xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision 4f0c9b76cf75724ef0b9c59bb8c182be24361d7c)
1 /*-
2  * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause)
3  *
4  * Copyright (c) 2002 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1982, 1986, 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
62  */
63 
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66 
67 #include "opt_quota.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/bio.h>
72 #include <sys/buf.h>
73 #include <sys/capsicum.h>
74 #include <sys/conf.h>
75 #include <sys/fcntl.h>
76 #include <sys/file.h>
77 #include <sys/filedesc.h>
78 #include <sys/gsb_crc32.h>
79 #include <sys/kernel.h>
80 #include <sys/mount.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/stat.h>
84 #include <sys/syscallsubr.h>
85 #include <sys/sysctl.h>
86 #include <sys/syslog.h>
87 #include <sys/taskqueue.h>
88 #include <sys/vnode.h>
89 
90 #include <security/audit/audit.h>
91 
92 #include <geom/geom.h>
93 #include <geom/geom_vfs.h>
94 
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/extattr.h>
97 #include <ufs/ufs/quota.h>
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/ufs_extern.h>
100 #include <ufs/ufs/ufsmount.h>
101 
102 #include <ufs/ffs/fs.h>
103 #include <ufs/ffs/ffs_extern.h>
104 #include <ufs/ffs/softdep.h>
105 
106 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
107 				  int size, int rsize);
108 
109 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
110 static ufs2_daddr_t
111 	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
112 static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
113 		    struct vnode *, ufs2_daddr_t, long, ino_t,
114 		    struct workhead *);
115 #ifdef INVARIANTS
116 static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
117 #endif
118 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
119 static ino_t	ffs_dirpref(struct inode *);
120 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
121 		    int, int);
122 static ufs2_daddr_t	ffs_hashalloc
123 		(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
124 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
125 		    int);
126 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
127 static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
128 static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
129 static void	ffs_ckhash_cg(struct buf *);
130 
131 /*
132  * Allocate a block in the filesystem.
133  *
134  * The size of the requested block is given, which must be some
135  * multiple of fs_fsize and <= fs_bsize.
136  * A preference may be optionally specified. If a preference is given
137  * the following hierarchy is used to allocate a block:
138  *   1) allocate the requested block.
139  *   2) allocate a rotationally optimal block in the same cylinder.
140  *   3) allocate a block in the same cylinder group.
141  *   4) quadratically rehash into other cylinder groups, until an
142  *      available block is located.
143  * If no block preference is given the following hierarchy is used
144  * to allocate a block:
145  *   1) allocate a block in the cylinder group that contains the
146  *      inode for the file.
147  *   2) quadratically rehash into other cylinder groups, until an
148  *      available block is located.
149  */
150 int
151 ffs_alloc(struct inode *ip,
152 	ufs2_daddr_t lbn,
153 	ufs2_daddr_t bpref,
154 	int size,
155 	int flags,
156 	struct ucred *cred,
157 	ufs2_daddr_t *bnp)
158 {
159 	struct fs *fs;
160 	struct ufsmount *ump;
161 	ufs2_daddr_t bno;
162 	u_int cg, reclaimed;
163 	int64_t delta;
164 #ifdef QUOTA
165 	int error;
166 #endif
167 
168 	*bnp = 0;
169 	ump = ITOUMP(ip);
170 	fs = ump->um_fs;
171 	mtx_assert(UFS_MTX(ump), MA_OWNED);
172 #ifdef INVARIANTS
173 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
174 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
175 		    devtoname(ump->um_dev), (long)fs->fs_bsize, size,
176 		    fs->fs_fsmnt);
177 		panic("ffs_alloc: bad size");
178 	}
179 	if (cred == NOCRED)
180 		panic("ffs_alloc: missing credential");
181 #endif /* INVARIANTS */
182 	reclaimed = 0;
183 retry:
184 #ifdef QUOTA
185 	UFS_UNLOCK(ump);
186 	error = chkdq(ip, btodb(size), cred, 0);
187 	if (error)
188 		return (error);
189 	UFS_LOCK(ump);
190 #endif
191 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
192 		goto nospace;
193 	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
194 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
195 		goto nospace;
196 	if (bpref >= fs->fs_size)
197 		bpref = 0;
198 	if (bpref == 0)
199 		cg = ino_to_cg(fs, ip->i_number);
200 	else
201 		cg = dtog(fs, bpref);
202 	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
203 	if (bno > 0) {
204 		delta = btodb(size);
205 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
206 		if (flags & IO_EXT)
207 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
208 		else
209 			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
210 		*bnp = bno;
211 		return (0);
212 	}
213 nospace:
214 #ifdef QUOTA
215 	UFS_UNLOCK(ump);
216 	/*
217 	 * Restore user's disk quota because allocation failed.
218 	 */
219 	(void) chkdq(ip, -btodb(size), cred, FORCE);
220 	UFS_LOCK(ump);
221 #endif
222 	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
223 		reclaimed = 1;
224 		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
225 		goto retry;
226 	}
227 	if (ffs_fsfail_cleanup_locked(ump, 0)) {
228 		UFS_UNLOCK(ump);
229 		return (ENXIO);
230 	}
231 	if (reclaimed > 0 &&
232 	    ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
233 		UFS_UNLOCK(ump);
234 		ffs_fserr(fs, ip->i_number, "filesystem full");
235 		uprintf("\n%s: write failed, filesystem is full\n",
236 		    fs->fs_fsmnt);
237 	} else {
238 		UFS_UNLOCK(ump);
239 	}
240 	return (ENOSPC);
241 }
242 
243 /*
244  * Reallocate a fragment to a bigger size
245  *
246  * The number and size of the old block is given, and a preference
247  * and new size is also specified. The allocator attempts to extend
248  * the original block. Failing that, the regular block allocator is
249  * invoked to get an appropriate block.
250  */
251 int
252 ffs_realloccg(struct inode *ip,
253 	ufs2_daddr_t lbprev,
254 	ufs2_daddr_t bprev,
255 	ufs2_daddr_t bpref,
256 	int osize,
257 	int nsize,
258 	int flags,
259 	struct ucred *cred,
260 	struct buf **bpp)
261 {
262 	struct vnode *vp;
263 	struct fs *fs;
264 	struct buf *bp;
265 	struct ufsmount *ump;
266 	u_int cg, request, reclaimed;
267 	int error, gbflags;
268 	ufs2_daddr_t bno;
269 	int64_t delta;
270 
271 	vp = ITOV(ip);
272 	ump = ITOUMP(ip);
273 	fs = ump->um_fs;
274 	bp = NULL;
275 	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
276 #ifdef WITNESS
277 	gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0;
278 #endif
279 
280 	mtx_assert(UFS_MTX(ump), MA_OWNED);
281 #ifdef INVARIANTS
282 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
283 		panic("ffs_realloccg: allocation on suspended filesystem");
284 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
285 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
286 		printf(
287 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
288 		    devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
289 		    nsize, fs->fs_fsmnt);
290 		panic("ffs_realloccg: bad size");
291 	}
292 	if (cred == NOCRED)
293 		panic("ffs_realloccg: missing credential");
294 #endif /* INVARIANTS */
295 	reclaimed = 0;
296 retry:
297 	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
298 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
299 		goto nospace;
300 	}
301 	if (bprev == 0) {
302 		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
303 		    devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
304 		    fs->fs_fsmnt);
305 		panic("ffs_realloccg: bad bprev");
306 	}
307 	UFS_UNLOCK(ump);
308 	/*
309 	 * Allocate the extra space in the buffer.
310 	 */
311 	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
312 	if (error) {
313 		return (error);
314 	}
315 
316 	if (bp->b_blkno == bp->b_lblkno) {
317 		if (lbprev >= UFS_NDADDR)
318 			panic("ffs_realloccg: lbprev out of range");
319 		bp->b_blkno = fsbtodb(fs, bprev);
320 	}
321 
322 #ifdef QUOTA
323 	error = chkdq(ip, btodb(nsize - osize), cred, 0);
324 	if (error) {
325 		brelse(bp);
326 		return (error);
327 	}
328 #endif
329 	/*
330 	 * Check for extension in the existing location.
331 	 */
332 	*bpp = NULL;
333 	cg = dtog(fs, bprev);
334 	UFS_LOCK(ump);
335 	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
336 	if (bno) {
337 		if (bp->b_blkno != fsbtodb(fs, bno))
338 			panic("ffs_realloccg: bad blockno");
339 		delta = btodb(nsize - osize);
340 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
341 		if (flags & IO_EXT)
342 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
343 		else
344 			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
345 		allocbuf(bp, nsize);
346 		bp->b_flags |= B_DONE;
347 		vfs_bio_bzero_buf(bp, osize, nsize - osize);
348 		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
349 			vfs_bio_set_valid(bp, osize, nsize - osize);
350 		*bpp = bp;
351 		return (0);
352 	}
353 	/*
354 	 * Allocate a new disk location.
355 	 */
356 	if (bpref >= fs->fs_size)
357 		bpref = 0;
358 	switch ((int)fs->fs_optim) {
359 	case FS_OPTSPACE:
360 		/*
361 		 * Allocate an exact sized fragment. Although this makes
362 		 * best use of space, we will waste time relocating it if
363 		 * the file continues to grow. If the fragmentation is
364 		 * less than half of the minimum free reserve, we choose
365 		 * to begin optimizing for time.
366 		 */
367 		request = nsize;
368 		if (fs->fs_minfree <= 5 ||
369 		    fs->fs_cstotal.cs_nffree >
370 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
371 			break;
372 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
373 			fs->fs_fsmnt);
374 		fs->fs_optim = FS_OPTTIME;
375 		break;
376 	case FS_OPTTIME:
377 		/*
378 		 * At this point we have discovered a file that is trying to
379 		 * grow a small fragment to a larger fragment. To save time,
380 		 * we allocate a full sized block, then free the unused portion.
381 		 * If the file continues to grow, the `ffs_fragextend' call
382 		 * above will be able to grow it in place without further
383 		 * copying. If aberrant programs cause disk fragmentation to
384 		 * grow within 2% of the free reserve, we choose to begin
385 		 * optimizing for space.
386 		 */
387 		request = fs->fs_bsize;
388 		if (fs->fs_cstotal.cs_nffree <
389 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
390 			break;
391 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
392 			fs->fs_fsmnt);
393 		fs->fs_optim = FS_OPTSPACE;
394 		break;
395 	default:
396 		printf("dev = %s, optim = %ld, fs = %s\n",
397 		    devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
398 		panic("ffs_realloccg: bad optim");
399 		/* NOTREACHED */
400 	}
401 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
402 	if (bno > 0) {
403 		bp->b_blkno = fsbtodb(fs, bno);
404 		if (!DOINGSOFTDEP(vp))
405 			/*
406 			 * The usual case is that a smaller fragment that
407 			 * was just allocated has been replaced with a bigger
408 			 * fragment or a full-size block. If it is marked as
409 			 * B_DELWRI, the current contents have not been written
410 			 * to disk. It is possible that the block was written
411 			 * earlier, but very uncommon. If the block has never
412 			 * been written, there is no need to send a BIO_DELETE
413 			 * for it when it is freed. The gain from avoiding the
414 			 * TRIMs for the common case of unwritten blocks far
415 			 * exceeds the cost of the write amplification for the
416 			 * uncommon case of failing to send a TRIM for a block
417 			 * that had been written.
418 			 */
419 			ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
420 			    ip->i_number, vp->v_type, NULL,
421 			    (bp->b_flags & B_DELWRI) != 0 ?
422 			    NOTRIM_KEY : SINGLETON_KEY);
423 		delta = btodb(nsize - osize);
424 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
425 		if (flags & IO_EXT)
426 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
427 		else
428 			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
429 		allocbuf(bp, nsize);
430 		bp->b_flags |= B_DONE;
431 		vfs_bio_bzero_buf(bp, osize, nsize - osize);
432 		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
433 			vfs_bio_set_valid(bp, osize, nsize - osize);
434 		*bpp = bp;
435 		return (0);
436 	}
437 #ifdef QUOTA
438 	UFS_UNLOCK(ump);
439 	/*
440 	 * Restore user's disk quota because allocation failed.
441 	 */
442 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
443 	UFS_LOCK(ump);
444 #endif
445 nospace:
446 	/*
447 	 * no space available
448 	 */
449 	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
450 		reclaimed = 1;
451 		UFS_UNLOCK(ump);
452 		if (bp) {
453 			brelse(bp);
454 			bp = NULL;
455 		}
456 		UFS_LOCK(ump);
457 		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
458 		goto retry;
459 	}
460 	if (bp)
461 		brelse(bp);
462 	if (ffs_fsfail_cleanup_locked(ump, 0)) {
463 		UFS_UNLOCK(ump);
464 		return (ENXIO);
465 	}
466 	if (reclaimed > 0 &&
467 	    ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
468 		UFS_UNLOCK(ump);
469 		ffs_fserr(fs, ip->i_number, "filesystem full");
470 		uprintf("\n%s: write failed, filesystem is full\n",
471 		    fs->fs_fsmnt);
472 	} else {
473 		UFS_UNLOCK(ump);
474 	}
475 	return (ENOSPC);
476 }
477 
478 /*
479  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
480  *
481  * The vnode and an array of buffer pointers for a range of sequential
482  * logical blocks to be made contiguous is given. The allocator attempts
483  * to find a range of sequential blocks starting as close as possible
484  * from the end of the allocation for the logical block immediately
485  * preceding the current range. If successful, the physical block numbers
486  * in the buffer pointers and in the inode are changed to reflect the new
487  * allocation. If unsuccessful, the allocation is left unchanged. The
488  * success in doing the reallocation is returned. Note that the error
489  * return is not reflected back to the user. Rather the previous block
490  * allocation will be used.
491  */
492 
493 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
494     "FFS filesystem");
495 
496 static int doasyncfree = 1;
497 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
498 "do not force synchronous writes when blocks are reallocated");
499 
500 static int doreallocblks = 1;
501 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
502 "enable block reallocation");
503 
504 static int dotrimcons = 1;
505 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
506 "enable BIO_DELETE / TRIM consolidation");
507 
508 static int maxclustersearch = 10;
509 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
510 0, "max number of cylinder group to search for contigous blocks");
511 
512 #ifdef DIAGNOSTIC
513 static int prtrealloc = 0;
514 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0,
515 	"print out FFS filesystem block reallocation operations");
516 #endif
517 
518 int
519 ffs_reallocblks(
520 	struct vop_reallocblks_args /* {
521 		struct vnode *a_vp;
522 		struct cluster_save *a_buflist;
523 	} */ *ap)
524 {
525 	struct ufsmount *ump;
526 	int error;
527 
528 	/*
529 	 * We used to skip reallocating the blocks of a file into a
530 	 * contiguous sequence if the underlying flash device requested
531 	 * BIO_DELETE notifications, because devices that benefit from
532 	 * BIO_DELETE also benefit from not moving the data. However,
533 	 * the destination for the data is usually moved before the data
534 	 * is written to the initially allocated location, so we rarely
535 	 * suffer the penalty of extra writes. With the addition of the
536 	 * consolidation of contiguous blocks into single BIO_DELETE
537 	 * operations, having fewer but larger contiguous blocks reduces
538 	 * the number of (slow and expensive) BIO_DELETE operations. So
539 	 * when doing BIO_DELETE consolidation, we do block reallocation.
540 	 *
541 	 * Skip if reallocblks has been disabled globally.
542 	 */
543 	ump = ap->a_vp->v_mount->mnt_data;
544 	if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
545 	    doreallocblks == 0)
546 		return (ENOSPC);
547 
548 	/*
549 	 * We can't wait in softdep prealloc as it may fsync and recurse
550 	 * here.  Instead we simply fail to reallocate blocks if this
551 	 * rare condition arises.
552 	 */
553 	if (DOINGSUJ(ap->a_vp))
554 		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
555 			return (ENOSPC);
556 	vn_seqc_write_begin(ap->a_vp);
557 	error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) :
558 	    ffs_reallocblks_ufs2(ap);
559 	vn_seqc_write_end(ap->a_vp);
560 	return (error);
561 }
562 
563 static int
564 ffs_reallocblks_ufs1(
565 	struct vop_reallocblks_args /* {
566 		struct vnode *a_vp;
567 		struct cluster_save *a_buflist;
568 	} */ *ap)
569 {
570 	struct fs *fs;
571 	struct inode *ip;
572 	struct vnode *vp;
573 	struct buf *sbp, *ebp, *bp;
574 	ufs1_daddr_t *bap, *sbap, *ebap;
575 	struct cluster_save *buflist;
576 	struct ufsmount *ump;
577 	ufs_lbn_t start_lbn, end_lbn;
578 	ufs1_daddr_t soff, newblk, blkno;
579 	ufs2_daddr_t pref;
580 	struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
581 	int i, cg, len, start_lvl, end_lvl, ssize;
582 
583 	vp = ap->a_vp;
584 	ip = VTOI(vp);
585 	ump = ITOUMP(ip);
586 	fs = ump->um_fs;
587 	/*
588 	 * If we are not tracking block clusters or if we have less than 4%
589 	 * free blocks left, then do not attempt to cluster. Running with
590 	 * less than 5% free block reserve is not recommended and those that
591 	 * choose to do so do not expect to have good file layout.
592 	 */
593 	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
594 		return (ENOSPC);
595 	buflist = ap->a_buflist;
596 	len = buflist->bs_nchildren;
597 	start_lbn = buflist->bs_children[0]->b_lblkno;
598 	end_lbn = start_lbn + len - 1;
599 #ifdef INVARIANTS
600 	for (i = 0; i < len; i++)
601 		if (!ffs_checkblk(ip,
602 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
603 			panic("ffs_reallocblks: unallocated block 1");
604 	for (i = 1; i < len; i++)
605 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
606 			panic("ffs_reallocblks: non-logical cluster");
607 	blkno = buflist->bs_children[0]->b_blkno;
608 	ssize = fsbtodb(fs, fs->fs_frag);
609 	for (i = 1; i < len - 1; i++)
610 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
611 			panic("ffs_reallocblks: non-physical cluster %d", i);
612 #endif
613 	/*
614 	 * If the cluster crosses the boundary for the first indirect
615 	 * block, leave space for the indirect block. Indirect blocks
616 	 * are initially laid out in a position after the last direct
617 	 * block. Block reallocation would usually destroy locality by
618 	 * moving the indirect block out of the way to make room for
619 	 * data blocks if we didn't compensate here. We should also do
620 	 * this for other indirect block boundaries, but it is only
621 	 * important for the first one.
622 	 */
623 	if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
624 		return (ENOSPC);
625 	/*
626 	 * If the latest allocation is in a new cylinder group, assume that
627 	 * the filesystem has decided to move and do not force it back to
628 	 * the previous cylinder group.
629 	 */
630 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
631 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
632 		return (ENOSPC);
633 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
634 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
635 		return (ENOSPC);
636 	/*
637 	 * Get the starting offset and block map for the first block.
638 	 */
639 	if (start_lvl == 0) {
640 		sbap = &ip->i_din1->di_db[0];
641 		soff = start_lbn;
642 	} else {
643 		idp = &start_ap[start_lvl - 1];
644 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
645 			brelse(sbp);
646 			return (ENOSPC);
647 		}
648 		sbap = (ufs1_daddr_t *)sbp->b_data;
649 		soff = idp->in_off;
650 	}
651 	/*
652 	 * If the block range spans two block maps, get the second map.
653 	 */
654 	ebap = NULL;
655 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
656 		ssize = len;
657 	} else {
658 #ifdef INVARIANTS
659 		if (start_lvl > 0 &&
660 		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
661 			panic("ffs_reallocblk: start == end");
662 #endif
663 		ssize = len - (idp->in_off + 1);
664 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
665 			goto fail;
666 		ebap = (ufs1_daddr_t *)ebp->b_data;
667 	}
668 	/*
669 	 * Find the preferred location for the cluster. If we have not
670 	 * previously failed at this endeavor, then follow our standard
671 	 * preference calculation. If we have failed at it, then pick up
672 	 * where we last ended our search.
673 	 */
674 	UFS_LOCK(ump);
675 	if (ip->i_nextclustercg == -1)
676 		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
677 	else
678 		pref = cgdata(fs, ip->i_nextclustercg);
679 	/*
680 	 * Search the block map looking for an allocation of the desired size.
681 	 * To avoid wasting too much time, we limit the number of cylinder
682 	 * groups that we will search.
683 	 */
684 	cg = dtog(fs, pref);
685 	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
686 		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
687 			break;
688 		cg += 1;
689 		if (cg >= fs->fs_ncg)
690 			cg = 0;
691 	}
692 	/*
693 	 * If we have failed in our search, record where we gave up for
694 	 * next time. Otherwise, fall back to our usual search citerion.
695 	 */
696 	if (newblk == 0) {
697 		ip->i_nextclustercg = cg;
698 		UFS_UNLOCK(ump);
699 		goto fail;
700 	}
701 	ip->i_nextclustercg = -1;
702 	/*
703 	 * We have found a new contiguous block.
704 	 *
705 	 * First we have to replace the old block pointers with the new
706 	 * block pointers in the inode and indirect blocks associated
707 	 * with the file.
708 	 */
709 #ifdef DIAGNOSTIC
710 	if (prtrealloc)
711 		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
712 		    (uintmax_t)ip->i_number,
713 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
714 #endif
715 	blkno = newblk;
716 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
717 		if (i == ssize) {
718 			bap = ebap;
719 			soff = -i;
720 		}
721 #ifdef INVARIANTS
722 		if (!ffs_checkblk(ip,
723 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
724 			panic("ffs_reallocblks: unallocated block 2");
725 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
726 			panic("ffs_reallocblks: alloc mismatch");
727 #endif
728 #ifdef DIAGNOSTIC
729 		if (prtrealloc)
730 			printf(" %d,", *bap);
731 #endif
732 		if (DOINGSOFTDEP(vp)) {
733 			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
734 				softdep_setup_allocdirect(ip, start_lbn + i,
735 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
736 				    buflist->bs_children[i]);
737 			else
738 				softdep_setup_allocindir_page(ip, start_lbn + i,
739 				    i < ssize ? sbp : ebp, soff + i, blkno,
740 				    *bap, buflist->bs_children[i]);
741 		}
742 		*bap++ = blkno;
743 	}
744 	/*
745 	 * Next we must write out the modified inode and indirect blocks.
746 	 * For strict correctness, the writes should be synchronous since
747 	 * the old block values may have been written to disk. In practise
748 	 * they are almost never written, but if we are concerned about
749 	 * strict correctness, the `doasyncfree' flag should be set to zero.
750 	 *
751 	 * The test on `doasyncfree' should be changed to test a flag
752 	 * that shows whether the associated buffers and inodes have
753 	 * been written. The flag should be set when the cluster is
754 	 * started and cleared whenever the buffer or inode is flushed.
755 	 * We can then check below to see if it is set, and do the
756 	 * synchronous write only when it has been cleared.
757 	 */
758 	if (sbap != &ip->i_din1->di_db[0]) {
759 		if (doasyncfree)
760 			bdwrite(sbp);
761 		else
762 			bwrite(sbp);
763 	} else {
764 		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
765 		if (!doasyncfree)
766 			ffs_update(vp, 1);
767 	}
768 	if (ssize < len) {
769 		if (doasyncfree)
770 			bdwrite(ebp);
771 		else
772 			bwrite(ebp);
773 	}
774 	/*
775 	 * Last, free the old blocks and assign the new blocks to the buffers.
776 	 */
777 #ifdef DIAGNOSTIC
778 	if (prtrealloc)
779 		printf("\n\tnew:");
780 #endif
781 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
782 		bp = buflist->bs_children[i];
783 		if (!DOINGSOFTDEP(vp))
784 			/*
785 			 * The usual case is that a set of N-contiguous blocks
786 			 * that was just allocated has been replaced with a
787 			 * set of N+1-contiguous blocks. If they are marked as
788 			 * B_DELWRI, the current contents have not been written
789 			 * to disk. It is possible that the blocks were written
790 			 * earlier, but very uncommon. If the blocks have never
791 			 * been written, there is no need to send a BIO_DELETE
792 			 * for them when they are freed. The gain from avoiding
793 			 * the TRIMs for the common case of unwritten blocks
794 			 * far exceeds the cost of the write amplification for
795 			 * the uncommon case of failing to send a TRIM for the
796 			 * blocks that had been written.
797 			 */
798 			ffs_blkfree(ump, fs, ump->um_devvp,
799 			    dbtofsb(fs, bp->b_blkno),
800 			    fs->fs_bsize, ip->i_number, vp->v_type, NULL,
801 			    (bp->b_flags & B_DELWRI) != 0 ?
802 			    NOTRIM_KEY : SINGLETON_KEY);
803 		bp->b_blkno = fsbtodb(fs, blkno);
804 #ifdef INVARIANTS
805 		if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
806 			panic("ffs_reallocblks: unallocated block 3");
807 #endif
808 #ifdef DIAGNOSTIC
809 		if (prtrealloc)
810 			printf(" %d,", blkno);
811 #endif
812 	}
813 #ifdef DIAGNOSTIC
814 	if (prtrealloc) {
815 		prtrealloc--;
816 		printf("\n");
817 	}
818 #endif
819 	return (0);
820 
821 fail:
822 	if (ssize < len)
823 		brelse(ebp);
824 	if (sbap != &ip->i_din1->di_db[0])
825 		brelse(sbp);
826 	return (ENOSPC);
827 }
828 
829 static int
830 ffs_reallocblks_ufs2(
831 	struct vop_reallocblks_args /* {
832 		struct vnode *a_vp;
833 		struct cluster_save *a_buflist;
834 	} */ *ap)
835 {
836 	struct fs *fs;
837 	struct inode *ip;
838 	struct vnode *vp;
839 	struct buf *sbp, *ebp, *bp;
840 	ufs2_daddr_t *bap, *sbap, *ebap;
841 	struct cluster_save *buflist;
842 	struct ufsmount *ump;
843 	ufs_lbn_t start_lbn, end_lbn;
844 	ufs2_daddr_t soff, newblk, blkno, pref;
845 	struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
846 	int i, cg, len, start_lvl, end_lvl, ssize;
847 
848 	vp = ap->a_vp;
849 	ip = VTOI(vp);
850 	ump = ITOUMP(ip);
851 	fs = ump->um_fs;
852 	/*
853 	 * If we are not tracking block clusters or if we have less than 4%
854 	 * free blocks left, then do not attempt to cluster. Running with
855 	 * less than 5% free block reserve is not recommended and those that
856 	 * choose to do so do not expect to have good file layout.
857 	 */
858 	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
859 		return (ENOSPC);
860 	buflist = ap->a_buflist;
861 	len = buflist->bs_nchildren;
862 	start_lbn = buflist->bs_children[0]->b_lblkno;
863 	end_lbn = start_lbn + len - 1;
864 #ifdef INVARIANTS
865 	for (i = 0; i < len; i++)
866 		if (!ffs_checkblk(ip,
867 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
868 			panic("ffs_reallocblks: unallocated block 1");
869 	for (i = 1; i < len; i++)
870 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
871 			panic("ffs_reallocblks: non-logical cluster");
872 	blkno = buflist->bs_children[0]->b_blkno;
873 	ssize = fsbtodb(fs, fs->fs_frag);
874 	for (i = 1; i < len - 1; i++)
875 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
876 			panic("ffs_reallocblks: non-physical cluster %d", i);
877 #endif
878 	/*
879 	 * If the cluster crosses the boundary for the first indirect
880 	 * block, do not move anything in it. Indirect blocks are
881 	 * usually initially laid out in a position between the data
882 	 * blocks. Block reallocation would usually destroy locality by
883 	 * moving the indirect block out of the way to make room for
884 	 * data blocks if we didn't compensate here. We should also do
885 	 * this for other indirect block boundaries, but it is only
886 	 * important for the first one.
887 	 */
888 	if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
889 		return (ENOSPC);
890 	/*
891 	 * If the latest allocation is in a new cylinder group, assume that
892 	 * the filesystem has decided to move and do not force it back to
893 	 * the previous cylinder group.
894 	 */
895 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
896 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
897 		return (ENOSPC);
898 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
899 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
900 		return (ENOSPC);
901 	/*
902 	 * Get the starting offset and block map for the first block.
903 	 */
904 	if (start_lvl == 0) {
905 		sbap = &ip->i_din2->di_db[0];
906 		soff = start_lbn;
907 	} else {
908 		idp = &start_ap[start_lvl - 1];
909 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
910 			brelse(sbp);
911 			return (ENOSPC);
912 		}
913 		sbap = (ufs2_daddr_t *)sbp->b_data;
914 		soff = idp->in_off;
915 	}
916 	/*
917 	 * If the block range spans two block maps, get the second map.
918 	 */
919 	ebap = NULL;
920 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
921 		ssize = len;
922 	} else {
923 #ifdef INVARIANTS
924 		if (start_lvl > 0 &&
925 		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
926 			panic("ffs_reallocblk: start == end");
927 #endif
928 		ssize = len - (idp->in_off + 1);
929 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
930 			goto fail;
931 		ebap = (ufs2_daddr_t *)ebp->b_data;
932 	}
933 	/*
934 	 * Find the preferred location for the cluster. If we have not
935 	 * previously failed at this endeavor, then follow our standard
936 	 * preference calculation. If we have failed at it, then pick up
937 	 * where we last ended our search.
938 	 */
939 	UFS_LOCK(ump);
940 	if (ip->i_nextclustercg == -1)
941 		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
942 	else
943 		pref = cgdata(fs, ip->i_nextclustercg);
944 	/*
945 	 * Search the block map looking for an allocation of the desired size.
946 	 * To avoid wasting too much time, we limit the number of cylinder
947 	 * groups that we will search.
948 	 */
949 	cg = dtog(fs, pref);
950 	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
951 		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
952 			break;
953 		cg += 1;
954 		if (cg >= fs->fs_ncg)
955 			cg = 0;
956 	}
957 	/*
958 	 * If we have failed in our search, record where we gave up for
959 	 * next time. Otherwise, fall back to our usual search citerion.
960 	 */
961 	if (newblk == 0) {
962 		ip->i_nextclustercg = cg;
963 		UFS_UNLOCK(ump);
964 		goto fail;
965 	}
966 	ip->i_nextclustercg = -1;
967 	/*
968 	 * We have found a new contiguous block.
969 	 *
970 	 * First we have to replace the old block pointers with the new
971 	 * block pointers in the inode and indirect blocks associated
972 	 * with the file.
973 	 */
974 #ifdef DIAGNOSTIC
975 	if (prtrealloc)
976 		printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
977 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
978 #endif
979 	blkno = newblk;
980 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
981 		if (i == ssize) {
982 			bap = ebap;
983 			soff = -i;
984 		}
985 #ifdef INVARIANTS
986 		if (!ffs_checkblk(ip,
987 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
988 			panic("ffs_reallocblks: unallocated block 2");
989 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
990 			panic("ffs_reallocblks: alloc mismatch");
991 #endif
992 #ifdef DIAGNOSTIC
993 		if (prtrealloc)
994 			printf(" %jd,", (intmax_t)*bap);
995 #endif
996 		if (DOINGSOFTDEP(vp)) {
997 			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
998 				softdep_setup_allocdirect(ip, start_lbn + i,
999 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
1000 				    buflist->bs_children[i]);
1001 			else
1002 				softdep_setup_allocindir_page(ip, start_lbn + i,
1003 				    i < ssize ? sbp : ebp, soff + i, blkno,
1004 				    *bap, buflist->bs_children[i]);
1005 		}
1006 		*bap++ = blkno;
1007 	}
1008 	/*
1009 	 * Next we must write out the modified inode and indirect blocks.
1010 	 * For strict correctness, the writes should be synchronous since
1011 	 * the old block values may have been written to disk. In practise
1012 	 * they are almost never written, but if we are concerned about
1013 	 * strict correctness, the `doasyncfree' flag should be set to zero.
1014 	 *
1015 	 * The test on `doasyncfree' should be changed to test a flag
1016 	 * that shows whether the associated buffers and inodes have
1017 	 * been written. The flag should be set when the cluster is
1018 	 * started and cleared whenever the buffer or inode is flushed.
1019 	 * We can then check below to see if it is set, and do the
1020 	 * synchronous write only when it has been cleared.
1021 	 */
1022 	if (sbap != &ip->i_din2->di_db[0]) {
1023 		if (doasyncfree)
1024 			bdwrite(sbp);
1025 		else
1026 			bwrite(sbp);
1027 	} else {
1028 		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
1029 		if (!doasyncfree)
1030 			ffs_update(vp, 1);
1031 	}
1032 	if (ssize < len) {
1033 		if (doasyncfree)
1034 			bdwrite(ebp);
1035 		else
1036 			bwrite(ebp);
1037 	}
1038 	/*
1039 	 * Last, free the old blocks and assign the new blocks to the buffers.
1040 	 */
1041 #ifdef DIAGNOSTIC
1042 	if (prtrealloc)
1043 		printf("\n\tnew:");
1044 #endif
1045 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1046 		bp = buflist->bs_children[i];
1047 		if (!DOINGSOFTDEP(vp))
1048 			/*
1049 			 * The usual case is that a set of N-contiguous blocks
1050 			 * that was just allocated has been replaced with a
1051 			 * set of N+1-contiguous blocks. If they are marked as
1052 			 * B_DELWRI, the current contents have not been written
1053 			 * to disk. It is possible that the blocks were written
1054 			 * earlier, but very uncommon. If the blocks have never
1055 			 * been written, there is no need to send a BIO_DELETE
1056 			 * for them when they are freed. The gain from avoiding
1057 			 * the TRIMs for the common case of unwritten blocks
1058 			 * far exceeds the cost of the write amplification for
1059 			 * the uncommon case of failing to send a TRIM for the
1060 			 * blocks that had been written.
1061 			 */
1062 			ffs_blkfree(ump, fs, ump->um_devvp,
1063 			    dbtofsb(fs, bp->b_blkno),
1064 			    fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1065 			    (bp->b_flags & B_DELWRI) != 0 ?
1066 			    NOTRIM_KEY : SINGLETON_KEY);
1067 		bp->b_blkno = fsbtodb(fs, blkno);
1068 #ifdef INVARIANTS
1069 		if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
1070 			panic("ffs_reallocblks: unallocated block 3");
1071 #endif
1072 #ifdef DIAGNOSTIC
1073 		if (prtrealloc)
1074 			printf(" %jd,", (intmax_t)blkno);
1075 #endif
1076 	}
1077 #ifdef DIAGNOSTIC
1078 	if (prtrealloc) {
1079 		prtrealloc--;
1080 		printf("\n");
1081 	}
1082 #endif
1083 	return (0);
1084 
1085 fail:
1086 	if (ssize < len)
1087 		brelse(ebp);
1088 	if (sbap != &ip->i_din2->di_db[0])
1089 		brelse(sbp);
1090 	return (ENOSPC);
1091 }
1092 
1093 /*
1094  * Allocate an inode in the filesystem.
1095  *
1096  * If allocating a directory, use ffs_dirpref to select the inode.
1097  * If allocating in a directory, the following hierarchy is followed:
1098  *   1) allocate the preferred inode.
1099  *   2) allocate an inode in the same cylinder group.
1100  *   3) quadratically rehash into other cylinder groups, until an
1101  *      available inode is located.
1102  * If no inode preference is given the following hierarchy is used
1103  * to allocate an inode:
1104  *   1) allocate an inode in cylinder group 0.
1105  *   2) quadratically rehash into other cylinder groups, until an
1106  *      available inode is located.
1107  */
1108 int
1109 ffs_valloc(struct vnode *pvp,
1110 	int mode,
1111 	struct ucred *cred,
1112 	struct vnode **vpp)
1113 {
1114 	struct inode *pip;
1115 	struct fs *fs;
1116 	struct inode *ip;
1117 	struct timespec ts;
1118 	struct ufsmount *ump;
1119 	ino_t ino, ipref;
1120 	u_int cg;
1121 	int error, reclaimed;
1122 
1123 	*vpp = NULL;
1124 	pip = VTOI(pvp);
1125 	ump = ITOUMP(pip);
1126 	fs = ump->um_fs;
1127 
1128 	UFS_LOCK(ump);
1129 	reclaimed = 0;
1130 retry:
1131 	if (fs->fs_cstotal.cs_nifree == 0)
1132 		goto noinodes;
1133 
1134 	if ((mode & IFMT) == IFDIR)
1135 		ipref = ffs_dirpref(pip);
1136 	else
1137 		ipref = pip->i_number;
1138 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1139 		ipref = 0;
1140 	cg = ino_to_cg(fs, ipref);
1141 	/*
1142 	 * Track number of dirs created one after another
1143 	 * in a same cg without intervening by files.
1144 	 */
1145 	if ((mode & IFMT) == IFDIR) {
1146 		if (fs->fs_contigdirs[cg] < 255)
1147 			fs->fs_contigdirs[cg]++;
1148 	} else {
1149 		if (fs->fs_contigdirs[cg] > 0)
1150 			fs->fs_contigdirs[cg]--;
1151 	}
1152 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1153 					(allocfcn_t *)ffs_nodealloccg);
1154 	if (ino == 0)
1155 		goto noinodes;
1156 	/*
1157 	 * Get rid of the cached old vnode, force allocation of a new vnode
1158 	 * for this inode. If this fails, release the allocated ino and
1159 	 * return the error.
1160 	 */
1161 	if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1162 	    FFSV_FORCEINSMQ | FFSV_REPLACE)) != 0) {
1163 		ffs_vfree(pvp, ino, mode);
1164 		return (error);
1165 	}
1166 	/*
1167 	 * We got an inode, so check mode and panic if it is already allocated.
1168 	 */
1169 	ip = VTOI(*vpp);
1170 	if (ip->i_mode) {
1171 		printf("mode = 0%o, inum = %ju, fs = %s\n",
1172 		    ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1173 		panic("ffs_valloc: dup alloc");
1174 	}
1175 	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1176 		printf("free inode %s/%lu had %ld blocks\n",
1177 		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1178 		DIP_SET(ip, i_blocks, 0);
1179 	}
1180 	ip->i_flags = 0;
1181 	DIP_SET(ip, i_flags, 0);
1182 	/*
1183 	 * Set up a new generation number for this inode.
1184 	 */
1185 	while (ip->i_gen == 0 || ++ip->i_gen == 0)
1186 		ip->i_gen = arc4random();
1187 	DIP_SET(ip, i_gen, ip->i_gen);
1188 	if (fs->fs_magic == FS_UFS2_MAGIC) {
1189 		vfs_timestamp(&ts);
1190 		ip->i_din2->di_birthtime = ts.tv_sec;
1191 		ip->i_din2->di_birthnsec = ts.tv_nsec;
1192 	}
1193 	ip->i_flag = 0;
1194 	(*vpp)->v_vflag = 0;
1195 	(*vpp)->v_type = VNON;
1196 	if (fs->fs_magic == FS_UFS2_MAGIC) {
1197 		(*vpp)->v_op = &ffs_vnodeops2;
1198 		UFS_INODE_SET_FLAG(ip, IN_UFS2);
1199 	} else {
1200 		(*vpp)->v_op = &ffs_vnodeops1;
1201 	}
1202 	return (0);
1203 noinodes:
1204 	if (reclaimed == 0) {
1205 		reclaimed = 1;
1206 		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1207 		goto retry;
1208 	}
1209 	if (ffs_fsfail_cleanup_locked(ump, 0)) {
1210 		UFS_UNLOCK(ump);
1211 		return (ENXIO);
1212 	}
1213 	if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1214 		UFS_UNLOCK(ump);
1215 		ffs_fserr(fs, pip->i_number, "out of inodes");
1216 		uprintf("\n%s: create/symlink failed, no inodes free\n",
1217 		    fs->fs_fsmnt);
1218 	} else {
1219 		UFS_UNLOCK(ump);
1220 	}
1221 	return (ENOSPC);
1222 }
1223 
1224 /*
1225  * Find a cylinder group to place a directory.
1226  *
1227  * The policy implemented by this algorithm is to allocate a
1228  * directory inode in the same cylinder group as its parent
1229  * directory, but also to reserve space for its files inodes
1230  * and data. Restrict the number of directories which may be
1231  * allocated one after another in the same cylinder group
1232  * without intervening allocation of files.
1233  *
1234  * If we allocate a first level directory then force allocation
1235  * in another cylinder group.
1236  */
1237 static ino_t
1238 ffs_dirpref(struct inode *pip)
1239 {
1240 	struct fs *fs;
1241 	int cg, prefcg, dirsize, cgsize;
1242 	u_int avgifree, avgbfree, avgndir, curdirsize;
1243 	u_int minifree, minbfree, maxndir;
1244 	u_int mincg, minndir;
1245 	u_int maxcontigdirs;
1246 
1247 	mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1248 	fs = ITOFS(pip);
1249 
1250 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1251 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1252 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1253 
1254 	/*
1255 	 * Force allocation in another cg if creating a first level dir.
1256 	 */
1257 	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1258 	if (ITOV(pip)->v_vflag & VV_ROOT) {
1259 		prefcg = arc4random() % fs->fs_ncg;
1260 		mincg = prefcg;
1261 		minndir = fs->fs_ipg;
1262 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1263 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1264 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1265 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1266 				mincg = cg;
1267 				minndir = fs->fs_cs(fs, cg).cs_ndir;
1268 			}
1269 		for (cg = 0; cg < prefcg; cg++)
1270 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1271 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1272 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1273 				mincg = cg;
1274 				minndir = fs->fs_cs(fs, cg).cs_ndir;
1275 			}
1276 		return ((ino_t)(fs->fs_ipg * mincg));
1277 	}
1278 
1279 	/*
1280 	 * Count various limits which used for
1281 	 * optimal allocation of a directory inode.
1282 	 */
1283 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1284 	minifree = avgifree - avgifree / 4;
1285 	if (minifree < 1)
1286 		minifree = 1;
1287 	minbfree = avgbfree - avgbfree / 4;
1288 	if (minbfree < 1)
1289 		minbfree = 1;
1290 	cgsize = fs->fs_fsize * fs->fs_fpg;
1291 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1292 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1293 	if (dirsize < curdirsize)
1294 		dirsize = curdirsize;
1295 	if (dirsize <= 0)
1296 		maxcontigdirs = 0;		/* dirsize overflowed */
1297 	else
1298 		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1299 	if (fs->fs_avgfpdir > 0)
1300 		maxcontigdirs = min(maxcontigdirs,
1301 				    fs->fs_ipg / fs->fs_avgfpdir);
1302 	if (maxcontigdirs == 0)
1303 		maxcontigdirs = 1;
1304 
1305 	/*
1306 	 * Limit number of dirs in one cg and reserve space for
1307 	 * regular files, but only if we have no deficit in
1308 	 * inodes or space.
1309 	 *
1310 	 * We are trying to find a suitable cylinder group nearby
1311 	 * our preferred cylinder group to place a new directory.
1312 	 * We scan from our preferred cylinder group forward looking
1313 	 * for a cylinder group that meets our criterion. If we get
1314 	 * to the final cylinder group and do not find anything,
1315 	 * we start scanning forwards from the beginning of the
1316 	 * filesystem. While it might seem sensible to start scanning
1317 	 * backwards or even to alternate looking forward and backward,
1318 	 * this approach fails badly when the filesystem is nearly full.
1319 	 * Specifically, we first search all the areas that have no space
1320 	 * and finally try the one preceding that. We repeat this on
1321 	 * every request and in the case of the final block end up
1322 	 * searching the entire filesystem. By jumping to the front
1323 	 * of the filesystem, our future forward searches always look
1324 	 * in new cylinder groups so finds every possible block after
1325 	 * one pass over the filesystem.
1326 	 */
1327 	prefcg = ino_to_cg(fs, pip->i_number);
1328 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1329 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1330 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1331 		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1332 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1333 				return ((ino_t)(fs->fs_ipg * cg));
1334 		}
1335 	for (cg = 0; cg < prefcg; cg++)
1336 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1337 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1338 		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1339 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1340 				return ((ino_t)(fs->fs_ipg * cg));
1341 		}
1342 	/*
1343 	 * This is a backstop when we have deficit in space.
1344 	 */
1345 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1346 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1347 			return ((ino_t)(fs->fs_ipg * cg));
1348 	for (cg = 0; cg < prefcg; cg++)
1349 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1350 			break;
1351 	return ((ino_t)(fs->fs_ipg * cg));
1352 }
1353 
1354 /*
1355  * Select the desired position for the next block in a file.  The file is
1356  * logically divided into sections. The first section is composed of the
1357  * direct blocks and the next fs_maxbpg blocks. Each additional section
1358  * contains fs_maxbpg blocks.
1359  *
1360  * If no blocks have been allocated in the first section, the policy is to
1361  * request a block in the same cylinder group as the inode that describes
1362  * the file. The first indirect is allocated immediately following the last
1363  * direct block and the data blocks for the first indirect immediately
1364  * follow it.
1365  *
1366  * If no blocks have been allocated in any other section, the indirect
1367  * block(s) are allocated in the same cylinder group as its inode in an
1368  * area reserved immediately following the inode blocks. The policy for
1369  * the data blocks is to place them in a cylinder group with a greater than
1370  * average number of free blocks. An appropriate cylinder group is found
1371  * by using a rotor that sweeps the cylinder groups. When a new group of
1372  * blocks is needed, the sweep begins in the cylinder group following the
1373  * cylinder group from which the previous allocation was made. The sweep
1374  * continues until a cylinder group with greater than the average number
1375  * of free blocks is found. If the allocation is for the first block in an
1376  * indirect block or the previous block is a hole, then the information on
1377  * the previous allocation is unavailable; here a best guess is made based
1378  * on the logical block number being allocated.
1379  *
1380  * If a section is already partially allocated, the policy is to
1381  * allocate blocks contiguously within the section if possible.
1382  */
1383 ufs2_daddr_t
1384 ffs_blkpref_ufs1(struct inode *ip,
1385 	ufs_lbn_t lbn,
1386 	int indx,
1387 	ufs1_daddr_t *bap)
1388 {
1389 	struct fs *fs;
1390 	u_int cg, inocg;
1391 	u_int avgbfree, startcg;
1392 	ufs2_daddr_t pref, prevbn;
1393 
1394 	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1395 	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1396 	fs = ITOFS(ip);
1397 	/*
1398 	 * Allocation of indirect blocks is indicated by passing negative
1399 	 * values in indx: -1 for single indirect, -2 for double indirect,
1400 	 * -3 for triple indirect. As noted below, we attempt to allocate
1401 	 * the first indirect inline with the file data. For all later
1402 	 * indirect blocks, the data is often allocated in other cylinder
1403 	 * groups. However to speed random file access and to speed up
1404 	 * fsck, the filesystem reserves the first fs_metaspace blocks
1405 	 * (typically half of fs_minfree) of the data area of each cylinder
1406 	 * group to hold these later indirect blocks.
1407 	 */
1408 	inocg = ino_to_cg(fs, ip->i_number);
1409 	if (indx < 0) {
1410 		/*
1411 		 * Our preference for indirect blocks is the zone at the
1412 		 * beginning of the inode's cylinder group data area that
1413 		 * we try to reserve for indirect blocks.
1414 		 */
1415 		pref = cgmeta(fs, inocg);
1416 		/*
1417 		 * If we are allocating the first indirect block, try to
1418 		 * place it immediately following the last direct block.
1419 		 */
1420 		if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1421 		    ip->i_din1->di_db[UFS_NDADDR - 1] != 0)
1422 			pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1423 		return (pref);
1424 	}
1425 	/*
1426 	 * If we are allocating the first data block in the first indirect
1427 	 * block and the indirect has been allocated in the data block area,
1428 	 * try to place it immediately following the indirect block.
1429 	 */
1430 	if (lbn == UFS_NDADDR) {
1431 		pref = ip->i_din1->di_ib[0];
1432 		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1433 		    pref < cgbase(fs, inocg + 1))
1434 			return (pref + fs->fs_frag);
1435 	}
1436 	/*
1437 	 * If we are at the beginning of a file, or we have already allocated
1438 	 * the maximum number of blocks per cylinder group, or we do not
1439 	 * have a block allocated immediately preceding us, then we need
1440 	 * to decide where to start allocating new blocks.
1441 	 */
1442 	if (indx ==  0) {
1443 		prevbn = 0;
1444 	} else {
1445 		prevbn = bap[indx - 1];
1446 		if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1447 		    fs->fs_bsize) != 0)
1448 			prevbn = 0;
1449 	}
1450 	if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1451 		/*
1452 		 * If we are allocating a directory data block, we want
1453 		 * to place it in the metadata area.
1454 		 */
1455 		if ((ip->i_mode & IFMT) == IFDIR)
1456 			return (cgmeta(fs, inocg));
1457 		/*
1458 		 * Until we fill all the direct and all the first indirect's
1459 		 * blocks, we try to allocate in the data area of the inode's
1460 		 * cylinder group.
1461 		 */
1462 		if (lbn < UFS_NDADDR + NINDIR(fs))
1463 			return (cgdata(fs, inocg));
1464 		/*
1465 		 * Find a cylinder with greater than average number of
1466 		 * unused data blocks.
1467 		 */
1468 		if (indx == 0 || prevbn == 0)
1469 			startcg = inocg + lbn / fs->fs_maxbpg;
1470 		else
1471 			startcg = dtog(fs, prevbn) + 1;
1472 		startcg %= fs->fs_ncg;
1473 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1474 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1475 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1476 				fs->fs_cgrotor = cg;
1477 				return (cgdata(fs, cg));
1478 			}
1479 		for (cg = 0; cg <= startcg; cg++)
1480 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1481 				fs->fs_cgrotor = cg;
1482 				return (cgdata(fs, cg));
1483 			}
1484 		return (0);
1485 	}
1486 	/*
1487 	 * Otherwise, we just always try to lay things out contiguously.
1488 	 */
1489 	return (prevbn + fs->fs_frag);
1490 }
1491 
1492 /*
1493  * Same as above, but for UFS2
1494  */
1495 ufs2_daddr_t
1496 ffs_blkpref_ufs2(struct inode *ip,
1497 	ufs_lbn_t lbn,
1498 	int indx,
1499 	ufs2_daddr_t *bap)
1500 {
1501 	struct fs *fs;
1502 	u_int cg, inocg;
1503 	u_int avgbfree, startcg;
1504 	ufs2_daddr_t pref, prevbn;
1505 
1506 	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1507 	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1508 	fs = ITOFS(ip);
1509 	/*
1510 	 * Allocation of indirect blocks is indicated by passing negative
1511 	 * values in indx: -1 for single indirect, -2 for double indirect,
1512 	 * -3 for triple indirect. As noted below, we attempt to allocate
1513 	 * the first indirect inline with the file data. For all later
1514 	 * indirect blocks, the data is often allocated in other cylinder
1515 	 * groups. However to speed random file access and to speed up
1516 	 * fsck, the filesystem reserves the first fs_metaspace blocks
1517 	 * (typically half of fs_minfree) of the data area of each cylinder
1518 	 * group to hold these later indirect blocks.
1519 	 */
1520 	inocg = ino_to_cg(fs, ip->i_number);
1521 	if (indx < 0) {
1522 		/*
1523 		 * Our preference for indirect blocks is the zone at the
1524 		 * beginning of the inode's cylinder group data area that
1525 		 * we try to reserve for indirect blocks.
1526 		 */
1527 		pref = cgmeta(fs, inocg);
1528 		/*
1529 		 * If we are allocating the first indirect block, try to
1530 		 * place it immediately following the last direct block.
1531 		 */
1532 		if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1533 		    ip->i_din2->di_db[UFS_NDADDR - 1] != 0)
1534 			pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1535 		return (pref);
1536 	}
1537 	/*
1538 	 * If we are allocating the first data block in the first indirect
1539 	 * block and the indirect has been allocated in the data block area,
1540 	 * try to place it immediately following the indirect block.
1541 	 */
1542 	if (lbn == UFS_NDADDR) {
1543 		pref = ip->i_din2->di_ib[0];
1544 		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1545 		    pref < cgbase(fs, inocg + 1))
1546 			return (pref + fs->fs_frag);
1547 	}
1548 	/*
1549 	 * If we are at the beginning of a file, or we have already allocated
1550 	 * the maximum number of blocks per cylinder group, or we do not
1551 	 * have a block allocated immediately preceding us, then we need
1552 	 * to decide where to start allocating new blocks.
1553 	 */
1554 	if (indx ==  0) {
1555 		prevbn = 0;
1556 	} else {
1557 		prevbn = bap[indx - 1];
1558 		if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1559 		    fs->fs_bsize) != 0)
1560 			prevbn = 0;
1561 	}
1562 	if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1563 		/*
1564 		 * If we are allocating a directory data block, we want
1565 		 * to place it in the metadata area.
1566 		 */
1567 		if ((ip->i_mode & IFMT) == IFDIR)
1568 			return (cgmeta(fs, inocg));
1569 		/*
1570 		 * Until we fill all the direct and all the first indirect's
1571 		 * blocks, we try to allocate in the data area of the inode's
1572 		 * cylinder group.
1573 		 */
1574 		if (lbn < UFS_NDADDR + NINDIR(fs))
1575 			return (cgdata(fs, inocg));
1576 		/*
1577 		 * Find a cylinder with greater than average number of
1578 		 * unused data blocks.
1579 		 */
1580 		if (indx == 0 || prevbn == 0)
1581 			startcg = inocg + lbn / fs->fs_maxbpg;
1582 		else
1583 			startcg = dtog(fs, prevbn) + 1;
1584 		startcg %= fs->fs_ncg;
1585 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1586 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1587 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1588 				fs->fs_cgrotor = cg;
1589 				return (cgdata(fs, cg));
1590 			}
1591 		for (cg = 0; cg <= startcg; cg++)
1592 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1593 				fs->fs_cgrotor = cg;
1594 				return (cgdata(fs, cg));
1595 			}
1596 		return (0);
1597 	}
1598 	/*
1599 	 * Otherwise, we just always try to lay things out contiguously.
1600 	 */
1601 	return (prevbn + fs->fs_frag);
1602 }
1603 
1604 /*
1605  * Implement the cylinder overflow algorithm.
1606  *
1607  * The policy implemented by this algorithm is:
1608  *   1) allocate the block in its requested cylinder group.
1609  *   2) quadratically rehash on the cylinder group number.
1610  *   3) brute force search for a free block.
1611  *
1612  * Must be called with the UFS lock held.  Will release the lock on success
1613  * and return with it held on failure.
1614  */
1615 /*VARARGS5*/
1616 static ufs2_daddr_t
1617 ffs_hashalloc(struct inode *ip,
1618 	u_int cg,
1619 	ufs2_daddr_t pref,
1620 	int size,	/* Search size for data blocks, mode for inodes */
1621 	int rsize,	/* Real allocated size. */
1622 	allocfcn_t *allocator)
1623 {
1624 	struct fs *fs;
1625 	ufs2_daddr_t result;
1626 	u_int i, icg = cg;
1627 
1628 	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1629 #ifdef INVARIANTS
1630 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1631 		panic("ffs_hashalloc: allocation on suspended filesystem");
1632 #endif
1633 	fs = ITOFS(ip);
1634 	/*
1635 	 * 1: preferred cylinder group
1636 	 */
1637 	result = (*allocator)(ip, cg, pref, size, rsize);
1638 	if (result)
1639 		return (result);
1640 	/*
1641 	 * 2: quadratic rehash
1642 	 */
1643 	for (i = 1; i < fs->fs_ncg; i *= 2) {
1644 		cg += i;
1645 		if (cg >= fs->fs_ncg)
1646 			cg -= fs->fs_ncg;
1647 		result = (*allocator)(ip, cg, 0, size, rsize);
1648 		if (result)
1649 			return (result);
1650 	}
1651 	/*
1652 	 * 3: brute force search
1653 	 * Note that we start at i == 2, since 0 was checked initially,
1654 	 * and 1 is always checked in the quadratic rehash.
1655 	 */
1656 	cg = (icg + 2) % fs->fs_ncg;
1657 	for (i = 2; i < fs->fs_ncg; i++) {
1658 		result = (*allocator)(ip, cg, 0, size, rsize);
1659 		if (result)
1660 			return (result);
1661 		cg++;
1662 		if (cg == fs->fs_ncg)
1663 			cg = 0;
1664 	}
1665 	return (0);
1666 }
1667 
1668 /*
1669  * Determine whether a fragment can be extended.
1670  *
1671  * Check to see if the necessary fragments are available, and
1672  * if they are, allocate them.
1673  */
1674 static ufs2_daddr_t
1675 ffs_fragextend(struct inode *ip,
1676 	u_int cg,
1677 	ufs2_daddr_t bprev,
1678 	int osize,
1679 	int nsize)
1680 {
1681 	struct fs *fs;
1682 	struct cg *cgp;
1683 	struct buf *bp;
1684 	struct ufsmount *ump;
1685 	int nffree;
1686 	long bno;
1687 	int frags, bbase;
1688 	int i, error;
1689 	u_int8_t *blksfree;
1690 
1691 	ump = ITOUMP(ip);
1692 	fs = ump->um_fs;
1693 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1694 		return (0);
1695 	frags = numfrags(fs, nsize);
1696 	bbase = fragnum(fs, bprev);
1697 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1698 		/* cannot extend across a block boundary */
1699 		return (0);
1700 	}
1701 	UFS_UNLOCK(ump);
1702 	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0)
1703 		goto fail;
1704 	bno = dtogd(fs, bprev);
1705 	blksfree = cg_blksfree(cgp);
1706 	for (i = numfrags(fs, osize); i < frags; i++)
1707 		if (isclr(blksfree, bno + i))
1708 			goto fail;
1709 	/*
1710 	 * the current fragment can be extended
1711 	 * deduct the count on fragment being extended into
1712 	 * increase the count on the remaining fragment (if any)
1713 	 * allocate the extended piece
1714 	 */
1715 	for (i = frags; i < fs->fs_frag - bbase; i++)
1716 		if (isclr(blksfree, bno + i))
1717 			break;
1718 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1719 	if (i != frags)
1720 		cgp->cg_frsum[i - frags]++;
1721 	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1722 		clrbit(blksfree, bno + i);
1723 		cgp->cg_cs.cs_nffree--;
1724 		nffree++;
1725 	}
1726 	UFS_LOCK(ump);
1727 	fs->fs_cstotal.cs_nffree -= nffree;
1728 	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1729 	fs->fs_fmod = 1;
1730 	ACTIVECLEAR(fs, cg);
1731 	UFS_UNLOCK(ump);
1732 	if (DOINGSOFTDEP(ITOV(ip)))
1733 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1734 		    frags, numfrags(fs, osize));
1735 	bdwrite(bp);
1736 	return (bprev);
1737 
1738 fail:
1739 	brelse(bp);
1740 	UFS_LOCK(ump);
1741 	return (0);
1742 
1743 }
1744 
1745 /*
1746  * Determine whether a block can be allocated.
1747  *
1748  * Check to see if a block of the appropriate size is available,
1749  * and if it is, allocate it.
1750  */
1751 static ufs2_daddr_t
1752 ffs_alloccg(struct inode *ip,
1753 	u_int cg,
1754 	ufs2_daddr_t bpref,
1755 	int size,
1756 	int rsize)
1757 {
1758 	struct fs *fs;
1759 	struct cg *cgp;
1760 	struct buf *bp;
1761 	struct ufsmount *ump;
1762 	ufs1_daddr_t bno;
1763 	ufs2_daddr_t blkno;
1764 	int i, allocsiz, error, frags;
1765 	u_int8_t *blksfree;
1766 
1767 	ump = ITOUMP(ip);
1768 	fs = ump->um_fs;
1769 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1770 		return (0);
1771 	UFS_UNLOCK(ump);
1772 	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 ||
1773 	   (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1774 		goto fail;
1775 	if (size == fs->fs_bsize) {
1776 		UFS_LOCK(ump);
1777 		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1778 		ACTIVECLEAR(fs, cg);
1779 		UFS_UNLOCK(ump);
1780 		bdwrite(bp);
1781 		return (blkno);
1782 	}
1783 	/*
1784 	 * check to see if any fragments are already available
1785 	 * allocsiz is the size which will be allocated, hacking
1786 	 * it down to a smaller size if necessary
1787 	 */
1788 	blksfree = cg_blksfree(cgp);
1789 	frags = numfrags(fs, size);
1790 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1791 		if (cgp->cg_frsum[allocsiz] != 0)
1792 			break;
1793 	if (allocsiz == fs->fs_frag) {
1794 		/*
1795 		 * no fragments were available, so a block will be
1796 		 * allocated, and hacked up
1797 		 */
1798 		if (cgp->cg_cs.cs_nbfree == 0)
1799 			goto fail;
1800 		UFS_LOCK(ump);
1801 		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1802 		ACTIVECLEAR(fs, cg);
1803 		UFS_UNLOCK(ump);
1804 		bdwrite(bp);
1805 		return (blkno);
1806 	}
1807 	KASSERT(size == rsize,
1808 	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1809 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1810 	if (bno < 0)
1811 		goto fail;
1812 	for (i = 0; i < frags; i++)
1813 		clrbit(blksfree, bno + i);
1814 	cgp->cg_cs.cs_nffree -= frags;
1815 	cgp->cg_frsum[allocsiz]--;
1816 	if (frags != allocsiz)
1817 		cgp->cg_frsum[allocsiz - frags]++;
1818 	UFS_LOCK(ump);
1819 	fs->fs_cstotal.cs_nffree -= frags;
1820 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1821 	fs->fs_fmod = 1;
1822 	blkno = cgbase(fs, cg) + bno;
1823 	ACTIVECLEAR(fs, cg);
1824 	UFS_UNLOCK(ump);
1825 	if (DOINGSOFTDEP(ITOV(ip)))
1826 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1827 	bdwrite(bp);
1828 	return (blkno);
1829 
1830 fail:
1831 	brelse(bp);
1832 	UFS_LOCK(ump);
1833 	return (0);
1834 }
1835 
1836 /*
1837  * Allocate a block in a cylinder group.
1838  *
1839  * This algorithm implements the following policy:
1840  *   1) allocate the requested block.
1841  *   2) allocate a rotationally optimal block in the same cylinder.
1842  *   3) allocate the next available block on the block rotor for the
1843  *      specified cylinder group.
1844  * Note that this routine only allocates fs_bsize blocks; these
1845  * blocks may be fragmented by the routine that allocates them.
1846  */
1847 static ufs2_daddr_t
1848 ffs_alloccgblk(struct inode *ip,
1849 	struct buf *bp,
1850 	ufs2_daddr_t bpref,
1851 	int size)
1852 {
1853 	struct fs *fs;
1854 	struct cg *cgp;
1855 	struct ufsmount *ump;
1856 	ufs1_daddr_t bno;
1857 	ufs2_daddr_t blkno;
1858 	u_int8_t *blksfree;
1859 	int i, cgbpref;
1860 
1861 	ump = ITOUMP(ip);
1862 	fs = ump->um_fs;
1863 	mtx_assert(UFS_MTX(ump), MA_OWNED);
1864 	cgp = (struct cg *)bp->b_data;
1865 	blksfree = cg_blksfree(cgp);
1866 	if (bpref == 0) {
1867 		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1868 	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1869 		/* map bpref to correct zone in this cg */
1870 		if (bpref < cgdata(fs, cgbpref))
1871 			bpref = cgmeta(fs, cgp->cg_cgx);
1872 		else
1873 			bpref = cgdata(fs, cgp->cg_cgx);
1874 	}
1875 	/*
1876 	 * if the requested block is available, use it
1877 	 */
1878 	bno = dtogd(fs, blknum(fs, bpref));
1879 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1880 		goto gotit;
1881 	/*
1882 	 * Take the next available block in this cylinder group.
1883 	 */
1884 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1885 	if (bno < 0)
1886 		return (0);
1887 	/* Update cg_rotor only if allocated from the data zone */
1888 	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1889 		cgp->cg_rotor = bno;
1890 gotit:
1891 	blkno = fragstoblks(fs, bno);
1892 	ffs_clrblock(fs, blksfree, (long)blkno);
1893 	ffs_clusteracct(fs, cgp, blkno, -1);
1894 	cgp->cg_cs.cs_nbfree--;
1895 	fs->fs_cstotal.cs_nbfree--;
1896 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1897 	fs->fs_fmod = 1;
1898 	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1899 	/*
1900 	 * If the caller didn't want the whole block free the frags here.
1901 	 */
1902 	size = numfrags(fs, size);
1903 	if (size != fs->fs_frag) {
1904 		bno = dtogd(fs, blkno);
1905 		for (i = size; i < fs->fs_frag; i++)
1906 			setbit(blksfree, bno + i);
1907 		i = fs->fs_frag - size;
1908 		cgp->cg_cs.cs_nffree += i;
1909 		fs->fs_cstotal.cs_nffree += i;
1910 		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1911 		fs->fs_fmod = 1;
1912 		cgp->cg_frsum[i]++;
1913 	}
1914 	/* XXX Fixme. */
1915 	UFS_UNLOCK(ump);
1916 	if (DOINGSOFTDEP(ITOV(ip)))
1917 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1918 	UFS_LOCK(ump);
1919 	return (blkno);
1920 }
1921 
1922 /*
1923  * Determine whether a cluster can be allocated.
1924  *
1925  * We do not currently check for optimal rotational layout if there
1926  * are multiple choices in the same cylinder group. Instead we just
1927  * take the first one that we find following bpref.
1928  */
1929 static ufs2_daddr_t
1930 ffs_clusteralloc(struct inode *ip,
1931 	u_int cg,
1932 	ufs2_daddr_t bpref,
1933 	int len)
1934 {
1935 	struct fs *fs;
1936 	struct cg *cgp;
1937 	struct buf *bp;
1938 	struct ufsmount *ump;
1939 	int i, run, bit, map, got, error;
1940 	ufs2_daddr_t bno;
1941 	u_char *mapp;
1942 	int32_t *lp;
1943 	u_int8_t *blksfree;
1944 
1945 	ump = ITOUMP(ip);
1946 	fs = ump->um_fs;
1947 	if (fs->fs_maxcluster[cg] < len)
1948 		return (0);
1949 	UFS_UNLOCK(ump);
1950 	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1951 		UFS_LOCK(ump);
1952 		return (0);
1953 	}
1954 	/*
1955 	 * Check to see if a cluster of the needed size (or bigger) is
1956 	 * available in this cylinder group.
1957 	 */
1958 	lp = &cg_clustersum(cgp)[len];
1959 	for (i = len; i <= fs->fs_contigsumsize; i++)
1960 		if (*lp++ > 0)
1961 			break;
1962 	if (i > fs->fs_contigsumsize) {
1963 		/*
1964 		 * This is the first time looking for a cluster in this
1965 		 * cylinder group. Update the cluster summary information
1966 		 * to reflect the true maximum sized cluster so that
1967 		 * future cluster allocation requests can avoid reading
1968 		 * the cylinder group map only to find no clusters.
1969 		 */
1970 		lp = &cg_clustersum(cgp)[len - 1];
1971 		for (i = len - 1; i > 0; i--)
1972 			if (*lp-- > 0)
1973 				break;
1974 		UFS_LOCK(ump);
1975 		fs->fs_maxcluster[cg] = i;
1976 		brelse(bp);
1977 		return (0);
1978 	}
1979 	/*
1980 	 * Search the cluster map to find a big enough cluster.
1981 	 * We take the first one that we find, even if it is larger
1982 	 * than we need as we prefer to get one close to the previous
1983 	 * block allocation. We do not search before the current
1984 	 * preference point as we do not want to allocate a block
1985 	 * that is allocated before the previous one (as we will
1986 	 * then have to wait for another pass of the elevator
1987 	 * algorithm before it will be read). We prefer to fail and
1988 	 * be recalled to try an allocation in the next cylinder group.
1989 	 */
1990 	if (dtog(fs, bpref) != cg)
1991 		bpref = cgdata(fs, cg);
1992 	else
1993 		bpref = blknum(fs, bpref);
1994 	bpref = fragstoblks(fs, dtogd(fs, bpref));
1995 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1996 	map = *mapp++;
1997 	bit = 1 << (bpref % NBBY);
1998 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1999 		if ((map & bit) == 0) {
2000 			run = 0;
2001 		} else {
2002 			run++;
2003 			if (run == len)
2004 				break;
2005 		}
2006 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
2007 			bit <<= 1;
2008 		} else {
2009 			map = *mapp++;
2010 			bit = 1;
2011 		}
2012 	}
2013 	if (got >= cgp->cg_nclusterblks) {
2014 		UFS_LOCK(ump);
2015 		brelse(bp);
2016 		return (0);
2017 	}
2018 	/*
2019 	 * Allocate the cluster that we have found.
2020 	 */
2021 	blksfree = cg_blksfree(cgp);
2022 	for (i = 1; i <= len; i++)
2023 		if (!ffs_isblock(fs, blksfree, got - run + i))
2024 			panic("ffs_clusteralloc: map mismatch");
2025 	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2026 	if (dtog(fs, bno) != cg)
2027 		panic("ffs_clusteralloc: allocated out of group");
2028 	len = blkstofrags(fs, len);
2029 	UFS_LOCK(ump);
2030 	for (i = 0; i < len; i += fs->fs_frag)
2031 		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2032 			panic("ffs_clusteralloc: lost block");
2033 	ACTIVECLEAR(fs, cg);
2034 	UFS_UNLOCK(ump);
2035 	bdwrite(bp);
2036 	return (bno);
2037 }
2038 
2039 static inline struct buf *
2040 getinobuf(struct inode *ip,
2041 	u_int cg,
2042 	u_int32_t cginoblk,
2043 	int gbflags)
2044 {
2045 	struct fs *fs;
2046 
2047 	fs = ITOFS(ip);
2048 	return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2049 	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2050 	    gbflags));
2051 }
2052 
2053 /*
2054  * Synchronous inode initialization is needed only when barrier writes do not
2055  * work as advertised, and will impose a heavy cost on file creation in a newly
2056  * created filesystem.
2057  */
2058 static int doasyncinodeinit = 1;
2059 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2060     &doasyncinodeinit, 0,
2061     "Perform inode block initialization using asynchronous writes");
2062 
2063 /*
2064  * Determine whether an inode can be allocated.
2065  *
2066  * Check to see if an inode is available, and if it is,
2067  * allocate it using the following policy:
2068  *   1) allocate the requested inode.
2069  *   2) allocate the next available inode after the requested
2070  *      inode in the specified cylinder group.
2071  */
2072 static ufs2_daddr_t
2073 ffs_nodealloccg(struct inode *ip,
2074 	u_int cg,
2075 	ufs2_daddr_t ipref,
2076 	int mode,
2077 	int unused)
2078 {
2079 	struct fs *fs;
2080 	struct cg *cgp;
2081 	struct buf *bp, *ibp;
2082 	struct ufsmount *ump;
2083 	u_int8_t *inosused, *loc;
2084 	struct ufs2_dinode *dp2;
2085 	int error, start, len, i;
2086 	u_int32_t old_initediblk;
2087 
2088 	ump = ITOUMP(ip);
2089 	fs = ump->um_fs;
2090 check_nifree:
2091 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
2092 		return (0);
2093 	UFS_UNLOCK(ump);
2094 	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
2095 		UFS_LOCK(ump);
2096 		return (0);
2097 	}
2098 restart:
2099 	if (cgp->cg_cs.cs_nifree == 0) {
2100 		brelse(bp);
2101 		UFS_LOCK(ump);
2102 		return (0);
2103 	}
2104 	inosused = cg_inosused(cgp);
2105 	if (ipref) {
2106 		ipref %= fs->fs_ipg;
2107 		if (isclr(inosused, ipref))
2108 			goto gotit;
2109 	}
2110 	start = cgp->cg_irotor / NBBY;
2111 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2112 	loc = memcchr(&inosused[start], 0xff, len);
2113 	if (loc == NULL) {
2114 		len = start + 1;
2115 		start = 0;
2116 		loc = memcchr(&inosused[start], 0xff, len);
2117 		if (loc == NULL) {
2118 			printf("cg = %d, irotor = %ld, fs = %s\n",
2119 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2120 			panic("ffs_nodealloccg: map corrupted");
2121 			/* NOTREACHED */
2122 		}
2123 	}
2124 	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2125 gotit:
2126 	/*
2127 	 * Check to see if we need to initialize more inodes.
2128 	 */
2129 	if (fs->fs_magic == FS_UFS2_MAGIC &&
2130 	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2131 	    cgp->cg_initediblk < cgp->cg_niblk) {
2132 		old_initediblk = cgp->cg_initediblk;
2133 
2134 		/*
2135 		 * Free the cylinder group lock before writing the
2136 		 * initialized inode block.  Entering the
2137 		 * babarrierwrite() with the cylinder group lock
2138 		 * causes lock order violation between the lock and
2139 		 * snaplk.
2140 		 *
2141 		 * Another thread can decide to initialize the same
2142 		 * inode block, but whichever thread first gets the
2143 		 * cylinder group lock after writing the newly
2144 		 * allocated inode block will update it and the other
2145 		 * will realize that it has lost and leave the
2146 		 * cylinder group unchanged.
2147 		 */
2148 		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2149 		brelse(bp);
2150 		if (ibp == NULL) {
2151 			/*
2152 			 * The inode block buffer is already owned by
2153 			 * another thread, which must initialize it.
2154 			 * Wait on the buffer to allow another thread
2155 			 * to finish the updates, with dropped cg
2156 			 * buffer lock, then retry.
2157 			 */
2158 			ibp = getinobuf(ip, cg, old_initediblk, 0);
2159 			brelse(ibp);
2160 			UFS_LOCK(ump);
2161 			goto check_nifree;
2162 		}
2163 		bzero(ibp->b_data, (int)fs->fs_bsize);
2164 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2165 		for (i = 0; i < INOPB(fs); i++) {
2166 			while (dp2->di_gen == 0)
2167 				dp2->di_gen = arc4random();
2168 			dp2++;
2169 		}
2170 
2171 		/*
2172 		 * Rather than adding a soft updates dependency to ensure
2173 		 * that the new inode block is written before it is claimed
2174 		 * by the cylinder group map, we just do a barrier write
2175 		 * here. The barrier write will ensure that the inode block
2176 		 * gets written before the updated cylinder group map can be
2177 		 * written. The barrier write should only slow down bulk
2178 		 * loading of newly created filesystems.
2179 		 */
2180 		if (doasyncinodeinit)
2181 			babarrierwrite(ibp);
2182 		else
2183 			bwrite(ibp);
2184 
2185 		/*
2186 		 * After the inode block is written, try to update the
2187 		 * cg initediblk pointer.  If another thread beat us
2188 		 * to it, then leave it unchanged as the other thread
2189 		 * has already set it correctly.
2190 		 */
2191 		error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
2192 		UFS_LOCK(ump);
2193 		ACTIVECLEAR(fs, cg);
2194 		UFS_UNLOCK(ump);
2195 		if (error != 0)
2196 			return (error);
2197 		if (cgp->cg_initediblk == old_initediblk)
2198 			cgp->cg_initediblk += INOPB(fs);
2199 		goto restart;
2200 	}
2201 	cgp->cg_irotor = ipref;
2202 	UFS_LOCK(ump);
2203 	ACTIVECLEAR(fs, cg);
2204 	setbit(inosused, ipref);
2205 	cgp->cg_cs.cs_nifree--;
2206 	fs->fs_cstotal.cs_nifree--;
2207 	fs->fs_cs(fs, cg).cs_nifree--;
2208 	fs->fs_fmod = 1;
2209 	if ((mode & IFMT) == IFDIR) {
2210 		cgp->cg_cs.cs_ndir++;
2211 		fs->fs_cstotal.cs_ndir++;
2212 		fs->fs_cs(fs, cg).cs_ndir++;
2213 	}
2214 	UFS_UNLOCK(ump);
2215 	if (DOINGSOFTDEP(ITOV(ip)))
2216 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2217 	bdwrite(bp);
2218 	return ((ino_t)(cg * fs->fs_ipg + ipref));
2219 }
2220 
2221 /*
2222  * Free a block or fragment.
2223  *
2224  * The specified block or fragment is placed back in the
2225  * free map. If a fragment is deallocated, a possible
2226  * block reassembly is checked.
2227  */
2228 static void
2229 ffs_blkfree_cg(struct ufsmount *ump,
2230 	struct fs *fs,
2231 	struct vnode *devvp,
2232 	ufs2_daddr_t bno,
2233 	long size,
2234 	ino_t inum,
2235 	struct workhead *dephd)
2236 {
2237 	struct mount *mp;
2238 	struct cg *cgp;
2239 	struct buf *bp;
2240 	daddr_t dbn;
2241 	ufs1_daddr_t fragno, cgbno;
2242 	int i, blk, frags, bbase, error;
2243 	u_int cg;
2244 	u_int8_t *blksfree;
2245 	struct cdev *dev;
2246 
2247 	cg = dtog(fs, bno);
2248 	if (devvp->v_type == VREG) {
2249 		/* devvp is a snapshot */
2250 		MPASS(devvp->v_mount->mnt_data == ump);
2251 		dev = ump->um_devvp->v_rdev;
2252 	} else if (devvp->v_type == VCHR) {
2253 		/*
2254 		 * devvp is a normal disk device
2255 		 * XXXKIB: devvp is not locked there, v_rdev access depends on
2256 		 * busy mount, which prevents mntfs devvp from reclamation.
2257 		 */
2258 		dev = devvp->v_rdev;
2259 	} else
2260 		return;
2261 #ifdef INVARIANTS
2262 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2263 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2264 		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2265 		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2266 		    size, fs->fs_fsmnt);
2267 		panic("ffs_blkfree_cg: bad size");
2268 	}
2269 #endif
2270 	if ((u_int)bno >= fs->fs_size) {
2271 		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2272 		    (u_long)inum);
2273 		ffs_fserr(fs, inum, "bad block");
2274 		return;
2275 	}
2276 	if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2277 		if (!ffs_fsfail_cleanup(ump, error) ||
2278 		    !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2279 			return;
2280 		if (devvp->v_type == VREG)
2281 			dbn = fragstoblks(fs, cgtod(fs, cg));
2282 		else
2283 			dbn = fsbtodb(fs, cgtod(fs, cg));
2284 		error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2285 		KASSERT(error == 0, ("getblkx failed"));
2286 		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2287 		    numfrags(fs, size), dephd);
2288 		bp->b_flags |= B_RELBUF | B_NOCACHE;
2289 		bp->b_flags &= ~B_CACHE;
2290 		bawrite(bp);
2291 		return;
2292 	}
2293 	cgbno = dtogd(fs, bno);
2294 	blksfree = cg_blksfree(cgp);
2295 	UFS_LOCK(ump);
2296 	if (size == fs->fs_bsize) {
2297 		fragno = fragstoblks(fs, cgbno);
2298 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2299 			if (devvp->v_type == VREG) {
2300 				UFS_UNLOCK(ump);
2301 				/* devvp is a snapshot */
2302 				brelse(bp);
2303 				return;
2304 			}
2305 			printf("dev = %s, block = %jd, fs = %s\n",
2306 			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2307 			panic("ffs_blkfree_cg: freeing free block");
2308 		}
2309 		ffs_setblock(fs, blksfree, fragno);
2310 		ffs_clusteracct(fs, cgp, fragno, 1);
2311 		cgp->cg_cs.cs_nbfree++;
2312 		fs->fs_cstotal.cs_nbfree++;
2313 		fs->fs_cs(fs, cg).cs_nbfree++;
2314 	} else {
2315 		bbase = cgbno - fragnum(fs, cgbno);
2316 		/*
2317 		 * decrement the counts associated with the old frags
2318 		 */
2319 		blk = blkmap(fs, blksfree, bbase);
2320 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2321 		/*
2322 		 * deallocate the fragment
2323 		 */
2324 		frags = numfrags(fs, size);
2325 		for (i = 0; i < frags; i++) {
2326 			if (isset(blksfree, cgbno + i)) {
2327 				printf("dev = %s, block = %jd, fs = %s\n",
2328 				    devtoname(dev), (intmax_t)(bno + i),
2329 				    fs->fs_fsmnt);
2330 				panic("ffs_blkfree_cg: freeing free frag");
2331 			}
2332 			setbit(blksfree, cgbno + i);
2333 		}
2334 		cgp->cg_cs.cs_nffree += i;
2335 		fs->fs_cstotal.cs_nffree += i;
2336 		fs->fs_cs(fs, cg).cs_nffree += i;
2337 		/*
2338 		 * add back in counts associated with the new frags
2339 		 */
2340 		blk = blkmap(fs, blksfree, bbase);
2341 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2342 		/*
2343 		 * if a complete block has been reassembled, account for it
2344 		 */
2345 		fragno = fragstoblks(fs, bbase);
2346 		if (ffs_isblock(fs, blksfree, fragno)) {
2347 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2348 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2349 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2350 			ffs_clusteracct(fs, cgp, fragno, 1);
2351 			cgp->cg_cs.cs_nbfree++;
2352 			fs->fs_cstotal.cs_nbfree++;
2353 			fs->fs_cs(fs, cg).cs_nbfree++;
2354 		}
2355 	}
2356 	fs->fs_fmod = 1;
2357 	ACTIVECLEAR(fs, cg);
2358 	UFS_UNLOCK(ump);
2359 	mp = UFSTOVFS(ump);
2360 	if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2361 		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2362 		    numfrags(fs, size), dephd);
2363 	bdwrite(bp);
2364 }
2365 
2366 /*
2367  * Structures and routines associated with trim management.
2368  *
2369  * The following requests are passed to trim_lookup to indicate
2370  * the actions that should be taken.
2371  */
2372 #define	NEW	1	/* if found, error else allocate and hash it */
2373 #define	OLD	2	/* if not found, error, else return it */
2374 #define	REPLACE	3	/* if not found, error else unhash and reallocate it */
2375 #define	DONE	4	/* if not found, error else unhash and return it */
2376 #define	SINGLE	5	/* don't look up, just allocate it and don't hash it */
2377 
2378 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2379 
2380 #define	TRIMLIST_HASH(ump, key) \
2381 	(&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2382 
2383 /*
2384  * These structures describe each of the block free requests aggregated
2385  * together to make up a trim request.
2386  */
2387 struct trim_blkreq {
2388 	TAILQ_ENTRY(trim_blkreq) blkreqlist;
2389 	ufs2_daddr_t bno;
2390 	long size;
2391 	struct workhead *pdephd;
2392 	struct workhead dephd;
2393 };
2394 
2395 /*
2396  * Description of a trim request.
2397  */
2398 struct ffs_blkfree_trim_params {
2399 	TAILQ_HEAD(, trim_blkreq) blklist;
2400 	LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2401 	struct task task;
2402 	struct ufsmount *ump;
2403 	struct vnode *devvp;
2404 	ino_t inum;
2405 	ufs2_daddr_t bno;
2406 	long size;
2407 	long key;
2408 };
2409 
2410 static void	ffs_blkfree_trim_completed(struct buf *);
2411 static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
2412 static struct	ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2413 		    struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int);
2414 static void	ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2415 
2416 /*
2417  * Called on trim completion to start a task to free the associated block(s).
2418  */
2419 static void
2420 ffs_blkfree_trim_completed(struct buf *bp)
2421 {
2422 	struct ffs_blkfree_trim_params *tp;
2423 
2424 	tp = bp->b_fsprivate1;
2425 	free(bp, M_TRIM);
2426 	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2427 	taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2428 }
2429 
2430 /*
2431  * Trim completion task that free associated block(s).
2432  */
2433 static void
2434 ffs_blkfree_trim_task(void *ctx, int pending)
2435 {
2436 	struct ffs_blkfree_trim_params *tp;
2437 	struct trim_blkreq *blkelm;
2438 	struct ufsmount *ump;
2439 
2440 	tp = ctx;
2441 	ump = tp->ump;
2442 	while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2443 		ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2444 		    blkelm->size, tp->inum, blkelm->pdephd);
2445 		TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2446 		free(blkelm, M_TRIM);
2447 	}
2448 	vn_finished_secondary_write(UFSTOVFS(ump));
2449 	UFS_LOCK(ump);
2450 	ump->um_trim_inflight -= 1;
2451 	ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2452 	UFS_UNLOCK(ump);
2453 	free(tp, M_TRIM);
2454 }
2455 
2456 /*
2457  * Lookup a trim request by inode number.
2458  * Allocate if requested (NEW, REPLACE, SINGLE).
2459  */
2460 static struct ffs_blkfree_trim_params *
2461 trim_lookup(struct ufsmount *ump,
2462 	struct vnode *devvp,
2463 	ufs2_daddr_t bno,
2464 	long size,
2465 	ino_t inum,
2466 	u_long key,
2467 	int alloctype)
2468 {
2469 	struct trimlist_hashhead *tphashhead;
2470 	struct ffs_blkfree_trim_params *tp, *ntp;
2471 
2472 	ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2473 	if (alloctype != SINGLE) {
2474 		KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2475 		UFS_LOCK(ump);
2476 		tphashhead = TRIMLIST_HASH(ump, key);
2477 		LIST_FOREACH(tp, tphashhead, hashlist)
2478 			if (key == tp->key)
2479 				break;
2480 	}
2481 	switch (alloctype) {
2482 	case NEW:
2483 		KASSERT(tp == NULL, ("trim_lookup: found trim"));
2484 		break;
2485 	case OLD:
2486 		KASSERT(tp != NULL,
2487 		    ("trim_lookup: missing call to ffs_blkrelease_start()"));
2488 		UFS_UNLOCK(ump);
2489 		free(ntp, M_TRIM);
2490 		return (tp);
2491 	case REPLACE:
2492 		KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2493 		LIST_REMOVE(tp, hashlist);
2494 		/* tp will be freed by caller */
2495 		break;
2496 	case DONE:
2497 		KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2498 		LIST_REMOVE(tp, hashlist);
2499 		UFS_UNLOCK(ump);
2500 		free(ntp, M_TRIM);
2501 		return (tp);
2502 	}
2503 	TAILQ_INIT(&ntp->blklist);
2504 	ntp->ump = ump;
2505 	ntp->devvp = devvp;
2506 	ntp->bno = bno;
2507 	ntp->size = size;
2508 	ntp->inum = inum;
2509 	ntp->key = key;
2510 	if (alloctype != SINGLE) {
2511 		LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2512 		UFS_UNLOCK(ump);
2513 	}
2514 	return (ntp);
2515 }
2516 
2517 /*
2518  * Dispatch a trim request.
2519  */
2520 static void
2521 ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp)
2522 {
2523 	struct ufsmount *ump;
2524 	struct mount *mp;
2525 	struct buf *bp;
2526 
2527 	/*
2528 	 * Postpone the set of the free bit in the cg bitmap until the
2529 	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2530 	 * reordering, TRIM might be issued after we reuse the block
2531 	 * and write some new data into it.
2532 	 */
2533 	ump = tp->ump;
2534 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2535 	bp->b_iocmd = BIO_DELETE;
2536 	bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2537 	bp->b_iodone = ffs_blkfree_trim_completed;
2538 	bp->b_bcount = tp->size;
2539 	bp->b_fsprivate1 = tp;
2540 	UFS_LOCK(ump);
2541 	ump->um_trim_total += 1;
2542 	ump->um_trim_inflight += 1;
2543 	ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2544 	ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2545 	UFS_UNLOCK(ump);
2546 
2547 	mp = UFSTOVFS(ump);
2548 	vn_start_secondary_write(NULL, &mp, 0);
2549 	g_vfs_strategy(ump->um_bo, bp);
2550 }
2551 
2552 /*
2553  * Allocate a new key to use to identify a range of blocks.
2554  */
2555 u_long
2556 ffs_blkrelease_start(struct ufsmount *ump,
2557 	struct vnode *devvp,
2558 	ino_t inum)
2559 {
2560 	static u_long masterkey;
2561 	u_long key;
2562 
2563 	if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2564 		return (SINGLETON_KEY);
2565 	do {
2566 		key = atomic_fetchadd_long(&masterkey, 1);
2567 	} while (key < FIRST_VALID_KEY);
2568 	(void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2569 	return (key);
2570 }
2571 
2572 /*
2573  * Deallocate a key that has been used to identify a range of blocks.
2574  */
2575 void
2576 ffs_blkrelease_finish(struct ufsmount *ump, u_long key)
2577 {
2578 	struct ffs_blkfree_trim_params *tp;
2579 
2580 	if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2581 		return;
2582 	/*
2583 	 * If the vfs.ffs.dotrimcons sysctl option is enabled while
2584 	 * a file deletion is active, specifically after a call
2585 	 * to ffs_blkrelease_start() but before the call to
2586 	 * ffs_blkrelease_finish(), ffs_blkrelease_start() will
2587 	 * have handed out SINGLETON_KEY rather than starting a
2588 	 * collection sequence. Thus if we get a SINGLETON_KEY
2589 	 * passed to ffs_blkrelease_finish(), we just return rather
2590 	 * than trying to finish the nonexistent sequence.
2591 	 */
2592 	if (key == SINGLETON_KEY) {
2593 #ifdef INVARIANTS
2594 		printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n",
2595 		    ump->um_mountp->mnt_stat.f_mntonname);
2596 #endif
2597 		return;
2598 	}
2599 	/*
2600 	 * We are done with sending blocks using this key. Look up the key
2601 	 * using the DONE alloctype (in tp) to request that it be unhashed
2602 	 * as we will not be adding to it. If the key has never been used,
2603 	 * tp->size will be zero, so we can just free tp. Otherwise the call
2604 	 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2605 	 * tp to be issued (and then tp to be freed).
2606 	 */
2607 	tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2608 	if (tp->size == 0)
2609 		free(tp, M_TRIM);
2610 	else
2611 		ffs_blkfree_sendtrim(tp);
2612 }
2613 
2614 /*
2615  * Setup to free a block or fragment.
2616  *
2617  * Check for snapshots that might want to claim the block.
2618  * If trims are requested, prepare a trim request. Attempt to
2619  * aggregate consecutive blocks into a single trim request.
2620  */
2621 void
2622 ffs_blkfree(struct ufsmount *ump,
2623 	struct fs *fs,
2624 	struct vnode *devvp,
2625 	ufs2_daddr_t bno,
2626 	long size,
2627 	ino_t inum,
2628 	enum vtype vtype,
2629 	struct workhead *dephd,
2630 	u_long key)
2631 {
2632 	struct ffs_blkfree_trim_params *tp, *ntp;
2633 	struct trim_blkreq *blkelm;
2634 
2635 	/*
2636 	 * Check to see if a snapshot wants to claim the block.
2637 	 * Check that devvp is a normal disk device, not a snapshot,
2638 	 * it has a snapshot(s) associated with it, and one of the
2639 	 * snapshots wants to claim the block.
2640 	 */
2641 	if (devvp->v_type == VCHR &&
2642 	    (devvp->v_vflag & VV_COPYONWRITE) &&
2643 	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2644 		return;
2645 	}
2646 	/*
2647 	 * Nothing to delay if TRIM is not required for this block or TRIM
2648 	 * is disabled or the operation is performed on a snapshot.
2649 	 */
2650 	if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2651 	    devvp->v_type == VREG) {
2652 		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2653 		return;
2654 	}
2655 	blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2656 	blkelm->bno = bno;
2657 	blkelm->size = size;
2658 	if (dephd == NULL) {
2659 		blkelm->pdephd = NULL;
2660 	} else {
2661 		LIST_INIT(&blkelm->dephd);
2662 		LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2663 		blkelm->pdephd = &blkelm->dephd;
2664 	}
2665 	if (key == SINGLETON_KEY) {
2666 		/*
2667 		 * Just a single non-contiguous piece. Use the SINGLE
2668 		 * alloctype to return a trim request that will not be
2669 		 * hashed for future lookup.
2670 		 */
2671 		tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2672 		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2673 		ffs_blkfree_sendtrim(tp);
2674 		return;
2675 	}
2676 	/*
2677 	 * The callers of this function are not tracking whether or not
2678 	 * the blocks are contiguous. They are just saying that they
2679 	 * are freeing a set of blocks. It is this code that determines
2680 	 * the pieces of that range that are actually contiguous.
2681 	 *
2682 	 * Calling ffs_blkrelease_start() will have created an entry
2683 	 * that we will use.
2684 	 */
2685 	tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2686 	if (tp->size == 0) {
2687 		/*
2688 		 * First block of a potential range, set block and size
2689 		 * for the trim block.
2690 		 */
2691 		tp->bno = bno;
2692 		tp->size = size;
2693 		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2694 		return;
2695 	}
2696 	/*
2697 	 * If this block is a continuation of the range (either
2698 	 * follows at the end or preceeds in the front) then we
2699 	 * add it to the front or back of the list and return.
2700 	 *
2701 	 * If it is not a continuation of the trim that we were
2702 	 * building, using the REPLACE alloctype, we request that
2703 	 * the old trim request (still in tp) be unhashed and a
2704 	 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2705 	 * call causes the block range described by tp to be issued
2706 	 * (and then tp to be freed).
2707 	 */
2708 	if (bno + numfrags(fs, size) == tp->bno) {
2709 		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2710 		tp->bno = bno;
2711 		tp->size += size;
2712 		return;
2713 	} else if (bno == tp->bno + numfrags(fs, tp->size)) {
2714 		TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2715 		tp->size += size;
2716 		return;
2717 	}
2718 	ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2719 	TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2720 	ffs_blkfree_sendtrim(tp);
2721 }
2722 
2723 #ifdef INVARIANTS
2724 /*
2725  * Verify allocation of a block or fragment. Returns true if block or
2726  * fragment is allocated, false if it is free.
2727  */
2728 static int
2729 ffs_checkblk(struct inode *ip,
2730 	ufs2_daddr_t bno,
2731 	long size)
2732 {
2733 	struct fs *fs;
2734 	struct cg *cgp;
2735 	struct buf *bp;
2736 	ufs1_daddr_t cgbno;
2737 	int i, error, frags, free;
2738 	u_int8_t *blksfree;
2739 
2740 	fs = ITOFS(ip);
2741 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2742 		printf("bsize = %ld, size = %ld, fs = %s\n",
2743 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2744 		panic("ffs_checkblk: bad size");
2745 	}
2746 	if ((u_int)bno >= fs->fs_size)
2747 		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2748 	error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp);
2749 	if (error)
2750 		panic("ffs_checkblk: cylinder group read failed");
2751 	blksfree = cg_blksfree(cgp);
2752 	cgbno = dtogd(fs, bno);
2753 	if (size == fs->fs_bsize) {
2754 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2755 	} else {
2756 		frags = numfrags(fs, size);
2757 		for (free = 0, i = 0; i < frags; i++)
2758 			if (isset(blksfree, cgbno + i))
2759 				free++;
2760 		if (free != 0 && free != frags)
2761 			panic("ffs_checkblk: partially free fragment");
2762 	}
2763 	brelse(bp);
2764 	return (!free);
2765 }
2766 #endif /* INVARIANTS */
2767 
2768 /*
2769  * Free an inode.
2770  */
2771 int
2772 ffs_vfree(struct vnode *pvp,
2773 	ino_t ino,
2774 	int mode)
2775 {
2776 	struct ufsmount *ump;
2777 
2778 	if (DOINGSOFTDEP(pvp)) {
2779 		softdep_freefile(pvp, ino, mode);
2780 		return (0);
2781 	}
2782 	ump = VFSTOUFS(pvp->v_mount);
2783 	return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2784 }
2785 
2786 /*
2787  * Do the actual free operation.
2788  * The specified inode is placed back in the free map.
2789  */
2790 int
2791 ffs_freefile(struct ufsmount *ump,
2792 	struct fs *fs,
2793 	struct vnode *devvp,
2794 	ino_t ino,
2795 	int mode,
2796 	struct workhead *wkhd)
2797 {
2798 	struct cg *cgp;
2799 	struct buf *bp;
2800 	daddr_t dbn;
2801 	int error;
2802 	u_int cg;
2803 	u_int8_t *inosused;
2804 	struct cdev *dev;
2805 	ino_t cgino;
2806 
2807 	cg = ino_to_cg(fs, ino);
2808 	if (devvp->v_type == VREG) {
2809 		/* devvp is a snapshot */
2810 		MPASS(devvp->v_mount->mnt_data == ump);
2811 		dev = ump->um_devvp->v_rdev;
2812 	} else if (devvp->v_type == VCHR) {
2813 		/* devvp is a normal disk device */
2814 		dev = devvp->v_rdev;
2815 	} else {
2816 		bp = NULL;
2817 		return (0);
2818 	}
2819 	if (ino >= fs->fs_ipg * fs->fs_ncg)
2820 		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2821 		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2822 	if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2823 		if (!ffs_fsfail_cleanup(ump, error) ||
2824 		    !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2825 			return (error);
2826 		if (devvp->v_type == VREG)
2827 			dbn = fragstoblks(fs, cgtod(fs, cg));
2828 		else
2829 			dbn = fsbtodb(fs, cgtod(fs, cg));
2830 		error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2831 		KASSERT(error == 0, ("getblkx failed"));
2832 		softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd);
2833 		bp->b_flags |= B_RELBUF | B_NOCACHE;
2834 		bp->b_flags &= ~B_CACHE;
2835 		bawrite(bp);
2836 		return (error);
2837 	}
2838 	inosused = cg_inosused(cgp);
2839 	cgino = ino % fs->fs_ipg;
2840 	if (isclr(inosused, cgino)) {
2841 		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2842 		    (uintmax_t)ino, fs->fs_fsmnt);
2843 		if (fs->fs_ronly == 0)
2844 			panic("ffs_freefile: freeing free inode");
2845 	}
2846 	clrbit(inosused, cgino);
2847 	if (cgino < cgp->cg_irotor)
2848 		cgp->cg_irotor = cgino;
2849 	cgp->cg_cs.cs_nifree++;
2850 	UFS_LOCK(ump);
2851 	fs->fs_cstotal.cs_nifree++;
2852 	fs->fs_cs(fs, cg).cs_nifree++;
2853 	if ((mode & IFMT) == IFDIR) {
2854 		cgp->cg_cs.cs_ndir--;
2855 		fs->fs_cstotal.cs_ndir--;
2856 		fs->fs_cs(fs, cg).cs_ndir--;
2857 	}
2858 	fs->fs_fmod = 1;
2859 	ACTIVECLEAR(fs, cg);
2860 	UFS_UNLOCK(ump);
2861 	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2862 		softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd);
2863 	bdwrite(bp);
2864 	return (0);
2865 }
2866 
2867 /*
2868  * Check to see if a file is free.
2869  * Used to check for allocated files in snapshots.
2870  */
2871 int
2872 ffs_checkfreefile(struct fs *fs,
2873 	struct vnode *devvp,
2874 	ino_t ino)
2875 {
2876 	struct cg *cgp;
2877 	struct buf *bp;
2878 	int ret, error;
2879 	u_int cg;
2880 	u_int8_t *inosused;
2881 
2882 	cg = ino_to_cg(fs, ino);
2883 	if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2884 		return (1);
2885 	if (ino >= fs->fs_ipg * fs->fs_ncg)
2886 		return (1);
2887 	if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0)
2888 		return (1);
2889 	inosused = cg_inosused(cgp);
2890 	ino %= fs->fs_ipg;
2891 	ret = isclr(inosused, ino);
2892 	brelse(bp);
2893 	return (ret);
2894 }
2895 
2896 /*
2897  * Find a block of the specified size in the specified cylinder group.
2898  *
2899  * It is a panic if a request is made to find a block if none are
2900  * available.
2901  */
2902 static ufs1_daddr_t
2903 ffs_mapsearch(struct fs *fs,
2904 	struct cg *cgp,
2905 	ufs2_daddr_t bpref,
2906 	int allocsiz)
2907 {
2908 	ufs1_daddr_t bno;
2909 	int start, len, loc, i;
2910 	int blk, field, subfield, pos;
2911 	u_int8_t *blksfree;
2912 
2913 	/*
2914 	 * find the fragment by searching through the free block
2915 	 * map for an appropriate bit pattern
2916 	 */
2917 	if (bpref)
2918 		start = dtogd(fs, bpref) / NBBY;
2919 	else
2920 		start = cgp->cg_frotor / NBBY;
2921 	blksfree = cg_blksfree(cgp);
2922 	len = howmany(fs->fs_fpg, NBBY) - start;
2923 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2924 		fragtbl[fs->fs_frag],
2925 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2926 	if (loc == 0) {
2927 		len = start + 1;
2928 		start = 0;
2929 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2930 			fragtbl[fs->fs_frag],
2931 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2932 		if (loc == 0) {
2933 			printf("start = %d, len = %d, fs = %s\n",
2934 			    start, len, fs->fs_fsmnt);
2935 			panic("ffs_alloccg: map corrupted");
2936 			/* NOTREACHED */
2937 		}
2938 	}
2939 	bno = (start + len - loc) * NBBY;
2940 	cgp->cg_frotor = bno;
2941 	/*
2942 	 * found the byte in the map
2943 	 * sift through the bits to find the selected frag
2944 	 */
2945 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2946 		blk = blkmap(fs, blksfree, bno);
2947 		blk <<= 1;
2948 		field = around[allocsiz];
2949 		subfield = inside[allocsiz];
2950 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2951 			if ((blk & field) == subfield)
2952 				return (bno + pos);
2953 			field <<= 1;
2954 			subfield <<= 1;
2955 		}
2956 	}
2957 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2958 	panic("ffs_alloccg: block not in map");
2959 	return (-1);
2960 }
2961 
2962 static const struct statfs *
2963 ffs_getmntstat(struct vnode *devvp)
2964 {
2965 
2966 	if (devvp->v_type == VCHR)
2967 		return (&devvp->v_rdev->si_mountpt->mnt_stat);
2968 	return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp));
2969 }
2970 
2971 /*
2972  * Fetch and verify a cylinder group.
2973  */
2974 int
2975 ffs_getcg(struct fs *fs,
2976 	struct vnode *devvp,
2977 	u_int cg,
2978 	int flags,
2979 	struct buf **bpp,
2980 	struct cg **cgpp)
2981 {
2982 	struct buf *bp;
2983 	struct cg *cgp;
2984 	const struct statfs *sfs;
2985 	daddr_t blkno;
2986 	int error;
2987 
2988 	*bpp = NULL;
2989 	*cgpp = NULL;
2990 	if ((fs->fs_metackhash & CK_CYLGRP) != 0)
2991 		flags |= GB_CKHASH;
2992 	if (devvp->v_type == VREG)
2993 		blkno = fragstoblks(fs, cgtod(fs, cg));
2994 	else
2995 		blkno = fsbtodb(fs, cgtod(fs, cg));
2996 	error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL,
2997 	    NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp);
2998 	if (error != 0)
2999 		return (error);
3000 	cgp = (struct cg *)bp->b_data;
3001 	if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
3002 	    (bp->b_flags & B_CKHASH) != 0 &&
3003 	    cgp->cg_ckhash != bp->b_ckhash) {
3004 		sfs = ffs_getmntstat(devvp);
3005 		printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: "
3006 		    "0x%x != bp: 0x%jx\n",
3007 		    devvp->v_type == VCHR ? "" : "snapshot of ",
3008 		    sfs->f_mntfromname, sfs->f_mntonname,
3009 		    cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
3010 		bp->b_flags &= ~B_CKHASH;
3011 		bp->b_flags |= B_INVAL | B_NOCACHE;
3012 		brelse(bp);
3013 		return (EIO);
3014 	}
3015 	if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
3016 		sfs = ffs_getmntstat(devvp);
3017 		printf("UFS %s%s (%s)",
3018 		    devvp->v_type == VCHR ? "" : "snapshot of ",
3019 		    sfs->f_mntfromname, sfs->f_mntonname);
3020 		if (!cg_chkmagic(cgp))
3021 			printf(" cg %u: bad magic number 0x%x should be 0x%x\n",
3022 			    cg, cgp->cg_magic, CG_MAGIC);
3023 		else
3024 			printf(": wrong cylinder group cg %u != cgx %u\n", cg,
3025 			    cgp->cg_cgx);
3026 		bp->b_flags &= ~B_CKHASH;
3027 		bp->b_flags |= B_INVAL | B_NOCACHE;
3028 		brelse(bp);
3029 		return (EIO);
3030 	}
3031 	bp->b_flags &= ~B_CKHASH;
3032 	bp->b_xflags |= BX_BKGRDWRITE;
3033 	/*
3034 	 * If we are using check hashes on the cylinder group then we want
3035 	 * to limit changing the cylinder group time to when we are actually
3036 	 * going to write it to disk so that its check hash remains correct
3037 	 * in memory. If the CK_CYLGRP flag is set the time is updated in
3038 	 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
3039 	 * update the time here as we have done historically.
3040 	 */
3041 	if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3042 		bp->b_xflags |= BX_CYLGRP;
3043 	else
3044 		cgp->cg_old_time = cgp->cg_time = time_second;
3045 	*bpp = bp;
3046 	*cgpp = cgp;
3047 	return (0);
3048 }
3049 
3050 static void
3051 ffs_ckhash_cg(struct buf *bp)
3052 {
3053 	uint32_t ckhash;
3054 	struct cg *cgp;
3055 
3056 	cgp = (struct cg *)bp->b_data;
3057 	ckhash = cgp->cg_ckhash;
3058 	cgp->cg_ckhash = 0;
3059 	bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3060 	cgp->cg_ckhash = ckhash;
3061 }
3062 
3063 /*
3064  * Fserr prints the name of a filesystem with an error diagnostic.
3065  *
3066  * The form of the error message is:
3067  *	fs: error message
3068  */
3069 void
3070 ffs_fserr(struct fs *fs,
3071 	ino_t inum,
3072 	char *cp)
3073 {
3074 	struct thread *td = curthread;	/* XXX */
3075 	struct proc *p = td->td_proc;
3076 
3077 	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3078 	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3079 	    fs->fs_fsmnt, cp);
3080 }
3081 
3082 /*
3083  * This function provides the capability for the fsck program to
3084  * update an active filesystem. Fourteen operations are provided:
3085  *
3086  * adjrefcnt(inode, amt) - adjusts the reference count on the
3087  *	specified inode by the specified amount. Under normal
3088  *	operation the count should always go down. Decrementing
3089  *	the count to zero will cause the inode to be freed.
3090  * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3091  *	inode by the specified amount.
3092  * setsize(inode, size) - set the size of the inode to the
3093  *	specified size.
3094  * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3095  *	adjust the superblock summary.
3096  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3097  *	are marked as free. Inodes should never have to be marked
3098  *	as in use.
3099  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3100  *	are marked as free. Inodes should never have to be marked
3101  *	as in use.
3102  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3103  *	are marked as free. Blocks should never have to be marked
3104  *	as in use.
3105  * setflags(flags, set/clear) - the fs_flags field has the specified
3106  *	flags set (second parameter +1) or cleared (second parameter -1).
3107  * setcwd(dirinode) - set the current directory to dirinode in the
3108  *	filesystem associated with the snapshot.
3109  * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3110  *	in the current directory is oldvalue then change it to newvalue.
3111  * unlink(nameptr, oldvalue) - Verify that the inode number associated
3112  *	with nameptr in the current directory is oldvalue then unlink it.
3113  */
3114 
3115 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3116 
3117 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt,
3118     CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT,
3119     0, 0, sysctl_ffs_fsck, "S,fsck",
3120     "Adjust Inode Reference Count");
3121 
3122 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt,
3123     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3124     "Adjust Inode Used Blocks Count");
3125 
3126 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize,
3127     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3128     "Set the inode size");
3129 
3130 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir,
3131     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3132     "Adjust number of directories");
3133 
3134 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree,
3135     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3136     "Adjust number of free blocks");
3137 
3138 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree,
3139     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3140     "Adjust number of free inodes");
3141 
3142 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree,
3143     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3144     "Adjust number of free frags");
3145 
3146 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters,
3147     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3148     "Adjust number of free clusters");
3149 
3150 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs,
3151     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3152     "Free Range of Directory Inodes");
3153 
3154 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles,
3155     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3156     "Free Range of File Inodes");
3157 
3158 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks,
3159     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3160     "Free Range of Blocks");
3161 
3162 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags,
3163     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3164     "Change Filesystem Flags");
3165 
3166 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd,
3167     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3168     "Set Current Working Directory");
3169 
3170 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot,
3171     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3172     "Change Value of .. Entry");
3173 
3174 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink,
3175     CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3176     "Unlink a Duplicate Name");
3177 
3178 #ifdef DIAGNOSTIC
3179 static int fsckcmds = 0;
3180 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0,
3181 	"print out fsck_ffs-based filesystem update commands");
3182 #endif /* DIAGNOSTIC */
3183 
3184 static int
3185 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3186 {
3187 	struct thread *td = curthread;
3188 	struct fsck_cmd cmd;
3189 	struct ufsmount *ump;
3190 	struct vnode *vp, *dvp, *fdvp;
3191 	struct inode *ip, *dp;
3192 	struct mount *mp;
3193 	struct fs *fs;
3194 	struct pwd *pwd;
3195 	ufs2_daddr_t blkno;
3196 	long blkcnt, blksize;
3197 	u_long key;
3198 	struct file *fp;
3199 	cap_rights_t rights;
3200 	int filetype, error;
3201 
3202 	if (req->newptr == NULL || req->newlen > sizeof(cmd))
3203 		return (EBADRPC);
3204 	if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0)
3205 		return (error);
3206 	if (cmd.version != FFS_CMD_VERSION)
3207 		return (ERPCMISMATCH);
3208 	if ((error = getvnode(td, cmd.handle,
3209 	    cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0)
3210 		return (error);
3211 	vp = fp->f_vnode;
3212 	if (vp->v_type != VREG && vp->v_type != VDIR) {
3213 		fdrop(fp, td);
3214 		return (EINVAL);
3215 	}
3216 	vn_start_write(vp, &mp, V_WAIT);
3217 	if (mp == NULL ||
3218 	    strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3219 		vn_finished_write(mp);
3220 		fdrop(fp, td);
3221 		return (EINVAL);
3222 	}
3223 	ump = VFSTOUFS(mp);
3224 	if (mp->mnt_flag & MNT_RDONLY) {
3225 		vn_finished_write(mp);
3226 		fdrop(fp, td);
3227 		return (EROFS);
3228 	}
3229 	fs = ump->um_fs;
3230 	filetype = IFREG;
3231 
3232 	switch (oidp->oid_number) {
3233 	case FFS_SET_FLAGS:
3234 #ifdef DIAGNOSTIC
3235 		if (fsckcmds)
3236 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3237 			    cmd.size > 0 ? "set" : "clear");
3238 #endif /* DIAGNOSTIC */
3239 		if (cmd.size > 0)
3240 			fs->fs_flags |= (long)cmd.value;
3241 		else
3242 			fs->fs_flags &= ~(long)cmd.value;
3243 		break;
3244 
3245 	case FFS_ADJ_REFCNT:
3246 #ifdef DIAGNOSTIC
3247 		if (fsckcmds) {
3248 			printf("%s: adjust inode %jd link count by %jd\n",
3249 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3250 			    (intmax_t)cmd.size);
3251 		}
3252 #endif /* DIAGNOSTIC */
3253 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3254 			break;
3255 		ip = VTOI(vp);
3256 		ip->i_nlink += cmd.size;
3257 		DIP_SET(ip, i_nlink, ip->i_nlink);
3258 		ip->i_effnlink += cmd.size;
3259 		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3260 		error = ffs_update(vp, 1);
3261 		if (DOINGSOFTDEP(vp))
3262 			softdep_change_linkcnt(ip);
3263 		vput(vp);
3264 		break;
3265 
3266 	case FFS_ADJ_BLKCNT:
3267 #ifdef DIAGNOSTIC
3268 		if (fsckcmds) {
3269 			printf("%s: adjust inode %jd block count by %jd\n",
3270 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3271 			    (intmax_t)cmd.size);
3272 		}
3273 #endif /* DIAGNOSTIC */
3274 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3275 			break;
3276 		ip = VTOI(vp);
3277 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3278 		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3279 		error = ffs_update(vp, 1);
3280 		vput(vp);
3281 		break;
3282 
3283 	case FFS_SET_SIZE:
3284 #ifdef DIAGNOSTIC
3285 		if (fsckcmds) {
3286 			printf("%s: set inode %jd size to %jd\n",
3287 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3288 			    (intmax_t)cmd.size);
3289 		}
3290 #endif /* DIAGNOSTIC */
3291 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3292 			break;
3293 		ip = VTOI(vp);
3294 		DIP_SET(ip, i_size, cmd.size);
3295 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED);
3296 		error = ffs_update(vp, 1);
3297 		vput(vp);
3298 		break;
3299 
3300 	case FFS_DIR_FREE:
3301 		filetype = IFDIR;
3302 		/* fall through */
3303 
3304 	case FFS_FILE_FREE:
3305 #ifdef DIAGNOSTIC
3306 		if (fsckcmds) {
3307 			if (cmd.size == 1)
3308 				printf("%s: free %s inode %ju\n",
3309 				    mp->mnt_stat.f_mntonname,
3310 				    filetype == IFDIR ? "directory" : "file",
3311 				    (uintmax_t)cmd.value);
3312 			else
3313 				printf("%s: free %s inodes %ju-%ju\n",
3314 				    mp->mnt_stat.f_mntonname,
3315 				    filetype == IFDIR ? "directory" : "file",
3316 				    (uintmax_t)cmd.value,
3317 				    (uintmax_t)(cmd.value + cmd.size - 1));
3318 		}
3319 #endif /* DIAGNOSTIC */
3320 		while (cmd.size > 0) {
3321 			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3322 			    cmd.value, filetype, NULL)))
3323 				break;
3324 			cmd.size -= 1;
3325 			cmd.value += 1;
3326 		}
3327 		break;
3328 
3329 	case FFS_BLK_FREE:
3330 #ifdef DIAGNOSTIC
3331 		if (fsckcmds) {
3332 			if (cmd.size == 1)
3333 				printf("%s: free block %jd\n",
3334 				    mp->mnt_stat.f_mntonname,
3335 				    (intmax_t)cmd.value);
3336 			else
3337 				printf("%s: free blocks %jd-%jd\n",
3338 				    mp->mnt_stat.f_mntonname,
3339 				    (intmax_t)cmd.value,
3340 				    (intmax_t)cmd.value + cmd.size - 1);
3341 		}
3342 #endif /* DIAGNOSTIC */
3343 		blkno = cmd.value;
3344 		blkcnt = cmd.size;
3345 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
3346 		key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3347 		while (blkcnt > 0) {
3348 			if (blkcnt < blksize)
3349 				blksize = blkcnt;
3350 			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3351 			    blksize * fs->fs_fsize, UFS_ROOTINO,
3352 			    VDIR, NULL, key);
3353 			blkno += blksize;
3354 			blkcnt -= blksize;
3355 			blksize = fs->fs_frag;
3356 		}
3357 		ffs_blkrelease_finish(ump, key);
3358 		break;
3359 
3360 	/*
3361 	 * Adjust superblock summaries.  fsck(8) is expected to
3362 	 * submit deltas when necessary.
3363 	 */
3364 	case FFS_ADJ_NDIR:
3365 #ifdef DIAGNOSTIC
3366 		if (fsckcmds) {
3367 			printf("%s: adjust number of directories by %jd\n",
3368 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3369 		}
3370 #endif /* DIAGNOSTIC */
3371 		fs->fs_cstotal.cs_ndir += cmd.value;
3372 		break;
3373 
3374 	case FFS_ADJ_NBFREE:
3375 #ifdef DIAGNOSTIC
3376 		if (fsckcmds) {
3377 			printf("%s: adjust number of free blocks by %+jd\n",
3378 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3379 		}
3380 #endif /* DIAGNOSTIC */
3381 		fs->fs_cstotal.cs_nbfree += cmd.value;
3382 		break;
3383 
3384 	case FFS_ADJ_NIFREE:
3385 #ifdef DIAGNOSTIC
3386 		if (fsckcmds) {
3387 			printf("%s: adjust number of free inodes by %+jd\n",
3388 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3389 		}
3390 #endif /* DIAGNOSTIC */
3391 		fs->fs_cstotal.cs_nifree += cmd.value;
3392 		break;
3393 
3394 	case FFS_ADJ_NFFREE:
3395 #ifdef DIAGNOSTIC
3396 		if (fsckcmds) {
3397 			printf("%s: adjust number of free frags by %+jd\n",
3398 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3399 		}
3400 #endif /* DIAGNOSTIC */
3401 		fs->fs_cstotal.cs_nffree += cmd.value;
3402 		break;
3403 
3404 	case FFS_ADJ_NUMCLUSTERS:
3405 #ifdef DIAGNOSTIC
3406 		if (fsckcmds) {
3407 			printf("%s: adjust number of free clusters by %+jd\n",
3408 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3409 		}
3410 #endif /* DIAGNOSTIC */
3411 		fs->fs_cstotal.cs_numclusters += cmd.value;
3412 		break;
3413 
3414 	case FFS_SET_CWD:
3415 #ifdef DIAGNOSTIC
3416 		if (fsckcmds) {
3417 			printf("%s: set current directory to inode %jd\n",
3418 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3419 		}
3420 #endif /* DIAGNOSTIC */
3421 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3422 			break;
3423 		AUDIT_ARG_VNODE1(vp);
3424 		if ((error = change_dir(vp, td)) != 0) {
3425 			vput(vp);
3426 			break;
3427 		}
3428 		VOP_UNLOCK(vp);
3429 		pwd_chdir(td, vp);
3430 		break;
3431 
3432 	case FFS_SET_DOTDOT:
3433 #ifdef DIAGNOSTIC
3434 		if (fsckcmds) {
3435 			printf("%s: change .. in cwd from %jd to %jd\n",
3436 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3437 			    (intmax_t)cmd.size);
3438 		}
3439 #endif /* DIAGNOSTIC */
3440 		/*
3441 		 * First we have to get and lock the parent directory
3442 		 * to which ".." points.
3443 		 */
3444 		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3445 		if (error)
3446 			break;
3447 		/*
3448 		 * Now we get and lock the child directory containing "..".
3449 		 */
3450 		pwd = pwd_hold(td);
3451 		dvp = pwd->pwd_cdir;
3452 		if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) {
3453 			vput(fdvp);
3454 			pwd_drop(pwd);
3455 			break;
3456 		}
3457 		dp = VTOI(dvp);
3458 		SET_I_OFFSET(dp, 12);	/* XXX mastertemplate.dot_reclen */
3459 		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3460 		    DT_DIR, 0);
3461 		cache_purge(fdvp);
3462 		cache_purge(dvp);
3463 		vput(dvp);
3464 		vput(fdvp);
3465 		pwd_drop(pwd);
3466 		break;
3467 
3468 	case FFS_UNLINK:
3469 #ifdef DIAGNOSTIC
3470 		if (fsckcmds) {
3471 			char buf[32];
3472 
3473 			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3474 				strncpy(buf, "Name_too_long", 32);
3475 			printf("%s: unlink %s (inode %jd)\n",
3476 			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3477 		}
3478 #endif /* DIAGNOSTIC */
3479 		/*
3480 		 * kern_funlinkat will do its own start/finish writes and
3481 		 * they do not nest, so drop ours here. Setting mp == NULL
3482 		 * indicates that vn_finished_write is not needed down below.
3483 		 */
3484 		vn_finished_write(mp);
3485 		mp = NULL;
3486 		error = kern_funlinkat(td, AT_FDCWD,
3487 		    (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE,
3488 		    0, (ino_t)cmd.size);
3489 		break;
3490 
3491 	default:
3492 #ifdef DIAGNOSTIC
3493 		if (fsckcmds) {
3494 			printf("Invalid request %d from fsck\n",
3495 			    oidp->oid_number);
3496 		}
3497 #endif /* DIAGNOSTIC */
3498 		error = EINVAL;
3499 		break;
3500 	}
3501 	fdrop(fp, td);
3502 	vn_finished_write(mp);
3503 	return (error);
3504 }
3505