1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/gsb_crc32.h> 72 #include <sys/systm.h> 73 #include <sys/bio.h> 74 #include <sys/buf.h> 75 #include <sys/conf.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/vnode.h> 82 #include <sys/mount.h> 83 #include <sys/kernel.h> 84 #include <sys/syscallsubr.h> 85 #include <sys/sysctl.h> 86 #include <sys/syslog.h> 87 #include <sys/taskqueue.h> 88 89 #include <security/audit/audit.h> 90 91 #include <geom/geom.h> 92 #include <geom/geom_vfs.h> 93 94 #include <ufs/ufs/dir.h> 95 #include <ufs/ufs/extattr.h> 96 #include <ufs/ufs/quota.h> 97 #include <ufs/ufs/inode.h> 98 #include <ufs/ufs/ufs_extern.h> 99 #include <ufs/ufs/ufsmount.h> 100 101 #include <ufs/ffs/fs.h> 102 #include <ufs/ffs/ffs_extern.h> 103 #include <ufs/ffs/softdep.h> 104 105 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 106 int size, int rsize); 107 108 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 109 static ufs2_daddr_t 110 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 111 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 112 struct vnode *, ufs2_daddr_t, long, ino_t, 113 struct workhead *); 114 #ifdef INVARIANTS 115 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 116 #endif 117 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 118 static ino_t ffs_dirpref(struct inode *); 119 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 120 int, int); 121 static ufs2_daddr_t ffs_hashalloc 122 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 123 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 124 int); 125 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 126 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 127 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 128 static void ffs_ckhash_cg(struct buf *); 129 130 /* 131 * Allocate a block in the filesystem. 132 * 133 * The size of the requested block is given, which must be some 134 * multiple of fs_fsize and <= fs_bsize. 135 * A preference may be optionally specified. If a preference is given 136 * the following hierarchy is used to allocate a block: 137 * 1) allocate the requested block. 138 * 2) allocate a rotationally optimal block in the same cylinder. 139 * 3) allocate a block in the same cylinder group. 140 * 4) quadradically rehash into other cylinder groups, until an 141 * available block is located. 142 * If no block preference is given the following hierarchy is used 143 * to allocate a block: 144 * 1) allocate a block in the cylinder group that contains the 145 * inode for the file. 146 * 2) quadradically rehash into other cylinder groups, until an 147 * available block is located. 148 */ 149 int 150 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 151 struct inode *ip; 152 ufs2_daddr_t lbn, bpref; 153 int size, flags; 154 struct ucred *cred; 155 ufs2_daddr_t *bnp; 156 { 157 struct fs *fs; 158 struct ufsmount *ump; 159 ufs2_daddr_t bno; 160 u_int cg, reclaimed; 161 static struct timeval lastfail; 162 static int curfail; 163 int64_t delta; 164 #ifdef QUOTA 165 int error; 166 #endif 167 168 *bnp = 0; 169 ump = ITOUMP(ip); 170 fs = ump->um_fs; 171 mtx_assert(UFS_MTX(ump), MA_OWNED); 172 #ifdef INVARIANTS 173 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 174 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 175 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 176 fs->fs_fsmnt); 177 panic("ffs_alloc: bad size"); 178 } 179 if (cred == NOCRED) 180 panic("ffs_alloc: missing credential"); 181 #endif /* INVARIANTS */ 182 reclaimed = 0; 183 retry: 184 #ifdef QUOTA 185 UFS_UNLOCK(ump); 186 error = chkdq(ip, btodb(size), cred, 0); 187 if (error) 188 return (error); 189 UFS_LOCK(ump); 190 #endif 191 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 192 goto nospace; 193 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 194 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 195 goto nospace; 196 if (bpref >= fs->fs_size) 197 bpref = 0; 198 if (bpref == 0) 199 cg = ino_to_cg(fs, ip->i_number); 200 else 201 cg = dtog(fs, bpref); 202 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 203 if (bno > 0) { 204 delta = btodb(size); 205 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 206 if (flags & IO_EXT) 207 ip->i_flag |= IN_CHANGE; 208 else 209 ip->i_flag |= IN_CHANGE | IN_UPDATE; 210 *bnp = bno; 211 return (0); 212 } 213 nospace: 214 #ifdef QUOTA 215 UFS_UNLOCK(ump); 216 /* 217 * Restore user's disk quota because allocation failed. 218 */ 219 (void) chkdq(ip, -btodb(size), cred, FORCE); 220 UFS_LOCK(ump); 221 #endif 222 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 223 reclaimed = 1; 224 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 225 goto retry; 226 } 227 UFS_UNLOCK(ump); 228 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 229 ffs_fserr(fs, ip->i_number, "filesystem full"); 230 uprintf("\n%s: write failed, filesystem is full\n", 231 fs->fs_fsmnt); 232 } 233 return (ENOSPC); 234 } 235 236 /* 237 * Reallocate a fragment to a bigger size 238 * 239 * The number and size of the old block is given, and a preference 240 * and new size is also specified. The allocator attempts to extend 241 * the original block. Failing that, the regular block allocator is 242 * invoked to get an appropriate block. 243 */ 244 int 245 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 246 struct inode *ip; 247 ufs2_daddr_t lbprev; 248 ufs2_daddr_t bprev; 249 ufs2_daddr_t bpref; 250 int osize, nsize, flags; 251 struct ucred *cred; 252 struct buf **bpp; 253 { 254 struct vnode *vp; 255 struct fs *fs; 256 struct buf *bp; 257 struct ufsmount *ump; 258 u_int cg, request, reclaimed; 259 int error, gbflags; 260 ufs2_daddr_t bno; 261 static struct timeval lastfail; 262 static int curfail; 263 int64_t delta; 264 265 vp = ITOV(ip); 266 ump = ITOUMP(ip); 267 fs = ump->um_fs; 268 bp = NULL; 269 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 270 271 mtx_assert(UFS_MTX(ump), MA_OWNED); 272 #ifdef INVARIANTS 273 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 274 panic("ffs_realloccg: allocation on suspended filesystem"); 275 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 276 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 277 printf( 278 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 279 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 280 nsize, fs->fs_fsmnt); 281 panic("ffs_realloccg: bad size"); 282 } 283 if (cred == NOCRED) 284 panic("ffs_realloccg: missing credential"); 285 #endif /* INVARIANTS */ 286 reclaimed = 0; 287 retry: 288 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 289 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 290 goto nospace; 291 } 292 if (bprev == 0) { 293 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 294 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 295 fs->fs_fsmnt); 296 panic("ffs_realloccg: bad bprev"); 297 } 298 UFS_UNLOCK(ump); 299 /* 300 * Allocate the extra space in the buffer. 301 */ 302 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 303 if (error) { 304 brelse(bp); 305 return (error); 306 } 307 308 if (bp->b_blkno == bp->b_lblkno) { 309 if (lbprev >= UFS_NDADDR) 310 panic("ffs_realloccg: lbprev out of range"); 311 bp->b_blkno = fsbtodb(fs, bprev); 312 } 313 314 #ifdef QUOTA 315 error = chkdq(ip, btodb(nsize - osize), cred, 0); 316 if (error) { 317 brelse(bp); 318 return (error); 319 } 320 #endif 321 /* 322 * Check for extension in the existing location. 323 */ 324 *bpp = NULL; 325 cg = dtog(fs, bprev); 326 UFS_LOCK(ump); 327 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 328 if (bno) { 329 if (bp->b_blkno != fsbtodb(fs, bno)) 330 panic("ffs_realloccg: bad blockno"); 331 delta = btodb(nsize - osize); 332 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 333 if (flags & IO_EXT) 334 ip->i_flag |= IN_CHANGE; 335 else 336 ip->i_flag |= IN_CHANGE | IN_UPDATE; 337 allocbuf(bp, nsize); 338 bp->b_flags |= B_DONE; 339 vfs_bio_bzero_buf(bp, osize, nsize - osize); 340 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 341 vfs_bio_set_valid(bp, osize, nsize - osize); 342 *bpp = bp; 343 return (0); 344 } 345 /* 346 * Allocate a new disk location. 347 */ 348 if (bpref >= fs->fs_size) 349 bpref = 0; 350 switch ((int)fs->fs_optim) { 351 case FS_OPTSPACE: 352 /* 353 * Allocate an exact sized fragment. Although this makes 354 * best use of space, we will waste time relocating it if 355 * the file continues to grow. If the fragmentation is 356 * less than half of the minimum free reserve, we choose 357 * to begin optimizing for time. 358 */ 359 request = nsize; 360 if (fs->fs_minfree <= 5 || 361 fs->fs_cstotal.cs_nffree > 362 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 363 break; 364 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 365 fs->fs_fsmnt); 366 fs->fs_optim = FS_OPTTIME; 367 break; 368 case FS_OPTTIME: 369 /* 370 * At this point we have discovered a file that is trying to 371 * grow a small fragment to a larger fragment. To save time, 372 * we allocate a full sized block, then free the unused portion. 373 * If the file continues to grow, the `ffs_fragextend' call 374 * above will be able to grow it in place without further 375 * copying. If aberrant programs cause disk fragmentation to 376 * grow within 2% of the free reserve, we choose to begin 377 * optimizing for space. 378 */ 379 request = fs->fs_bsize; 380 if (fs->fs_cstotal.cs_nffree < 381 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 382 break; 383 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 384 fs->fs_fsmnt); 385 fs->fs_optim = FS_OPTSPACE; 386 break; 387 default: 388 printf("dev = %s, optim = %ld, fs = %s\n", 389 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 390 panic("ffs_realloccg: bad optim"); 391 /* NOTREACHED */ 392 } 393 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 394 if (bno > 0) { 395 bp->b_blkno = fsbtodb(fs, bno); 396 if (!DOINGSOFTDEP(vp)) 397 /* 398 * The usual case is that a smaller fragment that 399 * was just allocated has been replaced with a bigger 400 * fragment or a full-size block. If it is marked as 401 * B_DELWRI, the current contents have not been written 402 * to disk. It is possible that the block was written 403 * earlier, but very uncommon. If the block has never 404 * been written, there is no need to send a BIO_DELETE 405 * for it when it is freed. The gain from avoiding the 406 * TRIMs for the common case of unwritten blocks far 407 * exceeds the cost of the write amplification for the 408 * uncommon case of failing to send a TRIM for a block 409 * that had been written. 410 */ 411 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 412 ip->i_number, vp->v_type, NULL, 413 (bp->b_flags & B_DELWRI) != 0 ? 414 NOTRIM_KEY : SINGLETON_KEY); 415 delta = btodb(nsize - osize); 416 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 417 if (flags & IO_EXT) 418 ip->i_flag |= IN_CHANGE; 419 else 420 ip->i_flag |= IN_CHANGE | IN_UPDATE; 421 allocbuf(bp, nsize); 422 bp->b_flags |= B_DONE; 423 vfs_bio_bzero_buf(bp, osize, nsize - osize); 424 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 425 vfs_bio_set_valid(bp, osize, nsize - osize); 426 *bpp = bp; 427 return (0); 428 } 429 #ifdef QUOTA 430 UFS_UNLOCK(ump); 431 /* 432 * Restore user's disk quota because allocation failed. 433 */ 434 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 435 UFS_LOCK(ump); 436 #endif 437 nospace: 438 /* 439 * no space available 440 */ 441 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 442 reclaimed = 1; 443 UFS_UNLOCK(ump); 444 if (bp) { 445 brelse(bp); 446 bp = NULL; 447 } 448 UFS_LOCK(ump); 449 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 450 goto retry; 451 } 452 UFS_UNLOCK(ump); 453 if (bp) 454 brelse(bp); 455 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 456 ffs_fserr(fs, ip->i_number, "filesystem full"); 457 uprintf("\n%s: write failed, filesystem is full\n", 458 fs->fs_fsmnt); 459 } 460 return (ENOSPC); 461 } 462 463 /* 464 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 465 * 466 * The vnode and an array of buffer pointers for a range of sequential 467 * logical blocks to be made contiguous is given. The allocator attempts 468 * to find a range of sequential blocks starting as close as possible 469 * from the end of the allocation for the logical block immediately 470 * preceding the current range. If successful, the physical block numbers 471 * in the buffer pointers and in the inode are changed to reflect the new 472 * allocation. If unsuccessful, the allocation is left unchanged. The 473 * success in doing the reallocation is returned. Note that the error 474 * return is not reflected back to the user. Rather the previous block 475 * allocation will be used. 476 */ 477 478 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 479 480 static int doasyncfree = 1; 481 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 482 "do not force synchronous writes when blocks are reallocated"); 483 484 static int doreallocblks = 1; 485 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 486 "enable block reallocation"); 487 488 static int dotrimcons = 1; 489 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 490 "enable BIO_DELETE / TRIM consolidation"); 491 492 static int maxclustersearch = 10; 493 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 494 0, "max number of cylinder group to search for contigous blocks"); 495 496 #ifdef DIAGNOSTIC 497 static int prtrealloc = 0; 498 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 499 "print out FFS filesystem block reallocation operations"); 500 #endif 501 502 int 503 ffs_reallocblks(ap) 504 struct vop_reallocblks_args /* { 505 struct vnode *a_vp; 506 struct cluster_save *a_buflist; 507 } */ *ap; 508 { 509 struct ufsmount *ump; 510 511 /* 512 * We used to skip reallocating the blocks of a file into a 513 * contiguous sequence if the underlying flash device requested 514 * BIO_DELETE notifications, because devices that benefit from 515 * BIO_DELETE also benefit from not moving the data. However, 516 * the destination for the data is usually moved before the data 517 * is written to the initially allocated location, so we rarely 518 * suffer the penalty of extra writes. With the addition of the 519 * consolidation of contiguous blocks into single BIO_DELETE 520 * operations, having fewer but larger contiguous blocks reduces 521 * the number of (slow and expensive) BIO_DELETE operations. So 522 * when doing BIO_DELETE consolidation, we do block reallocation. 523 * 524 * Skip if reallocblks has been disabled globally. 525 */ 526 ump = ap->a_vp->v_mount->mnt_data; 527 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 528 doreallocblks == 0) 529 return (ENOSPC); 530 531 /* 532 * We can't wait in softdep prealloc as it may fsync and recurse 533 * here. Instead we simply fail to reallocate blocks if this 534 * rare condition arises. 535 */ 536 if (DOINGSOFTDEP(ap->a_vp)) 537 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 538 return (ENOSPC); 539 if (ump->um_fstype == UFS1) 540 return (ffs_reallocblks_ufs1(ap)); 541 return (ffs_reallocblks_ufs2(ap)); 542 } 543 544 static int 545 ffs_reallocblks_ufs1(ap) 546 struct vop_reallocblks_args /* { 547 struct vnode *a_vp; 548 struct cluster_save *a_buflist; 549 } */ *ap; 550 { 551 struct fs *fs; 552 struct inode *ip; 553 struct vnode *vp; 554 struct buf *sbp, *ebp, *bp; 555 ufs1_daddr_t *bap, *sbap, *ebap; 556 struct cluster_save *buflist; 557 struct ufsmount *ump; 558 ufs_lbn_t start_lbn, end_lbn; 559 ufs1_daddr_t soff, newblk, blkno; 560 ufs2_daddr_t pref; 561 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 562 int i, cg, len, start_lvl, end_lvl, ssize; 563 564 vp = ap->a_vp; 565 ip = VTOI(vp); 566 ump = ITOUMP(ip); 567 fs = ump->um_fs; 568 /* 569 * If we are not tracking block clusters or if we have less than 4% 570 * free blocks left, then do not attempt to cluster. Running with 571 * less than 5% free block reserve is not recommended and those that 572 * choose to do so do not expect to have good file layout. 573 */ 574 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 575 return (ENOSPC); 576 buflist = ap->a_buflist; 577 len = buflist->bs_nchildren; 578 start_lbn = buflist->bs_children[0]->b_lblkno; 579 end_lbn = start_lbn + len - 1; 580 #ifdef INVARIANTS 581 for (i = 0; i < len; i++) 582 if (!ffs_checkblk(ip, 583 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 584 panic("ffs_reallocblks: unallocated block 1"); 585 for (i = 1; i < len; i++) 586 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 587 panic("ffs_reallocblks: non-logical cluster"); 588 blkno = buflist->bs_children[0]->b_blkno; 589 ssize = fsbtodb(fs, fs->fs_frag); 590 for (i = 1; i < len - 1; i++) 591 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 592 panic("ffs_reallocblks: non-physical cluster %d", i); 593 #endif 594 /* 595 * If the cluster crosses the boundary for the first indirect 596 * block, leave space for the indirect block. Indirect blocks 597 * are initially laid out in a position after the last direct 598 * block. Block reallocation would usually destroy locality by 599 * moving the indirect block out of the way to make room for 600 * data blocks if we didn't compensate here. We should also do 601 * this for other indirect block boundaries, but it is only 602 * important for the first one. 603 */ 604 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 605 return (ENOSPC); 606 /* 607 * If the latest allocation is in a new cylinder group, assume that 608 * the filesystem has decided to move and do not force it back to 609 * the previous cylinder group. 610 */ 611 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 612 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 613 return (ENOSPC); 614 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 615 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 616 return (ENOSPC); 617 /* 618 * Get the starting offset and block map for the first block. 619 */ 620 if (start_lvl == 0) { 621 sbap = &ip->i_din1->di_db[0]; 622 soff = start_lbn; 623 } else { 624 idp = &start_ap[start_lvl - 1]; 625 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 626 brelse(sbp); 627 return (ENOSPC); 628 } 629 sbap = (ufs1_daddr_t *)sbp->b_data; 630 soff = idp->in_off; 631 } 632 /* 633 * If the block range spans two block maps, get the second map. 634 */ 635 ebap = NULL; 636 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 637 ssize = len; 638 } else { 639 #ifdef INVARIANTS 640 if (start_lvl > 0 && 641 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 642 panic("ffs_reallocblk: start == end"); 643 #endif 644 ssize = len - (idp->in_off + 1); 645 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 646 goto fail; 647 ebap = (ufs1_daddr_t *)ebp->b_data; 648 } 649 /* 650 * Find the preferred location for the cluster. If we have not 651 * previously failed at this endeavor, then follow our standard 652 * preference calculation. If we have failed at it, then pick up 653 * where we last ended our search. 654 */ 655 UFS_LOCK(ump); 656 if (ip->i_nextclustercg == -1) 657 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 658 else 659 pref = cgdata(fs, ip->i_nextclustercg); 660 /* 661 * Search the block map looking for an allocation of the desired size. 662 * To avoid wasting too much time, we limit the number of cylinder 663 * groups that we will search. 664 */ 665 cg = dtog(fs, pref); 666 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 667 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 668 break; 669 cg += 1; 670 if (cg >= fs->fs_ncg) 671 cg = 0; 672 } 673 /* 674 * If we have failed in our search, record where we gave up for 675 * next time. Otherwise, fall back to our usual search citerion. 676 */ 677 if (newblk == 0) { 678 ip->i_nextclustercg = cg; 679 UFS_UNLOCK(ump); 680 goto fail; 681 } 682 ip->i_nextclustercg = -1; 683 /* 684 * We have found a new contiguous block. 685 * 686 * First we have to replace the old block pointers with the new 687 * block pointers in the inode and indirect blocks associated 688 * with the file. 689 */ 690 #ifdef DIAGNOSTIC 691 if (prtrealloc) 692 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 693 (uintmax_t)ip->i_number, 694 (intmax_t)start_lbn, (intmax_t)end_lbn); 695 #endif 696 blkno = newblk; 697 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 698 if (i == ssize) { 699 bap = ebap; 700 soff = -i; 701 } 702 #ifdef INVARIANTS 703 if (!ffs_checkblk(ip, 704 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 705 panic("ffs_reallocblks: unallocated block 2"); 706 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 707 panic("ffs_reallocblks: alloc mismatch"); 708 #endif 709 #ifdef DIAGNOSTIC 710 if (prtrealloc) 711 printf(" %d,", *bap); 712 #endif 713 if (DOINGSOFTDEP(vp)) { 714 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 715 softdep_setup_allocdirect(ip, start_lbn + i, 716 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 717 buflist->bs_children[i]); 718 else 719 softdep_setup_allocindir_page(ip, start_lbn + i, 720 i < ssize ? sbp : ebp, soff + i, blkno, 721 *bap, buflist->bs_children[i]); 722 } 723 *bap++ = blkno; 724 } 725 /* 726 * Next we must write out the modified inode and indirect blocks. 727 * For strict correctness, the writes should be synchronous since 728 * the old block values may have been written to disk. In practise 729 * they are almost never written, but if we are concerned about 730 * strict correctness, the `doasyncfree' flag should be set to zero. 731 * 732 * The test on `doasyncfree' should be changed to test a flag 733 * that shows whether the associated buffers and inodes have 734 * been written. The flag should be set when the cluster is 735 * started and cleared whenever the buffer or inode is flushed. 736 * We can then check below to see if it is set, and do the 737 * synchronous write only when it has been cleared. 738 */ 739 if (sbap != &ip->i_din1->di_db[0]) { 740 if (doasyncfree) 741 bdwrite(sbp); 742 else 743 bwrite(sbp); 744 } else { 745 ip->i_flag |= IN_CHANGE | IN_UPDATE; 746 if (!doasyncfree) 747 ffs_update(vp, 1); 748 } 749 if (ssize < len) { 750 if (doasyncfree) 751 bdwrite(ebp); 752 else 753 bwrite(ebp); 754 } 755 /* 756 * Last, free the old blocks and assign the new blocks to the buffers. 757 */ 758 #ifdef DIAGNOSTIC 759 if (prtrealloc) 760 printf("\n\tnew:"); 761 #endif 762 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 763 bp = buflist->bs_children[i]; 764 if (!DOINGSOFTDEP(vp)) 765 /* 766 * The usual case is that a set of N-contiguous blocks 767 * that was just allocated has been replaced with a 768 * set of N+1-contiguous blocks. If they are marked as 769 * B_DELWRI, the current contents have not been written 770 * to disk. It is possible that the blocks were written 771 * earlier, but very uncommon. If the blocks have never 772 * been written, there is no need to send a BIO_DELETE 773 * for them when they are freed. The gain from avoiding 774 * the TRIMs for the common case of unwritten blocks 775 * far exceeds the cost of the write amplification for 776 * the uncommon case of failing to send a TRIM for the 777 * blocks that had been written. 778 */ 779 ffs_blkfree(ump, fs, ump->um_devvp, 780 dbtofsb(fs, bp->b_blkno), 781 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 782 (bp->b_flags & B_DELWRI) != 0 ? 783 NOTRIM_KEY : SINGLETON_KEY); 784 bp->b_blkno = fsbtodb(fs, blkno); 785 #ifdef INVARIANTS 786 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 787 panic("ffs_reallocblks: unallocated block 3"); 788 #endif 789 #ifdef DIAGNOSTIC 790 if (prtrealloc) 791 printf(" %d,", blkno); 792 #endif 793 } 794 #ifdef DIAGNOSTIC 795 if (prtrealloc) { 796 prtrealloc--; 797 printf("\n"); 798 } 799 #endif 800 return (0); 801 802 fail: 803 if (ssize < len) 804 brelse(ebp); 805 if (sbap != &ip->i_din1->di_db[0]) 806 brelse(sbp); 807 return (ENOSPC); 808 } 809 810 static int 811 ffs_reallocblks_ufs2(ap) 812 struct vop_reallocblks_args /* { 813 struct vnode *a_vp; 814 struct cluster_save *a_buflist; 815 } */ *ap; 816 { 817 struct fs *fs; 818 struct inode *ip; 819 struct vnode *vp; 820 struct buf *sbp, *ebp, *bp; 821 ufs2_daddr_t *bap, *sbap, *ebap; 822 struct cluster_save *buflist; 823 struct ufsmount *ump; 824 ufs_lbn_t start_lbn, end_lbn; 825 ufs2_daddr_t soff, newblk, blkno, pref; 826 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 827 int i, cg, len, start_lvl, end_lvl, ssize; 828 829 vp = ap->a_vp; 830 ip = VTOI(vp); 831 ump = ITOUMP(ip); 832 fs = ump->um_fs; 833 /* 834 * If we are not tracking block clusters or if we have less than 4% 835 * free blocks left, then do not attempt to cluster. Running with 836 * less than 5% free block reserve is not recommended and those that 837 * choose to do so do not expect to have good file layout. 838 */ 839 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 840 return (ENOSPC); 841 buflist = ap->a_buflist; 842 len = buflist->bs_nchildren; 843 start_lbn = buflist->bs_children[0]->b_lblkno; 844 end_lbn = start_lbn + len - 1; 845 #ifdef INVARIANTS 846 for (i = 0; i < len; i++) 847 if (!ffs_checkblk(ip, 848 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 849 panic("ffs_reallocblks: unallocated block 1"); 850 for (i = 1; i < len; i++) 851 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 852 panic("ffs_reallocblks: non-logical cluster"); 853 blkno = buflist->bs_children[0]->b_blkno; 854 ssize = fsbtodb(fs, fs->fs_frag); 855 for (i = 1; i < len - 1; i++) 856 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 857 panic("ffs_reallocblks: non-physical cluster %d", i); 858 #endif 859 /* 860 * If the cluster crosses the boundary for the first indirect 861 * block, do not move anything in it. Indirect blocks are 862 * usually initially laid out in a position between the data 863 * blocks. Block reallocation would usually destroy locality by 864 * moving the indirect block out of the way to make room for 865 * data blocks if we didn't compensate here. We should also do 866 * this for other indirect block boundaries, but it is only 867 * important for the first one. 868 */ 869 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 870 return (ENOSPC); 871 /* 872 * If the latest allocation is in a new cylinder group, assume that 873 * the filesystem has decided to move and do not force it back to 874 * the previous cylinder group. 875 */ 876 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 877 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 878 return (ENOSPC); 879 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 880 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 881 return (ENOSPC); 882 /* 883 * Get the starting offset and block map for the first block. 884 */ 885 if (start_lvl == 0) { 886 sbap = &ip->i_din2->di_db[0]; 887 soff = start_lbn; 888 } else { 889 idp = &start_ap[start_lvl - 1]; 890 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 891 brelse(sbp); 892 return (ENOSPC); 893 } 894 sbap = (ufs2_daddr_t *)sbp->b_data; 895 soff = idp->in_off; 896 } 897 /* 898 * If the block range spans two block maps, get the second map. 899 */ 900 ebap = NULL; 901 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 902 ssize = len; 903 } else { 904 #ifdef INVARIANTS 905 if (start_lvl > 0 && 906 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 907 panic("ffs_reallocblk: start == end"); 908 #endif 909 ssize = len - (idp->in_off + 1); 910 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 911 goto fail; 912 ebap = (ufs2_daddr_t *)ebp->b_data; 913 } 914 /* 915 * Find the preferred location for the cluster. If we have not 916 * previously failed at this endeavor, then follow our standard 917 * preference calculation. If we have failed at it, then pick up 918 * where we last ended our search. 919 */ 920 UFS_LOCK(ump); 921 if (ip->i_nextclustercg == -1) 922 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 923 else 924 pref = cgdata(fs, ip->i_nextclustercg); 925 /* 926 * Search the block map looking for an allocation of the desired size. 927 * To avoid wasting too much time, we limit the number of cylinder 928 * groups that we will search. 929 */ 930 cg = dtog(fs, pref); 931 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 932 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 933 break; 934 cg += 1; 935 if (cg >= fs->fs_ncg) 936 cg = 0; 937 } 938 /* 939 * If we have failed in our search, record where we gave up for 940 * next time. Otherwise, fall back to our usual search citerion. 941 */ 942 if (newblk == 0) { 943 ip->i_nextclustercg = cg; 944 UFS_UNLOCK(ump); 945 goto fail; 946 } 947 ip->i_nextclustercg = -1; 948 /* 949 * We have found a new contiguous block. 950 * 951 * First we have to replace the old block pointers with the new 952 * block pointers in the inode and indirect blocks associated 953 * with the file. 954 */ 955 #ifdef DIAGNOSTIC 956 if (prtrealloc) 957 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 958 (intmax_t)start_lbn, (intmax_t)end_lbn); 959 #endif 960 blkno = newblk; 961 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 962 if (i == ssize) { 963 bap = ebap; 964 soff = -i; 965 } 966 #ifdef INVARIANTS 967 if (!ffs_checkblk(ip, 968 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 969 panic("ffs_reallocblks: unallocated block 2"); 970 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 971 panic("ffs_reallocblks: alloc mismatch"); 972 #endif 973 #ifdef DIAGNOSTIC 974 if (prtrealloc) 975 printf(" %jd,", (intmax_t)*bap); 976 #endif 977 if (DOINGSOFTDEP(vp)) { 978 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 979 softdep_setup_allocdirect(ip, start_lbn + i, 980 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 981 buflist->bs_children[i]); 982 else 983 softdep_setup_allocindir_page(ip, start_lbn + i, 984 i < ssize ? sbp : ebp, soff + i, blkno, 985 *bap, buflist->bs_children[i]); 986 } 987 *bap++ = blkno; 988 } 989 /* 990 * Next we must write out the modified inode and indirect blocks. 991 * For strict correctness, the writes should be synchronous since 992 * the old block values may have been written to disk. In practise 993 * they are almost never written, but if we are concerned about 994 * strict correctness, the `doasyncfree' flag should be set to zero. 995 * 996 * The test on `doasyncfree' should be changed to test a flag 997 * that shows whether the associated buffers and inodes have 998 * been written. The flag should be set when the cluster is 999 * started and cleared whenever the buffer or inode is flushed. 1000 * We can then check below to see if it is set, and do the 1001 * synchronous write only when it has been cleared. 1002 */ 1003 if (sbap != &ip->i_din2->di_db[0]) { 1004 if (doasyncfree) 1005 bdwrite(sbp); 1006 else 1007 bwrite(sbp); 1008 } else { 1009 ip->i_flag |= IN_CHANGE | IN_UPDATE; 1010 if (!doasyncfree) 1011 ffs_update(vp, 1); 1012 } 1013 if (ssize < len) { 1014 if (doasyncfree) 1015 bdwrite(ebp); 1016 else 1017 bwrite(ebp); 1018 } 1019 /* 1020 * Last, free the old blocks and assign the new blocks to the buffers. 1021 */ 1022 #ifdef DIAGNOSTIC 1023 if (prtrealloc) 1024 printf("\n\tnew:"); 1025 #endif 1026 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1027 bp = buflist->bs_children[i]; 1028 if (!DOINGSOFTDEP(vp)) 1029 /* 1030 * The usual case is that a set of N-contiguous blocks 1031 * that was just allocated has been replaced with a 1032 * set of N+1-contiguous blocks. If they are marked as 1033 * B_DELWRI, the current contents have not been written 1034 * to disk. It is possible that the blocks were written 1035 * earlier, but very uncommon. If the blocks have never 1036 * been written, there is no need to send a BIO_DELETE 1037 * for them when they are freed. The gain from avoiding 1038 * the TRIMs for the common case of unwritten blocks 1039 * far exceeds the cost of the write amplification for 1040 * the uncommon case of failing to send a TRIM for the 1041 * blocks that had been written. 1042 */ 1043 ffs_blkfree(ump, fs, ump->um_devvp, 1044 dbtofsb(fs, bp->b_blkno), 1045 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1046 (bp->b_flags & B_DELWRI) != 0 ? 1047 NOTRIM_KEY : SINGLETON_KEY); 1048 bp->b_blkno = fsbtodb(fs, blkno); 1049 #ifdef INVARIANTS 1050 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1051 panic("ffs_reallocblks: unallocated block 3"); 1052 #endif 1053 #ifdef DIAGNOSTIC 1054 if (prtrealloc) 1055 printf(" %jd,", (intmax_t)blkno); 1056 #endif 1057 } 1058 #ifdef DIAGNOSTIC 1059 if (prtrealloc) { 1060 prtrealloc--; 1061 printf("\n"); 1062 } 1063 #endif 1064 return (0); 1065 1066 fail: 1067 if (ssize < len) 1068 brelse(ebp); 1069 if (sbap != &ip->i_din2->di_db[0]) 1070 brelse(sbp); 1071 return (ENOSPC); 1072 } 1073 1074 /* 1075 * Allocate an inode in the filesystem. 1076 * 1077 * If allocating a directory, use ffs_dirpref to select the inode. 1078 * If allocating in a directory, the following hierarchy is followed: 1079 * 1) allocate the preferred inode. 1080 * 2) allocate an inode in the same cylinder group. 1081 * 3) quadradically rehash into other cylinder groups, until an 1082 * available inode is located. 1083 * If no inode preference is given the following hierarchy is used 1084 * to allocate an inode: 1085 * 1) allocate an inode in cylinder group 0. 1086 * 2) quadradically rehash into other cylinder groups, until an 1087 * available inode is located. 1088 */ 1089 int 1090 ffs_valloc(pvp, mode, cred, vpp) 1091 struct vnode *pvp; 1092 int mode; 1093 struct ucred *cred; 1094 struct vnode **vpp; 1095 { 1096 struct inode *pip; 1097 struct fs *fs; 1098 struct inode *ip; 1099 struct timespec ts; 1100 struct ufsmount *ump; 1101 ino_t ino, ipref; 1102 u_int cg; 1103 int error, error1, reclaimed; 1104 static struct timeval lastfail; 1105 static int curfail; 1106 1107 *vpp = NULL; 1108 pip = VTOI(pvp); 1109 ump = ITOUMP(pip); 1110 fs = ump->um_fs; 1111 1112 UFS_LOCK(ump); 1113 reclaimed = 0; 1114 retry: 1115 if (fs->fs_cstotal.cs_nifree == 0) 1116 goto noinodes; 1117 1118 if ((mode & IFMT) == IFDIR) 1119 ipref = ffs_dirpref(pip); 1120 else 1121 ipref = pip->i_number; 1122 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1123 ipref = 0; 1124 cg = ino_to_cg(fs, ipref); 1125 /* 1126 * Track number of dirs created one after another 1127 * in a same cg without intervening by files. 1128 */ 1129 if ((mode & IFMT) == IFDIR) { 1130 if (fs->fs_contigdirs[cg] < 255) 1131 fs->fs_contigdirs[cg]++; 1132 } else { 1133 if (fs->fs_contigdirs[cg] > 0) 1134 fs->fs_contigdirs[cg]--; 1135 } 1136 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1137 (allocfcn_t *)ffs_nodealloccg); 1138 if (ino == 0) 1139 goto noinodes; 1140 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1141 if (error) { 1142 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1143 FFSV_FORCEINSMQ); 1144 ffs_vfree(pvp, ino, mode); 1145 if (error1 == 0) { 1146 ip = VTOI(*vpp); 1147 if (ip->i_mode) 1148 goto dup_alloc; 1149 ip->i_flag |= IN_MODIFIED; 1150 vput(*vpp); 1151 } 1152 return (error); 1153 } 1154 ip = VTOI(*vpp); 1155 if (ip->i_mode) { 1156 dup_alloc: 1157 printf("mode = 0%o, inum = %ju, fs = %s\n", 1158 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1159 panic("ffs_valloc: dup alloc"); 1160 } 1161 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1162 printf("free inode %s/%lu had %ld blocks\n", 1163 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1164 DIP_SET(ip, i_blocks, 0); 1165 } 1166 ip->i_flags = 0; 1167 DIP_SET(ip, i_flags, 0); 1168 /* 1169 * Set up a new generation number for this inode. 1170 */ 1171 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1172 ip->i_gen = arc4random(); 1173 DIP_SET(ip, i_gen, ip->i_gen); 1174 if (fs->fs_magic == FS_UFS2_MAGIC) { 1175 vfs_timestamp(&ts); 1176 ip->i_din2->di_birthtime = ts.tv_sec; 1177 ip->i_din2->di_birthnsec = ts.tv_nsec; 1178 } 1179 ufs_prepare_reclaim(*vpp); 1180 ip->i_flag = 0; 1181 (*vpp)->v_vflag = 0; 1182 (*vpp)->v_type = VNON; 1183 if (fs->fs_magic == FS_UFS2_MAGIC) { 1184 (*vpp)->v_op = &ffs_vnodeops2; 1185 ip->i_flag |= IN_UFS2; 1186 } else { 1187 (*vpp)->v_op = &ffs_vnodeops1; 1188 } 1189 return (0); 1190 noinodes: 1191 if (reclaimed == 0) { 1192 reclaimed = 1; 1193 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1194 goto retry; 1195 } 1196 UFS_UNLOCK(ump); 1197 if (ppsratecheck(&lastfail, &curfail, 1)) { 1198 ffs_fserr(fs, pip->i_number, "out of inodes"); 1199 uprintf("\n%s: create/symlink failed, no inodes free\n", 1200 fs->fs_fsmnt); 1201 } 1202 return (ENOSPC); 1203 } 1204 1205 /* 1206 * Find a cylinder group to place a directory. 1207 * 1208 * The policy implemented by this algorithm is to allocate a 1209 * directory inode in the same cylinder group as its parent 1210 * directory, but also to reserve space for its files inodes 1211 * and data. Restrict the number of directories which may be 1212 * allocated one after another in the same cylinder group 1213 * without intervening allocation of files. 1214 * 1215 * If we allocate a first level directory then force allocation 1216 * in another cylinder group. 1217 */ 1218 static ino_t 1219 ffs_dirpref(pip) 1220 struct inode *pip; 1221 { 1222 struct fs *fs; 1223 int cg, prefcg, dirsize, cgsize; 1224 u_int avgifree, avgbfree, avgndir, curdirsize; 1225 u_int minifree, minbfree, maxndir; 1226 u_int mincg, minndir; 1227 u_int maxcontigdirs; 1228 1229 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1230 fs = ITOFS(pip); 1231 1232 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1233 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1234 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1235 1236 /* 1237 * Force allocation in another cg if creating a first level dir. 1238 */ 1239 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1240 if (ITOV(pip)->v_vflag & VV_ROOT) { 1241 prefcg = arc4random() % fs->fs_ncg; 1242 mincg = prefcg; 1243 minndir = fs->fs_ipg; 1244 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1245 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1246 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1247 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1248 mincg = cg; 1249 minndir = fs->fs_cs(fs, cg).cs_ndir; 1250 } 1251 for (cg = 0; cg < prefcg; cg++) 1252 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1253 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1254 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1255 mincg = cg; 1256 minndir = fs->fs_cs(fs, cg).cs_ndir; 1257 } 1258 return ((ino_t)(fs->fs_ipg * mincg)); 1259 } 1260 1261 /* 1262 * Count various limits which used for 1263 * optimal allocation of a directory inode. 1264 */ 1265 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1266 minifree = avgifree - avgifree / 4; 1267 if (minifree < 1) 1268 minifree = 1; 1269 minbfree = avgbfree - avgbfree / 4; 1270 if (minbfree < 1) 1271 minbfree = 1; 1272 cgsize = fs->fs_fsize * fs->fs_fpg; 1273 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1274 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1275 if (dirsize < curdirsize) 1276 dirsize = curdirsize; 1277 if (dirsize <= 0) 1278 maxcontigdirs = 0; /* dirsize overflowed */ 1279 else 1280 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1281 if (fs->fs_avgfpdir > 0) 1282 maxcontigdirs = min(maxcontigdirs, 1283 fs->fs_ipg / fs->fs_avgfpdir); 1284 if (maxcontigdirs == 0) 1285 maxcontigdirs = 1; 1286 1287 /* 1288 * Limit number of dirs in one cg and reserve space for 1289 * regular files, but only if we have no deficit in 1290 * inodes or space. 1291 * 1292 * We are trying to find a suitable cylinder group nearby 1293 * our preferred cylinder group to place a new directory. 1294 * We scan from our preferred cylinder group forward looking 1295 * for a cylinder group that meets our criterion. If we get 1296 * to the final cylinder group and do not find anything, 1297 * we start scanning forwards from the beginning of the 1298 * filesystem. While it might seem sensible to start scanning 1299 * backwards or even to alternate looking forward and backward, 1300 * this approach fails badly when the filesystem is nearly full. 1301 * Specifically, we first search all the areas that have no space 1302 * and finally try the one preceding that. We repeat this on 1303 * every request and in the case of the final block end up 1304 * searching the entire filesystem. By jumping to the front 1305 * of the filesystem, our future forward searches always look 1306 * in new cylinder groups so finds every possible block after 1307 * one pass over the filesystem. 1308 */ 1309 prefcg = ino_to_cg(fs, pip->i_number); 1310 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1311 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1312 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1313 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1314 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1315 return ((ino_t)(fs->fs_ipg * cg)); 1316 } 1317 for (cg = 0; cg < prefcg; cg++) 1318 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1319 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1320 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1321 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1322 return ((ino_t)(fs->fs_ipg * cg)); 1323 } 1324 /* 1325 * This is a backstop when we have deficit in space. 1326 */ 1327 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1328 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1329 return ((ino_t)(fs->fs_ipg * cg)); 1330 for (cg = 0; cg < prefcg; cg++) 1331 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1332 break; 1333 return ((ino_t)(fs->fs_ipg * cg)); 1334 } 1335 1336 /* 1337 * Select the desired position for the next block in a file. The file is 1338 * logically divided into sections. The first section is composed of the 1339 * direct blocks and the next fs_maxbpg blocks. Each additional section 1340 * contains fs_maxbpg blocks. 1341 * 1342 * If no blocks have been allocated in the first section, the policy is to 1343 * request a block in the same cylinder group as the inode that describes 1344 * the file. The first indirect is allocated immediately following the last 1345 * direct block and the data blocks for the first indirect immediately 1346 * follow it. 1347 * 1348 * If no blocks have been allocated in any other section, the indirect 1349 * block(s) are allocated in the same cylinder group as its inode in an 1350 * area reserved immediately following the inode blocks. The policy for 1351 * the data blocks is to place them in a cylinder group with a greater than 1352 * average number of free blocks. An appropriate cylinder group is found 1353 * by using a rotor that sweeps the cylinder groups. When a new group of 1354 * blocks is needed, the sweep begins in the cylinder group following the 1355 * cylinder group from which the previous allocation was made. The sweep 1356 * continues until a cylinder group with greater than the average number 1357 * of free blocks is found. If the allocation is for the first block in an 1358 * indirect block or the previous block is a hole, then the information on 1359 * the previous allocation is unavailable; here a best guess is made based 1360 * on the logical block number being allocated. 1361 * 1362 * If a section is already partially allocated, the policy is to 1363 * allocate blocks contiguously within the section if possible. 1364 */ 1365 ufs2_daddr_t 1366 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1367 struct inode *ip; 1368 ufs_lbn_t lbn; 1369 int indx; 1370 ufs1_daddr_t *bap; 1371 { 1372 struct fs *fs; 1373 u_int cg, inocg; 1374 u_int avgbfree, startcg; 1375 ufs2_daddr_t pref; 1376 1377 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1378 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1379 fs = ITOFS(ip); 1380 /* 1381 * Allocation of indirect blocks is indicated by passing negative 1382 * values in indx: -1 for single indirect, -2 for double indirect, 1383 * -3 for triple indirect. As noted below, we attempt to allocate 1384 * the first indirect inline with the file data. For all later 1385 * indirect blocks, the data is often allocated in other cylinder 1386 * groups. However to speed random file access and to speed up 1387 * fsck, the filesystem reserves the first fs_metaspace blocks 1388 * (typically half of fs_minfree) of the data area of each cylinder 1389 * group to hold these later indirect blocks. 1390 */ 1391 inocg = ino_to_cg(fs, ip->i_number); 1392 if (indx < 0) { 1393 /* 1394 * Our preference for indirect blocks is the zone at the 1395 * beginning of the inode's cylinder group data area that 1396 * we try to reserve for indirect blocks. 1397 */ 1398 pref = cgmeta(fs, inocg); 1399 /* 1400 * If we are allocating the first indirect block, try to 1401 * place it immediately following the last direct block. 1402 */ 1403 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1404 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1405 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1406 return (pref); 1407 } 1408 /* 1409 * If we are allocating the first data block in the first indirect 1410 * block and the indirect has been allocated in the data block area, 1411 * try to place it immediately following the indirect block. 1412 */ 1413 if (lbn == UFS_NDADDR) { 1414 pref = ip->i_din1->di_ib[0]; 1415 if (pref != 0 && pref >= cgdata(fs, inocg) && 1416 pref < cgbase(fs, inocg + 1)) 1417 return (pref + fs->fs_frag); 1418 } 1419 /* 1420 * If we are at the beginning of a file, or we have already allocated 1421 * the maximum number of blocks per cylinder group, or we do not 1422 * have a block allocated immediately preceding us, then we need 1423 * to decide where to start allocating new blocks. 1424 */ 1425 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1426 /* 1427 * If we are allocating a directory data block, we want 1428 * to place it in the metadata area. 1429 */ 1430 if ((ip->i_mode & IFMT) == IFDIR) 1431 return (cgmeta(fs, inocg)); 1432 /* 1433 * Until we fill all the direct and all the first indirect's 1434 * blocks, we try to allocate in the data area of the inode's 1435 * cylinder group. 1436 */ 1437 if (lbn < UFS_NDADDR + NINDIR(fs)) 1438 return (cgdata(fs, inocg)); 1439 /* 1440 * Find a cylinder with greater than average number of 1441 * unused data blocks. 1442 */ 1443 if (indx == 0 || bap[indx - 1] == 0) 1444 startcg = inocg + lbn / fs->fs_maxbpg; 1445 else 1446 startcg = dtog(fs, bap[indx - 1]) + 1; 1447 startcg %= fs->fs_ncg; 1448 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1449 for (cg = startcg; cg < fs->fs_ncg; cg++) 1450 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1451 fs->fs_cgrotor = cg; 1452 return (cgdata(fs, cg)); 1453 } 1454 for (cg = 0; cg <= startcg; cg++) 1455 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1456 fs->fs_cgrotor = cg; 1457 return (cgdata(fs, cg)); 1458 } 1459 return (0); 1460 } 1461 /* 1462 * Otherwise, we just always try to lay things out contiguously. 1463 */ 1464 return (bap[indx - 1] + fs->fs_frag); 1465 } 1466 1467 /* 1468 * Same as above, but for UFS2 1469 */ 1470 ufs2_daddr_t 1471 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1472 struct inode *ip; 1473 ufs_lbn_t lbn; 1474 int indx; 1475 ufs2_daddr_t *bap; 1476 { 1477 struct fs *fs; 1478 u_int cg, inocg; 1479 u_int avgbfree, startcg; 1480 ufs2_daddr_t pref; 1481 1482 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1483 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1484 fs = ITOFS(ip); 1485 /* 1486 * Allocation of indirect blocks is indicated by passing negative 1487 * values in indx: -1 for single indirect, -2 for double indirect, 1488 * -3 for triple indirect. As noted below, we attempt to allocate 1489 * the first indirect inline with the file data. For all later 1490 * indirect blocks, the data is often allocated in other cylinder 1491 * groups. However to speed random file access and to speed up 1492 * fsck, the filesystem reserves the first fs_metaspace blocks 1493 * (typically half of fs_minfree) of the data area of each cylinder 1494 * group to hold these later indirect blocks. 1495 */ 1496 inocg = ino_to_cg(fs, ip->i_number); 1497 if (indx < 0) { 1498 /* 1499 * Our preference for indirect blocks is the zone at the 1500 * beginning of the inode's cylinder group data area that 1501 * we try to reserve for indirect blocks. 1502 */ 1503 pref = cgmeta(fs, inocg); 1504 /* 1505 * If we are allocating the first indirect block, try to 1506 * place it immediately following the last direct block. 1507 */ 1508 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1509 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1510 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1511 return (pref); 1512 } 1513 /* 1514 * If we are allocating the first data block in the first indirect 1515 * block and the indirect has been allocated in the data block area, 1516 * try to place it immediately following the indirect block. 1517 */ 1518 if (lbn == UFS_NDADDR) { 1519 pref = ip->i_din2->di_ib[0]; 1520 if (pref != 0 && pref >= cgdata(fs, inocg) && 1521 pref < cgbase(fs, inocg + 1)) 1522 return (pref + fs->fs_frag); 1523 } 1524 /* 1525 * If we are at the beginning of a file, or we have already allocated 1526 * the maximum number of blocks per cylinder group, or we do not 1527 * have a block allocated immediately preceding us, then we need 1528 * to decide where to start allocating new blocks. 1529 */ 1530 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1531 /* 1532 * If we are allocating a directory data block, we want 1533 * to place it in the metadata area. 1534 */ 1535 if ((ip->i_mode & IFMT) == IFDIR) 1536 return (cgmeta(fs, inocg)); 1537 /* 1538 * Until we fill all the direct and all the first indirect's 1539 * blocks, we try to allocate in the data area of the inode's 1540 * cylinder group. 1541 */ 1542 if (lbn < UFS_NDADDR + NINDIR(fs)) 1543 return (cgdata(fs, inocg)); 1544 /* 1545 * Find a cylinder with greater than average number of 1546 * unused data blocks. 1547 */ 1548 if (indx == 0 || bap[indx - 1] == 0) 1549 startcg = inocg + lbn / fs->fs_maxbpg; 1550 else 1551 startcg = dtog(fs, bap[indx - 1]) + 1; 1552 startcg %= fs->fs_ncg; 1553 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1554 for (cg = startcg; cg < fs->fs_ncg; cg++) 1555 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1556 fs->fs_cgrotor = cg; 1557 return (cgdata(fs, cg)); 1558 } 1559 for (cg = 0; cg <= startcg; cg++) 1560 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1561 fs->fs_cgrotor = cg; 1562 return (cgdata(fs, cg)); 1563 } 1564 return (0); 1565 } 1566 /* 1567 * Otherwise, we just always try to lay things out contiguously. 1568 */ 1569 return (bap[indx - 1] + fs->fs_frag); 1570 } 1571 1572 /* 1573 * Implement the cylinder overflow algorithm. 1574 * 1575 * The policy implemented by this algorithm is: 1576 * 1) allocate the block in its requested cylinder group. 1577 * 2) quadradically rehash on the cylinder group number. 1578 * 3) brute force search for a free block. 1579 * 1580 * Must be called with the UFS lock held. Will release the lock on success 1581 * and return with it held on failure. 1582 */ 1583 /*VARARGS5*/ 1584 static ufs2_daddr_t 1585 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1586 struct inode *ip; 1587 u_int cg; 1588 ufs2_daddr_t pref; 1589 int size; /* Search size for data blocks, mode for inodes */ 1590 int rsize; /* Real allocated size. */ 1591 allocfcn_t *allocator; 1592 { 1593 struct fs *fs; 1594 ufs2_daddr_t result; 1595 u_int i, icg = cg; 1596 1597 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1598 #ifdef INVARIANTS 1599 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1600 panic("ffs_hashalloc: allocation on suspended filesystem"); 1601 #endif 1602 fs = ITOFS(ip); 1603 /* 1604 * 1: preferred cylinder group 1605 */ 1606 result = (*allocator)(ip, cg, pref, size, rsize); 1607 if (result) 1608 return (result); 1609 /* 1610 * 2: quadratic rehash 1611 */ 1612 for (i = 1; i < fs->fs_ncg; i *= 2) { 1613 cg += i; 1614 if (cg >= fs->fs_ncg) 1615 cg -= fs->fs_ncg; 1616 result = (*allocator)(ip, cg, 0, size, rsize); 1617 if (result) 1618 return (result); 1619 } 1620 /* 1621 * 3: brute force search 1622 * Note that we start at i == 2, since 0 was checked initially, 1623 * and 1 is always checked in the quadratic rehash. 1624 */ 1625 cg = (icg + 2) % fs->fs_ncg; 1626 for (i = 2; i < fs->fs_ncg; i++) { 1627 result = (*allocator)(ip, cg, 0, size, rsize); 1628 if (result) 1629 return (result); 1630 cg++; 1631 if (cg == fs->fs_ncg) 1632 cg = 0; 1633 } 1634 return (0); 1635 } 1636 1637 /* 1638 * Determine whether a fragment can be extended. 1639 * 1640 * Check to see if the necessary fragments are available, and 1641 * if they are, allocate them. 1642 */ 1643 static ufs2_daddr_t 1644 ffs_fragextend(ip, cg, bprev, osize, nsize) 1645 struct inode *ip; 1646 u_int cg; 1647 ufs2_daddr_t bprev; 1648 int osize, nsize; 1649 { 1650 struct fs *fs; 1651 struct cg *cgp; 1652 struct buf *bp; 1653 struct ufsmount *ump; 1654 int nffree; 1655 long bno; 1656 int frags, bbase; 1657 int i, error; 1658 u_int8_t *blksfree; 1659 1660 ump = ITOUMP(ip); 1661 fs = ump->um_fs; 1662 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1663 return (0); 1664 frags = numfrags(fs, nsize); 1665 bbase = fragnum(fs, bprev); 1666 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1667 /* cannot extend across a block boundary */ 1668 return (0); 1669 } 1670 UFS_UNLOCK(ump); 1671 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) 1672 goto fail; 1673 bno = dtogd(fs, bprev); 1674 blksfree = cg_blksfree(cgp); 1675 for (i = numfrags(fs, osize); i < frags; i++) 1676 if (isclr(blksfree, bno + i)) 1677 goto fail; 1678 /* 1679 * the current fragment can be extended 1680 * deduct the count on fragment being extended into 1681 * increase the count on the remaining fragment (if any) 1682 * allocate the extended piece 1683 */ 1684 for (i = frags; i < fs->fs_frag - bbase; i++) 1685 if (isclr(blksfree, bno + i)) 1686 break; 1687 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1688 if (i != frags) 1689 cgp->cg_frsum[i - frags]++; 1690 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1691 clrbit(blksfree, bno + i); 1692 cgp->cg_cs.cs_nffree--; 1693 nffree++; 1694 } 1695 UFS_LOCK(ump); 1696 fs->fs_cstotal.cs_nffree -= nffree; 1697 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1698 fs->fs_fmod = 1; 1699 ACTIVECLEAR(fs, cg); 1700 UFS_UNLOCK(ump); 1701 if (DOINGSOFTDEP(ITOV(ip))) 1702 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1703 frags, numfrags(fs, osize)); 1704 bdwrite(bp); 1705 return (bprev); 1706 1707 fail: 1708 brelse(bp); 1709 UFS_LOCK(ump); 1710 return (0); 1711 1712 } 1713 1714 /* 1715 * Determine whether a block can be allocated. 1716 * 1717 * Check to see if a block of the appropriate size is available, 1718 * and if it is, allocate it. 1719 */ 1720 static ufs2_daddr_t 1721 ffs_alloccg(ip, cg, bpref, size, rsize) 1722 struct inode *ip; 1723 u_int cg; 1724 ufs2_daddr_t bpref; 1725 int size; 1726 int rsize; 1727 { 1728 struct fs *fs; 1729 struct cg *cgp; 1730 struct buf *bp; 1731 struct ufsmount *ump; 1732 ufs1_daddr_t bno; 1733 ufs2_daddr_t blkno; 1734 int i, allocsiz, error, frags; 1735 u_int8_t *blksfree; 1736 1737 ump = ITOUMP(ip); 1738 fs = ump->um_fs; 1739 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1740 return (0); 1741 UFS_UNLOCK(ump); 1742 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || 1743 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1744 goto fail; 1745 if (size == fs->fs_bsize) { 1746 UFS_LOCK(ump); 1747 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1748 ACTIVECLEAR(fs, cg); 1749 UFS_UNLOCK(ump); 1750 bdwrite(bp); 1751 return (blkno); 1752 } 1753 /* 1754 * check to see if any fragments are already available 1755 * allocsiz is the size which will be allocated, hacking 1756 * it down to a smaller size if necessary 1757 */ 1758 blksfree = cg_blksfree(cgp); 1759 frags = numfrags(fs, size); 1760 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1761 if (cgp->cg_frsum[allocsiz] != 0) 1762 break; 1763 if (allocsiz == fs->fs_frag) { 1764 /* 1765 * no fragments were available, so a block will be 1766 * allocated, and hacked up 1767 */ 1768 if (cgp->cg_cs.cs_nbfree == 0) 1769 goto fail; 1770 UFS_LOCK(ump); 1771 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1772 ACTIVECLEAR(fs, cg); 1773 UFS_UNLOCK(ump); 1774 bdwrite(bp); 1775 return (blkno); 1776 } 1777 KASSERT(size == rsize, 1778 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1779 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1780 if (bno < 0) 1781 goto fail; 1782 for (i = 0; i < frags; i++) 1783 clrbit(blksfree, bno + i); 1784 cgp->cg_cs.cs_nffree -= frags; 1785 cgp->cg_frsum[allocsiz]--; 1786 if (frags != allocsiz) 1787 cgp->cg_frsum[allocsiz - frags]++; 1788 UFS_LOCK(ump); 1789 fs->fs_cstotal.cs_nffree -= frags; 1790 fs->fs_cs(fs, cg).cs_nffree -= frags; 1791 fs->fs_fmod = 1; 1792 blkno = cgbase(fs, cg) + bno; 1793 ACTIVECLEAR(fs, cg); 1794 UFS_UNLOCK(ump); 1795 if (DOINGSOFTDEP(ITOV(ip))) 1796 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1797 bdwrite(bp); 1798 return (blkno); 1799 1800 fail: 1801 brelse(bp); 1802 UFS_LOCK(ump); 1803 return (0); 1804 } 1805 1806 /* 1807 * Allocate a block in a cylinder group. 1808 * 1809 * This algorithm implements the following policy: 1810 * 1) allocate the requested block. 1811 * 2) allocate a rotationally optimal block in the same cylinder. 1812 * 3) allocate the next available block on the block rotor for the 1813 * specified cylinder group. 1814 * Note that this routine only allocates fs_bsize blocks; these 1815 * blocks may be fragmented by the routine that allocates them. 1816 */ 1817 static ufs2_daddr_t 1818 ffs_alloccgblk(ip, bp, bpref, size) 1819 struct inode *ip; 1820 struct buf *bp; 1821 ufs2_daddr_t bpref; 1822 int size; 1823 { 1824 struct fs *fs; 1825 struct cg *cgp; 1826 struct ufsmount *ump; 1827 ufs1_daddr_t bno; 1828 ufs2_daddr_t blkno; 1829 u_int8_t *blksfree; 1830 int i, cgbpref; 1831 1832 ump = ITOUMP(ip); 1833 fs = ump->um_fs; 1834 mtx_assert(UFS_MTX(ump), MA_OWNED); 1835 cgp = (struct cg *)bp->b_data; 1836 blksfree = cg_blksfree(cgp); 1837 if (bpref == 0) { 1838 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1839 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1840 /* map bpref to correct zone in this cg */ 1841 if (bpref < cgdata(fs, cgbpref)) 1842 bpref = cgmeta(fs, cgp->cg_cgx); 1843 else 1844 bpref = cgdata(fs, cgp->cg_cgx); 1845 } 1846 /* 1847 * if the requested block is available, use it 1848 */ 1849 bno = dtogd(fs, blknum(fs, bpref)); 1850 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1851 goto gotit; 1852 /* 1853 * Take the next available block in this cylinder group. 1854 */ 1855 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1856 if (bno < 0) 1857 return (0); 1858 /* Update cg_rotor only if allocated from the data zone */ 1859 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1860 cgp->cg_rotor = bno; 1861 gotit: 1862 blkno = fragstoblks(fs, bno); 1863 ffs_clrblock(fs, blksfree, (long)blkno); 1864 ffs_clusteracct(fs, cgp, blkno, -1); 1865 cgp->cg_cs.cs_nbfree--; 1866 fs->fs_cstotal.cs_nbfree--; 1867 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1868 fs->fs_fmod = 1; 1869 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1870 /* 1871 * If the caller didn't want the whole block free the frags here. 1872 */ 1873 size = numfrags(fs, size); 1874 if (size != fs->fs_frag) { 1875 bno = dtogd(fs, blkno); 1876 for (i = size; i < fs->fs_frag; i++) 1877 setbit(blksfree, bno + i); 1878 i = fs->fs_frag - size; 1879 cgp->cg_cs.cs_nffree += i; 1880 fs->fs_cstotal.cs_nffree += i; 1881 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1882 fs->fs_fmod = 1; 1883 cgp->cg_frsum[i]++; 1884 } 1885 /* XXX Fixme. */ 1886 UFS_UNLOCK(ump); 1887 if (DOINGSOFTDEP(ITOV(ip))) 1888 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1889 UFS_LOCK(ump); 1890 return (blkno); 1891 } 1892 1893 /* 1894 * Determine whether a cluster can be allocated. 1895 * 1896 * We do not currently check for optimal rotational layout if there 1897 * are multiple choices in the same cylinder group. Instead we just 1898 * take the first one that we find following bpref. 1899 */ 1900 static ufs2_daddr_t 1901 ffs_clusteralloc(ip, cg, bpref, len) 1902 struct inode *ip; 1903 u_int cg; 1904 ufs2_daddr_t bpref; 1905 int len; 1906 { 1907 struct fs *fs; 1908 struct cg *cgp; 1909 struct buf *bp; 1910 struct ufsmount *ump; 1911 int i, run, bit, map, got, error; 1912 ufs2_daddr_t bno; 1913 u_char *mapp; 1914 int32_t *lp; 1915 u_int8_t *blksfree; 1916 1917 ump = ITOUMP(ip); 1918 fs = ump->um_fs; 1919 if (fs->fs_maxcluster[cg] < len) 1920 return (0); 1921 UFS_UNLOCK(ump); 1922 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1923 UFS_LOCK(ump); 1924 return (0); 1925 } 1926 /* 1927 * Check to see if a cluster of the needed size (or bigger) is 1928 * available in this cylinder group. 1929 */ 1930 lp = &cg_clustersum(cgp)[len]; 1931 for (i = len; i <= fs->fs_contigsumsize; i++) 1932 if (*lp++ > 0) 1933 break; 1934 if (i > fs->fs_contigsumsize) { 1935 /* 1936 * This is the first time looking for a cluster in this 1937 * cylinder group. Update the cluster summary information 1938 * to reflect the true maximum sized cluster so that 1939 * future cluster allocation requests can avoid reading 1940 * the cylinder group map only to find no clusters. 1941 */ 1942 lp = &cg_clustersum(cgp)[len - 1]; 1943 for (i = len - 1; i > 0; i--) 1944 if (*lp-- > 0) 1945 break; 1946 UFS_LOCK(ump); 1947 fs->fs_maxcluster[cg] = i; 1948 brelse(bp); 1949 return (0); 1950 } 1951 /* 1952 * Search the cluster map to find a big enough cluster. 1953 * We take the first one that we find, even if it is larger 1954 * than we need as we prefer to get one close to the previous 1955 * block allocation. We do not search before the current 1956 * preference point as we do not want to allocate a block 1957 * that is allocated before the previous one (as we will 1958 * then have to wait for another pass of the elevator 1959 * algorithm before it will be read). We prefer to fail and 1960 * be recalled to try an allocation in the next cylinder group. 1961 */ 1962 if (dtog(fs, bpref) != cg) 1963 bpref = cgdata(fs, cg); 1964 else 1965 bpref = blknum(fs, bpref); 1966 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1967 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1968 map = *mapp++; 1969 bit = 1 << (bpref % NBBY); 1970 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1971 if ((map & bit) == 0) { 1972 run = 0; 1973 } else { 1974 run++; 1975 if (run == len) 1976 break; 1977 } 1978 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1979 bit <<= 1; 1980 } else { 1981 map = *mapp++; 1982 bit = 1; 1983 } 1984 } 1985 if (got >= cgp->cg_nclusterblks) { 1986 UFS_LOCK(ump); 1987 brelse(bp); 1988 return (0); 1989 } 1990 /* 1991 * Allocate the cluster that we have found. 1992 */ 1993 blksfree = cg_blksfree(cgp); 1994 for (i = 1; i <= len; i++) 1995 if (!ffs_isblock(fs, blksfree, got - run + i)) 1996 panic("ffs_clusteralloc: map mismatch"); 1997 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1998 if (dtog(fs, bno) != cg) 1999 panic("ffs_clusteralloc: allocated out of group"); 2000 len = blkstofrags(fs, len); 2001 UFS_LOCK(ump); 2002 for (i = 0; i < len; i += fs->fs_frag) 2003 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2004 panic("ffs_clusteralloc: lost block"); 2005 ACTIVECLEAR(fs, cg); 2006 UFS_UNLOCK(ump); 2007 bdwrite(bp); 2008 return (bno); 2009 } 2010 2011 static inline struct buf * 2012 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 2013 { 2014 struct fs *fs; 2015 2016 fs = ITOFS(ip); 2017 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2018 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2019 gbflags)); 2020 } 2021 2022 /* 2023 * Synchronous inode initialization is needed only when barrier writes do not 2024 * work as advertised, and will impose a heavy cost on file creation in a newly 2025 * created filesystem. 2026 */ 2027 static int doasyncinodeinit = 1; 2028 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2029 &doasyncinodeinit, 0, 2030 "Perform inode block initialization using asynchronous writes"); 2031 2032 /* 2033 * Determine whether an inode can be allocated. 2034 * 2035 * Check to see if an inode is available, and if it is, 2036 * allocate it using the following policy: 2037 * 1) allocate the requested inode. 2038 * 2) allocate the next available inode after the requested 2039 * inode in the specified cylinder group. 2040 */ 2041 static ufs2_daddr_t 2042 ffs_nodealloccg(ip, cg, ipref, mode, unused) 2043 struct inode *ip; 2044 u_int cg; 2045 ufs2_daddr_t ipref; 2046 int mode; 2047 int unused; 2048 { 2049 struct fs *fs; 2050 struct cg *cgp; 2051 struct buf *bp, *ibp; 2052 struct ufsmount *ump; 2053 u_int8_t *inosused, *loc; 2054 struct ufs2_dinode *dp2; 2055 int error, start, len, i; 2056 u_int32_t old_initediblk; 2057 2058 ump = ITOUMP(ip); 2059 fs = ump->um_fs; 2060 check_nifree: 2061 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2062 return (0); 2063 UFS_UNLOCK(ump); 2064 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 2065 UFS_LOCK(ump); 2066 return (0); 2067 } 2068 restart: 2069 if (cgp->cg_cs.cs_nifree == 0) { 2070 brelse(bp); 2071 UFS_LOCK(ump); 2072 return (0); 2073 } 2074 inosused = cg_inosused(cgp); 2075 if (ipref) { 2076 ipref %= fs->fs_ipg; 2077 if (isclr(inosused, ipref)) 2078 goto gotit; 2079 } 2080 start = cgp->cg_irotor / NBBY; 2081 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2082 loc = memcchr(&inosused[start], 0xff, len); 2083 if (loc == NULL) { 2084 len = start + 1; 2085 start = 0; 2086 loc = memcchr(&inosused[start], 0xff, len); 2087 if (loc == NULL) { 2088 printf("cg = %d, irotor = %ld, fs = %s\n", 2089 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2090 panic("ffs_nodealloccg: map corrupted"); 2091 /* NOTREACHED */ 2092 } 2093 } 2094 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2095 gotit: 2096 /* 2097 * Check to see if we need to initialize more inodes. 2098 */ 2099 if (fs->fs_magic == FS_UFS2_MAGIC && 2100 ipref + INOPB(fs) > cgp->cg_initediblk && 2101 cgp->cg_initediblk < cgp->cg_niblk) { 2102 old_initediblk = cgp->cg_initediblk; 2103 2104 /* 2105 * Free the cylinder group lock before writing the 2106 * initialized inode block. Entering the 2107 * babarrierwrite() with the cylinder group lock 2108 * causes lock order violation between the lock and 2109 * snaplk. 2110 * 2111 * Another thread can decide to initialize the same 2112 * inode block, but whichever thread first gets the 2113 * cylinder group lock after writing the newly 2114 * allocated inode block will update it and the other 2115 * will realize that it has lost and leave the 2116 * cylinder group unchanged. 2117 */ 2118 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2119 brelse(bp); 2120 if (ibp == NULL) { 2121 /* 2122 * The inode block buffer is already owned by 2123 * another thread, which must initialize it. 2124 * Wait on the buffer to allow another thread 2125 * to finish the updates, with dropped cg 2126 * buffer lock, then retry. 2127 */ 2128 ibp = getinobuf(ip, cg, old_initediblk, 0); 2129 brelse(ibp); 2130 UFS_LOCK(ump); 2131 goto check_nifree; 2132 } 2133 bzero(ibp->b_data, (int)fs->fs_bsize); 2134 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2135 for (i = 0; i < INOPB(fs); i++) { 2136 while (dp2->di_gen == 0) 2137 dp2->di_gen = arc4random(); 2138 dp2++; 2139 } 2140 2141 /* 2142 * Rather than adding a soft updates dependency to ensure 2143 * that the new inode block is written before it is claimed 2144 * by the cylinder group map, we just do a barrier write 2145 * here. The barrier write will ensure that the inode block 2146 * gets written before the updated cylinder group map can be 2147 * written. The barrier write should only slow down bulk 2148 * loading of newly created filesystems. 2149 */ 2150 if (doasyncinodeinit) 2151 babarrierwrite(ibp); 2152 else 2153 bwrite(ibp); 2154 2155 /* 2156 * After the inode block is written, try to update the 2157 * cg initediblk pointer. If another thread beat us 2158 * to it, then leave it unchanged as the other thread 2159 * has already set it correctly. 2160 */ 2161 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); 2162 UFS_LOCK(ump); 2163 ACTIVECLEAR(fs, cg); 2164 UFS_UNLOCK(ump); 2165 if (error != 0) 2166 return (error); 2167 if (cgp->cg_initediblk == old_initediblk) 2168 cgp->cg_initediblk += INOPB(fs); 2169 goto restart; 2170 } 2171 cgp->cg_irotor = ipref; 2172 UFS_LOCK(ump); 2173 ACTIVECLEAR(fs, cg); 2174 setbit(inosused, ipref); 2175 cgp->cg_cs.cs_nifree--; 2176 fs->fs_cstotal.cs_nifree--; 2177 fs->fs_cs(fs, cg).cs_nifree--; 2178 fs->fs_fmod = 1; 2179 if ((mode & IFMT) == IFDIR) { 2180 cgp->cg_cs.cs_ndir++; 2181 fs->fs_cstotal.cs_ndir++; 2182 fs->fs_cs(fs, cg).cs_ndir++; 2183 } 2184 UFS_UNLOCK(ump); 2185 if (DOINGSOFTDEP(ITOV(ip))) 2186 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2187 bdwrite(bp); 2188 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2189 } 2190 2191 /* 2192 * Free a block or fragment. 2193 * 2194 * The specified block or fragment is placed back in the 2195 * free map. If a fragment is deallocated, a possible 2196 * block reassembly is checked. 2197 */ 2198 static void 2199 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2200 struct ufsmount *ump; 2201 struct fs *fs; 2202 struct vnode *devvp; 2203 ufs2_daddr_t bno; 2204 long size; 2205 ino_t inum; 2206 struct workhead *dephd; 2207 { 2208 struct mount *mp; 2209 struct cg *cgp; 2210 struct buf *bp; 2211 ufs1_daddr_t fragno, cgbno; 2212 int i, blk, frags, bbase, error; 2213 u_int cg; 2214 u_int8_t *blksfree; 2215 struct cdev *dev; 2216 2217 cg = dtog(fs, bno); 2218 if (devvp->v_type == VREG) { 2219 /* devvp is a snapshot */ 2220 MPASS(devvp->v_mount->mnt_data == ump); 2221 dev = ump->um_devvp->v_rdev; 2222 } else if (devvp->v_type == VCHR) { 2223 /* devvp is a normal disk device */ 2224 dev = devvp->v_rdev; 2225 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2226 } else 2227 return; 2228 #ifdef INVARIANTS 2229 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2230 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2231 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2232 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2233 size, fs->fs_fsmnt); 2234 panic("ffs_blkfree_cg: bad size"); 2235 } 2236 #endif 2237 if ((u_int)bno >= fs->fs_size) { 2238 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2239 (u_long)inum); 2240 ffs_fserr(fs, inum, "bad block"); 2241 return; 2242 } 2243 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2244 return; 2245 cgbno = dtogd(fs, bno); 2246 blksfree = cg_blksfree(cgp); 2247 UFS_LOCK(ump); 2248 if (size == fs->fs_bsize) { 2249 fragno = fragstoblks(fs, cgbno); 2250 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2251 if (devvp->v_type == VREG) { 2252 UFS_UNLOCK(ump); 2253 /* devvp is a snapshot */ 2254 brelse(bp); 2255 return; 2256 } 2257 printf("dev = %s, block = %jd, fs = %s\n", 2258 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2259 panic("ffs_blkfree_cg: freeing free block"); 2260 } 2261 ffs_setblock(fs, blksfree, fragno); 2262 ffs_clusteracct(fs, cgp, fragno, 1); 2263 cgp->cg_cs.cs_nbfree++; 2264 fs->fs_cstotal.cs_nbfree++; 2265 fs->fs_cs(fs, cg).cs_nbfree++; 2266 } else { 2267 bbase = cgbno - fragnum(fs, cgbno); 2268 /* 2269 * decrement the counts associated with the old frags 2270 */ 2271 blk = blkmap(fs, blksfree, bbase); 2272 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2273 /* 2274 * deallocate the fragment 2275 */ 2276 frags = numfrags(fs, size); 2277 for (i = 0; i < frags; i++) { 2278 if (isset(blksfree, cgbno + i)) { 2279 printf("dev = %s, block = %jd, fs = %s\n", 2280 devtoname(dev), (intmax_t)(bno + i), 2281 fs->fs_fsmnt); 2282 panic("ffs_blkfree_cg: freeing free frag"); 2283 } 2284 setbit(blksfree, cgbno + i); 2285 } 2286 cgp->cg_cs.cs_nffree += i; 2287 fs->fs_cstotal.cs_nffree += i; 2288 fs->fs_cs(fs, cg).cs_nffree += i; 2289 /* 2290 * add back in counts associated with the new frags 2291 */ 2292 blk = blkmap(fs, blksfree, bbase); 2293 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2294 /* 2295 * if a complete block has been reassembled, account for it 2296 */ 2297 fragno = fragstoblks(fs, bbase); 2298 if (ffs_isblock(fs, blksfree, fragno)) { 2299 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2300 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2301 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2302 ffs_clusteracct(fs, cgp, fragno, 1); 2303 cgp->cg_cs.cs_nbfree++; 2304 fs->fs_cstotal.cs_nbfree++; 2305 fs->fs_cs(fs, cg).cs_nbfree++; 2306 } 2307 } 2308 fs->fs_fmod = 1; 2309 ACTIVECLEAR(fs, cg); 2310 UFS_UNLOCK(ump); 2311 mp = UFSTOVFS(ump); 2312 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2313 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2314 numfrags(fs, size), dephd); 2315 bdwrite(bp); 2316 } 2317 2318 /* 2319 * Structures and routines associated with trim management. 2320 * 2321 * The following requests are passed to trim_lookup to indicate 2322 * the actions that should be taken. 2323 */ 2324 #define NEW 1 /* if found, error else allocate and hash it */ 2325 #define OLD 2 /* if not found, error, else return it */ 2326 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2327 #define DONE 4 /* if not found, error else unhash and return it */ 2328 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2329 2330 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2331 2332 #define TRIMLIST_HASH(ump, key) \ 2333 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2334 2335 /* 2336 * These structures describe each of the block free requests aggregated 2337 * together to make up a trim request. 2338 */ 2339 struct trim_blkreq { 2340 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2341 ufs2_daddr_t bno; 2342 long size; 2343 struct workhead *pdephd; 2344 struct workhead dephd; 2345 }; 2346 2347 /* 2348 * Description of a trim request. 2349 */ 2350 struct ffs_blkfree_trim_params { 2351 TAILQ_HEAD(, trim_blkreq) blklist; 2352 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2353 struct task task; 2354 struct ufsmount *ump; 2355 struct vnode *devvp; 2356 ino_t inum; 2357 ufs2_daddr_t bno; 2358 long size; 2359 long key; 2360 }; 2361 2362 static void ffs_blkfree_trim_completed(struct buf *); 2363 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2364 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2365 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int); 2366 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2367 2368 /* 2369 * Called on trim completion to start a task to free the associated block(s). 2370 */ 2371 static void 2372 ffs_blkfree_trim_completed(bp) 2373 struct buf *bp; 2374 { 2375 struct ffs_blkfree_trim_params *tp; 2376 2377 tp = bp->b_fsprivate1; 2378 free(bp, M_TRIM); 2379 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2380 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2381 } 2382 2383 /* 2384 * Trim completion task that free associated block(s). 2385 */ 2386 static void 2387 ffs_blkfree_trim_task(ctx, pending) 2388 void *ctx; 2389 int pending; 2390 { 2391 struct ffs_blkfree_trim_params *tp; 2392 struct trim_blkreq *blkelm; 2393 struct ufsmount *ump; 2394 2395 tp = ctx; 2396 ump = tp->ump; 2397 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2398 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2399 blkelm->size, tp->inum, blkelm->pdephd); 2400 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2401 free(blkelm, M_TRIM); 2402 } 2403 vn_finished_secondary_write(UFSTOVFS(ump)); 2404 UFS_LOCK(ump); 2405 ump->um_trim_inflight -= 1; 2406 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2407 UFS_UNLOCK(ump); 2408 free(tp, M_TRIM); 2409 } 2410 2411 /* 2412 * Lookup a trim request by inode number. 2413 * Allocate if requested (NEW, REPLACE, SINGLE). 2414 */ 2415 static struct ffs_blkfree_trim_params * 2416 trim_lookup(ump, devvp, bno, size, inum, key, alloctype) 2417 struct ufsmount *ump; 2418 struct vnode *devvp; 2419 ufs2_daddr_t bno; 2420 long size; 2421 ino_t inum; 2422 u_long key; 2423 int alloctype; 2424 { 2425 struct trimlist_hashhead *tphashhead; 2426 struct ffs_blkfree_trim_params *tp, *ntp; 2427 2428 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2429 if (alloctype != SINGLE) { 2430 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2431 UFS_LOCK(ump); 2432 tphashhead = TRIMLIST_HASH(ump, key); 2433 LIST_FOREACH(tp, tphashhead, hashlist) 2434 if (key == tp->key) 2435 break; 2436 } 2437 switch (alloctype) { 2438 case NEW: 2439 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2440 break; 2441 case OLD: 2442 KASSERT(tp != NULL, 2443 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2444 UFS_UNLOCK(ump); 2445 free(ntp, M_TRIM); 2446 return (tp); 2447 case REPLACE: 2448 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2449 LIST_REMOVE(tp, hashlist); 2450 /* tp will be freed by caller */ 2451 break; 2452 case DONE: 2453 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2454 LIST_REMOVE(tp, hashlist); 2455 UFS_UNLOCK(ump); 2456 free(ntp, M_TRIM); 2457 return (tp); 2458 } 2459 TAILQ_INIT(&ntp->blklist); 2460 ntp->ump = ump; 2461 ntp->devvp = devvp; 2462 ntp->bno = bno; 2463 ntp->size = size; 2464 ntp->inum = inum; 2465 ntp->key = key; 2466 if (alloctype != SINGLE) { 2467 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2468 UFS_UNLOCK(ump); 2469 } 2470 return (ntp); 2471 } 2472 2473 /* 2474 * Dispatch a trim request. 2475 */ 2476 static void 2477 ffs_blkfree_sendtrim(tp) 2478 struct ffs_blkfree_trim_params *tp; 2479 { 2480 struct ufsmount *ump; 2481 struct mount *mp; 2482 struct buf *bp; 2483 2484 /* 2485 * Postpone the set of the free bit in the cg bitmap until the 2486 * BIO_DELETE is completed. Otherwise, due to disk queue 2487 * reordering, TRIM might be issued after we reuse the block 2488 * and write some new data into it. 2489 */ 2490 ump = tp->ump; 2491 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2492 bp->b_iocmd = BIO_DELETE; 2493 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2494 bp->b_iodone = ffs_blkfree_trim_completed; 2495 bp->b_bcount = tp->size; 2496 bp->b_fsprivate1 = tp; 2497 UFS_LOCK(ump); 2498 ump->um_trim_total += 1; 2499 ump->um_trim_inflight += 1; 2500 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2501 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2502 UFS_UNLOCK(ump); 2503 2504 mp = UFSTOVFS(ump); 2505 vn_start_secondary_write(NULL, &mp, 0); 2506 g_vfs_strategy(ump->um_bo, bp); 2507 } 2508 2509 /* 2510 * Allocate a new key to use to identify a range of blocks. 2511 */ 2512 u_long 2513 ffs_blkrelease_start(ump, devvp, inum) 2514 struct ufsmount *ump; 2515 struct vnode *devvp; 2516 ino_t inum; 2517 { 2518 static u_long masterkey; 2519 u_long key; 2520 2521 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2522 return (SINGLETON_KEY); 2523 do { 2524 key = atomic_fetchadd_long(&masterkey, 1); 2525 } while (key < FIRST_VALID_KEY); 2526 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2527 return (key); 2528 } 2529 2530 /* 2531 * Deallocate a key that has been used to identify a range of blocks. 2532 */ 2533 void 2534 ffs_blkrelease_finish(ump, key) 2535 struct ufsmount *ump; 2536 u_long key; 2537 { 2538 struct ffs_blkfree_trim_params *tp; 2539 2540 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2541 return; 2542 /* 2543 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2544 * a file deletion is active, specifically after a call 2545 * to ffs_blkrelease_start() but before the call to 2546 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2547 * have handed out SINGLETON_KEY rather than starting a 2548 * collection sequence. Thus if we get a SINGLETON_KEY 2549 * passed to ffs_blkrelease_finish(), we just return rather 2550 * than trying to finish the nonexistent sequence. 2551 */ 2552 if (key == SINGLETON_KEY) { 2553 #ifdef INVARIANTS 2554 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2555 ump->um_mountp->mnt_stat.f_mntonname); 2556 #endif 2557 return; 2558 } 2559 /* 2560 * We are done with sending blocks using this key. Look up the key 2561 * using the DONE alloctype (in tp) to request that it be unhashed 2562 * as we will not be adding to it. If the key has never been used, 2563 * tp->size will be zero, so we can just free tp. Otherwise the call 2564 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2565 * tp to be issued (and then tp to be freed). 2566 */ 2567 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2568 if (tp->size == 0) 2569 free(tp, M_TRIM); 2570 else 2571 ffs_blkfree_sendtrim(tp); 2572 } 2573 2574 /* 2575 * Setup to free a block or fragment. 2576 * 2577 * Check for snapshots that might want to claim the block. 2578 * If trims are requested, prepare a trim request. Attempt to 2579 * aggregate consecutive blocks into a single trim request. 2580 */ 2581 void 2582 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key) 2583 struct ufsmount *ump; 2584 struct fs *fs; 2585 struct vnode *devvp; 2586 ufs2_daddr_t bno; 2587 long size; 2588 ino_t inum; 2589 enum vtype vtype; 2590 struct workhead *dephd; 2591 u_long key; 2592 { 2593 struct ffs_blkfree_trim_params *tp, *ntp; 2594 struct trim_blkreq *blkelm; 2595 2596 /* 2597 * Check to see if a snapshot wants to claim the block. 2598 * Check that devvp is a normal disk device, not a snapshot, 2599 * it has a snapshot(s) associated with it, and one of the 2600 * snapshots wants to claim the block. 2601 */ 2602 if (devvp->v_type == VCHR && 2603 (devvp->v_vflag & VV_COPYONWRITE) && 2604 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2605 return; 2606 } 2607 /* 2608 * Nothing to delay if TRIM is not required for this block or TRIM 2609 * is disabled or the operation is performed on a snapshot. 2610 */ 2611 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2612 devvp->v_type == VREG) { 2613 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2614 return; 2615 } 2616 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2617 blkelm->bno = bno; 2618 blkelm->size = size; 2619 if (dephd == NULL) { 2620 blkelm->pdephd = NULL; 2621 } else { 2622 LIST_INIT(&blkelm->dephd); 2623 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2624 blkelm->pdephd = &blkelm->dephd; 2625 } 2626 if (key == SINGLETON_KEY) { 2627 /* 2628 * Just a single non-contiguous piece. Use the SINGLE 2629 * alloctype to return a trim request that will not be 2630 * hashed for future lookup. 2631 */ 2632 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2633 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2634 ffs_blkfree_sendtrim(tp); 2635 return; 2636 } 2637 /* 2638 * The callers of this function are not tracking whether or not 2639 * the blocks are contiguous. They are just saying that they 2640 * are freeing a set of blocks. It is this code that determines 2641 * the pieces of that range that are actually contiguous. 2642 * 2643 * Calling ffs_blkrelease_start() will have created an entry 2644 * that we will use. 2645 */ 2646 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2647 if (tp->size == 0) { 2648 /* 2649 * First block of a potential range, set block and size 2650 * for the trim block. 2651 */ 2652 tp->bno = bno; 2653 tp->size = size; 2654 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2655 return; 2656 } 2657 /* 2658 * If this block is a continuation of the range (either 2659 * follows at the end or preceeds in the front) then we 2660 * add it to the front or back of the list and return. 2661 * 2662 * If it is not a continuation of the trim that we were 2663 * building, using the REPLACE alloctype, we request that 2664 * the old trim request (still in tp) be unhashed and a 2665 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2666 * call causes the block range described by tp to be issued 2667 * (and then tp to be freed). 2668 */ 2669 if (bno + numfrags(fs, size) == tp->bno) { 2670 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2671 tp->bno = bno; 2672 tp->size += size; 2673 return; 2674 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2675 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2676 tp->size += size; 2677 return; 2678 } 2679 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2680 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2681 ffs_blkfree_sendtrim(tp); 2682 } 2683 2684 #ifdef INVARIANTS 2685 /* 2686 * Verify allocation of a block or fragment. Returns true if block or 2687 * fragment is allocated, false if it is free. 2688 */ 2689 static int 2690 ffs_checkblk(ip, bno, size) 2691 struct inode *ip; 2692 ufs2_daddr_t bno; 2693 long size; 2694 { 2695 struct fs *fs; 2696 struct cg *cgp; 2697 struct buf *bp; 2698 ufs1_daddr_t cgbno; 2699 int i, error, frags, free; 2700 u_int8_t *blksfree; 2701 2702 fs = ITOFS(ip); 2703 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2704 printf("bsize = %ld, size = %ld, fs = %s\n", 2705 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2706 panic("ffs_checkblk: bad size"); 2707 } 2708 if ((u_int)bno >= fs->fs_size) 2709 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2710 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); 2711 if (error) 2712 panic("ffs_checkblk: cylinder group read failed"); 2713 blksfree = cg_blksfree(cgp); 2714 cgbno = dtogd(fs, bno); 2715 if (size == fs->fs_bsize) { 2716 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2717 } else { 2718 frags = numfrags(fs, size); 2719 for (free = 0, i = 0; i < frags; i++) 2720 if (isset(blksfree, cgbno + i)) 2721 free++; 2722 if (free != 0 && free != frags) 2723 panic("ffs_checkblk: partially free fragment"); 2724 } 2725 brelse(bp); 2726 return (!free); 2727 } 2728 #endif /* INVARIANTS */ 2729 2730 /* 2731 * Free an inode. 2732 */ 2733 int 2734 ffs_vfree(pvp, ino, mode) 2735 struct vnode *pvp; 2736 ino_t ino; 2737 int mode; 2738 { 2739 struct ufsmount *ump; 2740 2741 if (DOINGSOFTDEP(pvp)) { 2742 softdep_freefile(pvp, ino, mode); 2743 return (0); 2744 } 2745 ump = VFSTOUFS(pvp->v_mount); 2746 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2747 } 2748 2749 /* 2750 * Do the actual free operation. 2751 * The specified inode is placed back in the free map. 2752 */ 2753 int 2754 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2755 struct ufsmount *ump; 2756 struct fs *fs; 2757 struct vnode *devvp; 2758 ino_t ino; 2759 int mode; 2760 struct workhead *wkhd; 2761 { 2762 struct cg *cgp; 2763 struct buf *bp; 2764 int error; 2765 u_int cg; 2766 u_int8_t *inosused; 2767 struct cdev *dev; 2768 2769 cg = ino_to_cg(fs, ino); 2770 if (devvp->v_type == VREG) { 2771 /* devvp is a snapshot */ 2772 MPASS(devvp->v_mount->mnt_data == ump); 2773 dev = ump->um_devvp->v_rdev; 2774 } else if (devvp->v_type == VCHR) { 2775 /* devvp is a normal disk device */ 2776 dev = devvp->v_rdev; 2777 } else { 2778 bp = NULL; 2779 return (0); 2780 } 2781 if (ino >= fs->fs_ipg * fs->fs_ncg) 2782 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2783 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2784 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2785 return (error); 2786 inosused = cg_inosused(cgp); 2787 ino %= fs->fs_ipg; 2788 if (isclr(inosused, ino)) { 2789 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2790 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2791 if (fs->fs_ronly == 0) 2792 panic("ffs_freefile: freeing free inode"); 2793 } 2794 clrbit(inosused, ino); 2795 if (ino < cgp->cg_irotor) 2796 cgp->cg_irotor = ino; 2797 cgp->cg_cs.cs_nifree++; 2798 UFS_LOCK(ump); 2799 fs->fs_cstotal.cs_nifree++; 2800 fs->fs_cs(fs, cg).cs_nifree++; 2801 if ((mode & IFMT) == IFDIR) { 2802 cgp->cg_cs.cs_ndir--; 2803 fs->fs_cstotal.cs_ndir--; 2804 fs->fs_cs(fs, cg).cs_ndir--; 2805 } 2806 fs->fs_fmod = 1; 2807 ACTIVECLEAR(fs, cg); 2808 UFS_UNLOCK(ump); 2809 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2810 softdep_setup_inofree(UFSTOVFS(ump), bp, 2811 ino + cg * fs->fs_ipg, wkhd); 2812 bdwrite(bp); 2813 return (0); 2814 } 2815 2816 /* 2817 * Check to see if a file is free. 2818 * Used to check for allocated files in snapshots. 2819 */ 2820 int 2821 ffs_checkfreefile(fs, devvp, ino) 2822 struct fs *fs; 2823 struct vnode *devvp; 2824 ino_t ino; 2825 { 2826 struct cg *cgp; 2827 struct buf *bp; 2828 int ret, error; 2829 u_int cg; 2830 u_int8_t *inosused; 2831 2832 cg = ino_to_cg(fs, ino); 2833 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2834 return (1); 2835 if (ino >= fs->fs_ipg * fs->fs_ncg) 2836 return (1); 2837 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2838 return (1); 2839 inosused = cg_inosused(cgp); 2840 ino %= fs->fs_ipg; 2841 ret = isclr(inosused, ino); 2842 brelse(bp); 2843 return (ret); 2844 } 2845 2846 /* 2847 * Find a block of the specified size in the specified cylinder group. 2848 * 2849 * It is a panic if a request is made to find a block if none are 2850 * available. 2851 */ 2852 static ufs1_daddr_t 2853 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2854 struct fs *fs; 2855 struct cg *cgp; 2856 ufs2_daddr_t bpref; 2857 int allocsiz; 2858 { 2859 ufs1_daddr_t bno; 2860 int start, len, loc, i; 2861 int blk, field, subfield, pos; 2862 u_int8_t *blksfree; 2863 2864 /* 2865 * find the fragment by searching through the free block 2866 * map for an appropriate bit pattern 2867 */ 2868 if (bpref) 2869 start = dtogd(fs, bpref) / NBBY; 2870 else 2871 start = cgp->cg_frotor / NBBY; 2872 blksfree = cg_blksfree(cgp); 2873 len = howmany(fs->fs_fpg, NBBY) - start; 2874 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2875 fragtbl[fs->fs_frag], 2876 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2877 if (loc == 0) { 2878 len = start + 1; 2879 start = 0; 2880 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2881 fragtbl[fs->fs_frag], 2882 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2883 if (loc == 0) { 2884 printf("start = %d, len = %d, fs = %s\n", 2885 start, len, fs->fs_fsmnt); 2886 panic("ffs_alloccg: map corrupted"); 2887 /* NOTREACHED */ 2888 } 2889 } 2890 bno = (start + len - loc) * NBBY; 2891 cgp->cg_frotor = bno; 2892 /* 2893 * found the byte in the map 2894 * sift through the bits to find the selected frag 2895 */ 2896 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2897 blk = blkmap(fs, blksfree, bno); 2898 blk <<= 1; 2899 field = around[allocsiz]; 2900 subfield = inside[allocsiz]; 2901 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2902 if ((blk & field) == subfield) 2903 return (bno + pos); 2904 field <<= 1; 2905 subfield <<= 1; 2906 } 2907 } 2908 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2909 panic("ffs_alloccg: block not in map"); 2910 return (-1); 2911 } 2912 2913 static const struct statfs * 2914 ffs_getmntstat(struct vnode *devvp) 2915 { 2916 2917 if (devvp->v_type == VCHR) 2918 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2919 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2920 } 2921 2922 /* 2923 * Fetch and verify a cylinder group. 2924 */ 2925 int 2926 ffs_getcg(fs, devvp, cg, bpp, cgpp) 2927 struct fs *fs; 2928 struct vnode *devvp; 2929 u_int cg; 2930 struct buf **bpp; 2931 struct cg **cgpp; 2932 { 2933 struct buf *bp; 2934 struct cg *cgp; 2935 const struct statfs *sfs; 2936 int flags, error; 2937 2938 *bpp = NULL; 2939 *cgpp = NULL; 2940 flags = 0; 2941 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2942 flags |= GB_CKHASH; 2943 error = breadn_flags(devvp, devvp->v_type == VREG ? 2944 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), 2945 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, 2946 ffs_ckhash_cg, &bp); 2947 if (error != 0) 2948 return (error); 2949 cgp = (struct cg *)bp->b_data; 2950 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 2951 (bp->b_flags & B_CKHASH) != 0 && 2952 cgp->cg_ckhash != bp->b_ckhash) { 2953 sfs = ffs_getmntstat(devvp); 2954 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2955 "0x%x != bp: 0x%jx\n", 2956 devvp->v_type == VCHR ? "" : "snapshot of ", 2957 sfs->f_mntfromname, sfs->f_mntonname, 2958 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2959 bp->b_flags &= ~B_CKHASH; 2960 bp->b_flags |= B_INVAL | B_NOCACHE; 2961 brelse(bp); 2962 return (EIO); 2963 } 2964 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2965 sfs = ffs_getmntstat(devvp); 2966 printf("UFS %s%s (%s)", 2967 devvp->v_type == VCHR ? "" : "snapshot of ", 2968 sfs->f_mntfromname, sfs->f_mntonname); 2969 if (!cg_chkmagic(cgp)) 2970 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 2971 cg, cgp->cg_magic, CG_MAGIC); 2972 else 2973 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 2974 cgp->cg_cgx); 2975 bp->b_flags &= ~B_CKHASH; 2976 bp->b_flags |= B_INVAL | B_NOCACHE; 2977 brelse(bp); 2978 return (EIO); 2979 } 2980 bp->b_flags &= ~B_CKHASH; 2981 bp->b_xflags |= BX_BKGRDWRITE; 2982 /* 2983 * If we are using check hashes on the cylinder group then we want 2984 * to limit changing the cylinder group time to when we are actually 2985 * going to write it to disk so that its check hash remains correct 2986 * in memory. If the CK_CYLGRP flag is set the time is updated in 2987 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 2988 * update the time here as we have done historically. 2989 */ 2990 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2991 bp->b_xflags |= BX_CYLGRP; 2992 else 2993 cgp->cg_old_time = cgp->cg_time = time_second; 2994 *bpp = bp; 2995 *cgpp = cgp; 2996 return (0); 2997 } 2998 2999 static void 3000 ffs_ckhash_cg(bp) 3001 struct buf *bp; 3002 { 3003 uint32_t ckhash; 3004 struct cg *cgp; 3005 3006 cgp = (struct cg *)bp->b_data; 3007 ckhash = cgp->cg_ckhash; 3008 cgp->cg_ckhash = 0; 3009 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3010 cgp->cg_ckhash = ckhash; 3011 } 3012 3013 /* 3014 * Fserr prints the name of a filesystem with an error diagnostic. 3015 * 3016 * The form of the error message is: 3017 * fs: error message 3018 */ 3019 void 3020 ffs_fserr(fs, inum, cp) 3021 struct fs *fs; 3022 ino_t inum; 3023 char *cp; 3024 { 3025 struct thread *td = curthread; /* XXX */ 3026 struct proc *p = td->td_proc; 3027 3028 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3029 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3030 fs->fs_fsmnt, cp); 3031 } 3032 3033 /* 3034 * This function provides the capability for the fsck program to 3035 * update an active filesystem. Fourteen operations are provided: 3036 * 3037 * adjrefcnt(inode, amt) - adjusts the reference count on the 3038 * specified inode by the specified amount. Under normal 3039 * operation the count should always go down. Decrementing 3040 * the count to zero will cause the inode to be freed. 3041 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3042 * inode by the specified amount. 3043 * adjsize(inode, size) - set the size of the inode to the 3044 * specified size. 3045 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3046 * adjust the superblock summary. 3047 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3048 * are marked as free. Inodes should never have to be marked 3049 * as in use. 3050 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3051 * are marked as free. Inodes should never have to be marked 3052 * as in use. 3053 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3054 * are marked as free. Blocks should never have to be marked 3055 * as in use. 3056 * setflags(flags, set/clear) - the fs_flags field has the specified 3057 * flags set (second parameter +1) or cleared (second parameter -1). 3058 * setcwd(dirinode) - set the current directory to dirinode in the 3059 * filesystem associated with the snapshot. 3060 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3061 * in the current directory is oldvalue then change it to newvalue. 3062 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3063 * with nameptr in the current directory is oldvalue then unlink it. 3064 * 3065 * The following functions may only be used on a quiescent filesystem 3066 * by the soft updates journal. They are not safe to be run on an active 3067 * filesystem. 3068 * 3069 * setinode(inode, dip) - the specified disk inode is replaced with the 3070 * contents pointed to by dip. 3071 * setbufoutput(fd, flags) - output associated with the specified file 3072 * descriptor (which must reference the character device supporting 3073 * the filesystem) switches from using physio to running through the 3074 * buffer cache when flags is set to 1. The descriptor reverts to 3075 * physio for output when flags is set to zero. 3076 */ 3077 3078 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3079 3080 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 3081 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 3082 3083 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 3084 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 3085 3086 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, CTLFLAG_WR, 3087 sysctl_ffs_fsck, "Set the inode size"); 3088 3089 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 3090 sysctl_ffs_fsck, "Adjust number of directories"); 3091 3092 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 3093 sysctl_ffs_fsck, "Adjust number of free blocks"); 3094 3095 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 3096 sysctl_ffs_fsck, "Adjust number of free inodes"); 3097 3098 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 3099 sysctl_ffs_fsck, "Adjust number of free frags"); 3100 3101 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 3102 sysctl_ffs_fsck, "Adjust number of free clusters"); 3103 3104 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 3105 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 3106 3107 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 3108 sysctl_ffs_fsck, "Free Range of File Inodes"); 3109 3110 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 3111 sysctl_ffs_fsck, "Free Range of Blocks"); 3112 3113 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 3114 sysctl_ffs_fsck, "Change Filesystem Flags"); 3115 3116 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 3117 sysctl_ffs_fsck, "Set Current Working Directory"); 3118 3119 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 3120 sysctl_ffs_fsck, "Change Value of .. Entry"); 3121 3122 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 3123 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 3124 3125 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 3126 sysctl_ffs_fsck, "Update an On-Disk Inode"); 3127 3128 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 3129 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 3130 3131 #ifdef DIAGNOSTIC 3132 static int fsckcmds = 0; 3133 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3134 "print out fsck_ffs-based filesystem update commands"); 3135 #endif /* DIAGNOSTIC */ 3136 3137 static int buffered_write(struct file *, struct uio *, struct ucred *, 3138 int, struct thread *); 3139 3140 static int 3141 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3142 { 3143 struct thread *td = curthread; 3144 struct fsck_cmd cmd; 3145 struct ufsmount *ump; 3146 struct vnode *vp, *dvp, *fdvp; 3147 struct inode *ip, *dp; 3148 struct mount *mp; 3149 struct fs *fs; 3150 ufs2_daddr_t blkno; 3151 long blkcnt, blksize; 3152 u_long key; 3153 struct file *fp, *vfp; 3154 cap_rights_t rights; 3155 int filetype, error; 3156 static struct fileops *origops, bufferedops; 3157 3158 if (req->newlen > sizeof cmd) 3159 return (EBADRPC); 3160 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 3161 return (error); 3162 if (cmd.version != FFS_CMD_VERSION) 3163 return (ERPCMISMATCH); 3164 if ((error = getvnode(td, cmd.handle, 3165 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 3166 return (error); 3167 vp = fp->f_data; 3168 if (vp->v_type != VREG && vp->v_type != VDIR) { 3169 fdrop(fp, td); 3170 return (EINVAL); 3171 } 3172 vn_start_write(vp, &mp, V_WAIT); 3173 if (mp == NULL || 3174 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3175 vn_finished_write(mp); 3176 fdrop(fp, td); 3177 return (EINVAL); 3178 } 3179 ump = VFSTOUFS(mp); 3180 if ((mp->mnt_flag & MNT_RDONLY) && 3181 ump->um_fsckpid != td->td_proc->p_pid) { 3182 vn_finished_write(mp); 3183 fdrop(fp, td); 3184 return (EROFS); 3185 } 3186 fs = ump->um_fs; 3187 filetype = IFREG; 3188 3189 switch (oidp->oid_number) { 3190 3191 case FFS_SET_FLAGS: 3192 #ifdef DIAGNOSTIC 3193 if (fsckcmds) 3194 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3195 cmd.size > 0 ? "set" : "clear"); 3196 #endif /* DIAGNOSTIC */ 3197 if (cmd.size > 0) 3198 fs->fs_flags |= (long)cmd.value; 3199 else 3200 fs->fs_flags &= ~(long)cmd.value; 3201 break; 3202 3203 case FFS_ADJ_REFCNT: 3204 #ifdef DIAGNOSTIC 3205 if (fsckcmds) { 3206 printf("%s: adjust inode %jd link count by %jd\n", 3207 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3208 (intmax_t)cmd.size); 3209 } 3210 #endif /* DIAGNOSTIC */ 3211 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3212 break; 3213 ip = VTOI(vp); 3214 ip->i_nlink += cmd.size; 3215 DIP_SET(ip, i_nlink, ip->i_nlink); 3216 ip->i_effnlink += cmd.size; 3217 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3218 error = ffs_update(vp, 1); 3219 if (DOINGSOFTDEP(vp)) 3220 softdep_change_linkcnt(ip); 3221 vput(vp); 3222 break; 3223 3224 case FFS_ADJ_BLKCNT: 3225 #ifdef DIAGNOSTIC 3226 if (fsckcmds) { 3227 printf("%s: adjust inode %jd block count by %jd\n", 3228 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3229 (intmax_t)cmd.size); 3230 } 3231 #endif /* DIAGNOSTIC */ 3232 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3233 break; 3234 ip = VTOI(vp); 3235 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3236 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3237 error = ffs_update(vp, 1); 3238 vput(vp); 3239 break; 3240 3241 case FFS_SET_SIZE: 3242 #ifdef DIAGNOSTIC 3243 if (fsckcmds) { 3244 printf("%s: set inode %jd size to %jd\n", 3245 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3246 (intmax_t)cmd.size); 3247 } 3248 #endif /* DIAGNOSTIC */ 3249 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3250 break; 3251 ip = VTOI(vp); 3252 DIP_SET(ip, i_size, cmd.size); 3253 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3254 error = ffs_update(vp, 1); 3255 vput(vp); 3256 break; 3257 3258 case FFS_DIR_FREE: 3259 filetype = IFDIR; 3260 /* fall through */ 3261 3262 case FFS_FILE_FREE: 3263 #ifdef DIAGNOSTIC 3264 if (fsckcmds) { 3265 if (cmd.size == 1) 3266 printf("%s: free %s inode %ju\n", 3267 mp->mnt_stat.f_mntonname, 3268 filetype == IFDIR ? "directory" : "file", 3269 (uintmax_t)cmd.value); 3270 else 3271 printf("%s: free %s inodes %ju-%ju\n", 3272 mp->mnt_stat.f_mntonname, 3273 filetype == IFDIR ? "directory" : "file", 3274 (uintmax_t)cmd.value, 3275 (uintmax_t)(cmd.value + cmd.size - 1)); 3276 } 3277 #endif /* DIAGNOSTIC */ 3278 while (cmd.size > 0) { 3279 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3280 cmd.value, filetype, NULL))) 3281 break; 3282 cmd.size -= 1; 3283 cmd.value += 1; 3284 } 3285 break; 3286 3287 case FFS_BLK_FREE: 3288 #ifdef DIAGNOSTIC 3289 if (fsckcmds) { 3290 if (cmd.size == 1) 3291 printf("%s: free block %jd\n", 3292 mp->mnt_stat.f_mntonname, 3293 (intmax_t)cmd.value); 3294 else 3295 printf("%s: free blocks %jd-%jd\n", 3296 mp->mnt_stat.f_mntonname, 3297 (intmax_t)cmd.value, 3298 (intmax_t)cmd.value + cmd.size - 1); 3299 } 3300 #endif /* DIAGNOSTIC */ 3301 blkno = cmd.value; 3302 blkcnt = cmd.size; 3303 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3304 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3305 while (blkcnt > 0) { 3306 if (blkcnt < blksize) 3307 blksize = blkcnt; 3308 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3309 blksize * fs->fs_fsize, UFS_ROOTINO, 3310 VDIR, NULL, key); 3311 blkno += blksize; 3312 blkcnt -= blksize; 3313 blksize = fs->fs_frag; 3314 } 3315 ffs_blkrelease_finish(ump, key); 3316 break; 3317 3318 /* 3319 * Adjust superblock summaries. fsck(8) is expected to 3320 * submit deltas when necessary. 3321 */ 3322 case FFS_ADJ_NDIR: 3323 #ifdef DIAGNOSTIC 3324 if (fsckcmds) { 3325 printf("%s: adjust number of directories by %jd\n", 3326 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3327 } 3328 #endif /* DIAGNOSTIC */ 3329 fs->fs_cstotal.cs_ndir += cmd.value; 3330 break; 3331 3332 case FFS_ADJ_NBFREE: 3333 #ifdef DIAGNOSTIC 3334 if (fsckcmds) { 3335 printf("%s: adjust number of free blocks by %+jd\n", 3336 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3337 } 3338 #endif /* DIAGNOSTIC */ 3339 fs->fs_cstotal.cs_nbfree += cmd.value; 3340 break; 3341 3342 case FFS_ADJ_NIFREE: 3343 #ifdef DIAGNOSTIC 3344 if (fsckcmds) { 3345 printf("%s: adjust number of free inodes by %+jd\n", 3346 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3347 } 3348 #endif /* DIAGNOSTIC */ 3349 fs->fs_cstotal.cs_nifree += cmd.value; 3350 break; 3351 3352 case FFS_ADJ_NFFREE: 3353 #ifdef DIAGNOSTIC 3354 if (fsckcmds) { 3355 printf("%s: adjust number of free frags by %+jd\n", 3356 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3357 } 3358 #endif /* DIAGNOSTIC */ 3359 fs->fs_cstotal.cs_nffree += cmd.value; 3360 break; 3361 3362 case FFS_ADJ_NUMCLUSTERS: 3363 #ifdef DIAGNOSTIC 3364 if (fsckcmds) { 3365 printf("%s: adjust number of free clusters by %+jd\n", 3366 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3367 } 3368 #endif /* DIAGNOSTIC */ 3369 fs->fs_cstotal.cs_numclusters += cmd.value; 3370 break; 3371 3372 case FFS_SET_CWD: 3373 #ifdef DIAGNOSTIC 3374 if (fsckcmds) { 3375 printf("%s: set current directory to inode %jd\n", 3376 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3377 } 3378 #endif /* DIAGNOSTIC */ 3379 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3380 break; 3381 AUDIT_ARG_VNODE1(vp); 3382 if ((error = change_dir(vp, td)) != 0) { 3383 vput(vp); 3384 break; 3385 } 3386 VOP_UNLOCK(vp, 0); 3387 pwd_chdir(td, vp); 3388 break; 3389 3390 case FFS_SET_DOTDOT: 3391 #ifdef DIAGNOSTIC 3392 if (fsckcmds) { 3393 printf("%s: change .. in cwd from %jd to %jd\n", 3394 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3395 (intmax_t)cmd.size); 3396 } 3397 #endif /* DIAGNOSTIC */ 3398 /* 3399 * First we have to get and lock the parent directory 3400 * to which ".." points. 3401 */ 3402 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3403 if (error) 3404 break; 3405 /* 3406 * Now we get and lock the child directory containing "..". 3407 */ 3408 FILEDESC_SLOCK(td->td_proc->p_fd); 3409 dvp = td->td_proc->p_fd->fd_cdir; 3410 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3411 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3412 vput(fdvp); 3413 break; 3414 } 3415 dp = VTOI(dvp); 3416 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3417 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3418 DT_DIR, 0); 3419 cache_purge(fdvp); 3420 cache_purge(dvp); 3421 vput(dvp); 3422 vput(fdvp); 3423 break; 3424 3425 case FFS_UNLINK: 3426 #ifdef DIAGNOSTIC 3427 if (fsckcmds) { 3428 char buf[32]; 3429 3430 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3431 strncpy(buf, "Name_too_long", 32); 3432 printf("%s: unlink %s (inode %jd)\n", 3433 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3434 } 3435 #endif /* DIAGNOSTIC */ 3436 /* 3437 * kern_funlinkat will do its own start/finish writes and 3438 * they do not nest, so drop ours here. Setting mp == NULL 3439 * indicates that vn_finished_write is not needed down below. 3440 */ 3441 vn_finished_write(mp); 3442 mp = NULL; 3443 error = kern_funlinkat(td, AT_FDCWD, 3444 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3445 0, (ino_t)cmd.size); 3446 break; 3447 3448 case FFS_SET_INODE: 3449 if (ump->um_fsckpid != td->td_proc->p_pid) { 3450 error = EPERM; 3451 break; 3452 } 3453 #ifdef DIAGNOSTIC 3454 if (fsckcmds) { 3455 printf("%s: update inode %jd\n", 3456 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3457 } 3458 #endif /* DIAGNOSTIC */ 3459 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3460 break; 3461 AUDIT_ARG_VNODE1(vp); 3462 ip = VTOI(vp); 3463 if (I_IS_UFS1(ip)) 3464 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3465 sizeof(struct ufs1_dinode)); 3466 else 3467 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3468 sizeof(struct ufs2_dinode)); 3469 if (error) { 3470 vput(vp); 3471 break; 3472 } 3473 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3474 error = ffs_update(vp, 1); 3475 vput(vp); 3476 break; 3477 3478 case FFS_SET_BUFOUTPUT: 3479 if (ump->um_fsckpid != td->td_proc->p_pid) { 3480 error = EPERM; 3481 break; 3482 } 3483 if (ITOUMP(VTOI(vp)) != ump) { 3484 error = EINVAL; 3485 break; 3486 } 3487 #ifdef DIAGNOSTIC 3488 if (fsckcmds) { 3489 printf("%s: %s buffered output for descriptor %jd\n", 3490 mp->mnt_stat.f_mntonname, 3491 cmd.size == 1 ? "enable" : "disable", 3492 (intmax_t)cmd.value); 3493 } 3494 #endif /* DIAGNOSTIC */ 3495 if ((error = getvnode(td, cmd.value, 3496 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3497 break; 3498 if (vfp->f_vnode->v_type != VCHR) { 3499 fdrop(vfp, td); 3500 error = EINVAL; 3501 break; 3502 } 3503 if (origops == NULL) { 3504 origops = vfp->f_ops; 3505 bcopy((void *)origops, (void *)&bufferedops, 3506 sizeof(bufferedops)); 3507 bufferedops.fo_write = buffered_write; 3508 } 3509 if (cmd.size == 1) 3510 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3511 (uintptr_t)&bufferedops); 3512 else 3513 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3514 (uintptr_t)origops); 3515 fdrop(vfp, td); 3516 break; 3517 3518 default: 3519 #ifdef DIAGNOSTIC 3520 if (fsckcmds) { 3521 printf("Invalid request %d from fsck\n", 3522 oidp->oid_number); 3523 } 3524 #endif /* DIAGNOSTIC */ 3525 error = EINVAL; 3526 break; 3527 3528 } 3529 fdrop(fp, td); 3530 vn_finished_write(mp); 3531 return (error); 3532 } 3533 3534 /* 3535 * Function to switch a descriptor to use the buffer cache to stage 3536 * its I/O. This is needed so that writes to the filesystem device 3537 * will give snapshots a chance to copy modified blocks for which it 3538 * needs to retain copies. 3539 */ 3540 static int 3541 buffered_write(fp, uio, active_cred, flags, td) 3542 struct file *fp; 3543 struct uio *uio; 3544 struct ucred *active_cred; 3545 int flags; 3546 struct thread *td; 3547 { 3548 struct vnode *devvp, *vp; 3549 struct inode *ip; 3550 struct buf *bp; 3551 struct fs *fs; 3552 struct filedesc *fdp; 3553 int error; 3554 daddr_t lbn; 3555 3556 /* 3557 * The devvp is associated with the /dev filesystem. To discover 3558 * the filesystem with which the device is associated, we depend 3559 * on the application setting the current directory to a location 3560 * within the filesystem being written. Yes, this is an ugly hack. 3561 */ 3562 devvp = fp->f_vnode; 3563 if (!vn_isdisk(devvp, NULL)) 3564 return (EINVAL); 3565 fdp = td->td_proc->p_fd; 3566 FILEDESC_SLOCK(fdp); 3567 vp = fdp->fd_cdir; 3568 vref(vp); 3569 FILEDESC_SUNLOCK(fdp); 3570 vn_lock(vp, LK_SHARED | LK_RETRY); 3571 /* 3572 * Check that the current directory vnode indeed belongs to 3573 * UFS before trying to dereference UFS-specific v_data fields. 3574 */ 3575 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3576 vput(vp); 3577 return (EINVAL); 3578 } 3579 ip = VTOI(vp); 3580 if (ITODEVVP(ip) != devvp) { 3581 vput(vp); 3582 return (EINVAL); 3583 } 3584 fs = ITOFS(ip); 3585 vput(vp); 3586 foffset_lock_uio(fp, uio, flags); 3587 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3588 #ifdef DIAGNOSTIC 3589 if (fsckcmds) { 3590 printf("%s: buffered write for block %jd\n", 3591 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3592 } 3593 #endif /* DIAGNOSTIC */ 3594 /* 3595 * All I/O must be contained within a filesystem block, start on 3596 * a fragment boundary, and be a multiple of fragments in length. 3597 */ 3598 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3599 fragoff(fs, uio->uio_offset) != 0 || 3600 fragoff(fs, uio->uio_resid) != 0) { 3601 error = EINVAL; 3602 goto out; 3603 } 3604 lbn = numfrags(fs, uio->uio_offset); 3605 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3606 bp->b_flags |= B_RELBUF; 3607 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3608 brelse(bp); 3609 goto out; 3610 } 3611 error = bwrite(bp); 3612 out: 3613 VOP_UNLOCK(devvp, 0); 3614 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3615 return (error); 3616 } 3617