1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/capsicum.h> 69 #include <sys/systm.h> 70 #include <sys/bio.h> 71 #include <sys/buf.h> 72 #include <sys/conf.h> 73 #include <sys/fcntl.h> 74 #include <sys/file.h> 75 #include <sys/filedesc.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/vnode.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/syslog.h> 84 #include <sys/taskqueue.h> 85 86 #include <security/audit/audit.h> 87 88 #include <geom/geom.h> 89 90 #include <ufs/ufs/dir.h> 91 #include <ufs/ufs/extattr.h> 92 #include <ufs/ufs/quota.h> 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/ufs_extern.h> 95 #include <ufs/ufs/ufsmount.h> 96 97 #include <ufs/ffs/fs.h> 98 #include <ufs/ffs/ffs_extern.h> 99 #include <ufs/ffs/softdep.h> 100 101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 102 int size, int rsize); 103 104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 105 static ufs2_daddr_t 106 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 107 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 108 struct vnode *, ufs2_daddr_t, long, ino_t, 109 struct workhead *); 110 static void ffs_blkfree_trim_completed(struct bio *); 111 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 112 #ifdef INVARIANTS 113 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 114 #endif 115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int, 116 int); 117 static ino_t ffs_dirpref(struct inode *); 118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 119 int, int); 120 static ufs2_daddr_t ffs_hashalloc 121 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 123 int); 124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 125 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 126 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 127 128 /* 129 * Allocate a block in the filesystem. 130 * 131 * The size of the requested block is given, which must be some 132 * multiple of fs_fsize and <= fs_bsize. 133 * A preference may be optionally specified. If a preference is given 134 * the following hierarchy is used to allocate a block: 135 * 1) allocate the requested block. 136 * 2) allocate a rotationally optimal block in the same cylinder. 137 * 3) allocate a block in the same cylinder group. 138 * 4) quadradically rehash into other cylinder groups, until an 139 * available block is located. 140 * If no block preference is given the following hierarchy is used 141 * to allocate a block: 142 * 1) allocate a block in the cylinder group that contains the 143 * inode for the file. 144 * 2) quadradically rehash into other cylinder groups, until an 145 * available block is located. 146 */ 147 int 148 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 149 struct inode *ip; 150 ufs2_daddr_t lbn, bpref; 151 int size, flags; 152 struct ucred *cred; 153 ufs2_daddr_t *bnp; 154 { 155 struct fs *fs; 156 struct ufsmount *ump; 157 ufs2_daddr_t bno; 158 u_int cg, reclaimed; 159 static struct timeval lastfail; 160 static int curfail; 161 int64_t delta; 162 #ifdef QUOTA 163 int error; 164 #endif 165 166 *bnp = 0; 167 fs = ip->i_fs; 168 ump = ip->i_ump; 169 mtx_assert(UFS_MTX(ump), MA_OWNED); 170 #ifdef INVARIANTS 171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 172 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 173 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 174 fs->fs_fsmnt); 175 panic("ffs_alloc: bad size"); 176 } 177 if (cred == NOCRED) 178 panic("ffs_alloc: missing credential"); 179 #endif /* INVARIANTS */ 180 reclaimed = 0; 181 retry: 182 #ifdef QUOTA 183 UFS_UNLOCK(ump); 184 error = chkdq(ip, btodb(size), cred, 0); 185 if (error) 186 return (error); 187 UFS_LOCK(ump); 188 #endif 189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 190 goto nospace; 191 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 192 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 193 goto nospace; 194 if (bpref >= fs->fs_size) 195 bpref = 0; 196 if (bpref == 0) 197 cg = ino_to_cg(fs, ip->i_number); 198 else 199 cg = dtog(fs, bpref); 200 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 201 if (bno > 0) { 202 delta = btodb(size); 203 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 204 if (flags & IO_EXT) 205 ip->i_flag |= IN_CHANGE; 206 else 207 ip->i_flag |= IN_CHANGE | IN_UPDATE; 208 *bnp = bno; 209 return (0); 210 } 211 nospace: 212 #ifdef QUOTA 213 UFS_UNLOCK(ump); 214 /* 215 * Restore user's disk quota because allocation failed. 216 */ 217 (void) chkdq(ip, -btodb(size), cred, FORCE); 218 UFS_LOCK(ump); 219 #endif 220 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 221 reclaimed = 1; 222 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 223 goto retry; 224 } 225 UFS_UNLOCK(ump); 226 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 227 ffs_fserr(fs, ip->i_number, "filesystem full"); 228 uprintf("\n%s: write failed, filesystem is full\n", 229 fs->fs_fsmnt); 230 } 231 return (ENOSPC); 232 } 233 234 /* 235 * Reallocate a fragment to a bigger size 236 * 237 * The number and size of the old block is given, and a preference 238 * and new size is also specified. The allocator attempts to extend 239 * the original block. Failing that, the regular block allocator is 240 * invoked to get an appropriate block. 241 */ 242 int 243 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 244 struct inode *ip; 245 ufs2_daddr_t lbprev; 246 ufs2_daddr_t bprev; 247 ufs2_daddr_t bpref; 248 int osize, nsize, flags; 249 struct ucred *cred; 250 struct buf **bpp; 251 { 252 struct vnode *vp; 253 struct fs *fs; 254 struct buf *bp; 255 struct ufsmount *ump; 256 u_int cg, request, reclaimed; 257 int error, gbflags; 258 ufs2_daddr_t bno; 259 static struct timeval lastfail; 260 static int curfail; 261 int64_t delta; 262 263 *bpp = 0; 264 vp = ITOV(ip); 265 fs = ip->i_fs; 266 bp = NULL; 267 ump = ip->i_ump; 268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 269 270 mtx_assert(UFS_MTX(ump), MA_OWNED); 271 #ifdef INVARIANTS 272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 273 panic("ffs_realloccg: allocation on suspended filesystem"); 274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 276 printf( 277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 278 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 279 nsize, fs->fs_fsmnt); 280 panic("ffs_realloccg: bad size"); 281 } 282 if (cred == NOCRED) 283 panic("ffs_realloccg: missing credential"); 284 #endif /* INVARIANTS */ 285 reclaimed = 0; 286 retry: 287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 289 goto nospace; 290 } 291 if (bprev == 0) { 292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 293 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 294 fs->fs_fsmnt); 295 panic("ffs_realloccg: bad bprev"); 296 } 297 UFS_UNLOCK(ump); 298 /* 299 * Allocate the extra space in the buffer. 300 */ 301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 302 if (error) { 303 brelse(bp); 304 return (error); 305 } 306 307 if (bp->b_blkno == bp->b_lblkno) { 308 if (lbprev >= NDADDR) 309 panic("ffs_realloccg: lbprev out of range"); 310 bp->b_blkno = fsbtodb(fs, bprev); 311 } 312 313 #ifdef QUOTA 314 error = chkdq(ip, btodb(nsize - osize), cred, 0); 315 if (error) { 316 brelse(bp); 317 return (error); 318 } 319 #endif 320 /* 321 * Check for extension in the existing location. 322 */ 323 cg = dtog(fs, bprev); 324 UFS_LOCK(ump); 325 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 326 if (bno) { 327 if (bp->b_blkno != fsbtodb(fs, bno)) 328 panic("ffs_realloccg: bad blockno"); 329 delta = btodb(nsize - osize); 330 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 331 if (flags & IO_EXT) 332 ip->i_flag |= IN_CHANGE; 333 else 334 ip->i_flag |= IN_CHANGE | IN_UPDATE; 335 allocbuf(bp, nsize); 336 bp->b_flags |= B_DONE; 337 vfs_bio_bzero_buf(bp, osize, nsize - osize); 338 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 339 vfs_bio_set_valid(bp, osize, nsize - osize); 340 *bpp = bp; 341 return (0); 342 } 343 /* 344 * Allocate a new disk location. 345 */ 346 if (bpref >= fs->fs_size) 347 bpref = 0; 348 switch ((int)fs->fs_optim) { 349 case FS_OPTSPACE: 350 /* 351 * Allocate an exact sized fragment. Although this makes 352 * best use of space, we will waste time relocating it if 353 * the file continues to grow. If the fragmentation is 354 * less than half of the minimum free reserve, we choose 355 * to begin optimizing for time. 356 */ 357 request = nsize; 358 if (fs->fs_minfree <= 5 || 359 fs->fs_cstotal.cs_nffree > 360 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 361 break; 362 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 363 fs->fs_fsmnt); 364 fs->fs_optim = FS_OPTTIME; 365 break; 366 case FS_OPTTIME: 367 /* 368 * At this point we have discovered a file that is trying to 369 * grow a small fragment to a larger fragment. To save time, 370 * we allocate a full sized block, then free the unused portion. 371 * If the file continues to grow, the `ffs_fragextend' call 372 * above will be able to grow it in place without further 373 * copying. If aberrant programs cause disk fragmentation to 374 * grow within 2% of the free reserve, we choose to begin 375 * optimizing for space. 376 */ 377 request = fs->fs_bsize; 378 if (fs->fs_cstotal.cs_nffree < 379 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 380 break; 381 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 382 fs->fs_fsmnt); 383 fs->fs_optim = FS_OPTSPACE; 384 break; 385 default: 386 printf("dev = %s, optim = %ld, fs = %s\n", 387 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 388 panic("ffs_realloccg: bad optim"); 389 /* NOTREACHED */ 390 } 391 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 392 if (bno > 0) { 393 bp->b_blkno = fsbtodb(fs, bno); 394 if (!DOINGSOFTDEP(vp)) 395 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 396 ip->i_number, vp->v_type, NULL); 397 delta = btodb(nsize - osize); 398 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 399 if (flags & IO_EXT) 400 ip->i_flag |= IN_CHANGE; 401 else 402 ip->i_flag |= IN_CHANGE | IN_UPDATE; 403 allocbuf(bp, nsize); 404 bp->b_flags |= B_DONE; 405 vfs_bio_bzero_buf(bp, osize, nsize - osize); 406 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 407 vfs_bio_set_valid(bp, osize, nsize - osize); 408 *bpp = bp; 409 return (0); 410 } 411 #ifdef QUOTA 412 UFS_UNLOCK(ump); 413 /* 414 * Restore user's disk quota because allocation failed. 415 */ 416 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 417 UFS_LOCK(ump); 418 #endif 419 nospace: 420 /* 421 * no space available 422 */ 423 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 424 reclaimed = 1; 425 UFS_UNLOCK(ump); 426 if (bp) { 427 brelse(bp); 428 bp = NULL; 429 } 430 UFS_LOCK(ump); 431 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 432 goto retry; 433 } 434 UFS_UNLOCK(ump); 435 if (bp) 436 brelse(bp); 437 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 438 ffs_fserr(fs, ip->i_number, "filesystem full"); 439 uprintf("\n%s: write failed, filesystem is full\n", 440 fs->fs_fsmnt); 441 } 442 return (ENOSPC); 443 } 444 445 /* 446 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 447 * 448 * The vnode and an array of buffer pointers for a range of sequential 449 * logical blocks to be made contiguous is given. The allocator attempts 450 * to find a range of sequential blocks starting as close as possible 451 * from the end of the allocation for the logical block immediately 452 * preceding the current range. If successful, the physical block numbers 453 * in the buffer pointers and in the inode are changed to reflect the new 454 * allocation. If unsuccessful, the allocation is left unchanged. The 455 * success in doing the reallocation is returned. Note that the error 456 * return is not reflected back to the user. Rather the previous block 457 * allocation will be used. 458 */ 459 460 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 461 462 static int doasyncfree = 1; 463 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 464 465 static int doreallocblks = 1; 466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 467 468 #ifdef DEBUG 469 static volatile int prtrealloc = 0; 470 #endif 471 472 int 473 ffs_reallocblks(ap) 474 struct vop_reallocblks_args /* { 475 struct vnode *a_vp; 476 struct cluster_save *a_buflist; 477 } */ *ap; 478 { 479 480 if (doreallocblks == 0) 481 return (ENOSPC); 482 /* 483 * We can't wait in softdep prealloc as it may fsync and recurse 484 * here. Instead we simply fail to reallocate blocks if this 485 * rare condition arises. 486 */ 487 if (DOINGSOFTDEP(ap->a_vp)) 488 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 489 return (ENOSPC); 490 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 491 return (ffs_reallocblks_ufs1(ap)); 492 return (ffs_reallocblks_ufs2(ap)); 493 } 494 495 static int 496 ffs_reallocblks_ufs1(ap) 497 struct vop_reallocblks_args /* { 498 struct vnode *a_vp; 499 struct cluster_save *a_buflist; 500 } */ *ap; 501 { 502 struct fs *fs; 503 struct inode *ip; 504 struct vnode *vp; 505 struct buf *sbp, *ebp; 506 ufs1_daddr_t *bap, *sbap, *ebap = 0; 507 struct cluster_save *buflist; 508 struct ufsmount *ump; 509 ufs_lbn_t start_lbn, end_lbn; 510 ufs1_daddr_t soff, newblk, blkno; 511 ufs2_daddr_t pref; 512 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 513 int i, len, start_lvl, end_lvl, ssize; 514 515 vp = ap->a_vp; 516 ip = VTOI(vp); 517 fs = ip->i_fs; 518 ump = ip->i_ump; 519 /* 520 * If we are not tracking block clusters or if we have less than 4% 521 * free blocks left, then do not attempt to cluster. Running with 522 * less than 5% free block reserve is not recommended and those that 523 * choose to do so do not expect to have good file layout. 524 */ 525 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 526 return (ENOSPC); 527 buflist = ap->a_buflist; 528 len = buflist->bs_nchildren; 529 start_lbn = buflist->bs_children[0]->b_lblkno; 530 end_lbn = start_lbn + len - 1; 531 #ifdef INVARIANTS 532 for (i = 0; i < len; i++) 533 if (!ffs_checkblk(ip, 534 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 535 panic("ffs_reallocblks: unallocated block 1"); 536 for (i = 1; i < len; i++) 537 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 538 panic("ffs_reallocblks: non-logical cluster"); 539 blkno = buflist->bs_children[0]->b_blkno; 540 ssize = fsbtodb(fs, fs->fs_frag); 541 for (i = 1; i < len - 1; i++) 542 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 543 panic("ffs_reallocblks: non-physical cluster %d", i); 544 #endif 545 /* 546 * If the cluster crosses the boundary for the first indirect 547 * block, leave space for the indirect block. Indirect blocks 548 * are initially laid out in a position after the last direct 549 * block. Block reallocation would usually destroy locality by 550 * moving the indirect block out of the way to make room for 551 * data blocks if we didn't compensate here. We should also do 552 * this for other indirect block boundaries, but it is only 553 * important for the first one. 554 */ 555 if (start_lbn < NDADDR && end_lbn >= NDADDR) 556 return (ENOSPC); 557 /* 558 * If the latest allocation is in a new cylinder group, assume that 559 * the filesystem has decided to move and do not force it back to 560 * the previous cylinder group. 561 */ 562 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 563 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 564 return (ENOSPC); 565 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 566 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 567 return (ENOSPC); 568 /* 569 * Get the starting offset and block map for the first block. 570 */ 571 if (start_lvl == 0) { 572 sbap = &ip->i_din1->di_db[0]; 573 soff = start_lbn; 574 } else { 575 idp = &start_ap[start_lvl - 1]; 576 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 577 brelse(sbp); 578 return (ENOSPC); 579 } 580 sbap = (ufs1_daddr_t *)sbp->b_data; 581 soff = idp->in_off; 582 } 583 /* 584 * If the block range spans two block maps, get the second map. 585 */ 586 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 587 ssize = len; 588 } else { 589 #ifdef INVARIANTS 590 if (start_lvl > 0 && 591 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 592 panic("ffs_reallocblk: start == end"); 593 #endif 594 ssize = len - (idp->in_off + 1); 595 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 596 goto fail; 597 ebap = (ufs1_daddr_t *)ebp->b_data; 598 } 599 /* 600 * Find the preferred location for the cluster. 601 */ 602 UFS_LOCK(ump); 603 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 604 /* 605 * Search the block map looking for an allocation of the desired size. 606 */ 607 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 608 len, len, ffs_clusteralloc)) == 0) { 609 UFS_UNLOCK(ump); 610 goto fail; 611 } 612 /* 613 * We have found a new contiguous block. 614 * 615 * First we have to replace the old block pointers with the new 616 * block pointers in the inode and indirect blocks associated 617 * with the file. 618 */ 619 #ifdef DEBUG 620 if (prtrealloc) 621 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 622 (uintmax_t)ip->i_number, 623 (intmax_t)start_lbn, (intmax_t)end_lbn); 624 #endif 625 blkno = newblk; 626 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 627 if (i == ssize) { 628 bap = ebap; 629 soff = -i; 630 } 631 #ifdef INVARIANTS 632 if (!ffs_checkblk(ip, 633 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 634 panic("ffs_reallocblks: unallocated block 2"); 635 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 636 panic("ffs_reallocblks: alloc mismatch"); 637 #endif 638 #ifdef DEBUG 639 if (prtrealloc) 640 printf(" %d,", *bap); 641 #endif 642 if (DOINGSOFTDEP(vp)) { 643 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 644 softdep_setup_allocdirect(ip, start_lbn + i, 645 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 646 buflist->bs_children[i]); 647 else 648 softdep_setup_allocindir_page(ip, start_lbn + i, 649 i < ssize ? sbp : ebp, soff + i, blkno, 650 *bap, buflist->bs_children[i]); 651 } 652 *bap++ = blkno; 653 } 654 /* 655 * Next we must write out the modified inode and indirect blocks. 656 * For strict correctness, the writes should be synchronous since 657 * the old block values may have been written to disk. In practise 658 * they are almost never written, but if we are concerned about 659 * strict correctness, the `doasyncfree' flag should be set to zero. 660 * 661 * The test on `doasyncfree' should be changed to test a flag 662 * that shows whether the associated buffers and inodes have 663 * been written. The flag should be set when the cluster is 664 * started and cleared whenever the buffer or inode is flushed. 665 * We can then check below to see if it is set, and do the 666 * synchronous write only when it has been cleared. 667 */ 668 if (sbap != &ip->i_din1->di_db[0]) { 669 if (doasyncfree) 670 bdwrite(sbp); 671 else 672 bwrite(sbp); 673 } else { 674 ip->i_flag |= IN_CHANGE | IN_UPDATE; 675 if (!doasyncfree) 676 ffs_update(vp, 1); 677 } 678 if (ssize < len) { 679 if (doasyncfree) 680 bdwrite(ebp); 681 else 682 bwrite(ebp); 683 } 684 /* 685 * Last, free the old blocks and assign the new blocks to the buffers. 686 */ 687 #ifdef DEBUG 688 if (prtrealloc) 689 printf("\n\tnew:"); 690 #endif 691 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 692 if (!DOINGSOFTDEP(vp)) 693 ffs_blkfree(ump, fs, ip->i_devvp, 694 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 695 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 696 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 697 #ifdef INVARIANTS 698 if (!ffs_checkblk(ip, 699 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 700 panic("ffs_reallocblks: unallocated block 3"); 701 #endif 702 #ifdef DEBUG 703 if (prtrealloc) 704 printf(" %d,", blkno); 705 #endif 706 } 707 #ifdef DEBUG 708 if (prtrealloc) { 709 prtrealloc--; 710 printf("\n"); 711 } 712 #endif 713 return (0); 714 715 fail: 716 if (ssize < len) 717 brelse(ebp); 718 if (sbap != &ip->i_din1->di_db[0]) 719 brelse(sbp); 720 return (ENOSPC); 721 } 722 723 static int 724 ffs_reallocblks_ufs2(ap) 725 struct vop_reallocblks_args /* { 726 struct vnode *a_vp; 727 struct cluster_save *a_buflist; 728 } */ *ap; 729 { 730 struct fs *fs; 731 struct inode *ip; 732 struct vnode *vp; 733 struct buf *sbp, *ebp; 734 ufs2_daddr_t *bap, *sbap, *ebap = 0; 735 struct cluster_save *buflist; 736 struct ufsmount *ump; 737 ufs_lbn_t start_lbn, end_lbn; 738 ufs2_daddr_t soff, newblk, blkno, pref; 739 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 740 int i, len, start_lvl, end_lvl, ssize; 741 742 vp = ap->a_vp; 743 ip = VTOI(vp); 744 fs = ip->i_fs; 745 ump = ip->i_ump; 746 /* 747 * If we are not tracking block clusters or if we have less than 4% 748 * free blocks left, then do not attempt to cluster. Running with 749 * less than 5% free block reserve is not recommended and those that 750 * choose to do so do not expect to have good file layout. 751 */ 752 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 753 return (ENOSPC); 754 buflist = ap->a_buflist; 755 len = buflist->bs_nchildren; 756 start_lbn = buflist->bs_children[0]->b_lblkno; 757 end_lbn = start_lbn + len - 1; 758 #ifdef INVARIANTS 759 for (i = 0; i < len; i++) 760 if (!ffs_checkblk(ip, 761 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 762 panic("ffs_reallocblks: unallocated block 1"); 763 for (i = 1; i < len; i++) 764 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 765 panic("ffs_reallocblks: non-logical cluster"); 766 blkno = buflist->bs_children[0]->b_blkno; 767 ssize = fsbtodb(fs, fs->fs_frag); 768 for (i = 1; i < len - 1; i++) 769 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 770 panic("ffs_reallocblks: non-physical cluster %d", i); 771 #endif 772 /* 773 * If the cluster crosses the boundary for the first indirect 774 * block, do not move anything in it. Indirect blocks are 775 * usually initially laid out in a position between the data 776 * blocks. Block reallocation would usually destroy locality by 777 * moving the indirect block out of the way to make room for 778 * data blocks if we didn't compensate here. We should also do 779 * this for other indirect block boundaries, but it is only 780 * important for the first one. 781 */ 782 if (start_lbn < NDADDR && end_lbn >= NDADDR) 783 return (ENOSPC); 784 /* 785 * If the latest allocation is in a new cylinder group, assume that 786 * the filesystem has decided to move and do not force it back to 787 * the previous cylinder group. 788 */ 789 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 790 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 791 return (ENOSPC); 792 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 793 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 794 return (ENOSPC); 795 /* 796 * Get the starting offset and block map for the first block. 797 */ 798 if (start_lvl == 0) { 799 sbap = &ip->i_din2->di_db[0]; 800 soff = start_lbn; 801 } else { 802 idp = &start_ap[start_lvl - 1]; 803 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 804 brelse(sbp); 805 return (ENOSPC); 806 } 807 sbap = (ufs2_daddr_t *)sbp->b_data; 808 soff = idp->in_off; 809 } 810 /* 811 * If the block range spans two block maps, get the second map. 812 */ 813 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 814 ssize = len; 815 } else { 816 #ifdef INVARIANTS 817 if (start_lvl > 0 && 818 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 819 panic("ffs_reallocblk: start == end"); 820 #endif 821 ssize = len - (idp->in_off + 1); 822 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 823 goto fail; 824 ebap = (ufs2_daddr_t *)ebp->b_data; 825 } 826 /* 827 * Find the preferred location for the cluster. 828 */ 829 UFS_LOCK(ump); 830 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 831 /* 832 * Search the block map looking for an allocation of the desired size. 833 */ 834 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 835 len, len, ffs_clusteralloc)) == 0) { 836 UFS_UNLOCK(ump); 837 goto fail; 838 } 839 /* 840 * We have found a new contiguous block. 841 * 842 * First we have to replace the old block pointers with the new 843 * block pointers in the inode and indirect blocks associated 844 * with the file. 845 */ 846 #ifdef DEBUG 847 if (prtrealloc) 848 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 849 (intmax_t)start_lbn, (intmax_t)end_lbn); 850 #endif 851 blkno = newblk; 852 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 853 if (i == ssize) { 854 bap = ebap; 855 soff = -i; 856 } 857 #ifdef INVARIANTS 858 if (!ffs_checkblk(ip, 859 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 860 panic("ffs_reallocblks: unallocated block 2"); 861 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 862 panic("ffs_reallocblks: alloc mismatch"); 863 #endif 864 #ifdef DEBUG 865 if (prtrealloc) 866 printf(" %jd,", (intmax_t)*bap); 867 #endif 868 if (DOINGSOFTDEP(vp)) { 869 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 870 softdep_setup_allocdirect(ip, start_lbn + i, 871 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 872 buflist->bs_children[i]); 873 else 874 softdep_setup_allocindir_page(ip, start_lbn + i, 875 i < ssize ? sbp : ebp, soff + i, blkno, 876 *bap, buflist->bs_children[i]); 877 } 878 *bap++ = blkno; 879 } 880 /* 881 * Next we must write out the modified inode and indirect blocks. 882 * For strict correctness, the writes should be synchronous since 883 * the old block values may have been written to disk. In practise 884 * they are almost never written, but if we are concerned about 885 * strict correctness, the `doasyncfree' flag should be set to zero. 886 * 887 * The test on `doasyncfree' should be changed to test a flag 888 * that shows whether the associated buffers and inodes have 889 * been written. The flag should be set when the cluster is 890 * started and cleared whenever the buffer or inode is flushed. 891 * We can then check below to see if it is set, and do the 892 * synchronous write only when it has been cleared. 893 */ 894 if (sbap != &ip->i_din2->di_db[0]) { 895 if (doasyncfree) 896 bdwrite(sbp); 897 else 898 bwrite(sbp); 899 } else { 900 ip->i_flag |= IN_CHANGE | IN_UPDATE; 901 if (!doasyncfree) 902 ffs_update(vp, 1); 903 } 904 if (ssize < len) { 905 if (doasyncfree) 906 bdwrite(ebp); 907 else 908 bwrite(ebp); 909 } 910 /* 911 * Last, free the old blocks and assign the new blocks to the buffers. 912 */ 913 #ifdef DEBUG 914 if (prtrealloc) 915 printf("\n\tnew:"); 916 #endif 917 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 918 if (!DOINGSOFTDEP(vp)) 919 ffs_blkfree(ump, fs, ip->i_devvp, 920 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 921 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 922 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 923 #ifdef INVARIANTS 924 if (!ffs_checkblk(ip, 925 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 926 panic("ffs_reallocblks: unallocated block 3"); 927 #endif 928 #ifdef DEBUG 929 if (prtrealloc) 930 printf(" %jd,", (intmax_t)blkno); 931 #endif 932 } 933 #ifdef DEBUG 934 if (prtrealloc) { 935 prtrealloc--; 936 printf("\n"); 937 } 938 #endif 939 return (0); 940 941 fail: 942 if (ssize < len) 943 brelse(ebp); 944 if (sbap != &ip->i_din2->di_db[0]) 945 brelse(sbp); 946 return (ENOSPC); 947 } 948 949 /* 950 * Allocate an inode in the filesystem. 951 * 952 * If allocating a directory, use ffs_dirpref to select the inode. 953 * If allocating in a directory, the following hierarchy is followed: 954 * 1) allocate the preferred inode. 955 * 2) allocate an inode in the same cylinder group. 956 * 3) quadradically rehash into other cylinder groups, until an 957 * available inode is located. 958 * If no inode preference is given the following hierarchy is used 959 * to allocate an inode: 960 * 1) allocate an inode in cylinder group 0. 961 * 2) quadradically rehash into other cylinder groups, until an 962 * available inode is located. 963 */ 964 int 965 ffs_valloc(pvp, mode, cred, vpp) 966 struct vnode *pvp; 967 int mode; 968 struct ucred *cred; 969 struct vnode **vpp; 970 { 971 struct inode *pip; 972 struct fs *fs; 973 struct inode *ip; 974 struct timespec ts; 975 struct ufsmount *ump; 976 ino_t ino, ipref; 977 u_int cg; 978 int error, error1, reclaimed; 979 static struct timeval lastfail; 980 static int curfail; 981 982 *vpp = NULL; 983 pip = VTOI(pvp); 984 fs = pip->i_fs; 985 ump = pip->i_ump; 986 987 UFS_LOCK(ump); 988 reclaimed = 0; 989 retry: 990 if (fs->fs_cstotal.cs_nifree == 0) 991 goto noinodes; 992 993 if ((mode & IFMT) == IFDIR) 994 ipref = ffs_dirpref(pip); 995 else 996 ipref = pip->i_number; 997 if (ipref >= fs->fs_ncg * fs->fs_ipg) 998 ipref = 0; 999 cg = ino_to_cg(fs, ipref); 1000 /* 1001 * Track number of dirs created one after another 1002 * in a same cg without intervening by files. 1003 */ 1004 if ((mode & IFMT) == IFDIR) { 1005 if (fs->fs_contigdirs[cg] < 255) 1006 fs->fs_contigdirs[cg]++; 1007 } else { 1008 if (fs->fs_contigdirs[cg] > 0) 1009 fs->fs_contigdirs[cg]--; 1010 } 1011 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1012 (allocfcn_t *)ffs_nodealloccg); 1013 if (ino == 0) 1014 goto noinodes; 1015 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1016 if (error) { 1017 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1018 FFSV_FORCEINSMQ); 1019 ffs_vfree(pvp, ino, mode); 1020 if (error1 == 0) { 1021 ip = VTOI(*vpp); 1022 if (ip->i_mode) 1023 goto dup_alloc; 1024 ip->i_flag |= IN_MODIFIED; 1025 vput(*vpp); 1026 } 1027 return (error); 1028 } 1029 ip = VTOI(*vpp); 1030 if (ip->i_mode) { 1031 dup_alloc: 1032 printf("mode = 0%o, inum = %lu, fs = %s\n", 1033 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 1034 panic("ffs_valloc: dup alloc"); 1035 } 1036 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1037 printf("free inode %s/%lu had %ld blocks\n", 1038 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1039 DIP_SET(ip, i_blocks, 0); 1040 } 1041 ip->i_flags = 0; 1042 DIP_SET(ip, i_flags, 0); 1043 /* 1044 * Set up a new generation number for this inode. 1045 */ 1046 if (ip->i_gen == 0 || ++ip->i_gen == 0) 1047 ip->i_gen = arc4random() / 2 + 1; 1048 DIP_SET(ip, i_gen, ip->i_gen); 1049 if (fs->fs_magic == FS_UFS2_MAGIC) { 1050 vfs_timestamp(&ts); 1051 ip->i_din2->di_birthtime = ts.tv_sec; 1052 ip->i_din2->di_birthnsec = ts.tv_nsec; 1053 } 1054 ufs_prepare_reclaim(*vpp); 1055 ip->i_flag = 0; 1056 (*vpp)->v_vflag = 0; 1057 (*vpp)->v_type = VNON; 1058 if (fs->fs_magic == FS_UFS2_MAGIC) 1059 (*vpp)->v_op = &ffs_vnodeops2; 1060 else 1061 (*vpp)->v_op = &ffs_vnodeops1; 1062 return (0); 1063 noinodes: 1064 if (reclaimed == 0) { 1065 reclaimed = 1; 1066 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1067 goto retry; 1068 } 1069 UFS_UNLOCK(ump); 1070 if (ppsratecheck(&lastfail, &curfail, 1)) { 1071 ffs_fserr(fs, pip->i_number, "out of inodes"); 1072 uprintf("\n%s: create/symlink failed, no inodes free\n", 1073 fs->fs_fsmnt); 1074 } 1075 return (ENOSPC); 1076 } 1077 1078 /* 1079 * Find a cylinder group to place a directory. 1080 * 1081 * The policy implemented by this algorithm is to allocate a 1082 * directory inode in the same cylinder group as its parent 1083 * directory, but also to reserve space for its files inodes 1084 * and data. Restrict the number of directories which may be 1085 * allocated one after another in the same cylinder group 1086 * without intervening allocation of files. 1087 * 1088 * If we allocate a first level directory then force allocation 1089 * in another cylinder group. 1090 */ 1091 static ino_t 1092 ffs_dirpref(pip) 1093 struct inode *pip; 1094 { 1095 struct fs *fs; 1096 int cg, prefcg, dirsize, cgsize; 1097 u_int avgifree, avgbfree, avgndir, curdirsize; 1098 u_int minifree, minbfree, maxndir; 1099 u_int mincg, minndir; 1100 u_int maxcontigdirs; 1101 1102 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1103 fs = pip->i_fs; 1104 1105 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1106 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1107 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1108 1109 /* 1110 * Force allocation in another cg if creating a first level dir. 1111 */ 1112 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1113 if (ITOV(pip)->v_vflag & VV_ROOT) { 1114 prefcg = arc4random() % fs->fs_ncg; 1115 mincg = prefcg; 1116 minndir = fs->fs_ipg; 1117 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1118 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1119 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1120 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1121 mincg = cg; 1122 minndir = fs->fs_cs(fs, cg).cs_ndir; 1123 } 1124 for (cg = 0; cg < prefcg; cg++) 1125 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1126 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1127 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1128 mincg = cg; 1129 minndir = fs->fs_cs(fs, cg).cs_ndir; 1130 } 1131 return ((ino_t)(fs->fs_ipg * mincg)); 1132 } 1133 1134 /* 1135 * Count various limits which used for 1136 * optimal allocation of a directory inode. 1137 */ 1138 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1139 minifree = avgifree - avgifree / 4; 1140 if (minifree < 1) 1141 minifree = 1; 1142 minbfree = avgbfree - avgbfree / 4; 1143 if (minbfree < 1) 1144 minbfree = 1; 1145 cgsize = fs->fs_fsize * fs->fs_fpg; 1146 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1147 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1148 if (dirsize < curdirsize) 1149 dirsize = curdirsize; 1150 if (dirsize <= 0) 1151 maxcontigdirs = 0; /* dirsize overflowed */ 1152 else 1153 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1154 if (fs->fs_avgfpdir > 0) 1155 maxcontigdirs = min(maxcontigdirs, 1156 fs->fs_ipg / fs->fs_avgfpdir); 1157 if (maxcontigdirs == 0) 1158 maxcontigdirs = 1; 1159 1160 /* 1161 * Limit number of dirs in one cg and reserve space for 1162 * regular files, but only if we have no deficit in 1163 * inodes or space. 1164 * 1165 * We are trying to find a suitable cylinder group nearby 1166 * our preferred cylinder group to place a new directory. 1167 * We scan from our preferred cylinder group forward looking 1168 * for a cylinder group that meets our criterion. If we get 1169 * to the final cylinder group and do not find anything, 1170 * we start scanning forwards from the beginning of the 1171 * filesystem. While it might seem sensible to start scanning 1172 * backwards or even to alternate looking forward and backward, 1173 * this approach fails badly when the filesystem is nearly full. 1174 * Specifically, we first search all the areas that have no space 1175 * and finally try the one preceeding that. We repeat this on 1176 * every request and in the case of the final block end up 1177 * searching the entire filesystem. By jumping to the front 1178 * of the filesystem, our future forward searches always look 1179 * in new cylinder groups so finds every possible block after 1180 * one pass over the filesystem. 1181 */ 1182 prefcg = ino_to_cg(fs, pip->i_number); 1183 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1184 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1185 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1186 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1187 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1188 return ((ino_t)(fs->fs_ipg * cg)); 1189 } 1190 for (cg = 0; cg < prefcg; cg++) 1191 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1192 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1193 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1194 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1195 return ((ino_t)(fs->fs_ipg * cg)); 1196 } 1197 /* 1198 * This is a backstop when we have deficit in space. 1199 */ 1200 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1201 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1202 return ((ino_t)(fs->fs_ipg * cg)); 1203 for (cg = 0; cg < prefcg; cg++) 1204 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1205 break; 1206 return ((ino_t)(fs->fs_ipg * cg)); 1207 } 1208 1209 /* 1210 * Select the desired position for the next block in a file. The file is 1211 * logically divided into sections. The first section is composed of the 1212 * direct blocks and the next fs_maxbpg blocks. Each additional section 1213 * contains fs_maxbpg blocks. 1214 * 1215 * If no blocks have been allocated in the first section, the policy is to 1216 * request a block in the same cylinder group as the inode that describes 1217 * the file. The first indirect is allocated immediately following the last 1218 * direct block and the data blocks for the first indirect immediately 1219 * follow it. 1220 * 1221 * If no blocks have been allocated in any other section, the indirect 1222 * block(s) are allocated in the same cylinder group as its inode in an 1223 * area reserved immediately following the inode blocks. The policy for 1224 * the data blocks is to place them in a cylinder group with a greater than 1225 * average number of free blocks. An appropriate cylinder group is found 1226 * by using a rotor that sweeps the cylinder groups. When a new group of 1227 * blocks is needed, the sweep begins in the cylinder group following the 1228 * cylinder group from which the previous allocation was made. The sweep 1229 * continues until a cylinder group with greater than the average number 1230 * of free blocks is found. If the allocation is for the first block in an 1231 * indirect block or the previous block is a hole, then the information on 1232 * the previous allocation is unavailable; here a best guess is made based 1233 * on the logical block number being allocated. 1234 * 1235 * If a section is already partially allocated, the policy is to 1236 * allocate blocks contiguously within the section if possible. 1237 */ 1238 ufs2_daddr_t 1239 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1240 struct inode *ip; 1241 ufs_lbn_t lbn; 1242 int indx; 1243 ufs1_daddr_t *bap; 1244 { 1245 struct fs *fs; 1246 u_int cg, inocg; 1247 u_int avgbfree, startcg; 1248 ufs2_daddr_t pref; 1249 1250 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1251 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1252 fs = ip->i_fs; 1253 /* 1254 * Allocation of indirect blocks is indicated by passing negative 1255 * values in indx: -1 for single indirect, -2 for double indirect, 1256 * -3 for triple indirect. As noted below, we attempt to allocate 1257 * the first indirect inline with the file data. For all later 1258 * indirect blocks, the data is often allocated in other cylinder 1259 * groups. However to speed random file access and to speed up 1260 * fsck, the filesystem reserves the first fs_metaspace blocks 1261 * (typically half of fs_minfree) of the data area of each cylinder 1262 * group to hold these later indirect blocks. 1263 */ 1264 inocg = ino_to_cg(fs, ip->i_number); 1265 if (indx < 0) { 1266 /* 1267 * Our preference for indirect blocks is the zone at the 1268 * beginning of the inode's cylinder group data area that 1269 * we try to reserve for indirect blocks. 1270 */ 1271 pref = cgmeta(fs, inocg); 1272 /* 1273 * If we are allocating the first indirect block, try to 1274 * place it immediately following the last direct block. 1275 */ 1276 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1277 ip->i_din1->di_db[NDADDR - 1] != 0) 1278 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag; 1279 return (pref); 1280 } 1281 /* 1282 * If we are allocating the first data block in the first indirect 1283 * block and the indirect has been allocated in the data block area, 1284 * try to place it immediately following the indirect block. 1285 */ 1286 if (lbn == NDADDR) { 1287 pref = ip->i_din1->di_ib[0]; 1288 if (pref != 0 && pref >= cgdata(fs, inocg) && 1289 pref < cgbase(fs, inocg + 1)) 1290 return (pref + fs->fs_frag); 1291 } 1292 /* 1293 * If we are at the beginning of a file, or we have already allocated 1294 * the maximum number of blocks per cylinder group, or we do not 1295 * have a block allocated immediately preceeding us, then we need 1296 * to decide where to start allocating new blocks. 1297 */ 1298 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1299 /* 1300 * If we are allocating a directory data block, we want 1301 * to place it in the metadata area. 1302 */ 1303 if ((ip->i_mode & IFMT) == IFDIR) 1304 return (cgmeta(fs, inocg)); 1305 /* 1306 * Until we fill all the direct and all the first indirect's 1307 * blocks, we try to allocate in the data area of the inode's 1308 * cylinder group. 1309 */ 1310 if (lbn < NDADDR + NINDIR(fs)) 1311 return (cgdata(fs, inocg)); 1312 /* 1313 * Find a cylinder with greater than average number of 1314 * unused data blocks. 1315 */ 1316 if (indx == 0 || bap[indx - 1] == 0) 1317 startcg = inocg + lbn / fs->fs_maxbpg; 1318 else 1319 startcg = dtog(fs, bap[indx - 1]) + 1; 1320 startcg %= fs->fs_ncg; 1321 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1322 for (cg = startcg; cg < fs->fs_ncg; cg++) 1323 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1324 fs->fs_cgrotor = cg; 1325 return (cgdata(fs, cg)); 1326 } 1327 for (cg = 0; cg <= startcg; cg++) 1328 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1329 fs->fs_cgrotor = cg; 1330 return (cgdata(fs, cg)); 1331 } 1332 return (0); 1333 } 1334 /* 1335 * Otherwise, we just always try to lay things out contiguously. 1336 */ 1337 return (bap[indx - 1] + fs->fs_frag); 1338 } 1339 1340 /* 1341 * Same as above, but for UFS2 1342 */ 1343 ufs2_daddr_t 1344 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1345 struct inode *ip; 1346 ufs_lbn_t lbn; 1347 int indx; 1348 ufs2_daddr_t *bap; 1349 { 1350 struct fs *fs; 1351 u_int cg, inocg; 1352 u_int avgbfree, startcg; 1353 ufs2_daddr_t pref; 1354 1355 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1356 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1357 fs = ip->i_fs; 1358 /* 1359 * Allocation of indirect blocks is indicated by passing negative 1360 * values in indx: -1 for single indirect, -2 for double indirect, 1361 * -3 for triple indirect. As noted below, we attempt to allocate 1362 * the first indirect inline with the file data. For all later 1363 * indirect blocks, the data is often allocated in other cylinder 1364 * groups. However to speed random file access and to speed up 1365 * fsck, the filesystem reserves the first fs_metaspace blocks 1366 * (typically half of fs_minfree) of the data area of each cylinder 1367 * group to hold these later indirect blocks. 1368 */ 1369 inocg = ino_to_cg(fs, ip->i_number); 1370 if (indx < 0) { 1371 /* 1372 * Our preference for indirect blocks is the zone at the 1373 * beginning of the inode's cylinder group data area that 1374 * we try to reserve for indirect blocks. 1375 */ 1376 pref = cgmeta(fs, inocg); 1377 /* 1378 * If we are allocating the first indirect block, try to 1379 * place it immediately following the last direct block. 1380 */ 1381 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1382 ip->i_din2->di_db[NDADDR - 1] != 0) 1383 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag; 1384 return (pref); 1385 } 1386 /* 1387 * If we are allocating the first data block in the first indirect 1388 * block and the indirect has been allocated in the data block area, 1389 * try to place it immediately following the indirect block. 1390 */ 1391 if (lbn == NDADDR) { 1392 pref = ip->i_din2->di_ib[0]; 1393 if (pref != 0 && pref >= cgdata(fs, inocg) && 1394 pref < cgbase(fs, inocg + 1)) 1395 return (pref + fs->fs_frag); 1396 } 1397 /* 1398 * If we are at the beginning of a file, or we have already allocated 1399 * the maximum number of blocks per cylinder group, or we do not 1400 * have a block allocated immediately preceeding us, then we need 1401 * to decide where to start allocating new blocks. 1402 */ 1403 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1404 /* 1405 * If we are allocating a directory data block, we want 1406 * to place it in the metadata area. 1407 */ 1408 if ((ip->i_mode & IFMT) == IFDIR) 1409 return (cgmeta(fs, inocg)); 1410 /* 1411 * Until we fill all the direct and all the first indirect's 1412 * blocks, we try to allocate in the data area of the inode's 1413 * cylinder group. 1414 */ 1415 if (lbn < NDADDR + NINDIR(fs)) 1416 return (cgdata(fs, inocg)); 1417 /* 1418 * Find a cylinder with greater than average number of 1419 * unused data blocks. 1420 */ 1421 if (indx == 0 || bap[indx - 1] == 0) 1422 startcg = inocg + lbn / fs->fs_maxbpg; 1423 else 1424 startcg = dtog(fs, bap[indx - 1]) + 1; 1425 startcg %= fs->fs_ncg; 1426 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1427 for (cg = startcg; cg < fs->fs_ncg; cg++) 1428 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1429 fs->fs_cgrotor = cg; 1430 return (cgdata(fs, cg)); 1431 } 1432 for (cg = 0; cg <= startcg; cg++) 1433 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1434 fs->fs_cgrotor = cg; 1435 return (cgdata(fs, cg)); 1436 } 1437 return (0); 1438 } 1439 /* 1440 * Otherwise, we just always try to lay things out contiguously. 1441 */ 1442 return (bap[indx - 1] + fs->fs_frag); 1443 } 1444 1445 /* 1446 * Implement the cylinder overflow algorithm. 1447 * 1448 * The policy implemented by this algorithm is: 1449 * 1) allocate the block in its requested cylinder group. 1450 * 2) quadradically rehash on the cylinder group number. 1451 * 3) brute force search for a free block. 1452 * 1453 * Must be called with the UFS lock held. Will release the lock on success 1454 * and return with it held on failure. 1455 */ 1456 /*VARARGS5*/ 1457 static ufs2_daddr_t 1458 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1459 struct inode *ip; 1460 u_int cg; 1461 ufs2_daddr_t pref; 1462 int size; /* Search size for data blocks, mode for inodes */ 1463 int rsize; /* Real allocated size. */ 1464 allocfcn_t *allocator; 1465 { 1466 struct fs *fs; 1467 ufs2_daddr_t result; 1468 u_int i, icg = cg; 1469 1470 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1471 #ifdef INVARIANTS 1472 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1473 panic("ffs_hashalloc: allocation on suspended filesystem"); 1474 #endif 1475 fs = ip->i_fs; 1476 /* 1477 * 1: preferred cylinder group 1478 */ 1479 result = (*allocator)(ip, cg, pref, size, rsize); 1480 if (result) 1481 return (result); 1482 /* 1483 * 2: quadratic rehash 1484 */ 1485 for (i = 1; i < fs->fs_ncg; i *= 2) { 1486 cg += i; 1487 if (cg >= fs->fs_ncg) 1488 cg -= fs->fs_ncg; 1489 result = (*allocator)(ip, cg, 0, size, rsize); 1490 if (result) 1491 return (result); 1492 } 1493 /* 1494 * 3: brute force search 1495 * Note that we start at i == 2, since 0 was checked initially, 1496 * and 1 is always checked in the quadratic rehash. 1497 */ 1498 cg = (icg + 2) % fs->fs_ncg; 1499 for (i = 2; i < fs->fs_ncg; i++) { 1500 result = (*allocator)(ip, cg, 0, size, rsize); 1501 if (result) 1502 return (result); 1503 cg++; 1504 if (cg == fs->fs_ncg) 1505 cg = 0; 1506 } 1507 return (0); 1508 } 1509 1510 /* 1511 * Determine whether a fragment can be extended. 1512 * 1513 * Check to see if the necessary fragments are available, and 1514 * if they are, allocate them. 1515 */ 1516 static ufs2_daddr_t 1517 ffs_fragextend(ip, cg, bprev, osize, nsize) 1518 struct inode *ip; 1519 u_int cg; 1520 ufs2_daddr_t bprev; 1521 int osize, nsize; 1522 { 1523 struct fs *fs; 1524 struct cg *cgp; 1525 struct buf *bp; 1526 struct ufsmount *ump; 1527 int nffree; 1528 long bno; 1529 int frags, bbase; 1530 int i, error; 1531 u_int8_t *blksfree; 1532 1533 ump = ip->i_ump; 1534 fs = ip->i_fs; 1535 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1536 return (0); 1537 frags = numfrags(fs, nsize); 1538 bbase = fragnum(fs, bprev); 1539 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1540 /* cannot extend across a block boundary */ 1541 return (0); 1542 } 1543 UFS_UNLOCK(ump); 1544 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1545 (int)fs->fs_cgsize, NOCRED, &bp); 1546 if (error) 1547 goto fail; 1548 cgp = (struct cg *)bp->b_data; 1549 if (!cg_chkmagic(cgp)) 1550 goto fail; 1551 bp->b_xflags |= BX_BKGRDWRITE; 1552 cgp->cg_old_time = cgp->cg_time = time_second; 1553 bno = dtogd(fs, bprev); 1554 blksfree = cg_blksfree(cgp); 1555 for (i = numfrags(fs, osize); i < frags; i++) 1556 if (isclr(blksfree, bno + i)) 1557 goto fail; 1558 /* 1559 * the current fragment can be extended 1560 * deduct the count on fragment being extended into 1561 * increase the count on the remaining fragment (if any) 1562 * allocate the extended piece 1563 */ 1564 for (i = frags; i < fs->fs_frag - bbase; i++) 1565 if (isclr(blksfree, bno + i)) 1566 break; 1567 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1568 if (i != frags) 1569 cgp->cg_frsum[i - frags]++; 1570 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1571 clrbit(blksfree, bno + i); 1572 cgp->cg_cs.cs_nffree--; 1573 nffree++; 1574 } 1575 UFS_LOCK(ump); 1576 fs->fs_cstotal.cs_nffree -= nffree; 1577 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1578 fs->fs_fmod = 1; 1579 ACTIVECLEAR(fs, cg); 1580 UFS_UNLOCK(ump); 1581 if (DOINGSOFTDEP(ITOV(ip))) 1582 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1583 frags, numfrags(fs, osize)); 1584 bdwrite(bp); 1585 return (bprev); 1586 1587 fail: 1588 brelse(bp); 1589 UFS_LOCK(ump); 1590 return (0); 1591 1592 } 1593 1594 /* 1595 * Determine whether a block can be allocated. 1596 * 1597 * Check to see if a block of the appropriate size is available, 1598 * and if it is, allocate it. 1599 */ 1600 static ufs2_daddr_t 1601 ffs_alloccg(ip, cg, bpref, size, rsize) 1602 struct inode *ip; 1603 u_int cg; 1604 ufs2_daddr_t bpref; 1605 int size; 1606 int rsize; 1607 { 1608 struct fs *fs; 1609 struct cg *cgp; 1610 struct buf *bp; 1611 struct ufsmount *ump; 1612 ufs1_daddr_t bno; 1613 ufs2_daddr_t blkno; 1614 int i, allocsiz, error, frags; 1615 u_int8_t *blksfree; 1616 1617 ump = ip->i_ump; 1618 fs = ip->i_fs; 1619 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1620 return (0); 1621 UFS_UNLOCK(ump); 1622 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1623 (int)fs->fs_cgsize, NOCRED, &bp); 1624 if (error) 1625 goto fail; 1626 cgp = (struct cg *)bp->b_data; 1627 if (!cg_chkmagic(cgp) || 1628 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1629 goto fail; 1630 bp->b_xflags |= BX_BKGRDWRITE; 1631 cgp->cg_old_time = cgp->cg_time = time_second; 1632 if (size == fs->fs_bsize) { 1633 UFS_LOCK(ump); 1634 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1635 ACTIVECLEAR(fs, cg); 1636 UFS_UNLOCK(ump); 1637 bdwrite(bp); 1638 return (blkno); 1639 } 1640 /* 1641 * check to see if any fragments are already available 1642 * allocsiz is the size which will be allocated, hacking 1643 * it down to a smaller size if necessary 1644 */ 1645 blksfree = cg_blksfree(cgp); 1646 frags = numfrags(fs, size); 1647 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1648 if (cgp->cg_frsum[allocsiz] != 0) 1649 break; 1650 if (allocsiz == fs->fs_frag) { 1651 /* 1652 * no fragments were available, so a block will be 1653 * allocated, and hacked up 1654 */ 1655 if (cgp->cg_cs.cs_nbfree == 0) 1656 goto fail; 1657 UFS_LOCK(ump); 1658 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1659 ACTIVECLEAR(fs, cg); 1660 UFS_UNLOCK(ump); 1661 bdwrite(bp); 1662 return (blkno); 1663 } 1664 KASSERT(size == rsize, 1665 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1666 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1667 if (bno < 0) 1668 goto fail; 1669 for (i = 0; i < frags; i++) 1670 clrbit(blksfree, bno + i); 1671 cgp->cg_cs.cs_nffree -= frags; 1672 cgp->cg_frsum[allocsiz]--; 1673 if (frags != allocsiz) 1674 cgp->cg_frsum[allocsiz - frags]++; 1675 UFS_LOCK(ump); 1676 fs->fs_cstotal.cs_nffree -= frags; 1677 fs->fs_cs(fs, cg).cs_nffree -= frags; 1678 fs->fs_fmod = 1; 1679 blkno = cgbase(fs, cg) + bno; 1680 ACTIVECLEAR(fs, cg); 1681 UFS_UNLOCK(ump); 1682 if (DOINGSOFTDEP(ITOV(ip))) 1683 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1684 bdwrite(bp); 1685 return (blkno); 1686 1687 fail: 1688 brelse(bp); 1689 UFS_LOCK(ump); 1690 return (0); 1691 } 1692 1693 /* 1694 * Allocate a block in a cylinder group. 1695 * 1696 * This algorithm implements the following policy: 1697 * 1) allocate the requested block. 1698 * 2) allocate a rotationally optimal block in the same cylinder. 1699 * 3) allocate the next available block on the block rotor for the 1700 * specified cylinder group. 1701 * Note that this routine only allocates fs_bsize blocks; these 1702 * blocks may be fragmented by the routine that allocates them. 1703 */ 1704 static ufs2_daddr_t 1705 ffs_alloccgblk(ip, bp, bpref, size) 1706 struct inode *ip; 1707 struct buf *bp; 1708 ufs2_daddr_t bpref; 1709 int size; 1710 { 1711 struct fs *fs; 1712 struct cg *cgp; 1713 struct ufsmount *ump; 1714 ufs1_daddr_t bno; 1715 ufs2_daddr_t blkno; 1716 u_int8_t *blksfree; 1717 int i, cgbpref; 1718 1719 fs = ip->i_fs; 1720 ump = ip->i_ump; 1721 mtx_assert(UFS_MTX(ump), MA_OWNED); 1722 cgp = (struct cg *)bp->b_data; 1723 blksfree = cg_blksfree(cgp); 1724 if (bpref == 0) { 1725 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1726 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1727 /* map bpref to correct zone in this cg */ 1728 if (bpref < cgdata(fs, cgbpref)) 1729 bpref = cgmeta(fs, cgp->cg_cgx); 1730 else 1731 bpref = cgdata(fs, cgp->cg_cgx); 1732 } 1733 /* 1734 * if the requested block is available, use it 1735 */ 1736 bno = dtogd(fs, blknum(fs, bpref)); 1737 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1738 goto gotit; 1739 /* 1740 * Take the next available block in this cylinder group. 1741 */ 1742 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1743 if (bno < 0) 1744 return (0); 1745 /* Update cg_rotor only if allocated from the data zone */ 1746 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1747 cgp->cg_rotor = bno; 1748 gotit: 1749 blkno = fragstoblks(fs, bno); 1750 ffs_clrblock(fs, blksfree, (long)blkno); 1751 ffs_clusteracct(fs, cgp, blkno, -1); 1752 cgp->cg_cs.cs_nbfree--; 1753 fs->fs_cstotal.cs_nbfree--; 1754 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1755 fs->fs_fmod = 1; 1756 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1757 /* 1758 * If the caller didn't want the whole block free the frags here. 1759 */ 1760 size = numfrags(fs, size); 1761 if (size != fs->fs_frag) { 1762 bno = dtogd(fs, blkno); 1763 for (i = size; i < fs->fs_frag; i++) 1764 setbit(blksfree, bno + i); 1765 i = fs->fs_frag - size; 1766 cgp->cg_cs.cs_nffree += i; 1767 fs->fs_cstotal.cs_nffree += i; 1768 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1769 fs->fs_fmod = 1; 1770 cgp->cg_frsum[i]++; 1771 } 1772 /* XXX Fixme. */ 1773 UFS_UNLOCK(ump); 1774 if (DOINGSOFTDEP(ITOV(ip))) 1775 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1776 size, 0); 1777 UFS_LOCK(ump); 1778 return (blkno); 1779 } 1780 1781 /* 1782 * Determine whether a cluster can be allocated. 1783 * 1784 * We do not currently check for optimal rotational layout if there 1785 * are multiple choices in the same cylinder group. Instead we just 1786 * take the first one that we find following bpref. 1787 */ 1788 static ufs2_daddr_t 1789 ffs_clusteralloc(ip, cg, bpref, len, unused) 1790 struct inode *ip; 1791 u_int cg; 1792 ufs2_daddr_t bpref; 1793 int len; 1794 int unused; 1795 { 1796 struct fs *fs; 1797 struct cg *cgp; 1798 struct buf *bp; 1799 struct ufsmount *ump; 1800 int i, run, bit, map, got; 1801 ufs2_daddr_t bno; 1802 u_char *mapp; 1803 int32_t *lp; 1804 u_int8_t *blksfree; 1805 1806 fs = ip->i_fs; 1807 ump = ip->i_ump; 1808 if (fs->fs_maxcluster[cg] < len) 1809 return (0); 1810 UFS_UNLOCK(ump); 1811 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1812 NOCRED, &bp)) 1813 goto fail_lock; 1814 cgp = (struct cg *)bp->b_data; 1815 if (!cg_chkmagic(cgp)) 1816 goto fail_lock; 1817 bp->b_xflags |= BX_BKGRDWRITE; 1818 /* 1819 * Check to see if a cluster of the needed size (or bigger) is 1820 * available in this cylinder group. 1821 */ 1822 lp = &cg_clustersum(cgp)[len]; 1823 for (i = len; i <= fs->fs_contigsumsize; i++) 1824 if (*lp++ > 0) 1825 break; 1826 if (i > fs->fs_contigsumsize) { 1827 /* 1828 * This is the first time looking for a cluster in this 1829 * cylinder group. Update the cluster summary information 1830 * to reflect the true maximum sized cluster so that 1831 * future cluster allocation requests can avoid reading 1832 * the cylinder group map only to find no clusters. 1833 */ 1834 lp = &cg_clustersum(cgp)[len - 1]; 1835 for (i = len - 1; i > 0; i--) 1836 if (*lp-- > 0) 1837 break; 1838 UFS_LOCK(ump); 1839 fs->fs_maxcluster[cg] = i; 1840 goto fail; 1841 } 1842 /* 1843 * Search the cluster map to find a big enough cluster. 1844 * We take the first one that we find, even if it is larger 1845 * than we need as we prefer to get one close to the previous 1846 * block allocation. We do not search before the current 1847 * preference point as we do not want to allocate a block 1848 * that is allocated before the previous one (as we will 1849 * then have to wait for another pass of the elevator 1850 * algorithm before it will be read). We prefer to fail and 1851 * be recalled to try an allocation in the next cylinder group. 1852 */ 1853 if (dtog(fs, bpref) != cg) 1854 bpref = cgdata(fs, cg); 1855 else 1856 bpref = blknum(fs, bpref); 1857 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1858 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1859 map = *mapp++; 1860 bit = 1 << (bpref % NBBY); 1861 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1862 if ((map & bit) == 0) { 1863 run = 0; 1864 } else { 1865 run++; 1866 if (run == len) 1867 break; 1868 } 1869 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1870 bit <<= 1; 1871 } else { 1872 map = *mapp++; 1873 bit = 1; 1874 } 1875 } 1876 if (got >= cgp->cg_nclusterblks) 1877 goto fail_lock; 1878 /* 1879 * Allocate the cluster that we have found. 1880 */ 1881 blksfree = cg_blksfree(cgp); 1882 for (i = 1; i <= len; i++) 1883 if (!ffs_isblock(fs, blksfree, got - run + i)) 1884 panic("ffs_clusteralloc: map mismatch"); 1885 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1886 if (dtog(fs, bno) != cg) 1887 panic("ffs_clusteralloc: allocated out of group"); 1888 len = blkstofrags(fs, len); 1889 UFS_LOCK(ump); 1890 for (i = 0; i < len; i += fs->fs_frag) 1891 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1892 panic("ffs_clusteralloc: lost block"); 1893 ACTIVECLEAR(fs, cg); 1894 UFS_UNLOCK(ump); 1895 bdwrite(bp); 1896 return (bno); 1897 1898 fail_lock: 1899 UFS_LOCK(ump); 1900 fail: 1901 brelse(bp); 1902 return (0); 1903 } 1904 1905 static inline struct buf * 1906 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1907 { 1908 struct fs *fs; 1909 1910 fs = ip->i_fs; 1911 return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, 1912 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 1913 gbflags)); 1914 } 1915 1916 /* 1917 * Determine whether an inode can be allocated. 1918 * 1919 * Check to see if an inode is available, and if it is, 1920 * allocate it using the following policy: 1921 * 1) allocate the requested inode. 1922 * 2) allocate the next available inode after the requested 1923 * inode in the specified cylinder group. 1924 */ 1925 static ufs2_daddr_t 1926 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1927 struct inode *ip; 1928 u_int cg; 1929 ufs2_daddr_t ipref; 1930 int mode; 1931 int unused; 1932 { 1933 struct fs *fs; 1934 struct cg *cgp; 1935 struct buf *bp, *ibp; 1936 struct ufsmount *ump; 1937 u_int8_t *inosused, *loc; 1938 struct ufs2_dinode *dp2; 1939 int error, start, len, i; 1940 u_int32_t old_initediblk; 1941 1942 fs = ip->i_fs; 1943 ump = ip->i_ump; 1944 check_nifree: 1945 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1946 return (0); 1947 UFS_UNLOCK(ump); 1948 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1949 (int)fs->fs_cgsize, NOCRED, &bp); 1950 if (error) { 1951 brelse(bp); 1952 UFS_LOCK(ump); 1953 return (0); 1954 } 1955 cgp = (struct cg *)bp->b_data; 1956 restart: 1957 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1958 brelse(bp); 1959 UFS_LOCK(ump); 1960 return (0); 1961 } 1962 bp->b_xflags |= BX_BKGRDWRITE; 1963 inosused = cg_inosused(cgp); 1964 if (ipref) { 1965 ipref %= fs->fs_ipg; 1966 if (isclr(inosused, ipref)) 1967 goto gotit; 1968 } 1969 start = cgp->cg_irotor / NBBY; 1970 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1971 loc = memcchr(&inosused[start], 0xff, len); 1972 if (loc == NULL) { 1973 len = start + 1; 1974 start = 0; 1975 loc = memcchr(&inosused[start], 0xff, len); 1976 if (loc == NULL) { 1977 printf("cg = %d, irotor = %ld, fs = %s\n", 1978 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1979 panic("ffs_nodealloccg: map corrupted"); 1980 /* NOTREACHED */ 1981 } 1982 } 1983 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 1984 gotit: 1985 /* 1986 * Check to see if we need to initialize more inodes. 1987 */ 1988 if (fs->fs_magic == FS_UFS2_MAGIC && 1989 ipref + INOPB(fs) > cgp->cg_initediblk && 1990 cgp->cg_initediblk < cgp->cg_niblk) { 1991 old_initediblk = cgp->cg_initediblk; 1992 1993 /* 1994 * Free the cylinder group lock before writing the 1995 * initialized inode block. Entering the 1996 * babarrierwrite() with the cylinder group lock 1997 * causes lock order violation between the lock and 1998 * snaplk. 1999 * 2000 * Another thread can decide to initialize the same 2001 * inode block, but whichever thread first gets the 2002 * cylinder group lock after writing the newly 2003 * allocated inode block will update it and the other 2004 * will realize that it has lost and leave the 2005 * cylinder group unchanged. 2006 */ 2007 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2008 brelse(bp); 2009 if (ibp == NULL) { 2010 /* 2011 * The inode block buffer is already owned by 2012 * another thread, which must initialize it. 2013 * Wait on the buffer to allow another thread 2014 * to finish the updates, with dropped cg 2015 * buffer lock, then retry. 2016 */ 2017 ibp = getinobuf(ip, cg, old_initediblk, 0); 2018 brelse(ibp); 2019 UFS_LOCK(ump); 2020 goto check_nifree; 2021 } 2022 bzero(ibp->b_data, (int)fs->fs_bsize); 2023 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2024 for (i = 0; i < INOPB(fs); i++) { 2025 dp2->di_gen = arc4random() / 2 + 1; 2026 dp2++; 2027 } 2028 /* 2029 * Rather than adding a soft updates dependency to ensure 2030 * that the new inode block is written before it is claimed 2031 * by the cylinder group map, we just do a barrier write 2032 * here. The barrier write will ensure that the inode block 2033 * gets written before the updated cylinder group map can be 2034 * written. The barrier write should only slow down bulk 2035 * loading of newly created filesystems. 2036 */ 2037 babarrierwrite(ibp); 2038 2039 /* 2040 * After the inode block is written, try to update the 2041 * cg initediblk pointer. If another thread beat us 2042 * to it, then leave it unchanged as the other thread 2043 * has already set it correctly. 2044 */ 2045 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 2046 (int)fs->fs_cgsize, NOCRED, &bp); 2047 UFS_LOCK(ump); 2048 ACTIVECLEAR(fs, cg); 2049 UFS_UNLOCK(ump); 2050 if (error != 0) { 2051 brelse(bp); 2052 return (error); 2053 } 2054 cgp = (struct cg *)bp->b_data; 2055 if (cgp->cg_initediblk == old_initediblk) 2056 cgp->cg_initediblk += INOPB(fs); 2057 goto restart; 2058 } 2059 cgp->cg_old_time = cgp->cg_time = time_second; 2060 cgp->cg_irotor = ipref; 2061 UFS_LOCK(ump); 2062 ACTIVECLEAR(fs, cg); 2063 setbit(inosused, ipref); 2064 cgp->cg_cs.cs_nifree--; 2065 fs->fs_cstotal.cs_nifree--; 2066 fs->fs_cs(fs, cg).cs_nifree--; 2067 fs->fs_fmod = 1; 2068 if ((mode & IFMT) == IFDIR) { 2069 cgp->cg_cs.cs_ndir++; 2070 fs->fs_cstotal.cs_ndir++; 2071 fs->fs_cs(fs, cg).cs_ndir++; 2072 } 2073 UFS_UNLOCK(ump); 2074 if (DOINGSOFTDEP(ITOV(ip))) 2075 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2076 bdwrite(bp); 2077 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2078 } 2079 2080 /* 2081 * Free a block or fragment. 2082 * 2083 * The specified block or fragment is placed back in the 2084 * free map. If a fragment is deallocated, a possible 2085 * block reassembly is checked. 2086 */ 2087 static void 2088 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2089 struct ufsmount *ump; 2090 struct fs *fs; 2091 struct vnode *devvp; 2092 ufs2_daddr_t bno; 2093 long size; 2094 ino_t inum; 2095 struct workhead *dephd; 2096 { 2097 struct mount *mp; 2098 struct cg *cgp; 2099 struct buf *bp; 2100 ufs1_daddr_t fragno, cgbno; 2101 ufs2_daddr_t cgblkno; 2102 int i, blk, frags, bbase; 2103 u_int cg; 2104 u_int8_t *blksfree; 2105 struct cdev *dev; 2106 2107 cg = dtog(fs, bno); 2108 if (devvp->v_type == VREG) { 2109 /* devvp is a snapshot */ 2110 dev = VTOI(devvp)->i_devvp->v_rdev; 2111 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 2112 } else { 2113 /* devvp is a normal disk device */ 2114 dev = devvp->v_rdev; 2115 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 2116 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2117 } 2118 #ifdef INVARIANTS 2119 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2120 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2121 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2122 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2123 size, fs->fs_fsmnt); 2124 panic("ffs_blkfree_cg: bad size"); 2125 } 2126 #endif 2127 if ((u_int)bno >= fs->fs_size) { 2128 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2129 (u_long)inum); 2130 ffs_fserr(fs, inum, "bad block"); 2131 return; 2132 } 2133 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2134 brelse(bp); 2135 return; 2136 } 2137 cgp = (struct cg *)bp->b_data; 2138 if (!cg_chkmagic(cgp)) { 2139 brelse(bp); 2140 return; 2141 } 2142 bp->b_xflags |= BX_BKGRDWRITE; 2143 cgp->cg_old_time = cgp->cg_time = time_second; 2144 cgbno = dtogd(fs, bno); 2145 blksfree = cg_blksfree(cgp); 2146 UFS_LOCK(ump); 2147 if (size == fs->fs_bsize) { 2148 fragno = fragstoblks(fs, cgbno); 2149 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2150 if (devvp->v_type == VREG) { 2151 UFS_UNLOCK(ump); 2152 /* devvp is a snapshot */ 2153 brelse(bp); 2154 return; 2155 } 2156 printf("dev = %s, block = %jd, fs = %s\n", 2157 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2158 panic("ffs_blkfree_cg: freeing free block"); 2159 } 2160 ffs_setblock(fs, blksfree, fragno); 2161 ffs_clusteracct(fs, cgp, fragno, 1); 2162 cgp->cg_cs.cs_nbfree++; 2163 fs->fs_cstotal.cs_nbfree++; 2164 fs->fs_cs(fs, cg).cs_nbfree++; 2165 } else { 2166 bbase = cgbno - fragnum(fs, cgbno); 2167 /* 2168 * decrement the counts associated with the old frags 2169 */ 2170 blk = blkmap(fs, blksfree, bbase); 2171 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2172 /* 2173 * deallocate the fragment 2174 */ 2175 frags = numfrags(fs, size); 2176 for (i = 0; i < frags; i++) { 2177 if (isset(blksfree, cgbno + i)) { 2178 printf("dev = %s, block = %jd, fs = %s\n", 2179 devtoname(dev), (intmax_t)(bno + i), 2180 fs->fs_fsmnt); 2181 panic("ffs_blkfree_cg: freeing free frag"); 2182 } 2183 setbit(blksfree, cgbno + i); 2184 } 2185 cgp->cg_cs.cs_nffree += i; 2186 fs->fs_cstotal.cs_nffree += i; 2187 fs->fs_cs(fs, cg).cs_nffree += i; 2188 /* 2189 * add back in counts associated with the new frags 2190 */ 2191 blk = blkmap(fs, blksfree, bbase); 2192 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2193 /* 2194 * if a complete block has been reassembled, account for it 2195 */ 2196 fragno = fragstoblks(fs, bbase); 2197 if (ffs_isblock(fs, blksfree, fragno)) { 2198 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2199 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2200 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2201 ffs_clusteracct(fs, cgp, fragno, 1); 2202 cgp->cg_cs.cs_nbfree++; 2203 fs->fs_cstotal.cs_nbfree++; 2204 fs->fs_cs(fs, cg).cs_nbfree++; 2205 } 2206 } 2207 fs->fs_fmod = 1; 2208 ACTIVECLEAR(fs, cg); 2209 UFS_UNLOCK(ump); 2210 mp = UFSTOVFS(ump); 2211 if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG) 2212 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2213 numfrags(fs, size), dephd); 2214 bdwrite(bp); 2215 } 2216 2217 TASKQUEUE_DEFINE_THREAD(ffs_trim); 2218 2219 struct ffs_blkfree_trim_params { 2220 struct task task; 2221 struct ufsmount *ump; 2222 struct vnode *devvp; 2223 ufs2_daddr_t bno; 2224 long size; 2225 ino_t inum; 2226 struct workhead *pdephd; 2227 struct workhead dephd; 2228 }; 2229 2230 static void 2231 ffs_blkfree_trim_task(ctx, pending) 2232 void *ctx; 2233 int pending; 2234 { 2235 struct ffs_blkfree_trim_params *tp; 2236 2237 tp = ctx; 2238 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2239 tp->inum, tp->pdephd); 2240 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2241 free(tp, M_TEMP); 2242 } 2243 2244 static void 2245 ffs_blkfree_trim_completed(bip) 2246 struct bio *bip; 2247 { 2248 struct ffs_blkfree_trim_params *tp; 2249 2250 tp = bip->bio_caller2; 2251 g_destroy_bio(bip); 2252 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2253 taskqueue_enqueue(taskqueue_ffs_trim, &tp->task); 2254 } 2255 2256 void 2257 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2258 struct ufsmount *ump; 2259 struct fs *fs; 2260 struct vnode *devvp; 2261 ufs2_daddr_t bno; 2262 long size; 2263 ino_t inum; 2264 enum vtype vtype; 2265 struct workhead *dephd; 2266 { 2267 struct mount *mp; 2268 struct bio *bip; 2269 struct ffs_blkfree_trim_params *tp; 2270 2271 /* 2272 * Check to see if a snapshot wants to claim the block. 2273 * Check that devvp is a normal disk device, not a snapshot, 2274 * it has a snapshot(s) associated with it, and one of the 2275 * snapshots wants to claim the block. 2276 */ 2277 if (devvp->v_type != VREG && 2278 (devvp->v_vflag & VV_COPYONWRITE) && 2279 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2280 return; 2281 } 2282 /* 2283 * Nothing to delay if TRIM is disabled, or the operation is 2284 * performed on the snapshot. 2285 */ 2286 if (!ump->um_candelete || devvp->v_type == VREG) { 2287 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2288 return; 2289 } 2290 2291 /* 2292 * Postpone the set of the free bit in the cg bitmap until the 2293 * BIO_DELETE is completed. Otherwise, due to disk queue 2294 * reordering, TRIM might be issued after we reuse the block 2295 * and write some new data into it. 2296 */ 2297 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2298 tp->ump = ump; 2299 tp->devvp = devvp; 2300 tp->bno = bno; 2301 tp->size = size; 2302 tp->inum = inum; 2303 if (dephd != NULL) { 2304 LIST_INIT(&tp->dephd); 2305 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2306 tp->pdephd = &tp->dephd; 2307 } else 2308 tp->pdephd = NULL; 2309 2310 bip = g_alloc_bio(); 2311 bip->bio_cmd = BIO_DELETE; 2312 bip->bio_offset = dbtob(fsbtodb(fs, bno)); 2313 bip->bio_done = ffs_blkfree_trim_completed; 2314 bip->bio_length = size; 2315 bip->bio_caller2 = tp; 2316 2317 mp = UFSTOVFS(ump); 2318 vn_start_secondary_write(NULL, &mp, 0); 2319 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private); 2320 } 2321 2322 #ifdef INVARIANTS 2323 /* 2324 * Verify allocation of a block or fragment. Returns true if block or 2325 * fragment is allocated, false if it is free. 2326 */ 2327 static int 2328 ffs_checkblk(ip, bno, size) 2329 struct inode *ip; 2330 ufs2_daddr_t bno; 2331 long size; 2332 { 2333 struct fs *fs; 2334 struct cg *cgp; 2335 struct buf *bp; 2336 ufs1_daddr_t cgbno; 2337 int i, error, frags, free; 2338 u_int8_t *blksfree; 2339 2340 fs = ip->i_fs; 2341 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2342 printf("bsize = %ld, size = %ld, fs = %s\n", 2343 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2344 panic("ffs_checkblk: bad size"); 2345 } 2346 if ((u_int)bno >= fs->fs_size) 2347 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2348 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 2349 (int)fs->fs_cgsize, NOCRED, &bp); 2350 if (error) 2351 panic("ffs_checkblk: cg bread failed"); 2352 cgp = (struct cg *)bp->b_data; 2353 if (!cg_chkmagic(cgp)) 2354 panic("ffs_checkblk: cg magic mismatch"); 2355 bp->b_xflags |= BX_BKGRDWRITE; 2356 blksfree = cg_blksfree(cgp); 2357 cgbno = dtogd(fs, bno); 2358 if (size == fs->fs_bsize) { 2359 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2360 } else { 2361 frags = numfrags(fs, size); 2362 for (free = 0, i = 0; i < frags; i++) 2363 if (isset(blksfree, cgbno + i)) 2364 free++; 2365 if (free != 0 && free != frags) 2366 panic("ffs_checkblk: partially free fragment"); 2367 } 2368 brelse(bp); 2369 return (!free); 2370 } 2371 #endif /* INVARIANTS */ 2372 2373 /* 2374 * Free an inode. 2375 */ 2376 int 2377 ffs_vfree(pvp, ino, mode) 2378 struct vnode *pvp; 2379 ino_t ino; 2380 int mode; 2381 { 2382 struct inode *ip; 2383 2384 if (DOINGSOFTDEP(pvp)) { 2385 softdep_freefile(pvp, ino, mode); 2386 return (0); 2387 } 2388 ip = VTOI(pvp); 2389 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode, 2390 NULL)); 2391 } 2392 2393 /* 2394 * Do the actual free operation. 2395 * The specified inode is placed back in the free map. 2396 */ 2397 int 2398 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2399 struct ufsmount *ump; 2400 struct fs *fs; 2401 struct vnode *devvp; 2402 ino_t ino; 2403 int mode; 2404 struct workhead *wkhd; 2405 { 2406 struct cg *cgp; 2407 struct buf *bp; 2408 ufs2_daddr_t cgbno; 2409 int error; 2410 u_int cg; 2411 u_int8_t *inosused; 2412 struct cdev *dev; 2413 2414 cg = ino_to_cg(fs, ino); 2415 if (devvp->v_type == VREG) { 2416 /* devvp is a snapshot */ 2417 dev = VTOI(devvp)->i_devvp->v_rdev; 2418 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2419 } else { 2420 /* devvp is a normal disk device */ 2421 dev = devvp->v_rdev; 2422 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2423 } 2424 if (ino >= fs->fs_ipg * fs->fs_ncg) 2425 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2426 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2427 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2428 brelse(bp); 2429 return (error); 2430 } 2431 cgp = (struct cg *)bp->b_data; 2432 if (!cg_chkmagic(cgp)) { 2433 brelse(bp); 2434 return (0); 2435 } 2436 bp->b_xflags |= BX_BKGRDWRITE; 2437 cgp->cg_old_time = cgp->cg_time = time_second; 2438 inosused = cg_inosused(cgp); 2439 ino %= fs->fs_ipg; 2440 if (isclr(inosused, ino)) { 2441 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2442 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2443 if (fs->fs_ronly == 0) 2444 panic("ffs_freefile: freeing free inode"); 2445 } 2446 clrbit(inosused, ino); 2447 if (ino < cgp->cg_irotor) 2448 cgp->cg_irotor = ino; 2449 cgp->cg_cs.cs_nifree++; 2450 UFS_LOCK(ump); 2451 fs->fs_cstotal.cs_nifree++; 2452 fs->fs_cs(fs, cg).cs_nifree++; 2453 if ((mode & IFMT) == IFDIR) { 2454 cgp->cg_cs.cs_ndir--; 2455 fs->fs_cstotal.cs_ndir--; 2456 fs->fs_cs(fs, cg).cs_ndir--; 2457 } 2458 fs->fs_fmod = 1; 2459 ACTIVECLEAR(fs, cg); 2460 UFS_UNLOCK(ump); 2461 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG) 2462 softdep_setup_inofree(UFSTOVFS(ump), bp, 2463 ino + cg * fs->fs_ipg, wkhd); 2464 bdwrite(bp); 2465 return (0); 2466 } 2467 2468 /* 2469 * Check to see if a file is free. 2470 */ 2471 int 2472 ffs_checkfreefile(fs, devvp, ino) 2473 struct fs *fs; 2474 struct vnode *devvp; 2475 ino_t ino; 2476 { 2477 struct cg *cgp; 2478 struct buf *bp; 2479 ufs2_daddr_t cgbno; 2480 int ret; 2481 u_int cg; 2482 u_int8_t *inosused; 2483 2484 cg = ino_to_cg(fs, ino); 2485 if (devvp->v_type == VREG) { 2486 /* devvp is a snapshot */ 2487 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2488 } else { 2489 /* devvp is a normal disk device */ 2490 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2491 } 2492 if (ino >= fs->fs_ipg * fs->fs_ncg) 2493 return (1); 2494 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2495 brelse(bp); 2496 return (1); 2497 } 2498 cgp = (struct cg *)bp->b_data; 2499 if (!cg_chkmagic(cgp)) { 2500 brelse(bp); 2501 return (1); 2502 } 2503 inosused = cg_inosused(cgp); 2504 ino %= fs->fs_ipg; 2505 ret = isclr(inosused, ino); 2506 brelse(bp); 2507 return (ret); 2508 } 2509 2510 /* 2511 * Find a block of the specified size in the specified cylinder group. 2512 * 2513 * It is a panic if a request is made to find a block if none are 2514 * available. 2515 */ 2516 static ufs1_daddr_t 2517 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2518 struct fs *fs; 2519 struct cg *cgp; 2520 ufs2_daddr_t bpref; 2521 int allocsiz; 2522 { 2523 ufs1_daddr_t bno; 2524 int start, len, loc, i; 2525 int blk, field, subfield, pos; 2526 u_int8_t *blksfree; 2527 2528 /* 2529 * find the fragment by searching through the free block 2530 * map for an appropriate bit pattern 2531 */ 2532 if (bpref) 2533 start = dtogd(fs, bpref) / NBBY; 2534 else 2535 start = cgp->cg_frotor / NBBY; 2536 blksfree = cg_blksfree(cgp); 2537 len = howmany(fs->fs_fpg, NBBY) - start; 2538 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2539 fragtbl[fs->fs_frag], 2540 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2541 if (loc == 0) { 2542 len = start + 1; 2543 start = 0; 2544 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2545 fragtbl[fs->fs_frag], 2546 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2547 if (loc == 0) { 2548 printf("start = %d, len = %d, fs = %s\n", 2549 start, len, fs->fs_fsmnt); 2550 panic("ffs_alloccg: map corrupted"); 2551 /* NOTREACHED */ 2552 } 2553 } 2554 bno = (start + len - loc) * NBBY; 2555 cgp->cg_frotor = bno; 2556 /* 2557 * found the byte in the map 2558 * sift through the bits to find the selected frag 2559 */ 2560 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2561 blk = blkmap(fs, blksfree, bno); 2562 blk <<= 1; 2563 field = around[allocsiz]; 2564 subfield = inside[allocsiz]; 2565 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2566 if ((blk & field) == subfield) 2567 return (bno + pos); 2568 field <<= 1; 2569 subfield <<= 1; 2570 } 2571 } 2572 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2573 panic("ffs_alloccg: block not in map"); 2574 return (-1); 2575 } 2576 2577 /* 2578 * Fserr prints the name of a filesystem with an error diagnostic. 2579 * 2580 * The form of the error message is: 2581 * fs: error message 2582 */ 2583 void 2584 ffs_fserr(fs, inum, cp) 2585 struct fs *fs; 2586 ino_t inum; 2587 char *cp; 2588 { 2589 struct thread *td = curthread; /* XXX */ 2590 struct proc *p = td->td_proc; 2591 2592 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2593 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2594 fs->fs_fsmnt, cp); 2595 } 2596 2597 /* 2598 * This function provides the capability for the fsck program to 2599 * update an active filesystem. Fourteen operations are provided: 2600 * 2601 * adjrefcnt(inode, amt) - adjusts the reference count on the 2602 * specified inode by the specified amount. Under normal 2603 * operation the count should always go down. Decrementing 2604 * the count to zero will cause the inode to be freed. 2605 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2606 * inode by the specified amount. 2607 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2608 * adjust the superblock summary. 2609 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2610 * are marked as free. Inodes should never have to be marked 2611 * as in use. 2612 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2613 * are marked as free. Inodes should never have to be marked 2614 * as in use. 2615 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2616 * are marked as free. Blocks should never have to be marked 2617 * as in use. 2618 * setflags(flags, set/clear) - the fs_flags field has the specified 2619 * flags set (second parameter +1) or cleared (second parameter -1). 2620 * setcwd(dirinode) - set the current directory to dirinode in the 2621 * filesystem associated with the snapshot. 2622 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2623 * in the current directory is oldvalue then change it to newvalue. 2624 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2625 * with nameptr in the current directory is oldvalue then unlink it. 2626 * 2627 * The following functions may only be used on a quiescent filesystem 2628 * by the soft updates journal. They are not safe to be run on an active 2629 * filesystem. 2630 * 2631 * setinode(inode, dip) - the specified disk inode is replaced with the 2632 * contents pointed to by dip. 2633 * setbufoutput(fd, flags) - output associated with the specified file 2634 * descriptor (which must reference the character device supporting 2635 * the filesystem) switches from using physio to running through the 2636 * buffer cache when flags is set to 1. The descriptor reverts to 2637 * physio for output when flags is set to zero. 2638 */ 2639 2640 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2641 2642 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2643 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2644 2645 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2646 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2647 2648 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2649 sysctl_ffs_fsck, "Adjust number of directories"); 2650 2651 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2652 sysctl_ffs_fsck, "Adjust number of free blocks"); 2653 2654 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2655 sysctl_ffs_fsck, "Adjust number of free inodes"); 2656 2657 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2658 sysctl_ffs_fsck, "Adjust number of free frags"); 2659 2660 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2661 sysctl_ffs_fsck, "Adjust number of free clusters"); 2662 2663 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2664 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2665 2666 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2667 sysctl_ffs_fsck, "Free Range of File Inodes"); 2668 2669 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2670 sysctl_ffs_fsck, "Free Range of Blocks"); 2671 2672 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2673 sysctl_ffs_fsck, "Change Filesystem Flags"); 2674 2675 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2676 sysctl_ffs_fsck, "Set Current Working Directory"); 2677 2678 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2679 sysctl_ffs_fsck, "Change Value of .. Entry"); 2680 2681 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2682 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2683 2684 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2685 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2686 2687 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2688 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2689 2690 #define DEBUG 1 2691 #ifdef DEBUG 2692 static int fsckcmds = 0; 2693 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2694 #endif /* DEBUG */ 2695 2696 static int buffered_write(struct file *, struct uio *, struct ucred *, 2697 int, struct thread *); 2698 2699 static int 2700 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2701 { 2702 struct thread *td = curthread; 2703 struct fsck_cmd cmd; 2704 struct ufsmount *ump; 2705 struct vnode *vp, *vpold, *dvp, *fdvp; 2706 struct inode *ip, *dp; 2707 struct mount *mp; 2708 struct fs *fs; 2709 ufs2_daddr_t blkno; 2710 long blkcnt, blksize; 2711 struct filedesc *fdp; 2712 struct file *fp, *vfp; 2713 cap_rights_t rights; 2714 int filetype, error; 2715 static struct fileops *origops, bufferedops; 2716 2717 if (req->newlen > sizeof cmd) 2718 return (EBADRPC); 2719 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2720 return (error); 2721 if (cmd.version != FFS_CMD_VERSION) 2722 return (ERPCMISMATCH); 2723 if ((error = getvnode(td->td_proc->p_fd, cmd.handle, 2724 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 2725 return (error); 2726 vp = fp->f_data; 2727 if (vp->v_type != VREG && vp->v_type != VDIR) { 2728 fdrop(fp, td); 2729 return (EINVAL); 2730 } 2731 vn_start_write(vp, &mp, V_WAIT); 2732 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2733 vn_finished_write(mp); 2734 fdrop(fp, td); 2735 return (EINVAL); 2736 } 2737 ump = VFSTOUFS(mp); 2738 if ((mp->mnt_flag & MNT_RDONLY) && 2739 ump->um_fsckpid != td->td_proc->p_pid) { 2740 vn_finished_write(mp); 2741 fdrop(fp, td); 2742 return (EROFS); 2743 } 2744 fs = ump->um_fs; 2745 filetype = IFREG; 2746 2747 switch (oidp->oid_number) { 2748 2749 case FFS_SET_FLAGS: 2750 #ifdef DEBUG 2751 if (fsckcmds) 2752 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2753 cmd.size > 0 ? "set" : "clear"); 2754 #endif /* DEBUG */ 2755 if (cmd.size > 0) 2756 fs->fs_flags |= (long)cmd.value; 2757 else 2758 fs->fs_flags &= ~(long)cmd.value; 2759 break; 2760 2761 case FFS_ADJ_REFCNT: 2762 #ifdef DEBUG 2763 if (fsckcmds) { 2764 printf("%s: adjust inode %jd link count by %jd\n", 2765 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2766 (intmax_t)cmd.size); 2767 } 2768 #endif /* DEBUG */ 2769 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2770 break; 2771 ip = VTOI(vp); 2772 ip->i_nlink += cmd.size; 2773 DIP_SET(ip, i_nlink, ip->i_nlink); 2774 ip->i_effnlink += cmd.size; 2775 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2776 error = ffs_update(vp, 1); 2777 if (DOINGSOFTDEP(vp)) 2778 softdep_change_linkcnt(ip); 2779 vput(vp); 2780 break; 2781 2782 case FFS_ADJ_BLKCNT: 2783 #ifdef DEBUG 2784 if (fsckcmds) { 2785 printf("%s: adjust inode %jd block count by %jd\n", 2786 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2787 (intmax_t)cmd.size); 2788 } 2789 #endif /* DEBUG */ 2790 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2791 break; 2792 ip = VTOI(vp); 2793 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2794 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2795 error = ffs_update(vp, 1); 2796 vput(vp); 2797 break; 2798 2799 case FFS_DIR_FREE: 2800 filetype = IFDIR; 2801 /* fall through */ 2802 2803 case FFS_FILE_FREE: 2804 #ifdef DEBUG 2805 if (fsckcmds) { 2806 if (cmd.size == 1) 2807 printf("%s: free %s inode %ju\n", 2808 mp->mnt_stat.f_mntonname, 2809 filetype == IFDIR ? "directory" : "file", 2810 (uintmax_t)cmd.value); 2811 else 2812 printf("%s: free %s inodes %ju-%ju\n", 2813 mp->mnt_stat.f_mntonname, 2814 filetype == IFDIR ? "directory" : "file", 2815 (uintmax_t)cmd.value, 2816 (uintmax_t)(cmd.value + cmd.size - 1)); 2817 } 2818 #endif /* DEBUG */ 2819 while (cmd.size > 0) { 2820 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2821 cmd.value, filetype, NULL))) 2822 break; 2823 cmd.size -= 1; 2824 cmd.value += 1; 2825 } 2826 break; 2827 2828 case FFS_BLK_FREE: 2829 #ifdef DEBUG 2830 if (fsckcmds) { 2831 if (cmd.size == 1) 2832 printf("%s: free block %jd\n", 2833 mp->mnt_stat.f_mntonname, 2834 (intmax_t)cmd.value); 2835 else 2836 printf("%s: free blocks %jd-%jd\n", 2837 mp->mnt_stat.f_mntonname, 2838 (intmax_t)cmd.value, 2839 (intmax_t)cmd.value + cmd.size - 1); 2840 } 2841 #endif /* DEBUG */ 2842 blkno = cmd.value; 2843 blkcnt = cmd.size; 2844 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2845 while (blkcnt > 0) { 2846 if (blksize > blkcnt) 2847 blksize = blkcnt; 2848 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2849 blksize * fs->fs_fsize, ROOTINO, VDIR, NULL); 2850 blkno += blksize; 2851 blkcnt -= blksize; 2852 blksize = fs->fs_frag; 2853 } 2854 break; 2855 2856 /* 2857 * Adjust superblock summaries. fsck(8) is expected to 2858 * submit deltas when necessary. 2859 */ 2860 case FFS_ADJ_NDIR: 2861 #ifdef DEBUG 2862 if (fsckcmds) { 2863 printf("%s: adjust number of directories by %jd\n", 2864 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2865 } 2866 #endif /* DEBUG */ 2867 fs->fs_cstotal.cs_ndir += cmd.value; 2868 break; 2869 2870 case FFS_ADJ_NBFREE: 2871 #ifdef DEBUG 2872 if (fsckcmds) { 2873 printf("%s: adjust number of free blocks by %+jd\n", 2874 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2875 } 2876 #endif /* DEBUG */ 2877 fs->fs_cstotal.cs_nbfree += cmd.value; 2878 break; 2879 2880 case FFS_ADJ_NIFREE: 2881 #ifdef DEBUG 2882 if (fsckcmds) { 2883 printf("%s: adjust number of free inodes by %+jd\n", 2884 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2885 } 2886 #endif /* DEBUG */ 2887 fs->fs_cstotal.cs_nifree += cmd.value; 2888 break; 2889 2890 case FFS_ADJ_NFFREE: 2891 #ifdef DEBUG 2892 if (fsckcmds) { 2893 printf("%s: adjust number of free frags by %+jd\n", 2894 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2895 } 2896 #endif /* DEBUG */ 2897 fs->fs_cstotal.cs_nffree += cmd.value; 2898 break; 2899 2900 case FFS_ADJ_NUMCLUSTERS: 2901 #ifdef DEBUG 2902 if (fsckcmds) { 2903 printf("%s: adjust number of free clusters by %+jd\n", 2904 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2905 } 2906 #endif /* DEBUG */ 2907 fs->fs_cstotal.cs_numclusters += cmd.value; 2908 break; 2909 2910 case FFS_SET_CWD: 2911 #ifdef DEBUG 2912 if (fsckcmds) { 2913 printf("%s: set current directory to inode %jd\n", 2914 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2915 } 2916 #endif /* DEBUG */ 2917 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2918 break; 2919 AUDIT_ARG_VNODE1(vp); 2920 if ((error = change_dir(vp, td)) != 0) { 2921 vput(vp); 2922 break; 2923 } 2924 VOP_UNLOCK(vp, 0); 2925 fdp = td->td_proc->p_fd; 2926 FILEDESC_XLOCK(fdp); 2927 vpold = fdp->fd_cdir; 2928 fdp->fd_cdir = vp; 2929 FILEDESC_XUNLOCK(fdp); 2930 vrele(vpold); 2931 break; 2932 2933 case FFS_SET_DOTDOT: 2934 #ifdef DEBUG 2935 if (fsckcmds) { 2936 printf("%s: change .. in cwd from %jd to %jd\n", 2937 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2938 (intmax_t)cmd.size); 2939 } 2940 #endif /* DEBUG */ 2941 /* 2942 * First we have to get and lock the parent directory 2943 * to which ".." points. 2944 */ 2945 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2946 if (error) 2947 break; 2948 /* 2949 * Now we get and lock the child directory containing "..". 2950 */ 2951 FILEDESC_SLOCK(td->td_proc->p_fd); 2952 dvp = td->td_proc->p_fd->fd_cdir; 2953 FILEDESC_SUNLOCK(td->td_proc->p_fd); 2954 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 2955 vput(fdvp); 2956 break; 2957 } 2958 dp = VTOI(dvp); 2959 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 2960 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 2961 DT_DIR, 0); 2962 cache_purge(fdvp); 2963 cache_purge(dvp); 2964 vput(dvp); 2965 vput(fdvp); 2966 break; 2967 2968 case FFS_UNLINK: 2969 #ifdef DEBUG 2970 if (fsckcmds) { 2971 char buf[32]; 2972 2973 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 2974 strncpy(buf, "Name_too_long", 32); 2975 printf("%s: unlink %s (inode %jd)\n", 2976 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 2977 } 2978 #endif /* DEBUG */ 2979 /* 2980 * kern_unlinkat will do its own start/finish writes and 2981 * they do not nest, so drop ours here. Setting mp == NULL 2982 * indicates that vn_finished_write is not needed down below. 2983 */ 2984 vn_finished_write(mp); 2985 mp = NULL; 2986 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 2987 UIO_USERSPACE, (ino_t)cmd.size); 2988 break; 2989 2990 case FFS_SET_INODE: 2991 if (ump->um_fsckpid != td->td_proc->p_pid) { 2992 error = EPERM; 2993 break; 2994 } 2995 #ifdef DEBUG 2996 if (fsckcmds) { 2997 printf("%s: update inode %jd\n", 2998 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2999 } 3000 #endif /* DEBUG */ 3001 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3002 break; 3003 AUDIT_ARG_VNODE1(vp); 3004 ip = VTOI(vp); 3005 if (ip->i_ump->um_fstype == UFS1) 3006 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3007 sizeof(struct ufs1_dinode)); 3008 else 3009 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3010 sizeof(struct ufs2_dinode)); 3011 if (error) { 3012 vput(vp); 3013 break; 3014 } 3015 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3016 error = ffs_update(vp, 1); 3017 vput(vp); 3018 break; 3019 3020 case FFS_SET_BUFOUTPUT: 3021 if (ump->um_fsckpid != td->td_proc->p_pid) { 3022 error = EPERM; 3023 break; 3024 } 3025 if (VTOI(vp)->i_ump != ump) { 3026 error = EINVAL; 3027 break; 3028 } 3029 #ifdef DEBUG 3030 if (fsckcmds) { 3031 printf("%s: %s buffered output for descriptor %jd\n", 3032 mp->mnt_stat.f_mntonname, 3033 cmd.size == 1 ? "enable" : "disable", 3034 (intmax_t)cmd.value); 3035 } 3036 #endif /* DEBUG */ 3037 if ((error = getvnode(td->td_proc->p_fd, cmd.value, 3038 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3039 break; 3040 if (vfp->f_vnode->v_type != VCHR) { 3041 fdrop(vfp, td); 3042 error = EINVAL; 3043 break; 3044 } 3045 if (origops == NULL) { 3046 origops = vfp->f_ops; 3047 bcopy((void *)origops, (void *)&bufferedops, 3048 sizeof(bufferedops)); 3049 bufferedops.fo_write = buffered_write; 3050 } 3051 if (cmd.size == 1) 3052 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3053 (uintptr_t)&bufferedops); 3054 else 3055 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3056 (uintptr_t)origops); 3057 fdrop(vfp, td); 3058 break; 3059 3060 default: 3061 #ifdef DEBUG 3062 if (fsckcmds) { 3063 printf("Invalid request %d from fsck\n", 3064 oidp->oid_number); 3065 } 3066 #endif /* DEBUG */ 3067 error = EINVAL; 3068 break; 3069 3070 } 3071 fdrop(fp, td); 3072 vn_finished_write(mp); 3073 return (error); 3074 } 3075 3076 /* 3077 * Function to switch a descriptor to use the buffer cache to stage 3078 * its I/O. This is needed so that writes to the filesystem device 3079 * will give snapshots a chance to copy modified blocks for which it 3080 * needs to retain copies. 3081 */ 3082 static int 3083 buffered_write(fp, uio, active_cred, flags, td) 3084 struct file *fp; 3085 struct uio *uio; 3086 struct ucred *active_cred; 3087 int flags; 3088 struct thread *td; 3089 { 3090 struct vnode *devvp, *vp; 3091 struct inode *ip; 3092 struct buf *bp; 3093 struct fs *fs; 3094 struct filedesc *fdp; 3095 int error; 3096 daddr_t lbn; 3097 3098 /* 3099 * The devvp is associated with the /dev filesystem. To discover 3100 * the filesystem with which the device is associated, we depend 3101 * on the application setting the current directory to a location 3102 * within the filesystem being written. Yes, this is an ugly hack. 3103 */ 3104 devvp = fp->f_vnode; 3105 if (!vn_isdisk(devvp, NULL)) 3106 return (EINVAL); 3107 fdp = td->td_proc->p_fd; 3108 FILEDESC_SLOCK(fdp); 3109 vp = fdp->fd_cdir; 3110 vref(vp); 3111 FILEDESC_SUNLOCK(fdp); 3112 vn_lock(vp, LK_SHARED | LK_RETRY); 3113 /* 3114 * Check that the current directory vnode indeed belongs to 3115 * UFS before trying to dereference UFS-specific v_data fields. 3116 */ 3117 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3118 vput(vp); 3119 return (EINVAL); 3120 } 3121 ip = VTOI(vp); 3122 if (ip->i_devvp != devvp) { 3123 vput(vp); 3124 return (EINVAL); 3125 } 3126 fs = ip->i_fs; 3127 vput(vp); 3128 foffset_lock_uio(fp, uio, flags); 3129 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3130 #ifdef DEBUG 3131 if (fsckcmds) { 3132 printf("%s: buffered write for block %jd\n", 3133 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3134 } 3135 #endif /* DEBUG */ 3136 /* 3137 * All I/O must be contained within a filesystem block, start on 3138 * a fragment boundary, and be a multiple of fragments in length. 3139 */ 3140 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3141 fragoff(fs, uio->uio_offset) != 0 || 3142 fragoff(fs, uio->uio_resid) != 0) { 3143 error = EINVAL; 3144 goto out; 3145 } 3146 lbn = numfrags(fs, uio->uio_offset); 3147 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3148 bp->b_flags |= B_RELBUF; 3149 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3150 brelse(bp); 3151 goto out; 3152 } 3153 error = bwrite(bp); 3154 out: 3155 VOP_UNLOCK(devvp, 0); 3156 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3157 return (error); 3158 } 3159