1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/gsb_crc32.h> 72 #include <sys/systm.h> 73 #include <sys/bio.h> 74 #include <sys/buf.h> 75 #include <sys/conf.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/vnode.h> 82 #include <sys/mount.h> 83 #include <sys/kernel.h> 84 #include <sys/syscallsubr.h> 85 #include <sys/sysctl.h> 86 #include <sys/syslog.h> 87 #include <sys/taskqueue.h> 88 89 #include <security/audit/audit.h> 90 91 #include <geom/geom.h> 92 #include <geom/geom_vfs.h> 93 94 #include <ufs/ufs/dir.h> 95 #include <ufs/ufs/extattr.h> 96 #include <ufs/ufs/quota.h> 97 #include <ufs/ufs/inode.h> 98 #include <ufs/ufs/ufs_extern.h> 99 #include <ufs/ufs/ufsmount.h> 100 101 #include <ufs/ffs/fs.h> 102 #include <ufs/ffs/ffs_extern.h> 103 #include <ufs/ffs/softdep.h> 104 105 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 106 int size, int rsize); 107 108 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 109 static ufs2_daddr_t 110 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 111 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 112 struct vnode *, ufs2_daddr_t, long, ino_t, 113 struct workhead *); 114 #ifdef INVARIANTS 115 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 116 #endif 117 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 118 static ino_t ffs_dirpref(struct inode *); 119 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 120 int, int); 121 static ufs2_daddr_t ffs_hashalloc 122 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 123 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 124 int); 125 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 126 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 127 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 128 static void ffs_ckhash_cg(struct buf *); 129 130 /* 131 * Allocate a block in the filesystem. 132 * 133 * The size of the requested block is given, which must be some 134 * multiple of fs_fsize and <= fs_bsize. 135 * A preference may be optionally specified. If a preference is given 136 * the following hierarchy is used to allocate a block: 137 * 1) allocate the requested block. 138 * 2) allocate a rotationally optimal block in the same cylinder. 139 * 3) allocate a block in the same cylinder group. 140 * 4) quadradically rehash into other cylinder groups, until an 141 * available block is located. 142 * If no block preference is given the following hierarchy is used 143 * to allocate a block: 144 * 1) allocate a block in the cylinder group that contains the 145 * inode for the file. 146 * 2) quadradically rehash into other cylinder groups, until an 147 * available block is located. 148 */ 149 int 150 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 151 struct inode *ip; 152 ufs2_daddr_t lbn, bpref; 153 int size, flags; 154 struct ucred *cred; 155 ufs2_daddr_t *bnp; 156 { 157 struct fs *fs; 158 struct ufsmount *ump; 159 ufs2_daddr_t bno; 160 u_int cg, reclaimed; 161 int64_t delta; 162 #ifdef QUOTA 163 int error; 164 #endif 165 166 *bnp = 0; 167 ump = ITOUMP(ip); 168 fs = ump->um_fs; 169 mtx_assert(UFS_MTX(ump), MA_OWNED); 170 #ifdef INVARIANTS 171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 172 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 173 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 174 fs->fs_fsmnt); 175 panic("ffs_alloc: bad size"); 176 } 177 if (cred == NOCRED) 178 panic("ffs_alloc: missing credential"); 179 #endif /* INVARIANTS */ 180 reclaimed = 0; 181 retry: 182 #ifdef QUOTA 183 UFS_UNLOCK(ump); 184 error = chkdq(ip, btodb(size), cred, 0); 185 if (error) 186 return (error); 187 UFS_LOCK(ump); 188 #endif 189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 190 goto nospace; 191 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 192 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 193 goto nospace; 194 if (bpref >= fs->fs_size) 195 bpref = 0; 196 if (bpref == 0) 197 cg = ino_to_cg(fs, ip->i_number); 198 else 199 cg = dtog(fs, bpref); 200 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 201 if (bno > 0) { 202 delta = btodb(size); 203 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 204 if (flags & IO_EXT) 205 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 206 else 207 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 208 *bnp = bno; 209 return (0); 210 } 211 nospace: 212 #ifdef QUOTA 213 UFS_UNLOCK(ump); 214 /* 215 * Restore user's disk quota because allocation failed. 216 */ 217 (void) chkdq(ip, -btodb(size), cred, FORCE); 218 UFS_LOCK(ump); 219 #endif 220 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 221 reclaimed = 1; 222 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 223 goto retry; 224 } 225 if (ffs_fsfail_cleanup_locked(ump, 0)) { 226 UFS_UNLOCK(ump); 227 return (ENXIO); 228 } 229 if (reclaimed > 0 && 230 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 231 UFS_UNLOCK(ump); 232 ffs_fserr(fs, ip->i_number, "filesystem full"); 233 uprintf("\n%s: write failed, filesystem is full\n", 234 fs->fs_fsmnt); 235 } else { 236 UFS_UNLOCK(ump); 237 } 238 return (ENOSPC); 239 } 240 241 /* 242 * Reallocate a fragment to a bigger size 243 * 244 * The number and size of the old block is given, and a preference 245 * and new size is also specified. The allocator attempts to extend 246 * the original block. Failing that, the regular block allocator is 247 * invoked to get an appropriate block. 248 */ 249 int 250 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 251 struct inode *ip; 252 ufs2_daddr_t lbprev; 253 ufs2_daddr_t bprev; 254 ufs2_daddr_t bpref; 255 int osize, nsize, flags; 256 struct ucred *cred; 257 struct buf **bpp; 258 { 259 struct vnode *vp; 260 struct fs *fs; 261 struct buf *bp; 262 struct ufsmount *ump; 263 u_int cg, request, reclaimed; 264 int error, gbflags; 265 ufs2_daddr_t bno; 266 int64_t delta; 267 268 vp = ITOV(ip); 269 ump = ITOUMP(ip); 270 fs = ump->um_fs; 271 bp = NULL; 272 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 273 274 mtx_assert(UFS_MTX(ump), MA_OWNED); 275 #ifdef INVARIANTS 276 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 277 panic("ffs_realloccg: allocation on suspended filesystem"); 278 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 279 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 280 printf( 281 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 282 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 283 nsize, fs->fs_fsmnt); 284 panic("ffs_realloccg: bad size"); 285 } 286 if (cred == NOCRED) 287 panic("ffs_realloccg: missing credential"); 288 #endif /* INVARIANTS */ 289 reclaimed = 0; 290 retry: 291 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 292 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 293 goto nospace; 294 } 295 if (bprev == 0) { 296 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 297 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 298 fs->fs_fsmnt); 299 panic("ffs_realloccg: bad bprev"); 300 } 301 UFS_UNLOCK(ump); 302 /* 303 * Allocate the extra space in the buffer. 304 */ 305 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 306 if (error) { 307 return (error); 308 } 309 310 if (bp->b_blkno == bp->b_lblkno) { 311 if (lbprev >= UFS_NDADDR) 312 panic("ffs_realloccg: lbprev out of range"); 313 bp->b_blkno = fsbtodb(fs, bprev); 314 } 315 316 #ifdef QUOTA 317 error = chkdq(ip, btodb(nsize - osize), cred, 0); 318 if (error) { 319 brelse(bp); 320 return (error); 321 } 322 #endif 323 /* 324 * Check for extension in the existing location. 325 */ 326 *bpp = NULL; 327 cg = dtog(fs, bprev); 328 UFS_LOCK(ump); 329 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 330 if (bno) { 331 if (bp->b_blkno != fsbtodb(fs, bno)) 332 panic("ffs_realloccg: bad blockno"); 333 delta = btodb(nsize - osize); 334 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 335 if (flags & IO_EXT) 336 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 337 else 338 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 339 allocbuf(bp, nsize); 340 bp->b_flags |= B_DONE; 341 vfs_bio_bzero_buf(bp, osize, nsize - osize); 342 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 343 vfs_bio_set_valid(bp, osize, nsize - osize); 344 *bpp = bp; 345 return (0); 346 } 347 /* 348 * Allocate a new disk location. 349 */ 350 if (bpref >= fs->fs_size) 351 bpref = 0; 352 switch ((int)fs->fs_optim) { 353 case FS_OPTSPACE: 354 /* 355 * Allocate an exact sized fragment. Although this makes 356 * best use of space, we will waste time relocating it if 357 * the file continues to grow. If the fragmentation is 358 * less than half of the minimum free reserve, we choose 359 * to begin optimizing for time. 360 */ 361 request = nsize; 362 if (fs->fs_minfree <= 5 || 363 fs->fs_cstotal.cs_nffree > 364 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 365 break; 366 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 367 fs->fs_fsmnt); 368 fs->fs_optim = FS_OPTTIME; 369 break; 370 case FS_OPTTIME: 371 /* 372 * At this point we have discovered a file that is trying to 373 * grow a small fragment to a larger fragment. To save time, 374 * we allocate a full sized block, then free the unused portion. 375 * If the file continues to grow, the `ffs_fragextend' call 376 * above will be able to grow it in place without further 377 * copying. If aberrant programs cause disk fragmentation to 378 * grow within 2% of the free reserve, we choose to begin 379 * optimizing for space. 380 */ 381 request = fs->fs_bsize; 382 if (fs->fs_cstotal.cs_nffree < 383 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 384 break; 385 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 386 fs->fs_fsmnt); 387 fs->fs_optim = FS_OPTSPACE; 388 break; 389 default: 390 printf("dev = %s, optim = %ld, fs = %s\n", 391 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 392 panic("ffs_realloccg: bad optim"); 393 /* NOTREACHED */ 394 } 395 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 396 if (bno > 0) { 397 bp->b_blkno = fsbtodb(fs, bno); 398 if (!DOINGSOFTDEP(vp)) 399 /* 400 * The usual case is that a smaller fragment that 401 * was just allocated has been replaced with a bigger 402 * fragment or a full-size block. If it is marked as 403 * B_DELWRI, the current contents have not been written 404 * to disk. It is possible that the block was written 405 * earlier, but very uncommon. If the block has never 406 * been written, there is no need to send a BIO_DELETE 407 * for it when it is freed. The gain from avoiding the 408 * TRIMs for the common case of unwritten blocks far 409 * exceeds the cost of the write amplification for the 410 * uncommon case of failing to send a TRIM for a block 411 * that had been written. 412 */ 413 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 414 ip->i_number, vp->v_type, NULL, 415 (bp->b_flags & B_DELWRI) != 0 ? 416 NOTRIM_KEY : SINGLETON_KEY); 417 delta = btodb(nsize - osize); 418 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 419 if (flags & IO_EXT) 420 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 421 else 422 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 423 allocbuf(bp, nsize); 424 bp->b_flags |= B_DONE; 425 vfs_bio_bzero_buf(bp, osize, nsize - osize); 426 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 427 vfs_bio_set_valid(bp, osize, nsize - osize); 428 *bpp = bp; 429 return (0); 430 } 431 #ifdef QUOTA 432 UFS_UNLOCK(ump); 433 /* 434 * Restore user's disk quota because allocation failed. 435 */ 436 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 437 UFS_LOCK(ump); 438 #endif 439 nospace: 440 /* 441 * no space available 442 */ 443 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 444 reclaimed = 1; 445 UFS_UNLOCK(ump); 446 if (bp) { 447 brelse(bp); 448 bp = NULL; 449 } 450 UFS_LOCK(ump); 451 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 452 goto retry; 453 } 454 if (bp) 455 brelse(bp); 456 if (ffs_fsfail_cleanup_locked(ump, 0)) { 457 UFS_UNLOCK(ump); 458 return (ENXIO); 459 } 460 if (reclaimed > 0 && 461 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 462 UFS_UNLOCK(ump); 463 ffs_fserr(fs, ip->i_number, "filesystem full"); 464 uprintf("\n%s: write failed, filesystem is full\n", 465 fs->fs_fsmnt); 466 } else { 467 UFS_UNLOCK(ump); 468 } 469 return (ENOSPC); 470 } 471 472 /* 473 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 474 * 475 * The vnode and an array of buffer pointers for a range of sequential 476 * logical blocks to be made contiguous is given. The allocator attempts 477 * to find a range of sequential blocks starting as close as possible 478 * from the end of the allocation for the logical block immediately 479 * preceding the current range. If successful, the physical block numbers 480 * in the buffer pointers and in the inode are changed to reflect the new 481 * allocation. If unsuccessful, the allocation is left unchanged. The 482 * success in doing the reallocation is returned. Note that the error 483 * return is not reflected back to the user. Rather the previous block 484 * allocation will be used. 485 */ 486 487 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 488 "FFS filesystem"); 489 490 static int doasyncfree = 1; 491 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 492 "do not force synchronous writes when blocks are reallocated"); 493 494 static int doreallocblks = 1; 495 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 496 "enable block reallocation"); 497 498 static int dotrimcons = 1; 499 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 500 "enable BIO_DELETE / TRIM consolidation"); 501 502 static int maxclustersearch = 10; 503 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 504 0, "max number of cylinder group to search for contigous blocks"); 505 506 #ifdef DIAGNOSTIC 507 static int prtrealloc = 0; 508 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 509 "print out FFS filesystem block reallocation operations"); 510 #endif 511 512 int 513 ffs_reallocblks(ap) 514 struct vop_reallocblks_args /* { 515 struct vnode *a_vp; 516 struct cluster_save *a_buflist; 517 } */ *ap; 518 { 519 struct ufsmount *ump; 520 int error; 521 522 /* 523 * We used to skip reallocating the blocks of a file into a 524 * contiguous sequence if the underlying flash device requested 525 * BIO_DELETE notifications, because devices that benefit from 526 * BIO_DELETE also benefit from not moving the data. However, 527 * the destination for the data is usually moved before the data 528 * is written to the initially allocated location, so we rarely 529 * suffer the penalty of extra writes. With the addition of the 530 * consolidation of contiguous blocks into single BIO_DELETE 531 * operations, having fewer but larger contiguous blocks reduces 532 * the number of (slow and expensive) BIO_DELETE operations. So 533 * when doing BIO_DELETE consolidation, we do block reallocation. 534 * 535 * Skip if reallocblks has been disabled globally. 536 */ 537 ump = ap->a_vp->v_mount->mnt_data; 538 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 539 doreallocblks == 0) 540 return (ENOSPC); 541 542 /* 543 * We can't wait in softdep prealloc as it may fsync and recurse 544 * here. Instead we simply fail to reallocate blocks if this 545 * rare condition arises. 546 */ 547 if (DOINGSUJ(ap->a_vp)) 548 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 549 return (ENOSPC); 550 vn_seqc_write_begin(ap->a_vp); 551 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) : 552 ffs_reallocblks_ufs2(ap); 553 vn_seqc_write_end(ap->a_vp); 554 return (error); 555 } 556 557 static int 558 ffs_reallocblks_ufs1(ap) 559 struct vop_reallocblks_args /* { 560 struct vnode *a_vp; 561 struct cluster_save *a_buflist; 562 } */ *ap; 563 { 564 struct fs *fs; 565 struct inode *ip; 566 struct vnode *vp; 567 struct buf *sbp, *ebp, *bp; 568 ufs1_daddr_t *bap, *sbap, *ebap; 569 struct cluster_save *buflist; 570 struct ufsmount *ump; 571 ufs_lbn_t start_lbn, end_lbn; 572 ufs1_daddr_t soff, newblk, blkno; 573 ufs2_daddr_t pref; 574 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 575 int i, cg, len, start_lvl, end_lvl, ssize; 576 577 vp = ap->a_vp; 578 ip = VTOI(vp); 579 ump = ITOUMP(ip); 580 fs = ump->um_fs; 581 /* 582 * If we are not tracking block clusters or if we have less than 4% 583 * free blocks left, then do not attempt to cluster. Running with 584 * less than 5% free block reserve is not recommended and those that 585 * choose to do so do not expect to have good file layout. 586 */ 587 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 588 return (ENOSPC); 589 buflist = ap->a_buflist; 590 len = buflist->bs_nchildren; 591 start_lbn = buflist->bs_children[0]->b_lblkno; 592 end_lbn = start_lbn + len - 1; 593 #ifdef INVARIANTS 594 for (i = 0; i < len; i++) 595 if (!ffs_checkblk(ip, 596 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 597 panic("ffs_reallocblks: unallocated block 1"); 598 for (i = 1; i < len; i++) 599 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 600 panic("ffs_reallocblks: non-logical cluster"); 601 blkno = buflist->bs_children[0]->b_blkno; 602 ssize = fsbtodb(fs, fs->fs_frag); 603 for (i = 1; i < len - 1; i++) 604 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 605 panic("ffs_reallocblks: non-physical cluster %d", i); 606 #endif 607 /* 608 * If the cluster crosses the boundary for the first indirect 609 * block, leave space for the indirect block. Indirect blocks 610 * are initially laid out in a position after the last direct 611 * block. Block reallocation would usually destroy locality by 612 * moving the indirect block out of the way to make room for 613 * data blocks if we didn't compensate here. We should also do 614 * this for other indirect block boundaries, but it is only 615 * important for the first one. 616 */ 617 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 618 return (ENOSPC); 619 /* 620 * If the latest allocation is in a new cylinder group, assume that 621 * the filesystem has decided to move and do not force it back to 622 * the previous cylinder group. 623 */ 624 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 625 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 626 return (ENOSPC); 627 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 628 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 629 return (ENOSPC); 630 /* 631 * Get the starting offset and block map for the first block. 632 */ 633 if (start_lvl == 0) { 634 sbap = &ip->i_din1->di_db[0]; 635 soff = start_lbn; 636 } else { 637 idp = &start_ap[start_lvl - 1]; 638 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 639 brelse(sbp); 640 return (ENOSPC); 641 } 642 sbap = (ufs1_daddr_t *)sbp->b_data; 643 soff = idp->in_off; 644 } 645 /* 646 * If the block range spans two block maps, get the second map. 647 */ 648 ebap = NULL; 649 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 650 ssize = len; 651 } else { 652 #ifdef INVARIANTS 653 if (start_lvl > 0 && 654 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 655 panic("ffs_reallocblk: start == end"); 656 #endif 657 ssize = len - (idp->in_off + 1); 658 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 659 goto fail; 660 ebap = (ufs1_daddr_t *)ebp->b_data; 661 } 662 /* 663 * Find the preferred location for the cluster. If we have not 664 * previously failed at this endeavor, then follow our standard 665 * preference calculation. If we have failed at it, then pick up 666 * where we last ended our search. 667 */ 668 UFS_LOCK(ump); 669 if (ip->i_nextclustercg == -1) 670 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 671 else 672 pref = cgdata(fs, ip->i_nextclustercg); 673 /* 674 * Search the block map looking for an allocation of the desired size. 675 * To avoid wasting too much time, we limit the number of cylinder 676 * groups that we will search. 677 */ 678 cg = dtog(fs, pref); 679 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 680 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 681 break; 682 cg += 1; 683 if (cg >= fs->fs_ncg) 684 cg = 0; 685 } 686 /* 687 * If we have failed in our search, record where we gave up for 688 * next time. Otherwise, fall back to our usual search citerion. 689 */ 690 if (newblk == 0) { 691 ip->i_nextclustercg = cg; 692 UFS_UNLOCK(ump); 693 goto fail; 694 } 695 ip->i_nextclustercg = -1; 696 /* 697 * We have found a new contiguous block. 698 * 699 * First we have to replace the old block pointers with the new 700 * block pointers in the inode and indirect blocks associated 701 * with the file. 702 */ 703 #ifdef DIAGNOSTIC 704 if (prtrealloc) 705 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 706 (uintmax_t)ip->i_number, 707 (intmax_t)start_lbn, (intmax_t)end_lbn); 708 #endif 709 blkno = newblk; 710 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 711 if (i == ssize) { 712 bap = ebap; 713 soff = -i; 714 } 715 #ifdef INVARIANTS 716 if (!ffs_checkblk(ip, 717 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 718 panic("ffs_reallocblks: unallocated block 2"); 719 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 720 panic("ffs_reallocblks: alloc mismatch"); 721 #endif 722 #ifdef DIAGNOSTIC 723 if (prtrealloc) 724 printf(" %d,", *bap); 725 #endif 726 if (DOINGSOFTDEP(vp)) { 727 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 728 softdep_setup_allocdirect(ip, start_lbn + i, 729 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 730 buflist->bs_children[i]); 731 else 732 softdep_setup_allocindir_page(ip, start_lbn + i, 733 i < ssize ? sbp : ebp, soff + i, blkno, 734 *bap, buflist->bs_children[i]); 735 } 736 *bap++ = blkno; 737 } 738 /* 739 * Next we must write out the modified inode and indirect blocks. 740 * For strict correctness, the writes should be synchronous since 741 * the old block values may have been written to disk. In practise 742 * they are almost never written, but if we are concerned about 743 * strict correctness, the `doasyncfree' flag should be set to zero. 744 * 745 * The test on `doasyncfree' should be changed to test a flag 746 * that shows whether the associated buffers and inodes have 747 * been written. The flag should be set when the cluster is 748 * started and cleared whenever the buffer or inode is flushed. 749 * We can then check below to see if it is set, and do the 750 * synchronous write only when it has been cleared. 751 */ 752 if (sbap != &ip->i_din1->di_db[0]) { 753 if (doasyncfree) 754 bdwrite(sbp); 755 else 756 bwrite(sbp); 757 } else { 758 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 759 if (!doasyncfree) 760 ffs_update(vp, 1); 761 } 762 if (ssize < len) { 763 if (doasyncfree) 764 bdwrite(ebp); 765 else 766 bwrite(ebp); 767 } 768 /* 769 * Last, free the old blocks and assign the new blocks to the buffers. 770 */ 771 #ifdef DIAGNOSTIC 772 if (prtrealloc) 773 printf("\n\tnew:"); 774 #endif 775 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 776 bp = buflist->bs_children[i]; 777 if (!DOINGSOFTDEP(vp)) 778 /* 779 * The usual case is that a set of N-contiguous blocks 780 * that was just allocated has been replaced with a 781 * set of N+1-contiguous blocks. If they are marked as 782 * B_DELWRI, the current contents have not been written 783 * to disk. It is possible that the blocks were written 784 * earlier, but very uncommon. If the blocks have never 785 * been written, there is no need to send a BIO_DELETE 786 * for them when they are freed. The gain from avoiding 787 * the TRIMs for the common case of unwritten blocks 788 * far exceeds the cost of the write amplification for 789 * the uncommon case of failing to send a TRIM for the 790 * blocks that had been written. 791 */ 792 ffs_blkfree(ump, fs, ump->um_devvp, 793 dbtofsb(fs, bp->b_blkno), 794 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 795 (bp->b_flags & B_DELWRI) != 0 ? 796 NOTRIM_KEY : SINGLETON_KEY); 797 bp->b_blkno = fsbtodb(fs, blkno); 798 #ifdef INVARIANTS 799 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 800 panic("ffs_reallocblks: unallocated block 3"); 801 #endif 802 #ifdef DIAGNOSTIC 803 if (prtrealloc) 804 printf(" %d,", blkno); 805 #endif 806 } 807 #ifdef DIAGNOSTIC 808 if (prtrealloc) { 809 prtrealloc--; 810 printf("\n"); 811 } 812 #endif 813 return (0); 814 815 fail: 816 if (ssize < len) 817 brelse(ebp); 818 if (sbap != &ip->i_din1->di_db[0]) 819 brelse(sbp); 820 return (ENOSPC); 821 } 822 823 static int 824 ffs_reallocblks_ufs2(ap) 825 struct vop_reallocblks_args /* { 826 struct vnode *a_vp; 827 struct cluster_save *a_buflist; 828 } */ *ap; 829 { 830 struct fs *fs; 831 struct inode *ip; 832 struct vnode *vp; 833 struct buf *sbp, *ebp, *bp; 834 ufs2_daddr_t *bap, *sbap, *ebap; 835 struct cluster_save *buflist; 836 struct ufsmount *ump; 837 ufs_lbn_t start_lbn, end_lbn; 838 ufs2_daddr_t soff, newblk, blkno, pref; 839 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 840 int i, cg, len, start_lvl, end_lvl, ssize; 841 842 vp = ap->a_vp; 843 ip = VTOI(vp); 844 ump = ITOUMP(ip); 845 fs = ump->um_fs; 846 /* 847 * If we are not tracking block clusters or if we have less than 4% 848 * free blocks left, then do not attempt to cluster. Running with 849 * less than 5% free block reserve is not recommended and those that 850 * choose to do so do not expect to have good file layout. 851 */ 852 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 853 return (ENOSPC); 854 buflist = ap->a_buflist; 855 len = buflist->bs_nchildren; 856 start_lbn = buflist->bs_children[0]->b_lblkno; 857 end_lbn = start_lbn + len - 1; 858 #ifdef INVARIANTS 859 for (i = 0; i < len; i++) 860 if (!ffs_checkblk(ip, 861 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 862 panic("ffs_reallocblks: unallocated block 1"); 863 for (i = 1; i < len; i++) 864 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 865 panic("ffs_reallocblks: non-logical cluster"); 866 blkno = buflist->bs_children[0]->b_blkno; 867 ssize = fsbtodb(fs, fs->fs_frag); 868 for (i = 1; i < len - 1; i++) 869 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 870 panic("ffs_reallocblks: non-physical cluster %d", i); 871 #endif 872 /* 873 * If the cluster crosses the boundary for the first indirect 874 * block, do not move anything in it. Indirect blocks are 875 * usually initially laid out in a position between the data 876 * blocks. Block reallocation would usually destroy locality by 877 * moving the indirect block out of the way to make room for 878 * data blocks if we didn't compensate here. We should also do 879 * this for other indirect block boundaries, but it is only 880 * important for the first one. 881 */ 882 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 883 return (ENOSPC); 884 /* 885 * If the latest allocation is in a new cylinder group, assume that 886 * the filesystem has decided to move and do not force it back to 887 * the previous cylinder group. 888 */ 889 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 890 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 891 return (ENOSPC); 892 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 893 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 894 return (ENOSPC); 895 /* 896 * Get the starting offset and block map for the first block. 897 */ 898 if (start_lvl == 0) { 899 sbap = &ip->i_din2->di_db[0]; 900 soff = start_lbn; 901 } else { 902 idp = &start_ap[start_lvl - 1]; 903 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 904 brelse(sbp); 905 return (ENOSPC); 906 } 907 sbap = (ufs2_daddr_t *)sbp->b_data; 908 soff = idp->in_off; 909 } 910 /* 911 * If the block range spans two block maps, get the second map. 912 */ 913 ebap = NULL; 914 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 915 ssize = len; 916 } else { 917 #ifdef INVARIANTS 918 if (start_lvl > 0 && 919 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 920 panic("ffs_reallocblk: start == end"); 921 #endif 922 ssize = len - (idp->in_off + 1); 923 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 924 goto fail; 925 ebap = (ufs2_daddr_t *)ebp->b_data; 926 } 927 /* 928 * Find the preferred location for the cluster. If we have not 929 * previously failed at this endeavor, then follow our standard 930 * preference calculation. If we have failed at it, then pick up 931 * where we last ended our search. 932 */ 933 UFS_LOCK(ump); 934 if (ip->i_nextclustercg == -1) 935 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 936 else 937 pref = cgdata(fs, ip->i_nextclustercg); 938 /* 939 * Search the block map looking for an allocation of the desired size. 940 * To avoid wasting too much time, we limit the number of cylinder 941 * groups that we will search. 942 */ 943 cg = dtog(fs, pref); 944 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 945 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 946 break; 947 cg += 1; 948 if (cg >= fs->fs_ncg) 949 cg = 0; 950 } 951 /* 952 * If we have failed in our search, record where we gave up for 953 * next time. Otherwise, fall back to our usual search citerion. 954 */ 955 if (newblk == 0) { 956 ip->i_nextclustercg = cg; 957 UFS_UNLOCK(ump); 958 goto fail; 959 } 960 ip->i_nextclustercg = -1; 961 /* 962 * We have found a new contiguous block. 963 * 964 * First we have to replace the old block pointers with the new 965 * block pointers in the inode and indirect blocks associated 966 * with the file. 967 */ 968 #ifdef DIAGNOSTIC 969 if (prtrealloc) 970 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 971 (intmax_t)start_lbn, (intmax_t)end_lbn); 972 #endif 973 blkno = newblk; 974 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 975 if (i == ssize) { 976 bap = ebap; 977 soff = -i; 978 } 979 #ifdef INVARIANTS 980 if (!ffs_checkblk(ip, 981 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 982 panic("ffs_reallocblks: unallocated block 2"); 983 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 984 panic("ffs_reallocblks: alloc mismatch"); 985 #endif 986 #ifdef DIAGNOSTIC 987 if (prtrealloc) 988 printf(" %jd,", (intmax_t)*bap); 989 #endif 990 if (DOINGSOFTDEP(vp)) { 991 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 992 softdep_setup_allocdirect(ip, start_lbn + i, 993 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 994 buflist->bs_children[i]); 995 else 996 softdep_setup_allocindir_page(ip, start_lbn + i, 997 i < ssize ? sbp : ebp, soff + i, blkno, 998 *bap, buflist->bs_children[i]); 999 } 1000 *bap++ = blkno; 1001 } 1002 /* 1003 * Next we must write out the modified inode and indirect blocks. 1004 * For strict correctness, the writes should be synchronous since 1005 * the old block values may have been written to disk. In practise 1006 * they are almost never written, but if we are concerned about 1007 * strict correctness, the `doasyncfree' flag should be set to zero. 1008 * 1009 * The test on `doasyncfree' should be changed to test a flag 1010 * that shows whether the associated buffers and inodes have 1011 * been written. The flag should be set when the cluster is 1012 * started and cleared whenever the buffer or inode is flushed. 1013 * We can then check below to see if it is set, and do the 1014 * synchronous write only when it has been cleared. 1015 */ 1016 if (sbap != &ip->i_din2->di_db[0]) { 1017 if (doasyncfree) 1018 bdwrite(sbp); 1019 else 1020 bwrite(sbp); 1021 } else { 1022 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1023 if (!doasyncfree) 1024 ffs_update(vp, 1); 1025 } 1026 if (ssize < len) { 1027 if (doasyncfree) 1028 bdwrite(ebp); 1029 else 1030 bwrite(ebp); 1031 } 1032 /* 1033 * Last, free the old blocks and assign the new blocks to the buffers. 1034 */ 1035 #ifdef DIAGNOSTIC 1036 if (prtrealloc) 1037 printf("\n\tnew:"); 1038 #endif 1039 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1040 bp = buflist->bs_children[i]; 1041 if (!DOINGSOFTDEP(vp)) 1042 /* 1043 * The usual case is that a set of N-contiguous blocks 1044 * that was just allocated has been replaced with a 1045 * set of N+1-contiguous blocks. If they are marked as 1046 * B_DELWRI, the current contents have not been written 1047 * to disk. It is possible that the blocks were written 1048 * earlier, but very uncommon. If the blocks have never 1049 * been written, there is no need to send a BIO_DELETE 1050 * for them when they are freed. The gain from avoiding 1051 * the TRIMs for the common case of unwritten blocks 1052 * far exceeds the cost of the write amplification for 1053 * the uncommon case of failing to send a TRIM for the 1054 * blocks that had been written. 1055 */ 1056 ffs_blkfree(ump, fs, ump->um_devvp, 1057 dbtofsb(fs, bp->b_blkno), 1058 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1059 (bp->b_flags & B_DELWRI) != 0 ? 1060 NOTRIM_KEY : SINGLETON_KEY); 1061 bp->b_blkno = fsbtodb(fs, blkno); 1062 #ifdef INVARIANTS 1063 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1064 panic("ffs_reallocblks: unallocated block 3"); 1065 #endif 1066 #ifdef DIAGNOSTIC 1067 if (prtrealloc) 1068 printf(" %jd,", (intmax_t)blkno); 1069 #endif 1070 } 1071 #ifdef DIAGNOSTIC 1072 if (prtrealloc) { 1073 prtrealloc--; 1074 printf("\n"); 1075 } 1076 #endif 1077 return (0); 1078 1079 fail: 1080 if (ssize < len) 1081 brelse(ebp); 1082 if (sbap != &ip->i_din2->di_db[0]) 1083 brelse(sbp); 1084 return (ENOSPC); 1085 } 1086 1087 /* 1088 * Allocate an inode in the filesystem. 1089 * 1090 * If allocating a directory, use ffs_dirpref to select the inode. 1091 * If allocating in a directory, the following hierarchy is followed: 1092 * 1) allocate the preferred inode. 1093 * 2) allocate an inode in the same cylinder group. 1094 * 3) quadradically rehash into other cylinder groups, until an 1095 * available inode is located. 1096 * If no inode preference is given the following hierarchy is used 1097 * to allocate an inode: 1098 * 1) allocate an inode in cylinder group 0. 1099 * 2) quadradically rehash into other cylinder groups, until an 1100 * available inode is located. 1101 */ 1102 int 1103 ffs_valloc(pvp, mode, cred, vpp) 1104 struct vnode *pvp; 1105 int mode; 1106 struct ucred *cred; 1107 struct vnode **vpp; 1108 { 1109 struct inode *pip; 1110 struct fs *fs; 1111 struct inode *ip; 1112 struct timespec ts; 1113 struct ufsmount *ump; 1114 ino_t ino, ipref; 1115 u_int cg; 1116 int error, reclaimed; 1117 1118 *vpp = NULL; 1119 pip = VTOI(pvp); 1120 ump = ITOUMP(pip); 1121 fs = ump->um_fs; 1122 1123 UFS_LOCK(ump); 1124 reclaimed = 0; 1125 retry: 1126 if (fs->fs_cstotal.cs_nifree == 0) 1127 goto noinodes; 1128 1129 if ((mode & IFMT) == IFDIR) 1130 ipref = ffs_dirpref(pip); 1131 else 1132 ipref = pip->i_number; 1133 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1134 ipref = 0; 1135 cg = ino_to_cg(fs, ipref); 1136 /* 1137 * Track number of dirs created one after another 1138 * in a same cg without intervening by files. 1139 */ 1140 if ((mode & IFMT) == IFDIR) { 1141 if (fs->fs_contigdirs[cg] < 255) 1142 fs->fs_contigdirs[cg]++; 1143 } else { 1144 if (fs->fs_contigdirs[cg] > 0) 1145 fs->fs_contigdirs[cg]--; 1146 } 1147 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1148 (allocfcn_t *)ffs_nodealloccg); 1149 if (ino == 0) 1150 goto noinodes; 1151 /* 1152 * Get rid of the cached old vnode, force allocation of a new vnode 1153 * for this inode. If this fails, release the allocated ino and 1154 * return the error. 1155 */ 1156 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1157 FFSV_FORCEINSMQ | FFSV_REPLACE)) != 0) { 1158 ffs_vfree(pvp, ino, mode); 1159 return (error); 1160 } 1161 /* 1162 * We got an inode, so check mode and panic if it is already allocated. 1163 */ 1164 ip = VTOI(*vpp); 1165 if (ip->i_mode) { 1166 printf("mode = 0%o, inum = %ju, fs = %s\n", 1167 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1168 panic("ffs_valloc: dup alloc"); 1169 } 1170 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1171 printf("free inode %s/%lu had %ld blocks\n", 1172 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1173 DIP_SET(ip, i_blocks, 0); 1174 } 1175 ip->i_flags = 0; 1176 DIP_SET(ip, i_flags, 0); 1177 /* 1178 * Set up a new generation number for this inode. 1179 */ 1180 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1181 ip->i_gen = arc4random(); 1182 DIP_SET(ip, i_gen, ip->i_gen); 1183 if (fs->fs_magic == FS_UFS2_MAGIC) { 1184 vfs_timestamp(&ts); 1185 ip->i_din2->di_birthtime = ts.tv_sec; 1186 ip->i_din2->di_birthnsec = ts.tv_nsec; 1187 } 1188 ip->i_flag = 0; 1189 (*vpp)->v_vflag = 0; 1190 (*vpp)->v_type = VNON; 1191 if (fs->fs_magic == FS_UFS2_MAGIC) { 1192 (*vpp)->v_op = &ffs_vnodeops2; 1193 UFS_INODE_SET_FLAG(ip, IN_UFS2); 1194 } else { 1195 (*vpp)->v_op = &ffs_vnodeops1; 1196 } 1197 return (0); 1198 noinodes: 1199 if (reclaimed == 0) { 1200 reclaimed = 1; 1201 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1202 goto retry; 1203 } 1204 if (ffs_fsfail_cleanup_locked(ump, 0)) { 1205 UFS_UNLOCK(ump); 1206 return (ENXIO); 1207 } 1208 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 1209 UFS_UNLOCK(ump); 1210 ffs_fserr(fs, pip->i_number, "out of inodes"); 1211 uprintf("\n%s: create/symlink failed, no inodes free\n", 1212 fs->fs_fsmnt); 1213 } else { 1214 UFS_UNLOCK(ump); 1215 } 1216 return (ENOSPC); 1217 } 1218 1219 /* 1220 * Find a cylinder group to place a directory. 1221 * 1222 * The policy implemented by this algorithm is to allocate a 1223 * directory inode in the same cylinder group as its parent 1224 * directory, but also to reserve space for its files inodes 1225 * and data. Restrict the number of directories which may be 1226 * allocated one after another in the same cylinder group 1227 * without intervening allocation of files. 1228 * 1229 * If we allocate a first level directory then force allocation 1230 * in another cylinder group. 1231 */ 1232 static ino_t 1233 ffs_dirpref(pip) 1234 struct inode *pip; 1235 { 1236 struct fs *fs; 1237 int cg, prefcg, dirsize, cgsize; 1238 u_int avgifree, avgbfree, avgndir, curdirsize; 1239 u_int minifree, minbfree, maxndir; 1240 u_int mincg, minndir; 1241 u_int maxcontigdirs; 1242 1243 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1244 fs = ITOFS(pip); 1245 1246 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1247 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1248 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1249 1250 /* 1251 * Force allocation in another cg if creating a first level dir. 1252 */ 1253 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1254 if (ITOV(pip)->v_vflag & VV_ROOT) { 1255 prefcg = arc4random() % fs->fs_ncg; 1256 mincg = prefcg; 1257 minndir = fs->fs_ipg; 1258 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1259 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1260 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1261 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1262 mincg = cg; 1263 minndir = fs->fs_cs(fs, cg).cs_ndir; 1264 } 1265 for (cg = 0; cg < prefcg; cg++) 1266 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1267 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1268 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1269 mincg = cg; 1270 minndir = fs->fs_cs(fs, cg).cs_ndir; 1271 } 1272 return ((ino_t)(fs->fs_ipg * mincg)); 1273 } 1274 1275 /* 1276 * Count various limits which used for 1277 * optimal allocation of a directory inode. 1278 */ 1279 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1280 minifree = avgifree - avgifree / 4; 1281 if (minifree < 1) 1282 minifree = 1; 1283 minbfree = avgbfree - avgbfree / 4; 1284 if (minbfree < 1) 1285 minbfree = 1; 1286 cgsize = fs->fs_fsize * fs->fs_fpg; 1287 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1288 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1289 if (dirsize < curdirsize) 1290 dirsize = curdirsize; 1291 if (dirsize <= 0) 1292 maxcontigdirs = 0; /* dirsize overflowed */ 1293 else 1294 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1295 if (fs->fs_avgfpdir > 0) 1296 maxcontigdirs = min(maxcontigdirs, 1297 fs->fs_ipg / fs->fs_avgfpdir); 1298 if (maxcontigdirs == 0) 1299 maxcontigdirs = 1; 1300 1301 /* 1302 * Limit number of dirs in one cg and reserve space for 1303 * regular files, but only if we have no deficit in 1304 * inodes or space. 1305 * 1306 * We are trying to find a suitable cylinder group nearby 1307 * our preferred cylinder group to place a new directory. 1308 * We scan from our preferred cylinder group forward looking 1309 * for a cylinder group that meets our criterion. If we get 1310 * to the final cylinder group and do not find anything, 1311 * we start scanning forwards from the beginning of the 1312 * filesystem. While it might seem sensible to start scanning 1313 * backwards or even to alternate looking forward and backward, 1314 * this approach fails badly when the filesystem is nearly full. 1315 * Specifically, we first search all the areas that have no space 1316 * and finally try the one preceding that. We repeat this on 1317 * every request and in the case of the final block end up 1318 * searching the entire filesystem. By jumping to the front 1319 * of the filesystem, our future forward searches always look 1320 * in new cylinder groups so finds every possible block after 1321 * one pass over the filesystem. 1322 */ 1323 prefcg = ino_to_cg(fs, pip->i_number); 1324 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1325 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1326 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1327 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1328 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1329 return ((ino_t)(fs->fs_ipg * cg)); 1330 } 1331 for (cg = 0; cg < prefcg; cg++) 1332 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1333 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1334 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1335 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1336 return ((ino_t)(fs->fs_ipg * cg)); 1337 } 1338 /* 1339 * This is a backstop when we have deficit in space. 1340 */ 1341 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1342 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1343 return ((ino_t)(fs->fs_ipg * cg)); 1344 for (cg = 0; cg < prefcg; cg++) 1345 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1346 break; 1347 return ((ino_t)(fs->fs_ipg * cg)); 1348 } 1349 1350 /* 1351 * Select the desired position for the next block in a file. The file is 1352 * logically divided into sections. The first section is composed of the 1353 * direct blocks and the next fs_maxbpg blocks. Each additional section 1354 * contains fs_maxbpg blocks. 1355 * 1356 * If no blocks have been allocated in the first section, the policy is to 1357 * request a block in the same cylinder group as the inode that describes 1358 * the file. The first indirect is allocated immediately following the last 1359 * direct block and the data blocks for the first indirect immediately 1360 * follow it. 1361 * 1362 * If no blocks have been allocated in any other section, the indirect 1363 * block(s) are allocated in the same cylinder group as its inode in an 1364 * area reserved immediately following the inode blocks. The policy for 1365 * the data blocks is to place them in a cylinder group with a greater than 1366 * average number of free blocks. An appropriate cylinder group is found 1367 * by using a rotor that sweeps the cylinder groups. When a new group of 1368 * blocks is needed, the sweep begins in the cylinder group following the 1369 * cylinder group from which the previous allocation was made. The sweep 1370 * continues until a cylinder group with greater than the average number 1371 * of free blocks is found. If the allocation is for the first block in an 1372 * indirect block or the previous block is a hole, then the information on 1373 * the previous allocation is unavailable; here a best guess is made based 1374 * on the logical block number being allocated. 1375 * 1376 * If a section is already partially allocated, the policy is to 1377 * allocate blocks contiguously within the section if possible. 1378 */ 1379 ufs2_daddr_t 1380 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1381 struct inode *ip; 1382 ufs_lbn_t lbn; 1383 int indx; 1384 ufs1_daddr_t *bap; 1385 { 1386 struct fs *fs; 1387 u_int cg, inocg; 1388 u_int avgbfree, startcg; 1389 ufs2_daddr_t pref, prevbn; 1390 1391 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1392 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1393 fs = ITOFS(ip); 1394 /* 1395 * Allocation of indirect blocks is indicated by passing negative 1396 * values in indx: -1 for single indirect, -2 for double indirect, 1397 * -3 for triple indirect. As noted below, we attempt to allocate 1398 * the first indirect inline with the file data. For all later 1399 * indirect blocks, the data is often allocated in other cylinder 1400 * groups. However to speed random file access and to speed up 1401 * fsck, the filesystem reserves the first fs_metaspace blocks 1402 * (typically half of fs_minfree) of the data area of each cylinder 1403 * group to hold these later indirect blocks. 1404 */ 1405 inocg = ino_to_cg(fs, ip->i_number); 1406 if (indx < 0) { 1407 /* 1408 * Our preference for indirect blocks is the zone at the 1409 * beginning of the inode's cylinder group data area that 1410 * we try to reserve for indirect blocks. 1411 */ 1412 pref = cgmeta(fs, inocg); 1413 /* 1414 * If we are allocating the first indirect block, try to 1415 * place it immediately following the last direct block. 1416 */ 1417 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1418 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1419 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1420 return (pref); 1421 } 1422 /* 1423 * If we are allocating the first data block in the first indirect 1424 * block and the indirect has been allocated in the data block area, 1425 * try to place it immediately following the indirect block. 1426 */ 1427 if (lbn == UFS_NDADDR) { 1428 pref = ip->i_din1->di_ib[0]; 1429 if (pref != 0 && pref >= cgdata(fs, inocg) && 1430 pref < cgbase(fs, inocg + 1)) 1431 return (pref + fs->fs_frag); 1432 } 1433 /* 1434 * If we are at the beginning of a file, or we have already allocated 1435 * the maximum number of blocks per cylinder group, or we do not 1436 * have a block allocated immediately preceding us, then we need 1437 * to decide where to start allocating new blocks. 1438 */ 1439 if (indx == 0) { 1440 prevbn = 0; 1441 } else { 1442 prevbn = bap[indx - 1]; 1443 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1444 fs->fs_bsize) != 0) 1445 prevbn = 0; 1446 } 1447 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1448 /* 1449 * If we are allocating a directory data block, we want 1450 * to place it in the metadata area. 1451 */ 1452 if ((ip->i_mode & IFMT) == IFDIR) 1453 return (cgmeta(fs, inocg)); 1454 /* 1455 * Until we fill all the direct and all the first indirect's 1456 * blocks, we try to allocate in the data area of the inode's 1457 * cylinder group. 1458 */ 1459 if (lbn < UFS_NDADDR + NINDIR(fs)) 1460 return (cgdata(fs, inocg)); 1461 /* 1462 * Find a cylinder with greater than average number of 1463 * unused data blocks. 1464 */ 1465 if (indx == 0 || prevbn == 0) 1466 startcg = inocg + lbn / fs->fs_maxbpg; 1467 else 1468 startcg = dtog(fs, prevbn) + 1; 1469 startcg %= fs->fs_ncg; 1470 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1471 for (cg = startcg; cg < fs->fs_ncg; cg++) 1472 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1473 fs->fs_cgrotor = cg; 1474 return (cgdata(fs, cg)); 1475 } 1476 for (cg = 0; cg <= startcg; cg++) 1477 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1478 fs->fs_cgrotor = cg; 1479 return (cgdata(fs, cg)); 1480 } 1481 return (0); 1482 } 1483 /* 1484 * Otherwise, we just always try to lay things out contiguously. 1485 */ 1486 return (prevbn + fs->fs_frag); 1487 } 1488 1489 /* 1490 * Same as above, but for UFS2 1491 */ 1492 ufs2_daddr_t 1493 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1494 struct inode *ip; 1495 ufs_lbn_t lbn; 1496 int indx; 1497 ufs2_daddr_t *bap; 1498 { 1499 struct fs *fs; 1500 u_int cg, inocg; 1501 u_int avgbfree, startcg; 1502 ufs2_daddr_t pref, prevbn; 1503 1504 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1505 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1506 fs = ITOFS(ip); 1507 /* 1508 * Allocation of indirect blocks is indicated by passing negative 1509 * values in indx: -1 for single indirect, -2 for double indirect, 1510 * -3 for triple indirect. As noted below, we attempt to allocate 1511 * the first indirect inline with the file data. For all later 1512 * indirect blocks, the data is often allocated in other cylinder 1513 * groups. However to speed random file access and to speed up 1514 * fsck, the filesystem reserves the first fs_metaspace blocks 1515 * (typically half of fs_minfree) of the data area of each cylinder 1516 * group to hold these later indirect blocks. 1517 */ 1518 inocg = ino_to_cg(fs, ip->i_number); 1519 if (indx < 0) { 1520 /* 1521 * Our preference for indirect blocks is the zone at the 1522 * beginning of the inode's cylinder group data area that 1523 * we try to reserve for indirect blocks. 1524 */ 1525 pref = cgmeta(fs, inocg); 1526 /* 1527 * If we are allocating the first indirect block, try to 1528 * place it immediately following the last direct block. 1529 */ 1530 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1531 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1532 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1533 return (pref); 1534 } 1535 /* 1536 * If we are allocating the first data block in the first indirect 1537 * block and the indirect has been allocated in the data block area, 1538 * try to place it immediately following the indirect block. 1539 */ 1540 if (lbn == UFS_NDADDR) { 1541 pref = ip->i_din2->di_ib[0]; 1542 if (pref != 0 && pref >= cgdata(fs, inocg) && 1543 pref < cgbase(fs, inocg + 1)) 1544 return (pref + fs->fs_frag); 1545 } 1546 /* 1547 * If we are at the beginning of a file, or we have already allocated 1548 * the maximum number of blocks per cylinder group, or we do not 1549 * have a block allocated immediately preceding us, then we need 1550 * to decide where to start allocating new blocks. 1551 */ 1552 if (indx == 0) { 1553 prevbn = 0; 1554 } else { 1555 prevbn = bap[indx - 1]; 1556 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1557 fs->fs_bsize) != 0) 1558 prevbn = 0; 1559 } 1560 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1561 /* 1562 * If we are allocating a directory data block, we want 1563 * to place it in the metadata area. 1564 */ 1565 if ((ip->i_mode & IFMT) == IFDIR) 1566 return (cgmeta(fs, inocg)); 1567 /* 1568 * Until we fill all the direct and all the first indirect's 1569 * blocks, we try to allocate in the data area of the inode's 1570 * cylinder group. 1571 */ 1572 if (lbn < UFS_NDADDR + NINDIR(fs)) 1573 return (cgdata(fs, inocg)); 1574 /* 1575 * Find a cylinder with greater than average number of 1576 * unused data blocks. 1577 */ 1578 if (indx == 0 || prevbn == 0) 1579 startcg = inocg + lbn / fs->fs_maxbpg; 1580 else 1581 startcg = dtog(fs, prevbn) + 1; 1582 startcg %= fs->fs_ncg; 1583 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1584 for (cg = startcg; cg < fs->fs_ncg; cg++) 1585 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1586 fs->fs_cgrotor = cg; 1587 return (cgdata(fs, cg)); 1588 } 1589 for (cg = 0; cg <= startcg; cg++) 1590 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1591 fs->fs_cgrotor = cg; 1592 return (cgdata(fs, cg)); 1593 } 1594 return (0); 1595 } 1596 /* 1597 * Otherwise, we just always try to lay things out contiguously. 1598 */ 1599 return (prevbn + fs->fs_frag); 1600 } 1601 1602 /* 1603 * Implement the cylinder overflow algorithm. 1604 * 1605 * The policy implemented by this algorithm is: 1606 * 1) allocate the block in its requested cylinder group. 1607 * 2) quadradically rehash on the cylinder group number. 1608 * 3) brute force search for a free block. 1609 * 1610 * Must be called with the UFS lock held. Will release the lock on success 1611 * and return with it held on failure. 1612 */ 1613 /*VARARGS5*/ 1614 static ufs2_daddr_t 1615 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1616 struct inode *ip; 1617 u_int cg; 1618 ufs2_daddr_t pref; 1619 int size; /* Search size for data blocks, mode for inodes */ 1620 int rsize; /* Real allocated size. */ 1621 allocfcn_t *allocator; 1622 { 1623 struct fs *fs; 1624 ufs2_daddr_t result; 1625 u_int i, icg = cg; 1626 1627 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1628 #ifdef INVARIANTS 1629 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1630 panic("ffs_hashalloc: allocation on suspended filesystem"); 1631 #endif 1632 fs = ITOFS(ip); 1633 /* 1634 * 1: preferred cylinder group 1635 */ 1636 result = (*allocator)(ip, cg, pref, size, rsize); 1637 if (result) 1638 return (result); 1639 /* 1640 * 2: quadratic rehash 1641 */ 1642 for (i = 1; i < fs->fs_ncg; i *= 2) { 1643 cg += i; 1644 if (cg >= fs->fs_ncg) 1645 cg -= fs->fs_ncg; 1646 result = (*allocator)(ip, cg, 0, size, rsize); 1647 if (result) 1648 return (result); 1649 } 1650 /* 1651 * 3: brute force search 1652 * Note that we start at i == 2, since 0 was checked initially, 1653 * and 1 is always checked in the quadratic rehash. 1654 */ 1655 cg = (icg + 2) % fs->fs_ncg; 1656 for (i = 2; i < fs->fs_ncg; i++) { 1657 result = (*allocator)(ip, cg, 0, size, rsize); 1658 if (result) 1659 return (result); 1660 cg++; 1661 if (cg == fs->fs_ncg) 1662 cg = 0; 1663 } 1664 return (0); 1665 } 1666 1667 /* 1668 * Determine whether a fragment can be extended. 1669 * 1670 * Check to see if the necessary fragments are available, and 1671 * if they are, allocate them. 1672 */ 1673 static ufs2_daddr_t 1674 ffs_fragextend(ip, cg, bprev, osize, nsize) 1675 struct inode *ip; 1676 u_int cg; 1677 ufs2_daddr_t bprev; 1678 int osize, nsize; 1679 { 1680 struct fs *fs; 1681 struct cg *cgp; 1682 struct buf *bp; 1683 struct ufsmount *ump; 1684 int nffree; 1685 long bno; 1686 int frags, bbase; 1687 int i, error; 1688 u_int8_t *blksfree; 1689 1690 ump = ITOUMP(ip); 1691 fs = ump->um_fs; 1692 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1693 return (0); 1694 frags = numfrags(fs, nsize); 1695 bbase = fragnum(fs, bprev); 1696 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1697 /* cannot extend across a block boundary */ 1698 return (0); 1699 } 1700 UFS_UNLOCK(ump); 1701 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) 1702 goto fail; 1703 bno = dtogd(fs, bprev); 1704 blksfree = cg_blksfree(cgp); 1705 for (i = numfrags(fs, osize); i < frags; i++) 1706 if (isclr(blksfree, bno + i)) 1707 goto fail; 1708 /* 1709 * the current fragment can be extended 1710 * deduct the count on fragment being extended into 1711 * increase the count on the remaining fragment (if any) 1712 * allocate the extended piece 1713 */ 1714 for (i = frags; i < fs->fs_frag - bbase; i++) 1715 if (isclr(blksfree, bno + i)) 1716 break; 1717 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1718 if (i != frags) 1719 cgp->cg_frsum[i - frags]++; 1720 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1721 clrbit(blksfree, bno + i); 1722 cgp->cg_cs.cs_nffree--; 1723 nffree++; 1724 } 1725 UFS_LOCK(ump); 1726 fs->fs_cstotal.cs_nffree -= nffree; 1727 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1728 fs->fs_fmod = 1; 1729 ACTIVECLEAR(fs, cg); 1730 UFS_UNLOCK(ump); 1731 if (DOINGSOFTDEP(ITOV(ip))) 1732 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1733 frags, numfrags(fs, osize)); 1734 bdwrite(bp); 1735 return (bprev); 1736 1737 fail: 1738 brelse(bp); 1739 UFS_LOCK(ump); 1740 return (0); 1741 1742 } 1743 1744 /* 1745 * Determine whether a block can be allocated. 1746 * 1747 * Check to see if a block of the appropriate size is available, 1748 * and if it is, allocate it. 1749 */ 1750 static ufs2_daddr_t 1751 ffs_alloccg(ip, cg, bpref, size, rsize) 1752 struct inode *ip; 1753 u_int cg; 1754 ufs2_daddr_t bpref; 1755 int size; 1756 int rsize; 1757 { 1758 struct fs *fs; 1759 struct cg *cgp; 1760 struct buf *bp; 1761 struct ufsmount *ump; 1762 ufs1_daddr_t bno; 1763 ufs2_daddr_t blkno; 1764 int i, allocsiz, error, frags; 1765 u_int8_t *blksfree; 1766 1767 ump = ITOUMP(ip); 1768 fs = ump->um_fs; 1769 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1770 return (0); 1771 UFS_UNLOCK(ump); 1772 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 || 1773 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1774 goto fail; 1775 if (size == fs->fs_bsize) { 1776 UFS_LOCK(ump); 1777 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1778 ACTIVECLEAR(fs, cg); 1779 UFS_UNLOCK(ump); 1780 bdwrite(bp); 1781 return (blkno); 1782 } 1783 /* 1784 * check to see if any fragments are already available 1785 * allocsiz is the size which will be allocated, hacking 1786 * it down to a smaller size if necessary 1787 */ 1788 blksfree = cg_blksfree(cgp); 1789 frags = numfrags(fs, size); 1790 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1791 if (cgp->cg_frsum[allocsiz] != 0) 1792 break; 1793 if (allocsiz == fs->fs_frag) { 1794 /* 1795 * no fragments were available, so a block will be 1796 * allocated, and hacked up 1797 */ 1798 if (cgp->cg_cs.cs_nbfree == 0) 1799 goto fail; 1800 UFS_LOCK(ump); 1801 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1802 ACTIVECLEAR(fs, cg); 1803 UFS_UNLOCK(ump); 1804 bdwrite(bp); 1805 return (blkno); 1806 } 1807 KASSERT(size == rsize, 1808 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1809 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1810 if (bno < 0) 1811 goto fail; 1812 for (i = 0; i < frags; i++) 1813 clrbit(blksfree, bno + i); 1814 cgp->cg_cs.cs_nffree -= frags; 1815 cgp->cg_frsum[allocsiz]--; 1816 if (frags != allocsiz) 1817 cgp->cg_frsum[allocsiz - frags]++; 1818 UFS_LOCK(ump); 1819 fs->fs_cstotal.cs_nffree -= frags; 1820 fs->fs_cs(fs, cg).cs_nffree -= frags; 1821 fs->fs_fmod = 1; 1822 blkno = cgbase(fs, cg) + bno; 1823 ACTIVECLEAR(fs, cg); 1824 UFS_UNLOCK(ump); 1825 if (DOINGSOFTDEP(ITOV(ip))) 1826 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1827 bdwrite(bp); 1828 return (blkno); 1829 1830 fail: 1831 brelse(bp); 1832 UFS_LOCK(ump); 1833 return (0); 1834 } 1835 1836 /* 1837 * Allocate a block in a cylinder group. 1838 * 1839 * This algorithm implements the following policy: 1840 * 1) allocate the requested block. 1841 * 2) allocate a rotationally optimal block in the same cylinder. 1842 * 3) allocate the next available block on the block rotor for the 1843 * specified cylinder group. 1844 * Note that this routine only allocates fs_bsize blocks; these 1845 * blocks may be fragmented by the routine that allocates them. 1846 */ 1847 static ufs2_daddr_t 1848 ffs_alloccgblk(ip, bp, bpref, size) 1849 struct inode *ip; 1850 struct buf *bp; 1851 ufs2_daddr_t bpref; 1852 int size; 1853 { 1854 struct fs *fs; 1855 struct cg *cgp; 1856 struct ufsmount *ump; 1857 ufs1_daddr_t bno; 1858 ufs2_daddr_t blkno; 1859 u_int8_t *blksfree; 1860 int i, cgbpref; 1861 1862 ump = ITOUMP(ip); 1863 fs = ump->um_fs; 1864 mtx_assert(UFS_MTX(ump), MA_OWNED); 1865 cgp = (struct cg *)bp->b_data; 1866 blksfree = cg_blksfree(cgp); 1867 if (bpref == 0) { 1868 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1869 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1870 /* map bpref to correct zone in this cg */ 1871 if (bpref < cgdata(fs, cgbpref)) 1872 bpref = cgmeta(fs, cgp->cg_cgx); 1873 else 1874 bpref = cgdata(fs, cgp->cg_cgx); 1875 } 1876 /* 1877 * if the requested block is available, use it 1878 */ 1879 bno = dtogd(fs, blknum(fs, bpref)); 1880 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1881 goto gotit; 1882 /* 1883 * Take the next available block in this cylinder group. 1884 */ 1885 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1886 if (bno < 0) 1887 return (0); 1888 /* Update cg_rotor only if allocated from the data zone */ 1889 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1890 cgp->cg_rotor = bno; 1891 gotit: 1892 blkno = fragstoblks(fs, bno); 1893 ffs_clrblock(fs, blksfree, (long)blkno); 1894 ffs_clusteracct(fs, cgp, blkno, -1); 1895 cgp->cg_cs.cs_nbfree--; 1896 fs->fs_cstotal.cs_nbfree--; 1897 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1898 fs->fs_fmod = 1; 1899 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1900 /* 1901 * If the caller didn't want the whole block free the frags here. 1902 */ 1903 size = numfrags(fs, size); 1904 if (size != fs->fs_frag) { 1905 bno = dtogd(fs, blkno); 1906 for (i = size; i < fs->fs_frag; i++) 1907 setbit(blksfree, bno + i); 1908 i = fs->fs_frag - size; 1909 cgp->cg_cs.cs_nffree += i; 1910 fs->fs_cstotal.cs_nffree += i; 1911 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1912 fs->fs_fmod = 1; 1913 cgp->cg_frsum[i]++; 1914 } 1915 /* XXX Fixme. */ 1916 UFS_UNLOCK(ump); 1917 if (DOINGSOFTDEP(ITOV(ip))) 1918 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1919 UFS_LOCK(ump); 1920 return (blkno); 1921 } 1922 1923 /* 1924 * Determine whether a cluster can be allocated. 1925 * 1926 * We do not currently check for optimal rotational layout if there 1927 * are multiple choices in the same cylinder group. Instead we just 1928 * take the first one that we find following bpref. 1929 */ 1930 static ufs2_daddr_t 1931 ffs_clusteralloc(ip, cg, bpref, len) 1932 struct inode *ip; 1933 u_int cg; 1934 ufs2_daddr_t bpref; 1935 int len; 1936 { 1937 struct fs *fs; 1938 struct cg *cgp; 1939 struct buf *bp; 1940 struct ufsmount *ump; 1941 int i, run, bit, map, got, error; 1942 ufs2_daddr_t bno; 1943 u_char *mapp; 1944 int32_t *lp; 1945 u_int8_t *blksfree; 1946 1947 ump = ITOUMP(ip); 1948 fs = ump->um_fs; 1949 if (fs->fs_maxcluster[cg] < len) 1950 return (0); 1951 UFS_UNLOCK(ump); 1952 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 1953 UFS_LOCK(ump); 1954 return (0); 1955 } 1956 /* 1957 * Check to see if a cluster of the needed size (or bigger) is 1958 * available in this cylinder group. 1959 */ 1960 lp = &cg_clustersum(cgp)[len]; 1961 for (i = len; i <= fs->fs_contigsumsize; i++) 1962 if (*lp++ > 0) 1963 break; 1964 if (i > fs->fs_contigsumsize) { 1965 /* 1966 * This is the first time looking for a cluster in this 1967 * cylinder group. Update the cluster summary information 1968 * to reflect the true maximum sized cluster so that 1969 * future cluster allocation requests can avoid reading 1970 * the cylinder group map only to find no clusters. 1971 */ 1972 lp = &cg_clustersum(cgp)[len - 1]; 1973 for (i = len - 1; i > 0; i--) 1974 if (*lp-- > 0) 1975 break; 1976 UFS_LOCK(ump); 1977 fs->fs_maxcluster[cg] = i; 1978 brelse(bp); 1979 return (0); 1980 } 1981 /* 1982 * Search the cluster map to find a big enough cluster. 1983 * We take the first one that we find, even if it is larger 1984 * than we need as we prefer to get one close to the previous 1985 * block allocation. We do not search before the current 1986 * preference point as we do not want to allocate a block 1987 * that is allocated before the previous one (as we will 1988 * then have to wait for another pass of the elevator 1989 * algorithm before it will be read). We prefer to fail and 1990 * be recalled to try an allocation in the next cylinder group. 1991 */ 1992 if (dtog(fs, bpref) != cg) 1993 bpref = cgdata(fs, cg); 1994 else 1995 bpref = blknum(fs, bpref); 1996 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1997 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1998 map = *mapp++; 1999 bit = 1 << (bpref % NBBY); 2000 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 2001 if ((map & bit) == 0) { 2002 run = 0; 2003 } else { 2004 run++; 2005 if (run == len) 2006 break; 2007 } 2008 if ((got & (NBBY - 1)) != (NBBY - 1)) { 2009 bit <<= 1; 2010 } else { 2011 map = *mapp++; 2012 bit = 1; 2013 } 2014 } 2015 if (got >= cgp->cg_nclusterblks) { 2016 UFS_LOCK(ump); 2017 brelse(bp); 2018 return (0); 2019 } 2020 /* 2021 * Allocate the cluster that we have found. 2022 */ 2023 blksfree = cg_blksfree(cgp); 2024 for (i = 1; i <= len; i++) 2025 if (!ffs_isblock(fs, blksfree, got - run + i)) 2026 panic("ffs_clusteralloc: map mismatch"); 2027 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 2028 if (dtog(fs, bno) != cg) 2029 panic("ffs_clusteralloc: allocated out of group"); 2030 len = blkstofrags(fs, len); 2031 UFS_LOCK(ump); 2032 for (i = 0; i < len; i += fs->fs_frag) 2033 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2034 panic("ffs_clusteralloc: lost block"); 2035 ACTIVECLEAR(fs, cg); 2036 UFS_UNLOCK(ump); 2037 bdwrite(bp); 2038 return (bno); 2039 } 2040 2041 static inline struct buf * 2042 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 2043 { 2044 struct fs *fs; 2045 2046 fs = ITOFS(ip); 2047 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2048 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2049 gbflags)); 2050 } 2051 2052 /* 2053 * Synchronous inode initialization is needed only when barrier writes do not 2054 * work as advertised, and will impose a heavy cost on file creation in a newly 2055 * created filesystem. 2056 */ 2057 static int doasyncinodeinit = 1; 2058 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2059 &doasyncinodeinit, 0, 2060 "Perform inode block initialization using asynchronous writes"); 2061 2062 /* 2063 * Determine whether an inode can be allocated. 2064 * 2065 * Check to see if an inode is available, and if it is, 2066 * allocate it using the following policy: 2067 * 1) allocate the requested inode. 2068 * 2) allocate the next available inode after the requested 2069 * inode in the specified cylinder group. 2070 */ 2071 static ufs2_daddr_t 2072 ffs_nodealloccg(ip, cg, ipref, mode, unused) 2073 struct inode *ip; 2074 u_int cg; 2075 ufs2_daddr_t ipref; 2076 int mode; 2077 int unused; 2078 { 2079 struct fs *fs; 2080 struct cg *cgp; 2081 struct buf *bp, *ibp; 2082 struct ufsmount *ump; 2083 u_int8_t *inosused, *loc; 2084 struct ufs2_dinode *dp2; 2085 int error, start, len, i; 2086 u_int32_t old_initediblk; 2087 2088 ump = ITOUMP(ip); 2089 fs = ump->um_fs; 2090 check_nifree: 2091 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2092 return (0); 2093 UFS_UNLOCK(ump); 2094 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 2095 UFS_LOCK(ump); 2096 return (0); 2097 } 2098 restart: 2099 if (cgp->cg_cs.cs_nifree == 0) { 2100 brelse(bp); 2101 UFS_LOCK(ump); 2102 return (0); 2103 } 2104 inosused = cg_inosused(cgp); 2105 if (ipref) { 2106 ipref %= fs->fs_ipg; 2107 if (isclr(inosused, ipref)) 2108 goto gotit; 2109 } 2110 start = cgp->cg_irotor / NBBY; 2111 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2112 loc = memcchr(&inosused[start], 0xff, len); 2113 if (loc == NULL) { 2114 len = start + 1; 2115 start = 0; 2116 loc = memcchr(&inosused[start], 0xff, len); 2117 if (loc == NULL) { 2118 printf("cg = %d, irotor = %ld, fs = %s\n", 2119 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2120 panic("ffs_nodealloccg: map corrupted"); 2121 /* NOTREACHED */ 2122 } 2123 } 2124 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2125 gotit: 2126 /* 2127 * Check to see if we need to initialize more inodes. 2128 */ 2129 if (fs->fs_magic == FS_UFS2_MAGIC && 2130 ipref + INOPB(fs) > cgp->cg_initediblk && 2131 cgp->cg_initediblk < cgp->cg_niblk) { 2132 old_initediblk = cgp->cg_initediblk; 2133 2134 /* 2135 * Free the cylinder group lock before writing the 2136 * initialized inode block. Entering the 2137 * babarrierwrite() with the cylinder group lock 2138 * causes lock order violation between the lock and 2139 * snaplk. 2140 * 2141 * Another thread can decide to initialize the same 2142 * inode block, but whichever thread first gets the 2143 * cylinder group lock after writing the newly 2144 * allocated inode block will update it and the other 2145 * will realize that it has lost and leave the 2146 * cylinder group unchanged. 2147 */ 2148 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2149 brelse(bp); 2150 if (ibp == NULL) { 2151 /* 2152 * The inode block buffer is already owned by 2153 * another thread, which must initialize it. 2154 * Wait on the buffer to allow another thread 2155 * to finish the updates, with dropped cg 2156 * buffer lock, then retry. 2157 */ 2158 ibp = getinobuf(ip, cg, old_initediblk, 0); 2159 brelse(ibp); 2160 UFS_LOCK(ump); 2161 goto check_nifree; 2162 } 2163 bzero(ibp->b_data, (int)fs->fs_bsize); 2164 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2165 for (i = 0; i < INOPB(fs); i++) { 2166 while (dp2->di_gen == 0) 2167 dp2->di_gen = arc4random(); 2168 dp2++; 2169 } 2170 2171 /* 2172 * Rather than adding a soft updates dependency to ensure 2173 * that the new inode block is written before it is claimed 2174 * by the cylinder group map, we just do a barrier write 2175 * here. The barrier write will ensure that the inode block 2176 * gets written before the updated cylinder group map can be 2177 * written. The barrier write should only slow down bulk 2178 * loading of newly created filesystems. 2179 */ 2180 if (doasyncinodeinit) 2181 babarrierwrite(ibp); 2182 else 2183 bwrite(ibp); 2184 2185 /* 2186 * After the inode block is written, try to update the 2187 * cg initediblk pointer. If another thread beat us 2188 * to it, then leave it unchanged as the other thread 2189 * has already set it correctly. 2190 */ 2191 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2192 UFS_LOCK(ump); 2193 ACTIVECLEAR(fs, cg); 2194 UFS_UNLOCK(ump); 2195 if (error != 0) 2196 return (error); 2197 if (cgp->cg_initediblk == old_initediblk) 2198 cgp->cg_initediblk += INOPB(fs); 2199 goto restart; 2200 } 2201 cgp->cg_irotor = ipref; 2202 UFS_LOCK(ump); 2203 ACTIVECLEAR(fs, cg); 2204 setbit(inosused, ipref); 2205 cgp->cg_cs.cs_nifree--; 2206 fs->fs_cstotal.cs_nifree--; 2207 fs->fs_cs(fs, cg).cs_nifree--; 2208 fs->fs_fmod = 1; 2209 if ((mode & IFMT) == IFDIR) { 2210 cgp->cg_cs.cs_ndir++; 2211 fs->fs_cstotal.cs_ndir++; 2212 fs->fs_cs(fs, cg).cs_ndir++; 2213 } 2214 UFS_UNLOCK(ump); 2215 if (DOINGSOFTDEP(ITOV(ip))) 2216 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2217 bdwrite(bp); 2218 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2219 } 2220 2221 /* 2222 * Free a block or fragment. 2223 * 2224 * The specified block or fragment is placed back in the 2225 * free map. If a fragment is deallocated, a possible 2226 * block reassembly is checked. 2227 */ 2228 static void 2229 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2230 struct ufsmount *ump; 2231 struct fs *fs; 2232 struct vnode *devvp; 2233 ufs2_daddr_t bno; 2234 long size; 2235 ino_t inum; 2236 struct workhead *dephd; 2237 { 2238 struct mount *mp; 2239 struct cg *cgp; 2240 struct buf *bp; 2241 daddr_t dbn; 2242 ufs1_daddr_t fragno, cgbno; 2243 int i, blk, frags, bbase, error; 2244 u_int cg; 2245 u_int8_t *blksfree; 2246 struct cdev *dev; 2247 2248 cg = dtog(fs, bno); 2249 if (devvp->v_type == VREG) { 2250 /* devvp is a snapshot */ 2251 MPASS(devvp->v_mount->mnt_data == ump); 2252 dev = ump->um_devvp->v_rdev; 2253 } else if (devvp->v_type == VCHR) { 2254 /* devvp is a normal disk device */ 2255 dev = devvp->v_rdev; 2256 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2257 } else 2258 return; 2259 #ifdef INVARIANTS 2260 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2261 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2262 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2263 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2264 size, fs->fs_fsmnt); 2265 panic("ffs_blkfree_cg: bad size"); 2266 } 2267 #endif 2268 if ((u_int)bno >= fs->fs_size) { 2269 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2270 (u_long)inum); 2271 ffs_fserr(fs, inum, "bad block"); 2272 return; 2273 } 2274 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2275 if (!ffs_fsfail_cleanup(ump, error) || 2276 !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2277 return; 2278 if (devvp->v_type == VREG) 2279 dbn = fragstoblks(fs, cgtod(fs, cg)); 2280 else 2281 dbn = fsbtodb(fs, cgtod(fs, cg)); 2282 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2283 KASSERT(error == 0, ("getblkx failed")); 2284 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2285 numfrags(fs, size), dephd); 2286 bp->b_flags |= B_RELBUF | B_NOCACHE; 2287 bp->b_flags &= ~B_CACHE; 2288 bawrite(bp); 2289 return; 2290 } 2291 cgbno = dtogd(fs, bno); 2292 blksfree = cg_blksfree(cgp); 2293 UFS_LOCK(ump); 2294 if (size == fs->fs_bsize) { 2295 fragno = fragstoblks(fs, cgbno); 2296 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2297 if (devvp->v_type == VREG) { 2298 UFS_UNLOCK(ump); 2299 /* devvp is a snapshot */ 2300 brelse(bp); 2301 return; 2302 } 2303 printf("dev = %s, block = %jd, fs = %s\n", 2304 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2305 panic("ffs_blkfree_cg: freeing free block"); 2306 } 2307 ffs_setblock(fs, blksfree, fragno); 2308 ffs_clusteracct(fs, cgp, fragno, 1); 2309 cgp->cg_cs.cs_nbfree++; 2310 fs->fs_cstotal.cs_nbfree++; 2311 fs->fs_cs(fs, cg).cs_nbfree++; 2312 } else { 2313 bbase = cgbno - fragnum(fs, cgbno); 2314 /* 2315 * decrement the counts associated with the old frags 2316 */ 2317 blk = blkmap(fs, blksfree, bbase); 2318 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2319 /* 2320 * deallocate the fragment 2321 */ 2322 frags = numfrags(fs, size); 2323 for (i = 0; i < frags; i++) { 2324 if (isset(blksfree, cgbno + i)) { 2325 printf("dev = %s, block = %jd, fs = %s\n", 2326 devtoname(dev), (intmax_t)(bno + i), 2327 fs->fs_fsmnt); 2328 panic("ffs_blkfree_cg: freeing free frag"); 2329 } 2330 setbit(blksfree, cgbno + i); 2331 } 2332 cgp->cg_cs.cs_nffree += i; 2333 fs->fs_cstotal.cs_nffree += i; 2334 fs->fs_cs(fs, cg).cs_nffree += i; 2335 /* 2336 * add back in counts associated with the new frags 2337 */ 2338 blk = blkmap(fs, blksfree, bbase); 2339 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2340 /* 2341 * if a complete block has been reassembled, account for it 2342 */ 2343 fragno = fragstoblks(fs, bbase); 2344 if (ffs_isblock(fs, blksfree, fragno)) { 2345 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2346 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2347 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2348 ffs_clusteracct(fs, cgp, fragno, 1); 2349 cgp->cg_cs.cs_nbfree++; 2350 fs->fs_cstotal.cs_nbfree++; 2351 fs->fs_cs(fs, cg).cs_nbfree++; 2352 } 2353 } 2354 fs->fs_fmod = 1; 2355 ACTIVECLEAR(fs, cg); 2356 UFS_UNLOCK(ump); 2357 mp = UFSTOVFS(ump); 2358 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2359 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2360 numfrags(fs, size), dephd); 2361 bdwrite(bp); 2362 } 2363 2364 /* 2365 * Structures and routines associated with trim management. 2366 * 2367 * The following requests are passed to trim_lookup to indicate 2368 * the actions that should be taken. 2369 */ 2370 #define NEW 1 /* if found, error else allocate and hash it */ 2371 #define OLD 2 /* if not found, error, else return it */ 2372 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2373 #define DONE 4 /* if not found, error else unhash and return it */ 2374 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2375 2376 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2377 2378 #define TRIMLIST_HASH(ump, key) \ 2379 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2380 2381 /* 2382 * These structures describe each of the block free requests aggregated 2383 * together to make up a trim request. 2384 */ 2385 struct trim_blkreq { 2386 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2387 ufs2_daddr_t bno; 2388 long size; 2389 struct workhead *pdephd; 2390 struct workhead dephd; 2391 }; 2392 2393 /* 2394 * Description of a trim request. 2395 */ 2396 struct ffs_blkfree_trim_params { 2397 TAILQ_HEAD(, trim_blkreq) blklist; 2398 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2399 struct task task; 2400 struct ufsmount *ump; 2401 struct vnode *devvp; 2402 ino_t inum; 2403 ufs2_daddr_t bno; 2404 long size; 2405 long key; 2406 }; 2407 2408 static void ffs_blkfree_trim_completed(struct buf *); 2409 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2410 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2411 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int); 2412 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2413 2414 /* 2415 * Called on trim completion to start a task to free the associated block(s). 2416 */ 2417 static void 2418 ffs_blkfree_trim_completed(bp) 2419 struct buf *bp; 2420 { 2421 struct ffs_blkfree_trim_params *tp; 2422 2423 tp = bp->b_fsprivate1; 2424 free(bp, M_TRIM); 2425 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2426 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2427 } 2428 2429 /* 2430 * Trim completion task that free associated block(s). 2431 */ 2432 static void 2433 ffs_blkfree_trim_task(ctx, pending) 2434 void *ctx; 2435 int pending; 2436 { 2437 struct ffs_blkfree_trim_params *tp; 2438 struct trim_blkreq *blkelm; 2439 struct ufsmount *ump; 2440 2441 tp = ctx; 2442 ump = tp->ump; 2443 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2444 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2445 blkelm->size, tp->inum, blkelm->pdephd); 2446 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2447 free(blkelm, M_TRIM); 2448 } 2449 vn_finished_secondary_write(UFSTOVFS(ump)); 2450 UFS_LOCK(ump); 2451 ump->um_trim_inflight -= 1; 2452 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2453 UFS_UNLOCK(ump); 2454 free(tp, M_TRIM); 2455 } 2456 2457 /* 2458 * Lookup a trim request by inode number. 2459 * Allocate if requested (NEW, REPLACE, SINGLE). 2460 */ 2461 static struct ffs_blkfree_trim_params * 2462 trim_lookup(ump, devvp, bno, size, inum, key, alloctype) 2463 struct ufsmount *ump; 2464 struct vnode *devvp; 2465 ufs2_daddr_t bno; 2466 long size; 2467 ino_t inum; 2468 u_long key; 2469 int alloctype; 2470 { 2471 struct trimlist_hashhead *tphashhead; 2472 struct ffs_blkfree_trim_params *tp, *ntp; 2473 2474 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2475 if (alloctype != SINGLE) { 2476 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2477 UFS_LOCK(ump); 2478 tphashhead = TRIMLIST_HASH(ump, key); 2479 LIST_FOREACH(tp, tphashhead, hashlist) 2480 if (key == tp->key) 2481 break; 2482 } 2483 switch (alloctype) { 2484 case NEW: 2485 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2486 break; 2487 case OLD: 2488 KASSERT(tp != NULL, 2489 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2490 UFS_UNLOCK(ump); 2491 free(ntp, M_TRIM); 2492 return (tp); 2493 case REPLACE: 2494 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2495 LIST_REMOVE(tp, hashlist); 2496 /* tp will be freed by caller */ 2497 break; 2498 case DONE: 2499 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2500 LIST_REMOVE(tp, hashlist); 2501 UFS_UNLOCK(ump); 2502 free(ntp, M_TRIM); 2503 return (tp); 2504 } 2505 TAILQ_INIT(&ntp->blklist); 2506 ntp->ump = ump; 2507 ntp->devvp = devvp; 2508 ntp->bno = bno; 2509 ntp->size = size; 2510 ntp->inum = inum; 2511 ntp->key = key; 2512 if (alloctype != SINGLE) { 2513 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2514 UFS_UNLOCK(ump); 2515 } 2516 return (ntp); 2517 } 2518 2519 /* 2520 * Dispatch a trim request. 2521 */ 2522 static void 2523 ffs_blkfree_sendtrim(tp) 2524 struct ffs_blkfree_trim_params *tp; 2525 { 2526 struct ufsmount *ump; 2527 struct mount *mp; 2528 struct buf *bp; 2529 2530 /* 2531 * Postpone the set of the free bit in the cg bitmap until the 2532 * BIO_DELETE is completed. Otherwise, due to disk queue 2533 * reordering, TRIM might be issued after we reuse the block 2534 * and write some new data into it. 2535 */ 2536 ump = tp->ump; 2537 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2538 bp->b_iocmd = BIO_DELETE; 2539 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2540 bp->b_iodone = ffs_blkfree_trim_completed; 2541 bp->b_bcount = tp->size; 2542 bp->b_fsprivate1 = tp; 2543 UFS_LOCK(ump); 2544 ump->um_trim_total += 1; 2545 ump->um_trim_inflight += 1; 2546 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2547 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2548 UFS_UNLOCK(ump); 2549 2550 mp = UFSTOVFS(ump); 2551 vn_start_secondary_write(NULL, &mp, 0); 2552 g_vfs_strategy(ump->um_bo, bp); 2553 } 2554 2555 /* 2556 * Allocate a new key to use to identify a range of blocks. 2557 */ 2558 u_long 2559 ffs_blkrelease_start(ump, devvp, inum) 2560 struct ufsmount *ump; 2561 struct vnode *devvp; 2562 ino_t inum; 2563 { 2564 static u_long masterkey; 2565 u_long key; 2566 2567 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2568 return (SINGLETON_KEY); 2569 do { 2570 key = atomic_fetchadd_long(&masterkey, 1); 2571 } while (key < FIRST_VALID_KEY); 2572 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2573 return (key); 2574 } 2575 2576 /* 2577 * Deallocate a key that has been used to identify a range of blocks. 2578 */ 2579 void 2580 ffs_blkrelease_finish(ump, key) 2581 struct ufsmount *ump; 2582 u_long key; 2583 { 2584 struct ffs_blkfree_trim_params *tp; 2585 2586 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2587 return; 2588 /* 2589 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2590 * a file deletion is active, specifically after a call 2591 * to ffs_blkrelease_start() but before the call to 2592 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2593 * have handed out SINGLETON_KEY rather than starting a 2594 * collection sequence. Thus if we get a SINGLETON_KEY 2595 * passed to ffs_blkrelease_finish(), we just return rather 2596 * than trying to finish the nonexistent sequence. 2597 */ 2598 if (key == SINGLETON_KEY) { 2599 #ifdef INVARIANTS 2600 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2601 ump->um_mountp->mnt_stat.f_mntonname); 2602 #endif 2603 return; 2604 } 2605 /* 2606 * We are done with sending blocks using this key. Look up the key 2607 * using the DONE alloctype (in tp) to request that it be unhashed 2608 * as we will not be adding to it. If the key has never been used, 2609 * tp->size will be zero, so we can just free tp. Otherwise the call 2610 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2611 * tp to be issued (and then tp to be freed). 2612 */ 2613 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2614 if (tp->size == 0) 2615 free(tp, M_TRIM); 2616 else 2617 ffs_blkfree_sendtrim(tp); 2618 } 2619 2620 /* 2621 * Setup to free a block or fragment. 2622 * 2623 * Check for snapshots that might want to claim the block. 2624 * If trims are requested, prepare a trim request. Attempt to 2625 * aggregate consecutive blocks into a single trim request. 2626 */ 2627 void 2628 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key) 2629 struct ufsmount *ump; 2630 struct fs *fs; 2631 struct vnode *devvp; 2632 ufs2_daddr_t bno; 2633 long size; 2634 ino_t inum; 2635 enum vtype vtype; 2636 struct workhead *dephd; 2637 u_long key; 2638 { 2639 struct ffs_blkfree_trim_params *tp, *ntp; 2640 struct trim_blkreq *blkelm; 2641 2642 /* 2643 * Check to see if a snapshot wants to claim the block. 2644 * Check that devvp is a normal disk device, not a snapshot, 2645 * it has a snapshot(s) associated with it, and one of the 2646 * snapshots wants to claim the block. 2647 */ 2648 if (devvp->v_type == VCHR && 2649 (devvp->v_vflag & VV_COPYONWRITE) && 2650 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2651 return; 2652 } 2653 /* 2654 * Nothing to delay if TRIM is not required for this block or TRIM 2655 * is disabled or the operation is performed on a snapshot. 2656 */ 2657 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2658 devvp->v_type == VREG) { 2659 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2660 return; 2661 } 2662 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2663 blkelm->bno = bno; 2664 blkelm->size = size; 2665 if (dephd == NULL) { 2666 blkelm->pdephd = NULL; 2667 } else { 2668 LIST_INIT(&blkelm->dephd); 2669 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2670 blkelm->pdephd = &blkelm->dephd; 2671 } 2672 if (key == SINGLETON_KEY) { 2673 /* 2674 * Just a single non-contiguous piece. Use the SINGLE 2675 * alloctype to return a trim request that will not be 2676 * hashed for future lookup. 2677 */ 2678 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2679 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2680 ffs_blkfree_sendtrim(tp); 2681 return; 2682 } 2683 /* 2684 * The callers of this function are not tracking whether or not 2685 * the blocks are contiguous. They are just saying that they 2686 * are freeing a set of blocks. It is this code that determines 2687 * the pieces of that range that are actually contiguous. 2688 * 2689 * Calling ffs_blkrelease_start() will have created an entry 2690 * that we will use. 2691 */ 2692 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2693 if (tp->size == 0) { 2694 /* 2695 * First block of a potential range, set block and size 2696 * for the trim block. 2697 */ 2698 tp->bno = bno; 2699 tp->size = size; 2700 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2701 return; 2702 } 2703 /* 2704 * If this block is a continuation of the range (either 2705 * follows at the end or preceeds in the front) then we 2706 * add it to the front or back of the list and return. 2707 * 2708 * If it is not a continuation of the trim that we were 2709 * building, using the REPLACE alloctype, we request that 2710 * the old trim request (still in tp) be unhashed and a 2711 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2712 * call causes the block range described by tp to be issued 2713 * (and then tp to be freed). 2714 */ 2715 if (bno + numfrags(fs, size) == tp->bno) { 2716 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2717 tp->bno = bno; 2718 tp->size += size; 2719 return; 2720 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2721 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2722 tp->size += size; 2723 return; 2724 } 2725 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2726 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2727 ffs_blkfree_sendtrim(tp); 2728 } 2729 2730 #ifdef INVARIANTS 2731 /* 2732 * Verify allocation of a block or fragment. Returns true if block or 2733 * fragment is allocated, false if it is free. 2734 */ 2735 static int 2736 ffs_checkblk(ip, bno, size) 2737 struct inode *ip; 2738 ufs2_daddr_t bno; 2739 long size; 2740 { 2741 struct fs *fs; 2742 struct cg *cgp; 2743 struct buf *bp; 2744 ufs1_daddr_t cgbno; 2745 int i, error, frags, free; 2746 u_int8_t *blksfree; 2747 2748 fs = ITOFS(ip); 2749 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2750 printf("bsize = %ld, size = %ld, fs = %s\n", 2751 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2752 panic("ffs_checkblk: bad size"); 2753 } 2754 if ((u_int)bno >= fs->fs_size) 2755 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2756 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp); 2757 if (error) 2758 panic("ffs_checkblk: cylinder group read failed"); 2759 blksfree = cg_blksfree(cgp); 2760 cgbno = dtogd(fs, bno); 2761 if (size == fs->fs_bsize) { 2762 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2763 } else { 2764 frags = numfrags(fs, size); 2765 for (free = 0, i = 0; i < frags; i++) 2766 if (isset(blksfree, cgbno + i)) 2767 free++; 2768 if (free != 0 && free != frags) 2769 panic("ffs_checkblk: partially free fragment"); 2770 } 2771 brelse(bp); 2772 return (!free); 2773 } 2774 #endif /* INVARIANTS */ 2775 2776 /* 2777 * Free an inode. 2778 */ 2779 int 2780 ffs_vfree(pvp, ino, mode) 2781 struct vnode *pvp; 2782 ino_t ino; 2783 int mode; 2784 { 2785 struct ufsmount *ump; 2786 2787 if (DOINGSOFTDEP(pvp)) { 2788 softdep_freefile(pvp, ino, mode); 2789 return (0); 2790 } 2791 ump = VFSTOUFS(pvp->v_mount); 2792 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2793 } 2794 2795 /* 2796 * Do the actual free operation. 2797 * The specified inode is placed back in the free map. 2798 */ 2799 int 2800 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2801 struct ufsmount *ump; 2802 struct fs *fs; 2803 struct vnode *devvp; 2804 ino_t ino; 2805 int mode; 2806 struct workhead *wkhd; 2807 { 2808 struct cg *cgp; 2809 struct buf *bp; 2810 daddr_t dbn; 2811 int error; 2812 u_int cg; 2813 u_int8_t *inosused; 2814 struct cdev *dev; 2815 ino_t cgino; 2816 2817 cg = ino_to_cg(fs, ino); 2818 if (devvp->v_type == VREG) { 2819 /* devvp is a snapshot */ 2820 MPASS(devvp->v_mount->mnt_data == ump); 2821 dev = ump->um_devvp->v_rdev; 2822 } else if (devvp->v_type == VCHR) { 2823 /* devvp is a normal disk device */ 2824 dev = devvp->v_rdev; 2825 } else { 2826 bp = NULL; 2827 return (0); 2828 } 2829 if (ino >= fs->fs_ipg * fs->fs_ncg) 2830 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2831 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2832 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2833 if (!ffs_fsfail_cleanup(ump, error) || 2834 !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2835 return (error); 2836 if (devvp->v_type == VREG) 2837 dbn = fragstoblks(fs, cgtod(fs, cg)); 2838 else 2839 dbn = fsbtodb(fs, cgtod(fs, cg)); 2840 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2841 KASSERT(error == 0, ("getblkx failed")); 2842 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd); 2843 bp->b_flags |= B_RELBUF | B_NOCACHE; 2844 bp->b_flags &= ~B_CACHE; 2845 bawrite(bp); 2846 return (error); 2847 } 2848 inosused = cg_inosused(cgp); 2849 cgino = ino % fs->fs_ipg; 2850 if (isclr(inosused, cgino)) { 2851 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2852 (uintmax_t)ino, fs->fs_fsmnt); 2853 if (fs->fs_ronly == 0) 2854 panic("ffs_freefile: freeing free inode"); 2855 } 2856 clrbit(inosused, cgino); 2857 if (cgino < cgp->cg_irotor) 2858 cgp->cg_irotor = cgino; 2859 cgp->cg_cs.cs_nifree++; 2860 UFS_LOCK(ump); 2861 fs->fs_cstotal.cs_nifree++; 2862 fs->fs_cs(fs, cg).cs_nifree++; 2863 if ((mode & IFMT) == IFDIR) { 2864 cgp->cg_cs.cs_ndir--; 2865 fs->fs_cstotal.cs_ndir--; 2866 fs->fs_cs(fs, cg).cs_ndir--; 2867 } 2868 fs->fs_fmod = 1; 2869 ACTIVECLEAR(fs, cg); 2870 UFS_UNLOCK(ump); 2871 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2872 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd); 2873 bdwrite(bp); 2874 return (0); 2875 } 2876 2877 /* 2878 * Check to see if a file is free. 2879 * Used to check for allocated files in snapshots. 2880 */ 2881 int 2882 ffs_checkfreefile(fs, devvp, ino) 2883 struct fs *fs; 2884 struct vnode *devvp; 2885 ino_t ino; 2886 { 2887 struct cg *cgp; 2888 struct buf *bp; 2889 int ret, error; 2890 u_int cg; 2891 u_int8_t *inosused; 2892 2893 cg = ino_to_cg(fs, ino); 2894 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2895 return (1); 2896 if (ino >= fs->fs_ipg * fs->fs_ncg) 2897 return (1); 2898 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0) 2899 return (1); 2900 inosused = cg_inosused(cgp); 2901 ino %= fs->fs_ipg; 2902 ret = isclr(inosused, ino); 2903 brelse(bp); 2904 return (ret); 2905 } 2906 2907 /* 2908 * Find a block of the specified size in the specified cylinder group. 2909 * 2910 * It is a panic if a request is made to find a block if none are 2911 * available. 2912 */ 2913 static ufs1_daddr_t 2914 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2915 struct fs *fs; 2916 struct cg *cgp; 2917 ufs2_daddr_t bpref; 2918 int allocsiz; 2919 { 2920 ufs1_daddr_t bno; 2921 int start, len, loc, i; 2922 int blk, field, subfield, pos; 2923 u_int8_t *blksfree; 2924 2925 /* 2926 * find the fragment by searching through the free block 2927 * map for an appropriate bit pattern 2928 */ 2929 if (bpref) 2930 start = dtogd(fs, bpref) / NBBY; 2931 else 2932 start = cgp->cg_frotor / NBBY; 2933 blksfree = cg_blksfree(cgp); 2934 len = howmany(fs->fs_fpg, NBBY) - start; 2935 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2936 fragtbl[fs->fs_frag], 2937 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2938 if (loc == 0) { 2939 len = start + 1; 2940 start = 0; 2941 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2942 fragtbl[fs->fs_frag], 2943 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2944 if (loc == 0) { 2945 printf("start = %d, len = %d, fs = %s\n", 2946 start, len, fs->fs_fsmnt); 2947 panic("ffs_alloccg: map corrupted"); 2948 /* NOTREACHED */ 2949 } 2950 } 2951 bno = (start + len - loc) * NBBY; 2952 cgp->cg_frotor = bno; 2953 /* 2954 * found the byte in the map 2955 * sift through the bits to find the selected frag 2956 */ 2957 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2958 blk = blkmap(fs, blksfree, bno); 2959 blk <<= 1; 2960 field = around[allocsiz]; 2961 subfield = inside[allocsiz]; 2962 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2963 if ((blk & field) == subfield) 2964 return (bno + pos); 2965 field <<= 1; 2966 subfield <<= 1; 2967 } 2968 } 2969 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2970 panic("ffs_alloccg: block not in map"); 2971 return (-1); 2972 } 2973 2974 static const struct statfs * 2975 ffs_getmntstat(struct vnode *devvp) 2976 { 2977 2978 if (devvp->v_type == VCHR) 2979 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2980 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2981 } 2982 2983 /* 2984 * Fetch and verify a cylinder group. 2985 */ 2986 int 2987 ffs_getcg(fs, devvp, cg, flags, bpp, cgpp) 2988 struct fs *fs; 2989 struct vnode *devvp; 2990 u_int cg; 2991 int flags; 2992 struct buf **bpp; 2993 struct cg **cgpp; 2994 { 2995 struct buf *bp; 2996 struct cg *cgp; 2997 const struct statfs *sfs; 2998 daddr_t blkno; 2999 int error; 3000 3001 *bpp = NULL; 3002 *cgpp = NULL; 3003 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3004 flags |= GB_CKHASH; 3005 if (devvp->v_type == VREG) 3006 blkno = fragstoblks(fs, cgtod(fs, cg)); 3007 else 3008 blkno = fsbtodb(fs, cgtod(fs, cg)); 3009 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL, 3010 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp); 3011 if (error != 0) 3012 return (error); 3013 cgp = (struct cg *)bp->b_data; 3014 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 3015 (bp->b_flags & B_CKHASH) != 0 && 3016 cgp->cg_ckhash != bp->b_ckhash) { 3017 sfs = ffs_getmntstat(devvp); 3018 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 3019 "0x%x != bp: 0x%jx\n", 3020 devvp->v_type == VCHR ? "" : "snapshot of ", 3021 sfs->f_mntfromname, sfs->f_mntonname, 3022 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 3023 bp->b_flags &= ~B_CKHASH; 3024 bp->b_flags |= B_INVAL | B_NOCACHE; 3025 brelse(bp); 3026 return (EIO); 3027 } 3028 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 3029 sfs = ffs_getmntstat(devvp); 3030 printf("UFS %s%s (%s)", 3031 devvp->v_type == VCHR ? "" : "snapshot of ", 3032 sfs->f_mntfromname, sfs->f_mntonname); 3033 if (!cg_chkmagic(cgp)) 3034 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 3035 cg, cgp->cg_magic, CG_MAGIC); 3036 else 3037 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 3038 cgp->cg_cgx); 3039 bp->b_flags &= ~B_CKHASH; 3040 bp->b_flags |= B_INVAL | B_NOCACHE; 3041 brelse(bp); 3042 return (EIO); 3043 } 3044 bp->b_flags &= ~B_CKHASH; 3045 bp->b_xflags |= BX_BKGRDWRITE; 3046 /* 3047 * If we are using check hashes on the cylinder group then we want 3048 * to limit changing the cylinder group time to when we are actually 3049 * going to write it to disk so that its check hash remains correct 3050 * in memory. If the CK_CYLGRP flag is set the time is updated in 3051 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 3052 * update the time here as we have done historically. 3053 */ 3054 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3055 bp->b_xflags |= BX_CYLGRP; 3056 else 3057 cgp->cg_old_time = cgp->cg_time = time_second; 3058 *bpp = bp; 3059 *cgpp = cgp; 3060 return (0); 3061 } 3062 3063 static void 3064 ffs_ckhash_cg(bp) 3065 struct buf *bp; 3066 { 3067 uint32_t ckhash; 3068 struct cg *cgp; 3069 3070 cgp = (struct cg *)bp->b_data; 3071 ckhash = cgp->cg_ckhash; 3072 cgp->cg_ckhash = 0; 3073 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3074 cgp->cg_ckhash = ckhash; 3075 } 3076 3077 /* 3078 * Fserr prints the name of a filesystem with an error diagnostic. 3079 * 3080 * The form of the error message is: 3081 * fs: error message 3082 */ 3083 void 3084 ffs_fserr(fs, inum, cp) 3085 struct fs *fs; 3086 ino_t inum; 3087 char *cp; 3088 { 3089 struct thread *td = curthread; /* XXX */ 3090 struct proc *p = td->td_proc; 3091 3092 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3093 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3094 fs->fs_fsmnt, cp); 3095 } 3096 3097 /* 3098 * This function provides the capability for the fsck program to 3099 * update an active filesystem. Fourteen operations are provided: 3100 * 3101 * adjrefcnt(inode, amt) - adjusts the reference count on the 3102 * specified inode by the specified amount. Under normal 3103 * operation the count should always go down. Decrementing 3104 * the count to zero will cause the inode to be freed. 3105 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3106 * inode by the specified amount. 3107 * setsize(inode, size) - set the size of the inode to the 3108 * specified size. 3109 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3110 * adjust the superblock summary. 3111 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3112 * are marked as free. Inodes should never have to be marked 3113 * as in use. 3114 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3115 * are marked as free. Inodes should never have to be marked 3116 * as in use. 3117 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3118 * are marked as free. Blocks should never have to be marked 3119 * as in use. 3120 * setflags(flags, set/clear) - the fs_flags field has the specified 3121 * flags set (second parameter +1) or cleared (second parameter -1). 3122 * setcwd(dirinode) - set the current directory to dirinode in the 3123 * filesystem associated with the snapshot. 3124 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3125 * in the current directory is oldvalue then change it to newvalue. 3126 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3127 * with nameptr in the current directory is oldvalue then unlink it. 3128 */ 3129 3130 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3131 3132 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, 3133 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT, 3134 0, 0, sysctl_ffs_fsck, "S,fsck", 3135 "Adjust Inode Reference Count"); 3136 3137 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, 3138 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3139 "Adjust Inode Used Blocks Count"); 3140 3141 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, 3142 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3143 "Set the inode size"); 3144 3145 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, 3146 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3147 "Adjust number of directories"); 3148 3149 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, 3150 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3151 "Adjust number of free blocks"); 3152 3153 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, 3154 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3155 "Adjust number of free inodes"); 3156 3157 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, 3158 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3159 "Adjust number of free frags"); 3160 3161 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, 3162 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3163 "Adjust number of free clusters"); 3164 3165 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, 3166 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3167 "Free Range of Directory Inodes"); 3168 3169 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, 3170 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3171 "Free Range of File Inodes"); 3172 3173 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, 3174 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3175 "Free Range of Blocks"); 3176 3177 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, 3178 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3179 "Change Filesystem Flags"); 3180 3181 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, 3182 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3183 "Set Current Working Directory"); 3184 3185 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, 3186 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3187 "Change Value of .. Entry"); 3188 3189 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, 3190 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3191 "Unlink a Duplicate Name"); 3192 3193 #ifdef DIAGNOSTIC 3194 static int fsckcmds = 0; 3195 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3196 "print out fsck_ffs-based filesystem update commands"); 3197 #endif /* DIAGNOSTIC */ 3198 3199 static int 3200 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3201 { 3202 struct thread *td = curthread; 3203 struct fsck_cmd cmd; 3204 struct ufsmount *ump; 3205 struct vnode *vp, *dvp, *fdvp; 3206 struct inode *ip, *dp; 3207 struct mount *mp; 3208 struct fs *fs; 3209 struct pwd *pwd; 3210 ufs2_daddr_t blkno; 3211 long blkcnt, blksize; 3212 u_long key; 3213 struct file *fp; 3214 cap_rights_t rights; 3215 int filetype, error; 3216 3217 if (req->newptr == NULL || req->newlen > sizeof(cmd)) 3218 return (EBADRPC); 3219 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0) 3220 return (error); 3221 if (cmd.version != FFS_CMD_VERSION) 3222 return (ERPCMISMATCH); 3223 if ((error = getvnode(td, cmd.handle, 3224 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0) 3225 return (error); 3226 vp = fp->f_vnode; 3227 if (vp->v_type != VREG && vp->v_type != VDIR) { 3228 fdrop(fp, td); 3229 return (EINVAL); 3230 } 3231 vn_start_write(vp, &mp, V_WAIT); 3232 if (mp == NULL || 3233 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3234 vn_finished_write(mp); 3235 fdrop(fp, td); 3236 return (EINVAL); 3237 } 3238 ump = VFSTOUFS(mp); 3239 if ((mp->mnt_flag & MNT_RDONLY) && 3240 ump->um_fsckpid != td->td_proc->p_pid) { 3241 vn_finished_write(mp); 3242 fdrop(fp, td); 3243 return (EROFS); 3244 } 3245 fs = ump->um_fs; 3246 filetype = IFREG; 3247 3248 switch (oidp->oid_number) { 3249 case FFS_SET_FLAGS: 3250 #ifdef DIAGNOSTIC 3251 if (fsckcmds) 3252 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3253 cmd.size > 0 ? "set" : "clear"); 3254 #endif /* DIAGNOSTIC */ 3255 if (cmd.size > 0) 3256 fs->fs_flags |= (long)cmd.value; 3257 else 3258 fs->fs_flags &= ~(long)cmd.value; 3259 break; 3260 3261 case FFS_ADJ_REFCNT: 3262 #ifdef DIAGNOSTIC 3263 if (fsckcmds) { 3264 printf("%s: adjust inode %jd link count by %jd\n", 3265 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3266 (intmax_t)cmd.size); 3267 } 3268 #endif /* DIAGNOSTIC */ 3269 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3270 break; 3271 ip = VTOI(vp); 3272 ip->i_nlink += cmd.size; 3273 DIP_SET(ip, i_nlink, ip->i_nlink); 3274 ip->i_effnlink += cmd.size; 3275 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3276 error = ffs_update(vp, 1); 3277 if (DOINGSOFTDEP(vp)) 3278 softdep_change_linkcnt(ip); 3279 vput(vp); 3280 break; 3281 3282 case FFS_ADJ_BLKCNT: 3283 #ifdef DIAGNOSTIC 3284 if (fsckcmds) { 3285 printf("%s: adjust inode %jd block count by %jd\n", 3286 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3287 (intmax_t)cmd.size); 3288 } 3289 #endif /* DIAGNOSTIC */ 3290 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3291 break; 3292 ip = VTOI(vp); 3293 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3294 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3295 error = ffs_update(vp, 1); 3296 vput(vp); 3297 break; 3298 3299 case FFS_SET_SIZE: 3300 #ifdef DIAGNOSTIC 3301 if (fsckcmds) { 3302 printf("%s: set inode %jd size to %jd\n", 3303 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3304 (intmax_t)cmd.size); 3305 } 3306 #endif /* DIAGNOSTIC */ 3307 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3308 break; 3309 ip = VTOI(vp); 3310 DIP_SET(ip, i_size, cmd.size); 3311 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED); 3312 error = ffs_update(vp, 1); 3313 vput(vp); 3314 break; 3315 3316 case FFS_DIR_FREE: 3317 filetype = IFDIR; 3318 /* fall through */ 3319 3320 case FFS_FILE_FREE: 3321 #ifdef DIAGNOSTIC 3322 if (fsckcmds) { 3323 if (cmd.size == 1) 3324 printf("%s: free %s inode %ju\n", 3325 mp->mnt_stat.f_mntonname, 3326 filetype == IFDIR ? "directory" : "file", 3327 (uintmax_t)cmd.value); 3328 else 3329 printf("%s: free %s inodes %ju-%ju\n", 3330 mp->mnt_stat.f_mntonname, 3331 filetype == IFDIR ? "directory" : "file", 3332 (uintmax_t)cmd.value, 3333 (uintmax_t)(cmd.value + cmd.size - 1)); 3334 } 3335 #endif /* DIAGNOSTIC */ 3336 while (cmd.size > 0) { 3337 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3338 cmd.value, filetype, NULL))) 3339 break; 3340 cmd.size -= 1; 3341 cmd.value += 1; 3342 } 3343 break; 3344 3345 case FFS_BLK_FREE: 3346 #ifdef DIAGNOSTIC 3347 if (fsckcmds) { 3348 if (cmd.size == 1) 3349 printf("%s: free block %jd\n", 3350 mp->mnt_stat.f_mntonname, 3351 (intmax_t)cmd.value); 3352 else 3353 printf("%s: free blocks %jd-%jd\n", 3354 mp->mnt_stat.f_mntonname, 3355 (intmax_t)cmd.value, 3356 (intmax_t)cmd.value + cmd.size - 1); 3357 } 3358 #endif /* DIAGNOSTIC */ 3359 blkno = cmd.value; 3360 blkcnt = cmd.size; 3361 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3362 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3363 while (blkcnt > 0) { 3364 if (blkcnt < blksize) 3365 blksize = blkcnt; 3366 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3367 blksize * fs->fs_fsize, UFS_ROOTINO, 3368 VDIR, NULL, key); 3369 blkno += blksize; 3370 blkcnt -= blksize; 3371 blksize = fs->fs_frag; 3372 } 3373 ffs_blkrelease_finish(ump, key); 3374 break; 3375 3376 /* 3377 * Adjust superblock summaries. fsck(8) is expected to 3378 * submit deltas when necessary. 3379 */ 3380 case FFS_ADJ_NDIR: 3381 #ifdef DIAGNOSTIC 3382 if (fsckcmds) { 3383 printf("%s: adjust number of directories by %jd\n", 3384 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3385 } 3386 #endif /* DIAGNOSTIC */ 3387 fs->fs_cstotal.cs_ndir += cmd.value; 3388 break; 3389 3390 case FFS_ADJ_NBFREE: 3391 #ifdef DIAGNOSTIC 3392 if (fsckcmds) { 3393 printf("%s: adjust number of free blocks by %+jd\n", 3394 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3395 } 3396 #endif /* DIAGNOSTIC */ 3397 fs->fs_cstotal.cs_nbfree += cmd.value; 3398 break; 3399 3400 case FFS_ADJ_NIFREE: 3401 #ifdef DIAGNOSTIC 3402 if (fsckcmds) { 3403 printf("%s: adjust number of free inodes by %+jd\n", 3404 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3405 } 3406 #endif /* DIAGNOSTIC */ 3407 fs->fs_cstotal.cs_nifree += cmd.value; 3408 break; 3409 3410 case FFS_ADJ_NFFREE: 3411 #ifdef DIAGNOSTIC 3412 if (fsckcmds) { 3413 printf("%s: adjust number of free frags by %+jd\n", 3414 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3415 } 3416 #endif /* DIAGNOSTIC */ 3417 fs->fs_cstotal.cs_nffree += cmd.value; 3418 break; 3419 3420 case FFS_ADJ_NUMCLUSTERS: 3421 #ifdef DIAGNOSTIC 3422 if (fsckcmds) { 3423 printf("%s: adjust number of free clusters by %+jd\n", 3424 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3425 } 3426 #endif /* DIAGNOSTIC */ 3427 fs->fs_cstotal.cs_numclusters += cmd.value; 3428 break; 3429 3430 case FFS_SET_CWD: 3431 #ifdef DIAGNOSTIC 3432 if (fsckcmds) { 3433 printf("%s: set current directory to inode %jd\n", 3434 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3435 } 3436 #endif /* DIAGNOSTIC */ 3437 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3438 break; 3439 AUDIT_ARG_VNODE1(vp); 3440 if ((error = change_dir(vp, td)) != 0) { 3441 vput(vp); 3442 break; 3443 } 3444 VOP_UNLOCK(vp); 3445 pwd_chdir(td, vp); 3446 break; 3447 3448 case FFS_SET_DOTDOT: 3449 #ifdef DIAGNOSTIC 3450 if (fsckcmds) { 3451 printf("%s: change .. in cwd from %jd to %jd\n", 3452 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3453 (intmax_t)cmd.size); 3454 } 3455 #endif /* DIAGNOSTIC */ 3456 /* 3457 * First we have to get and lock the parent directory 3458 * to which ".." points. 3459 */ 3460 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3461 if (error) 3462 break; 3463 /* 3464 * Now we get and lock the child directory containing "..". 3465 */ 3466 pwd = pwd_hold(td); 3467 dvp = pwd->pwd_cdir; 3468 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) { 3469 vput(fdvp); 3470 pwd_drop(pwd); 3471 break; 3472 } 3473 dp = VTOI(dvp); 3474 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */ 3475 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3476 DT_DIR, 0); 3477 cache_purge(fdvp); 3478 cache_purge(dvp); 3479 vput(dvp); 3480 vput(fdvp); 3481 pwd_drop(pwd); 3482 break; 3483 3484 case FFS_UNLINK: 3485 #ifdef DIAGNOSTIC 3486 if (fsckcmds) { 3487 char buf[32]; 3488 3489 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3490 strncpy(buf, "Name_too_long", 32); 3491 printf("%s: unlink %s (inode %jd)\n", 3492 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3493 } 3494 #endif /* DIAGNOSTIC */ 3495 /* 3496 * kern_funlinkat will do its own start/finish writes and 3497 * they do not nest, so drop ours here. Setting mp == NULL 3498 * indicates that vn_finished_write is not needed down below. 3499 */ 3500 vn_finished_write(mp); 3501 mp = NULL; 3502 error = kern_funlinkat(td, AT_FDCWD, 3503 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3504 0, (ino_t)cmd.size); 3505 break; 3506 3507 default: 3508 #ifdef DIAGNOSTIC 3509 if (fsckcmds) { 3510 printf("Invalid request %d from fsck\n", 3511 oidp->oid_number); 3512 } 3513 #endif /* DIAGNOSTIC */ 3514 error = EINVAL; 3515 break; 3516 } 3517 fdrop(fp, td); 3518 vn_finished_write(mp); 3519 return (error); 3520 } 3521