xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision 63f9a4cb2684a303e3eb2ffed39c03a2e2b28ae0)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * Copyright (c) 1982, 1986, 1989, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 4. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_quota.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bio.h>
70 #include <sys/buf.h>
71 #include <sys/conf.h>
72 #include <sys/file.h>
73 #include <sys/filedesc.h>
74 #include <sys/proc.h>
75 #include <sys/vnode.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/sysctl.h>
79 #include <sys/syslog.h>
80 
81 #include <ufs/ufs/extattr.h>
82 #include <ufs/ufs/quota.h>
83 #include <ufs/ufs/inode.h>
84 #include <ufs/ufs/ufs_extern.h>
85 #include <ufs/ufs/ufsmount.h>
86 
87 #include <ufs/ffs/fs.h>
88 #include <ufs/ffs/ffs_extern.h>
89 
90 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
91 				  int size);
92 
93 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
94 static ufs2_daddr_t
95 	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
96 #ifdef DIAGNOSTIC
97 static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
98 #endif
99 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
100 static ino_t	ffs_dirpref(struct inode *);
101 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
102 static void	ffs_fserr(struct fs *, ino_t, char *);
103 static ufs2_daddr_t	ffs_hashalloc
104 		(struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
105 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
106 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
107 static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
108 static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
109 
110 /*
111  * Allocate a block in the filesystem.
112  *
113  * The size of the requested block is given, which must be some
114  * multiple of fs_fsize and <= fs_bsize.
115  * A preference may be optionally specified. If a preference is given
116  * the following hierarchy is used to allocate a block:
117  *   1) allocate the requested block.
118  *   2) allocate a rotationally optimal block in the same cylinder.
119  *   3) allocate a block in the same cylinder group.
120  *   4) quadradically rehash into other cylinder groups, until an
121  *      available block is located.
122  * If no block preference is given the following heirarchy is used
123  * to allocate a block:
124  *   1) allocate a block in the cylinder group that contains the
125  *      inode for the file.
126  *   2) quadradically rehash into other cylinder groups, until an
127  *      available block is located.
128  */
129 int
130 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
131 	struct inode *ip;
132 	ufs2_daddr_t lbn, bpref;
133 	int size;
134 	struct ucred *cred;
135 	ufs2_daddr_t *bnp;
136 {
137 	struct fs *fs;
138 	ufs2_daddr_t bno;
139 	int cg, reclaimed;
140 #ifdef QUOTA
141 	int error;
142 #endif
143 
144 	*bnp = 0;
145 	fs = ip->i_fs;
146 #ifdef DIAGNOSTIC
147 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
148 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
149 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
150 		    fs->fs_fsmnt);
151 		panic("ffs_alloc: bad size");
152 	}
153 	if (cred == NOCRED)
154 		panic("ffs_alloc: missing credential");
155 #endif /* DIAGNOSTIC */
156 	reclaimed = 0;
157 retry:
158 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
159 		goto nospace;
160 	if (suser_cred(cred, SUSER_ALLOWJAIL) &&
161 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
162 		goto nospace;
163 #ifdef QUOTA
164 	error = chkdq(ip, btodb(size), cred, 0);
165 	if (error)
166 		return (error);
167 #endif
168 	if (bpref >= fs->fs_size)
169 		bpref = 0;
170 	if (bpref == 0)
171 		cg = ino_to_cg(fs, ip->i_number);
172 	else
173 		cg = dtog(fs, bpref);
174 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
175 	if (bno > 0) {
176 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + btodb(size));
177 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
178 		*bnp = bno;
179 		return (0);
180 	}
181 #ifdef QUOTA
182 	/*
183 	 * Restore user's disk quota because allocation failed.
184 	 */
185 	(void) chkdq(ip, -btodb(size), cred, FORCE);
186 #endif
187 nospace:
188 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
189 		reclaimed = 1;
190 		softdep_request_cleanup(fs, ITOV(ip));
191 		goto retry;
192 	}
193 	ffs_fserr(fs, ip->i_number, "filesystem full");
194 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
195 	return (ENOSPC);
196 }
197 
198 /*
199  * Reallocate a fragment to a bigger size
200  *
201  * The number and size of the old block is given, and a preference
202  * and new size is also specified. The allocator attempts to extend
203  * the original block. Failing that, the regular block allocator is
204  * invoked to get an appropriate block.
205  */
206 int
207 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
208 	struct inode *ip;
209 	ufs2_daddr_t lbprev;
210 	ufs2_daddr_t bprev;
211 	ufs2_daddr_t bpref;
212 	int osize, nsize;
213 	struct ucred *cred;
214 	struct buf **bpp;
215 {
216 	struct vnode *vp;
217 	struct fs *fs;
218 	struct buf *bp;
219 	int cg, request, error, reclaimed;
220 	ufs2_daddr_t bno;
221 
222 	*bpp = 0;
223 	vp = ITOV(ip);
224 	fs = ip->i_fs;
225 #ifdef DIAGNOSTIC
226 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
227 		panic("ffs_realloccg: allocation on suspended filesystem");
228 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
229 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
230 		printf(
231 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
232 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
233 		    nsize, fs->fs_fsmnt);
234 		panic("ffs_realloccg: bad size");
235 	}
236 	if (cred == NOCRED)
237 		panic("ffs_realloccg: missing credential");
238 #endif /* DIAGNOSTIC */
239 	reclaimed = 0;
240 retry:
241 	if (suser_cred(cred, SUSER_ALLOWJAIL) &&
242 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
243 		goto nospace;
244 	if (bprev == 0) {
245 		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
246 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
247 		    fs->fs_fsmnt);
248 		panic("ffs_realloccg: bad bprev");
249 	}
250 	/*
251 	 * Allocate the extra space in the buffer.
252 	 */
253 	error = bread(vp, lbprev, osize, NOCRED, &bp);
254 	if (error) {
255 		brelse(bp);
256 		return (error);
257 	}
258 
259 	if (bp->b_blkno == bp->b_lblkno) {
260 		if (lbprev >= NDADDR)
261 			panic("ffs_realloccg: lbprev out of range");
262 		bp->b_blkno = fsbtodb(fs, bprev);
263 	}
264 
265 #ifdef QUOTA
266 	error = chkdq(ip, btodb(nsize - osize), cred, 0);
267 	if (error) {
268 		brelse(bp);
269 		return (error);
270 	}
271 #endif
272 	/*
273 	 * Check for extension in the existing location.
274 	 */
275 	cg = dtog(fs, bprev);
276 	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
277 	if (bno) {
278 		if (bp->b_blkno != fsbtodb(fs, bno))
279 			panic("ffs_realloccg: bad blockno");
280 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + btodb(nsize - osize));
281 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
282 		allocbuf(bp, nsize);
283 		bp->b_flags |= B_DONE;
284 		if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
285 			bzero((char *)bp->b_data + osize, nsize - osize);
286 		else
287 			vfs_bio_clrbuf(bp);
288 		*bpp = bp;
289 		return (0);
290 	}
291 	/*
292 	 * Allocate a new disk location.
293 	 */
294 	if (bpref >= fs->fs_size)
295 		bpref = 0;
296 	switch ((int)fs->fs_optim) {
297 	case FS_OPTSPACE:
298 		/*
299 		 * Allocate an exact sized fragment. Although this makes
300 		 * best use of space, we will waste time relocating it if
301 		 * the file continues to grow. If the fragmentation is
302 		 * less than half of the minimum free reserve, we choose
303 		 * to begin optimizing for time.
304 		 */
305 		request = nsize;
306 		if (fs->fs_minfree <= 5 ||
307 		    fs->fs_cstotal.cs_nffree >
308 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
309 			break;
310 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
311 			fs->fs_fsmnt);
312 		fs->fs_optim = FS_OPTTIME;
313 		break;
314 	case FS_OPTTIME:
315 		/*
316 		 * At this point we have discovered a file that is trying to
317 		 * grow a small fragment to a larger fragment. To save time,
318 		 * we allocate a full sized block, then free the unused portion.
319 		 * If the file continues to grow, the `ffs_fragextend' call
320 		 * above will be able to grow it in place without further
321 		 * copying. If aberrant programs cause disk fragmentation to
322 		 * grow within 2% of the free reserve, we choose to begin
323 		 * optimizing for space.
324 		 */
325 		request = fs->fs_bsize;
326 		if (fs->fs_cstotal.cs_nffree <
327 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
328 			break;
329 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
330 			fs->fs_fsmnt);
331 		fs->fs_optim = FS_OPTSPACE;
332 		break;
333 	default:
334 		printf("dev = %s, optim = %ld, fs = %s\n",
335 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
336 		panic("ffs_realloccg: bad optim");
337 		/* NOTREACHED */
338 	}
339 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
340 	if (bno > 0) {
341 		bp->b_blkno = fsbtodb(fs, bno);
342 		if (!DOINGSOFTDEP(vp))
343 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
344 			    ip->i_number);
345 		if (nsize < request)
346 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
347 			    (long)(request - nsize), ip->i_number);
348 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + btodb(nsize - osize));
349 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
350 		allocbuf(bp, nsize);
351 		bp->b_flags |= B_DONE;
352 		if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
353 			bzero((char *)bp->b_data + osize, nsize - osize);
354 		else
355 			vfs_bio_clrbuf(bp);
356 		*bpp = bp;
357 		return (0);
358 	}
359 #ifdef QUOTA
360 	/*
361 	 * Restore user's disk quota because allocation failed.
362 	 */
363 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
364 #endif
365 	brelse(bp);
366 nospace:
367 	/*
368 	 * no space available
369 	 */
370 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
371 		reclaimed = 1;
372 		softdep_request_cleanup(fs, vp);
373 		goto retry;
374 	}
375 	ffs_fserr(fs, ip->i_number, "filesystem full");
376 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
377 	return (ENOSPC);
378 }
379 
380 /*
381  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
382  *
383  * The vnode and an array of buffer pointers for a range of sequential
384  * logical blocks to be made contiguous is given. The allocator attempts
385  * to find a range of sequential blocks starting as close as possible
386  * from the end of the allocation for the logical block immediately
387  * preceding the current range. If successful, the physical block numbers
388  * in the buffer pointers and in the inode are changed to reflect the new
389  * allocation. If unsuccessful, the allocation is left unchanged. The
390  * success in doing the reallocation is returned. Note that the error
391  * return is not reflected back to the user. Rather the previous block
392  * allocation will be used.
393  */
394 
395 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
396 
397 static int doasyncfree = 1;
398 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
399 
400 static int doreallocblks = 1;
401 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
402 
403 #ifdef DEBUG
404 static volatile int prtrealloc = 0;
405 #endif
406 
407 int
408 ffs_reallocblks(ap)
409 	struct vop_reallocblks_args /* {
410 		struct vnode *a_vp;
411 		struct cluster_save *a_buflist;
412 	} */ *ap;
413 {
414 
415 	if (doreallocblks == 0)
416 		return (ENOSPC);
417 	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
418 		return (ffs_reallocblks_ufs1(ap));
419 	return (ffs_reallocblks_ufs2(ap));
420 }
421 
422 static int
423 ffs_reallocblks_ufs1(ap)
424 	struct vop_reallocblks_args /* {
425 		struct vnode *a_vp;
426 		struct cluster_save *a_buflist;
427 	} */ *ap;
428 {
429 	struct fs *fs;
430 	struct inode *ip;
431 	struct vnode *vp;
432 	struct buf *sbp, *ebp;
433 	ufs1_daddr_t *bap, *sbap, *ebap = 0;
434 	struct cluster_save *buflist;
435 	ufs_lbn_t start_lbn, end_lbn;
436 	ufs1_daddr_t soff, newblk, blkno;
437 	ufs2_daddr_t pref;
438 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
439 	int i, len, start_lvl, end_lvl, ssize;
440 
441 	vp = ap->a_vp;
442 	ip = VTOI(vp);
443 	fs = ip->i_fs;
444 	if (fs->fs_contigsumsize <= 0)
445 		return (ENOSPC);
446 	buflist = ap->a_buflist;
447 	len = buflist->bs_nchildren;
448 	start_lbn = buflist->bs_children[0]->b_lblkno;
449 	end_lbn = start_lbn + len - 1;
450 #ifdef DIAGNOSTIC
451 	for (i = 0; i < len; i++)
452 		if (!ffs_checkblk(ip,
453 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
454 			panic("ffs_reallocblks: unallocated block 1");
455 	for (i = 1; i < len; i++)
456 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
457 			panic("ffs_reallocblks: non-logical cluster");
458 	blkno = buflist->bs_children[0]->b_blkno;
459 	ssize = fsbtodb(fs, fs->fs_frag);
460 	for (i = 1; i < len - 1; i++)
461 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
462 			panic("ffs_reallocblks: non-physical cluster %d", i);
463 #endif
464 	/*
465 	 * If the latest allocation is in a new cylinder group, assume that
466 	 * the filesystem has decided to move and do not force it back to
467 	 * the previous cylinder group.
468 	 */
469 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
470 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
471 		return (ENOSPC);
472 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
473 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
474 		return (ENOSPC);
475 	/*
476 	 * Get the starting offset and block map for the first block.
477 	 */
478 	if (start_lvl == 0) {
479 		sbap = &ip->i_din1->di_db[0];
480 		soff = start_lbn;
481 	} else {
482 		idp = &start_ap[start_lvl - 1];
483 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
484 			brelse(sbp);
485 			return (ENOSPC);
486 		}
487 		sbap = (ufs1_daddr_t *)sbp->b_data;
488 		soff = idp->in_off;
489 	}
490 	/*
491 	 * Find the preferred location for the cluster.
492 	 */
493 	pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
494 	/*
495 	 * If the block range spans two block maps, get the second map.
496 	 */
497 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
498 		ssize = len;
499 	} else {
500 #ifdef DIAGNOSTIC
501 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
502 			panic("ffs_reallocblk: start == end");
503 #endif
504 		ssize = len - (idp->in_off + 1);
505 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
506 			goto fail;
507 		ebap = (ufs1_daddr_t *)ebp->b_data;
508 	}
509 	/*
510 	 * Search the block map looking for an allocation of the desired size.
511 	 */
512 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
513 	    len, ffs_clusteralloc)) == 0)
514 		goto fail;
515 	/*
516 	 * We have found a new contiguous block.
517 	 *
518 	 * First we have to replace the old block pointers with the new
519 	 * block pointers in the inode and indirect blocks associated
520 	 * with the file.
521 	 */
522 #ifdef DEBUG
523 	if (prtrealloc)
524 		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
525 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
526 #endif
527 	blkno = newblk;
528 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
529 		if (i == ssize) {
530 			bap = ebap;
531 			soff = -i;
532 		}
533 #ifdef DIAGNOSTIC
534 		if (!ffs_checkblk(ip,
535 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
536 			panic("ffs_reallocblks: unallocated block 2");
537 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
538 			panic("ffs_reallocblks: alloc mismatch");
539 #endif
540 #ifdef DEBUG
541 		if (prtrealloc)
542 			printf(" %d,", *bap);
543 #endif
544 		if (DOINGSOFTDEP(vp)) {
545 			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
546 				softdep_setup_allocdirect(ip, start_lbn + i,
547 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
548 				    buflist->bs_children[i]);
549 			else
550 				softdep_setup_allocindir_page(ip, start_lbn + i,
551 				    i < ssize ? sbp : ebp, soff + i, blkno,
552 				    *bap, buflist->bs_children[i]);
553 		}
554 		*bap++ = blkno;
555 	}
556 	/*
557 	 * Next we must write out the modified inode and indirect blocks.
558 	 * For strict correctness, the writes should be synchronous since
559 	 * the old block values may have been written to disk. In practise
560 	 * they are almost never written, but if we are concerned about
561 	 * strict correctness, the `doasyncfree' flag should be set to zero.
562 	 *
563 	 * The test on `doasyncfree' should be changed to test a flag
564 	 * that shows whether the associated buffers and inodes have
565 	 * been written. The flag should be set when the cluster is
566 	 * started and cleared whenever the buffer or inode is flushed.
567 	 * We can then check below to see if it is set, and do the
568 	 * synchronous write only when it has been cleared.
569 	 */
570 	if (sbap != &ip->i_din1->di_db[0]) {
571 		if (doasyncfree)
572 			bdwrite(sbp);
573 		else
574 			bwrite(sbp);
575 	} else {
576 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
577 		if (!doasyncfree)
578 			UFS_UPDATE(vp, 1);
579 	}
580 	if (ssize < len) {
581 		if (doasyncfree)
582 			bdwrite(ebp);
583 		else
584 			bwrite(ebp);
585 	}
586 	/*
587 	 * Last, free the old blocks and assign the new blocks to the buffers.
588 	 */
589 #ifdef DEBUG
590 	if (prtrealloc)
591 		printf("\n\tnew:");
592 #endif
593 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
594 		if (!DOINGSOFTDEP(vp))
595 			ffs_blkfree(fs, ip->i_devvp,
596 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
597 			    fs->fs_bsize, ip->i_number);
598 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
599 #ifdef DIAGNOSTIC
600 		if (!ffs_checkblk(ip,
601 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
602 			panic("ffs_reallocblks: unallocated block 3");
603 #endif
604 #ifdef DEBUG
605 		if (prtrealloc)
606 			printf(" %d,", blkno);
607 #endif
608 	}
609 #ifdef DEBUG
610 	if (prtrealloc) {
611 		prtrealloc--;
612 		printf("\n");
613 	}
614 #endif
615 	return (0);
616 
617 fail:
618 	if (ssize < len)
619 		brelse(ebp);
620 	if (sbap != &ip->i_din1->di_db[0])
621 		brelse(sbp);
622 	return (ENOSPC);
623 }
624 
625 static int
626 ffs_reallocblks_ufs2(ap)
627 	struct vop_reallocblks_args /* {
628 		struct vnode *a_vp;
629 		struct cluster_save *a_buflist;
630 	} */ *ap;
631 {
632 	struct fs *fs;
633 	struct inode *ip;
634 	struct vnode *vp;
635 	struct buf *sbp, *ebp;
636 	ufs2_daddr_t *bap, *sbap, *ebap = 0;
637 	struct cluster_save *buflist;
638 	ufs_lbn_t start_lbn, end_lbn;
639 	ufs2_daddr_t soff, newblk, blkno, pref;
640 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
641 	int i, len, start_lvl, end_lvl, ssize;
642 
643 	vp = ap->a_vp;
644 	ip = VTOI(vp);
645 	fs = ip->i_fs;
646 	if (fs->fs_contigsumsize <= 0)
647 		return (ENOSPC);
648 	buflist = ap->a_buflist;
649 	len = buflist->bs_nchildren;
650 	start_lbn = buflist->bs_children[0]->b_lblkno;
651 	end_lbn = start_lbn + len - 1;
652 #ifdef DIAGNOSTIC
653 	for (i = 0; i < len; i++)
654 		if (!ffs_checkblk(ip,
655 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
656 			panic("ffs_reallocblks: unallocated block 1");
657 	for (i = 1; i < len; i++)
658 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
659 			panic("ffs_reallocblks: non-logical cluster");
660 	blkno = buflist->bs_children[0]->b_blkno;
661 	ssize = fsbtodb(fs, fs->fs_frag);
662 	for (i = 1; i < len - 1; i++)
663 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
664 			panic("ffs_reallocblks: non-physical cluster %d", i);
665 #endif
666 	/*
667 	 * If the latest allocation is in a new cylinder group, assume that
668 	 * the filesystem has decided to move and do not force it back to
669 	 * the previous cylinder group.
670 	 */
671 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
672 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
673 		return (ENOSPC);
674 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
675 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
676 		return (ENOSPC);
677 	/*
678 	 * Get the starting offset and block map for the first block.
679 	 */
680 	if (start_lvl == 0) {
681 		sbap = &ip->i_din2->di_db[0];
682 		soff = start_lbn;
683 	} else {
684 		idp = &start_ap[start_lvl - 1];
685 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
686 			brelse(sbp);
687 			return (ENOSPC);
688 		}
689 		sbap = (ufs2_daddr_t *)sbp->b_data;
690 		soff = idp->in_off;
691 	}
692 	/*
693 	 * Find the preferred location for the cluster.
694 	 */
695 	pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
696 	/*
697 	 * If the block range spans two block maps, get the second map.
698 	 */
699 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
700 		ssize = len;
701 	} else {
702 #ifdef DIAGNOSTIC
703 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
704 			panic("ffs_reallocblk: start == end");
705 #endif
706 		ssize = len - (idp->in_off + 1);
707 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
708 			goto fail;
709 		ebap = (ufs2_daddr_t *)ebp->b_data;
710 	}
711 	/*
712 	 * Search the block map looking for an allocation of the desired size.
713 	 */
714 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
715 	    len, ffs_clusteralloc)) == 0)
716 		goto fail;
717 	/*
718 	 * We have found a new contiguous block.
719 	 *
720 	 * First we have to replace the old block pointers with the new
721 	 * block pointers in the inode and indirect blocks associated
722 	 * with the file.
723 	 */
724 #ifdef DEBUG
725 	if (prtrealloc)
726 		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
727 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
728 #endif
729 	blkno = newblk;
730 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
731 		if (i == ssize) {
732 			bap = ebap;
733 			soff = -i;
734 		}
735 #ifdef DIAGNOSTIC
736 		if (!ffs_checkblk(ip,
737 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
738 			panic("ffs_reallocblks: unallocated block 2");
739 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
740 			panic("ffs_reallocblks: alloc mismatch");
741 #endif
742 #ifdef DEBUG
743 		if (prtrealloc)
744 			printf(" %jd,", (intmax_t)*bap);
745 #endif
746 		if (DOINGSOFTDEP(vp)) {
747 			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
748 				softdep_setup_allocdirect(ip, start_lbn + i,
749 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
750 				    buflist->bs_children[i]);
751 			else
752 				softdep_setup_allocindir_page(ip, start_lbn + i,
753 				    i < ssize ? sbp : ebp, soff + i, blkno,
754 				    *bap, buflist->bs_children[i]);
755 		}
756 		*bap++ = blkno;
757 	}
758 	/*
759 	 * Next we must write out the modified inode and indirect blocks.
760 	 * For strict correctness, the writes should be synchronous since
761 	 * the old block values may have been written to disk. In practise
762 	 * they are almost never written, but if we are concerned about
763 	 * strict correctness, the `doasyncfree' flag should be set to zero.
764 	 *
765 	 * The test on `doasyncfree' should be changed to test a flag
766 	 * that shows whether the associated buffers and inodes have
767 	 * been written. The flag should be set when the cluster is
768 	 * started and cleared whenever the buffer or inode is flushed.
769 	 * We can then check below to see if it is set, and do the
770 	 * synchronous write only when it has been cleared.
771 	 */
772 	if (sbap != &ip->i_din2->di_db[0]) {
773 		if (doasyncfree)
774 			bdwrite(sbp);
775 		else
776 			bwrite(sbp);
777 	} else {
778 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
779 		if (!doasyncfree)
780 			UFS_UPDATE(vp, 1);
781 	}
782 	if (ssize < len) {
783 		if (doasyncfree)
784 			bdwrite(ebp);
785 		else
786 			bwrite(ebp);
787 	}
788 	/*
789 	 * Last, free the old blocks and assign the new blocks to the buffers.
790 	 */
791 #ifdef DEBUG
792 	if (prtrealloc)
793 		printf("\n\tnew:");
794 #endif
795 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
796 		if (!DOINGSOFTDEP(vp))
797 			ffs_blkfree(fs, ip->i_devvp,
798 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
799 			    fs->fs_bsize, ip->i_number);
800 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
801 #ifdef DIAGNOSTIC
802 		if (!ffs_checkblk(ip,
803 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
804 			panic("ffs_reallocblks: unallocated block 3");
805 #endif
806 #ifdef DEBUG
807 		if (prtrealloc)
808 			printf(" %jd,", (intmax_t)blkno);
809 #endif
810 	}
811 #ifdef DEBUG
812 	if (prtrealloc) {
813 		prtrealloc--;
814 		printf("\n");
815 	}
816 #endif
817 	return (0);
818 
819 fail:
820 	if (ssize < len)
821 		brelse(ebp);
822 	if (sbap != &ip->i_din2->di_db[0])
823 		brelse(sbp);
824 	return (ENOSPC);
825 }
826 
827 /*
828  * Allocate an inode in the filesystem.
829  *
830  * If allocating a directory, use ffs_dirpref to select the inode.
831  * If allocating in a directory, the following hierarchy is followed:
832  *   1) allocate the preferred inode.
833  *   2) allocate an inode in the same cylinder group.
834  *   3) quadradically rehash into other cylinder groups, until an
835  *      available inode is located.
836  * If no inode preference is given the following heirarchy is used
837  * to allocate an inode:
838  *   1) allocate an inode in cylinder group 0.
839  *   2) quadradically rehash into other cylinder groups, until an
840  *      available inode is located.
841  */
842 int
843 ffs_valloc(pvp, mode, cred, vpp)
844 	struct vnode *pvp;
845 	int mode;
846 	struct ucred *cred;
847 	struct vnode **vpp;
848 {
849 	struct inode *pip;
850 	struct fs *fs;
851 	struct inode *ip;
852 	struct timespec ts;
853 	ino_t ino, ipref;
854 	int cg, error;
855 
856 	*vpp = NULL;
857 	pip = VTOI(pvp);
858 	fs = pip->i_fs;
859 	if (fs->fs_cstotal.cs_nifree == 0)
860 		goto noinodes;
861 
862 	if ((mode & IFMT) == IFDIR)
863 		ipref = ffs_dirpref(pip);
864 	else
865 		ipref = pip->i_number;
866 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
867 		ipref = 0;
868 	cg = ino_to_cg(fs, ipref);
869 	/*
870 	 * Track number of dirs created one after another
871 	 * in a same cg without intervening by files.
872 	 */
873 	if ((mode & IFMT) == IFDIR) {
874 		if (fs->fs_contigdirs[cg] < 255)
875 			fs->fs_contigdirs[cg]++;
876 	} else {
877 		if (fs->fs_contigdirs[cg] > 0)
878 			fs->fs_contigdirs[cg]--;
879 	}
880 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
881 					(allocfcn_t *)ffs_nodealloccg);
882 	if (ino == 0)
883 		goto noinodes;
884 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
885 	if (error) {
886 		UFS_VFREE(pvp, ino, mode);
887 		return (error);
888 	}
889 	ip = VTOI(*vpp);
890 	if (ip->i_mode) {
891 		printf("mode = 0%o, inum = %lu, fs = %s\n",
892 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
893 		panic("ffs_valloc: dup alloc");
894 	}
895 	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
896 		printf("free inode %s/%lu had %ld blocks\n",
897 		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
898 		DIP_SET(ip, i_blocks, 0);
899 	}
900 	ip->i_flags = 0;
901 	DIP_SET(ip, i_flags, 0);
902 	/*
903 	 * Set up a new generation number for this inode.
904 	 */
905 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
906 		ip->i_gen = arc4random() / 2 + 1;
907 	DIP_SET(ip, i_gen, ip->i_gen);
908 	if (fs->fs_magic == FS_UFS2_MAGIC) {
909 		vfs_timestamp(&ts);
910 		ip->i_din2->di_birthtime = ts.tv_sec;
911 		ip->i_din2->di_birthnsec = ts.tv_nsec;
912 	}
913 	return (0);
914 noinodes:
915 	ffs_fserr(fs, pip->i_number, "out of inodes");
916 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
917 	return (ENOSPC);
918 }
919 
920 /*
921  * Find a cylinder group to place a directory.
922  *
923  * The policy implemented by this algorithm is to allocate a
924  * directory inode in the same cylinder group as its parent
925  * directory, but also to reserve space for its files inodes
926  * and data. Restrict the number of directories which may be
927  * allocated one after another in the same cylinder group
928  * without intervening allocation of files.
929  *
930  * If we allocate a first level directory then force allocation
931  * in another cylinder group.
932  */
933 static ino_t
934 ffs_dirpref(pip)
935 	struct inode *pip;
936 {
937 	struct fs *fs;
938 	int cg, prefcg, dirsize, cgsize;
939 	int avgifree, avgbfree, avgndir, curdirsize;
940 	int minifree, minbfree, maxndir;
941 	int mincg, minndir;
942 	int maxcontigdirs;
943 
944 	fs = pip->i_fs;
945 
946 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
947 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
948 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
949 
950 	/*
951 	 * Force allocation in another cg if creating a first level dir.
952 	 */
953 	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
954 	if (ITOV(pip)->v_vflag & VV_ROOT) {
955 		prefcg = arc4random() % fs->fs_ncg;
956 		mincg = prefcg;
957 		minndir = fs->fs_ipg;
958 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
959 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
960 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
961 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
962 				mincg = cg;
963 				minndir = fs->fs_cs(fs, cg).cs_ndir;
964 			}
965 		for (cg = 0; cg < prefcg; cg++)
966 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
967 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
968 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
969 				mincg = cg;
970 				minndir = fs->fs_cs(fs, cg).cs_ndir;
971 			}
972 		return ((ino_t)(fs->fs_ipg * mincg));
973 	}
974 
975 	/*
976 	 * Count various limits which used for
977 	 * optimal allocation of a directory inode.
978 	 */
979 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
980 	minifree = avgifree - avgifree / 4;
981 	if (minifree < 1)
982 		minifree = 1;
983 	minbfree = avgbfree - avgbfree / 4;
984 	if (minbfree < 1)
985 		minbfree = 1;
986 	cgsize = fs->fs_fsize * fs->fs_fpg;
987 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
988 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
989 	if (dirsize < curdirsize)
990 		dirsize = curdirsize;
991 	maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
992 	if (fs->fs_avgfpdir > 0)
993 		maxcontigdirs = min(maxcontigdirs,
994 				    fs->fs_ipg / fs->fs_avgfpdir);
995 	if (maxcontigdirs == 0)
996 		maxcontigdirs = 1;
997 
998 	/*
999 	 * Limit number of dirs in one cg and reserve space for
1000 	 * regular files, but only if we have no deficit in
1001 	 * inodes or space.
1002 	 */
1003 	prefcg = ino_to_cg(fs, pip->i_number);
1004 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1005 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1006 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1007 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1008 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1009 				return ((ino_t)(fs->fs_ipg * cg));
1010 		}
1011 	for (cg = 0; cg < prefcg; cg++)
1012 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1013 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1014 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1015 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1016 				return ((ino_t)(fs->fs_ipg * cg));
1017 		}
1018 	/*
1019 	 * This is a backstop when we have deficit in space.
1020 	 */
1021 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1022 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1023 			return ((ino_t)(fs->fs_ipg * cg));
1024 	for (cg = 0; cg < prefcg; cg++)
1025 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1026 			break;
1027 	return ((ino_t)(fs->fs_ipg * cg));
1028 }
1029 
1030 /*
1031  * Select the desired position for the next block in a file.  The file is
1032  * logically divided into sections. The first section is composed of the
1033  * direct blocks. Each additional section contains fs_maxbpg blocks.
1034  *
1035  * If no blocks have been allocated in the first section, the policy is to
1036  * request a block in the same cylinder group as the inode that describes
1037  * the file. If no blocks have been allocated in any other section, the
1038  * policy is to place the section in a cylinder group with a greater than
1039  * average number of free blocks.  An appropriate cylinder group is found
1040  * by using a rotor that sweeps the cylinder groups. When a new group of
1041  * blocks is needed, the sweep begins in the cylinder group following the
1042  * cylinder group from which the previous allocation was made. The sweep
1043  * continues until a cylinder group with greater than the average number
1044  * of free blocks is found. If the allocation is for the first block in an
1045  * indirect block, the information on the previous allocation is unavailable;
1046  * here a best guess is made based upon the logical block number being
1047  * allocated.
1048  *
1049  * If a section is already partially allocated, the policy is to
1050  * contiguously allocate fs_maxcontig blocks. The end of one of these
1051  * contiguous blocks and the beginning of the next is laid out
1052  * contiguously if possible.
1053  */
1054 ufs2_daddr_t
1055 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1056 	struct inode *ip;
1057 	ufs_lbn_t lbn;
1058 	int indx;
1059 	ufs1_daddr_t *bap;
1060 {
1061 	struct fs *fs;
1062 	int cg;
1063 	int avgbfree, startcg;
1064 
1065 	fs = ip->i_fs;
1066 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1067 		if (lbn < NDADDR + NINDIR(fs)) {
1068 			cg = ino_to_cg(fs, ip->i_number);
1069 			return (fs->fs_fpg * cg + fs->fs_frag);
1070 		}
1071 		/*
1072 		 * Find a cylinder with greater than average number of
1073 		 * unused data blocks.
1074 		 */
1075 		if (indx == 0 || bap[indx - 1] == 0)
1076 			startcg =
1077 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1078 		else
1079 			startcg = dtog(fs, bap[indx - 1]) + 1;
1080 		startcg %= fs->fs_ncg;
1081 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1082 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1083 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1084 				fs->fs_cgrotor = cg;
1085 				return (fs->fs_fpg * cg + fs->fs_frag);
1086 			}
1087 		for (cg = 0; cg <= startcg; cg++)
1088 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1089 				fs->fs_cgrotor = cg;
1090 				return (fs->fs_fpg * cg + fs->fs_frag);
1091 			}
1092 		return (0);
1093 	}
1094 	/*
1095 	 * We just always try to lay things out contiguously.
1096 	 */
1097 	return (bap[indx - 1] + fs->fs_frag);
1098 }
1099 
1100 /*
1101  * Same as above, but for UFS2
1102  */
1103 ufs2_daddr_t
1104 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1105 	struct inode *ip;
1106 	ufs_lbn_t lbn;
1107 	int indx;
1108 	ufs2_daddr_t *bap;
1109 {
1110 	struct fs *fs;
1111 	int cg;
1112 	int avgbfree, startcg;
1113 
1114 	fs = ip->i_fs;
1115 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1116 		if (lbn < NDADDR + NINDIR(fs)) {
1117 			cg = ino_to_cg(fs, ip->i_number);
1118 			return (fs->fs_fpg * cg + fs->fs_frag);
1119 		}
1120 		/*
1121 		 * Find a cylinder with greater than average number of
1122 		 * unused data blocks.
1123 		 */
1124 		if (indx == 0 || bap[indx - 1] == 0)
1125 			startcg =
1126 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1127 		else
1128 			startcg = dtog(fs, bap[indx - 1]) + 1;
1129 		startcg %= fs->fs_ncg;
1130 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1131 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1132 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1133 				fs->fs_cgrotor = cg;
1134 				return (fs->fs_fpg * cg + fs->fs_frag);
1135 			}
1136 		for (cg = 0; cg <= startcg; cg++)
1137 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1138 				fs->fs_cgrotor = cg;
1139 				return (fs->fs_fpg * cg + fs->fs_frag);
1140 			}
1141 		return (0);
1142 	}
1143 	/*
1144 	 * We just always try to lay things out contiguously.
1145 	 */
1146 	return (bap[indx - 1] + fs->fs_frag);
1147 }
1148 
1149 /*
1150  * Implement the cylinder overflow algorithm.
1151  *
1152  * The policy implemented by this algorithm is:
1153  *   1) allocate the block in its requested cylinder group.
1154  *   2) quadradically rehash on the cylinder group number.
1155  *   3) brute force search for a free block.
1156  */
1157 /*VARARGS5*/
1158 static ufs2_daddr_t
1159 ffs_hashalloc(ip, cg, pref, size, allocator)
1160 	struct inode *ip;
1161 	int cg;
1162 	ufs2_daddr_t pref;
1163 	int size;	/* size for data blocks, mode for inodes */
1164 	allocfcn_t *allocator;
1165 {
1166 	struct fs *fs;
1167 	ufs2_daddr_t result;
1168 	int i, icg = cg;
1169 
1170 #ifdef DIAGNOSTIC
1171 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1172 		panic("ffs_hashalloc: allocation on suspended filesystem");
1173 #endif
1174 	fs = ip->i_fs;
1175 	/*
1176 	 * 1: preferred cylinder group
1177 	 */
1178 	result = (*allocator)(ip, cg, pref, size);
1179 	if (result)
1180 		return (result);
1181 	/*
1182 	 * 2: quadratic rehash
1183 	 */
1184 	for (i = 1; i < fs->fs_ncg; i *= 2) {
1185 		cg += i;
1186 		if (cg >= fs->fs_ncg)
1187 			cg -= fs->fs_ncg;
1188 		result = (*allocator)(ip, cg, 0, size);
1189 		if (result)
1190 			return (result);
1191 	}
1192 	/*
1193 	 * 3: brute force search
1194 	 * Note that we start at i == 2, since 0 was checked initially,
1195 	 * and 1 is always checked in the quadratic rehash.
1196 	 */
1197 	cg = (icg + 2) % fs->fs_ncg;
1198 	for (i = 2; i < fs->fs_ncg; i++) {
1199 		result = (*allocator)(ip, cg, 0, size);
1200 		if (result)
1201 			return (result);
1202 		cg++;
1203 		if (cg == fs->fs_ncg)
1204 			cg = 0;
1205 	}
1206 	return (0);
1207 }
1208 
1209 /*
1210  * Determine whether a fragment can be extended.
1211  *
1212  * Check to see if the necessary fragments are available, and
1213  * if they are, allocate them.
1214  */
1215 static ufs2_daddr_t
1216 ffs_fragextend(ip, cg, bprev, osize, nsize)
1217 	struct inode *ip;
1218 	int cg;
1219 	ufs2_daddr_t bprev;
1220 	int osize, nsize;
1221 {
1222 	struct fs *fs;
1223 	struct cg *cgp;
1224 	struct buf *bp;
1225 	long bno;
1226 	int frags, bbase;
1227 	int i, error;
1228 	u_int8_t *blksfree;
1229 
1230 	fs = ip->i_fs;
1231 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1232 		return (0);
1233 	frags = numfrags(fs, nsize);
1234 	bbase = fragnum(fs, bprev);
1235 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1236 		/* cannot extend across a block boundary */
1237 		return (0);
1238 	}
1239 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1240 		(int)fs->fs_cgsize, NOCRED, &bp);
1241 	if (error) {
1242 		brelse(bp);
1243 		return (0);
1244 	}
1245 	cgp = (struct cg *)bp->b_data;
1246 	if (!cg_chkmagic(cgp)) {
1247 		brelse(bp);
1248 		return (0);
1249 	}
1250 	bp->b_xflags |= BX_BKGRDWRITE;
1251 	cgp->cg_old_time = cgp->cg_time = time_second;
1252 	bno = dtogd(fs, bprev);
1253 	blksfree = cg_blksfree(cgp);
1254 	for (i = numfrags(fs, osize); i < frags; i++)
1255 		if (isclr(blksfree, bno + i)) {
1256 			brelse(bp);
1257 			return (0);
1258 		}
1259 	/*
1260 	 * the current fragment can be extended
1261 	 * deduct the count on fragment being extended into
1262 	 * increase the count on the remaining fragment (if any)
1263 	 * allocate the extended piece
1264 	 */
1265 	for (i = frags; i < fs->fs_frag - bbase; i++)
1266 		if (isclr(blksfree, bno + i))
1267 			break;
1268 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1269 	if (i != frags)
1270 		cgp->cg_frsum[i - frags]++;
1271 	for (i = numfrags(fs, osize); i < frags; i++) {
1272 		clrbit(blksfree, bno + i);
1273 		cgp->cg_cs.cs_nffree--;
1274 		fs->fs_cstotal.cs_nffree--;
1275 		fs->fs_cs(fs, cg).cs_nffree--;
1276 	}
1277 	fs->fs_fmod = 1;
1278 	if (DOINGSOFTDEP(ITOV(ip)))
1279 		softdep_setup_blkmapdep(bp, fs, bprev);
1280 	if (fs->fs_active != 0)
1281 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1282 	bdwrite(bp);
1283 	return (bprev);
1284 }
1285 
1286 /*
1287  * Determine whether a block can be allocated.
1288  *
1289  * Check to see if a block of the appropriate size is available,
1290  * and if it is, allocate it.
1291  */
1292 static ufs2_daddr_t
1293 ffs_alloccg(ip, cg, bpref, size)
1294 	struct inode *ip;
1295 	int cg;
1296 	ufs2_daddr_t bpref;
1297 	int size;
1298 {
1299 	struct fs *fs;
1300 	struct cg *cgp;
1301 	struct buf *bp;
1302 	ufs1_daddr_t bno;
1303 	ufs2_daddr_t blkno;
1304 	int i, allocsiz, error, frags;
1305 	u_int8_t *blksfree;
1306 
1307 	fs = ip->i_fs;
1308 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1309 		return (0);
1310 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1311 		(int)fs->fs_cgsize, NOCRED, &bp);
1312 	if (error) {
1313 		brelse(bp);
1314 		return (0);
1315 	}
1316 	cgp = (struct cg *)bp->b_data;
1317 	if (!cg_chkmagic(cgp) ||
1318 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1319 		brelse(bp);
1320 		return (0);
1321 	}
1322 	bp->b_xflags |= BX_BKGRDWRITE;
1323 	cgp->cg_old_time = cgp->cg_time = time_second;
1324 	if (size == fs->fs_bsize) {
1325 		blkno = ffs_alloccgblk(ip, bp, bpref);
1326 		if (fs->fs_active != 0)
1327 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1328 		bdwrite(bp);
1329 		return (blkno);
1330 	}
1331 	/*
1332 	 * check to see if any fragments are already available
1333 	 * allocsiz is the size which will be allocated, hacking
1334 	 * it down to a smaller size if necessary
1335 	 */
1336 	blksfree = cg_blksfree(cgp);
1337 	frags = numfrags(fs, size);
1338 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1339 		if (cgp->cg_frsum[allocsiz] != 0)
1340 			break;
1341 	if (allocsiz == fs->fs_frag) {
1342 		/*
1343 		 * no fragments were available, so a block will be
1344 		 * allocated, and hacked up
1345 		 */
1346 		if (cgp->cg_cs.cs_nbfree == 0) {
1347 			brelse(bp);
1348 			return (0);
1349 		}
1350 		blkno = ffs_alloccgblk(ip, bp, bpref);
1351 		bno = dtogd(fs, blkno);
1352 		for (i = frags; i < fs->fs_frag; i++)
1353 			setbit(blksfree, bno + i);
1354 		i = fs->fs_frag - frags;
1355 		cgp->cg_cs.cs_nffree += i;
1356 		fs->fs_cstotal.cs_nffree += i;
1357 		fs->fs_cs(fs, cg).cs_nffree += i;
1358 		fs->fs_fmod = 1;
1359 		cgp->cg_frsum[i]++;
1360 		if (fs->fs_active != 0)
1361 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1362 		bdwrite(bp);
1363 		return (blkno);
1364 	}
1365 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1366 	if (bno < 0) {
1367 		brelse(bp);
1368 		return (0);
1369 	}
1370 	for (i = 0; i < frags; i++)
1371 		clrbit(blksfree, bno + i);
1372 	cgp->cg_cs.cs_nffree -= frags;
1373 	fs->fs_cstotal.cs_nffree -= frags;
1374 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1375 	fs->fs_fmod = 1;
1376 	cgp->cg_frsum[allocsiz]--;
1377 	if (frags != allocsiz)
1378 		cgp->cg_frsum[allocsiz - frags]++;
1379 	blkno = cg * fs->fs_fpg + bno;
1380 	if (DOINGSOFTDEP(ITOV(ip)))
1381 		softdep_setup_blkmapdep(bp, fs, blkno);
1382 	if (fs->fs_active != 0)
1383 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1384 	bdwrite(bp);
1385 	return (blkno);
1386 }
1387 
1388 /*
1389  * Allocate a block in a cylinder group.
1390  *
1391  * This algorithm implements the following policy:
1392  *   1) allocate the requested block.
1393  *   2) allocate a rotationally optimal block in the same cylinder.
1394  *   3) allocate the next available block on the block rotor for the
1395  *      specified cylinder group.
1396  * Note that this routine only allocates fs_bsize blocks; these
1397  * blocks may be fragmented by the routine that allocates them.
1398  */
1399 static ufs2_daddr_t
1400 ffs_alloccgblk(ip, bp, bpref)
1401 	struct inode *ip;
1402 	struct buf *bp;
1403 	ufs2_daddr_t bpref;
1404 {
1405 	struct fs *fs;
1406 	struct cg *cgp;
1407 	ufs1_daddr_t bno;
1408 	ufs2_daddr_t blkno;
1409 	u_int8_t *blksfree;
1410 
1411 	fs = ip->i_fs;
1412 	cgp = (struct cg *)bp->b_data;
1413 	blksfree = cg_blksfree(cgp);
1414 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1415 		bpref = cgp->cg_rotor;
1416 	} else {
1417 		bpref = blknum(fs, bpref);
1418 		bno = dtogd(fs, bpref);
1419 		/*
1420 		 * if the requested block is available, use it
1421 		 */
1422 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1423 			goto gotit;
1424 	}
1425 	/*
1426 	 * Take the next available block in this cylinder group.
1427 	 */
1428 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1429 	if (bno < 0)
1430 		return (0);
1431 	cgp->cg_rotor = bno;
1432 gotit:
1433 	blkno = fragstoblks(fs, bno);
1434 	ffs_clrblock(fs, blksfree, (long)blkno);
1435 	ffs_clusteracct(fs, cgp, blkno, -1);
1436 	cgp->cg_cs.cs_nbfree--;
1437 	fs->fs_cstotal.cs_nbfree--;
1438 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1439 	fs->fs_fmod = 1;
1440 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1441 	if (DOINGSOFTDEP(ITOV(ip)))
1442 		softdep_setup_blkmapdep(bp, fs, blkno);
1443 	return (blkno);
1444 }
1445 
1446 /*
1447  * Determine whether a cluster can be allocated.
1448  *
1449  * We do not currently check for optimal rotational layout if there
1450  * are multiple choices in the same cylinder group. Instead we just
1451  * take the first one that we find following bpref.
1452  */
1453 static ufs2_daddr_t
1454 ffs_clusteralloc(ip, cg, bpref, len)
1455 	struct inode *ip;
1456 	int cg;
1457 	ufs2_daddr_t bpref;
1458 	int len;
1459 {
1460 	struct fs *fs;
1461 	struct cg *cgp;
1462 	struct buf *bp;
1463 	int i, run, bit, map, got;
1464 	ufs2_daddr_t bno;
1465 	u_char *mapp;
1466 	int32_t *lp;
1467 	u_int8_t *blksfree;
1468 
1469 	fs = ip->i_fs;
1470 	if (fs->fs_maxcluster[cg] < len)
1471 		return (0);
1472 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1473 	    NOCRED, &bp))
1474 		goto fail;
1475 	cgp = (struct cg *)bp->b_data;
1476 	if (!cg_chkmagic(cgp))
1477 		goto fail;
1478 	bp->b_xflags |= BX_BKGRDWRITE;
1479 	/*
1480 	 * Check to see if a cluster of the needed size (or bigger) is
1481 	 * available in this cylinder group.
1482 	 */
1483 	lp = &cg_clustersum(cgp)[len];
1484 	for (i = len; i <= fs->fs_contigsumsize; i++)
1485 		if (*lp++ > 0)
1486 			break;
1487 	if (i > fs->fs_contigsumsize) {
1488 		/*
1489 		 * This is the first time looking for a cluster in this
1490 		 * cylinder group. Update the cluster summary information
1491 		 * to reflect the true maximum sized cluster so that
1492 		 * future cluster allocation requests can avoid reading
1493 		 * the cylinder group map only to find no clusters.
1494 		 */
1495 		lp = &cg_clustersum(cgp)[len - 1];
1496 		for (i = len - 1; i > 0; i--)
1497 			if (*lp-- > 0)
1498 				break;
1499 		fs->fs_maxcluster[cg] = i;
1500 		goto fail;
1501 	}
1502 	/*
1503 	 * Search the cluster map to find a big enough cluster.
1504 	 * We take the first one that we find, even if it is larger
1505 	 * than we need as we prefer to get one close to the previous
1506 	 * block allocation. We do not search before the current
1507 	 * preference point as we do not want to allocate a block
1508 	 * that is allocated before the previous one (as we will
1509 	 * then have to wait for another pass of the elevator
1510 	 * algorithm before it will be read). We prefer to fail and
1511 	 * be recalled to try an allocation in the next cylinder group.
1512 	 */
1513 	if (dtog(fs, bpref) != cg)
1514 		bpref = 0;
1515 	else
1516 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1517 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1518 	map = *mapp++;
1519 	bit = 1 << (bpref % NBBY);
1520 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1521 		if ((map & bit) == 0) {
1522 			run = 0;
1523 		} else {
1524 			run++;
1525 			if (run == len)
1526 				break;
1527 		}
1528 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1529 			bit <<= 1;
1530 		} else {
1531 			map = *mapp++;
1532 			bit = 1;
1533 		}
1534 	}
1535 	if (got >= cgp->cg_nclusterblks)
1536 		goto fail;
1537 	/*
1538 	 * Allocate the cluster that we have found.
1539 	 */
1540 	blksfree = cg_blksfree(cgp);
1541 	for (i = 1; i <= len; i++)
1542 		if (!ffs_isblock(fs, blksfree, got - run + i))
1543 			panic("ffs_clusteralloc: map mismatch");
1544 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1545 	if (dtog(fs, bno) != cg)
1546 		panic("ffs_clusteralloc: allocated out of group");
1547 	len = blkstofrags(fs, len);
1548 	for (i = 0; i < len; i += fs->fs_frag)
1549 		if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
1550 			panic("ffs_clusteralloc: lost block");
1551 	if (fs->fs_active != 0)
1552 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1553 	bdwrite(bp);
1554 	return (bno);
1555 
1556 fail:
1557 	brelse(bp);
1558 	return (0);
1559 }
1560 
1561 /*
1562  * Determine whether an inode can be allocated.
1563  *
1564  * Check to see if an inode is available, and if it is,
1565  * allocate it using the following policy:
1566  *   1) allocate the requested inode.
1567  *   2) allocate the next available inode after the requested
1568  *      inode in the specified cylinder group.
1569  */
1570 static ufs2_daddr_t
1571 ffs_nodealloccg(ip, cg, ipref, mode)
1572 	struct inode *ip;
1573 	int cg;
1574 	ufs2_daddr_t ipref;
1575 	int mode;
1576 {
1577 	struct fs *fs;
1578 	struct cg *cgp;
1579 	struct buf *bp, *ibp;
1580 	u_int8_t *inosused;
1581 	struct ufs2_dinode *dp2;
1582 	int error, start, len, loc, map, i;
1583 
1584 	fs = ip->i_fs;
1585 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1586 		return (0);
1587 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1588 		(int)fs->fs_cgsize, NOCRED, &bp);
1589 	if (error) {
1590 		brelse(bp);
1591 		return (0);
1592 	}
1593 	cgp = (struct cg *)bp->b_data;
1594 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1595 		brelse(bp);
1596 		return (0);
1597 	}
1598 	bp->b_xflags |= BX_BKGRDWRITE;
1599 	cgp->cg_old_time = cgp->cg_time = time_second;
1600 	inosused = cg_inosused(cgp);
1601 	if (ipref) {
1602 		ipref %= fs->fs_ipg;
1603 		if (isclr(inosused, ipref))
1604 			goto gotit;
1605 	}
1606 	start = cgp->cg_irotor / NBBY;
1607 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1608 	loc = skpc(0xff, len, &inosused[start]);
1609 	if (loc == 0) {
1610 		len = start + 1;
1611 		start = 0;
1612 		loc = skpc(0xff, len, &inosused[0]);
1613 		if (loc == 0) {
1614 			printf("cg = %d, irotor = %ld, fs = %s\n",
1615 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1616 			panic("ffs_nodealloccg: map corrupted");
1617 			/* NOTREACHED */
1618 		}
1619 	}
1620 	i = start + len - loc;
1621 	map = inosused[i];
1622 	ipref = i * NBBY;
1623 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1624 		if ((map & i) == 0) {
1625 			cgp->cg_irotor = ipref;
1626 			goto gotit;
1627 		}
1628 	}
1629 	printf("fs = %s\n", fs->fs_fsmnt);
1630 	panic("ffs_nodealloccg: block not in map");
1631 	/* NOTREACHED */
1632 gotit:
1633 	if (DOINGSOFTDEP(ITOV(ip)))
1634 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1635 	setbit(inosused, ipref);
1636 	cgp->cg_cs.cs_nifree--;
1637 	fs->fs_cstotal.cs_nifree--;
1638 	fs->fs_cs(fs, cg).cs_nifree--;
1639 	fs->fs_fmod = 1;
1640 	if ((mode & IFMT) == IFDIR) {
1641 		cgp->cg_cs.cs_ndir++;
1642 		fs->fs_cstotal.cs_ndir++;
1643 		fs->fs_cs(fs, cg).cs_ndir++;
1644 	}
1645 	/*
1646 	 * Check to see if we need to initialize more inodes.
1647 	 */
1648 	ibp = NULL;
1649 	if (fs->fs_magic == FS_UFS2_MAGIC &&
1650 	    ipref + INOPB(fs) > cgp->cg_initediblk &&
1651 	    cgp->cg_initediblk < cgp->cg_niblk) {
1652 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
1653 		    ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
1654 		    (int)fs->fs_bsize, 0, 0, 0);
1655 		bzero(ibp->b_data, (int)fs->fs_bsize);
1656 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
1657 		for (i = 0; i < INOPB(fs); i++) {
1658 			dp2->di_gen = arc4random() / 2 + 1;
1659 			dp2++;
1660 		}
1661 		cgp->cg_initediblk += INOPB(fs);
1662 	}
1663 	if (fs->fs_active != 0)
1664 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1665 	bdwrite(bp);
1666 	if (ibp != NULL)
1667 		bawrite(ibp);
1668 	return (cg * fs->fs_ipg + ipref);
1669 }
1670 
1671 /*
1672  * check if a block is free
1673  */
1674 static int
1675 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
1676 {
1677 
1678 	switch ((int)fs->fs_frag) {
1679 	case 8:
1680 		return (cp[h] == 0);
1681 	case 4:
1682 		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
1683 	case 2:
1684 		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
1685 	case 1:
1686 		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
1687 	default:
1688 		panic("ffs_isfreeblock");
1689 	}
1690 	return (0);
1691 }
1692 
1693 /*
1694  * Free a block or fragment.
1695  *
1696  * The specified block or fragment is placed back in the
1697  * free map. If a fragment is deallocated, a possible
1698  * block reassembly is checked.
1699  */
1700 void
1701 ffs_blkfree(fs, devvp, bno, size, inum)
1702 	struct fs *fs;
1703 	struct vnode *devvp;
1704 	ufs2_daddr_t bno;
1705 	long size;
1706 	ino_t inum;
1707 {
1708 	struct cg *cgp;
1709 	struct buf *bp;
1710 	ufs1_daddr_t fragno, cgbno;
1711 	ufs2_daddr_t cgblkno;
1712 	int i, cg, blk, frags, bbase;
1713 	u_int8_t *blksfree;
1714 	struct cdev *dev;
1715 
1716 	cg = dtog(fs, bno);
1717 	if (devvp->v_type != VCHR) {
1718 		/* devvp is a snapshot */
1719 		dev = VTOI(devvp)->i_devvp->v_rdev;
1720 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
1721 	} else {
1722 		/* devvp is a normal disk device */
1723 		dev = devvp->v_rdev;
1724 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
1725 		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree");
1726 		if ((devvp->v_vflag & VV_COPYONWRITE) &&
1727 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
1728 			return;
1729 	}
1730 #ifdef DIAGNOSTIC
1731 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1732 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1733 		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
1734 		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
1735 		    size, fs->fs_fsmnt);
1736 		panic("ffs_blkfree: bad size");
1737 	}
1738 #endif
1739 	if ((u_int)bno >= fs->fs_size) {
1740 		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
1741 		    (u_long)inum);
1742 		ffs_fserr(fs, inum, "bad block");
1743 		return;
1744 	}
1745 	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1746 		brelse(bp);
1747 		return;
1748 	}
1749 	cgp = (struct cg *)bp->b_data;
1750 	if (!cg_chkmagic(cgp)) {
1751 		brelse(bp);
1752 		return;
1753 	}
1754 	bp->b_xflags |= BX_BKGRDWRITE;
1755 	cgp->cg_old_time = cgp->cg_time = time_second;
1756 	cgbno = dtogd(fs, bno);
1757 	blksfree = cg_blksfree(cgp);
1758 	if (size == fs->fs_bsize) {
1759 		fragno = fragstoblks(fs, cgbno);
1760 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1761 			if (devvp->v_type != VCHR) {
1762 				/* devvp is a snapshot */
1763 				brelse(bp);
1764 				return;
1765 			}
1766 			printf("dev = %s, block = %jd, fs = %s\n",
1767 			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
1768 			panic("ffs_blkfree: freeing free block");
1769 		}
1770 		ffs_setblock(fs, blksfree, fragno);
1771 		ffs_clusteracct(fs, cgp, fragno, 1);
1772 		cgp->cg_cs.cs_nbfree++;
1773 		fs->fs_cstotal.cs_nbfree++;
1774 		fs->fs_cs(fs, cg).cs_nbfree++;
1775 	} else {
1776 		bbase = cgbno - fragnum(fs, cgbno);
1777 		/*
1778 		 * decrement the counts associated with the old frags
1779 		 */
1780 		blk = blkmap(fs, blksfree, bbase);
1781 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1782 		/*
1783 		 * deallocate the fragment
1784 		 */
1785 		frags = numfrags(fs, size);
1786 		for (i = 0; i < frags; i++) {
1787 			if (isset(blksfree, cgbno + i)) {
1788 				printf("dev = %s, block = %jd, fs = %s\n",
1789 				    devtoname(dev), (intmax_t)(bno + i),
1790 				    fs->fs_fsmnt);
1791 				panic("ffs_blkfree: freeing free frag");
1792 			}
1793 			setbit(blksfree, cgbno + i);
1794 		}
1795 		cgp->cg_cs.cs_nffree += i;
1796 		fs->fs_cstotal.cs_nffree += i;
1797 		fs->fs_cs(fs, cg).cs_nffree += i;
1798 		/*
1799 		 * add back in counts associated with the new frags
1800 		 */
1801 		blk = blkmap(fs, blksfree, bbase);
1802 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1803 		/*
1804 		 * if a complete block has been reassembled, account for it
1805 		 */
1806 		fragno = fragstoblks(fs, bbase);
1807 		if (ffs_isblock(fs, blksfree, fragno)) {
1808 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1809 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1810 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1811 			ffs_clusteracct(fs, cgp, fragno, 1);
1812 			cgp->cg_cs.cs_nbfree++;
1813 			fs->fs_cstotal.cs_nbfree++;
1814 			fs->fs_cs(fs, cg).cs_nbfree++;
1815 		}
1816 	}
1817 	fs->fs_fmod = 1;
1818 	if (fs->fs_active != 0)
1819 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1820 	bdwrite(bp);
1821 }
1822 
1823 #ifdef DIAGNOSTIC
1824 /*
1825  * Verify allocation of a block or fragment. Returns true if block or
1826  * fragment is allocated, false if it is free.
1827  */
1828 static int
1829 ffs_checkblk(ip, bno, size)
1830 	struct inode *ip;
1831 	ufs2_daddr_t bno;
1832 	long size;
1833 {
1834 	struct fs *fs;
1835 	struct cg *cgp;
1836 	struct buf *bp;
1837 	ufs1_daddr_t cgbno;
1838 	int i, error, frags, free;
1839 	u_int8_t *blksfree;
1840 
1841 	fs = ip->i_fs;
1842 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1843 		printf("bsize = %ld, size = %ld, fs = %s\n",
1844 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1845 		panic("ffs_checkblk: bad size");
1846 	}
1847 	if ((u_int)bno >= fs->fs_size)
1848 		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
1849 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1850 		(int)fs->fs_cgsize, NOCRED, &bp);
1851 	if (error)
1852 		panic("ffs_checkblk: cg bread failed");
1853 	cgp = (struct cg *)bp->b_data;
1854 	if (!cg_chkmagic(cgp))
1855 		panic("ffs_checkblk: cg magic mismatch");
1856 	bp->b_xflags |= BX_BKGRDWRITE;
1857 	blksfree = cg_blksfree(cgp);
1858 	cgbno = dtogd(fs, bno);
1859 	if (size == fs->fs_bsize) {
1860 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
1861 	} else {
1862 		frags = numfrags(fs, size);
1863 		for (free = 0, i = 0; i < frags; i++)
1864 			if (isset(blksfree, cgbno + i))
1865 				free++;
1866 		if (free != 0 && free != frags)
1867 			panic("ffs_checkblk: partially free fragment");
1868 	}
1869 	brelse(bp);
1870 	return (!free);
1871 }
1872 #endif /* DIAGNOSTIC */
1873 
1874 /*
1875  * Free an inode.
1876  */
1877 int
1878 ffs_vfree(pvp, ino, mode)
1879 	struct vnode *pvp;
1880 	ino_t ino;
1881 	int mode;
1882 {
1883 	if (DOINGSOFTDEP(pvp)) {
1884 		softdep_freefile(pvp, ino, mode);
1885 		return (0);
1886 	}
1887 	return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode));
1888 }
1889 
1890 /*
1891  * Do the actual free operation.
1892  * The specified inode is placed back in the free map.
1893  */
1894 int
1895 ffs_freefile(fs, devvp, ino, mode)
1896 	struct fs *fs;
1897 	struct vnode *devvp;
1898 	ino_t ino;
1899 	int mode;
1900 {
1901 	struct cg *cgp;
1902 	struct buf *bp;
1903 	ufs2_daddr_t cgbno;
1904 	int error, cg;
1905 	u_int8_t *inosused;
1906 	struct cdev *dev;
1907 
1908 	cg = ino_to_cg(fs, ino);
1909 	if (devvp->v_type != VCHR) {
1910 		/* devvp is a snapshot */
1911 		dev = VTOI(devvp)->i_devvp->v_rdev;
1912 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1913 	} else {
1914 		/* devvp is a normal disk device */
1915 		dev = devvp->v_rdev;
1916 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1917 	}
1918 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1919 		panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s",
1920 		    devtoname(dev), (u_long)ino, fs->fs_fsmnt);
1921 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1922 		brelse(bp);
1923 		return (error);
1924 	}
1925 	cgp = (struct cg *)bp->b_data;
1926 	if (!cg_chkmagic(cgp)) {
1927 		brelse(bp);
1928 		return (0);
1929 	}
1930 	bp->b_xflags |= BX_BKGRDWRITE;
1931 	cgp->cg_old_time = cgp->cg_time = time_second;
1932 	inosused = cg_inosused(cgp);
1933 	ino %= fs->fs_ipg;
1934 	if (isclr(inosused, ino)) {
1935 		printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
1936 		    (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1937 		if (fs->fs_ronly == 0)
1938 			panic("ffs_freefile: freeing free inode");
1939 	}
1940 	clrbit(inosused, ino);
1941 	if (ino < cgp->cg_irotor)
1942 		cgp->cg_irotor = ino;
1943 	cgp->cg_cs.cs_nifree++;
1944 	fs->fs_cstotal.cs_nifree++;
1945 	fs->fs_cs(fs, cg).cs_nifree++;
1946 	if ((mode & IFMT) == IFDIR) {
1947 		cgp->cg_cs.cs_ndir--;
1948 		fs->fs_cstotal.cs_ndir--;
1949 		fs->fs_cs(fs, cg).cs_ndir--;
1950 	}
1951 	fs->fs_fmod = 1;
1952 	if (fs->fs_active != 0)
1953 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1954 	bdwrite(bp);
1955 	return (0);
1956 }
1957 
1958 /*
1959  * Check to see if a file is free.
1960  */
1961 int
1962 ffs_checkfreefile(fs, devvp, ino)
1963 	struct fs *fs;
1964 	struct vnode *devvp;
1965 	ino_t ino;
1966 {
1967 	struct cg *cgp;
1968 	struct buf *bp;
1969 	ufs2_daddr_t cgbno;
1970 	int ret, cg;
1971 	u_int8_t *inosused;
1972 
1973 	cg = ino_to_cg(fs, ino);
1974 	if (devvp->v_type != VCHR) {
1975 		/* devvp is a snapshot */
1976 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1977 	} else {
1978 		/* devvp is a normal disk device */
1979 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1980 	}
1981 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1982 		return (1);
1983 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1984 		brelse(bp);
1985 		return (1);
1986 	}
1987 	cgp = (struct cg *)bp->b_data;
1988 	if (!cg_chkmagic(cgp)) {
1989 		brelse(bp);
1990 		return (1);
1991 	}
1992 	inosused = cg_inosused(cgp);
1993 	ino %= fs->fs_ipg;
1994 	ret = isclr(inosused, ino);
1995 	brelse(bp);
1996 	return (ret);
1997 }
1998 
1999 /*
2000  * Find a block of the specified size in the specified cylinder group.
2001  *
2002  * It is a panic if a request is made to find a block if none are
2003  * available.
2004  */
2005 static ufs1_daddr_t
2006 ffs_mapsearch(fs, cgp, bpref, allocsiz)
2007 	struct fs *fs;
2008 	struct cg *cgp;
2009 	ufs2_daddr_t bpref;
2010 	int allocsiz;
2011 {
2012 	ufs1_daddr_t bno;
2013 	int start, len, loc, i;
2014 	int blk, field, subfield, pos;
2015 	u_int8_t *blksfree;
2016 
2017 	/*
2018 	 * find the fragment by searching through the free block
2019 	 * map for an appropriate bit pattern
2020 	 */
2021 	if (bpref)
2022 		start = dtogd(fs, bpref) / NBBY;
2023 	else
2024 		start = cgp->cg_frotor / NBBY;
2025 	blksfree = cg_blksfree(cgp);
2026 	len = howmany(fs->fs_fpg, NBBY) - start;
2027 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2028 		(u_char *)fragtbl[fs->fs_frag],
2029 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2030 	if (loc == 0) {
2031 		len = start + 1;
2032 		start = 0;
2033 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2034 			(u_char *)fragtbl[fs->fs_frag],
2035 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2036 		if (loc == 0) {
2037 			printf("start = %d, len = %d, fs = %s\n",
2038 			    start, len, fs->fs_fsmnt);
2039 			panic("ffs_alloccg: map corrupted");
2040 			/* NOTREACHED */
2041 		}
2042 	}
2043 	bno = (start + len - loc) * NBBY;
2044 	cgp->cg_frotor = bno;
2045 	/*
2046 	 * found the byte in the map
2047 	 * sift through the bits to find the selected frag
2048 	 */
2049 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2050 		blk = blkmap(fs, blksfree, bno);
2051 		blk <<= 1;
2052 		field = around[allocsiz];
2053 		subfield = inside[allocsiz];
2054 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2055 			if ((blk & field) == subfield)
2056 				return (bno + pos);
2057 			field <<= 1;
2058 			subfield <<= 1;
2059 		}
2060 	}
2061 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2062 	panic("ffs_alloccg: block not in map");
2063 	return (-1);
2064 }
2065 
2066 /*
2067  * Update the cluster map because of an allocation or free.
2068  *
2069  * Cnt == 1 means free; cnt == -1 means allocating.
2070  */
2071 void
2072 ffs_clusteracct(fs, cgp, blkno, cnt)
2073 	struct fs *fs;
2074 	struct cg *cgp;
2075 	ufs1_daddr_t blkno;
2076 	int cnt;
2077 {
2078 	int32_t *sump;
2079 	int32_t *lp;
2080 	u_char *freemapp, *mapp;
2081 	int i, start, end, forw, back, map, bit;
2082 
2083 	if (fs->fs_contigsumsize <= 0)
2084 		return;
2085 	freemapp = cg_clustersfree(cgp);
2086 	sump = cg_clustersum(cgp);
2087 	/*
2088 	 * Allocate or clear the actual block.
2089 	 */
2090 	if (cnt > 0)
2091 		setbit(freemapp, blkno);
2092 	else
2093 		clrbit(freemapp, blkno);
2094 	/*
2095 	 * Find the size of the cluster going forward.
2096 	 */
2097 	start = blkno + 1;
2098 	end = start + fs->fs_contigsumsize;
2099 	if (end >= cgp->cg_nclusterblks)
2100 		end = cgp->cg_nclusterblks;
2101 	mapp = &freemapp[start / NBBY];
2102 	map = *mapp++;
2103 	bit = 1 << (start % NBBY);
2104 	for (i = start; i < end; i++) {
2105 		if ((map & bit) == 0)
2106 			break;
2107 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
2108 			bit <<= 1;
2109 		} else {
2110 			map = *mapp++;
2111 			bit = 1;
2112 		}
2113 	}
2114 	forw = i - start;
2115 	/*
2116 	 * Find the size of the cluster going backward.
2117 	 */
2118 	start = blkno - 1;
2119 	end = start - fs->fs_contigsumsize;
2120 	if (end < 0)
2121 		end = -1;
2122 	mapp = &freemapp[start / NBBY];
2123 	map = *mapp--;
2124 	bit = 1 << (start % NBBY);
2125 	for (i = start; i > end; i--) {
2126 		if ((map & bit) == 0)
2127 			break;
2128 		if ((i & (NBBY - 1)) != 0) {
2129 			bit >>= 1;
2130 		} else {
2131 			map = *mapp--;
2132 			bit = 1 << (NBBY - 1);
2133 		}
2134 	}
2135 	back = start - i;
2136 	/*
2137 	 * Account for old cluster and the possibly new forward and
2138 	 * back clusters.
2139 	 */
2140 	i = back + forw + 1;
2141 	if (i > fs->fs_contigsumsize)
2142 		i = fs->fs_contigsumsize;
2143 	sump[i] += cnt;
2144 	if (back > 0)
2145 		sump[back] -= cnt;
2146 	if (forw > 0)
2147 		sump[forw] -= cnt;
2148 	/*
2149 	 * Update cluster summary information.
2150 	 */
2151 	lp = &sump[fs->fs_contigsumsize];
2152 	for (i = fs->fs_contigsumsize; i > 0; i--)
2153 		if (*lp-- > 0)
2154 			break;
2155 	fs->fs_maxcluster[cgp->cg_cgx] = i;
2156 }
2157 
2158 /*
2159  * Fserr prints the name of a filesystem with an error diagnostic.
2160  *
2161  * The form of the error message is:
2162  *	fs: error message
2163  */
2164 static void
2165 ffs_fserr(fs, inum, cp)
2166 	struct fs *fs;
2167 	ino_t inum;
2168 	char *cp;
2169 {
2170 	struct thread *td = curthread;	/* XXX */
2171 	struct proc *p = td->td_proc;
2172 
2173 	log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
2174 	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp);
2175 }
2176 
2177 /*
2178  * This function provides the capability for the fsck program to
2179  * update an active filesystem. Six operations are provided:
2180  *
2181  * adjrefcnt(inode, amt) - adjusts the reference count on the
2182  *	specified inode by the specified amount. Under normal
2183  *	operation the count should always go down. Decrementing
2184  *	the count to zero will cause the inode to be freed.
2185  * adjblkcnt(inode, amt) - adjust the number of blocks used to
2186  *	by the specifed amount.
2187  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2188  *	are marked as free. Inodes should never have to be marked
2189  *	as in use.
2190  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2191  *	are marked as free. Inodes should never have to be marked
2192  *	as in use.
2193  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2194  *	are marked as free. Blocks should never have to be marked
2195  *	as in use.
2196  * setflags(flags, set/clear) - the fs_flags field has the specified
2197  *	flags set (second parameter +1) or cleared (second parameter -1).
2198  */
2199 
2200 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2201 
2202 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2203 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2204 
2205 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2206 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2207 
2208 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2209 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2210 
2211 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2212 	sysctl_ffs_fsck, "Free Range of File Inodes");
2213 
2214 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2215 	sysctl_ffs_fsck, "Free Range of Blocks");
2216 
2217 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2218 	sysctl_ffs_fsck, "Change Filesystem Flags");
2219 
2220 #ifdef DEBUG
2221 static int fsckcmds = 0;
2222 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2223 #endif /* DEBUG */
2224 
2225 static int
2226 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2227 {
2228 	struct fsck_cmd cmd;
2229 	struct ufsmount *ump;
2230 	struct vnode *vp;
2231 	struct inode *ip;
2232 	struct mount *mp;
2233 	struct fs *fs;
2234 	ufs2_daddr_t blkno;
2235 	long blkcnt, blksize;
2236 	struct file *fp;
2237 	int filetype, error;
2238 
2239 	if (req->newlen > sizeof cmd)
2240 		return (EBADRPC);
2241 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2242 		return (error);
2243 	if (cmd.version != FFS_CMD_VERSION)
2244 		return (ERPCMISMATCH);
2245 	if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
2246 		return (error);
2247 	vn_start_write(fp->f_data, &mp, V_WAIT);
2248 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2249 		vn_finished_write(mp);
2250 		fdrop(fp, curthread);
2251 		return (EINVAL);
2252 	}
2253 	if (mp->mnt_flag & MNT_RDONLY) {
2254 		vn_finished_write(mp);
2255 		fdrop(fp, curthread);
2256 		return (EROFS);
2257 	}
2258 	ump = VFSTOUFS(mp);
2259 	fs = ump->um_fs;
2260 	filetype = IFREG;
2261 
2262 	switch (oidp->oid_number) {
2263 
2264 	case FFS_SET_FLAGS:
2265 #ifdef DEBUG
2266 		if (fsckcmds)
2267 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2268 			    cmd.size > 0 ? "set" : "clear");
2269 #endif /* DEBUG */
2270 		if (cmd.size > 0)
2271 			fs->fs_flags |= (long)cmd.value;
2272 		else
2273 			fs->fs_flags &= ~(long)cmd.value;
2274 		break;
2275 
2276 	case FFS_ADJ_REFCNT:
2277 #ifdef DEBUG
2278 		if (fsckcmds) {
2279 			printf("%s: adjust inode %jd count by %jd\n",
2280 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2281 			    (intmax_t)cmd.size);
2282 		}
2283 #endif /* DEBUG */
2284 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2285 			break;
2286 		ip = VTOI(vp);
2287 		ip->i_nlink += cmd.size;
2288 		DIP_SET(ip, i_nlink, ip->i_nlink);
2289 		ip->i_effnlink += cmd.size;
2290 		ip->i_flag |= IN_CHANGE;
2291 		if (DOINGSOFTDEP(vp))
2292 			softdep_change_linkcnt(ip);
2293 		vput(vp);
2294 		break;
2295 
2296 	case FFS_ADJ_BLKCNT:
2297 #ifdef DEBUG
2298 		if (fsckcmds) {
2299 			printf("%s: adjust inode %jd block count by %jd\n",
2300 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2301 			    (intmax_t)cmd.size);
2302 		}
2303 #endif /* DEBUG */
2304 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2305 			break;
2306 		ip = VTOI(vp);
2307 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2308 		ip->i_flag |= IN_CHANGE;
2309 		vput(vp);
2310 		break;
2311 
2312 	case FFS_DIR_FREE:
2313 		filetype = IFDIR;
2314 		/* fall through */
2315 
2316 	case FFS_FILE_FREE:
2317 #ifdef DEBUG
2318 		if (fsckcmds) {
2319 			if (cmd.size == 1)
2320 				printf("%s: free %s inode %d\n",
2321 				    mp->mnt_stat.f_mntonname,
2322 				    filetype == IFDIR ? "directory" : "file",
2323 				    (ino_t)cmd.value);
2324 			else
2325 				printf("%s: free %s inodes %d-%d\n",
2326 				    mp->mnt_stat.f_mntonname,
2327 				    filetype == IFDIR ? "directory" : "file",
2328 				    (ino_t)cmd.value,
2329 				    (ino_t)(cmd.value + cmd.size - 1));
2330 		}
2331 #endif /* DEBUG */
2332 		while (cmd.size > 0) {
2333 			if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value,
2334 			    filetype)))
2335 				break;
2336 			cmd.size -= 1;
2337 			cmd.value += 1;
2338 		}
2339 		break;
2340 
2341 	case FFS_BLK_FREE:
2342 #ifdef DEBUG
2343 		if (fsckcmds) {
2344 			if (cmd.size == 1)
2345 				printf("%s: free block %jd\n",
2346 				    mp->mnt_stat.f_mntonname,
2347 				    (intmax_t)cmd.value);
2348 			else
2349 				printf("%s: free blocks %jd-%jd\n",
2350 				    mp->mnt_stat.f_mntonname,
2351 				    (intmax_t)cmd.value,
2352 				    (intmax_t)cmd.value + cmd.size - 1);
2353 		}
2354 #endif /* DEBUG */
2355 		blkno = cmd.value;
2356 		blkcnt = cmd.size;
2357 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2358 		while (blkcnt > 0) {
2359 			if (blksize > blkcnt)
2360 				blksize = blkcnt;
2361 			ffs_blkfree(fs, ump->um_devvp, blkno,
2362 			    blksize * fs->fs_fsize, ROOTINO);
2363 			blkno += blksize;
2364 			blkcnt -= blksize;
2365 			blksize = fs->fs_frag;
2366 		}
2367 		break;
2368 
2369 	default:
2370 #ifdef DEBUG
2371 		if (fsckcmds) {
2372 			printf("Invalid request %d from fsck\n",
2373 			    oidp->oid_number);
2374 		}
2375 #endif /* DEBUG */
2376 		error = EINVAL;
2377 		break;
2378 
2379 	}
2380 	fdrop(fp, curthread);
2381 	vn_finished_write(mp);
2382 	return (error);
2383 }
2384