beat us 2157 * to it, then leave it unchanged as the other thread 2158 * has already set it correctly. 2159 */ 2160 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); 2161 UFS_LOCK(ump); 2162 ACTIVECLEAR(fs, cg); 2163 UFS_UNLOCK(ump); 2164 if (error != 0) 2165 return (error); 2166 if (cgp->cg_initediblk == old_initediblk) 2167 cgp->cg_initediblk += INOPB(fs); 2168 goto restart; 2169 } 2170 cgp->cg_irotor = ipref; 2171 UFS_LOCK(ump); 2172 ACTIVECLEAR(fs, cg); 2173 setbit(inosused, ipref); 2174 cgp->cg_cs.cs_nifree--; 2175 fs->fs_cstotal.cs_nifree--; 2176 fs->fs_cs(fs, cg).cs_nifree--; 2177 fs->fs_fmod = 1; 2178 if ((mode & IFMT) == IFDIR) { 2179 cgp->cg_cs.cs_ndir++; 2180 fs->fs_cstotal.cs_ndir++; 2181 fs->fs_cs(fs, cg).cs_ndir++; 2182 } 2183 UFS_UNLOCK(ump); 2184 if (DOINGSOFTDEP(ITOV(ip))) 2185 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2186 bdwrite(bp); 2187 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2188 } 2189 2190 /* 2191 * Free a block or fragment. 2192 * 2193 * The specified block or fragment is placed back in the 2194 * free map. If a fragment is deallocated, a possible 2195 * block reassembly is checked. 2196 */ 2197 static void 2198 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2199 struct ufsmount *ump; 2200 struct fs *fs; 2201 struct vnode *devvp; 2202 ufs2_daddr_t bno; 2203 long size; 2204 ino_t inum; 2205 struct workhead *dephd; 2206 { 2207 struct mount *mp; 2208 struct cg *cgp; 2209 struct buf *bp; 2210 ufs1_daddr_t fragno, cgbno; 2211 int i, blk, frags, bbase, error; 2212 u_int cg; 2213 u_int8_t *blksfree; 2214 struct cdev *dev; 2215 2216 cg = dtog(fs, bno); 2217 if (devvp->v_type == VREG) { 2218 /* devvp is a snapshot */ 2219 MPASS(devvp->v_mount->mnt_data == ump); 2220 dev = ump->um_devvp->v_rdev; 2221 } else if (devvp->v_type == VCHR) { 2222 /* devvp is a normal disk device */ 2223 dev = devvp->v_rdev; 2224 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2225 } else 2226 return; 2227 #ifdef INVARIANTS 2228 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2229 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2230 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2231 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2232 size, fs->fs_fsmnt); 2233 panic("ffs_blkfree_cg: bad size"); 2234 } 2235 #endif 2236 if ((u_int)bno >= fs->fs_size) { 2237 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2238 (u_long)inum); 2239 ffs_fserr(fs, inum, "bad block"); 2240 return; 2241 } 2242 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2243 return; 2244 cgbno = dtogd(fs, bno); 2245 blksfree = cg_blksfree(cgp); 2246 UFS_LOCK(ump); 2247 if (size == fs->fs_bsize) { 2248 fragno = fragstoblks(fs, cgbno); 2249 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2250 if (devvp->v_type == VREG) { 2251 UFS_UNLOCK(ump); 2252 /* devvp is a snapshot */ 2253 brelse(bp); 2254 return; 2255 } 2256 printf("dev = %s, block = %jd, fs = %s\n", 2257 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2258 panic("ffs_blkfree_cg: freeing free block"); 2259 } 2260 ffs_setblock(fs, blksfree, fragno); 2261 ffs_clusteracct(fs, cgp, fragno, 1); 2262 cgp->cg_cs.cs_nbfree++; 2263 fs->fs_cstotal.cs_nbfree++; 2264 fs->fs_cs(fs, cg).cs_nbfree++; 2265 } else { 2266 bbase = cgbno - fragnum(fs, cgbno); 2267 /* 2268 * decrement the counts associated with the old frags 2269 */ 2270 blk = blkmap(fs, blksfree, bbase); 2271 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2272 /* 2273 * deallocate the fragment 2274 */ 2275 frags = numfrags(fs, size); 2276 for (i = 0; i < frags; i++) { 2277 if (isset(blksfree, cgbno + i)) { 2278 printf("dev = %s, block = %jd, fs = %s\n", 2279 devtoname(dev), (intmax_t)(bno + i), 2280 fs->fs_fsmnt); 2281 panic("ffs_blkfree_cg: freeing free frag"); 2282 } 2283 setbit(blksfree, cgbno + i); 2284 } 2285 cgp->cg_cs.cs_nffree += i; 2286 fs->fs_cstotal.cs_nffree += i; 2287 fs->fs_cs(fs, cg).cs_nffree += i; 2288 /* 2289 * add back in counts associated with the new frags 2290 */ 2291 blk = blkmap(fs, blksfree, bbase); 2292 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2293 /* 2294 * if a complete block has been reassembled, account for it 2295 */ 2296 fragno = fragstoblks(fs, bbase); 2297 if (ffs_isblock(fs, blksfree, fragno)) { 2298 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2299 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2300 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2301 ffs_clusteracct(fs, cgp, fragno, 1); 2302 cgp->cg_cs.cs_nbfree++; 2303 fs->fs_cstotal.cs_nbfree++; 2304 fs->fs_cs(fs, cg).cs_nbfree++; 2305 } 2306 } 2307 fs->fs_fmod = 1; 2308 ACTIVECLEAR(fs, cg); 2309 UFS_UNLOCK(ump); 2310 mp = UFSTOVFS(ump); 2311 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2312 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2313 numfrags(fs, size), dephd); 2314 bdwrite(bp); 2315 } 2316 2317 /* 2318 * Structures and routines associated with trim management. 2319 * 2320 * The following requests are passed to trim_lookup to indicate 2321 * the actions that should be taken. 2322 */ 2323 #define NEW 1 /* if found, error else allocate and hash it */ 2324 #define OLD 2 /* if not found, error, else return it */ 2325 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2326 #define DONE 4 /* if not found, error else unhash and return it */ 2327 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2328 2329 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2330 2331 #define TRIMLIST_HASH(ump, key) \ 2332 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2333 2334 /* 2335 * These structures describe each of the block free requests aggregated 2336 * together to make up a trim request. 2337 */ 2338 struct trim_blkreq { 2339 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2340 ufs2_daddr_t bno; 2341 long size; 2342 struct workhead *pdephd; 2343 struct workhead dephd; 2344 }; 2345 2346 /* 2347 * Description of a trim request. 2348 */ 2349 struct ffs_blkfree_trim_params { 2350 TAILQ_HEAD(, trim_blkreq) blklist; 2351 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2352 struct task task; 2353 struct ufsmount *ump; 2354 struct vnode *devvp; 2355 ino_t inum; 2356 ufs2_daddr_t bno; 2357 long size; 2358 long key; 2359 }; 2360 2361 static void ffs_blkfree_trim_completed(struct buf *); 2362 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2363 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2364 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int); 2365 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2366 2367 /* 2368 * Called on trim completion to start a task to free the associated block(s). 2369 */ 2370 static void 2371 ffs_blkfree_trim_completed(bp) 2372 struct buf *bp; 2373 { 2374 struct ffs_blkfree_trim_params *tp; 2375 2376 tp = bp->b_fsprivate1; 2377 free(bp, M_TRIM); 2378 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2379 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2380 } 2381 2382 /* 2383 * Trim completion task that free associated block(s). 2384 */ 2385 static void 2386 ffs_blkfree_trim_task(ctx, pending) 2387 void *ctx; 2388 int pending; 2389 { 2390 struct ffs_blkfree_trim_params *tp; 2391 struct trim_blkreq *blkelm; 2392 struct ufsmount *ump; 2393 2394 tp = ctx; 2395 ump = tp->ump; 2396 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2397 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2398 blkelm->size, tp->inum, blkelm->pdephd); 2399 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2400 free(blkelm, M_TRIM); 2401 } 2402 vn_finished_secondary_write(UFSTOVFS(ump)); 2403 UFS_LOCK(ump); 2404 ump->um_trim_inflight -= 1; 2405 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2406 UFS_UNLOCK(ump); 2407 free(tp, M_TRIM); 2408 } 2409 2410 /* 2411 * Lookup a trim request by inode number. 2412 * Allocate if requested (NEW, REPLACE, SINGLE). 2413 */ 2414 static struct ffs_blkfree_trim_params * 2415 trim_lookup(ump, devvp, bno, size, inum, key, alloctype) 2416 struct ufsmount *ump; 2417 struct vnode *devvp; 2418 ufs2_daddr_t bno; 2419 long size; 2420 ino_t inum; 2421 u_long key; 2422 int alloctype; 2423 { 2424 struct trimlist_hashhead *tphashhead; 2425 struct ffs_blkfree_trim_params *tp, *ntp; 2426 2427 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2428 if (alloctype != SINGLE) { 2429 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2430 UFS_LOCK(ump); 2431 tphashhead = TRIMLIST_HASH(ump, key); 2432 LIST_FOREACH(tp, tphashhead, hashlist) 2433 if (key == tp->key) 2434 break; 2435 } 2436 switch (alloctype) { 2437 case NEW: 2438 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2439 break; 2440 case OLD: 2441 KASSERT(tp != NULL, 2442 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2443 UFS_UNLOCK(ump); 2444 free(ntp, M_TRIM); 2445 return (tp); 2446 case REPLACE: 2447 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2448 LIST_REMOVE(tp, hashlist); 2449 /* tp will be freed by caller */ 2450 break; 2451 case DONE: 2452 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2453 LIST_REMOVE(tp, hashlist); 2454 UFS_UNLOCK(ump); 2455 free(ntp, M_TRIM); 2456 return (tp); 2457 } 2458 TAILQ_INIT(&ntp->blklist); 2459 ntp->ump = ump; 2460 ntp->devvp = devvp; 2461 ntp->bno = bno; 2462 ntp->size = size; 2463 ntp->inum = inum; 2464 ntp->key = key; 2465 if (alloctype != SINGLE) { 2466 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2467 UFS_UNLOCK(ump); 2468 } 2469 return (ntp); 2470 } 2471 2472 /* 2473 * Dispatch a trim request. 2474 */ 2475 static void 2476 ffs_blkfree_sendtrim(tp) 2477 struct ffs_blkfree_trim_params *tp; 2478 { 2479 struct ufsmount *ump; 2480 struct mount *mp; 2481 struct buf *bp; 2482 2483 /* 2484 * Postpone the set of the free bit in the cg bitmap until the 2485 * BIO_DELETE is completed. Otherwise, due to disk queue 2486 * reordering, TRIM might be issued after we reuse the block 2487 * and write some new data into it. 2488 */ 2489 ump = tp->ump; 2490 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2491 bp->b_iocmd = BIO_DELETE; 2492 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2493 bp->b_iodone = ffs_blkfree_trim_completed; 2494 bp->b_bcount = tp->size; 2495 bp->b_fsprivate1 = tp; 2496 UFS_LOCK(ump); 2497 ump->um_trim_total += 1; 2498 ump->um_trim_inflight += 1; 2499 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2500 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2501 UFS_UNLOCK(ump); 2502 2503 mp = UFSTOVFS(ump); 2504 vn_start_secondary_write(NULL, &mp, 0); 2505 g_vfs_strategy(ump->um_bo, bp); 2506 } 2507 2508 /* 2509 * Allocate a new key to use to identify a range of blocks. 2510 */ 2511 u_long 2512 ffs_blkrelease_start(ump, devvp, inum) 2513 struct ufsmount *ump; 2514 struct vnode *devvp; 2515 ino_t inum; 2516 { 2517 static u_long masterkey; 2518 u_long key; 2519 2520 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2521 return (SINGLETON_KEY); 2522 do { 2523 key = atomic_fetchadd_long(&masterkey, 1); 2524 } while (key < FIRST_VALID_KEY); 2525 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2526 return (key); 2527 } 2528 2529 /* 2530 * Deallocate a key that has been used to identify a range of blocks. 2531 */ 2532 void 2533 ffs_blkrelease_finish(ump, key) 2534 struct ufsmount *ump; 2535 u_long key; 2536 { 2537 struct ffs_blkfree_trim_params *tp; 2538 2539 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2540 return; 2541 /* 2542 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2543 * a file deletion is active, specifically after a call 2544 * to ffs_blkrelease_start() but before the call to 2545 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2546 * have handed out SINGLETON_KEY rather than starting a 2547 * collection sequence. Thus if we get a SINGLETON_KEY 2548 * passed to ffs_blkrelease_finish(), we just return rather 2549 * than trying to finish the nonexistent sequence. 2550 */ 2551 if (key == SINGLETON_KEY) { 2552 #ifdef INVARIANTS 2553 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2554 ump->um_mountp->mnt_stat.f_mntonname); 2555 #endif 2556 return; 2557 } 2558 /* 2559 * We are done with sending blocks using this key. Look up the key 2560 * using the DONE alloctype (in tp) to request that it be unhashed 2561 * as we will not be adding to it. If the key has never been used, 2562 * tp->size will be zero, so we can just free tp. Otherwise the call 2563 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2564 * tp to be issued (and then tp to be freed). 2565 */ 2566 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2567 if (tp->size == 0) 2568 free(tp, M_TRIM); 2569 else 2570 ffs_blkfree_sendtrim(tp); 2571 } 2572 2573 /* 2574 * Setup to free a block or fragment. 2575 * 2576 * Check for snapshots that might want to claim the block. 2577 * If trims are requested, prepare a trim request. Attempt to 2578 * aggregate consecutive blocks into a single trim request. 2579 */ 2580 void 2581 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key) 2582 struct ufsmount *ump; 2583 struct fs *fs; 2584 struct vnode *devvp; 2585 ufs2_daddr_t bno; 2586 long size; 2587 ino_t inum; 2588 enum vtype vtype; 2589 struct workhead *dephd; 2590 u_long key; 2591 { 2592 struct ffs_blkfree_trim_params *tp, *ntp; 2593 struct trim_blkreq *blkelm; 2594 2595 /* 2596 * Check to see if a snapshot wants to claim the block. 2597 * Check that devvp is a normal disk device, not a snapshot, 2598 * it has a snapshot(s) associated with it, and one of the 2599 * snapshots wants to claim the block. 2600 */ 2601 if (devvp->v_type == VCHR && 2602 (devvp->v_vflag & VV_COPYONWRITE) && 2603 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2604 return; 2605 } 2606 /* 2607 * Nothing to delay if TRIM is not required for this block or TRIM 2608 * is disabled or the operation is performed on a snapshot. 2609 */ 2610 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2611 devvp->v_type == VREG) { 2612 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2613 return; 2614 } 2615 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2616 blkelm->bno = bno; 2617 blkelm->size = size; 2618 if (dephd == NULL) { 2619 blkelm->pdephd = NULL; 2620 } else { 2621 LIST_INIT(&blkelm->dephd); 2622 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2623 blkelm->pdephd = &blkelm->dephd; 2624 } 2625 if (key == SINGLETON_KEY) { 2626 /* 2627 * Just a single non-contiguous piece. Use the SINGLE 2628 * alloctype to return a trim request that will not be 2629 * hashed for future lookup. 2630 */ 2631 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2632 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2633 ffs_blkfree_sendtrim(tp); 2634 return; 2635 } 2636 /* 2637 * The callers of this function are not tracking whether or not 2638 * the blocks are contiguous. They are just saying that they 2639 * are freeing a set of blocks. It is this code that determines 2640 * the pieces of that range that are actually contiguous. 2641 * 2642 * Calling ffs_blkrelease_start() will have created an entry 2643 * that we will use. 2644 */ 2645 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2646 if (tp->size == 0) { 2647 /* 2648 * First block of a potential range, set block and size 2649 * for the trim block. 2650 */ 2651 tp->bno = bno; 2652 tp->size = size; 2653 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2654 return; 2655 } 2656 /* 2657 * If this block is a continuation of the range (either 2658 * follows at the end or preceeds in the front) then we 2659 * add it to the front or back of the list and return. 2660 * 2661 * If it is not a continuation of the trim that we were 2662 * building, using the REPLACE alloctype, we request that 2663 * the old trim request (still in tp) be unhashed and a 2664 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2665 * call causes the block range described by tp to be issued 2666 * (and then tp to be freed). 2667 */ 2668 if (bno + numfrags(fs, size) == tp->bno) { 2669 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2670 tp->bno = bno; 2671 tp->size += size; 2672 return; 2673 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2674 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2675 tp->size += size; 2676 return; 2677 } 2678 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2679 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2680 ffs_blkfree_sendtrim(tp); 2681 } 2682 2683 #ifdef INVARIANTS 2684 /* 2685 * Verify allocation of a block or fragment. Returns true if block or 2686 * fragment is allocated, false if it is free. 2687 */ 2688 static int 2689 ffs_checkblk(ip, bno, size) 2690 struct inode *ip; 2691 ufs2_daddr_t bno; 2692 long size; 2693 { 2694 struct fs *fs; 2695 struct cg *cgp; 2696 struct buf *bp; 2697 ufs1_daddr_t cgbno; 2698 int i, error, frags, free; 2699 u_int8_t *blksfree; 2700 2701 fs = ITOFS(ip); 2702 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2703 printf("bsize = %ld, size = %ld, fs = %s\n", 2704 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2705 panic("ffs_checkblk: bad size"); 2706 } 2707 if ((u_int)bno >= fs->fs_size) 2708 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2709 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); 2710 if (error) 2711 panic("ffs_checkblk: cylinder group read failed"); 2712 blksfree = cg_blksfree(cgp); 2713 cgbno = dtogd(fs, bno); 2714 if (size == fs->fs_bsize) { 2715 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2716 } else { 2717 frags = numfrags(fs, size); 2718 for (free = 0, i = 0; i < frags; i++) 2719 if (isset(blksfree, cgbno + i)) 2720 free++; 2721 if (free != 0 && free != frags) 2722 panic("ffs_checkblk: partially free fragment"); 2723 } 2724 brelse(bp); 2725 return (!free); 2726 } 2727 #endif /* INVARIANTS */ 2728 2729 /* 2730 * Free an inode. 2731 */ 2732 int 2733 ffs_vfree(pvp, ino, mode) 2734 struct vnode *pvp; 2735 ino_t ino; 2736 int mode; 2737 { 2738 struct ufsmount *ump; 2739 2740 if (DOINGSOFTDEP(pvp)) { 2741 softdep_freefile(pvp, ino, mode); 2742 return (0); 2743 } 2744 ump = VFSTOUFS(pvp->v_mount); 2745 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2746 } 2747 2748 /* 2749 * Do the actual free operation. 2750 * The specified inode is placed back in the free map. 2751 */ 2752 int 2753 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2754 struct ufsmount *ump; 2755 struct fs *fs; 2756 struct vnode *devvp; 2757 ino_t ino; 2758 int mode; 2759 struct workhead *wkhd; 2760 { 2761 struct cg *cgp; 2762 struct buf *bp; 2763 int error; 2764 u_int cg; 2765 u_int8_t *inosused; 2766 struct cdev *dev; 2767 2768 cg = ino_to_cg(fs, ino); 2769 if (devvp->v_type == VREG) { 2770 /* devvp is a snapshot */ 2771 MPASS(devvp->v_mount->mnt_data == ump); 2772 dev = ump->um_devvp->v_rdev; 2773 } else if (devvp->v_type == VCHR) { 2774 /* devvp is a normal disk device */ 2775 dev = devvp->v_rdev; 2776 } else { 2777 bp = NULL; 2778 return (0); 2779 } 2780 if (ino >= fs->fs_ipg * fs->fs_ncg) 2781 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2782 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2783 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2784 return (error); 2785 inosused = cg_inosused(cgp); 2786 ino %= fs->fs_ipg; 2787 if (isclr(inosused, ino)) { 2788 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2789 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2790 if (fs->fs_ronly == 0) 2791 panic("ffs_freefile: freeing free inode"); 2792 } 2793 clrbit(inosused, ino); 2794 if (ino < cgp->cg_irotor) 2795 cgp->cg_irotor = ino; 2796 cgp->cg_cs.cs_nifree++; 2797 UFS_LOCK(ump); 2798 fs->fs_cstotal.cs_nifree++; 2799 fs->fs_cs(fs, cg).cs_nifree++; 2800 if ((mode & IFMT) == IFDIR) { 2801 cgp->cg_cs.cs_ndir--; 2802 fs->fs_cstotal.cs_ndir--; 2803 fs->fs_cs(fs, cg).cs_ndir--; 2804 } 2805 fs->fs_fmod = 1; 2806 ACTIVECLEAR(fs, cg); 2807 UFS_UNLOCK(ump); 2808 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2809 softdep_setup_inofree(UFSTOVFS(ump), bp, 2810 ino + cg * fs->fs_ipg, wkhd); 2811 bdwrite(bp); 2812 return (0); 2813 } 2814 2815 /* 2816 * Check to see if a file is free. 2817 * Used to check for allocated files in snapshots. 2818 */ 2819 int 2820 ffs_checkfreefile(fs, devvp, ino) 2821 struct fs *fs; 2822 struct vnode *devvp; 2823 ino_t ino; 2824 { 2825 struct cg *cgp; 2826 struct buf *bp; 2827 int ret, error; 2828 u_int cg; 2829 u_int8_t *inosused; 2830 2831 cg = ino_to_cg(fs, ino); 2832 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2833 return (1); 2834 if (ino >= fs->fs_ipg * fs->fs_ncg) 2835 return (1); 2836 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2837 return (1); 2838 inosused = cg_inosused(cgp); 2839 ino %= fs->fs_ipg; 2840 ret = isclr(inosused, ino); 2841 brelse(bp); 2842 return (ret); 2843 } 2844 2845 /* 2846 * Find a block of the specified size in the specified cylinder group. 2847 * 2848 * It is a panic if a request is made to find a block if none are 2849 * available. 2850 */ 2851 static ufs1_daddr_t 2852 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2853 struct fs *fs; 2854 struct cg *cgp; 2855 ufs2_daddr_t bpref; 2856 int allocsiz; 2857 { 2858 ufs1_daddr_t bno; 2859 int start, len, loc, i; 2860 int blk, field, subfield, pos; 2861 u_int8_t *blksfree; 2862 2863 /* 2864 * find the fragment by searching through the free block 2865 * map for an appropriate bit pattern 2866 */ 2867 if (bpref) 2868 start = dtogd(fs, bpref) / NBBY; 2869 else 2870 start = cgp->cg_frotor / NBBY; 2871 blksfree = cg_blksfree(cgp); 2872 len = howmany(fs->fs_fpg, NBBY) - start; 2873 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2874 fragtbl[fs->fs_frag], 2875 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2876 if (loc == 0) { 2877 len = start + 1; 2878 start = 0; 2879 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2880 fragtbl[fs->fs_frag], 2881 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2882 if (loc == 0) { 2883 printf("start = %d, len = %d, fs = %s\n", 2884 start, len, fs->fs_fsmnt); 2885 panic("ffs_alloccg: map corrupted"); 2886 /* NOTREACHED */ 2887 } 2888 } 2889 bno = (start + len - loc) * NBBY; 2890 cgp->cg_frotor = bno; 2891 /* 2892 * found the byte in the map 2893 * sift through the bits to find the selected frag 2894 */ 2895 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2896 blk = blkmap(fs, blksfree, bno); 2897 blk <<= 1; 2898 field = around[allocsiz]; 2899 subfield = inside[allocsiz]; 2900 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2901 if ((blk & field) == subfield) 2902 return (bno + pos); 2903 field <<= 1; 2904 subfield <<= 1; 2905 } 2906 } 2907 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2908 panic("ffs_alloccg: block not in map"); 2909 return (-1); 2910 } 2911 2912 static const struct statfs * 2913 ffs_getmntstat(struct vnode *devvp) 2914 { 2915 2916 if (devvp->v_type == VCHR) 2917 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2918 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2919 } 2920 2921 /* 2922 * Fetch and verify a cylinder group. 2923 */ 2924 int 2925 ffs_getcg(fs, devvp, cg, bpp, cgpp) 2926 struct fs *fs; 2927 struct vnode *devvp; 2928 u_int cg; 2929 struct buf **bpp; 2930 struct cg **cgpp; 2931 { 2932 struct buf *bp; 2933 struct cg *cgp; 2934 const struct statfs *sfs; 2935 int flags, error; 2936 2937 *bpp = NULL; 2938 *cgpp = NULL; 2939 flags = 0; 2940 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2941 flags |= GB_CKHASH; 2942 error = breadn_flags(devvp, devvp->v_type == VREG ? 2943 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), 2944 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, 2945 ffs_ckhash_cg, &bp); 2946 if (error != 0) 2947 return (error); 2948 cgp = (struct cg *)bp->b_data; 2949 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 2950 (bp->b_flags & B_CKHASH) != 0 && 2951 cgp->cg_ckhash != bp->b_ckhash) { 2952 sfs = ffs_getmntstat(devvp); 2953 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2954 "0x%x != bp: 0x%jx\n", 2955 devvp->v_type == VCHR ? "" : "snapshot of ", 2956 sfs->f_mntfromname, sfs->f_mntonname, 2957 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2958 bp->b_flags &= ~B_CKHASH; 2959 bp->b_flags |= B_INVAL | B_NOCACHE; 2960 brelse(bp); 2961 return (EIO); 2962 } 2963 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2964 sfs = ffs_getmntstat(devvp); 2965 printf("UFS %s%s (%s)", 2966 devvp->v_type == VCHR ? "" : "snapshot of ", 2967 sfs->f_mntfromname, sfs->f_mntonname); 2968 if (!cg_chkmagic(cgp)) 2969 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 2970 cg, cgp->cg_magic, CG_MAGIC); 2971 else 2972 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 2973 cgp->cg_cgx); 2974 bp->b_flags &= ~B_CKHASH; 2975 bp->b_flags |= B_INVAL | B_NOCACHE; 2976 brelse(bp); 2977 return (EIO); 2978 } 2979 bp->b_flags &= ~B_CKHASH; 2980 bp->b_xflags |= BX_BKGRDWRITE; 2981 /* 2982 * If we are using check hashes on the cylinder group then we want 2983 * to limit changing the cylinder group time to when we are actually 2984 * going to write it to disk so that its check hash remains correct 2985 * in memory. If the CK_CYLGRP flag is set the time is updated in 2986 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 2987 * update the time here as we have done historically. 2988 */ 2989 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2990 bp->b_xflags |= BX_CYLGRP; 2991 else 2992 cgp->cg_old_time = cgp->cg_time = time_second; 2993 *bpp = bp; 2994 *cgpp = cgp; 2995 return (0); 2996 } 2997 2998 static void 2999 ffs_ckhash_cg(bp) 3000 struct buf *bp; 3001 { 3002 uint32_t ckhash; 3003 struct cg *cgp; 3004 3005 cgp = (struct cg *)bp->b_data; 3006 ckhash = cgp->cg_ckhash; 3007 cgp->cg_ckhash = 0; 3008 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3009 cgp->cg_ckhash = ckhash; 3010 } 3011 3012 /* 3013 * Fserr prints the name of a filesystem with an error diagnostic. 3014 * 3015 * The form of the error message is: 3016 * fs: error message 3017 */ 3018 void 3019 ffs_fserr(fs, inum, cp) 3020 struct fs *fs; 3021 ino_t inum; 3022 char *cp; 3023 { 3024 struct thread *td = curthread; /* XXX */ 3025 struct proc *p = td->td_proc; 3026 3027 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3028 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3029 fs->fs_fsmnt, cp); 3030 } 3031 3032 /* 3033 * This function provides the capability for the fsck program to 3034 * update an active filesystem. Fourteen operations are provided: 3035 * 3036 * adjrefcnt(inode, amt) - adjusts the reference count on the 3037 * specified inode by the specified amount. Under normal 3038 * operation the count should always go down. Decrementing 3039 * the count to zero will cause the inode to be freed. 3040 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3041 * inode by the specified amount. 3042 * adjsize(inode, size) - set the size of the inode to the 3043 * specified size. 3044 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3045 * adjust the superblock summary. 3046 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3047 * are marked as free. Inodes should never have to be marked 3048 * as in use. 3049 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3050 * are marked as free. Inodes should never have to be marked 3051 * as in use. 3052 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3053 * are marked as free. Blocks should never have to be marked 3054 * as in use. 3055 * setflags(flags, set/clear) - the fs_flags field has the specified 3056 * flags set (second parameter +1) or cleared (second parameter -1). 3057 * setcwd(dirinode) - set the current directory to dirinode in the 3058 * filesystem associated with the snapshot. 3059 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3060 * in the current directory is oldvalue then change it to newvalue. 3061 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3062 * with nameptr in the current directory is oldvalue then unlink it. 3063 * 3064 * The following functions may only be used on a quiescent filesystem 3065 * by the soft updates journal. They are not safe to be run on an active 3066 * filesystem. 3067 * 3068 * setinode(inode, dip) - the specified disk inode is replaced with the 3069 * contents pointed to by dip. 3070 * setbufoutput(fd, flags) - output associated with the specified file 3071 * descriptor (which must reference the character device supporting 3072 * the filesystem) switches from using physio to running through the 3073 * buffer cache when flags is set to 1. The descriptor reverts to 3074 * physio for output when flags is set to zero. 3075 */ 3076 3077 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3078 3079 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 3080 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 3081 3082 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 3083 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 3084 3085 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, CTLFLAG_WR, 3086 sysctl_ffs_fsck, "Set the inode size"); 3087 3088 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 3089 sysctl_ffs_fsck, "Adjust number of directories"); 3090 3091 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 3092 sysctl_ffs_fsck, "Adjust number of free blocks"); 3093 3094 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 3095 sysctl_ffs_fsck, "Adjust number of free inodes"); 3096 3097 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 3098 sysctl_ffs_fsck, "Adjust number of free frags"); 3099 3100 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 3101 sysctl_ffs_fsck, "Adjust number of free clusters"); 3102 3103 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 3104 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 3105 3106 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 3107 sysctl_ffs_fsck, "Free Range of File Inodes"); 3108 3109 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 3110 sysctl_ffs_fsck, "Free Range of Blocks"); 3111 3112 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 3113 sysctl_ffs_fsck, "Change Filesystem Flags"); 3114 3115 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 3116 sysctl_ffs_fsck, "Set Current Working Directory"); 3117 3118 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 3119 sysctl_ffs_fsck, "Change Value of .. Entry"); 3120 3121 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 3122 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 3123 3124 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 3125 sysctl_ffs_fsck, "Update an On-Disk Inode"); 3126 3127 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 3128 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 3129 3130 #ifdef DIAGNOSTIC 3131 static int fsckcmds = 0; 3132 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3133 "print out fsck_ffs-based filesystem update commands"); 3134 #endif /* DIAGNOSTIC */ 3135 3136 static int buffered_write(struct file *, struct uio *, struct ucred *, 3137 int, struct thread *); 3138 3139 static int 3140 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3141 { 3142 struct thread *td = curthread; 3143 struct fsck_cmd cmd; 3144 struct ufsmount *ump; 3145 struct vnode *vp, *dvp, *fdvp; 3146 struct inode *ip, *dp; 3147 struct mount *mp; 3148 struct fs *fs; 3149 ufs2_daddr_t blkno; 3150 long blkcnt, blksize; 3151 u_long key; 3152 struct file *fp, *vfp; 3153 cap_rights_t rights; 3154 int filetype, error; 3155 static struct fileops *origops, bufferedops; 3156 3157 if (req->newlen > sizeof cmd) 3158 return (EBADRPC); 3159 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 3160 return (error); 3161 if (cmd.version != FFS_CMD_VERSION) 3162 return (ERPCMISMATCH); 3163 if ((error = getvnode(td, cmd.handle, 3164 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 3165 return (error); 3166 vp = fp->f_data; 3167 if (vp->v_type != VREG && vp->v_type != VDIR) { 3168 fdrop(fp, td); 3169 return (EINVAL); 3170 } 3171 vn_start_write(vp, &mp, V_WAIT); 3172 if (mp == NULL || 3173 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3174 vn_finished_write(mp); 3175 fdrop(fp, td); 3176 return (EINVAL); 3177 } 3178 ump = VFSTOUFS(mp); 3179 if ((mp->mnt_flag & MNT_RDONLY) && 3180 ump->um_fsckpid != td->td_proc->p_pid) { 3181 vn_finished_write(mp); 3182 fdrop(fp, td); 3183 return (EROFS); 3184 } 3185 fs = ump->um_fs; 3186 filetype = IFREG; 3187 3188 switch (oidp->oid_number) { 3189 3190 case FFS_SET_FLAGS: 3191 #ifdef DIAGNOSTIC 3192 if (fsckcmds) 3193 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3194 cmd.size > 0 ? "set" : "clear"); 3195 #endif /* DIAGNOSTIC */ 3196 if (cmd.size > 0) 3197 fs->fs_flags |= (long)cmd.value; 3198 else 3199 fs->fs_flags &= ~(long)cmd.value; 3200 break; 3201 3202 case FFS_ADJ_REFCNT: 3203 #ifdef DIAGNOSTIC 3204 if (fsckcmds) { 3205 printf("%s: adjust inode %jd link count by %jd\n", 3206 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3207 (intmax_t)cmd.size); 3208 } 3209 #endif /* DIAGNOSTIC */ 3210 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3211 break; 3212 ip = VTOI(vp); 3213 ip->i_nlink += cmd.size; 3214 DIP_SET(ip, i_nlink, ip->i_nlink); 3215 ip->i_effnlink += cmd.size; 3216 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3217 error = ffs_update(vp, 1); 3218 if (DOINGSOFTDEP(vp)) 3219 softdep_change_linkcnt(ip); 3220 vput(vp); 3221 break; 3222 3223 case FFS_ADJ_BLKCNT: 3224 #ifdef DIAGNOSTIC 3225 if (fsckcmds) { 3226 printf("%s: adjust inode %jd block count by %jd\n", 3227 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3228 (intmax_t)cmd.size); 3229 } 3230 #endif /* DIAGNOSTIC */ 3231 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3232 break; 3233 ip = VTOI(vp); 3234 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3235 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3236 error = ffs_update(vp, 1); 3237 vput(vp); 3238 break; 3239 3240 case FFS_SET_SIZE: 3241 #ifdef DIAGNOSTIC 3242 if (fsckcmds) { 3243 printf("%s: set inode %jd size to %jd\n", 3244 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3245 (intmax_t)cmd.size); 3246 } 3247 #endif /* DIAGNOSTIC */ 3248 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3249 break; 3250 ip = VTOI(vp); 3251 DIP_SET(ip, i_size, cmd.size); 3252 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3253 error = ffs_update(vp, 1); 3254 vput(vp); 3255 break; 3256 3257 case FFS_DIR_FREE: 3258 filetype = IFDIR; 3259 /* fall through */ 3260 3261 case FFS_FILE_FREE: 3262 #ifdef DIAGNOSTIC 3263 if (fsckcmds) { 3264 if (cmd.size == 1) 3265 printf("%s: free %s inode %ju\n", 3266 mp->mnt_stat.f_mntonname, 3267 filetype == IFDIR ? "directory" : "file", 3268 (uintmax_t)cmd.value); 3269 else 3270 printf("%s: free %s inodes %ju-%ju\n", 3271 mp->mnt_stat.f_mntonname, 3272 filetype == IFDIR ? "directory" : "file", 3273 (uintmax_t)cmd.value, 3274 (uintmax_t)(cmd.value + cmd.size - 1)); 3275 } 3276 #endif /* DIAGNOSTIC */ 3277 while (cmd.size > 0) { 3278 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3279 cmd.value, filetype, NULL))) 3280 break; 3281 cmd.size -= 1; 3282 cmd.value += 1; 3283 } 3284 break; 3285 3286 case FFS_BLK_FREE: 3287 #ifdef DIAGNOSTIC 3288 if (fsckcmds) { 3289 if (cmd.size == 1) 3290 printf("%s: free block %jd\n", 3291 mp->mnt_stat.f_mntonname, 3292 (intmax_t)cmd.value); 3293 else 3294 printf("%s: free blocks %jd-%jd\n", 3295 mp->mnt_stat.f_mntonname, 3296 (intmax_t)cmd.value, 3297 (intmax_t)cmd.value + cmd.size - 1); 3298 } 3299 #endif /* DIAGNOSTIC */ 3300 blkno = cmd.value; 3301 blkcnt = cmd.size; 3302 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3303 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3304 while (blkcnt > 0) { 3305 if (blkcnt < blksize) 3306 blksize = blkcnt; 3307 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3308 blksize * fs->fs_fsize, UFS_ROOTINO, 3309 VDIR, NULL, key); 3310 blkno += blksize; 3311 blkcnt -= blksize; 3312 blksize = fs->fs_frag; 3313 } 3314 ffs_blkrelease_finish(ump, key); 3315 break; 3316 3317 /* 3318 * Adjust superblock summaries. fsck(8) is expected to 3319 * submit deltas when necessary. 3320 */ 3321 case FFS_ADJ_NDIR: 3322 #ifdef DIAGNOSTIC 3323 if (fsckcmds) { 3324 printf("%s: adjust number of directories by %jd\n", 3325 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3326 } 3327 #endif /* DIAGNOSTIC */ 3328 fs->fs_cstotal.cs_ndir += cmd.value; 3329 break; 3330 3331 case FFS_ADJ_NBFREE: 3332 #ifdef DIAGNOSTIC 3333 if (fsckcmds) { 3334 printf("%s: adjust number of free blocks by %+jd\n", 3335 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3336 } 3337 #endif /* DIAGNOSTIC */ 3338 fs->fs_cstotal.cs_nbfree += cmd.value; 3339 break; 3340 3341 case FFS_ADJ_NIFREE: 3342 #ifdef DIAGNOSTIC 3343 if (fsckcmds) { 3344 printf("%s: adjust number of free inodes by %+jd\n", 3345 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3346 } 3347 #endif /* DIAGNOSTIC */ 3348 fs->fs_cstotal.cs_nifree += cmd.value; 3349 break; 3350 3351 case FFS_ADJ_NFFREE: 3352 #ifdef DIAGNOSTIC 3353 if (fsckcmds) { 3354 printf("%s: adjust number of free frags by %+jd\n", 3355 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3356 } 3357 #endif /* DIAGNOSTIC */ 3358 fs->fs_cstotal.cs_nffree += cmd.value; 3359 break; 3360 3361 case FFS_ADJ_NUMCLUSTERS: 3362 #ifdef DIAGNOSTIC 3363 if (fsckcmds) { 3364 printf("%s: adjust number of free clusters by %+jd\n", 3365 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3366 } 3367 #endif /* DIAGNOSTIC */ 3368 fs->fs_cstotal.cs_numclusters += cmd.value; 3369 break; 3370 3371 case FFS_SET_CWD: 3372 #ifdef DIAGNOSTIC 3373 if (fsckcmds) { 3374 printf("%s: set current directory to inode %jd\n", 3375 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3376 } 3377 #endif /* DIAGNOSTIC */ 3378 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3379 break; 3380 AUDIT_ARG_VNODE1(vp); 3381 if ((error = change_dir(vp, td)) != 0) { 3382 vput(vp); 3383 break; 3384 } 3385 VOP_UNLOCK(vp, 0); 3386 pwd_chdir(td, vp); 3387 break; 3388 3389 case FFS_SET_DOTDOT: 3390 #ifdef DIAGNOSTIC 3391 if (fsckcmds) { 3392 printf("%s: change .. in cwd from %jd to %jd\n", 3393 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3394 (intmax_t)cmd.size); 3395 } 3396 #endif /* DIAGNOSTIC */ 3397 /* 3398 * First we have to get and lock the parent directory 3399 * to which ".." points. 3400 */ 3401 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3402 if (error) 3403 break; 3404 /* 3405 * Now we get and lock the child directory containing "..". 3406 */ 3407 FILEDESC_SLOCK(td->td_proc->p_fd); 3408 dvp = td->td_proc->p_fd->fd_cdir; 3409 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3410 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3411 vput(fdvp); 3412 break; 3413 } 3414 dp = VTOI(dvp); 3415 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3416 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3417 DT_DIR, 0); 3418 cache_purge(fdvp); 3419 cache_purge(dvp); 3420 vput(dvp); 3421 vput(fdvp); 3422 break; 3423 3424 case FFS_UNLINK: 3425 #ifdef DIAGNOSTIC 3426 if (fsckcmds) { 3427 char buf[32]; 3428 3429 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3430 strncpy(buf, "Name_too_long", 32); 3431 printf("%s: unlink %s (inode %jd)\n", 3432 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3433 } 3434 #endif /* DIAGNOSTIC */ 3435 /* 3436 * kern_funlinkat will do its own start/finish writes and 3437 * they do not nest, so drop ours here. Setting mp == NULL 3438 * indicates that vn_finished_write is not needed down below. 3439 */ 3440 vn_finished_write(mp); 3441 mp = NULL; 3442 error = kern_funlinkat(td, AT_FDCWD, 3443 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3444 0, (ino_t)cmd.size); 3445 break; 3446 3447 case FFS_SET_INODE: 3448 if (ump->um_fsckpid != td->td_proc->p_pid) { 3449 error = EPERM; 3450 break; 3451 } 3452 #ifdef DIAGNOSTIC 3453 if (fsckcmds) { 3454 printf("%s: update inode %jd\n", 3455 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3456 } 3457 #endif /* DIAGNOSTIC */ 3458 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3459 break; 3460 AUDIT_ARG_VNODE1(vp); 3461 ip = VTOI(vp); 3462 if (I_IS_UFS1(ip)) 3463 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3464 sizeof(struct ufs1_dinode)); 3465 else 3466 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3467 sizeof(struct ufs2_dinode)); 3468 if (error) { 3469 vput(vp); 3470 break; 3471 } 3472 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3473 error = ffs_update(vp, 1); 3474 vput(vp); 3475 break; 3476 3477 case FFS_SET_BUFOUTPUT: 3478 if (ump->um_fsckpid != td->td_proc->p_pid) { 3479 error = EPERM; 3480 break; 3481 } 3482 if (ITOUMP(VTOI(vp)) != ump) { 3483 error = EINVAL; 3484 break; 3485 } 3486 #ifdef DIAGNOSTIC 3487 if (fsckcmds) { 3488 printf("%s: %s buffered output for descriptor %jd\n", 3489 mp->mnt_stat.f_mntonname, 3490 cmd.size == 1 ? "enable" : "disable", 3491 (intmax_t)cmd.value); 3492 } 3493 #endif /* DIAGNOSTIC */ 3494 if ((error = getvnode(td, cmd.value, 3495 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3496 break; 3497 if (vfp->f_vnode->v_type != VCHR) { 3498 fdrop(vfp, td); 3499 error = EINVAL; 3500 break; 3501 } 3502 if (origops == NULL) { 3503 origops = vfp->f_ops; 3504 bcopy((void *)origops, (void *)&bufferedops, 3505 sizeof(bufferedops)); 3506 bufferedops.fo_write = buffered_write; 3507 } 3508 if (cmd.size == 1) 3509 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3510 (uintptr_t)&bufferedops); 3511 else 3512 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3513 (uintptr_t)origops); 3514 fdrop(vfp, td); 3515 break; 3516 3517 default: 3518 #ifdef DIAGNOSTIC 3519 if (fsckcmds) { 3520 printf("Invalid request %d from fsck\n", 3521 oidp->oid_number); 3522 } 3523 #endif /* DIAGNOSTIC */ 3524 error = EINVAL; 3525 break; 3526 3527 } 3528 fdrop(fp, td); 3529 vn_finished_write(mp); 3530 return (error); 3531 } 3532 3533 /* 3534 * Function to switch a descriptor to use the buffer cache to stage 3535 * its I/O. This is needed so that writes to the filesystem device 3536 * will give snapshots a chance to copy modified blocks for which it 3537 * needs to retain copies. 3538 */ 3539 static int 3540 buffered_write(fp, uio, active_cred, flags, td) 3541 struct file *fp; 3542 struct uio *uio; 3543 struct ucred *active_cred; 3544 int flags; 3545 struct thread *td; 3546 { 3547 struct vnode *devvp, *vp; 3548 struct inode *ip; 3549 struct buf *bp; 3550 struct fs *fs; 3551 struct filedesc *fdp; 3552 int error; 3553 daddr_t lbn; 3554 3555 /* 3556 * The devvp is associated with the /dev filesystem. To discover 3557 * the filesystem with which the device is associated, we depend 3558 * on the application setting the current directory to a location 3559 * within the filesystem being written. Yes, this is an ugly hack. 3560 */ 3561 devvp = fp->f_vnode; 3562 if (!vn_isdisk(devvp, NULL)) 3563 return (EINVAL); 3564 fdp = td->td_proc->p_fd; 3565 FILEDESC_SLOCK(fdp); 3566 vp = fdp->fd_cdir; 3567 vref(vp); 3568 FILEDESC_SUNLOCK(fdp); 3569 vn_lock(vp, LK_SHARED | LK_RETRY); 3570 /* 3571 * Check that the current directory vnode indeed belongs to 3572 * UFS before trying to dereference UFS-specific v_data fields. 3573 */ 3574 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3575 vput(vp); 3576 return (EINVAL); 3577 } 3578 ip = VTOI(vp); 3579 if (ITODEVVP(ip) != devvp) { 3580 vput(vp); 3581 return (EINVAL); 3582 } 3583 fs = ITOFS(ip); 3584 vput(vp); 3585 foffset_lock_uio(fp, uio, flags); 3586 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3587 #ifdef DIAGNOSTIC 3588 if (fsckcmds) { 3589 printf("%s: buffered write for block %jd\n", 3590 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3591 } 3592 #endif /* DIAGNOSTIC */ 3593 /* 3594 * All I/O must be contained within a filesystem block, start on 3595 * a fragment boundary, and be a multiple of fragments in length. 3596 */ 3597 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3598 fragoff(fs, uio->uio_offset) != 0 || 3599 fragoff(fs, uio->uio_resid) != 0) { 3600 error = EINVAL; 3601 goto out; 3602 } 3603 lbn = numfrags(fs, uio->uio_offset); 3604 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3605 bp->b_flags |= B_RELBUF; 3606 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3607 brelse(bp); 3608 goto out; 3609 } 3610 error = bwrite(bp); 3611 out: 3612 VOP_UNLOCK(devvp, 0); 3613 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3614 return (error); 3615 } 3616