1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bio.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/fcntl.h> 73 #include <sys/file.h> 74 #include <sys/filedesc.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/vnode.h> 78 #include <sys/mount.h> 79 #include <sys/kernel.h> 80 #include <sys/syscallsubr.h> 81 #include <sys/sysctl.h> 82 #include <sys/syslog.h> 83 #include <sys/taskqueue.h> 84 85 #include <security/audit/audit.h> 86 87 #include <geom/geom.h> 88 89 #include <ufs/ufs/dir.h> 90 #include <ufs/ufs/extattr.h> 91 #include <ufs/ufs/quota.h> 92 #include <ufs/ufs/inode.h> 93 #include <ufs/ufs/ufs_extern.h> 94 #include <ufs/ufs/ufsmount.h> 95 96 #include <ufs/ffs/fs.h> 97 #include <ufs/ffs/ffs_extern.h> 98 #include <ufs/ffs/softdep.h> 99 100 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 101 int size, int rsize); 102 103 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 104 static ufs2_daddr_t 105 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 106 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 107 struct vnode *, ufs2_daddr_t, long, ino_t, 108 struct workhead *); 109 static void ffs_blkfree_trim_completed(struct bio *); 110 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 111 #ifdef INVARIANTS 112 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 113 #endif 114 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int, 115 int); 116 static ino_t ffs_dirpref(struct inode *); 117 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 118 int, int); 119 static ufs2_daddr_t ffs_hashalloc 120 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 121 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 122 int); 123 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 124 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 125 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 126 127 /* 128 * Allocate a block in the filesystem. 129 * 130 * The size of the requested block is given, which must be some 131 * multiple of fs_fsize and <= fs_bsize. 132 * A preference may be optionally specified. If a preference is given 133 * the following hierarchy is used to allocate a block: 134 * 1) allocate the requested block. 135 * 2) allocate a rotationally optimal block in the same cylinder. 136 * 3) allocate a block in the same cylinder group. 137 * 4) quadradically rehash into other cylinder groups, until an 138 * available block is located. 139 * If no block preference is given the following hierarchy is used 140 * to allocate a block: 141 * 1) allocate a block in the cylinder group that contains the 142 * inode for the file. 143 * 2) quadradically rehash into other cylinder groups, until an 144 * available block is located. 145 */ 146 int 147 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 148 struct inode *ip; 149 ufs2_daddr_t lbn, bpref; 150 int size, flags; 151 struct ucred *cred; 152 ufs2_daddr_t *bnp; 153 { 154 struct fs *fs; 155 struct ufsmount *ump; 156 ufs2_daddr_t bno; 157 u_int cg, reclaimed; 158 static struct timeval lastfail; 159 static int curfail; 160 int64_t delta; 161 #ifdef QUOTA 162 int error; 163 #endif 164 165 *bnp = 0; 166 fs = ip->i_fs; 167 ump = ip->i_ump; 168 mtx_assert(UFS_MTX(ump), MA_OWNED); 169 #ifdef INVARIANTS 170 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 171 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 172 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 173 fs->fs_fsmnt); 174 panic("ffs_alloc: bad size"); 175 } 176 if (cred == NOCRED) 177 panic("ffs_alloc: missing credential"); 178 #endif /* INVARIANTS */ 179 reclaimed = 0; 180 retry: 181 #ifdef QUOTA 182 UFS_UNLOCK(ump); 183 error = chkdq(ip, btodb(size), cred, 0); 184 if (error) 185 return (error); 186 UFS_LOCK(ump); 187 #endif 188 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 189 goto nospace; 190 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 191 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 192 goto nospace; 193 if (bpref >= fs->fs_size) 194 bpref = 0; 195 if (bpref == 0) 196 cg = ino_to_cg(fs, ip->i_number); 197 else 198 cg = dtog(fs, bpref); 199 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 200 if (bno > 0) { 201 delta = btodb(size); 202 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 203 if (flags & IO_EXT) 204 ip->i_flag |= IN_CHANGE; 205 else 206 ip->i_flag |= IN_CHANGE | IN_UPDATE; 207 *bnp = bno; 208 return (0); 209 } 210 nospace: 211 #ifdef QUOTA 212 UFS_UNLOCK(ump); 213 /* 214 * Restore user's disk quota because allocation failed. 215 */ 216 (void) chkdq(ip, -btodb(size), cred, FORCE); 217 UFS_LOCK(ump); 218 #endif 219 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 220 reclaimed = 1; 221 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 222 goto retry; 223 } 224 UFS_UNLOCK(ump); 225 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 226 ffs_fserr(fs, ip->i_number, "filesystem full"); 227 uprintf("\n%s: write failed, filesystem is full\n", 228 fs->fs_fsmnt); 229 } 230 return (ENOSPC); 231 } 232 233 /* 234 * Reallocate a fragment to a bigger size 235 * 236 * The number and size of the old block is given, and a preference 237 * and new size is also specified. The allocator attempts to extend 238 * the original block. Failing that, the regular block allocator is 239 * invoked to get an appropriate block. 240 */ 241 int 242 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 243 struct inode *ip; 244 ufs2_daddr_t lbprev; 245 ufs2_daddr_t bprev; 246 ufs2_daddr_t bpref; 247 int osize, nsize, flags; 248 struct ucred *cred; 249 struct buf **bpp; 250 { 251 struct vnode *vp; 252 struct fs *fs; 253 struct buf *bp; 254 struct ufsmount *ump; 255 u_int cg, request, reclaimed; 256 int error; 257 ufs2_daddr_t bno; 258 static struct timeval lastfail; 259 static int curfail; 260 int64_t delta; 261 262 *bpp = 0; 263 vp = ITOV(ip); 264 fs = ip->i_fs; 265 bp = NULL; 266 ump = ip->i_ump; 267 mtx_assert(UFS_MTX(ump), MA_OWNED); 268 #ifdef INVARIANTS 269 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 270 panic("ffs_realloccg: allocation on suspended filesystem"); 271 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 272 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 273 printf( 274 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 275 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 276 nsize, fs->fs_fsmnt); 277 panic("ffs_realloccg: bad size"); 278 } 279 if (cred == NOCRED) 280 panic("ffs_realloccg: missing credential"); 281 #endif /* INVARIANTS */ 282 reclaimed = 0; 283 retry: 284 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 285 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 286 goto nospace; 287 } 288 if (bprev == 0) { 289 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 290 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 291 fs->fs_fsmnt); 292 panic("ffs_realloccg: bad bprev"); 293 } 294 UFS_UNLOCK(ump); 295 /* 296 * Allocate the extra space in the buffer. 297 */ 298 error = bread(vp, lbprev, osize, NOCRED, &bp); 299 if (error) { 300 brelse(bp); 301 return (error); 302 } 303 304 if (bp->b_blkno == bp->b_lblkno) { 305 if (lbprev >= NDADDR) 306 panic("ffs_realloccg: lbprev out of range"); 307 bp->b_blkno = fsbtodb(fs, bprev); 308 } 309 310 #ifdef QUOTA 311 error = chkdq(ip, btodb(nsize - osize), cred, 0); 312 if (error) { 313 brelse(bp); 314 return (error); 315 } 316 #endif 317 /* 318 * Check for extension in the existing location. 319 */ 320 cg = dtog(fs, bprev); 321 UFS_LOCK(ump); 322 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 323 if (bno) { 324 if (bp->b_blkno != fsbtodb(fs, bno)) 325 panic("ffs_realloccg: bad blockno"); 326 delta = btodb(nsize - osize); 327 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 328 if (flags & IO_EXT) 329 ip->i_flag |= IN_CHANGE; 330 else 331 ip->i_flag |= IN_CHANGE | IN_UPDATE; 332 allocbuf(bp, nsize); 333 bp->b_flags |= B_DONE; 334 bzero(bp->b_data + osize, nsize - osize); 335 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 336 vfs_bio_set_valid(bp, osize, nsize - osize); 337 *bpp = bp; 338 return (0); 339 } 340 /* 341 * Allocate a new disk location. 342 */ 343 if (bpref >= fs->fs_size) 344 bpref = 0; 345 switch ((int)fs->fs_optim) { 346 case FS_OPTSPACE: 347 /* 348 * Allocate an exact sized fragment. Although this makes 349 * best use of space, we will waste time relocating it if 350 * the file continues to grow. If the fragmentation is 351 * less than half of the minimum free reserve, we choose 352 * to begin optimizing for time. 353 */ 354 request = nsize; 355 if (fs->fs_minfree <= 5 || 356 fs->fs_cstotal.cs_nffree > 357 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 358 break; 359 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 360 fs->fs_fsmnt); 361 fs->fs_optim = FS_OPTTIME; 362 break; 363 case FS_OPTTIME: 364 /* 365 * At this point we have discovered a file that is trying to 366 * grow a small fragment to a larger fragment. To save time, 367 * we allocate a full sized block, then free the unused portion. 368 * If the file continues to grow, the `ffs_fragextend' call 369 * above will be able to grow it in place without further 370 * copying. If aberrant programs cause disk fragmentation to 371 * grow within 2% of the free reserve, we choose to begin 372 * optimizing for space. 373 */ 374 request = fs->fs_bsize; 375 if (fs->fs_cstotal.cs_nffree < 376 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 377 break; 378 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 379 fs->fs_fsmnt); 380 fs->fs_optim = FS_OPTSPACE; 381 break; 382 default: 383 printf("dev = %s, optim = %ld, fs = %s\n", 384 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 385 panic("ffs_realloccg: bad optim"); 386 /* NOTREACHED */ 387 } 388 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 389 if (bno > 0) { 390 bp->b_blkno = fsbtodb(fs, bno); 391 if (!DOINGSOFTDEP(vp)) 392 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 393 ip->i_number, vp->v_type, NULL); 394 delta = btodb(nsize - osize); 395 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 396 if (flags & IO_EXT) 397 ip->i_flag |= IN_CHANGE; 398 else 399 ip->i_flag |= IN_CHANGE | IN_UPDATE; 400 allocbuf(bp, nsize); 401 bp->b_flags |= B_DONE; 402 bzero(bp->b_data + osize, nsize - osize); 403 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 404 vfs_bio_set_valid(bp, osize, nsize - osize); 405 *bpp = bp; 406 return (0); 407 } 408 #ifdef QUOTA 409 UFS_UNLOCK(ump); 410 /* 411 * Restore user's disk quota because allocation failed. 412 */ 413 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 414 UFS_LOCK(ump); 415 #endif 416 nospace: 417 /* 418 * no space available 419 */ 420 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 421 reclaimed = 1; 422 UFS_UNLOCK(ump); 423 if (bp) { 424 brelse(bp); 425 bp = NULL; 426 } 427 UFS_LOCK(ump); 428 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 429 goto retry; 430 } 431 UFS_UNLOCK(ump); 432 if (bp) 433 brelse(bp); 434 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 435 ffs_fserr(fs, ip->i_number, "filesystem full"); 436 uprintf("\n%s: write failed, filesystem is full\n", 437 fs->fs_fsmnt); 438 } 439 return (ENOSPC); 440 } 441 442 /* 443 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 444 * 445 * The vnode and an array of buffer pointers for a range of sequential 446 * logical blocks to be made contiguous is given. The allocator attempts 447 * to find a range of sequential blocks starting as close as possible 448 * from the end of the allocation for the logical block immediately 449 * preceding the current range. If successful, the physical block numbers 450 * in the buffer pointers and in the inode are changed to reflect the new 451 * allocation. If unsuccessful, the allocation is left unchanged. The 452 * success in doing the reallocation is returned. Note that the error 453 * return is not reflected back to the user. Rather the previous block 454 * allocation will be used. 455 */ 456 457 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 458 459 static int doasyncfree = 1; 460 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 461 462 static int doreallocblks = 1; 463 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 464 465 #ifdef DEBUG 466 static volatile int prtrealloc = 0; 467 #endif 468 469 int 470 ffs_reallocblks(ap) 471 struct vop_reallocblks_args /* { 472 struct vnode *a_vp; 473 struct cluster_save *a_buflist; 474 } */ *ap; 475 { 476 477 if (doreallocblks == 0) 478 return (ENOSPC); 479 /* 480 * We can't wait in softdep prealloc as it may fsync and recurse 481 * here. Instead we simply fail to reallocate blocks if this 482 * rare condition arises. 483 */ 484 if (DOINGSOFTDEP(ap->a_vp)) 485 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 486 return (ENOSPC); 487 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 488 return (ffs_reallocblks_ufs1(ap)); 489 return (ffs_reallocblks_ufs2(ap)); 490 } 491 492 static int 493 ffs_reallocblks_ufs1(ap) 494 struct vop_reallocblks_args /* { 495 struct vnode *a_vp; 496 struct cluster_save *a_buflist; 497 } */ *ap; 498 { 499 struct fs *fs; 500 struct inode *ip; 501 struct vnode *vp; 502 struct buf *sbp, *ebp; 503 ufs1_daddr_t *bap, *sbap, *ebap = 0; 504 struct cluster_save *buflist; 505 struct ufsmount *ump; 506 ufs_lbn_t start_lbn, end_lbn; 507 ufs1_daddr_t soff, newblk, blkno; 508 ufs2_daddr_t pref; 509 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 510 int i, len, start_lvl, end_lvl, ssize; 511 512 vp = ap->a_vp; 513 ip = VTOI(vp); 514 fs = ip->i_fs; 515 ump = ip->i_ump; 516 if (fs->fs_contigsumsize <= 0) 517 return (ENOSPC); 518 buflist = ap->a_buflist; 519 len = buflist->bs_nchildren; 520 start_lbn = buflist->bs_children[0]->b_lblkno; 521 end_lbn = start_lbn + len - 1; 522 #ifdef INVARIANTS 523 for (i = 0; i < len; i++) 524 if (!ffs_checkblk(ip, 525 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 526 panic("ffs_reallocblks: unallocated block 1"); 527 for (i = 1; i < len; i++) 528 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 529 panic("ffs_reallocblks: non-logical cluster"); 530 blkno = buflist->bs_children[0]->b_blkno; 531 ssize = fsbtodb(fs, fs->fs_frag); 532 for (i = 1; i < len - 1; i++) 533 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 534 panic("ffs_reallocblks: non-physical cluster %d", i); 535 #endif 536 /* 537 * If the latest allocation is in a new cylinder group, assume that 538 * the filesystem has decided to move and do not force it back to 539 * the previous cylinder group. 540 */ 541 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 542 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 543 return (ENOSPC); 544 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 545 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 546 return (ENOSPC); 547 /* 548 * Get the starting offset and block map for the first block. 549 */ 550 if (start_lvl == 0) { 551 sbap = &ip->i_din1->di_db[0]; 552 soff = start_lbn; 553 } else { 554 idp = &start_ap[start_lvl - 1]; 555 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 556 brelse(sbp); 557 return (ENOSPC); 558 } 559 sbap = (ufs1_daddr_t *)sbp->b_data; 560 soff = idp->in_off; 561 } 562 /* 563 * If the block range spans two block maps, get the second map. 564 */ 565 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 566 ssize = len; 567 } else { 568 #ifdef INVARIANTS 569 if (start_lvl > 0 && 570 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 571 panic("ffs_reallocblk: start == end"); 572 #endif 573 ssize = len - (idp->in_off + 1); 574 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 575 goto fail; 576 ebap = (ufs1_daddr_t *)ebp->b_data; 577 } 578 /* 579 * Find the preferred location for the cluster. 580 */ 581 UFS_LOCK(ump); 582 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 583 /* 584 * Search the block map looking for an allocation of the desired size. 585 */ 586 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 587 len, len, ffs_clusteralloc)) == 0) { 588 UFS_UNLOCK(ump); 589 goto fail; 590 } 591 /* 592 * We have found a new contiguous block. 593 * 594 * First we have to replace the old block pointers with the new 595 * block pointers in the inode and indirect blocks associated 596 * with the file. 597 */ 598 #ifdef DEBUG 599 if (prtrealloc) 600 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 601 (intmax_t)start_lbn, (intmax_t)end_lbn); 602 #endif 603 blkno = newblk; 604 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 605 if (i == ssize) { 606 bap = ebap; 607 soff = -i; 608 } 609 #ifdef INVARIANTS 610 if (!ffs_checkblk(ip, 611 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 612 panic("ffs_reallocblks: unallocated block 2"); 613 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 614 panic("ffs_reallocblks: alloc mismatch"); 615 #endif 616 #ifdef DEBUG 617 if (prtrealloc) 618 printf(" %d,", *bap); 619 #endif 620 if (DOINGSOFTDEP(vp)) { 621 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 622 softdep_setup_allocdirect(ip, start_lbn + i, 623 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 624 buflist->bs_children[i]); 625 else 626 softdep_setup_allocindir_page(ip, start_lbn + i, 627 i < ssize ? sbp : ebp, soff + i, blkno, 628 *bap, buflist->bs_children[i]); 629 } 630 *bap++ = blkno; 631 } 632 /* 633 * Next we must write out the modified inode and indirect blocks. 634 * For strict correctness, the writes should be synchronous since 635 * the old block values may have been written to disk. In practise 636 * they are almost never written, but if we are concerned about 637 * strict correctness, the `doasyncfree' flag should be set to zero. 638 * 639 * The test on `doasyncfree' should be changed to test a flag 640 * that shows whether the associated buffers and inodes have 641 * been written. The flag should be set when the cluster is 642 * started and cleared whenever the buffer or inode is flushed. 643 * We can then check below to see if it is set, and do the 644 * synchronous write only when it has been cleared. 645 */ 646 if (sbap != &ip->i_din1->di_db[0]) { 647 if (doasyncfree) 648 bdwrite(sbp); 649 else 650 bwrite(sbp); 651 } else { 652 ip->i_flag |= IN_CHANGE | IN_UPDATE; 653 if (!doasyncfree) 654 ffs_update(vp, 1); 655 } 656 if (ssize < len) { 657 if (doasyncfree) 658 bdwrite(ebp); 659 else 660 bwrite(ebp); 661 } 662 /* 663 * Last, free the old blocks and assign the new blocks to the buffers. 664 */ 665 #ifdef DEBUG 666 if (prtrealloc) 667 printf("\n\tnew:"); 668 #endif 669 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 670 if (!DOINGSOFTDEP(vp)) 671 ffs_blkfree(ump, fs, ip->i_devvp, 672 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 673 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 674 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 675 #ifdef INVARIANTS 676 if (!ffs_checkblk(ip, 677 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 678 panic("ffs_reallocblks: unallocated block 3"); 679 #endif 680 #ifdef DEBUG 681 if (prtrealloc) 682 printf(" %d,", blkno); 683 #endif 684 } 685 #ifdef DEBUG 686 if (prtrealloc) { 687 prtrealloc--; 688 printf("\n"); 689 } 690 #endif 691 return (0); 692 693 fail: 694 if (ssize < len) 695 brelse(ebp); 696 if (sbap != &ip->i_din1->di_db[0]) 697 brelse(sbp); 698 return (ENOSPC); 699 } 700 701 static int 702 ffs_reallocblks_ufs2(ap) 703 struct vop_reallocblks_args /* { 704 struct vnode *a_vp; 705 struct cluster_save *a_buflist; 706 } */ *ap; 707 { 708 struct fs *fs; 709 struct inode *ip; 710 struct vnode *vp; 711 struct buf *sbp, *ebp; 712 ufs2_daddr_t *bap, *sbap, *ebap = 0; 713 struct cluster_save *buflist; 714 struct ufsmount *ump; 715 ufs_lbn_t start_lbn, end_lbn; 716 ufs2_daddr_t soff, newblk, blkno, pref; 717 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 718 int i, len, start_lvl, end_lvl, ssize; 719 720 vp = ap->a_vp; 721 ip = VTOI(vp); 722 fs = ip->i_fs; 723 ump = ip->i_ump; 724 if (fs->fs_contigsumsize <= 0) 725 return (ENOSPC); 726 buflist = ap->a_buflist; 727 len = buflist->bs_nchildren; 728 start_lbn = buflist->bs_children[0]->b_lblkno; 729 end_lbn = start_lbn + len - 1; 730 #ifdef INVARIANTS 731 for (i = 0; i < len; i++) 732 if (!ffs_checkblk(ip, 733 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 734 panic("ffs_reallocblks: unallocated block 1"); 735 for (i = 1; i < len; i++) 736 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 737 panic("ffs_reallocblks: non-logical cluster"); 738 blkno = buflist->bs_children[0]->b_blkno; 739 ssize = fsbtodb(fs, fs->fs_frag); 740 for (i = 1; i < len - 1; i++) 741 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 742 panic("ffs_reallocblks: non-physical cluster %d", i); 743 #endif 744 /* 745 * If the latest allocation is in a new cylinder group, assume that 746 * the filesystem has decided to move and do not force it back to 747 * the previous cylinder group. 748 */ 749 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 750 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 751 return (ENOSPC); 752 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 753 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 754 return (ENOSPC); 755 /* 756 * Get the starting offset and block map for the first block. 757 */ 758 if (start_lvl == 0) { 759 sbap = &ip->i_din2->di_db[0]; 760 soff = start_lbn; 761 } else { 762 idp = &start_ap[start_lvl - 1]; 763 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 764 brelse(sbp); 765 return (ENOSPC); 766 } 767 sbap = (ufs2_daddr_t *)sbp->b_data; 768 soff = idp->in_off; 769 } 770 /* 771 * If the block range spans two block maps, get the second map. 772 */ 773 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 774 ssize = len; 775 } else { 776 #ifdef INVARIANTS 777 if (start_lvl > 0 && 778 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 779 panic("ffs_reallocblk: start == end"); 780 #endif 781 ssize = len - (idp->in_off + 1); 782 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 783 goto fail; 784 ebap = (ufs2_daddr_t *)ebp->b_data; 785 } 786 /* 787 * Find the preferred location for the cluster. 788 */ 789 UFS_LOCK(ump); 790 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 791 /* 792 * Search the block map looking for an allocation of the desired size. 793 */ 794 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 795 len, len, ffs_clusteralloc)) == 0) { 796 UFS_UNLOCK(ump); 797 goto fail; 798 } 799 /* 800 * We have found a new contiguous block. 801 * 802 * First we have to replace the old block pointers with the new 803 * block pointers in the inode and indirect blocks associated 804 * with the file. 805 */ 806 #ifdef DEBUG 807 if (prtrealloc) 808 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 809 (intmax_t)start_lbn, (intmax_t)end_lbn); 810 #endif 811 blkno = newblk; 812 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 813 if (i == ssize) { 814 bap = ebap; 815 soff = -i; 816 } 817 #ifdef INVARIANTS 818 if (!ffs_checkblk(ip, 819 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 820 panic("ffs_reallocblks: unallocated block 2"); 821 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 822 panic("ffs_reallocblks: alloc mismatch"); 823 #endif 824 #ifdef DEBUG 825 if (prtrealloc) 826 printf(" %jd,", (intmax_t)*bap); 827 #endif 828 if (DOINGSOFTDEP(vp)) { 829 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 830 softdep_setup_allocdirect(ip, start_lbn + i, 831 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 832 buflist->bs_children[i]); 833 else 834 softdep_setup_allocindir_page(ip, start_lbn + i, 835 i < ssize ? sbp : ebp, soff + i, blkno, 836 *bap, buflist->bs_children[i]); 837 } 838 *bap++ = blkno; 839 } 840 /* 841 * Next we must write out the modified inode and indirect blocks. 842 * For strict correctness, the writes should be synchronous since 843 * the old block values may have been written to disk. In practise 844 * they are almost never written, but if we are concerned about 845 * strict correctness, the `doasyncfree' flag should be set to zero. 846 * 847 * The test on `doasyncfree' should be changed to test a flag 848 * that shows whether the associated buffers and inodes have 849 * been written. The flag should be set when the cluster is 850 * started and cleared whenever the buffer or inode is flushed. 851 * We can then check below to see if it is set, and do the 852 * synchronous write only when it has been cleared. 853 */ 854 if (sbap != &ip->i_din2->di_db[0]) { 855 if (doasyncfree) 856 bdwrite(sbp); 857 else 858 bwrite(sbp); 859 } else { 860 ip->i_flag |= IN_CHANGE | IN_UPDATE; 861 if (!doasyncfree) 862 ffs_update(vp, 1); 863 } 864 if (ssize < len) { 865 if (doasyncfree) 866 bdwrite(ebp); 867 else 868 bwrite(ebp); 869 } 870 /* 871 * Last, free the old blocks and assign the new blocks to the buffers. 872 */ 873 #ifdef DEBUG 874 if (prtrealloc) 875 printf("\n\tnew:"); 876 #endif 877 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 878 if (!DOINGSOFTDEP(vp)) 879 ffs_blkfree(ump, fs, ip->i_devvp, 880 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 881 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 882 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 883 #ifdef INVARIANTS 884 if (!ffs_checkblk(ip, 885 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 886 panic("ffs_reallocblks: unallocated block 3"); 887 #endif 888 #ifdef DEBUG 889 if (prtrealloc) 890 printf(" %jd,", (intmax_t)blkno); 891 #endif 892 } 893 #ifdef DEBUG 894 if (prtrealloc) { 895 prtrealloc--; 896 printf("\n"); 897 } 898 #endif 899 return (0); 900 901 fail: 902 if (ssize < len) 903 brelse(ebp); 904 if (sbap != &ip->i_din2->di_db[0]) 905 brelse(sbp); 906 return (ENOSPC); 907 } 908 909 /* 910 * Allocate an inode in the filesystem. 911 * 912 * If allocating a directory, use ffs_dirpref to select the inode. 913 * If allocating in a directory, the following hierarchy is followed: 914 * 1) allocate the preferred inode. 915 * 2) allocate an inode in the same cylinder group. 916 * 3) quadradically rehash into other cylinder groups, until an 917 * available inode is located. 918 * If no inode preference is given the following hierarchy is used 919 * to allocate an inode: 920 * 1) allocate an inode in cylinder group 0. 921 * 2) quadradically rehash into other cylinder groups, until an 922 * available inode is located. 923 */ 924 int 925 ffs_valloc(pvp, mode, cred, vpp) 926 struct vnode *pvp; 927 int mode; 928 struct ucred *cred; 929 struct vnode **vpp; 930 { 931 struct inode *pip; 932 struct fs *fs; 933 struct inode *ip; 934 struct timespec ts; 935 struct ufsmount *ump; 936 ino_t ino, ipref; 937 u_int cg; 938 int error, error1, reclaimed; 939 static struct timeval lastfail; 940 static int curfail; 941 942 *vpp = NULL; 943 pip = VTOI(pvp); 944 fs = pip->i_fs; 945 ump = pip->i_ump; 946 947 UFS_LOCK(ump); 948 reclaimed = 0; 949 retry: 950 if (fs->fs_cstotal.cs_nifree == 0) 951 goto noinodes; 952 953 if ((mode & IFMT) == IFDIR) 954 ipref = ffs_dirpref(pip); 955 else 956 ipref = pip->i_number; 957 if (ipref >= fs->fs_ncg * fs->fs_ipg) 958 ipref = 0; 959 cg = ino_to_cg(fs, ipref); 960 /* 961 * Track number of dirs created one after another 962 * in a same cg without intervening by files. 963 */ 964 if ((mode & IFMT) == IFDIR) { 965 if (fs->fs_contigdirs[cg] < 255) 966 fs->fs_contigdirs[cg]++; 967 } else { 968 if (fs->fs_contigdirs[cg] > 0) 969 fs->fs_contigdirs[cg]--; 970 } 971 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 972 (allocfcn_t *)ffs_nodealloccg); 973 if (ino == 0) 974 goto noinodes; 975 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 976 if (error) { 977 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 978 FFSV_FORCEINSMQ); 979 ffs_vfree(pvp, ino, mode); 980 if (error1 == 0) { 981 ip = VTOI(*vpp); 982 if (ip->i_mode) 983 goto dup_alloc; 984 ip->i_flag |= IN_MODIFIED; 985 vput(*vpp); 986 } 987 return (error); 988 } 989 ip = VTOI(*vpp); 990 if (ip->i_mode) { 991 dup_alloc: 992 printf("mode = 0%o, inum = %lu, fs = %s\n", 993 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 994 panic("ffs_valloc: dup alloc"); 995 } 996 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 997 printf("free inode %s/%lu had %ld blocks\n", 998 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 999 DIP_SET(ip, i_blocks, 0); 1000 } 1001 ip->i_flags = 0; 1002 DIP_SET(ip, i_flags, 0); 1003 /* 1004 * Set up a new generation number for this inode. 1005 */ 1006 if (ip->i_gen == 0 || ++ip->i_gen == 0) 1007 ip->i_gen = arc4random() / 2 + 1; 1008 DIP_SET(ip, i_gen, ip->i_gen); 1009 if (fs->fs_magic == FS_UFS2_MAGIC) { 1010 vfs_timestamp(&ts); 1011 ip->i_din2->di_birthtime = ts.tv_sec; 1012 ip->i_din2->di_birthnsec = ts.tv_nsec; 1013 } 1014 ufs_prepare_reclaim(*vpp); 1015 ip->i_flag = 0; 1016 (*vpp)->v_vflag = 0; 1017 (*vpp)->v_type = VNON; 1018 if (fs->fs_magic == FS_UFS2_MAGIC) 1019 (*vpp)->v_op = &ffs_vnodeops2; 1020 else 1021 (*vpp)->v_op = &ffs_vnodeops1; 1022 return (0); 1023 noinodes: 1024 if (reclaimed == 0) { 1025 reclaimed = 1; 1026 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1027 goto retry; 1028 } 1029 UFS_UNLOCK(ump); 1030 if (ppsratecheck(&lastfail, &curfail, 1)) { 1031 ffs_fserr(fs, pip->i_number, "out of inodes"); 1032 uprintf("\n%s: create/symlink failed, no inodes free\n", 1033 fs->fs_fsmnt); 1034 } 1035 return (ENOSPC); 1036 } 1037 1038 /* 1039 * Find a cylinder group to place a directory. 1040 * 1041 * The policy implemented by this algorithm is to allocate a 1042 * directory inode in the same cylinder group as its parent 1043 * directory, but also to reserve space for its files inodes 1044 * and data. Restrict the number of directories which may be 1045 * allocated one after another in the same cylinder group 1046 * without intervening allocation of files. 1047 * 1048 * If we allocate a first level directory then force allocation 1049 * in another cylinder group. 1050 */ 1051 static ino_t 1052 ffs_dirpref(pip) 1053 struct inode *pip; 1054 { 1055 struct fs *fs; 1056 u_int cg, prefcg, dirsize, cgsize; 1057 u_int avgifree, avgbfree, avgndir, curdirsize; 1058 u_int minifree, minbfree, maxndir; 1059 u_int mincg, minndir; 1060 u_int maxcontigdirs; 1061 1062 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1063 fs = pip->i_fs; 1064 1065 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1066 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1067 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1068 1069 /* 1070 * Force allocation in another cg if creating a first level dir. 1071 */ 1072 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1073 if (ITOV(pip)->v_vflag & VV_ROOT) { 1074 prefcg = arc4random() % fs->fs_ncg; 1075 mincg = prefcg; 1076 minndir = fs->fs_ipg; 1077 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1078 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1079 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1080 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1081 mincg = cg; 1082 minndir = fs->fs_cs(fs, cg).cs_ndir; 1083 } 1084 for (cg = 0; cg < prefcg; cg++) 1085 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1086 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1087 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1088 mincg = cg; 1089 minndir = fs->fs_cs(fs, cg).cs_ndir; 1090 } 1091 return ((ino_t)(fs->fs_ipg * mincg)); 1092 } 1093 1094 /* 1095 * Count various limits which used for 1096 * optimal allocation of a directory inode. 1097 */ 1098 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1099 minifree = avgifree - avgifree / 4; 1100 if (minifree < 1) 1101 minifree = 1; 1102 minbfree = avgbfree - avgbfree / 4; 1103 if (minbfree < 1) 1104 minbfree = 1; 1105 cgsize = fs->fs_fsize * fs->fs_fpg; 1106 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1107 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1108 if (dirsize < curdirsize) 1109 dirsize = curdirsize; 1110 if (dirsize <= 0) 1111 maxcontigdirs = 0; /* dirsize overflowed */ 1112 else 1113 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1114 if (fs->fs_avgfpdir > 0) 1115 maxcontigdirs = min(maxcontigdirs, 1116 fs->fs_ipg / fs->fs_avgfpdir); 1117 if (maxcontigdirs == 0) 1118 maxcontigdirs = 1; 1119 1120 /* 1121 * Limit number of dirs in one cg and reserve space for 1122 * regular files, but only if we have no deficit in 1123 * inodes or space. 1124 */ 1125 prefcg = ino_to_cg(fs, pip->i_number); 1126 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1127 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1128 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1129 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1130 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1131 return ((ino_t)(fs->fs_ipg * cg)); 1132 } 1133 for (cg = 0; cg < prefcg; cg++) 1134 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1135 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1136 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1137 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1138 return ((ino_t)(fs->fs_ipg * cg)); 1139 } 1140 /* 1141 * This is a backstop when we have deficit in space. 1142 */ 1143 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1144 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1145 return ((ino_t)(fs->fs_ipg * cg)); 1146 for (cg = 0; cg < prefcg; cg++) 1147 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1148 break; 1149 return ((ino_t)(fs->fs_ipg * cg)); 1150 } 1151 1152 /* 1153 * Select the desired position for the next block in a file. The file is 1154 * logically divided into sections. The first section is composed of the 1155 * direct blocks. Each additional section contains fs_maxbpg blocks. 1156 * 1157 * If no blocks have been allocated in the first section, the policy is to 1158 * request a block in the same cylinder group as the inode that describes 1159 * the file. If no blocks have been allocated in any other section, the 1160 * policy is to place the section in a cylinder group with a greater than 1161 * average number of free blocks. An appropriate cylinder group is found 1162 * by using a rotor that sweeps the cylinder groups. When a new group of 1163 * blocks is needed, the sweep begins in the cylinder group following the 1164 * cylinder group from which the previous allocation was made. The sweep 1165 * continues until a cylinder group with greater than the average number 1166 * of free blocks is found. If the allocation is for the first block in an 1167 * indirect block, the information on the previous allocation is unavailable; 1168 * here a best guess is made based upon the logical block number being 1169 * allocated. 1170 * 1171 * If a section is already partially allocated, the policy is to 1172 * contiguously allocate fs_maxcontig blocks. The end of one of these 1173 * contiguous blocks and the beginning of the next is laid out 1174 * contiguously if possible. 1175 */ 1176 ufs2_daddr_t 1177 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1178 struct inode *ip; 1179 ufs_lbn_t lbn; 1180 int indx; 1181 ufs1_daddr_t *bap; 1182 { 1183 struct fs *fs; 1184 u_int cg; 1185 u_int avgbfree, startcg; 1186 1187 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1188 fs = ip->i_fs; 1189 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1190 if (lbn < NDADDR + NINDIR(fs)) { 1191 cg = ino_to_cg(fs, ip->i_number); 1192 return (cgbase(fs, cg) + fs->fs_frag); 1193 } 1194 /* 1195 * Find a cylinder with greater than average number of 1196 * unused data blocks. 1197 */ 1198 if (indx == 0 || bap[indx - 1] == 0) 1199 startcg = 1200 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1201 else 1202 startcg = dtog(fs, bap[indx - 1]) + 1; 1203 startcg %= fs->fs_ncg; 1204 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1205 for (cg = startcg; cg < fs->fs_ncg; cg++) 1206 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1207 fs->fs_cgrotor = cg; 1208 return (cgbase(fs, cg) + fs->fs_frag); 1209 } 1210 for (cg = 0; cg <= startcg; cg++) 1211 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1212 fs->fs_cgrotor = cg; 1213 return (cgbase(fs, cg) + fs->fs_frag); 1214 } 1215 return (0); 1216 } 1217 /* 1218 * We just always try to lay things out contiguously. 1219 */ 1220 return (bap[indx - 1] + fs->fs_frag); 1221 } 1222 1223 /* 1224 * Same as above, but for UFS2 1225 */ 1226 ufs2_daddr_t 1227 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1228 struct inode *ip; 1229 ufs_lbn_t lbn; 1230 int indx; 1231 ufs2_daddr_t *bap; 1232 { 1233 struct fs *fs; 1234 u_int cg; 1235 u_int avgbfree, startcg; 1236 1237 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1238 fs = ip->i_fs; 1239 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1240 if (lbn < NDADDR + NINDIR(fs)) { 1241 cg = ino_to_cg(fs, ip->i_number); 1242 return (cgbase(fs, cg) + fs->fs_frag); 1243 } 1244 /* 1245 * Find a cylinder with greater than average number of 1246 * unused data blocks. 1247 */ 1248 if (indx == 0 || bap[indx - 1] == 0) 1249 startcg = 1250 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1251 else 1252 startcg = dtog(fs, bap[indx - 1]) + 1; 1253 startcg %= fs->fs_ncg; 1254 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1255 for (cg = startcg; cg < fs->fs_ncg; cg++) 1256 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1257 fs->fs_cgrotor = cg; 1258 return (cgbase(fs, cg) + fs->fs_frag); 1259 } 1260 for (cg = 0; cg <= startcg; cg++) 1261 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1262 fs->fs_cgrotor = cg; 1263 return (cgbase(fs, cg) + fs->fs_frag); 1264 } 1265 return (0); 1266 } 1267 /* 1268 * We just always try to lay things out contiguously. 1269 */ 1270 return (bap[indx - 1] + fs->fs_frag); 1271 } 1272 1273 /* 1274 * Implement the cylinder overflow algorithm. 1275 * 1276 * The policy implemented by this algorithm is: 1277 * 1) allocate the block in its requested cylinder group. 1278 * 2) quadradically rehash on the cylinder group number. 1279 * 3) brute force search for a free block. 1280 * 1281 * Must be called with the UFS lock held. Will release the lock on success 1282 * and return with it held on failure. 1283 */ 1284 /*VARARGS5*/ 1285 static ufs2_daddr_t 1286 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1287 struct inode *ip; 1288 u_int cg; 1289 ufs2_daddr_t pref; 1290 int size; /* Search size for data blocks, mode for inodes */ 1291 int rsize; /* Real allocated size. */ 1292 allocfcn_t *allocator; 1293 { 1294 struct fs *fs; 1295 ufs2_daddr_t result; 1296 u_int i, icg = cg; 1297 1298 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1299 #ifdef INVARIANTS 1300 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1301 panic("ffs_hashalloc: allocation on suspended filesystem"); 1302 #endif 1303 fs = ip->i_fs; 1304 /* 1305 * 1: preferred cylinder group 1306 */ 1307 result = (*allocator)(ip, cg, pref, size, rsize); 1308 if (result) 1309 return (result); 1310 /* 1311 * 2: quadratic rehash 1312 */ 1313 for (i = 1; i < fs->fs_ncg; i *= 2) { 1314 cg += i; 1315 if (cg >= fs->fs_ncg) 1316 cg -= fs->fs_ncg; 1317 result = (*allocator)(ip, cg, 0, size, rsize); 1318 if (result) 1319 return (result); 1320 } 1321 /* 1322 * 3: brute force search 1323 * Note that we start at i == 2, since 0 was checked initially, 1324 * and 1 is always checked in the quadratic rehash. 1325 */ 1326 cg = (icg + 2) % fs->fs_ncg; 1327 for (i = 2; i < fs->fs_ncg; i++) { 1328 result = (*allocator)(ip, cg, 0, size, rsize); 1329 if (result) 1330 return (result); 1331 cg++; 1332 if (cg == fs->fs_ncg) 1333 cg = 0; 1334 } 1335 return (0); 1336 } 1337 1338 /* 1339 * Determine whether a fragment can be extended. 1340 * 1341 * Check to see if the necessary fragments are available, and 1342 * if they are, allocate them. 1343 */ 1344 static ufs2_daddr_t 1345 ffs_fragextend(ip, cg, bprev, osize, nsize) 1346 struct inode *ip; 1347 u_int cg; 1348 ufs2_daddr_t bprev; 1349 int osize, nsize; 1350 { 1351 struct fs *fs; 1352 struct cg *cgp; 1353 struct buf *bp; 1354 struct ufsmount *ump; 1355 int nffree; 1356 long bno; 1357 int frags, bbase; 1358 int i, error; 1359 u_int8_t *blksfree; 1360 1361 ump = ip->i_ump; 1362 fs = ip->i_fs; 1363 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1364 return (0); 1365 frags = numfrags(fs, nsize); 1366 bbase = fragnum(fs, bprev); 1367 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1368 /* cannot extend across a block boundary */ 1369 return (0); 1370 } 1371 UFS_UNLOCK(ump); 1372 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1373 (int)fs->fs_cgsize, NOCRED, &bp); 1374 if (error) 1375 goto fail; 1376 cgp = (struct cg *)bp->b_data; 1377 if (!cg_chkmagic(cgp)) 1378 goto fail; 1379 bp->b_xflags |= BX_BKGRDWRITE; 1380 cgp->cg_old_time = cgp->cg_time = time_second; 1381 bno = dtogd(fs, bprev); 1382 blksfree = cg_blksfree(cgp); 1383 for (i = numfrags(fs, osize); i < frags; i++) 1384 if (isclr(blksfree, bno + i)) 1385 goto fail; 1386 /* 1387 * the current fragment can be extended 1388 * deduct the count on fragment being extended into 1389 * increase the count on the remaining fragment (if any) 1390 * allocate the extended piece 1391 */ 1392 for (i = frags; i < fs->fs_frag - bbase; i++) 1393 if (isclr(blksfree, bno + i)) 1394 break; 1395 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1396 if (i != frags) 1397 cgp->cg_frsum[i - frags]++; 1398 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1399 clrbit(blksfree, bno + i); 1400 cgp->cg_cs.cs_nffree--; 1401 nffree++; 1402 } 1403 UFS_LOCK(ump); 1404 fs->fs_cstotal.cs_nffree -= nffree; 1405 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1406 fs->fs_fmod = 1; 1407 ACTIVECLEAR(fs, cg); 1408 UFS_UNLOCK(ump); 1409 if (DOINGSOFTDEP(ITOV(ip))) 1410 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1411 frags, numfrags(fs, osize)); 1412 bdwrite(bp); 1413 return (bprev); 1414 1415 fail: 1416 brelse(bp); 1417 UFS_LOCK(ump); 1418 return (0); 1419 1420 } 1421 1422 /* 1423 * Determine whether a block can be allocated. 1424 * 1425 * Check to see if a block of the appropriate size is available, 1426 * and if it is, allocate it. 1427 */ 1428 static ufs2_daddr_t 1429 ffs_alloccg(ip, cg, bpref, size, rsize) 1430 struct inode *ip; 1431 u_int cg; 1432 ufs2_daddr_t bpref; 1433 int size; 1434 int rsize; 1435 { 1436 struct fs *fs; 1437 struct cg *cgp; 1438 struct buf *bp; 1439 struct ufsmount *ump; 1440 ufs1_daddr_t bno; 1441 ufs2_daddr_t blkno; 1442 int i, allocsiz, error, frags; 1443 u_int8_t *blksfree; 1444 1445 ump = ip->i_ump; 1446 fs = ip->i_fs; 1447 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1448 return (0); 1449 UFS_UNLOCK(ump); 1450 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1451 (int)fs->fs_cgsize, NOCRED, &bp); 1452 if (error) 1453 goto fail; 1454 cgp = (struct cg *)bp->b_data; 1455 if (!cg_chkmagic(cgp) || 1456 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1457 goto fail; 1458 bp->b_xflags |= BX_BKGRDWRITE; 1459 cgp->cg_old_time = cgp->cg_time = time_second; 1460 if (size == fs->fs_bsize) { 1461 UFS_LOCK(ump); 1462 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1463 ACTIVECLEAR(fs, cg); 1464 UFS_UNLOCK(ump); 1465 bdwrite(bp); 1466 return (blkno); 1467 } 1468 /* 1469 * check to see if any fragments are already available 1470 * allocsiz is the size which will be allocated, hacking 1471 * it down to a smaller size if necessary 1472 */ 1473 blksfree = cg_blksfree(cgp); 1474 frags = numfrags(fs, size); 1475 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1476 if (cgp->cg_frsum[allocsiz] != 0) 1477 break; 1478 if (allocsiz == fs->fs_frag) { 1479 /* 1480 * no fragments were available, so a block will be 1481 * allocated, and hacked up 1482 */ 1483 if (cgp->cg_cs.cs_nbfree == 0) 1484 goto fail; 1485 UFS_LOCK(ump); 1486 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1487 ACTIVECLEAR(fs, cg); 1488 UFS_UNLOCK(ump); 1489 bdwrite(bp); 1490 return (blkno); 1491 } 1492 KASSERT(size == rsize, 1493 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1494 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1495 if (bno < 0) 1496 goto fail; 1497 for (i = 0; i < frags; i++) 1498 clrbit(blksfree, bno + i); 1499 cgp->cg_cs.cs_nffree -= frags; 1500 cgp->cg_frsum[allocsiz]--; 1501 if (frags != allocsiz) 1502 cgp->cg_frsum[allocsiz - frags]++; 1503 UFS_LOCK(ump); 1504 fs->fs_cstotal.cs_nffree -= frags; 1505 fs->fs_cs(fs, cg).cs_nffree -= frags; 1506 fs->fs_fmod = 1; 1507 blkno = cgbase(fs, cg) + bno; 1508 ACTIVECLEAR(fs, cg); 1509 UFS_UNLOCK(ump); 1510 if (DOINGSOFTDEP(ITOV(ip))) 1511 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1512 bdwrite(bp); 1513 return (blkno); 1514 1515 fail: 1516 brelse(bp); 1517 UFS_LOCK(ump); 1518 return (0); 1519 } 1520 1521 /* 1522 * Allocate a block in a cylinder group. 1523 * 1524 * This algorithm implements the following policy: 1525 * 1) allocate the requested block. 1526 * 2) allocate a rotationally optimal block in the same cylinder. 1527 * 3) allocate the next available block on the block rotor for the 1528 * specified cylinder group. 1529 * Note that this routine only allocates fs_bsize blocks; these 1530 * blocks may be fragmented by the routine that allocates them. 1531 */ 1532 static ufs2_daddr_t 1533 ffs_alloccgblk(ip, bp, bpref, size) 1534 struct inode *ip; 1535 struct buf *bp; 1536 ufs2_daddr_t bpref; 1537 int size; 1538 { 1539 struct fs *fs; 1540 struct cg *cgp; 1541 struct ufsmount *ump; 1542 ufs1_daddr_t bno; 1543 ufs2_daddr_t blkno; 1544 u_int8_t *blksfree; 1545 int i; 1546 1547 fs = ip->i_fs; 1548 ump = ip->i_ump; 1549 mtx_assert(UFS_MTX(ump), MA_OWNED); 1550 cgp = (struct cg *)bp->b_data; 1551 blksfree = cg_blksfree(cgp); 1552 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1553 bpref = cgp->cg_rotor; 1554 } else { 1555 bpref = blknum(fs, bpref); 1556 bno = dtogd(fs, bpref); 1557 /* 1558 * if the requested block is available, use it 1559 */ 1560 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1561 goto gotit; 1562 } 1563 /* 1564 * Take the next available block in this cylinder group. 1565 */ 1566 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1567 if (bno < 0) 1568 return (0); 1569 cgp->cg_rotor = bno; 1570 gotit: 1571 blkno = fragstoblks(fs, bno); 1572 ffs_clrblock(fs, blksfree, (long)blkno); 1573 ffs_clusteracct(fs, cgp, blkno, -1); 1574 cgp->cg_cs.cs_nbfree--; 1575 fs->fs_cstotal.cs_nbfree--; 1576 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1577 fs->fs_fmod = 1; 1578 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1579 /* 1580 * If the caller didn't want the whole block free the frags here. 1581 */ 1582 size = numfrags(fs, size); 1583 if (size != fs->fs_frag) { 1584 bno = dtogd(fs, blkno); 1585 for (i = size; i < fs->fs_frag; i++) 1586 setbit(blksfree, bno + i); 1587 i = fs->fs_frag - size; 1588 cgp->cg_cs.cs_nffree += i; 1589 fs->fs_cstotal.cs_nffree += i; 1590 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1591 fs->fs_fmod = 1; 1592 cgp->cg_frsum[i]++; 1593 } 1594 /* XXX Fixme. */ 1595 UFS_UNLOCK(ump); 1596 if (DOINGSOFTDEP(ITOV(ip))) 1597 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1598 size, 0); 1599 UFS_LOCK(ump); 1600 return (blkno); 1601 } 1602 1603 /* 1604 * Determine whether a cluster can be allocated. 1605 * 1606 * We do not currently check for optimal rotational layout if there 1607 * are multiple choices in the same cylinder group. Instead we just 1608 * take the first one that we find following bpref. 1609 */ 1610 static ufs2_daddr_t 1611 ffs_clusteralloc(ip, cg, bpref, len, unused) 1612 struct inode *ip; 1613 u_int cg; 1614 ufs2_daddr_t bpref; 1615 int len; 1616 int unused; 1617 { 1618 struct fs *fs; 1619 struct cg *cgp; 1620 struct buf *bp; 1621 struct ufsmount *ump; 1622 int i, run, bit, map, got; 1623 ufs2_daddr_t bno; 1624 u_char *mapp; 1625 int32_t *lp; 1626 u_int8_t *blksfree; 1627 1628 fs = ip->i_fs; 1629 ump = ip->i_ump; 1630 if (fs->fs_maxcluster[cg] < len) 1631 return (0); 1632 UFS_UNLOCK(ump); 1633 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1634 NOCRED, &bp)) 1635 goto fail_lock; 1636 cgp = (struct cg *)bp->b_data; 1637 if (!cg_chkmagic(cgp)) 1638 goto fail_lock; 1639 bp->b_xflags |= BX_BKGRDWRITE; 1640 /* 1641 * Check to see if a cluster of the needed size (or bigger) is 1642 * available in this cylinder group. 1643 */ 1644 lp = &cg_clustersum(cgp)[len]; 1645 for (i = len; i <= fs->fs_contigsumsize; i++) 1646 if (*lp++ > 0) 1647 break; 1648 if (i > fs->fs_contigsumsize) { 1649 /* 1650 * This is the first time looking for a cluster in this 1651 * cylinder group. Update the cluster summary information 1652 * to reflect the true maximum sized cluster so that 1653 * future cluster allocation requests can avoid reading 1654 * the cylinder group map only to find no clusters. 1655 */ 1656 lp = &cg_clustersum(cgp)[len - 1]; 1657 for (i = len - 1; i > 0; i--) 1658 if (*lp-- > 0) 1659 break; 1660 UFS_LOCK(ump); 1661 fs->fs_maxcluster[cg] = i; 1662 goto fail; 1663 } 1664 /* 1665 * Search the cluster map to find a big enough cluster. 1666 * We take the first one that we find, even if it is larger 1667 * than we need as we prefer to get one close to the previous 1668 * block allocation. We do not search before the current 1669 * preference point as we do not want to allocate a block 1670 * that is allocated before the previous one (as we will 1671 * then have to wait for another pass of the elevator 1672 * algorithm before it will be read). We prefer to fail and 1673 * be recalled to try an allocation in the next cylinder group. 1674 */ 1675 if (dtog(fs, bpref) != cg) 1676 bpref = 0; 1677 else 1678 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1679 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1680 map = *mapp++; 1681 bit = 1 << (bpref % NBBY); 1682 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1683 if ((map & bit) == 0) { 1684 run = 0; 1685 } else { 1686 run++; 1687 if (run == len) 1688 break; 1689 } 1690 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1691 bit <<= 1; 1692 } else { 1693 map = *mapp++; 1694 bit = 1; 1695 } 1696 } 1697 if (got >= cgp->cg_nclusterblks) 1698 goto fail_lock; 1699 /* 1700 * Allocate the cluster that we have found. 1701 */ 1702 blksfree = cg_blksfree(cgp); 1703 for (i = 1; i <= len; i++) 1704 if (!ffs_isblock(fs, blksfree, got - run + i)) 1705 panic("ffs_clusteralloc: map mismatch"); 1706 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1707 if (dtog(fs, bno) != cg) 1708 panic("ffs_clusteralloc: allocated out of group"); 1709 len = blkstofrags(fs, len); 1710 UFS_LOCK(ump); 1711 for (i = 0; i < len; i += fs->fs_frag) 1712 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1713 panic("ffs_clusteralloc: lost block"); 1714 ACTIVECLEAR(fs, cg); 1715 UFS_UNLOCK(ump); 1716 bdwrite(bp); 1717 return (bno); 1718 1719 fail_lock: 1720 UFS_LOCK(ump); 1721 fail: 1722 brelse(bp); 1723 return (0); 1724 } 1725 1726 /* 1727 * Determine whether an inode can be allocated. 1728 * 1729 * Check to see if an inode is available, and if it is, 1730 * allocate it using the following policy: 1731 * 1) allocate the requested inode. 1732 * 2) allocate the next available inode after the requested 1733 * inode in the specified cylinder group. 1734 */ 1735 static ufs2_daddr_t 1736 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1737 struct inode *ip; 1738 u_int cg; 1739 ufs2_daddr_t ipref; 1740 int mode; 1741 int unused; 1742 { 1743 struct fs *fs; 1744 struct cg *cgp; 1745 struct buf *bp, *ibp; 1746 struct ufsmount *ump; 1747 u_int8_t *inosused; 1748 struct ufs2_dinode *dp2; 1749 int error, start, len, loc, map, i; 1750 1751 fs = ip->i_fs; 1752 ump = ip->i_ump; 1753 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1754 return (0); 1755 UFS_UNLOCK(ump); 1756 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1757 (int)fs->fs_cgsize, NOCRED, &bp); 1758 if (error) { 1759 brelse(bp); 1760 UFS_LOCK(ump); 1761 return (0); 1762 } 1763 cgp = (struct cg *)bp->b_data; 1764 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1765 brelse(bp); 1766 UFS_LOCK(ump); 1767 return (0); 1768 } 1769 bp->b_xflags |= BX_BKGRDWRITE; 1770 cgp->cg_old_time = cgp->cg_time = time_second; 1771 inosused = cg_inosused(cgp); 1772 if (ipref) { 1773 ipref %= fs->fs_ipg; 1774 if (isclr(inosused, ipref)) 1775 goto gotit; 1776 } 1777 start = cgp->cg_irotor / NBBY; 1778 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1779 loc = skpc(0xff, len, &inosused[start]); 1780 if (loc == 0) { 1781 len = start + 1; 1782 start = 0; 1783 loc = skpc(0xff, len, &inosused[0]); 1784 if (loc == 0) { 1785 printf("cg = %d, irotor = %ld, fs = %s\n", 1786 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1787 panic("ffs_nodealloccg: map corrupted"); 1788 /* NOTREACHED */ 1789 } 1790 } 1791 i = start + len - loc; 1792 map = inosused[i] ^ 0xff; 1793 if (map == 0) { 1794 printf("fs = %s\n", fs->fs_fsmnt); 1795 panic("ffs_nodealloccg: block not in map"); 1796 } 1797 ipref = i * NBBY + ffs(map) - 1; 1798 cgp->cg_irotor = ipref; 1799 gotit: 1800 /* 1801 * Check to see if we need to initialize more inodes. 1802 */ 1803 ibp = NULL; 1804 if (fs->fs_magic == FS_UFS2_MAGIC && 1805 ipref + INOPB(fs) > cgp->cg_initediblk && 1806 cgp->cg_initediblk < cgp->cg_niblk) { 1807 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1808 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1809 (int)fs->fs_bsize, 0, 0, 0); 1810 bzero(ibp->b_data, (int)fs->fs_bsize); 1811 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1812 for (i = 0; i < INOPB(fs); i++) { 1813 dp2->di_gen = arc4random() / 2 + 1; 1814 dp2++; 1815 } 1816 cgp->cg_initediblk += INOPB(fs); 1817 } 1818 UFS_LOCK(ump); 1819 ACTIVECLEAR(fs, cg); 1820 setbit(inosused, ipref); 1821 cgp->cg_cs.cs_nifree--; 1822 fs->fs_cstotal.cs_nifree--; 1823 fs->fs_cs(fs, cg).cs_nifree--; 1824 fs->fs_fmod = 1; 1825 if ((mode & IFMT) == IFDIR) { 1826 cgp->cg_cs.cs_ndir++; 1827 fs->fs_cstotal.cs_ndir++; 1828 fs->fs_cs(fs, cg).cs_ndir++; 1829 } 1830 UFS_UNLOCK(ump); 1831 if (DOINGSOFTDEP(ITOV(ip))) 1832 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1833 bdwrite(bp); 1834 if (ibp != NULL) 1835 bawrite(ibp); 1836 return ((ino_t)(cg * fs->fs_ipg + ipref)); 1837 } 1838 1839 /* 1840 * Free a block or fragment. 1841 * 1842 * The specified block or fragment is placed back in the 1843 * free map. If a fragment is deallocated, a possible 1844 * block reassembly is checked. 1845 */ 1846 static void 1847 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 1848 struct ufsmount *ump; 1849 struct fs *fs; 1850 struct vnode *devvp; 1851 ufs2_daddr_t bno; 1852 long size; 1853 ino_t inum; 1854 struct workhead *dephd; 1855 { 1856 struct mount *mp; 1857 struct cg *cgp; 1858 struct buf *bp; 1859 ufs1_daddr_t fragno, cgbno; 1860 ufs2_daddr_t cgblkno; 1861 int i, blk, frags, bbase; 1862 u_int cg; 1863 u_int8_t *blksfree; 1864 struct cdev *dev; 1865 1866 cg = dtog(fs, bno); 1867 if (devvp->v_type == VREG) { 1868 /* devvp is a snapshot */ 1869 dev = VTOI(devvp)->i_devvp->v_rdev; 1870 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1871 } else { 1872 /* devvp is a normal disk device */ 1873 dev = devvp->v_rdev; 1874 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1875 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 1876 } 1877 #ifdef INVARIANTS 1878 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1879 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1880 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1881 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1882 size, fs->fs_fsmnt); 1883 panic("ffs_blkfree_cg: bad size"); 1884 } 1885 #endif 1886 if ((u_int)bno >= fs->fs_size) { 1887 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1888 (u_long)inum); 1889 ffs_fserr(fs, inum, "bad block"); 1890 return; 1891 } 1892 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 1893 brelse(bp); 1894 return; 1895 } 1896 cgp = (struct cg *)bp->b_data; 1897 if (!cg_chkmagic(cgp)) { 1898 brelse(bp); 1899 return; 1900 } 1901 bp->b_xflags |= BX_BKGRDWRITE; 1902 cgp->cg_old_time = cgp->cg_time = time_second; 1903 cgbno = dtogd(fs, bno); 1904 blksfree = cg_blksfree(cgp); 1905 UFS_LOCK(ump); 1906 if (size == fs->fs_bsize) { 1907 fragno = fragstoblks(fs, cgbno); 1908 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1909 if (devvp->v_type == VREG) { 1910 UFS_UNLOCK(ump); 1911 /* devvp is a snapshot */ 1912 brelse(bp); 1913 return; 1914 } 1915 printf("dev = %s, block = %jd, fs = %s\n", 1916 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1917 panic("ffs_blkfree_cg: freeing free block"); 1918 } 1919 ffs_setblock(fs, blksfree, fragno); 1920 ffs_clusteracct(fs, cgp, fragno, 1); 1921 cgp->cg_cs.cs_nbfree++; 1922 fs->fs_cstotal.cs_nbfree++; 1923 fs->fs_cs(fs, cg).cs_nbfree++; 1924 } else { 1925 bbase = cgbno - fragnum(fs, cgbno); 1926 /* 1927 * decrement the counts associated with the old frags 1928 */ 1929 blk = blkmap(fs, blksfree, bbase); 1930 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1931 /* 1932 * deallocate the fragment 1933 */ 1934 frags = numfrags(fs, size); 1935 for (i = 0; i < frags; i++) { 1936 if (isset(blksfree, cgbno + i)) { 1937 printf("dev = %s, block = %jd, fs = %s\n", 1938 devtoname(dev), (intmax_t)(bno + i), 1939 fs->fs_fsmnt); 1940 panic("ffs_blkfree_cg: freeing free frag"); 1941 } 1942 setbit(blksfree, cgbno + i); 1943 } 1944 cgp->cg_cs.cs_nffree += i; 1945 fs->fs_cstotal.cs_nffree += i; 1946 fs->fs_cs(fs, cg).cs_nffree += i; 1947 /* 1948 * add back in counts associated with the new frags 1949 */ 1950 blk = blkmap(fs, blksfree, bbase); 1951 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1952 /* 1953 * if a complete block has been reassembled, account for it 1954 */ 1955 fragno = fragstoblks(fs, bbase); 1956 if (ffs_isblock(fs, blksfree, fragno)) { 1957 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1958 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1959 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1960 ffs_clusteracct(fs, cgp, fragno, 1); 1961 cgp->cg_cs.cs_nbfree++; 1962 fs->fs_cstotal.cs_nbfree++; 1963 fs->fs_cs(fs, cg).cs_nbfree++; 1964 } 1965 } 1966 fs->fs_fmod = 1; 1967 ACTIVECLEAR(fs, cg); 1968 UFS_UNLOCK(ump); 1969 mp = UFSTOVFS(ump); 1970 if (mp->mnt_flag & MNT_SOFTDEP && devvp->v_type != VREG) 1971 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 1972 numfrags(fs, size), dephd); 1973 bdwrite(bp); 1974 } 1975 1976 TASKQUEUE_DEFINE_THREAD(ffs_trim); 1977 1978 struct ffs_blkfree_trim_params { 1979 struct task task; 1980 struct ufsmount *ump; 1981 struct vnode *devvp; 1982 ufs2_daddr_t bno; 1983 long size; 1984 ino_t inum; 1985 struct workhead *pdephd; 1986 struct workhead dephd; 1987 }; 1988 1989 static void 1990 ffs_blkfree_trim_task(ctx, pending) 1991 void *ctx; 1992 int pending; 1993 { 1994 struct ffs_blkfree_trim_params *tp; 1995 1996 tp = ctx; 1997 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 1998 tp->inum, tp->pdephd); 1999 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2000 free(tp, M_TEMP); 2001 } 2002 2003 static void 2004 ffs_blkfree_trim_completed(bip) 2005 struct bio *bip; 2006 { 2007 struct ffs_blkfree_trim_params *tp; 2008 2009 tp = bip->bio_caller2; 2010 g_destroy_bio(bip); 2011 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2012 taskqueue_enqueue(taskqueue_ffs_trim, &tp->task); 2013 } 2014 2015 void 2016 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2017 struct ufsmount *ump; 2018 struct fs *fs; 2019 struct vnode *devvp; 2020 ufs2_daddr_t bno; 2021 long size; 2022 ino_t inum; 2023 enum vtype vtype; 2024 struct workhead *dephd; 2025 { 2026 struct mount *mp; 2027 struct bio *bip; 2028 struct ffs_blkfree_trim_params *tp; 2029 2030 /* 2031 * Check to see if a snapshot wants to claim the block. 2032 * Check that devvp is a normal disk device, not a snapshot, 2033 * it has a snapshot(s) associated with it, and one of the 2034 * snapshots wants to claim the block. 2035 */ 2036 if (devvp->v_type != VREG && 2037 (devvp->v_vflag & VV_COPYONWRITE) && 2038 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2039 return; 2040 } 2041 if (!ump->um_candelete) { 2042 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2043 return; 2044 } 2045 2046 /* 2047 * Postpone the set of the free bit in the cg bitmap until the 2048 * BIO_DELETE is completed. Otherwise, due to disk queue 2049 * reordering, TRIM might be issued after we reuse the block 2050 * and write some new data into it. 2051 */ 2052 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2053 tp->ump = ump; 2054 tp->devvp = devvp; 2055 tp->bno = bno; 2056 tp->size = size; 2057 tp->inum = inum; 2058 if (dephd != NULL) { 2059 LIST_INIT(&tp->dephd); 2060 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2061 tp->pdephd = &tp->dephd; 2062 } else 2063 tp->pdephd = NULL; 2064 2065 bip = g_alloc_bio(); 2066 bip->bio_cmd = BIO_DELETE; 2067 bip->bio_offset = dbtob(fsbtodb(fs, bno)); 2068 bip->bio_done = ffs_blkfree_trim_completed; 2069 bip->bio_length = size; 2070 bip->bio_caller2 = tp; 2071 2072 mp = UFSTOVFS(ump); 2073 vn_start_secondary_write(NULL, &mp, 0); 2074 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private); 2075 } 2076 2077 #ifdef INVARIANTS 2078 /* 2079 * Verify allocation of a block or fragment. Returns true if block or 2080 * fragment is allocated, false if it is free. 2081 */ 2082 static int 2083 ffs_checkblk(ip, bno, size) 2084 struct inode *ip; 2085 ufs2_daddr_t bno; 2086 long size; 2087 { 2088 struct fs *fs; 2089 struct cg *cgp; 2090 struct buf *bp; 2091 ufs1_daddr_t cgbno; 2092 int i, error, frags, free; 2093 u_int8_t *blksfree; 2094 2095 fs = ip->i_fs; 2096 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2097 printf("bsize = %ld, size = %ld, fs = %s\n", 2098 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2099 panic("ffs_checkblk: bad size"); 2100 } 2101 if ((u_int)bno >= fs->fs_size) 2102 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2103 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 2104 (int)fs->fs_cgsize, NOCRED, &bp); 2105 if (error) 2106 panic("ffs_checkblk: cg bread failed"); 2107 cgp = (struct cg *)bp->b_data; 2108 if (!cg_chkmagic(cgp)) 2109 panic("ffs_checkblk: cg magic mismatch"); 2110 bp->b_xflags |= BX_BKGRDWRITE; 2111 blksfree = cg_blksfree(cgp); 2112 cgbno = dtogd(fs, bno); 2113 if (size == fs->fs_bsize) { 2114 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2115 } else { 2116 frags = numfrags(fs, size); 2117 for (free = 0, i = 0; i < frags; i++) 2118 if (isset(blksfree, cgbno + i)) 2119 free++; 2120 if (free != 0 && free != frags) 2121 panic("ffs_checkblk: partially free fragment"); 2122 } 2123 brelse(bp); 2124 return (!free); 2125 } 2126 #endif /* INVARIANTS */ 2127 2128 /* 2129 * Free an inode. 2130 */ 2131 int 2132 ffs_vfree(pvp, ino, mode) 2133 struct vnode *pvp; 2134 ino_t ino; 2135 int mode; 2136 { 2137 struct inode *ip; 2138 2139 if (DOINGSOFTDEP(pvp)) { 2140 softdep_freefile(pvp, ino, mode); 2141 return (0); 2142 } 2143 ip = VTOI(pvp); 2144 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode, 2145 NULL)); 2146 } 2147 2148 /* 2149 * Do the actual free operation. 2150 * The specified inode is placed back in the free map. 2151 */ 2152 int 2153 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2154 struct ufsmount *ump; 2155 struct fs *fs; 2156 struct vnode *devvp; 2157 ino_t ino; 2158 int mode; 2159 struct workhead *wkhd; 2160 { 2161 struct cg *cgp; 2162 struct buf *bp; 2163 ufs2_daddr_t cgbno; 2164 int error; 2165 u_int cg; 2166 u_int8_t *inosused; 2167 struct cdev *dev; 2168 2169 cg = ino_to_cg(fs, ino); 2170 if (devvp->v_type == VREG) { 2171 /* devvp is a snapshot */ 2172 dev = VTOI(devvp)->i_devvp->v_rdev; 2173 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2174 } else { 2175 /* devvp is a normal disk device */ 2176 dev = devvp->v_rdev; 2177 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2178 } 2179 if (ino >= fs->fs_ipg * fs->fs_ncg) 2180 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 2181 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 2182 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2183 brelse(bp); 2184 return (error); 2185 } 2186 cgp = (struct cg *)bp->b_data; 2187 if (!cg_chkmagic(cgp)) { 2188 brelse(bp); 2189 return (0); 2190 } 2191 bp->b_xflags |= BX_BKGRDWRITE; 2192 cgp->cg_old_time = cgp->cg_time = time_second; 2193 inosused = cg_inosused(cgp); 2194 ino %= fs->fs_ipg; 2195 if (isclr(inosused, ino)) { 2196 printf("dev = %s, ino = %u, fs = %s\n", devtoname(dev), 2197 ino + cg * fs->fs_ipg, fs->fs_fsmnt); 2198 if (fs->fs_ronly == 0) 2199 panic("ffs_freefile: freeing free inode"); 2200 } 2201 clrbit(inosused, ino); 2202 if (ino < cgp->cg_irotor) 2203 cgp->cg_irotor = ino; 2204 cgp->cg_cs.cs_nifree++; 2205 UFS_LOCK(ump); 2206 fs->fs_cstotal.cs_nifree++; 2207 fs->fs_cs(fs, cg).cs_nifree++; 2208 if ((mode & IFMT) == IFDIR) { 2209 cgp->cg_cs.cs_ndir--; 2210 fs->fs_cstotal.cs_ndir--; 2211 fs->fs_cs(fs, cg).cs_ndir--; 2212 } 2213 fs->fs_fmod = 1; 2214 ACTIVECLEAR(fs, cg); 2215 UFS_UNLOCK(ump); 2216 if (UFSTOVFS(ump)->mnt_flag & MNT_SOFTDEP && devvp->v_type != VREG) 2217 softdep_setup_inofree(UFSTOVFS(ump), bp, 2218 ino + cg * fs->fs_ipg, wkhd); 2219 bdwrite(bp); 2220 return (0); 2221 } 2222 2223 /* 2224 * Check to see if a file is free. 2225 */ 2226 int 2227 ffs_checkfreefile(fs, devvp, ino) 2228 struct fs *fs; 2229 struct vnode *devvp; 2230 ino_t ino; 2231 { 2232 struct cg *cgp; 2233 struct buf *bp; 2234 ufs2_daddr_t cgbno; 2235 int ret; 2236 u_int cg; 2237 u_int8_t *inosused; 2238 2239 cg = ino_to_cg(fs, ino); 2240 if (devvp->v_type == VREG) { 2241 /* devvp is a snapshot */ 2242 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2243 } else { 2244 /* devvp is a normal disk device */ 2245 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2246 } 2247 if (ino >= fs->fs_ipg * fs->fs_ncg) 2248 return (1); 2249 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2250 brelse(bp); 2251 return (1); 2252 } 2253 cgp = (struct cg *)bp->b_data; 2254 if (!cg_chkmagic(cgp)) { 2255 brelse(bp); 2256 return (1); 2257 } 2258 inosused = cg_inosused(cgp); 2259 ino %= fs->fs_ipg; 2260 ret = isclr(inosused, ino); 2261 brelse(bp); 2262 return (ret); 2263 } 2264 2265 /* 2266 * Find a block of the specified size in the specified cylinder group. 2267 * 2268 * It is a panic if a request is made to find a block if none are 2269 * available. 2270 */ 2271 static ufs1_daddr_t 2272 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2273 struct fs *fs; 2274 struct cg *cgp; 2275 ufs2_daddr_t bpref; 2276 int allocsiz; 2277 { 2278 ufs1_daddr_t bno; 2279 int start, len, loc, i; 2280 int blk, field, subfield, pos; 2281 u_int8_t *blksfree; 2282 2283 /* 2284 * find the fragment by searching through the free block 2285 * map for an appropriate bit pattern 2286 */ 2287 if (bpref) 2288 start = dtogd(fs, bpref) / NBBY; 2289 else 2290 start = cgp->cg_frotor / NBBY; 2291 blksfree = cg_blksfree(cgp); 2292 len = howmany(fs->fs_fpg, NBBY) - start; 2293 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2294 fragtbl[fs->fs_frag], 2295 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2296 if (loc == 0) { 2297 len = start + 1; 2298 start = 0; 2299 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2300 fragtbl[fs->fs_frag], 2301 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2302 if (loc == 0) { 2303 printf("start = %d, len = %d, fs = %s\n", 2304 start, len, fs->fs_fsmnt); 2305 panic("ffs_alloccg: map corrupted"); 2306 /* NOTREACHED */ 2307 } 2308 } 2309 bno = (start + len - loc) * NBBY; 2310 cgp->cg_frotor = bno; 2311 /* 2312 * found the byte in the map 2313 * sift through the bits to find the selected frag 2314 */ 2315 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2316 blk = blkmap(fs, blksfree, bno); 2317 blk <<= 1; 2318 field = around[allocsiz]; 2319 subfield = inside[allocsiz]; 2320 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2321 if ((blk & field) == subfield) 2322 return (bno + pos); 2323 field <<= 1; 2324 subfield <<= 1; 2325 } 2326 } 2327 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2328 panic("ffs_alloccg: block not in map"); 2329 return (-1); 2330 } 2331 2332 /* 2333 * Fserr prints the name of a filesystem with an error diagnostic. 2334 * 2335 * The form of the error message is: 2336 * fs: error message 2337 */ 2338 void 2339 ffs_fserr(fs, inum, cp) 2340 struct fs *fs; 2341 ino_t inum; 2342 char *cp; 2343 { 2344 struct thread *td = curthread; /* XXX */ 2345 struct proc *p = td->td_proc; 2346 2347 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2348 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp); 2349 } 2350 2351 /* 2352 * This function provides the capability for the fsck program to 2353 * update an active filesystem. Fourteen operations are provided: 2354 * 2355 * adjrefcnt(inode, amt) - adjusts the reference count on the 2356 * specified inode by the specified amount. Under normal 2357 * operation the count should always go down. Decrementing 2358 * the count to zero will cause the inode to be freed. 2359 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2360 * inode by the specified amount. 2361 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2362 * adjust the superblock summary. 2363 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2364 * are marked as free. Inodes should never have to be marked 2365 * as in use. 2366 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2367 * are marked as free. Inodes should never have to be marked 2368 * as in use. 2369 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2370 * are marked as free. Blocks should never have to be marked 2371 * as in use. 2372 * setflags(flags, set/clear) - the fs_flags field has the specified 2373 * flags set (second parameter +1) or cleared (second parameter -1). 2374 * setcwd(dirinode) - set the current directory to dirinode in the 2375 * filesystem associated with the snapshot. 2376 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2377 * in the current directory is oldvalue then change it to newvalue. 2378 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2379 * with nameptr in the current directory is oldvalue then unlink it. 2380 */ 2381 2382 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2383 2384 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2385 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2386 2387 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2388 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2389 2390 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2391 sysctl_ffs_fsck, "Adjust number of directories"); 2392 2393 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2394 sysctl_ffs_fsck, "Adjust number of free blocks"); 2395 2396 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2397 sysctl_ffs_fsck, "Adjust number of free inodes"); 2398 2399 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2400 sysctl_ffs_fsck, "Adjust number of free frags"); 2401 2402 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2403 sysctl_ffs_fsck, "Adjust number of free clusters"); 2404 2405 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2406 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2407 2408 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2409 sysctl_ffs_fsck, "Free Range of File Inodes"); 2410 2411 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2412 sysctl_ffs_fsck, "Free Range of Blocks"); 2413 2414 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2415 sysctl_ffs_fsck, "Change Filesystem Flags"); 2416 2417 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2418 sysctl_ffs_fsck, "Set Current Working Directory"); 2419 2420 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2421 sysctl_ffs_fsck, "Change Value of .. Entry"); 2422 2423 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2424 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2425 2426 #ifdef DEBUG 2427 static int fsckcmds = 0; 2428 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2429 #endif /* DEBUG */ 2430 2431 static int 2432 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2433 { 2434 struct thread *td = curthread; 2435 struct fsck_cmd cmd; 2436 struct ufsmount *ump; 2437 struct vnode *vp, *vpold, *dvp, *fdvp; 2438 struct inode *ip, *dp; 2439 struct mount *mp; 2440 struct fs *fs; 2441 ufs2_daddr_t blkno; 2442 long blkcnt, blksize; 2443 struct filedesc *fdp; 2444 struct file *fp; 2445 int vfslocked, filetype, error; 2446 2447 if (req->newlen > sizeof cmd) 2448 return (EBADRPC); 2449 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2450 return (error); 2451 if (cmd.version != FFS_CMD_VERSION) 2452 return (ERPCMISMATCH); 2453 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2454 return (error); 2455 vp = fp->f_data; 2456 if (vp->v_type != VREG && vp->v_type != VDIR) { 2457 fdrop(fp, td); 2458 return (EINVAL); 2459 } 2460 vn_start_write(vp, &mp, V_WAIT); 2461 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2462 vn_finished_write(mp); 2463 fdrop(fp, td); 2464 return (EINVAL); 2465 } 2466 if (mp->mnt_flag & MNT_RDONLY) { 2467 vn_finished_write(mp); 2468 fdrop(fp, td); 2469 return (EROFS); 2470 } 2471 ump = VFSTOUFS(mp); 2472 fs = ump->um_fs; 2473 filetype = IFREG; 2474 2475 switch (oidp->oid_number) { 2476 2477 case FFS_SET_FLAGS: 2478 #ifdef DEBUG 2479 if (fsckcmds) 2480 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2481 cmd.size > 0 ? "set" : "clear"); 2482 #endif /* DEBUG */ 2483 if (cmd.size > 0) 2484 fs->fs_flags |= (long)cmd.value; 2485 else 2486 fs->fs_flags &= ~(long)cmd.value; 2487 break; 2488 2489 case FFS_ADJ_REFCNT: 2490 #ifdef DEBUG 2491 if (fsckcmds) { 2492 printf("%s: adjust inode %jd count by %jd\n", 2493 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2494 (intmax_t)cmd.size); 2495 } 2496 #endif /* DEBUG */ 2497 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2498 break; 2499 ip = VTOI(vp); 2500 ip->i_nlink += cmd.size; 2501 DIP_SET(ip, i_nlink, ip->i_nlink); 2502 ip->i_effnlink += cmd.size; 2503 ip->i_flag |= IN_CHANGE; 2504 if (DOINGSOFTDEP(vp)) 2505 softdep_change_linkcnt(ip); 2506 vput(vp); 2507 break; 2508 2509 case FFS_ADJ_BLKCNT: 2510 #ifdef DEBUG 2511 if (fsckcmds) { 2512 printf("%s: adjust inode %jd block count by %jd\n", 2513 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2514 (intmax_t)cmd.size); 2515 } 2516 #endif /* DEBUG */ 2517 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2518 break; 2519 ip = VTOI(vp); 2520 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2521 ip->i_flag |= IN_CHANGE; 2522 vput(vp); 2523 break; 2524 2525 case FFS_DIR_FREE: 2526 filetype = IFDIR; 2527 /* fall through */ 2528 2529 case FFS_FILE_FREE: 2530 #ifdef DEBUG 2531 if (fsckcmds) { 2532 if (cmd.size == 1) 2533 printf("%s: free %s inode %d\n", 2534 mp->mnt_stat.f_mntonname, 2535 filetype == IFDIR ? "directory" : "file", 2536 (ino_t)cmd.value); 2537 else 2538 printf("%s: free %s inodes %d-%d\n", 2539 mp->mnt_stat.f_mntonname, 2540 filetype == IFDIR ? "directory" : "file", 2541 (ino_t)cmd.value, 2542 (ino_t)(cmd.value + cmd.size - 1)); 2543 } 2544 #endif /* DEBUG */ 2545 while (cmd.size > 0) { 2546 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2547 cmd.value, filetype, NULL))) 2548 break; 2549 cmd.size -= 1; 2550 cmd.value += 1; 2551 } 2552 break; 2553 2554 case FFS_BLK_FREE: 2555 #ifdef DEBUG 2556 if (fsckcmds) { 2557 if (cmd.size == 1) 2558 printf("%s: free block %jd\n", 2559 mp->mnt_stat.f_mntonname, 2560 (intmax_t)cmd.value); 2561 else 2562 printf("%s: free blocks %jd-%jd\n", 2563 mp->mnt_stat.f_mntonname, 2564 (intmax_t)cmd.value, 2565 (intmax_t)cmd.value + cmd.size - 1); 2566 } 2567 #endif /* DEBUG */ 2568 blkno = cmd.value; 2569 blkcnt = cmd.size; 2570 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2571 while (blkcnt > 0) { 2572 if (blksize > blkcnt) 2573 blksize = blkcnt; 2574 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2575 blksize * fs->fs_fsize, ROOTINO, VDIR, NULL); 2576 blkno += blksize; 2577 blkcnt -= blksize; 2578 blksize = fs->fs_frag; 2579 } 2580 break; 2581 2582 /* 2583 * Adjust superblock summaries. fsck(8) is expected to 2584 * submit deltas when necessary. 2585 */ 2586 case FFS_ADJ_NDIR: 2587 #ifdef DEBUG 2588 if (fsckcmds) { 2589 printf("%s: adjust number of directories by %jd\n", 2590 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2591 } 2592 #endif /* DEBUG */ 2593 fs->fs_cstotal.cs_ndir += cmd.value; 2594 break; 2595 2596 case FFS_ADJ_NBFREE: 2597 #ifdef DEBUG 2598 if (fsckcmds) { 2599 printf("%s: adjust number of free blocks by %+jd\n", 2600 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2601 } 2602 #endif /* DEBUG */ 2603 fs->fs_cstotal.cs_nbfree += cmd.value; 2604 break; 2605 2606 case FFS_ADJ_NIFREE: 2607 #ifdef DEBUG 2608 if (fsckcmds) { 2609 printf("%s: adjust number of free inodes by %+jd\n", 2610 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2611 } 2612 #endif /* DEBUG */ 2613 fs->fs_cstotal.cs_nifree += cmd.value; 2614 break; 2615 2616 case FFS_ADJ_NFFREE: 2617 #ifdef DEBUG 2618 if (fsckcmds) { 2619 printf("%s: adjust number of free frags by %+jd\n", 2620 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2621 } 2622 #endif /* DEBUG */ 2623 fs->fs_cstotal.cs_nffree += cmd.value; 2624 break; 2625 2626 case FFS_ADJ_NUMCLUSTERS: 2627 #ifdef DEBUG 2628 if (fsckcmds) { 2629 printf("%s: adjust number of free clusters by %+jd\n", 2630 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2631 } 2632 #endif /* DEBUG */ 2633 fs->fs_cstotal.cs_numclusters += cmd.value; 2634 break; 2635 2636 case FFS_SET_CWD: 2637 #ifdef DEBUG 2638 if (fsckcmds) { 2639 printf("%s: set current directory to inode %jd\n", 2640 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2641 } 2642 #endif /* DEBUG */ 2643 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2644 break; 2645 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2646 AUDIT_ARG_VNODE1(vp); 2647 if ((error = change_dir(vp, td)) != 0) { 2648 vput(vp); 2649 VFS_UNLOCK_GIANT(vfslocked); 2650 break; 2651 } 2652 VOP_UNLOCK(vp, 0); 2653 VFS_UNLOCK_GIANT(vfslocked); 2654 fdp = td->td_proc->p_fd; 2655 FILEDESC_XLOCK(fdp); 2656 vpold = fdp->fd_cdir; 2657 fdp->fd_cdir = vp; 2658 FILEDESC_XUNLOCK(fdp); 2659 vfslocked = VFS_LOCK_GIANT(vpold->v_mount); 2660 vrele(vpold); 2661 VFS_UNLOCK_GIANT(vfslocked); 2662 break; 2663 2664 case FFS_SET_DOTDOT: 2665 #ifdef DEBUG 2666 if (fsckcmds) { 2667 printf("%s: change .. in cwd from %jd to %jd\n", 2668 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2669 (intmax_t)cmd.size); 2670 } 2671 #endif /* DEBUG */ 2672 /* 2673 * First we have to get and lock the parent directory 2674 * to which ".." points. 2675 */ 2676 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2677 if (error) 2678 break; 2679 /* 2680 * Now we get and lock the child directory containing "..". 2681 */ 2682 FILEDESC_SLOCK(td->td_proc->p_fd); 2683 dvp = td->td_proc->p_fd->fd_cdir; 2684 FILEDESC_SUNLOCK(td->td_proc->p_fd); 2685 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 2686 vput(fdvp); 2687 break; 2688 } 2689 dp = VTOI(dvp); 2690 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 2691 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 2692 DT_DIR, 0); 2693 cache_purge(fdvp); 2694 cache_purge(dvp); 2695 vput(dvp); 2696 vput(fdvp); 2697 break; 2698 2699 case FFS_UNLINK: 2700 #ifdef DEBUG 2701 if (fsckcmds) { 2702 char buf[32]; 2703 2704 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 2705 strncpy(buf, "Name_too_long", 32); 2706 printf("%s: unlink %s (inode %jd)\n", 2707 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 2708 } 2709 #endif /* DEBUG */ 2710 /* 2711 * kern_unlinkat will do its own start/finish writes and 2712 * they do not nest, so drop ours here. Setting mp == NULL 2713 * indicates that vn_finished_write is not needed down below. 2714 */ 2715 vn_finished_write(mp); 2716 mp = NULL; 2717 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 2718 UIO_USERSPACE, (ino_t)cmd.size); 2719 break; 2720 2721 default: 2722 #ifdef DEBUG 2723 if (fsckcmds) { 2724 printf("Invalid request %d from fsck\n", 2725 oidp->oid_number); 2726 } 2727 #endif /* DEBUG */ 2728 error = EINVAL; 2729 break; 2730 2731 } 2732 fdrop(fp, td); 2733 vn_finished_write(mp); 2734 return (error); 2735 } 2736