1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Copyright (c) 1982, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * (c) UNIX System Laboratories, Inc. 14 * Copyright (c) 1982, 1986, 1989, 1993 15 * The Regents of the University of California. All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions 19 * are met: 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 3. All advertising materials mentioning features or use of this software 26 * must display the following acknowledgement: 27 * This product includes software developed by the University of 28 * California, Berkeley and its contributors. 29 * 4. Neither the name of the University nor the names of its contributors 30 * may be used to endorse or promote products derived from this software 31 * without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 43 * SUCH DAMAGE. 44 * 45 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 46 * $FreeBSD$ 47 */ 48 49 #include "opt_quota.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/bio.h> 54 #include <sys/buf.h> 55 #include <sys/conf.h> 56 #include <sys/file.h> 57 #include <sys/filedesc.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/kernel.h> 62 #include <sys/stdint.h> 63 #include <sys/sysctl.h> 64 #include <sys/syslog.h> 65 66 #include <ufs/ufs/extattr.h> 67 #include <ufs/ufs/quota.h> 68 #include <ufs/ufs/inode.h> 69 #include <ufs/ufs/ufs_extern.h> 70 #include <ufs/ufs/ufsmount.h> 71 72 #include <ufs/ffs/fs.h> 73 #include <ufs/ffs/ffs_extern.h> 74 75 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref, 76 int size); 77 78 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int); 79 static ufs2_daddr_t 80 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t); 81 #ifdef DIAGNOSTIC 82 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 83 #endif 84 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int); 85 static ino_t ffs_dirpref(struct inode *); 86 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int); 87 static void ffs_fserr(struct fs *, ino_t, char *); 88 static ufs2_daddr_t ffs_hashalloc 89 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *); 90 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int); 91 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 92 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 93 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 94 95 /* 96 * Allocate a block in the filesystem. 97 * 98 * The size of the requested block is given, which must be some 99 * multiple of fs_fsize and <= fs_bsize. 100 * A preference may be optionally specified. If a preference is given 101 * the following hierarchy is used to allocate a block: 102 * 1) allocate the requested block. 103 * 2) allocate a rotationally optimal block in the same cylinder. 104 * 3) allocate a block in the same cylinder group. 105 * 4) quadradically rehash into other cylinder groups, until an 106 * available block is located. 107 * If no block preference is given the following heirarchy is used 108 * to allocate a block: 109 * 1) allocate a block in the cylinder group that contains the 110 * inode for the file. 111 * 2) quadradically rehash into other cylinder groups, until an 112 * available block is located. 113 */ 114 int 115 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 116 struct inode *ip; 117 ufs2_daddr_t lbn, bpref; 118 int size; 119 struct ucred *cred; 120 ufs2_daddr_t *bnp; 121 { 122 struct fs *fs; 123 ufs2_daddr_t bno; 124 int cg, reclaimed; 125 #ifdef QUOTA 126 int error; 127 #endif 128 129 *bnp = 0; 130 fs = ip->i_fs; 131 #ifdef DIAGNOSTIC 132 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 133 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 134 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 135 fs->fs_fsmnt); 136 panic("ffs_alloc: bad size"); 137 } 138 if (cred == NOCRED) 139 panic("ffs_alloc: missing credential"); 140 #endif /* DIAGNOSTIC */ 141 reclaimed = 0; 142 retry: 143 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 144 goto nospace; 145 if (suser_cred(cred, PRISON_ROOT) && 146 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 147 goto nospace; 148 #ifdef QUOTA 149 error = chkdq(ip, btodb(size), cred, 0); 150 if (error) 151 return (error); 152 #endif 153 if (bpref >= fs->fs_size) 154 bpref = 0; 155 if (bpref == 0) 156 cg = ino_to_cg(fs, ip->i_number); 157 else 158 cg = dtog(fs, bpref); 159 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 160 if (bno > 0) { 161 DIP(ip, i_blocks) += btodb(size); 162 ip->i_flag |= IN_CHANGE | IN_UPDATE; 163 *bnp = bno; 164 return (0); 165 } 166 #ifdef QUOTA 167 /* 168 * Restore user's disk quota because allocation failed. 169 */ 170 (void) chkdq(ip, -btodb(size), cred, FORCE); 171 #endif 172 nospace: 173 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 174 reclaimed = 1; 175 softdep_request_cleanup(fs, ITOV(ip)); 176 goto retry; 177 } 178 ffs_fserr(fs, ip->i_number, "filesystem full"); 179 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); 180 return (ENOSPC); 181 } 182 183 /* 184 * Reallocate a fragment to a bigger size 185 * 186 * The number and size of the old block is given, and a preference 187 * and new size is also specified. The allocator attempts to extend 188 * the original block. Failing that, the regular block allocator is 189 * invoked to get an appropriate block. 190 */ 191 int 192 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp) 193 struct inode *ip; 194 ufs2_daddr_t lbprev; 195 ufs2_daddr_t bprev; 196 ufs2_daddr_t bpref; 197 int osize, nsize; 198 struct ucred *cred; 199 struct buf **bpp; 200 { 201 struct vnode *vp; 202 struct fs *fs; 203 struct buf *bp; 204 int cg, request, error, reclaimed; 205 ufs2_daddr_t bno; 206 207 *bpp = 0; 208 vp = ITOV(ip); 209 fs = ip->i_fs; 210 #ifdef DIAGNOSTIC 211 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 212 panic("ffs_realloccg: allocation on suspended filesystem"); 213 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 214 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 215 printf( 216 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 217 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 218 nsize, fs->fs_fsmnt); 219 panic("ffs_realloccg: bad size"); 220 } 221 if (cred == NOCRED) 222 panic("ffs_realloccg: missing credential"); 223 #endif /* DIAGNOSTIC */ 224 reclaimed = 0; 225 retry: 226 if (suser_cred(cred, PRISON_ROOT) && 227 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) 228 goto nospace; 229 if (bprev == 0) { 230 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 231 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 232 fs->fs_fsmnt); 233 panic("ffs_realloccg: bad bprev"); 234 } 235 /* 236 * Allocate the extra space in the buffer. 237 */ 238 error = bread(vp, lbprev, osize, NOCRED, &bp); 239 if (error) { 240 brelse(bp); 241 return (error); 242 } 243 244 if (bp->b_blkno == bp->b_lblkno) { 245 if (lbprev >= NDADDR) 246 panic("ffs_realloccg: lbprev out of range"); 247 bp->b_blkno = fsbtodb(fs, bprev); 248 } 249 250 #ifdef QUOTA 251 error = chkdq(ip, btodb(nsize - osize), cred, 0); 252 if (error) { 253 brelse(bp); 254 return (error); 255 } 256 #endif 257 /* 258 * Check for extension in the existing location. 259 */ 260 cg = dtog(fs, bprev); 261 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 262 if (bno) { 263 if (bp->b_blkno != fsbtodb(fs, bno)) 264 panic("ffs_realloccg: bad blockno"); 265 DIP(ip, i_blocks) += btodb(nsize - osize); 266 ip->i_flag |= IN_CHANGE | IN_UPDATE; 267 allocbuf(bp, nsize); 268 bp->b_flags |= B_DONE; 269 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 270 *bpp = bp; 271 return (0); 272 } 273 /* 274 * Allocate a new disk location. 275 */ 276 if (bpref >= fs->fs_size) 277 bpref = 0; 278 switch ((int)fs->fs_optim) { 279 case FS_OPTSPACE: 280 /* 281 * Allocate an exact sized fragment. Although this makes 282 * best use of space, we will waste time relocating it if 283 * the file continues to grow. If the fragmentation is 284 * less than half of the minimum free reserve, we choose 285 * to begin optimizing for time. 286 */ 287 request = nsize; 288 if (fs->fs_minfree <= 5 || 289 fs->fs_cstotal.cs_nffree > 290 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 291 break; 292 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 293 fs->fs_fsmnt); 294 fs->fs_optim = FS_OPTTIME; 295 break; 296 case FS_OPTTIME: 297 /* 298 * At this point we have discovered a file that is trying to 299 * grow a small fragment to a larger fragment. To save time, 300 * we allocate a full sized block, then free the unused portion. 301 * If the file continues to grow, the `ffs_fragextend' call 302 * above will be able to grow it in place without further 303 * copying. If aberrant programs cause disk fragmentation to 304 * grow within 2% of the free reserve, we choose to begin 305 * optimizing for space. 306 */ 307 request = fs->fs_bsize; 308 if (fs->fs_cstotal.cs_nffree < 309 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 310 break; 311 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 312 fs->fs_fsmnt); 313 fs->fs_optim = FS_OPTSPACE; 314 break; 315 default: 316 printf("dev = %s, optim = %ld, fs = %s\n", 317 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 318 panic("ffs_realloccg: bad optim"); 319 /* NOTREACHED */ 320 } 321 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 322 if (bno > 0) { 323 bp->b_blkno = fsbtodb(fs, bno); 324 if (!DOINGSOFTDEP(vp)) 325 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize, 326 ip->i_number); 327 if (nsize < request) 328 ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize), 329 (long)(request - nsize), ip->i_number); 330 DIP(ip, i_blocks) += btodb(nsize - osize); 331 ip->i_flag |= IN_CHANGE | IN_UPDATE; 332 allocbuf(bp, nsize); 333 bp->b_flags |= B_DONE; 334 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 335 *bpp = bp; 336 return (0); 337 } 338 #ifdef QUOTA 339 /* 340 * Restore user's disk quota because allocation failed. 341 */ 342 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 343 #endif 344 brelse(bp); 345 nospace: 346 /* 347 * no space available 348 */ 349 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 350 reclaimed = 1; 351 softdep_request_cleanup(fs, vp); 352 goto retry; 353 } 354 ffs_fserr(fs, ip->i_number, "filesystem full"); 355 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); 356 return (ENOSPC); 357 } 358 359 /* 360 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 361 * 362 * The vnode and an array of buffer pointers for a range of sequential 363 * logical blocks to be made contiguous is given. The allocator attempts 364 * to find a range of sequential blocks starting as close as possible 365 * from the end of the allocation for the logical block immediately 366 * preceding the current range. If successful, the physical block numbers 367 * in the buffer pointers and in the inode are changed to reflect the new 368 * allocation. If unsuccessful, the allocation is left unchanged. The 369 * success in doing the reallocation is returned. Note that the error 370 * return is not reflected back to the user. Rather the previous block 371 * allocation will be used. 372 */ 373 374 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 375 376 static int doasyncfree = 1; 377 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 378 379 static int doreallocblks = 1; 380 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 381 382 #ifdef DEBUG 383 static volatile int prtrealloc = 0; 384 #endif 385 386 int 387 ffs_reallocblks(ap) 388 struct vop_reallocblks_args /* { 389 struct vnode *a_vp; 390 struct cluster_save *a_buflist; 391 } */ *ap; 392 { 393 394 if (doreallocblks == 0) 395 return (ENOSPC); 396 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 397 return (ffs_reallocblks_ufs1(ap)); 398 return (ffs_reallocblks_ufs2(ap)); 399 } 400 401 static int 402 ffs_reallocblks_ufs1(ap) 403 struct vop_reallocblks_args /* { 404 struct vnode *a_vp; 405 struct cluster_save *a_buflist; 406 } */ *ap; 407 { 408 struct fs *fs; 409 struct inode *ip; 410 struct vnode *vp; 411 struct buf *sbp, *ebp; 412 ufs1_daddr_t *bap, *sbap, *ebap = 0; 413 struct cluster_save *buflist; 414 ufs_lbn_t start_lbn, end_lbn; 415 ufs1_daddr_t soff, newblk, blkno; 416 ufs2_daddr_t pref; 417 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 418 int i, len, start_lvl, end_lvl, ssize; 419 420 vp = ap->a_vp; 421 ip = VTOI(vp); 422 fs = ip->i_fs; 423 if (fs->fs_contigsumsize <= 0) 424 return (ENOSPC); 425 buflist = ap->a_buflist; 426 len = buflist->bs_nchildren; 427 start_lbn = buflist->bs_children[0]->b_lblkno; 428 end_lbn = start_lbn + len - 1; 429 #ifdef DIAGNOSTIC 430 for (i = 0; i < len; i++) 431 if (!ffs_checkblk(ip, 432 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 433 panic("ffs_reallocblks: unallocated block 1"); 434 for (i = 1; i < len; i++) 435 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 436 panic("ffs_reallocblks: non-logical cluster"); 437 blkno = buflist->bs_children[0]->b_blkno; 438 ssize = fsbtodb(fs, fs->fs_frag); 439 for (i = 1; i < len - 1; i++) 440 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 441 panic("ffs_reallocblks: non-physical cluster %d", i); 442 #endif 443 /* 444 * If the latest allocation is in a new cylinder group, assume that 445 * the filesystem has decided to move and do not force it back to 446 * the previous cylinder group. 447 */ 448 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 449 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 450 return (ENOSPC); 451 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 452 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 453 return (ENOSPC); 454 /* 455 * Get the starting offset and block map for the first block. 456 */ 457 if (start_lvl == 0) { 458 sbap = &ip->i_din1->di_db[0]; 459 soff = start_lbn; 460 } else { 461 idp = &start_ap[start_lvl - 1]; 462 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 463 brelse(sbp); 464 return (ENOSPC); 465 } 466 sbap = (ufs1_daddr_t *)sbp->b_data; 467 soff = idp->in_off; 468 } 469 /* 470 * Find the preferred location for the cluster. 471 */ 472 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 473 /* 474 * If the block range spans two block maps, get the second map. 475 */ 476 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 477 ssize = len; 478 } else { 479 #ifdef DIAGNOSTIC 480 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 481 panic("ffs_reallocblk: start == end"); 482 #endif 483 ssize = len - (idp->in_off + 1); 484 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 485 goto fail; 486 ebap = (ufs1_daddr_t *)ebp->b_data; 487 } 488 /* 489 * Search the block map looking for an allocation of the desired size. 490 */ 491 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 492 len, ffs_clusteralloc)) == 0) 493 goto fail; 494 /* 495 * We have found a new contiguous block. 496 * 497 * First we have to replace the old block pointers with the new 498 * block pointers in the inode and indirect blocks associated 499 * with the file. 500 */ 501 #ifdef DEBUG 502 if (prtrealloc) 503 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 504 (intmax_t)start_lbn, (intmax_t)end_lbn); 505 #endif 506 blkno = newblk; 507 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 508 if (i == ssize) { 509 bap = ebap; 510 soff = -i; 511 } 512 #ifdef DIAGNOSTIC 513 if (!ffs_checkblk(ip, 514 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 515 panic("ffs_reallocblks: unallocated block 2"); 516 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 517 panic("ffs_reallocblks: alloc mismatch"); 518 #endif 519 #ifdef DEBUG 520 if (prtrealloc) 521 printf(" %d,", *bap); 522 #endif 523 if (DOINGSOFTDEP(vp)) { 524 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 525 softdep_setup_allocdirect(ip, start_lbn + i, 526 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 527 buflist->bs_children[i]); 528 else 529 softdep_setup_allocindir_page(ip, start_lbn + i, 530 i < ssize ? sbp : ebp, soff + i, blkno, 531 *bap, buflist->bs_children[i]); 532 } 533 *bap++ = blkno; 534 } 535 /* 536 * Next we must write out the modified inode and indirect blocks. 537 * For strict correctness, the writes should be synchronous since 538 * the old block values may have been written to disk. In practise 539 * they are almost never written, but if we are concerned about 540 * strict correctness, the `doasyncfree' flag should be set to zero. 541 * 542 * The test on `doasyncfree' should be changed to test a flag 543 * that shows whether the associated buffers and inodes have 544 * been written. The flag should be set when the cluster is 545 * started and cleared whenever the buffer or inode is flushed. 546 * We can then check below to see if it is set, and do the 547 * synchronous write only when it has been cleared. 548 */ 549 if (sbap != &ip->i_din1->di_db[0]) { 550 if (doasyncfree) 551 bdwrite(sbp); 552 else 553 bwrite(sbp); 554 } else { 555 ip->i_flag |= IN_CHANGE | IN_UPDATE; 556 if (!doasyncfree) 557 UFS_UPDATE(vp, 1); 558 } 559 if (ssize < len) { 560 if (doasyncfree) 561 bdwrite(ebp); 562 else 563 bwrite(ebp); 564 } 565 /* 566 * Last, free the old blocks and assign the new blocks to the buffers. 567 */ 568 #ifdef DEBUG 569 if (prtrealloc) 570 printf("\n\tnew:"); 571 #endif 572 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 573 if (!DOINGSOFTDEP(vp)) 574 ffs_blkfree(fs, ip->i_devvp, 575 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 576 fs->fs_bsize, ip->i_number); 577 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 578 #ifdef DIAGNOSTIC 579 if (!ffs_checkblk(ip, 580 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 581 panic("ffs_reallocblks: unallocated block 3"); 582 #endif 583 #ifdef DEBUG 584 if (prtrealloc) 585 printf(" %d,", blkno); 586 #endif 587 } 588 #ifdef DEBUG 589 if (prtrealloc) { 590 prtrealloc--; 591 printf("\n"); 592 } 593 #endif 594 return (0); 595 596 fail: 597 if (ssize < len) 598 brelse(ebp); 599 if (sbap != &ip->i_din1->di_db[0]) 600 brelse(sbp); 601 return (ENOSPC); 602 } 603 604 static int 605 ffs_reallocblks_ufs2(ap) 606 struct vop_reallocblks_args /* { 607 struct vnode *a_vp; 608 struct cluster_save *a_buflist; 609 } */ *ap; 610 { 611 struct fs *fs; 612 struct inode *ip; 613 struct vnode *vp; 614 struct buf *sbp, *ebp; 615 ufs2_daddr_t *bap, *sbap, *ebap = 0; 616 struct cluster_save *buflist; 617 ufs_lbn_t start_lbn, end_lbn; 618 ufs2_daddr_t soff, newblk, blkno, pref; 619 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 620 int i, len, start_lvl, end_lvl, ssize; 621 622 vp = ap->a_vp; 623 ip = VTOI(vp); 624 fs = ip->i_fs; 625 if (fs->fs_contigsumsize <= 0) 626 return (ENOSPC); 627 buflist = ap->a_buflist; 628 len = buflist->bs_nchildren; 629 start_lbn = buflist->bs_children[0]->b_lblkno; 630 end_lbn = start_lbn + len - 1; 631 #ifdef DIAGNOSTIC 632 for (i = 0; i < len; i++) 633 if (!ffs_checkblk(ip, 634 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 635 panic("ffs_reallocblks: unallocated block 1"); 636 for (i = 1; i < len; i++) 637 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 638 panic("ffs_reallocblks: non-logical cluster"); 639 blkno = buflist->bs_children[0]->b_blkno; 640 ssize = fsbtodb(fs, fs->fs_frag); 641 for (i = 1; i < len - 1; i++) 642 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 643 panic("ffs_reallocblks: non-physical cluster %d", i); 644 #endif 645 /* 646 * If the latest allocation is in a new cylinder group, assume that 647 * the filesystem has decided to move and do not force it back to 648 * the previous cylinder group. 649 */ 650 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 651 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 652 return (ENOSPC); 653 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 654 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 655 return (ENOSPC); 656 /* 657 * Get the starting offset and block map for the first block. 658 */ 659 if (start_lvl == 0) { 660 sbap = &ip->i_din2->di_db[0]; 661 soff = start_lbn; 662 } else { 663 idp = &start_ap[start_lvl - 1]; 664 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 665 brelse(sbp); 666 return (ENOSPC); 667 } 668 sbap = (ufs2_daddr_t *)sbp->b_data; 669 soff = idp->in_off; 670 } 671 /* 672 * Find the preferred location for the cluster. 673 */ 674 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 675 /* 676 * If the block range spans two block maps, get the second map. 677 */ 678 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 679 ssize = len; 680 } else { 681 #ifdef DIAGNOSTIC 682 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 683 panic("ffs_reallocblk: start == end"); 684 #endif 685 ssize = len - (idp->in_off + 1); 686 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 687 goto fail; 688 ebap = (ufs2_daddr_t *)ebp->b_data; 689 } 690 /* 691 * Search the block map looking for an allocation of the desired size. 692 */ 693 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 694 len, ffs_clusteralloc)) == 0) 695 goto fail; 696 /* 697 * We have found a new contiguous block. 698 * 699 * First we have to replace the old block pointers with the new 700 * block pointers in the inode and indirect blocks associated 701 * with the file. 702 */ 703 #ifdef DEBUG 704 if (prtrealloc) 705 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 706 (intmax_t)start_lbn, (intmax_t)end_lbn); 707 #endif 708 blkno = newblk; 709 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 710 if (i == ssize) { 711 bap = ebap; 712 soff = -i; 713 } 714 #ifdef DIAGNOSTIC 715 if (!ffs_checkblk(ip, 716 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 717 panic("ffs_reallocblks: unallocated block 2"); 718 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 719 panic("ffs_reallocblks: alloc mismatch"); 720 #endif 721 #ifdef DEBUG 722 if (prtrealloc) 723 printf(" %jd,", (intmax_t)*bap); 724 #endif 725 if (DOINGSOFTDEP(vp)) { 726 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 727 softdep_setup_allocdirect(ip, start_lbn + i, 728 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 729 buflist->bs_children[i]); 730 else 731 softdep_setup_allocindir_page(ip, start_lbn + i, 732 i < ssize ? sbp : ebp, soff + i, blkno, 733 *bap, buflist->bs_children[i]); 734 } 735 *bap++ = blkno; 736 } 737 /* 738 * Next we must write out the modified inode and indirect blocks. 739 * For strict correctness, the writes should be synchronous since 740 * the old block values may have been written to disk. In practise 741 * they are almost never written, but if we are concerned about 742 * strict correctness, the `doasyncfree' flag should be set to zero. 743 * 744 * The test on `doasyncfree' should be changed to test a flag 745 * that shows whether the associated buffers and inodes have 746 * been written. The flag should be set when the cluster is 747 * started and cleared whenever the buffer or inode is flushed. 748 * We can then check below to see if it is set, and do the 749 * synchronous write only when it has been cleared. 750 */ 751 if (sbap != &ip->i_din2->di_db[0]) { 752 if (doasyncfree) 753 bdwrite(sbp); 754 else 755 bwrite(sbp); 756 } else { 757 ip->i_flag |= IN_CHANGE | IN_UPDATE; 758 if (!doasyncfree) 759 UFS_UPDATE(vp, 1); 760 } 761 if (ssize < len) { 762 if (doasyncfree) 763 bdwrite(ebp); 764 else 765 bwrite(ebp); 766 } 767 /* 768 * Last, free the old blocks and assign the new blocks to the buffers. 769 */ 770 #ifdef DEBUG 771 if (prtrealloc) 772 printf("\n\tnew:"); 773 #endif 774 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 775 if (!DOINGSOFTDEP(vp)) 776 ffs_blkfree(fs, ip->i_devvp, 777 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 778 fs->fs_bsize, ip->i_number); 779 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 780 #ifdef DIAGNOSTIC 781 if (!ffs_checkblk(ip, 782 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 783 panic("ffs_reallocblks: unallocated block 3"); 784 #endif 785 #ifdef DEBUG 786 if (prtrealloc) 787 printf(" %jd,", (intmax_t)blkno); 788 #endif 789 } 790 #ifdef DEBUG 791 if (prtrealloc) { 792 prtrealloc--; 793 printf("\n"); 794 } 795 #endif 796 return (0); 797 798 fail: 799 if (ssize < len) 800 brelse(ebp); 801 if (sbap != &ip->i_din2->di_db[0]) 802 brelse(sbp); 803 return (ENOSPC); 804 } 805 806 /* 807 * Allocate an inode in the filesystem. 808 * 809 * If allocating a directory, use ffs_dirpref to select the inode. 810 * If allocating in a directory, the following hierarchy is followed: 811 * 1) allocate the preferred inode. 812 * 2) allocate an inode in the same cylinder group. 813 * 3) quadradically rehash into other cylinder groups, until an 814 * available inode is located. 815 * If no inode preference is given the following heirarchy is used 816 * to allocate an inode: 817 * 1) allocate an inode in cylinder group 0. 818 * 2) quadradically rehash into other cylinder groups, until an 819 * available inode is located. 820 */ 821 int 822 ffs_valloc(pvp, mode, cred, vpp) 823 struct vnode *pvp; 824 int mode; 825 struct ucred *cred; 826 struct vnode **vpp; 827 { 828 struct inode *pip; 829 struct fs *fs; 830 struct inode *ip; 831 struct timespec ts; 832 ino_t ino, ipref; 833 int cg, error; 834 835 *vpp = NULL; 836 pip = VTOI(pvp); 837 fs = pip->i_fs; 838 if (fs->fs_cstotal.cs_nifree == 0) 839 goto noinodes; 840 841 if ((mode & IFMT) == IFDIR) 842 ipref = ffs_dirpref(pip); 843 else 844 ipref = pip->i_number; 845 if (ipref >= fs->fs_ncg * fs->fs_ipg) 846 ipref = 0; 847 cg = ino_to_cg(fs, ipref); 848 /* 849 * Track number of dirs created one after another 850 * in a same cg without intervening by files. 851 */ 852 if ((mode & IFMT) == IFDIR) { 853 if (fs->fs_contigdirs[cg] < 255) 854 fs->fs_contigdirs[cg]++; 855 } else { 856 if (fs->fs_contigdirs[cg] > 0) 857 fs->fs_contigdirs[cg]--; 858 } 859 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 860 (allocfcn_t *)ffs_nodealloccg); 861 if (ino == 0) 862 goto noinodes; 863 error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 864 if (error) { 865 UFS_VFREE(pvp, ino, mode); 866 return (error); 867 } 868 ip = VTOI(*vpp); 869 if (ip->i_mode) { 870 printf("mode = 0%o, inum = %lu, fs = %s\n", 871 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 872 panic("ffs_valloc: dup alloc"); 873 } 874 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 875 printf("free inode %s/%lu had %ld blocks\n", 876 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 877 DIP(ip, i_blocks) = 0; 878 } 879 ip->i_flags = 0; 880 DIP(ip, i_flags) = 0; 881 /* 882 * Set up a new generation number for this inode. 883 */ 884 if (ip->i_gen == 0 || ++ip->i_gen == 0) 885 ip->i_gen = random() / 2 + 1; 886 DIP(ip, i_gen) = ip->i_gen; 887 if (fs->fs_magic == FS_UFS2_MAGIC) { 888 vfs_timestamp(&ts); 889 ip->i_din2->di_birthtime = ts.tv_sec; 890 ip->i_din2->di_birthnsec = ts.tv_nsec; 891 } 892 return (0); 893 noinodes: 894 ffs_fserr(fs, pip->i_number, "out of inodes"); 895 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 896 return (ENOSPC); 897 } 898 899 /* 900 * Find a cylinder group to place a directory. 901 * 902 * The policy implemented by this algorithm is to allocate a 903 * directory inode in the same cylinder group as its parent 904 * directory, but also to reserve space for its files inodes 905 * and data. Restrict the number of directories which may be 906 * allocated one after another in the same cylinder group 907 * without intervening allocation of files. 908 * 909 * If we allocate a first level directory then force allocation 910 * in another cylinder group. 911 */ 912 static ino_t 913 ffs_dirpref(pip) 914 struct inode *pip; 915 { 916 struct fs *fs; 917 int cg, prefcg, dirsize, cgsize; 918 int avgifree, avgbfree, avgndir, curdirsize; 919 int minifree, minbfree, maxndir; 920 int mincg, minndir; 921 int maxcontigdirs; 922 923 fs = pip->i_fs; 924 925 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 926 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 927 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 928 929 /* 930 * Force allocation in another cg if creating a first level dir. 931 */ 932 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 933 if (ITOV(pip)->v_vflag & VV_ROOT) { 934 prefcg = arc4random() % fs->fs_ncg; 935 mincg = prefcg; 936 minndir = fs->fs_ipg; 937 for (cg = prefcg; cg < fs->fs_ncg; cg++) 938 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 939 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 940 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 941 mincg = cg; 942 minndir = fs->fs_cs(fs, cg).cs_ndir; 943 } 944 for (cg = 0; cg < prefcg; cg++) 945 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 946 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 947 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 948 mincg = cg; 949 minndir = fs->fs_cs(fs, cg).cs_ndir; 950 } 951 return ((ino_t)(fs->fs_ipg * mincg)); 952 } 953 954 /* 955 * Count various limits which used for 956 * optimal allocation of a directory inode. 957 */ 958 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 959 minifree = avgifree - fs->fs_ipg / 4; 960 if (minifree < 0) 961 minifree = 0; 962 minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4; 963 if (minbfree < 0) 964 minbfree = 0; 965 cgsize = fs->fs_fsize * fs->fs_fpg; 966 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 967 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 968 if (dirsize < curdirsize) 969 dirsize = curdirsize; 970 maxcontigdirs = min(cgsize / dirsize, 255); 971 if (fs->fs_avgfpdir > 0) 972 maxcontigdirs = min(maxcontigdirs, 973 fs->fs_ipg / fs->fs_avgfpdir); 974 if (maxcontigdirs == 0) 975 maxcontigdirs = 1; 976 977 /* 978 * Limit number of dirs in one cg and reserve space for 979 * regular files, but only if we have no deficit in 980 * inodes or space. 981 */ 982 prefcg = ino_to_cg(fs, pip->i_number); 983 for (cg = prefcg; cg < fs->fs_ncg; cg++) 984 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 985 fs->fs_cs(fs, cg).cs_nifree >= minifree && 986 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 987 if (fs->fs_contigdirs[cg] < maxcontigdirs) 988 return ((ino_t)(fs->fs_ipg * cg)); 989 } 990 for (cg = 0; cg < prefcg; cg++) 991 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 992 fs->fs_cs(fs, cg).cs_nifree >= minifree && 993 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 994 if (fs->fs_contigdirs[cg] < maxcontigdirs) 995 return ((ino_t)(fs->fs_ipg * cg)); 996 } 997 /* 998 * This is a backstop when we have deficit in space. 999 */ 1000 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1001 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1002 return ((ino_t)(fs->fs_ipg * cg)); 1003 for (cg = 0; cg < prefcg; cg++) 1004 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1005 break; 1006 return ((ino_t)(fs->fs_ipg * cg)); 1007 } 1008 1009 /* 1010 * Select the desired position for the next block in a file. The file is 1011 * logically divided into sections. The first section is composed of the 1012 * direct blocks. Each additional section contains fs_maxbpg blocks. 1013 * 1014 * If no blocks have been allocated in the first section, the policy is to 1015 * request a block in the same cylinder group as the inode that describes 1016 * the file. If no blocks have been allocated in any other section, the 1017 * policy is to place the section in a cylinder group with a greater than 1018 * average number of free blocks. An appropriate cylinder group is found 1019 * by using a rotor that sweeps the cylinder groups. When a new group of 1020 * blocks is needed, the sweep begins in the cylinder group following the 1021 * cylinder group from which the previous allocation was made. The sweep 1022 * continues until a cylinder group with greater than the average number 1023 * of free blocks is found. If the allocation is for the first block in an 1024 * indirect block, the information on the previous allocation is unavailable; 1025 * here a best guess is made based upon the logical block number being 1026 * allocated. 1027 * 1028 * If a section is already partially allocated, the policy is to 1029 * contiguously allocate fs_maxcontig blocks. The end of one of these 1030 * contiguous blocks and the beginning of the next is laid out 1031 * contiguously if possible. 1032 */ 1033 ufs2_daddr_t 1034 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1035 struct inode *ip; 1036 ufs_lbn_t lbn; 1037 int indx; 1038 ufs1_daddr_t *bap; 1039 { 1040 struct fs *fs; 1041 int cg; 1042 int avgbfree, startcg; 1043 1044 fs = ip->i_fs; 1045 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1046 if (lbn < NDADDR + NINDIR(fs)) { 1047 cg = ino_to_cg(fs, ip->i_number); 1048 return (fs->fs_fpg * cg + fs->fs_frag); 1049 } 1050 /* 1051 * Find a cylinder with greater than average number of 1052 * unused data blocks. 1053 */ 1054 if (indx == 0 || bap[indx - 1] == 0) 1055 startcg = 1056 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1057 else 1058 startcg = dtog(fs, bap[indx - 1]) + 1; 1059 startcg %= fs->fs_ncg; 1060 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1061 for (cg = startcg; cg < fs->fs_ncg; cg++) 1062 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1063 fs->fs_cgrotor = cg; 1064 return (fs->fs_fpg * cg + fs->fs_frag); 1065 } 1066 for (cg = 0; cg <= startcg; cg++) 1067 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1068 fs->fs_cgrotor = cg; 1069 return (fs->fs_fpg * cg + fs->fs_frag); 1070 } 1071 return (0); 1072 } 1073 /* 1074 * We just always try to lay things out contiguously. 1075 */ 1076 return (bap[indx - 1] + fs->fs_frag); 1077 } 1078 1079 /* 1080 * Same as above, but for UFS2 1081 */ 1082 ufs2_daddr_t 1083 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1084 struct inode *ip; 1085 ufs_lbn_t lbn; 1086 int indx; 1087 ufs2_daddr_t *bap; 1088 { 1089 struct fs *fs; 1090 int cg; 1091 int avgbfree, startcg; 1092 1093 fs = ip->i_fs; 1094 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1095 if (lbn < NDADDR + NINDIR(fs)) { 1096 cg = ino_to_cg(fs, ip->i_number); 1097 return (fs->fs_fpg * cg + fs->fs_frag); 1098 } 1099 /* 1100 * Find a cylinder with greater than average number of 1101 * unused data blocks. 1102 */ 1103 if (indx == 0 || bap[indx - 1] == 0) 1104 startcg = 1105 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1106 else 1107 startcg = dtog(fs, bap[indx - 1]) + 1; 1108 startcg %= fs->fs_ncg; 1109 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1110 for (cg = startcg; cg < fs->fs_ncg; cg++) 1111 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1112 fs->fs_cgrotor = cg; 1113 return (fs->fs_fpg * cg + fs->fs_frag); 1114 } 1115 for (cg = 0; cg <= startcg; cg++) 1116 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1117 fs->fs_cgrotor = cg; 1118 return (fs->fs_fpg * cg + fs->fs_frag); 1119 } 1120 return (0); 1121 } 1122 /* 1123 * We just always try to lay things out contiguously. 1124 */ 1125 return (bap[indx - 1] + fs->fs_frag); 1126 } 1127 1128 /* 1129 * Implement the cylinder overflow algorithm. 1130 * 1131 * The policy implemented by this algorithm is: 1132 * 1) allocate the block in its requested cylinder group. 1133 * 2) quadradically rehash on the cylinder group number. 1134 * 3) brute force search for a free block. 1135 */ 1136 /*VARARGS5*/ 1137 static ufs2_daddr_t 1138 ffs_hashalloc(ip, cg, pref, size, allocator) 1139 struct inode *ip; 1140 int cg; 1141 ufs2_daddr_t pref; 1142 int size; /* size for data blocks, mode for inodes */ 1143 allocfcn_t *allocator; 1144 { 1145 struct fs *fs; 1146 ufs2_daddr_t result; 1147 int i, icg = cg; 1148 1149 #ifdef DIAGNOSTIC 1150 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1151 panic("ffs_hashalloc: allocation on suspended filesystem"); 1152 #endif 1153 fs = ip->i_fs; 1154 /* 1155 * 1: preferred cylinder group 1156 */ 1157 result = (*allocator)(ip, cg, pref, size); 1158 if (result) 1159 return (result); 1160 /* 1161 * 2: quadratic rehash 1162 */ 1163 for (i = 1; i < fs->fs_ncg; i *= 2) { 1164 cg += i; 1165 if (cg >= fs->fs_ncg) 1166 cg -= fs->fs_ncg; 1167 result = (*allocator)(ip, cg, 0, size); 1168 if (result) 1169 return (result); 1170 } 1171 /* 1172 * 3: brute force search 1173 * Note that we start at i == 2, since 0 was checked initially, 1174 * and 1 is always checked in the quadratic rehash. 1175 */ 1176 cg = (icg + 2) % fs->fs_ncg; 1177 for (i = 2; i < fs->fs_ncg; i++) { 1178 result = (*allocator)(ip, cg, 0, size); 1179 if (result) 1180 return (result); 1181 cg++; 1182 if (cg == fs->fs_ncg) 1183 cg = 0; 1184 } 1185 return (0); 1186 } 1187 1188 /* 1189 * Determine whether a fragment can be extended. 1190 * 1191 * Check to see if the necessary fragments are available, and 1192 * if they are, allocate them. 1193 */ 1194 static ufs2_daddr_t 1195 ffs_fragextend(ip, cg, bprev, osize, nsize) 1196 struct inode *ip; 1197 int cg; 1198 ufs2_daddr_t bprev; 1199 int osize, nsize; 1200 { 1201 struct fs *fs; 1202 struct cg *cgp; 1203 struct buf *bp; 1204 long bno; 1205 int frags, bbase; 1206 int i, error; 1207 u_int8_t *blksfree; 1208 1209 fs = ip->i_fs; 1210 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1211 return (0); 1212 frags = numfrags(fs, nsize); 1213 bbase = fragnum(fs, bprev); 1214 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1215 /* cannot extend across a block boundary */ 1216 return (0); 1217 } 1218 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1219 (int)fs->fs_cgsize, NOCRED, &bp); 1220 if (error) { 1221 brelse(bp); 1222 return (0); 1223 } 1224 cgp = (struct cg *)bp->b_data; 1225 if (!cg_chkmagic(cgp)) { 1226 brelse(bp); 1227 return (0); 1228 } 1229 bp->b_xflags |= BX_BKGRDWRITE; 1230 cgp->cg_old_time = cgp->cg_time = time_second; 1231 bno = dtogd(fs, bprev); 1232 blksfree = cg_blksfree(cgp); 1233 for (i = numfrags(fs, osize); i < frags; i++) 1234 if (isclr(blksfree, bno + i)) { 1235 brelse(bp); 1236 return (0); 1237 } 1238 /* 1239 * the current fragment can be extended 1240 * deduct the count on fragment being extended into 1241 * increase the count on the remaining fragment (if any) 1242 * allocate the extended piece 1243 */ 1244 for (i = frags; i < fs->fs_frag - bbase; i++) 1245 if (isclr(blksfree, bno + i)) 1246 break; 1247 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1248 if (i != frags) 1249 cgp->cg_frsum[i - frags]++; 1250 for (i = numfrags(fs, osize); i < frags; i++) { 1251 clrbit(blksfree, bno + i); 1252 cgp->cg_cs.cs_nffree--; 1253 fs->fs_cstotal.cs_nffree--; 1254 fs->fs_cs(fs, cg).cs_nffree--; 1255 } 1256 fs->fs_fmod = 1; 1257 if (DOINGSOFTDEP(ITOV(ip))) 1258 softdep_setup_blkmapdep(bp, fs, bprev); 1259 if (fs->fs_active != 0) 1260 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1261 bdwrite(bp); 1262 return (bprev); 1263 } 1264 1265 /* 1266 * Determine whether a block can be allocated. 1267 * 1268 * Check to see if a block of the appropriate size is available, 1269 * and if it is, allocate it. 1270 */ 1271 static ufs2_daddr_t 1272 ffs_alloccg(ip, cg, bpref, size) 1273 struct inode *ip; 1274 int cg; 1275 ufs2_daddr_t bpref; 1276 int size; 1277 { 1278 struct fs *fs; 1279 struct cg *cgp; 1280 struct buf *bp; 1281 ufs1_daddr_t bno; 1282 ufs2_daddr_t blkno; 1283 int i, allocsiz, error, frags; 1284 u_int8_t *blksfree; 1285 1286 fs = ip->i_fs; 1287 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1288 return (0); 1289 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1290 (int)fs->fs_cgsize, NOCRED, &bp); 1291 if (error) { 1292 brelse(bp); 1293 return (0); 1294 } 1295 cgp = (struct cg *)bp->b_data; 1296 if (!cg_chkmagic(cgp) || 1297 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 1298 brelse(bp); 1299 return (0); 1300 } 1301 bp->b_xflags |= BX_BKGRDWRITE; 1302 cgp->cg_old_time = cgp->cg_time = time_second; 1303 if (size == fs->fs_bsize) { 1304 blkno = ffs_alloccgblk(ip, bp, bpref); 1305 if (fs->fs_active != 0) 1306 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1307 bdwrite(bp); 1308 return (blkno); 1309 } 1310 /* 1311 * check to see if any fragments are already available 1312 * allocsiz is the size which will be allocated, hacking 1313 * it down to a smaller size if necessary 1314 */ 1315 blksfree = cg_blksfree(cgp); 1316 frags = numfrags(fs, size); 1317 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1318 if (cgp->cg_frsum[allocsiz] != 0) 1319 break; 1320 if (allocsiz == fs->fs_frag) { 1321 /* 1322 * no fragments were available, so a block will be 1323 * allocated, and hacked up 1324 */ 1325 if (cgp->cg_cs.cs_nbfree == 0) { 1326 brelse(bp); 1327 return (0); 1328 } 1329 blkno = ffs_alloccgblk(ip, bp, bpref); 1330 bno = dtogd(fs, blkno); 1331 for (i = frags; i < fs->fs_frag; i++) 1332 setbit(blksfree, bno + i); 1333 i = fs->fs_frag - frags; 1334 cgp->cg_cs.cs_nffree += i; 1335 fs->fs_cstotal.cs_nffree += i; 1336 fs->fs_cs(fs, cg).cs_nffree += i; 1337 fs->fs_fmod = 1; 1338 cgp->cg_frsum[i]++; 1339 if (fs->fs_active != 0) 1340 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1341 bdwrite(bp); 1342 return (blkno); 1343 } 1344 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1345 if (bno < 0) { 1346 brelse(bp); 1347 return (0); 1348 } 1349 for (i = 0; i < frags; i++) 1350 clrbit(blksfree, bno + i); 1351 cgp->cg_cs.cs_nffree -= frags; 1352 fs->fs_cstotal.cs_nffree -= frags; 1353 fs->fs_cs(fs, cg).cs_nffree -= frags; 1354 fs->fs_fmod = 1; 1355 cgp->cg_frsum[allocsiz]--; 1356 if (frags != allocsiz) 1357 cgp->cg_frsum[allocsiz - frags]++; 1358 blkno = cg * fs->fs_fpg + bno; 1359 if (DOINGSOFTDEP(ITOV(ip))) 1360 softdep_setup_blkmapdep(bp, fs, blkno); 1361 if (fs->fs_active != 0) 1362 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1363 bdwrite(bp); 1364 return (blkno); 1365 } 1366 1367 /* 1368 * Allocate a block in a cylinder group. 1369 * 1370 * This algorithm implements the following policy: 1371 * 1) allocate the requested block. 1372 * 2) allocate a rotationally optimal block in the same cylinder. 1373 * 3) allocate the next available block on the block rotor for the 1374 * specified cylinder group. 1375 * Note that this routine only allocates fs_bsize blocks; these 1376 * blocks may be fragmented by the routine that allocates them. 1377 */ 1378 static ufs2_daddr_t 1379 ffs_alloccgblk(ip, bp, bpref) 1380 struct inode *ip; 1381 struct buf *bp; 1382 ufs2_daddr_t bpref; 1383 { 1384 struct fs *fs; 1385 struct cg *cgp; 1386 ufs1_daddr_t bno; 1387 ufs2_daddr_t blkno; 1388 u_int8_t *blksfree; 1389 1390 fs = ip->i_fs; 1391 cgp = (struct cg *)bp->b_data; 1392 blksfree = cg_blksfree(cgp); 1393 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1394 bpref = cgp->cg_rotor; 1395 } else { 1396 bpref = blknum(fs, bpref); 1397 bno = dtogd(fs, bpref); 1398 /* 1399 * if the requested block is available, use it 1400 */ 1401 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1402 goto gotit; 1403 } 1404 /* 1405 * Take the next available block in this cylinder group. 1406 */ 1407 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1408 if (bno < 0) 1409 return (0); 1410 cgp->cg_rotor = bno; 1411 gotit: 1412 blkno = fragstoblks(fs, bno); 1413 ffs_clrblock(fs, blksfree, (long)blkno); 1414 ffs_clusteracct(fs, cgp, blkno, -1); 1415 cgp->cg_cs.cs_nbfree--; 1416 fs->fs_cstotal.cs_nbfree--; 1417 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1418 fs->fs_fmod = 1; 1419 blkno = cgp->cg_cgx * fs->fs_fpg + bno; 1420 if (DOINGSOFTDEP(ITOV(ip))) 1421 softdep_setup_blkmapdep(bp, fs, blkno); 1422 return (blkno); 1423 } 1424 1425 /* 1426 * Determine whether a cluster can be allocated. 1427 * 1428 * We do not currently check for optimal rotational layout if there 1429 * are multiple choices in the same cylinder group. Instead we just 1430 * take the first one that we find following bpref. 1431 */ 1432 static ufs2_daddr_t 1433 ffs_clusteralloc(ip, cg, bpref, len) 1434 struct inode *ip; 1435 int cg; 1436 ufs2_daddr_t bpref; 1437 int len; 1438 { 1439 struct fs *fs; 1440 struct cg *cgp; 1441 struct buf *bp; 1442 int i, run, bit, map, got; 1443 ufs2_daddr_t bno; 1444 u_char *mapp; 1445 int32_t *lp; 1446 u_int8_t *blksfree; 1447 1448 fs = ip->i_fs; 1449 if (fs->fs_maxcluster[cg] < len) 1450 return (0); 1451 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1452 NOCRED, &bp)) 1453 goto fail; 1454 cgp = (struct cg *)bp->b_data; 1455 if (!cg_chkmagic(cgp)) 1456 goto fail; 1457 bp->b_xflags |= BX_BKGRDWRITE; 1458 /* 1459 * Check to see if a cluster of the needed size (or bigger) is 1460 * available in this cylinder group. 1461 */ 1462 lp = &cg_clustersum(cgp)[len]; 1463 for (i = len; i <= fs->fs_contigsumsize; i++) 1464 if (*lp++ > 0) 1465 break; 1466 if (i > fs->fs_contigsumsize) { 1467 /* 1468 * This is the first time looking for a cluster in this 1469 * cylinder group. Update the cluster summary information 1470 * to reflect the true maximum sized cluster so that 1471 * future cluster allocation requests can avoid reading 1472 * the cylinder group map only to find no clusters. 1473 */ 1474 lp = &cg_clustersum(cgp)[len - 1]; 1475 for (i = len - 1; i > 0; i--) 1476 if (*lp-- > 0) 1477 break; 1478 fs->fs_maxcluster[cg] = i; 1479 goto fail; 1480 } 1481 /* 1482 * Search the cluster map to find a big enough cluster. 1483 * We take the first one that we find, even if it is larger 1484 * than we need as we prefer to get one close to the previous 1485 * block allocation. We do not search before the current 1486 * preference point as we do not want to allocate a block 1487 * that is allocated before the previous one (as we will 1488 * then have to wait for another pass of the elevator 1489 * algorithm before it will be read). We prefer to fail and 1490 * be recalled to try an allocation in the next cylinder group. 1491 */ 1492 if (dtog(fs, bpref) != cg) 1493 bpref = 0; 1494 else 1495 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1496 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1497 map = *mapp++; 1498 bit = 1 << (bpref % NBBY); 1499 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1500 if ((map & bit) == 0) { 1501 run = 0; 1502 } else { 1503 run++; 1504 if (run == len) 1505 break; 1506 } 1507 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1508 bit <<= 1; 1509 } else { 1510 map = *mapp++; 1511 bit = 1; 1512 } 1513 } 1514 if (got >= cgp->cg_nclusterblks) 1515 goto fail; 1516 /* 1517 * Allocate the cluster that we have found. 1518 */ 1519 blksfree = cg_blksfree(cgp); 1520 for (i = 1; i <= len; i++) 1521 if (!ffs_isblock(fs, blksfree, got - run + i)) 1522 panic("ffs_clusteralloc: map mismatch"); 1523 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1); 1524 if (dtog(fs, bno) != cg) 1525 panic("ffs_clusteralloc: allocated out of group"); 1526 len = blkstofrags(fs, len); 1527 for (i = 0; i < len; i += fs->fs_frag) 1528 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1529 panic("ffs_clusteralloc: lost block"); 1530 if (fs->fs_active != 0) 1531 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1532 bdwrite(bp); 1533 return (bno); 1534 1535 fail: 1536 brelse(bp); 1537 return (0); 1538 } 1539 1540 /* 1541 * Determine whether an inode can be allocated. 1542 * 1543 * Check to see if an inode is available, and if it is, 1544 * allocate it using the following policy: 1545 * 1) allocate the requested inode. 1546 * 2) allocate the next available inode after the requested 1547 * inode in the specified cylinder group. 1548 */ 1549 static ufs2_daddr_t 1550 ffs_nodealloccg(ip, cg, ipref, mode) 1551 struct inode *ip; 1552 int cg; 1553 ufs2_daddr_t ipref; 1554 int mode; 1555 { 1556 struct fs *fs; 1557 struct cg *cgp; 1558 struct buf *bp, *ibp; 1559 u_int8_t *inosused; 1560 struct ufs2_dinode *dp2; 1561 int error, start, len, loc, map, i; 1562 1563 fs = ip->i_fs; 1564 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1565 return (0); 1566 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1567 (int)fs->fs_cgsize, NOCRED, &bp); 1568 if (error) { 1569 brelse(bp); 1570 return (0); 1571 } 1572 cgp = (struct cg *)bp->b_data; 1573 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1574 brelse(bp); 1575 return (0); 1576 } 1577 bp->b_xflags |= BX_BKGRDWRITE; 1578 cgp->cg_old_time = cgp->cg_time = time_second; 1579 inosused = cg_inosused(cgp); 1580 if (ipref) { 1581 ipref %= fs->fs_ipg; 1582 if (isclr(inosused, ipref)) 1583 goto gotit; 1584 } 1585 start = cgp->cg_irotor / NBBY; 1586 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1587 loc = skpc(0xff, len, &inosused[start]); 1588 if (loc == 0) { 1589 len = start + 1; 1590 start = 0; 1591 loc = skpc(0xff, len, &inosused[0]); 1592 if (loc == 0) { 1593 printf("cg = %d, irotor = %ld, fs = %s\n", 1594 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1595 panic("ffs_nodealloccg: map corrupted"); 1596 /* NOTREACHED */ 1597 } 1598 } 1599 i = start + len - loc; 1600 map = inosused[i]; 1601 ipref = i * NBBY; 1602 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1603 if ((map & i) == 0) { 1604 cgp->cg_irotor = ipref; 1605 goto gotit; 1606 } 1607 } 1608 printf("fs = %s\n", fs->fs_fsmnt); 1609 panic("ffs_nodealloccg: block not in map"); 1610 /* NOTREACHED */ 1611 gotit: 1612 if (DOINGSOFTDEP(ITOV(ip))) 1613 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1614 setbit(inosused, ipref); 1615 cgp->cg_cs.cs_nifree--; 1616 fs->fs_cstotal.cs_nifree--; 1617 fs->fs_cs(fs, cg).cs_nifree--; 1618 fs->fs_fmod = 1; 1619 if ((mode & IFMT) == IFDIR) { 1620 cgp->cg_cs.cs_ndir++; 1621 fs->fs_cstotal.cs_ndir++; 1622 fs->fs_cs(fs, cg).cs_ndir++; 1623 } 1624 /* 1625 * Check to see if we need to initialize more inodes. 1626 */ 1627 if (fs->fs_magic == FS_UFS2_MAGIC && 1628 ipref + INOPB(fs) > cgp->cg_initediblk && 1629 cgp->cg_initediblk < cgp->cg_niblk) { 1630 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1631 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1632 (int)fs->fs_bsize, 0, 0); 1633 bzero(ibp->b_data, (int)fs->fs_bsize); 1634 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1635 for (i = 0; i < INOPB(fs); i++) { 1636 dp2->di_gen = random() / 2 + 1; 1637 dp2++; 1638 } 1639 bawrite(ibp); 1640 cgp->cg_initediblk += INOPB(fs); 1641 } 1642 if (fs->fs_active != 0) 1643 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1644 bdwrite(bp); 1645 return (cg * fs->fs_ipg + ipref); 1646 } 1647 1648 /* 1649 * check if a block is free 1650 */ 1651 static int 1652 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 1653 { 1654 1655 switch ((int)fs->fs_frag) { 1656 case 8: 1657 return (cp[h] == 0); 1658 case 4: 1659 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 1660 case 2: 1661 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 1662 case 1: 1663 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 1664 default: 1665 panic("ffs_isfreeblock"); 1666 } 1667 return (0); 1668 } 1669 1670 /* 1671 * Free a block or fragment. 1672 * 1673 * The specified block or fragment is placed back in the 1674 * free map. If a fragment is deallocated, a possible 1675 * block reassembly is checked. 1676 */ 1677 void 1678 ffs_blkfree(fs, devvp, bno, size, inum) 1679 struct fs *fs; 1680 struct vnode *devvp; 1681 ufs2_daddr_t bno; 1682 long size; 1683 ino_t inum; 1684 { 1685 struct cg *cgp; 1686 struct buf *bp; 1687 ufs1_daddr_t fragno, cgbno; 1688 ufs2_daddr_t cgblkno; 1689 int i, error, cg, blk, frags, bbase; 1690 u_int8_t *blksfree; 1691 dev_t dev; 1692 1693 cg = dtog(fs, bno); 1694 if (devvp->v_type != VCHR) { 1695 /* devvp is a snapshot */ 1696 dev = VTOI(devvp)->i_devvp->v_rdev; 1697 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1698 } else { 1699 /* devvp is a normal disk device */ 1700 dev = devvp->v_rdev; 1701 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1702 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1703 if ((devvp->v_vflag & VV_COPYONWRITE) && 1704 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1705 return; 1706 VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size); 1707 } 1708 #ifdef DIAGNOSTIC 1709 if (dev->si_mountpoint && 1710 (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED)) 1711 panic("ffs_blkfree: deallocation on suspended filesystem"); 1712 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1713 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1714 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1715 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1716 size, fs->fs_fsmnt); 1717 panic("ffs_blkfree: bad size"); 1718 } 1719 #endif 1720 if ((u_int)bno >= fs->fs_size) { 1721 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1722 (u_long)inum); 1723 ffs_fserr(fs, inum, "bad block"); 1724 return; 1725 } 1726 if ((error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp))) { 1727 brelse(bp); 1728 return; 1729 } 1730 cgp = (struct cg *)bp->b_data; 1731 if (!cg_chkmagic(cgp)) { 1732 brelse(bp); 1733 return; 1734 } 1735 bp->b_xflags |= BX_BKGRDWRITE; 1736 cgp->cg_old_time = cgp->cg_time = time_second; 1737 cgbno = dtogd(fs, bno); 1738 blksfree = cg_blksfree(cgp); 1739 if (size == fs->fs_bsize) { 1740 fragno = fragstoblks(fs, cgbno); 1741 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1742 if (devvp->v_type != VCHR) { 1743 /* devvp is a snapshot */ 1744 brelse(bp); 1745 return; 1746 } 1747 printf("dev = %s, block = %jd, fs = %s\n", 1748 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1749 panic("ffs_blkfree: freeing free block"); 1750 } 1751 ffs_setblock(fs, blksfree, fragno); 1752 ffs_clusteracct(fs, cgp, fragno, 1); 1753 cgp->cg_cs.cs_nbfree++; 1754 fs->fs_cstotal.cs_nbfree++; 1755 fs->fs_cs(fs, cg).cs_nbfree++; 1756 } else { 1757 bbase = cgbno - fragnum(fs, cgbno); 1758 /* 1759 * decrement the counts associated with the old frags 1760 */ 1761 blk = blkmap(fs, blksfree, bbase); 1762 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1763 /* 1764 * deallocate the fragment 1765 */ 1766 frags = numfrags(fs, size); 1767 for (i = 0; i < frags; i++) { 1768 if (isset(blksfree, cgbno + i)) { 1769 printf("dev = %s, block = %jd, fs = %s\n", 1770 devtoname(dev), (intmax_t)(bno + i), 1771 fs->fs_fsmnt); 1772 panic("ffs_blkfree: freeing free frag"); 1773 } 1774 setbit(blksfree, cgbno + i); 1775 } 1776 cgp->cg_cs.cs_nffree += i; 1777 fs->fs_cstotal.cs_nffree += i; 1778 fs->fs_cs(fs, cg).cs_nffree += i; 1779 /* 1780 * add back in counts associated with the new frags 1781 */ 1782 blk = blkmap(fs, blksfree, bbase); 1783 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1784 /* 1785 * if a complete block has been reassembled, account for it 1786 */ 1787 fragno = fragstoblks(fs, bbase); 1788 if (ffs_isblock(fs, blksfree, fragno)) { 1789 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1790 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1791 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1792 ffs_clusteracct(fs, cgp, fragno, 1); 1793 cgp->cg_cs.cs_nbfree++; 1794 fs->fs_cstotal.cs_nbfree++; 1795 fs->fs_cs(fs, cg).cs_nbfree++; 1796 } 1797 } 1798 fs->fs_fmod = 1; 1799 if (fs->fs_active != 0) 1800 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1801 bdwrite(bp); 1802 } 1803 1804 #ifdef DIAGNOSTIC 1805 /* 1806 * Verify allocation of a block or fragment. Returns true if block or 1807 * fragment is allocated, false if it is free. 1808 */ 1809 static int 1810 ffs_checkblk(ip, bno, size) 1811 struct inode *ip; 1812 ufs2_daddr_t bno; 1813 long size; 1814 { 1815 struct fs *fs; 1816 struct cg *cgp; 1817 struct buf *bp; 1818 ufs1_daddr_t cgbno; 1819 int i, error, frags, free; 1820 u_int8_t *blksfree; 1821 1822 fs = ip->i_fs; 1823 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1824 printf("bsize = %ld, size = %ld, fs = %s\n", 1825 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1826 panic("ffs_checkblk: bad size"); 1827 } 1828 if ((u_int)bno >= fs->fs_size) 1829 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 1830 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1831 (int)fs->fs_cgsize, NOCRED, &bp); 1832 if (error) 1833 panic("ffs_checkblk: cg bread failed"); 1834 cgp = (struct cg *)bp->b_data; 1835 if (!cg_chkmagic(cgp)) 1836 panic("ffs_checkblk: cg magic mismatch"); 1837 bp->b_xflags |= BX_BKGRDWRITE; 1838 blksfree = cg_blksfree(cgp); 1839 cgbno = dtogd(fs, bno); 1840 if (size == fs->fs_bsize) { 1841 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 1842 } else { 1843 frags = numfrags(fs, size); 1844 for (free = 0, i = 0; i < frags; i++) 1845 if (isset(blksfree, cgbno + i)) 1846 free++; 1847 if (free != 0 && free != frags) 1848 panic("ffs_checkblk: partially free fragment"); 1849 } 1850 brelse(bp); 1851 return (!free); 1852 } 1853 #endif /* DIAGNOSTIC */ 1854 1855 /* 1856 * Free an inode. 1857 */ 1858 int 1859 ffs_vfree(pvp, ino, mode) 1860 struct vnode *pvp; 1861 ino_t ino; 1862 int mode; 1863 { 1864 if (DOINGSOFTDEP(pvp)) { 1865 softdep_freefile(pvp, ino, mode); 1866 return (0); 1867 } 1868 return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode)); 1869 } 1870 1871 /* 1872 * Do the actual free operation. 1873 * The specified inode is placed back in the free map. 1874 */ 1875 int 1876 ffs_freefile(fs, devvp, ino, mode) 1877 struct fs *fs; 1878 struct vnode *devvp; 1879 ino_t ino; 1880 int mode; 1881 { 1882 struct cg *cgp; 1883 struct buf *bp; 1884 ufs2_daddr_t cgbno; 1885 int error, cg; 1886 u_int8_t *inosused; 1887 dev_t dev; 1888 1889 cg = ino_to_cg(fs, ino); 1890 if (devvp->v_type != VCHR) { 1891 /* devvp is a snapshot */ 1892 dev = VTOI(devvp)->i_devvp->v_rdev; 1893 cgbno = fragstoblks(fs, cgtod(fs, cg)); 1894 } else { 1895 /* devvp is a normal disk device */ 1896 dev = devvp->v_rdev; 1897 cgbno = fsbtodb(fs, cgtod(fs, cg)); 1898 } 1899 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1900 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 1901 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 1902 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 1903 brelse(bp); 1904 return (error); 1905 } 1906 cgp = (struct cg *)bp->b_data; 1907 if (!cg_chkmagic(cgp)) { 1908 brelse(bp); 1909 return (0); 1910 } 1911 bp->b_xflags |= BX_BKGRDWRITE; 1912 cgp->cg_old_time = cgp->cg_time = time_second; 1913 inosused = cg_inosused(cgp); 1914 ino %= fs->fs_ipg; 1915 if (isclr(inosused, ino)) { 1916 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev), 1917 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt); 1918 if (fs->fs_ronly == 0) 1919 panic("ffs_freefile: freeing free inode"); 1920 } 1921 clrbit(inosused, ino); 1922 if (ino < cgp->cg_irotor) 1923 cgp->cg_irotor = ino; 1924 cgp->cg_cs.cs_nifree++; 1925 fs->fs_cstotal.cs_nifree++; 1926 fs->fs_cs(fs, cg).cs_nifree++; 1927 if ((mode & IFMT) == IFDIR) { 1928 cgp->cg_cs.cs_ndir--; 1929 fs->fs_cstotal.cs_ndir--; 1930 fs->fs_cs(fs, cg).cs_ndir--; 1931 } 1932 fs->fs_fmod = 1; 1933 if (fs->fs_active != 0) 1934 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1935 bdwrite(bp); 1936 return (0); 1937 } 1938 1939 /* 1940 * Find a block of the specified size in the specified cylinder group. 1941 * 1942 * It is a panic if a request is made to find a block if none are 1943 * available. 1944 */ 1945 static ufs1_daddr_t 1946 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1947 struct fs *fs; 1948 struct cg *cgp; 1949 ufs2_daddr_t bpref; 1950 int allocsiz; 1951 { 1952 ufs1_daddr_t bno; 1953 int start, len, loc, i; 1954 int blk, field, subfield, pos; 1955 u_int8_t *blksfree; 1956 1957 /* 1958 * find the fragment by searching through the free block 1959 * map for an appropriate bit pattern 1960 */ 1961 if (bpref) 1962 start = dtogd(fs, bpref) / NBBY; 1963 else 1964 start = cgp->cg_frotor / NBBY; 1965 blksfree = cg_blksfree(cgp); 1966 len = howmany(fs->fs_fpg, NBBY) - start; 1967 loc = scanc((u_int)len, (u_char *)&blksfree[start], 1968 (u_char *)fragtbl[fs->fs_frag], 1969 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1970 if (loc == 0) { 1971 len = start + 1; 1972 start = 0; 1973 loc = scanc((u_int)len, (u_char *)&blksfree[0], 1974 (u_char *)fragtbl[fs->fs_frag], 1975 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1976 if (loc == 0) { 1977 printf("start = %d, len = %d, fs = %s\n", 1978 start, len, fs->fs_fsmnt); 1979 panic("ffs_alloccg: map corrupted"); 1980 /* NOTREACHED */ 1981 } 1982 } 1983 bno = (start + len - loc) * NBBY; 1984 cgp->cg_frotor = bno; 1985 /* 1986 * found the byte in the map 1987 * sift through the bits to find the selected frag 1988 */ 1989 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1990 blk = blkmap(fs, blksfree, bno); 1991 blk <<= 1; 1992 field = around[allocsiz]; 1993 subfield = inside[allocsiz]; 1994 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1995 if ((blk & field) == subfield) 1996 return (bno + pos); 1997 field <<= 1; 1998 subfield <<= 1; 1999 } 2000 } 2001 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2002 panic("ffs_alloccg: block not in map"); 2003 return (-1); 2004 } 2005 2006 /* 2007 * Update the cluster map because of an allocation or free. 2008 * 2009 * Cnt == 1 means free; cnt == -1 means allocating. 2010 */ 2011 void 2012 ffs_clusteracct(fs, cgp, blkno, cnt) 2013 struct fs *fs; 2014 struct cg *cgp; 2015 ufs1_daddr_t blkno; 2016 int cnt; 2017 { 2018 int32_t *sump; 2019 int32_t *lp; 2020 u_char *freemapp, *mapp; 2021 int i, start, end, forw, back, map, bit; 2022 2023 if (fs->fs_contigsumsize <= 0) 2024 return; 2025 freemapp = cg_clustersfree(cgp); 2026 sump = cg_clustersum(cgp); 2027 /* 2028 * Allocate or clear the actual block. 2029 */ 2030 if (cnt > 0) 2031 setbit(freemapp, blkno); 2032 else 2033 clrbit(freemapp, blkno); 2034 /* 2035 * Find the size of the cluster going forward. 2036 */ 2037 start = blkno + 1; 2038 end = start + fs->fs_contigsumsize; 2039 if (end >= cgp->cg_nclusterblks) 2040 end = cgp->cg_nclusterblks; 2041 mapp = &freemapp[start / NBBY]; 2042 map = *mapp++; 2043 bit = 1 << (start % NBBY); 2044 for (i = start; i < end; i++) { 2045 if ((map & bit) == 0) 2046 break; 2047 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2048 bit <<= 1; 2049 } else { 2050 map = *mapp++; 2051 bit = 1; 2052 } 2053 } 2054 forw = i - start; 2055 /* 2056 * Find the size of the cluster going backward. 2057 */ 2058 start = blkno - 1; 2059 end = start - fs->fs_contigsumsize; 2060 if (end < 0) 2061 end = -1; 2062 mapp = &freemapp[start / NBBY]; 2063 map = *mapp--; 2064 bit = 1 << (start % NBBY); 2065 for (i = start; i > end; i--) { 2066 if ((map & bit) == 0) 2067 break; 2068 if ((i & (NBBY - 1)) != 0) { 2069 bit >>= 1; 2070 } else { 2071 map = *mapp--; 2072 bit = 1 << (NBBY - 1); 2073 } 2074 } 2075 back = start - i; 2076 /* 2077 * Account for old cluster and the possibly new forward and 2078 * back clusters. 2079 */ 2080 i = back + forw + 1; 2081 if (i > fs->fs_contigsumsize) 2082 i = fs->fs_contigsumsize; 2083 sump[i] += cnt; 2084 if (back > 0) 2085 sump[back] -= cnt; 2086 if (forw > 0) 2087 sump[forw] -= cnt; 2088 /* 2089 * Update cluster summary information. 2090 */ 2091 lp = &sump[fs->fs_contigsumsize]; 2092 for (i = fs->fs_contigsumsize; i > 0; i--) 2093 if (*lp-- > 0) 2094 break; 2095 fs->fs_maxcluster[cgp->cg_cgx] = i; 2096 } 2097 2098 /* 2099 * Fserr prints the name of a filesystem with an error diagnostic. 2100 * 2101 * The form of the error message is: 2102 * fs: error message 2103 */ 2104 static void 2105 ffs_fserr(fs, inum, cp) 2106 struct fs *fs; 2107 ino_t inum; 2108 char *cp; 2109 { 2110 struct proc *p = curproc; /* XXX */ 2111 2112 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2113 p ? p->p_pid : -1, p ? p->p_comm : "-", 2114 p ? p->p_ucred->cr_uid : 0, inum, fs->fs_fsmnt, cp); 2115 } 2116 2117 /* 2118 * This function provides the capability for the fsck program to 2119 * update an active filesystem. Six operations are provided: 2120 * 2121 * adjrefcnt(inode, amt) - adjusts the reference count on the 2122 * specified inode by the specified amount. Under normal 2123 * operation the count should always go down. Decrementing 2124 * the count to zero will cause the inode to be freed. 2125 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2126 * by the specifed amount. 2127 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2128 * are marked as free. Inodes should never have to be marked 2129 * as in use. 2130 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2131 * are marked as free. Inodes should never have to be marked 2132 * as in use. 2133 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2134 * are marked as free. Blocks should never have to be marked 2135 * as in use. 2136 * setflags(flags, set/clear) - the fs_flags field has the specified 2137 * flags set (second parameter +1) or cleared (second parameter -1). 2138 */ 2139 2140 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2141 2142 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2143 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2144 2145 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2146 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2147 2148 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2149 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2150 2151 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2152 sysctl_ffs_fsck, "Free Range of File Inodes"); 2153 2154 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2155 sysctl_ffs_fsck, "Free Range of Blocks"); 2156 2157 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2158 sysctl_ffs_fsck, "Change Filesystem Flags"); 2159 2160 #ifdef DEBUG 2161 static int fsckcmds = 0; 2162 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2163 #endif /* DEBUG */ 2164 2165 static int 2166 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2167 { 2168 struct fsck_cmd cmd; 2169 struct ufsmount *ump; 2170 struct vnode *vp; 2171 struct inode *ip; 2172 struct mount *mp; 2173 struct fs *fs; 2174 ufs2_daddr_t blkno; 2175 long blkcnt, blksize; 2176 struct file *fp; 2177 int filetype, error; 2178 2179 if (req->newlen > sizeof cmd) 2180 return (EBADRPC); 2181 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2182 return (error); 2183 if (cmd.version != FFS_CMD_VERSION) 2184 return (ERPCMISMATCH); 2185 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2186 return (error); 2187 vn_start_write(fp->f_data, &mp, V_WAIT); 2188 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2189 vn_finished_write(mp); 2190 fdrop(fp, curthread); 2191 return (EINVAL); 2192 } 2193 if (mp->mnt_flag & MNT_RDONLY) { 2194 vn_finished_write(mp); 2195 fdrop(fp, curthread); 2196 return (EROFS); 2197 } 2198 ump = VFSTOUFS(mp); 2199 fs = ump->um_fs; 2200 filetype = IFREG; 2201 2202 switch (oidp->oid_number) { 2203 2204 case FFS_SET_FLAGS: 2205 #ifdef DEBUG 2206 if (fsckcmds) 2207 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2208 cmd.size > 0 ? "set" : "clear"); 2209 #endif /* DEBUG */ 2210 if (cmd.size > 0) 2211 fs->fs_flags |= (long)cmd.value; 2212 else 2213 fs->fs_flags &= ~(long)cmd.value; 2214 break; 2215 2216 case FFS_ADJ_REFCNT: 2217 #ifdef DEBUG 2218 if (fsckcmds) { 2219 printf("%s: adjust inode %jd count by %jd\n", 2220 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2221 (intmax_t)cmd.size); 2222 } 2223 #endif /* DEBUG */ 2224 if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2225 break; 2226 ip = VTOI(vp); 2227 ip->i_nlink += cmd.size; 2228 DIP(ip, i_nlink) = ip->i_nlink; 2229 ip->i_effnlink += cmd.size; 2230 ip->i_flag |= IN_CHANGE; 2231 if (DOINGSOFTDEP(vp)) 2232 softdep_change_linkcnt(ip); 2233 vput(vp); 2234 break; 2235 2236 case FFS_ADJ_BLKCNT: 2237 #ifdef DEBUG 2238 if (fsckcmds) { 2239 printf("%s: adjust inode %jd block count by %jd\n", 2240 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2241 (intmax_t)cmd.size); 2242 } 2243 #endif /* DEBUG */ 2244 if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2245 break; 2246 ip = VTOI(vp); 2247 DIP(ip, i_blocks) += cmd.size; 2248 ip->i_flag |= IN_CHANGE; 2249 vput(vp); 2250 break; 2251 2252 case FFS_DIR_FREE: 2253 filetype = IFDIR; 2254 /* fall through */ 2255 2256 case FFS_FILE_FREE: 2257 #ifdef DEBUG 2258 if (fsckcmds) { 2259 if (cmd.size == 1) 2260 printf("%s: free %s inode %d\n", 2261 mp->mnt_stat.f_mntonname, 2262 filetype == IFDIR ? "directory" : "file", 2263 (ino_t)cmd.value); 2264 else 2265 printf("%s: free %s inodes %d-%d\n", 2266 mp->mnt_stat.f_mntonname, 2267 filetype == IFDIR ? "directory" : "file", 2268 (ino_t)cmd.value, 2269 (ino_t)(cmd.value + cmd.size - 1)); 2270 } 2271 #endif /* DEBUG */ 2272 while (cmd.size > 0) { 2273 if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value, 2274 filetype))) 2275 break; 2276 cmd.size -= 1; 2277 cmd.value += 1; 2278 } 2279 break; 2280 2281 case FFS_BLK_FREE: 2282 #ifdef DEBUG 2283 if (fsckcmds) { 2284 if (cmd.size == 1) 2285 printf("%s: free block %jd\n", 2286 mp->mnt_stat.f_mntonname, 2287 (intmax_t)cmd.value); 2288 else 2289 printf("%s: free blocks %jd-%jd\n", 2290 mp->mnt_stat.f_mntonname, 2291 (intmax_t)cmd.value, 2292 (intmax_t)cmd.value + cmd.size - 1); 2293 } 2294 #endif /* DEBUG */ 2295 blkno = cmd.value; 2296 blkcnt = cmd.size; 2297 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2298 while (blkcnt > 0) { 2299 if (blksize > blkcnt) 2300 blksize = blkcnt; 2301 ffs_blkfree(fs, ump->um_devvp, blkno, 2302 blksize * fs->fs_fsize, ROOTINO); 2303 blkno += blksize; 2304 blkcnt -= blksize; 2305 blksize = fs->fs_frag; 2306 } 2307 break; 2308 2309 default: 2310 #ifdef DEBUG 2311 if (fsckcmds) { 2312 printf("Invalid request %d from fsck\n", 2313 oidp->oid_number); 2314 } 2315 #endif /* DEBUG */ 2316 error = EINVAL; 2317 break; 2318 2319 } 2320 fdrop(fp, curthread); 2321 vn_finished_write(mp); 2322 return (error); 2323 } 2324