1 /* 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_quota.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/buf.h> 42 #include <sys/conf.h> 43 #include <sys/proc.h> 44 #include <sys/vnode.h> 45 #include <sys/mount.h> 46 #include <sys/kernel.h> 47 #include <sys/sysctl.h> 48 #include <sys/syslog.h> 49 50 #include <ufs/ufs/quota.h> 51 #include <ufs/ufs/inode.h> 52 #include <ufs/ufs/ufs_extern.h> 53 #include <ufs/ufs/ufsmount.h> 54 55 #include <ufs/ffs/fs.h> 56 #include <ufs/ffs/ffs_extern.h> 57 58 typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref, 59 int size)); 60 61 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int)); 62 static ufs_daddr_t 63 ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t)); 64 #ifdef DIAGNOSTIC 65 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long)); 66 #endif 67 static void ffs_clusteracct __P((struct fs *, struct cg *, ufs_daddr_t, 68 int)); 69 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, 70 int)); 71 static ino_t ffs_dirpref __P((struct fs *)); 72 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int)); 73 static void ffs_fserr __P((struct fs *, u_int, char *)); 74 static u_long ffs_hashalloc 75 __P((struct inode *, int, long, int, allocfcn_t *)); 76 static ino_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int)); 77 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t, 78 int)); 79 80 /* 81 * Allocate a block in the file system. 82 * 83 * The size of the requested block is given, which must be some 84 * multiple of fs_fsize and <= fs_bsize. 85 * A preference may be optionally specified. If a preference is given 86 * the following hierarchy is used to allocate a block: 87 * 1) allocate the requested block. 88 * 2) allocate a rotationally optimal block in the same cylinder. 89 * 3) allocate a block in the same cylinder group. 90 * 4) quadradically rehash into other cylinder groups, until an 91 * available block is located. 92 * If no block preference is given the following heirarchy is used 93 * to allocate a block: 94 * 1) allocate a block in the cylinder group that contains the 95 * inode for the file. 96 * 2) quadradically rehash into other cylinder groups, until an 97 * available block is located. 98 */ 99 int 100 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 101 register struct inode *ip; 102 ufs_daddr_t lbn, bpref; 103 int size; 104 struct ucred *cred; 105 ufs_daddr_t *bnp; 106 { 107 register struct fs *fs; 108 ufs_daddr_t bno; 109 int cg; 110 #ifdef QUOTA 111 int error; 112 #endif 113 114 *bnp = 0; 115 fs = ip->i_fs; 116 #ifdef DIAGNOSTIC 117 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 118 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 119 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 120 fs->fs_fsmnt); 121 panic("ffs_alloc: bad size"); 122 } 123 if (cred == NOCRED) 124 panic("ffs_alloc: missing credential"); 125 #endif /* DIAGNOSTIC */ 126 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 127 goto nospace; 128 if (cred->cr_uid != 0 && 129 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 130 goto nospace; 131 #ifdef QUOTA 132 error = chkdq(ip, (long)btodb(size), cred, 0); 133 if (error) 134 return (error); 135 #endif 136 if (bpref >= fs->fs_size) 137 bpref = 0; 138 if (bpref == 0) 139 cg = ino_to_cg(fs, ip->i_number); 140 else 141 cg = dtog(fs, bpref); 142 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, 143 ffs_alloccg); 144 if (bno > 0) { 145 ip->i_blocks += btodb(size); 146 ip->i_flag |= IN_CHANGE | IN_UPDATE; 147 *bnp = bno; 148 return (0); 149 } 150 #ifdef QUOTA 151 /* 152 * Restore user's disk quota because allocation failed. 153 */ 154 (void) chkdq(ip, (long)-btodb(size), cred, FORCE); 155 #endif 156 nospace: 157 ffs_fserr(fs, cred->cr_uid, "file system full"); 158 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 159 return (ENOSPC); 160 } 161 162 /* 163 * Reallocate a fragment to a bigger size 164 * 165 * The number and size of the old block is given, and a preference 166 * and new size is also specified. The allocator attempts to extend 167 * the original block. Failing that, the regular block allocator is 168 * invoked to get an appropriate block. 169 */ 170 int 171 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp) 172 register struct inode *ip; 173 ufs_daddr_t lbprev; 174 ufs_daddr_t bpref; 175 int osize, nsize; 176 struct ucred *cred; 177 struct buf **bpp; 178 { 179 register struct fs *fs; 180 struct buf *bp; 181 int cg, request, error; 182 ufs_daddr_t bprev, bno; 183 184 *bpp = 0; 185 fs = ip->i_fs; 186 #ifdef DIAGNOSTIC 187 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 188 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 189 printf( 190 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 191 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 192 nsize, fs->fs_fsmnt); 193 panic("ffs_realloccg: bad size"); 194 } 195 if (cred == NOCRED) 196 panic("ffs_realloccg: missing credential"); 197 #endif /* DIAGNOSTIC */ 198 if (cred->cr_uid != 0 && 199 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) 200 goto nospace; 201 if ((bprev = ip->i_db[lbprev]) == 0) { 202 printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n", 203 devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev, 204 fs->fs_fsmnt); 205 panic("ffs_realloccg: bad bprev"); 206 } 207 /* 208 * Allocate the extra space in the buffer. 209 */ 210 error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp); 211 if (error) { 212 brelse(bp); 213 return (error); 214 } 215 216 if( bp->b_blkno == bp->b_lblkno) { 217 if( lbprev >= NDADDR) 218 panic("ffs_realloccg: lbprev out of range"); 219 bp->b_blkno = fsbtodb(fs, bprev); 220 } 221 222 #ifdef QUOTA 223 error = chkdq(ip, (long)btodb(nsize - osize), cred, 0); 224 if (error) { 225 brelse(bp); 226 return (error); 227 } 228 #endif 229 /* 230 * Check for extension in the existing location. 231 */ 232 cg = dtog(fs, bprev); 233 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize); 234 if (bno) { 235 if (bp->b_blkno != fsbtodb(fs, bno)) 236 panic("ffs_realloccg: bad blockno"); 237 ip->i_blocks += btodb(nsize - osize); 238 ip->i_flag |= IN_CHANGE | IN_UPDATE; 239 allocbuf(bp, nsize); 240 bp->b_flags |= B_DONE; 241 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 242 *bpp = bp; 243 return (0); 244 } 245 /* 246 * Allocate a new disk location. 247 */ 248 if (bpref >= fs->fs_size) 249 bpref = 0; 250 switch ((int)fs->fs_optim) { 251 case FS_OPTSPACE: 252 /* 253 * Allocate an exact sized fragment. Although this makes 254 * best use of space, we will waste time relocating it if 255 * the file continues to grow. If the fragmentation is 256 * less than half of the minimum free reserve, we choose 257 * to begin optimizing for time. 258 */ 259 request = nsize; 260 if (fs->fs_minfree <= 5 || 261 fs->fs_cstotal.cs_nffree > 262 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 263 break; 264 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 265 fs->fs_fsmnt); 266 fs->fs_optim = FS_OPTTIME; 267 break; 268 case FS_OPTTIME: 269 /* 270 * At this point we have discovered a file that is trying to 271 * grow a small fragment to a larger fragment. To save time, 272 * we allocate a full sized block, then free the unused portion. 273 * If the file continues to grow, the `ffs_fragextend' call 274 * above will be able to grow it in place without further 275 * copying. If aberrant programs cause disk fragmentation to 276 * grow within 2% of the free reserve, we choose to begin 277 * optimizing for space. 278 */ 279 request = fs->fs_bsize; 280 if (fs->fs_cstotal.cs_nffree < 281 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 282 break; 283 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 284 fs->fs_fsmnt); 285 fs->fs_optim = FS_OPTSPACE; 286 break; 287 default: 288 printf("dev = %s, optim = %ld, fs = %s\n", 289 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 290 panic("ffs_realloccg: bad optim"); 291 /* NOTREACHED */ 292 } 293 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request, 294 ffs_alloccg); 295 if (bno > 0) { 296 bp->b_blkno = fsbtodb(fs, bno); 297 if (!DOINGSOFTDEP(ITOV(ip))) 298 ffs_blkfree(ip, bprev, (long)osize); 299 if (nsize < request) 300 ffs_blkfree(ip, bno + numfrags(fs, nsize), 301 (long)(request - nsize)); 302 ip->i_blocks += btodb(nsize - osize); 303 ip->i_flag |= IN_CHANGE | IN_UPDATE; 304 allocbuf(bp, nsize); 305 bp->b_flags |= B_DONE; 306 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 307 *bpp = bp; 308 return (0); 309 } 310 #ifdef QUOTA 311 /* 312 * Restore user's disk quota because allocation failed. 313 */ 314 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); 315 #endif 316 brelse(bp); 317 nospace: 318 /* 319 * no space available 320 */ 321 ffs_fserr(fs, cred->cr_uid, "file system full"); 322 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 323 return (ENOSPC); 324 } 325 326 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 327 328 /* 329 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 330 * 331 * The vnode and an array of buffer pointers for a range of sequential 332 * logical blocks to be made contiguous is given. The allocator attempts 333 * to find a range of sequential blocks starting as close as possible to 334 * an fs_rotdelay offset from the end of the allocation for the logical 335 * block immediately preceeding the current range. If successful, the 336 * physical block numbers in the buffer pointers and in the inode are 337 * changed to reflect the new allocation. If unsuccessful, the allocation 338 * is left unchanged. The success in doing the reallocation is returned. 339 * Note that the error return is not reflected back to the user. Rather 340 * the previous block allocation will be used. 341 */ 342 static int doasyncfree = 1; 343 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 344 345 static int doreallocblks = 1; 346 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 347 348 #ifdef DEBUG 349 static volatile int prtrealloc = 0; 350 #endif 351 352 int 353 ffs_reallocblks(ap) 354 struct vop_reallocblks_args /* { 355 struct vnode *a_vp; 356 struct cluster_save *a_buflist; 357 } */ *ap; 358 { 359 struct fs *fs; 360 struct inode *ip; 361 struct vnode *vp; 362 struct buf *sbp, *ebp; 363 ufs_daddr_t *bap, *sbap, *ebap = 0; 364 struct cluster_save *buflist; 365 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno; 366 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 367 int i, len, start_lvl, end_lvl, pref, ssize; 368 369 if (doreallocblks == 0) 370 return (ENOSPC); 371 vp = ap->a_vp; 372 ip = VTOI(vp); 373 fs = ip->i_fs; 374 if (fs->fs_contigsumsize <= 0) 375 return (ENOSPC); 376 buflist = ap->a_buflist; 377 len = buflist->bs_nchildren; 378 start_lbn = buflist->bs_children[0]->b_lblkno; 379 end_lbn = start_lbn + len - 1; 380 #ifdef DIAGNOSTIC 381 for (i = 0; i < len; i++) 382 if (!ffs_checkblk(ip, 383 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 384 panic("ffs_reallocblks: unallocated block 1"); 385 for (i = 1; i < len; i++) 386 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 387 panic("ffs_reallocblks: non-logical cluster"); 388 blkno = buflist->bs_children[0]->b_blkno; 389 ssize = fsbtodb(fs, fs->fs_frag); 390 for (i = 1; i < len - 1; i++) 391 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 392 panic("ffs_reallocblks: non-physical cluster %d", i); 393 #endif 394 /* 395 * If the latest allocation is in a new cylinder group, assume that 396 * the filesystem has decided to move and do not force it back to 397 * the previous cylinder group. 398 */ 399 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 400 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 401 return (ENOSPC); 402 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 403 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 404 return (ENOSPC); 405 /* 406 * Get the starting offset and block map for the first block. 407 */ 408 if (start_lvl == 0) { 409 sbap = &ip->i_db[0]; 410 soff = start_lbn; 411 } else { 412 idp = &start_ap[start_lvl - 1]; 413 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 414 brelse(sbp); 415 return (ENOSPC); 416 } 417 sbap = (ufs_daddr_t *)sbp->b_data; 418 soff = idp->in_off; 419 } 420 /* 421 * Find the preferred location for the cluster. 422 */ 423 pref = ffs_blkpref(ip, start_lbn, soff, sbap); 424 /* 425 * If the block range spans two block maps, get the second map. 426 */ 427 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 428 ssize = len; 429 } else { 430 #ifdef DIAGNOSTIC 431 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 432 panic("ffs_reallocblk: start == end"); 433 #endif 434 ssize = len - (idp->in_off + 1); 435 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 436 goto fail; 437 ebap = (ufs_daddr_t *)ebp->b_data; 438 } 439 /* 440 * Search the block map looking for an allocation of the desired size. 441 */ 442 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref, 443 len, ffs_clusteralloc)) == 0) 444 goto fail; 445 /* 446 * We have found a new contiguous block. 447 * 448 * First we have to replace the old block pointers with the new 449 * block pointers in the inode and indirect blocks associated 450 * with the file. 451 */ 452 #ifdef DEBUG 453 if (prtrealloc) 454 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number, 455 start_lbn, end_lbn); 456 #endif 457 blkno = newblk; 458 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 459 if (i == ssize) { 460 bap = ebap; 461 soff = -i; 462 } 463 #ifdef DIAGNOSTIC 464 if (!ffs_checkblk(ip, 465 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 466 panic("ffs_reallocblks: unallocated block 2"); 467 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 468 panic("ffs_reallocblks: alloc mismatch"); 469 #endif 470 #ifdef DEBUG 471 if (prtrealloc) 472 printf(" %d,", *bap); 473 #endif 474 if (DOINGSOFTDEP(vp)) { 475 if (sbap == &ip->i_db[0] && i < ssize) 476 softdep_setup_allocdirect(ip, start_lbn + i, 477 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 478 buflist->bs_children[i]); 479 else 480 softdep_setup_allocindir_page(ip, start_lbn + i, 481 i < ssize ? sbp : ebp, soff + i, blkno, 482 *bap, buflist->bs_children[i]); 483 } 484 *bap++ = blkno; 485 } 486 /* 487 * Next we must write out the modified inode and indirect blocks. 488 * For strict correctness, the writes should be synchronous since 489 * the old block values may have been written to disk. In practise 490 * they are almost never written, but if we are concerned about 491 * strict correctness, the `doasyncfree' flag should be set to zero. 492 * 493 * The test on `doasyncfree' should be changed to test a flag 494 * that shows whether the associated buffers and inodes have 495 * been written. The flag should be set when the cluster is 496 * started and cleared whenever the buffer or inode is flushed. 497 * We can then check below to see if it is set, and do the 498 * synchronous write only when it has been cleared. 499 */ 500 if (sbap != &ip->i_db[0]) { 501 if (doasyncfree) 502 bdwrite(sbp); 503 else 504 bwrite(sbp); 505 } else { 506 ip->i_flag |= IN_CHANGE | IN_UPDATE; 507 if (!doasyncfree) 508 UFS_UPDATE(vp, 1); 509 } 510 if (ssize < len) { 511 if (doasyncfree) 512 bdwrite(ebp); 513 else 514 bwrite(ebp); 515 } 516 /* 517 * Last, free the old blocks and assign the new blocks to the buffers. 518 */ 519 #ifdef DEBUG 520 if (prtrealloc) 521 printf("\n\tnew:"); 522 #endif 523 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 524 if (!DOINGSOFTDEP(vp)) 525 ffs_blkfree(ip, 526 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 527 fs->fs_bsize); 528 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 529 #ifdef DIAGNOSTIC 530 if (!ffs_checkblk(ip, 531 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 532 panic("ffs_reallocblks: unallocated block 3"); 533 #endif 534 #ifdef DEBUG 535 if (prtrealloc) 536 printf(" %d,", blkno); 537 #endif 538 } 539 #ifdef DEBUG 540 if (prtrealloc) { 541 prtrealloc--; 542 printf("\n"); 543 } 544 #endif 545 return (0); 546 547 fail: 548 if (ssize < len) 549 brelse(ebp); 550 if (sbap != &ip->i_db[0]) 551 brelse(sbp); 552 return (ENOSPC); 553 } 554 555 /* 556 * Allocate an inode in the file system. 557 * 558 * If allocating a directory, use ffs_dirpref to select the inode. 559 * If allocating in a directory, the following hierarchy is followed: 560 * 1) allocate the preferred inode. 561 * 2) allocate an inode in the same cylinder group. 562 * 3) quadradically rehash into other cylinder groups, until an 563 * available inode is located. 564 * If no inode preference is given the following heirarchy is used 565 * to allocate an inode: 566 * 1) allocate an inode in cylinder group 0. 567 * 2) quadradically rehash into other cylinder groups, until an 568 * available inode is located. 569 */ 570 int 571 ffs_valloc(pvp, mode, cred, vpp) 572 struct vnode *pvp; 573 int mode; 574 struct ucred *cred; 575 struct vnode **vpp; 576 { 577 register struct inode *pip; 578 register struct fs *fs; 579 register struct inode *ip; 580 ino_t ino, ipref; 581 int cg, error; 582 583 *vpp = NULL; 584 pip = VTOI(pvp); 585 fs = pip->i_fs; 586 if (fs->fs_cstotal.cs_nifree == 0) 587 goto noinodes; 588 589 if ((mode & IFMT) == IFDIR) 590 ipref = ffs_dirpref(fs); 591 else 592 ipref = pip->i_number; 593 if (ipref >= fs->fs_ncg * fs->fs_ipg) 594 ipref = 0; 595 cg = ino_to_cg(fs, ipref); 596 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, 597 (allocfcn_t *)ffs_nodealloccg); 598 if (ino == 0) 599 goto noinodes; 600 error = VFS_VGET(pvp->v_mount, ino, vpp); 601 if (error) { 602 UFS_VFREE(pvp, ino, mode); 603 return (error); 604 } 605 ip = VTOI(*vpp); 606 if (ip->i_mode) { 607 printf("mode = 0%o, inum = %lu, fs = %s\n", 608 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 609 panic("ffs_valloc: dup alloc"); 610 } 611 if (ip->i_blocks) { /* XXX */ 612 printf("free inode %s/%lu had %ld blocks\n", 613 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks); 614 ip->i_blocks = 0; 615 } 616 ip->i_flags = 0; 617 /* 618 * Set up a new generation number for this inode. 619 */ 620 if (ip->i_gen == 0 || ++ip->i_gen == 0) 621 ip->i_gen = random() / 2 + 1; 622 return (0); 623 noinodes: 624 ffs_fserr(fs, cred->cr_uid, "out of inodes"); 625 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 626 return (ENOSPC); 627 } 628 629 /* 630 * Find a cylinder to place a directory. 631 * 632 * The policy implemented by this algorithm is to select from 633 * among those cylinder groups with above the average number of 634 * free inodes, the one with the smallest number of directories. 635 */ 636 static ino_t 637 ffs_dirpref(fs) 638 register struct fs *fs; 639 { 640 int cg, minndir, mincg, avgifree; 641 642 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 643 minndir = fs->fs_ipg; 644 mincg = 0; 645 for (cg = 0; cg < fs->fs_ncg; cg++) 646 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 647 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 648 mincg = cg; 649 minndir = fs->fs_cs(fs, cg).cs_ndir; 650 } 651 return ((ino_t)(fs->fs_ipg * mincg)); 652 } 653 654 /* 655 * Select the desired position for the next block in a file. The file is 656 * logically divided into sections. The first section is composed of the 657 * direct blocks. Each additional section contains fs_maxbpg blocks. 658 * 659 * If no blocks have been allocated in the first section, the policy is to 660 * request a block in the same cylinder group as the inode that describes 661 * the file. If no blocks have been allocated in any other section, the 662 * policy is to place the section in a cylinder group with a greater than 663 * average number of free blocks. An appropriate cylinder group is found 664 * by using a rotor that sweeps the cylinder groups. When a new group of 665 * blocks is needed, the sweep begins in the cylinder group following the 666 * cylinder group from which the previous allocation was made. The sweep 667 * continues until a cylinder group with greater than the average number 668 * of free blocks is found. If the allocation is for the first block in an 669 * indirect block, the information on the previous allocation is unavailable; 670 * here a best guess is made based upon the logical block number being 671 * allocated. 672 * 673 * If a section is already partially allocated, the policy is to 674 * contiguously allocate fs_maxcontig blocks. The end of one of these 675 * contiguous blocks and the beginning of the next is physically separated 676 * so that the disk head will be in transit between them for at least 677 * fs_rotdelay milliseconds. This is to allow time for the processor to 678 * schedule another I/O transfer. 679 */ 680 ufs_daddr_t 681 ffs_blkpref(ip, lbn, indx, bap) 682 struct inode *ip; 683 ufs_daddr_t lbn; 684 int indx; 685 ufs_daddr_t *bap; 686 { 687 register struct fs *fs; 688 register int cg; 689 int avgbfree, startcg; 690 ufs_daddr_t nextblk; 691 692 fs = ip->i_fs; 693 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 694 if (lbn < NDADDR + NINDIR(fs)) { 695 cg = ino_to_cg(fs, ip->i_number); 696 return (fs->fs_fpg * cg + fs->fs_frag); 697 } 698 /* 699 * Find a cylinder with greater than average number of 700 * unused data blocks. 701 */ 702 if (indx == 0 || bap[indx - 1] == 0) 703 startcg = 704 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 705 else 706 startcg = dtog(fs, bap[indx - 1]) + 1; 707 startcg %= fs->fs_ncg; 708 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 709 for (cg = startcg; cg < fs->fs_ncg; cg++) 710 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 711 fs->fs_cgrotor = cg; 712 return (fs->fs_fpg * cg + fs->fs_frag); 713 } 714 for (cg = 0; cg <= startcg; cg++) 715 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 716 fs->fs_cgrotor = cg; 717 return (fs->fs_fpg * cg + fs->fs_frag); 718 } 719 return (0); 720 } 721 /* 722 * One or more previous blocks have been laid out. If less 723 * than fs_maxcontig previous blocks are contiguous, the 724 * next block is requested contiguously, otherwise it is 725 * requested rotationally delayed by fs_rotdelay milliseconds. 726 */ 727 nextblk = bap[indx - 1] + fs->fs_frag; 728 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig || 729 bap[indx - fs->fs_maxcontig] + 730 blkstofrags(fs, fs->fs_maxcontig) != nextblk) 731 return (nextblk); 732 /* 733 * Here we convert ms of delay to frags as: 734 * (frags) = (ms) * (rev/sec) * (sect/rev) / 735 * ((sect/frag) * (ms/sec)) 736 * then round up to the next block. 737 */ 738 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 739 (NSPF(fs) * 1000), fs->fs_frag); 740 return (nextblk); 741 } 742 743 /* 744 * Implement the cylinder overflow algorithm. 745 * 746 * The policy implemented by this algorithm is: 747 * 1) allocate the block in its requested cylinder group. 748 * 2) quadradically rehash on the cylinder group number. 749 * 3) brute force search for a free block. 750 */ 751 /*VARARGS5*/ 752 static u_long 753 ffs_hashalloc(ip, cg, pref, size, allocator) 754 struct inode *ip; 755 int cg; 756 long pref; 757 int size; /* size for data blocks, mode for inodes */ 758 allocfcn_t *allocator; 759 { 760 register struct fs *fs; 761 long result; /* XXX why not same type as we return? */ 762 int i, icg = cg; 763 764 fs = ip->i_fs; 765 /* 766 * 1: preferred cylinder group 767 */ 768 result = (*allocator)(ip, cg, pref, size); 769 if (result) 770 return (result); 771 /* 772 * 2: quadratic rehash 773 */ 774 for (i = 1; i < fs->fs_ncg; i *= 2) { 775 cg += i; 776 if (cg >= fs->fs_ncg) 777 cg -= fs->fs_ncg; 778 result = (*allocator)(ip, cg, 0, size); 779 if (result) 780 return (result); 781 } 782 /* 783 * 3: brute force search 784 * Note that we start at i == 2, since 0 was checked initially, 785 * and 1 is always checked in the quadratic rehash. 786 */ 787 cg = (icg + 2) % fs->fs_ncg; 788 for (i = 2; i < fs->fs_ncg; i++) { 789 result = (*allocator)(ip, cg, 0, size); 790 if (result) 791 return (result); 792 cg++; 793 if (cg == fs->fs_ncg) 794 cg = 0; 795 } 796 return (0); 797 } 798 799 /* 800 * Determine whether a fragment can be extended. 801 * 802 * Check to see if the necessary fragments are available, and 803 * if they are, allocate them. 804 */ 805 static ufs_daddr_t 806 ffs_fragextend(ip, cg, bprev, osize, nsize) 807 struct inode *ip; 808 int cg; 809 long bprev; 810 int osize, nsize; 811 { 812 register struct fs *fs; 813 register struct cg *cgp; 814 struct buf *bp; 815 long bno; 816 int frags, bbase; 817 int i, error; 818 819 fs = ip->i_fs; 820 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 821 return (0); 822 frags = numfrags(fs, nsize); 823 bbase = fragnum(fs, bprev); 824 if (bbase > fragnum(fs, (bprev + frags - 1))) { 825 /* cannot extend across a block boundary */ 826 return (0); 827 } 828 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 829 (int)fs->fs_cgsize, NOCRED, &bp); 830 if (error) { 831 brelse(bp); 832 return (0); 833 } 834 cgp = (struct cg *)bp->b_data; 835 if (!cg_chkmagic(cgp)) { 836 brelse(bp); 837 return (0); 838 } 839 cgp->cg_time = time_second; 840 bno = dtogd(fs, bprev); 841 for (i = numfrags(fs, osize); i < frags; i++) 842 if (isclr(cg_blksfree(cgp), bno + i)) { 843 brelse(bp); 844 return (0); 845 } 846 /* 847 * the current fragment can be extended 848 * deduct the count on fragment being extended into 849 * increase the count on the remaining fragment (if any) 850 * allocate the extended piece 851 */ 852 for (i = frags; i < fs->fs_frag - bbase; i++) 853 if (isclr(cg_blksfree(cgp), bno + i)) 854 break; 855 cgp->cg_frsum[i - numfrags(fs, osize)]--; 856 if (i != frags) 857 cgp->cg_frsum[i - frags]++; 858 for (i = numfrags(fs, osize); i < frags; i++) { 859 clrbit(cg_blksfree(cgp), bno + i); 860 cgp->cg_cs.cs_nffree--; 861 fs->fs_cstotal.cs_nffree--; 862 fs->fs_cs(fs, cg).cs_nffree--; 863 } 864 fs->fs_fmod = 1; 865 if (DOINGSOFTDEP(ITOV(ip))) 866 softdep_setup_blkmapdep(bp, fs, bprev); 867 bdwrite(bp); 868 return (bprev); 869 } 870 871 /* 872 * Determine whether a block can be allocated. 873 * 874 * Check to see if a block of the appropriate size is available, 875 * and if it is, allocate it. 876 */ 877 static ufs_daddr_t 878 ffs_alloccg(ip, cg, bpref, size) 879 struct inode *ip; 880 int cg; 881 ufs_daddr_t bpref; 882 int size; 883 { 884 register struct fs *fs; 885 register struct cg *cgp; 886 struct buf *bp; 887 register int i; 888 ufs_daddr_t bno, blkno; 889 int allocsiz, error, frags; 890 891 fs = ip->i_fs; 892 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 893 return (0); 894 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 895 (int)fs->fs_cgsize, NOCRED, &bp); 896 if (error) { 897 brelse(bp); 898 return (0); 899 } 900 cgp = (struct cg *)bp->b_data; 901 if (!cg_chkmagic(cgp) || 902 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 903 brelse(bp); 904 return (0); 905 } 906 cgp->cg_time = time_second; 907 if (size == fs->fs_bsize) { 908 bno = ffs_alloccgblk(ip, bp, bpref); 909 bdwrite(bp); 910 return (bno); 911 } 912 /* 913 * check to see if any fragments are already available 914 * allocsiz is the size which will be allocated, hacking 915 * it down to a smaller size if necessary 916 */ 917 frags = numfrags(fs, size); 918 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 919 if (cgp->cg_frsum[allocsiz] != 0) 920 break; 921 if (allocsiz == fs->fs_frag) { 922 /* 923 * no fragments were available, so a block will be 924 * allocated, and hacked up 925 */ 926 if (cgp->cg_cs.cs_nbfree == 0) { 927 brelse(bp); 928 return (0); 929 } 930 bno = ffs_alloccgblk(ip, bp, bpref); 931 bpref = dtogd(fs, bno); 932 for (i = frags; i < fs->fs_frag; i++) 933 setbit(cg_blksfree(cgp), bpref + i); 934 i = fs->fs_frag - frags; 935 cgp->cg_cs.cs_nffree += i; 936 fs->fs_cstotal.cs_nffree += i; 937 fs->fs_cs(fs, cg).cs_nffree += i; 938 fs->fs_fmod = 1; 939 cgp->cg_frsum[i]++; 940 bdwrite(bp); 941 return (bno); 942 } 943 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 944 if (bno < 0) { 945 brelse(bp); 946 return (0); 947 } 948 for (i = 0; i < frags; i++) 949 clrbit(cg_blksfree(cgp), bno + i); 950 cgp->cg_cs.cs_nffree -= frags; 951 fs->fs_cstotal.cs_nffree -= frags; 952 fs->fs_cs(fs, cg).cs_nffree -= frags; 953 fs->fs_fmod = 1; 954 cgp->cg_frsum[allocsiz]--; 955 if (frags != allocsiz) 956 cgp->cg_frsum[allocsiz - frags]++; 957 blkno = cg * fs->fs_fpg + bno; 958 if (DOINGSOFTDEP(ITOV(ip))) 959 softdep_setup_blkmapdep(bp, fs, blkno); 960 bdwrite(bp); 961 return ((u_long)blkno); 962 } 963 964 /* 965 * Allocate a block in a cylinder group. 966 * 967 * This algorithm implements the following policy: 968 * 1) allocate the requested block. 969 * 2) allocate a rotationally optimal block in the same cylinder. 970 * 3) allocate the next available block on the block rotor for the 971 * specified cylinder group. 972 * Note that this routine only allocates fs_bsize blocks; these 973 * blocks may be fragmented by the routine that allocates them. 974 */ 975 static ufs_daddr_t 976 ffs_alloccgblk(ip, bp, bpref) 977 struct inode *ip; 978 struct buf *bp; 979 ufs_daddr_t bpref; 980 { 981 struct fs *fs; 982 struct cg *cgp; 983 ufs_daddr_t bno, blkno; 984 int cylno, pos, delta; 985 short *cylbp; 986 register int i; 987 988 fs = ip->i_fs; 989 cgp = (struct cg *)bp->b_data; 990 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 991 bpref = cgp->cg_rotor; 992 goto norot; 993 } 994 bpref = blknum(fs, bpref); 995 bpref = dtogd(fs, bpref); 996 /* 997 * if the requested block is available, use it 998 */ 999 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 1000 bno = bpref; 1001 goto gotit; 1002 } 1003 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) { 1004 /* 1005 * Block layout information is not available. 1006 * Leaving bpref unchanged means we take the 1007 * next available free block following the one 1008 * we just allocated. Hopefully this will at 1009 * least hit a track cache on drives of unknown 1010 * geometry (e.g. SCSI). 1011 */ 1012 goto norot; 1013 } 1014 /* 1015 * check for a block available on the same cylinder 1016 */ 1017 cylno = cbtocylno(fs, bpref); 1018 if (cg_blktot(cgp)[cylno] == 0) 1019 goto norot; 1020 /* 1021 * check the summary information to see if a block is 1022 * available in the requested cylinder starting at the 1023 * requested rotational position and proceeding around. 1024 */ 1025 cylbp = cg_blks(fs, cgp, cylno); 1026 pos = cbtorpos(fs, bpref); 1027 for (i = pos; i < fs->fs_nrpos; i++) 1028 if (cylbp[i] > 0) 1029 break; 1030 if (i == fs->fs_nrpos) 1031 for (i = 0; i < pos; i++) 1032 if (cylbp[i] > 0) 1033 break; 1034 if (cylbp[i] > 0) { 1035 /* 1036 * found a rotational position, now find the actual 1037 * block. A panic if none is actually there. 1038 */ 1039 pos = cylno % fs->fs_cpc; 1040 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 1041 if (fs_postbl(fs, pos)[i] == -1) { 1042 printf("pos = %d, i = %d, fs = %s\n", 1043 pos, i, fs->fs_fsmnt); 1044 panic("ffs_alloccgblk: cyl groups corrupted"); 1045 } 1046 for (i = fs_postbl(fs, pos)[i];; ) { 1047 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) { 1048 bno = blkstofrags(fs, (bno + i)); 1049 goto gotit; 1050 } 1051 delta = fs_rotbl(fs)[i]; 1052 if (delta <= 0 || 1053 delta + i > fragstoblks(fs, fs->fs_fpg)) 1054 break; 1055 i += delta; 1056 } 1057 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 1058 panic("ffs_alloccgblk: can't find blk in cyl"); 1059 } 1060 norot: 1061 /* 1062 * no blocks in the requested cylinder, so take next 1063 * available one in this cylinder group. 1064 */ 1065 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1066 if (bno < 0) 1067 return (0); 1068 cgp->cg_rotor = bno; 1069 gotit: 1070 blkno = fragstoblks(fs, bno); 1071 ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno); 1072 ffs_clusteracct(fs, cgp, blkno, -1); 1073 cgp->cg_cs.cs_nbfree--; 1074 fs->fs_cstotal.cs_nbfree--; 1075 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1076 cylno = cbtocylno(fs, bno); 1077 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 1078 cg_blktot(cgp)[cylno]--; 1079 fs->fs_fmod = 1; 1080 blkno = cgp->cg_cgx * fs->fs_fpg + bno; 1081 if (DOINGSOFTDEP(ITOV(ip))) 1082 softdep_setup_blkmapdep(bp, fs, blkno); 1083 return (blkno); 1084 } 1085 1086 /* 1087 * Determine whether a cluster can be allocated. 1088 * 1089 * We do not currently check for optimal rotational layout if there 1090 * are multiple choices in the same cylinder group. Instead we just 1091 * take the first one that we find following bpref. 1092 */ 1093 static ufs_daddr_t 1094 ffs_clusteralloc(ip, cg, bpref, len) 1095 struct inode *ip; 1096 int cg; 1097 ufs_daddr_t bpref; 1098 int len; 1099 { 1100 register struct fs *fs; 1101 register struct cg *cgp; 1102 struct buf *bp; 1103 int i, got, run, bno, bit, map; 1104 u_char *mapp; 1105 int32_t *lp; 1106 1107 fs = ip->i_fs; 1108 if (fs->fs_maxcluster[cg] < len) 1109 return (NULL); 1110 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1111 NOCRED, &bp)) 1112 goto fail; 1113 cgp = (struct cg *)bp->b_data; 1114 if (!cg_chkmagic(cgp)) 1115 goto fail; 1116 /* 1117 * Check to see if a cluster of the needed size (or bigger) is 1118 * available in this cylinder group. 1119 */ 1120 lp = &cg_clustersum(cgp)[len]; 1121 for (i = len; i <= fs->fs_contigsumsize; i++) 1122 if (*lp++ > 0) 1123 break; 1124 if (i > fs->fs_contigsumsize) { 1125 /* 1126 * This is the first time looking for a cluster in this 1127 * cylinder group. Update the cluster summary information 1128 * to reflect the true maximum sized cluster so that 1129 * future cluster allocation requests can avoid reading 1130 * the cylinder group map only to find no clusters. 1131 */ 1132 lp = &cg_clustersum(cgp)[len - 1]; 1133 for (i = len - 1; i > 0; i--) 1134 if (*lp-- > 0) 1135 break; 1136 fs->fs_maxcluster[cg] = i; 1137 goto fail; 1138 } 1139 /* 1140 * Search the cluster map to find a big enough cluster. 1141 * We take the first one that we find, even if it is larger 1142 * than we need as we prefer to get one close to the previous 1143 * block allocation. We do not search before the current 1144 * preference point as we do not want to allocate a block 1145 * that is allocated before the previous one (as we will 1146 * then have to wait for another pass of the elevator 1147 * algorithm before it will be read). We prefer to fail and 1148 * be recalled to try an allocation in the next cylinder group. 1149 */ 1150 if (dtog(fs, bpref) != cg) 1151 bpref = 0; 1152 else 1153 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1154 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1155 map = *mapp++; 1156 bit = 1 << (bpref % NBBY); 1157 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1158 if ((map & bit) == 0) { 1159 run = 0; 1160 } else { 1161 run++; 1162 if (run == len) 1163 break; 1164 } 1165 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1166 bit <<= 1; 1167 } else { 1168 map = *mapp++; 1169 bit = 1; 1170 } 1171 } 1172 if (got >= cgp->cg_nclusterblks) 1173 goto fail; 1174 /* 1175 * Allocate the cluster that we have found. 1176 */ 1177 for (i = 1; i <= len; i++) 1178 if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i)) 1179 panic("ffs_clusteralloc: map mismatch"); 1180 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1); 1181 if (dtog(fs, bno) != cg) 1182 panic("ffs_clusteralloc: allocated out of group"); 1183 len = blkstofrags(fs, len); 1184 for (i = 0; i < len; i += fs->fs_frag) 1185 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i) 1186 panic("ffs_clusteralloc: lost block"); 1187 bdwrite(bp); 1188 return (bno); 1189 1190 fail: 1191 brelse(bp); 1192 return (0); 1193 } 1194 1195 /* 1196 * Determine whether an inode can be allocated. 1197 * 1198 * Check to see if an inode is available, and if it is, 1199 * allocate it using the following policy: 1200 * 1) allocate the requested inode. 1201 * 2) allocate the next available inode after the requested 1202 * inode in the specified cylinder group. 1203 */ 1204 static ino_t 1205 ffs_nodealloccg(ip, cg, ipref, mode) 1206 struct inode *ip; 1207 int cg; 1208 ufs_daddr_t ipref; 1209 int mode; 1210 { 1211 register struct fs *fs; 1212 register struct cg *cgp; 1213 struct buf *bp; 1214 int error, start, len, loc, map, i; 1215 1216 fs = ip->i_fs; 1217 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1218 return (0); 1219 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1220 (int)fs->fs_cgsize, NOCRED, &bp); 1221 if (error) { 1222 brelse(bp); 1223 return (0); 1224 } 1225 cgp = (struct cg *)bp->b_data; 1226 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1227 brelse(bp); 1228 return (0); 1229 } 1230 cgp->cg_time = time_second; 1231 if (ipref) { 1232 ipref %= fs->fs_ipg; 1233 if (isclr(cg_inosused(cgp), ipref)) 1234 goto gotit; 1235 } 1236 start = cgp->cg_irotor / NBBY; 1237 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1238 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 1239 if (loc == 0) { 1240 len = start + 1; 1241 start = 0; 1242 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 1243 if (loc == 0) { 1244 printf("cg = %d, irotor = %ld, fs = %s\n", 1245 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1246 panic("ffs_nodealloccg: map corrupted"); 1247 /* NOTREACHED */ 1248 } 1249 } 1250 i = start + len - loc; 1251 map = cg_inosused(cgp)[i]; 1252 ipref = i * NBBY; 1253 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1254 if ((map & i) == 0) { 1255 cgp->cg_irotor = ipref; 1256 goto gotit; 1257 } 1258 } 1259 printf("fs = %s\n", fs->fs_fsmnt); 1260 panic("ffs_nodealloccg: block not in map"); 1261 /* NOTREACHED */ 1262 gotit: 1263 if (DOINGSOFTDEP(ITOV(ip))) 1264 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1265 setbit(cg_inosused(cgp), ipref); 1266 cgp->cg_cs.cs_nifree--; 1267 fs->fs_cstotal.cs_nifree--; 1268 fs->fs_cs(fs, cg).cs_nifree--; 1269 fs->fs_fmod = 1; 1270 if ((mode & IFMT) == IFDIR) { 1271 cgp->cg_cs.cs_ndir++; 1272 fs->fs_cstotal.cs_ndir++; 1273 fs->fs_cs(fs, cg).cs_ndir++; 1274 } 1275 bdwrite(bp); 1276 return (cg * fs->fs_ipg + ipref); 1277 } 1278 1279 /* 1280 * Free a block or fragment. 1281 * 1282 * The specified block or fragment is placed back in the 1283 * free map. If a fragment is deallocated, a possible 1284 * block reassembly is checked. 1285 */ 1286 void 1287 ffs_blkfree(ip, bno, size) 1288 register struct inode *ip; 1289 ufs_daddr_t bno; 1290 long size; 1291 { 1292 register struct fs *fs; 1293 register struct cg *cgp; 1294 struct buf *bp; 1295 ufs_daddr_t blkno; 1296 int i, error, cg, blk, frags, bbase; 1297 1298 fs = ip->i_fs; 1299 VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size); 1300 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1301 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1302 printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n", 1303 devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size, 1304 fs->fs_fsmnt); 1305 panic("ffs_blkfree: bad size"); 1306 } 1307 cg = dtog(fs, bno); 1308 if ((u_int)bno >= fs->fs_size) { 1309 printf("bad block %ld, ino %lu\n", 1310 (long)bno, (u_long)ip->i_number); 1311 ffs_fserr(fs, ip->i_uid, "bad block"); 1312 return; 1313 } 1314 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1315 (int)fs->fs_cgsize, NOCRED, &bp); 1316 if (error) { 1317 brelse(bp); 1318 return; 1319 } 1320 cgp = (struct cg *)bp->b_data; 1321 if (!cg_chkmagic(cgp)) { 1322 brelse(bp); 1323 return; 1324 } 1325 cgp->cg_time = time_second; 1326 bno = dtogd(fs, bno); 1327 if (size == fs->fs_bsize) { 1328 blkno = fragstoblks(fs, bno); 1329 if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) { 1330 printf("dev = %s, block = %ld, fs = %s\n", 1331 devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt); 1332 panic("ffs_blkfree: freeing free block"); 1333 } 1334 ffs_setblock(fs, cg_blksfree(cgp), blkno); 1335 ffs_clusteracct(fs, cgp, blkno, 1); 1336 cgp->cg_cs.cs_nbfree++; 1337 fs->fs_cstotal.cs_nbfree++; 1338 fs->fs_cs(fs, cg).cs_nbfree++; 1339 i = cbtocylno(fs, bno); 1340 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 1341 cg_blktot(cgp)[i]++; 1342 } else { 1343 bbase = bno - fragnum(fs, bno); 1344 /* 1345 * decrement the counts associated with the old frags 1346 */ 1347 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1348 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1349 /* 1350 * deallocate the fragment 1351 */ 1352 frags = numfrags(fs, size); 1353 for (i = 0; i < frags; i++) { 1354 if (isset(cg_blksfree(cgp), bno + i)) { 1355 printf("dev = %s, block = %ld, fs = %s\n", 1356 devtoname(ip->i_dev), (long)(bno + i), 1357 fs->fs_fsmnt); 1358 panic("ffs_blkfree: freeing free frag"); 1359 } 1360 setbit(cg_blksfree(cgp), bno + i); 1361 } 1362 cgp->cg_cs.cs_nffree += i; 1363 fs->fs_cstotal.cs_nffree += i; 1364 fs->fs_cs(fs, cg).cs_nffree += i; 1365 /* 1366 * add back in counts associated with the new frags 1367 */ 1368 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1369 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1370 /* 1371 * if a complete block has been reassembled, account for it 1372 */ 1373 blkno = fragstoblks(fs, bbase); 1374 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) { 1375 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1376 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1377 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1378 ffs_clusteracct(fs, cgp, blkno, 1); 1379 cgp->cg_cs.cs_nbfree++; 1380 fs->fs_cstotal.cs_nbfree++; 1381 fs->fs_cs(fs, cg).cs_nbfree++; 1382 i = cbtocylno(fs, bbase); 1383 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 1384 cg_blktot(cgp)[i]++; 1385 } 1386 } 1387 fs->fs_fmod = 1; 1388 bdwrite(bp); 1389 } 1390 1391 #ifdef DIAGNOSTIC 1392 /* 1393 * Verify allocation of a block or fragment. Returns true if block or 1394 * fragment is allocated, false if it is free. 1395 */ 1396 static int 1397 ffs_checkblk(ip, bno, size) 1398 struct inode *ip; 1399 ufs_daddr_t bno; 1400 long size; 1401 { 1402 struct fs *fs; 1403 struct cg *cgp; 1404 struct buf *bp; 1405 int i, error, frags, free; 1406 1407 fs = ip->i_fs; 1408 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1409 printf("bsize = %ld, size = %ld, fs = %s\n", 1410 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1411 panic("ffs_checkblk: bad size"); 1412 } 1413 if ((u_int)bno >= fs->fs_size) 1414 panic("ffs_checkblk: bad block %d", bno); 1415 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1416 (int)fs->fs_cgsize, NOCRED, &bp); 1417 if (error) 1418 panic("ffs_checkblk: cg bread failed"); 1419 cgp = (struct cg *)bp->b_data; 1420 if (!cg_chkmagic(cgp)) 1421 panic("ffs_checkblk: cg magic mismatch"); 1422 bno = dtogd(fs, bno); 1423 if (size == fs->fs_bsize) { 1424 free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 1425 } else { 1426 frags = numfrags(fs, size); 1427 for (free = 0, i = 0; i < frags; i++) 1428 if (isset(cg_blksfree(cgp), bno + i)) 1429 free++; 1430 if (free != 0 && free != frags) 1431 panic("ffs_checkblk: partially free fragment"); 1432 } 1433 brelse(bp); 1434 return (!free); 1435 } 1436 #endif /* DIAGNOSTIC */ 1437 1438 /* 1439 * Free an inode. 1440 */ 1441 int 1442 ffs_vfree( pvp, ino, mode) 1443 struct vnode *pvp; 1444 ino_t ino; 1445 int mode; 1446 { 1447 if (DOINGSOFTDEP(pvp)) { 1448 softdep_freefile(pvp, ino, mode); 1449 return (0); 1450 } 1451 return (ffs_freefile(pvp, ino, mode)); 1452 } 1453 1454 /* 1455 * Do the actual free operation. 1456 * The specified inode is placed back in the free map. 1457 */ 1458 int 1459 ffs_freefile( pvp, ino, mode) 1460 struct vnode *pvp; 1461 ino_t ino; 1462 int mode; 1463 { 1464 register struct fs *fs; 1465 register struct cg *cgp; 1466 register struct inode *pip; 1467 struct buf *bp; 1468 int error, cg; 1469 1470 pip = VTOI(pvp); 1471 fs = pip->i_fs; 1472 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1473 panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s", 1474 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt); 1475 cg = ino_to_cg(fs, ino); 1476 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1477 (int)fs->fs_cgsize, NOCRED, &bp); 1478 if (error) { 1479 brelse(bp); 1480 return (error); 1481 } 1482 cgp = (struct cg *)bp->b_data; 1483 if (!cg_chkmagic(cgp)) { 1484 brelse(bp); 1485 return (0); 1486 } 1487 cgp->cg_time = time_second; 1488 ino %= fs->fs_ipg; 1489 if (isclr(cg_inosused(cgp), ino)) { 1490 printf("dev = %s, ino = %lu, fs = %s\n", 1491 devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt); 1492 if (fs->fs_ronly == 0) 1493 panic("ffs_vfree: freeing free inode"); 1494 } 1495 clrbit(cg_inosused(cgp), ino); 1496 if (ino < cgp->cg_irotor) 1497 cgp->cg_irotor = ino; 1498 cgp->cg_cs.cs_nifree++; 1499 fs->fs_cstotal.cs_nifree++; 1500 fs->fs_cs(fs, cg).cs_nifree++; 1501 if ((mode & IFMT) == IFDIR) { 1502 cgp->cg_cs.cs_ndir--; 1503 fs->fs_cstotal.cs_ndir--; 1504 fs->fs_cs(fs, cg).cs_ndir--; 1505 } 1506 fs->fs_fmod = 1; 1507 bdwrite(bp); 1508 return (0); 1509 } 1510 1511 /* 1512 * Find a block of the specified size in the specified cylinder group. 1513 * 1514 * It is a panic if a request is made to find a block if none are 1515 * available. 1516 */ 1517 static ufs_daddr_t 1518 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1519 register struct fs *fs; 1520 register struct cg *cgp; 1521 ufs_daddr_t bpref; 1522 int allocsiz; 1523 { 1524 ufs_daddr_t bno; 1525 int start, len, loc, i; 1526 int blk, field, subfield, pos; 1527 1528 /* 1529 * find the fragment by searching through the free block 1530 * map for an appropriate bit pattern 1531 */ 1532 if (bpref) 1533 start = dtogd(fs, bpref) / NBBY; 1534 else 1535 start = cgp->cg_frotor / NBBY; 1536 len = howmany(fs->fs_fpg, NBBY) - start; 1537 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start], 1538 (u_char *)fragtbl[fs->fs_frag], 1539 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1540 if (loc == 0) { 1541 len = start + 1; 1542 start = 0; 1543 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0], 1544 (u_char *)fragtbl[fs->fs_frag], 1545 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1546 if (loc == 0) { 1547 printf("start = %d, len = %d, fs = %s\n", 1548 start, len, fs->fs_fsmnt); 1549 panic("ffs_alloccg: map corrupted"); 1550 /* NOTREACHED */ 1551 } 1552 } 1553 bno = (start + len - loc) * NBBY; 1554 cgp->cg_frotor = bno; 1555 /* 1556 * found the byte in the map 1557 * sift through the bits to find the selected frag 1558 */ 1559 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1560 blk = blkmap(fs, cg_blksfree(cgp), bno); 1561 blk <<= 1; 1562 field = around[allocsiz]; 1563 subfield = inside[allocsiz]; 1564 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1565 if ((blk & field) == subfield) 1566 return (bno + pos); 1567 field <<= 1; 1568 subfield <<= 1; 1569 } 1570 } 1571 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 1572 panic("ffs_alloccg: block not in map"); 1573 return (-1); 1574 } 1575 1576 /* 1577 * Update the cluster map because of an allocation or free. 1578 * 1579 * Cnt == 1 means free; cnt == -1 means allocating. 1580 */ 1581 static void 1582 ffs_clusteracct(fs, cgp, blkno, cnt) 1583 struct fs *fs; 1584 struct cg *cgp; 1585 ufs_daddr_t blkno; 1586 int cnt; 1587 { 1588 int32_t *sump; 1589 int32_t *lp; 1590 u_char *freemapp, *mapp; 1591 int i, start, end, forw, back, map, bit; 1592 1593 if (fs->fs_contigsumsize <= 0) 1594 return; 1595 freemapp = cg_clustersfree(cgp); 1596 sump = cg_clustersum(cgp); 1597 /* 1598 * Allocate or clear the actual block. 1599 */ 1600 if (cnt > 0) 1601 setbit(freemapp, blkno); 1602 else 1603 clrbit(freemapp, blkno); 1604 /* 1605 * Find the size of the cluster going forward. 1606 */ 1607 start = blkno + 1; 1608 end = start + fs->fs_contigsumsize; 1609 if (end >= cgp->cg_nclusterblks) 1610 end = cgp->cg_nclusterblks; 1611 mapp = &freemapp[start / NBBY]; 1612 map = *mapp++; 1613 bit = 1 << (start % NBBY); 1614 for (i = start; i < end; i++) { 1615 if ((map & bit) == 0) 1616 break; 1617 if ((i & (NBBY - 1)) != (NBBY - 1)) { 1618 bit <<= 1; 1619 } else { 1620 map = *mapp++; 1621 bit = 1; 1622 } 1623 } 1624 forw = i - start; 1625 /* 1626 * Find the size of the cluster going backward. 1627 */ 1628 start = blkno - 1; 1629 end = start - fs->fs_contigsumsize; 1630 if (end < 0) 1631 end = -1; 1632 mapp = &freemapp[start / NBBY]; 1633 map = *mapp--; 1634 bit = 1 << (start % NBBY); 1635 for (i = start; i > end; i--) { 1636 if ((map & bit) == 0) 1637 break; 1638 if ((i & (NBBY - 1)) != 0) { 1639 bit >>= 1; 1640 } else { 1641 map = *mapp--; 1642 bit = 1 << (NBBY - 1); 1643 } 1644 } 1645 back = start - i; 1646 /* 1647 * Account for old cluster and the possibly new forward and 1648 * back clusters. 1649 */ 1650 i = back + forw + 1; 1651 if (i > fs->fs_contigsumsize) 1652 i = fs->fs_contigsumsize; 1653 sump[i] += cnt; 1654 if (back > 0) 1655 sump[back] -= cnt; 1656 if (forw > 0) 1657 sump[forw] -= cnt; 1658 /* 1659 * Update cluster summary information. 1660 */ 1661 lp = &sump[fs->fs_contigsumsize]; 1662 for (i = fs->fs_contigsumsize; i > 0; i--) 1663 if (*lp-- > 0) 1664 break; 1665 fs->fs_maxcluster[cgp->cg_cgx] = i; 1666 } 1667 1668 /* 1669 * Fserr prints the name of a file system with an error diagnostic. 1670 * 1671 * The form of the error message is: 1672 * fs: error message 1673 */ 1674 static void 1675 ffs_fserr(fs, uid, cp) 1676 struct fs *fs; 1677 u_int uid; 1678 char *cp; 1679 { 1680 struct proc *p = curproc; /* XXX */ 1681 1682 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1, 1683 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp); 1684 } 1685