1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bio.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/file.h> 73 #include <sys/filedesc.h> 74 #include <sys/priv.h> 75 #include <sys/proc.h> 76 #include <sys/vnode.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 82 #include <ufs/ufs/extattr.h> 83 #include <ufs/ufs/quota.h> 84 #include <ufs/ufs/inode.h> 85 #include <ufs/ufs/ufs_extern.h> 86 #include <ufs/ufs/ufsmount.h> 87 88 #include <ufs/ffs/fs.h> 89 #include <ufs/ffs/ffs_extern.h> 90 91 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref, 92 int size); 93 94 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int); 95 static ufs2_daddr_t 96 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t); 97 #ifdef DIAGNOSTIC 98 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 99 #endif 100 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int); 101 static void ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *, 102 ufs1_daddr_t, int); 103 static ino_t ffs_dirpref(struct inode *); 104 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int); 105 static void ffs_fserr(struct fs *, ino_t, char *); 106 static ufs2_daddr_t ffs_hashalloc 107 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *); 108 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int); 109 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 110 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 111 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 112 113 /* 114 * Allocate a block in the filesystem. 115 * 116 * The size of the requested block is given, which must be some 117 * multiple of fs_fsize and <= fs_bsize. 118 * A preference may be optionally specified. If a preference is given 119 * the following hierarchy is used to allocate a block: 120 * 1) allocate the requested block. 121 * 2) allocate a rotationally optimal block in the same cylinder. 122 * 3) allocate a block in the same cylinder group. 123 * 4) quadradically rehash into other cylinder groups, until an 124 * available block is located. 125 * If no block preference is given the following hierarchy is used 126 * to allocate a block: 127 * 1) allocate a block in the cylinder group that contains the 128 * inode for the file. 129 * 2) quadradically rehash into other cylinder groups, until an 130 * available block is located. 131 */ 132 int 133 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 134 struct inode *ip; 135 ufs2_daddr_t lbn, bpref; 136 int size; 137 struct ucred *cred; 138 ufs2_daddr_t *bnp; 139 { 140 struct fs *fs; 141 struct ufsmount *ump; 142 ufs2_daddr_t bno; 143 int cg, reclaimed; 144 static struct timeval lastfail; 145 static int curfail; 146 int64_t delta; 147 #ifdef QUOTA 148 int error; 149 #endif 150 151 *bnp = 0; 152 fs = ip->i_fs; 153 ump = ip->i_ump; 154 mtx_assert(UFS_MTX(ump), MA_OWNED); 155 #ifdef DIAGNOSTIC 156 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 157 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 158 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 159 fs->fs_fsmnt); 160 panic("ffs_alloc: bad size"); 161 } 162 if (cred == NOCRED) 163 panic("ffs_alloc: missing credential"); 164 #endif /* DIAGNOSTIC */ 165 reclaimed = 0; 166 retry: 167 #ifdef QUOTA 168 UFS_UNLOCK(ump); 169 error = chkdq(ip, btodb(size), cred, 0); 170 if (error) 171 return (error); 172 UFS_LOCK(ump); 173 #endif 174 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 175 goto nospace; 176 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 177 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 178 goto nospace; 179 if (bpref >= fs->fs_size) 180 bpref = 0; 181 if (bpref == 0) 182 cg = ino_to_cg(fs, ip->i_number); 183 else 184 cg = dtog(fs, bpref); 185 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 186 if (bno > 0) { 187 delta = btodb(size); 188 if (ip->i_flag & IN_SPACECOUNTED) { 189 UFS_LOCK(ump); 190 fs->fs_pendingblocks += delta; 191 UFS_UNLOCK(ump); 192 } 193 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 194 ip->i_flag |= IN_CHANGE | IN_UPDATE; 195 *bnp = bno; 196 return (0); 197 } 198 nospace: 199 #ifdef QUOTA 200 UFS_UNLOCK(ump); 201 /* 202 * Restore user's disk quota because allocation failed. 203 */ 204 (void) chkdq(ip, -btodb(size), cred, FORCE); 205 UFS_LOCK(ump); 206 #endif 207 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 208 reclaimed = 1; 209 softdep_request_cleanup(fs, ITOV(ip)); 210 goto retry; 211 } 212 UFS_UNLOCK(ump); 213 if (ppsratecheck(&lastfail, &curfail, 1)) { 214 ffs_fserr(fs, ip->i_number, "filesystem full"); 215 uprintf("\n%s: write failed, filesystem is full\n", 216 fs->fs_fsmnt); 217 } 218 return (ENOSPC); 219 } 220 221 /* 222 * Reallocate a fragment to a bigger size 223 * 224 * The number and size of the old block is given, and a preference 225 * and new size is also specified. The allocator attempts to extend 226 * the original block. Failing that, the regular block allocator is 227 * invoked to get an appropriate block. 228 */ 229 int 230 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp) 231 struct inode *ip; 232 ufs2_daddr_t lbprev; 233 ufs2_daddr_t bprev; 234 ufs2_daddr_t bpref; 235 int osize, nsize; 236 struct ucred *cred; 237 struct buf **bpp; 238 { 239 struct vnode *vp; 240 struct fs *fs; 241 struct buf *bp; 242 struct ufsmount *ump; 243 int cg, request, error, reclaimed; 244 ufs2_daddr_t bno; 245 static struct timeval lastfail; 246 static int curfail; 247 int64_t delta; 248 249 *bpp = 0; 250 vp = ITOV(ip); 251 fs = ip->i_fs; 252 bp = NULL; 253 ump = ip->i_ump; 254 mtx_assert(UFS_MTX(ump), MA_OWNED); 255 #ifdef DIAGNOSTIC 256 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 257 panic("ffs_realloccg: allocation on suspended filesystem"); 258 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 259 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 260 printf( 261 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 262 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 263 nsize, fs->fs_fsmnt); 264 panic("ffs_realloccg: bad size"); 265 } 266 if (cred == NOCRED) 267 panic("ffs_realloccg: missing credential"); 268 #endif /* DIAGNOSTIC */ 269 reclaimed = 0; 270 retry: 271 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 272 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 273 goto nospace; 274 } 275 if (bprev == 0) { 276 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 277 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 278 fs->fs_fsmnt); 279 panic("ffs_realloccg: bad bprev"); 280 } 281 UFS_UNLOCK(ump); 282 /* 283 * Allocate the extra space in the buffer. 284 */ 285 error = bread(vp, lbprev, osize, NOCRED, &bp); 286 if (error) { 287 brelse(bp); 288 return (error); 289 } 290 291 if (bp->b_blkno == bp->b_lblkno) { 292 if (lbprev >= NDADDR) 293 panic("ffs_realloccg: lbprev out of range"); 294 bp->b_blkno = fsbtodb(fs, bprev); 295 } 296 297 #ifdef QUOTA 298 error = chkdq(ip, btodb(nsize - osize), cred, 0); 299 if (error) { 300 brelse(bp); 301 return (error); 302 } 303 #endif 304 /* 305 * Check for extension in the existing location. 306 */ 307 cg = dtog(fs, bprev); 308 UFS_LOCK(ump); 309 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 310 if (bno) { 311 if (bp->b_blkno != fsbtodb(fs, bno)) 312 panic("ffs_realloccg: bad blockno"); 313 delta = btodb(nsize - osize); 314 if (ip->i_flag & IN_SPACECOUNTED) { 315 UFS_LOCK(ump); 316 fs->fs_pendingblocks += delta; 317 UFS_UNLOCK(ump); 318 } 319 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 320 ip->i_flag |= IN_CHANGE | IN_UPDATE; 321 allocbuf(bp, nsize); 322 bp->b_flags |= B_DONE; 323 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO) 324 bzero((char *)bp->b_data + osize, nsize - osize); 325 else 326 vfs_bio_clrbuf(bp); 327 *bpp = bp; 328 return (0); 329 } 330 /* 331 * Allocate a new disk location. 332 */ 333 if (bpref >= fs->fs_size) 334 bpref = 0; 335 switch ((int)fs->fs_optim) { 336 case FS_OPTSPACE: 337 /* 338 * Allocate an exact sized fragment. Although this makes 339 * best use of space, we will waste time relocating it if 340 * the file continues to grow. If the fragmentation is 341 * less than half of the minimum free reserve, we choose 342 * to begin optimizing for time. 343 */ 344 request = nsize; 345 if (fs->fs_minfree <= 5 || 346 fs->fs_cstotal.cs_nffree > 347 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 348 break; 349 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 350 fs->fs_fsmnt); 351 fs->fs_optim = FS_OPTTIME; 352 break; 353 case FS_OPTTIME: 354 /* 355 * At this point we have discovered a file that is trying to 356 * grow a small fragment to a larger fragment. To save time, 357 * we allocate a full sized block, then free the unused portion. 358 * If the file continues to grow, the `ffs_fragextend' call 359 * above will be able to grow it in place without further 360 * copying. If aberrant programs cause disk fragmentation to 361 * grow within 2% of the free reserve, we choose to begin 362 * optimizing for space. 363 */ 364 request = fs->fs_bsize; 365 if (fs->fs_cstotal.cs_nffree < 366 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 367 break; 368 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 369 fs->fs_fsmnt); 370 fs->fs_optim = FS_OPTSPACE; 371 break; 372 default: 373 printf("dev = %s, optim = %ld, fs = %s\n", 374 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 375 panic("ffs_realloccg: bad optim"); 376 /* NOTREACHED */ 377 } 378 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 379 if (bno > 0) { 380 bp->b_blkno = fsbtodb(fs, bno); 381 if (!DOINGSOFTDEP(vp)) 382 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 383 ip->i_number); 384 if (nsize < request) 385 ffs_blkfree(ump, fs, ip->i_devvp, 386 bno + numfrags(fs, nsize), 387 (long)(request - nsize), ip->i_number); 388 delta = btodb(nsize - osize); 389 if (ip->i_flag & IN_SPACECOUNTED) { 390 UFS_LOCK(ump); 391 fs->fs_pendingblocks += delta; 392 UFS_UNLOCK(ump); 393 } 394 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 395 ip->i_flag |= IN_CHANGE | IN_UPDATE; 396 allocbuf(bp, nsize); 397 bp->b_flags |= B_DONE; 398 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO) 399 bzero((char *)bp->b_data + osize, nsize - osize); 400 else 401 vfs_bio_clrbuf(bp); 402 *bpp = bp; 403 return (0); 404 } 405 #ifdef QUOTA 406 UFS_UNLOCK(ump); 407 /* 408 * Restore user's disk quota because allocation failed. 409 */ 410 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 411 UFS_LOCK(ump); 412 #endif 413 nospace: 414 /* 415 * no space available 416 */ 417 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 418 reclaimed = 1; 419 softdep_request_cleanup(fs, vp); 420 UFS_UNLOCK(ump); 421 if (bp) 422 brelse(bp); 423 UFS_LOCK(ump); 424 goto retry; 425 } 426 UFS_UNLOCK(ump); 427 if (bp) 428 brelse(bp); 429 if (ppsratecheck(&lastfail, &curfail, 1)) { 430 ffs_fserr(fs, ip->i_number, "filesystem full"); 431 uprintf("\n%s: write failed, filesystem is full\n", 432 fs->fs_fsmnt); 433 } 434 return (ENOSPC); 435 } 436 437 /* 438 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 439 * 440 * The vnode and an array of buffer pointers for a range of sequential 441 * logical blocks to be made contiguous is given. The allocator attempts 442 * to find a range of sequential blocks starting as close as possible 443 * from the end of the allocation for the logical block immediately 444 * preceding the current range. If successful, the physical block numbers 445 * in the buffer pointers and in the inode are changed to reflect the new 446 * allocation. If unsuccessful, the allocation is left unchanged. The 447 * success in doing the reallocation is returned. Note that the error 448 * return is not reflected back to the user. Rather the previous block 449 * allocation will be used. 450 */ 451 452 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 453 454 static int doasyncfree = 1; 455 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 456 457 static int doreallocblks = 1; 458 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 459 460 #ifdef DEBUG 461 static volatile int prtrealloc = 0; 462 #endif 463 464 int 465 ffs_reallocblks(ap) 466 struct vop_reallocblks_args /* { 467 struct vnode *a_vp; 468 struct cluster_save *a_buflist; 469 } */ *ap; 470 { 471 472 if (doreallocblks == 0) 473 return (ENOSPC); 474 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 475 return (ffs_reallocblks_ufs1(ap)); 476 return (ffs_reallocblks_ufs2(ap)); 477 } 478 479 static int 480 ffs_reallocblks_ufs1(ap) 481 struct vop_reallocblks_args /* { 482 struct vnode *a_vp; 483 struct cluster_save *a_buflist; 484 } */ *ap; 485 { 486 struct fs *fs; 487 struct inode *ip; 488 struct vnode *vp; 489 struct buf *sbp, *ebp; 490 ufs1_daddr_t *bap, *sbap, *ebap = 0; 491 struct cluster_save *buflist; 492 struct ufsmount *ump; 493 ufs_lbn_t start_lbn, end_lbn; 494 ufs1_daddr_t soff, newblk, blkno; 495 ufs2_daddr_t pref; 496 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 497 int i, len, start_lvl, end_lvl, ssize; 498 499 vp = ap->a_vp; 500 ip = VTOI(vp); 501 fs = ip->i_fs; 502 ump = ip->i_ump; 503 if (fs->fs_contigsumsize <= 0) 504 return (ENOSPC); 505 buflist = ap->a_buflist; 506 len = buflist->bs_nchildren; 507 start_lbn = buflist->bs_children[0]->b_lblkno; 508 end_lbn = start_lbn + len - 1; 509 #ifdef DIAGNOSTIC 510 for (i = 0; i < len; i++) 511 if (!ffs_checkblk(ip, 512 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 513 panic("ffs_reallocblks: unallocated block 1"); 514 for (i = 1; i < len; i++) 515 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 516 panic("ffs_reallocblks: non-logical cluster"); 517 blkno = buflist->bs_children[0]->b_blkno; 518 ssize = fsbtodb(fs, fs->fs_frag); 519 for (i = 1; i < len - 1; i++) 520 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 521 panic("ffs_reallocblks: non-physical cluster %d", i); 522 #endif 523 /* 524 * If the latest allocation is in a new cylinder group, assume that 525 * the filesystem has decided to move and do not force it back to 526 * the previous cylinder group. 527 */ 528 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 529 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 530 return (ENOSPC); 531 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 532 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 533 return (ENOSPC); 534 /* 535 * Get the starting offset and block map for the first block. 536 */ 537 if (start_lvl == 0) { 538 sbap = &ip->i_din1->di_db[0]; 539 soff = start_lbn; 540 } else { 541 idp = &start_ap[start_lvl - 1]; 542 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 543 brelse(sbp); 544 return (ENOSPC); 545 } 546 sbap = (ufs1_daddr_t *)sbp->b_data; 547 soff = idp->in_off; 548 } 549 /* 550 * If the block range spans two block maps, get the second map. 551 */ 552 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 553 ssize = len; 554 } else { 555 #ifdef DIAGNOSTIC 556 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 557 panic("ffs_reallocblk: start == end"); 558 #endif 559 ssize = len - (idp->in_off + 1); 560 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 561 goto fail; 562 ebap = (ufs1_daddr_t *)ebp->b_data; 563 } 564 /* 565 * Find the preferred location for the cluster. 566 */ 567 UFS_LOCK(ump); 568 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 569 /* 570 * Search the block map looking for an allocation of the desired size. 571 */ 572 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 573 len, ffs_clusteralloc)) == 0) { 574 UFS_UNLOCK(ump); 575 goto fail; 576 } 577 /* 578 * We have found a new contiguous block. 579 * 580 * First we have to replace the old block pointers with the new 581 * block pointers in the inode and indirect blocks associated 582 * with the file. 583 */ 584 #ifdef DEBUG 585 if (prtrealloc) 586 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 587 (intmax_t)start_lbn, (intmax_t)end_lbn); 588 #endif 589 blkno = newblk; 590 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 591 if (i == ssize) { 592 bap = ebap; 593 soff = -i; 594 } 595 #ifdef DIAGNOSTIC 596 if (!ffs_checkblk(ip, 597 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 598 panic("ffs_reallocblks: unallocated block 2"); 599 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 600 panic("ffs_reallocblks: alloc mismatch"); 601 #endif 602 #ifdef DEBUG 603 if (prtrealloc) 604 printf(" %d,", *bap); 605 #endif 606 if (DOINGSOFTDEP(vp)) { 607 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 608 softdep_setup_allocdirect(ip, start_lbn + i, 609 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 610 buflist->bs_children[i]); 611 else 612 softdep_setup_allocindir_page(ip, start_lbn + i, 613 i < ssize ? sbp : ebp, soff + i, blkno, 614 *bap, buflist->bs_children[i]); 615 } 616 *bap++ = blkno; 617 } 618 /* 619 * Next we must write out the modified inode and indirect blocks. 620 * For strict correctness, the writes should be synchronous since 621 * the old block values may have been written to disk. In practise 622 * they are almost never written, but if we are concerned about 623 * strict correctness, the `doasyncfree' flag should be set to zero. 624 * 625 * The test on `doasyncfree' should be changed to test a flag 626 * that shows whether the associated buffers and inodes have 627 * been written. The flag should be set when the cluster is 628 * started and cleared whenever the buffer or inode is flushed. 629 * We can then check below to see if it is set, and do the 630 * synchronous write only when it has been cleared. 631 */ 632 if (sbap != &ip->i_din1->di_db[0]) { 633 if (doasyncfree) 634 bdwrite(sbp); 635 else 636 bwrite(sbp); 637 } else { 638 ip->i_flag |= IN_CHANGE | IN_UPDATE; 639 if (!doasyncfree) 640 ffs_update(vp, 1); 641 } 642 if (ssize < len) { 643 if (doasyncfree) 644 bdwrite(ebp); 645 else 646 bwrite(ebp); 647 } 648 /* 649 * Last, free the old blocks and assign the new blocks to the buffers. 650 */ 651 #ifdef DEBUG 652 if (prtrealloc) 653 printf("\n\tnew:"); 654 #endif 655 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 656 if (!DOINGSOFTDEP(vp)) 657 ffs_blkfree(ump, fs, ip->i_devvp, 658 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 659 fs->fs_bsize, ip->i_number); 660 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 661 #ifdef DIAGNOSTIC 662 if (!ffs_checkblk(ip, 663 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 664 panic("ffs_reallocblks: unallocated block 3"); 665 #endif 666 #ifdef DEBUG 667 if (prtrealloc) 668 printf(" %d,", blkno); 669 #endif 670 } 671 #ifdef DEBUG 672 if (prtrealloc) { 673 prtrealloc--; 674 printf("\n"); 675 } 676 #endif 677 return (0); 678 679 fail: 680 if (ssize < len) 681 brelse(ebp); 682 if (sbap != &ip->i_din1->di_db[0]) 683 brelse(sbp); 684 return (ENOSPC); 685 } 686 687 static int 688 ffs_reallocblks_ufs2(ap) 689 struct vop_reallocblks_args /* { 690 struct vnode *a_vp; 691 struct cluster_save *a_buflist; 692 } */ *ap; 693 { 694 struct fs *fs; 695 struct inode *ip; 696 struct vnode *vp; 697 struct buf *sbp, *ebp; 698 ufs2_daddr_t *bap, *sbap, *ebap = 0; 699 struct cluster_save *buflist; 700 struct ufsmount *ump; 701 ufs_lbn_t start_lbn, end_lbn; 702 ufs2_daddr_t soff, newblk, blkno, pref; 703 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 704 int i, len, start_lvl, end_lvl, ssize; 705 706 vp = ap->a_vp; 707 ip = VTOI(vp); 708 fs = ip->i_fs; 709 ump = ip->i_ump; 710 if (fs->fs_contigsumsize <= 0) 711 return (ENOSPC); 712 buflist = ap->a_buflist; 713 len = buflist->bs_nchildren; 714 start_lbn = buflist->bs_children[0]->b_lblkno; 715 end_lbn = start_lbn + len - 1; 716 #ifdef DIAGNOSTIC 717 for (i = 0; i < len; i++) 718 if (!ffs_checkblk(ip, 719 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 720 panic("ffs_reallocblks: unallocated block 1"); 721 for (i = 1; i < len; i++) 722 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 723 panic("ffs_reallocblks: non-logical cluster"); 724 blkno = buflist->bs_children[0]->b_blkno; 725 ssize = fsbtodb(fs, fs->fs_frag); 726 for (i = 1; i < len - 1; i++) 727 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 728 panic("ffs_reallocblks: non-physical cluster %d", i); 729 #endif 730 /* 731 * If the latest allocation is in a new cylinder group, assume that 732 * the filesystem has decided to move and do not force it back to 733 * the previous cylinder group. 734 */ 735 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 736 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 737 return (ENOSPC); 738 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 739 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 740 return (ENOSPC); 741 /* 742 * Get the starting offset and block map for the first block. 743 */ 744 if (start_lvl == 0) { 745 sbap = &ip->i_din2->di_db[0]; 746 soff = start_lbn; 747 } else { 748 idp = &start_ap[start_lvl - 1]; 749 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 750 brelse(sbp); 751 return (ENOSPC); 752 } 753 sbap = (ufs2_daddr_t *)sbp->b_data; 754 soff = idp->in_off; 755 } 756 /* 757 * If the block range spans two block maps, get the second map. 758 */ 759 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 760 ssize = len; 761 } else { 762 #ifdef DIAGNOSTIC 763 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 764 panic("ffs_reallocblk: start == end"); 765 #endif 766 ssize = len - (idp->in_off + 1); 767 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 768 goto fail; 769 ebap = (ufs2_daddr_t *)ebp->b_data; 770 } 771 /* 772 * Find the preferred location for the cluster. 773 */ 774 UFS_LOCK(ump); 775 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 776 /* 777 * Search the block map looking for an allocation of the desired size. 778 */ 779 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 780 len, ffs_clusteralloc)) == 0) { 781 UFS_UNLOCK(ump); 782 goto fail; 783 } 784 /* 785 * We have found a new contiguous block. 786 * 787 * First we have to replace the old block pointers with the new 788 * block pointers in the inode and indirect blocks associated 789 * with the file. 790 */ 791 #ifdef DEBUG 792 if (prtrealloc) 793 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 794 (intmax_t)start_lbn, (intmax_t)end_lbn); 795 #endif 796 blkno = newblk; 797 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 798 if (i == ssize) { 799 bap = ebap; 800 soff = -i; 801 } 802 #ifdef DIAGNOSTIC 803 if (!ffs_checkblk(ip, 804 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 805 panic("ffs_reallocblks: unallocated block 2"); 806 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 807 panic("ffs_reallocblks: alloc mismatch"); 808 #endif 809 #ifdef DEBUG 810 if (prtrealloc) 811 printf(" %jd,", (intmax_t)*bap); 812 #endif 813 if (DOINGSOFTDEP(vp)) { 814 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 815 softdep_setup_allocdirect(ip, start_lbn + i, 816 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 817 buflist->bs_children[i]); 818 else 819 softdep_setup_allocindir_page(ip, start_lbn + i, 820 i < ssize ? sbp : ebp, soff + i, blkno, 821 *bap, buflist->bs_children[i]); 822 } 823 *bap++ = blkno; 824 } 825 /* 826 * Next we must write out the modified inode and indirect blocks. 827 * For strict correctness, the writes should be synchronous since 828 * the old block values may have been written to disk. In practise 829 * they are almost never written, but if we are concerned about 830 * strict correctness, the `doasyncfree' flag should be set to zero. 831 * 832 * The test on `doasyncfree' should be changed to test a flag 833 * that shows whether the associated buffers and inodes have 834 * been written. The flag should be set when the cluster is 835 * started and cleared whenever the buffer or inode is flushed. 836 * We can then check below to see if it is set, and do the 837 * synchronous write only when it has been cleared. 838 */ 839 if (sbap != &ip->i_din2->di_db[0]) { 840 if (doasyncfree) 841 bdwrite(sbp); 842 else 843 bwrite(sbp); 844 } else { 845 ip->i_flag |= IN_CHANGE | IN_UPDATE; 846 if (!doasyncfree) 847 ffs_update(vp, 1); 848 } 849 if (ssize < len) { 850 if (doasyncfree) 851 bdwrite(ebp); 852 else 853 bwrite(ebp); 854 } 855 /* 856 * Last, free the old blocks and assign the new blocks to the buffers. 857 */ 858 #ifdef DEBUG 859 if (prtrealloc) 860 printf("\n\tnew:"); 861 #endif 862 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 863 if (!DOINGSOFTDEP(vp)) 864 ffs_blkfree(ump, fs, ip->i_devvp, 865 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 866 fs->fs_bsize, ip->i_number); 867 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 868 #ifdef DIAGNOSTIC 869 if (!ffs_checkblk(ip, 870 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 871 panic("ffs_reallocblks: unallocated block 3"); 872 #endif 873 #ifdef DEBUG 874 if (prtrealloc) 875 printf(" %jd,", (intmax_t)blkno); 876 #endif 877 } 878 #ifdef DEBUG 879 if (prtrealloc) { 880 prtrealloc--; 881 printf("\n"); 882 } 883 #endif 884 return (0); 885 886 fail: 887 if (ssize < len) 888 brelse(ebp); 889 if (sbap != &ip->i_din2->di_db[0]) 890 brelse(sbp); 891 return (ENOSPC); 892 } 893 894 /* 895 * Allocate an inode in the filesystem. 896 * 897 * If allocating a directory, use ffs_dirpref to select the inode. 898 * If allocating in a directory, the following hierarchy is followed: 899 * 1) allocate the preferred inode. 900 * 2) allocate an inode in the same cylinder group. 901 * 3) quadradically rehash into other cylinder groups, until an 902 * available inode is located. 903 * If no inode preference is given the following hierarchy is used 904 * to allocate an inode: 905 * 1) allocate an inode in cylinder group 0. 906 * 2) quadradically rehash into other cylinder groups, until an 907 * available inode is located. 908 */ 909 int 910 ffs_valloc(pvp, mode, cred, vpp) 911 struct vnode *pvp; 912 int mode; 913 struct ucred *cred; 914 struct vnode **vpp; 915 { 916 struct inode *pip; 917 struct fs *fs; 918 struct inode *ip; 919 struct timespec ts; 920 struct ufsmount *ump; 921 ino_t ino, ipref; 922 int cg, error; 923 static struct timeval lastfail; 924 static int curfail; 925 926 *vpp = NULL; 927 pip = VTOI(pvp); 928 fs = pip->i_fs; 929 ump = pip->i_ump; 930 931 UFS_LOCK(ump); 932 if (fs->fs_cstotal.cs_nifree == 0) 933 goto noinodes; 934 935 if ((mode & IFMT) == IFDIR) 936 ipref = ffs_dirpref(pip); 937 else 938 ipref = pip->i_number; 939 if (ipref >= fs->fs_ncg * fs->fs_ipg) 940 ipref = 0; 941 cg = ino_to_cg(fs, ipref); 942 /* 943 * Track number of dirs created one after another 944 * in a same cg without intervening by files. 945 */ 946 if ((mode & IFMT) == IFDIR) { 947 if (fs->fs_contigdirs[cg] < 255) 948 fs->fs_contigdirs[cg]++; 949 } else { 950 if (fs->fs_contigdirs[cg] > 0) 951 fs->fs_contigdirs[cg]--; 952 } 953 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 954 (allocfcn_t *)ffs_nodealloccg); 955 if (ino == 0) 956 goto noinodes; 957 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 958 if (error) { 959 ffs_vfree(pvp, ino, mode); 960 return (error); 961 } 962 ip = VTOI(*vpp); 963 if (ip->i_mode) { 964 printf("mode = 0%o, inum = %lu, fs = %s\n", 965 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 966 panic("ffs_valloc: dup alloc"); 967 } 968 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 969 printf("free inode %s/%lu had %ld blocks\n", 970 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 971 DIP_SET(ip, i_blocks, 0); 972 } 973 ip->i_flags = 0; 974 DIP_SET(ip, i_flags, 0); 975 /* 976 * Set up a new generation number for this inode. 977 */ 978 if (ip->i_gen == 0 || ++ip->i_gen == 0) 979 ip->i_gen = arc4random() / 2 + 1; 980 DIP_SET(ip, i_gen, ip->i_gen); 981 if (fs->fs_magic == FS_UFS2_MAGIC) { 982 vfs_timestamp(&ts); 983 ip->i_din2->di_birthtime = ts.tv_sec; 984 ip->i_din2->di_birthnsec = ts.tv_nsec; 985 } 986 ip->i_flag = 0; 987 vnode_destroy_vobject(*vpp); 988 (*vpp)->v_type = VNON; 989 if (fs->fs_magic == FS_UFS2_MAGIC) 990 (*vpp)->v_op = &ffs_vnodeops2; 991 else 992 (*vpp)->v_op = &ffs_vnodeops1; 993 return (0); 994 noinodes: 995 UFS_UNLOCK(ump); 996 if (ppsratecheck(&lastfail, &curfail, 1)) { 997 ffs_fserr(fs, pip->i_number, "out of inodes"); 998 uprintf("\n%s: create/symlink failed, no inodes free\n", 999 fs->fs_fsmnt); 1000 } 1001 return (ENOSPC); 1002 } 1003 1004 /* 1005 * Find a cylinder group to place a directory. 1006 * 1007 * The policy implemented by this algorithm is to allocate a 1008 * directory inode in the same cylinder group as its parent 1009 * directory, but also to reserve space for its files inodes 1010 * and data. Restrict the number of directories which may be 1011 * allocated one after another in the same cylinder group 1012 * without intervening allocation of files. 1013 * 1014 * If we allocate a first level directory then force allocation 1015 * in another cylinder group. 1016 */ 1017 static ino_t 1018 ffs_dirpref(pip) 1019 struct inode *pip; 1020 { 1021 struct fs *fs; 1022 int cg, prefcg, dirsize, cgsize; 1023 int avgifree, avgbfree, avgndir, curdirsize; 1024 int minifree, minbfree, maxndir; 1025 int mincg, minndir; 1026 int maxcontigdirs; 1027 1028 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1029 fs = pip->i_fs; 1030 1031 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1032 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1033 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1034 1035 /* 1036 * Force allocation in another cg if creating a first level dir. 1037 */ 1038 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1039 if (ITOV(pip)->v_vflag & VV_ROOT) { 1040 prefcg = arc4random() % fs->fs_ncg; 1041 mincg = prefcg; 1042 minndir = fs->fs_ipg; 1043 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1044 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1045 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1046 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1047 mincg = cg; 1048 minndir = fs->fs_cs(fs, cg).cs_ndir; 1049 } 1050 for (cg = 0; cg < prefcg; cg++) 1051 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1052 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1053 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1054 mincg = cg; 1055 minndir = fs->fs_cs(fs, cg).cs_ndir; 1056 } 1057 return ((ino_t)(fs->fs_ipg * mincg)); 1058 } 1059 1060 /* 1061 * Count various limits which used for 1062 * optimal allocation of a directory inode. 1063 */ 1064 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1065 minifree = avgifree - avgifree / 4; 1066 if (minifree < 1) 1067 minifree = 1; 1068 minbfree = avgbfree - avgbfree / 4; 1069 if (minbfree < 1) 1070 minbfree = 1; 1071 cgsize = fs->fs_fsize * fs->fs_fpg; 1072 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1073 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1074 if (dirsize < curdirsize) 1075 dirsize = curdirsize; 1076 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1077 if (fs->fs_avgfpdir > 0) 1078 maxcontigdirs = min(maxcontigdirs, 1079 fs->fs_ipg / fs->fs_avgfpdir); 1080 if (maxcontigdirs == 0) 1081 maxcontigdirs = 1; 1082 1083 /* 1084 * Limit number of dirs in one cg and reserve space for 1085 * regular files, but only if we have no deficit in 1086 * inodes or space. 1087 */ 1088 prefcg = ino_to_cg(fs, pip->i_number); 1089 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1090 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1091 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1092 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1093 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1094 return ((ino_t)(fs->fs_ipg * cg)); 1095 } 1096 for (cg = 0; cg < prefcg; cg++) 1097 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1098 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1099 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1100 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1101 return ((ino_t)(fs->fs_ipg * cg)); 1102 } 1103 /* 1104 * This is a backstop when we have deficit in space. 1105 */ 1106 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1107 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1108 return ((ino_t)(fs->fs_ipg * cg)); 1109 for (cg = 0; cg < prefcg; cg++) 1110 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1111 break; 1112 return ((ino_t)(fs->fs_ipg * cg)); 1113 } 1114 1115 /* 1116 * Select the desired position for the next block in a file. The file is 1117 * logically divided into sections. The first section is composed of the 1118 * direct blocks. Each additional section contains fs_maxbpg blocks. 1119 * 1120 * If no blocks have been allocated in the first section, the policy is to 1121 * request a block in the same cylinder group as the inode that describes 1122 * the file. If no blocks have been allocated in any other section, the 1123 * policy is to place the section in a cylinder group with a greater than 1124 * average number of free blocks. An appropriate cylinder group is found 1125 * by using a rotor that sweeps the cylinder groups. When a new group of 1126 * blocks is needed, the sweep begins in the cylinder group following the 1127 * cylinder group from which the previous allocation was made. The sweep 1128 * continues until a cylinder group with greater than the average number 1129 * of free blocks is found. If the allocation is for the first block in an 1130 * indirect block, the information on the previous allocation is unavailable; 1131 * here a best guess is made based upon the logical block number being 1132 * allocated. 1133 * 1134 * If a section is already partially allocated, the policy is to 1135 * contiguously allocate fs_maxcontig blocks. The end of one of these 1136 * contiguous blocks and the beginning of the next is laid out 1137 * contiguously if possible. 1138 */ 1139 ufs2_daddr_t 1140 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1141 struct inode *ip; 1142 ufs_lbn_t lbn; 1143 int indx; 1144 ufs1_daddr_t *bap; 1145 { 1146 struct fs *fs; 1147 int cg; 1148 int avgbfree, startcg; 1149 1150 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1151 fs = ip->i_fs; 1152 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1153 if (lbn < NDADDR + NINDIR(fs)) { 1154 cg = ino_to_cg(fs, ip->i_number); 1155 return (cgbase(fs, cg) + fs->fs_frag); 1156 } 1157 /* 1158 * Find a cylinder with greater than average number of 1159 * unused data blocks. 1160 */ 1161 if (indx == 0 || bap[indx - 1] == 0) 1162 startcg = 1163 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1164 else 1165 startcg = dtog(fs, bap[indx - 1]) + 1; 1166 startcg %= fs->fs_ncg; 1167 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1168 for (cg = startcg; cg < fs->fs_ncg; cg++) 1169 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1170 fs->fs_cgrotor = cg; 1171 return (cgbase(fs, cg) + fs->fs_frag); 1172 } 1173 for (cg = 0; cg <= startcg; cg++) 1174 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1175 fs->fs_cgrotor = cg; 1176 return (cgbase(fs, cg) + fs->fs_frag); 1177 } 1178 return (0); 1179 } 1180 /* 1181 * We just always try to lay things out contiguously. 1182 */ 1183 return (bap[indx - 1] + fs->fs_frag); 1184 } 1185 1186 /* 1187 * Same as above, but for UFS2 1188 */ 1189 ufs2_daddr_t 1190 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1191 struct inode *ip; 1192 ufs_lbn_t lbn; 1193 int indx; 1194 ufs2_daddr_t *bap; 1195 { 1196 struct fs *fs; 1197 int cg; 1198 int avgbfree, startcg; 1199 1200 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1201 fs = ip->i_fs; 1202 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1203 if (lbn < NDADDR + NINDIR(fs)) { 1204 cg = ino_to_cg(fs, ip->i_number); 1205 return (cgbase(fs, cg) + fs->fs_frag); 1206 } 1207 /* 1208 * Find a cylinder with greater than average number of 1209 * unused data blocks. 1210 */ 1211 if (indx == 0 || bap[indx - 1] == 0) 1212 startcg = 1213 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1214 else 1215 startcg = dtog(fs, bap[indx - 1]) + 1; 1216 startcg %= fs->fs_ncg; 1217 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1218 for (cg = startcg; cg < fs->fs_ncg; cg++) 1219 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1220 fs->fs_cgrotor = cg; 1221 return (cgbase(fs, cg) + fs->fs_frag); 1222 } 1223 for (cg = 0; cg <= startcg; cg++) 1224 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1225 fs->fs_cgrotor = cg; 1226 return (cgbase(fs, cg) + fs->fs_frag); 1227 } 1228 return (0); 1229 } 1230 /* 1231 * We just always try to lay things out contiguously. 1232 */ 1233 return (bap[indx - 1] + fs->fs_frag); 1234 } 1235 1236 /* 1237 * Implement the cylinder overflow algorithm. 1238 * 1239 * The policy implemented by this algorithm is: 1240 * 1) allocate the block in its requested cylinder group. 1241 * 2) quadradically rehash on the cylinder group number. 1242 * 3) brute force search for a free block. 1243 * 1244 * Must be called with the UFS lock held. Will release the lock on success 1245 * and return with it held on failure. 1246 */ 1247 /*VARARGS5*/ 1248 static ufs2_daddr_t 1249 ffs_hashalloc(ip, cg, pref, size, allocator) 1250 struct inode *ip; 1251 int cg; 1252 ufs2_daddr_t pref; 1253 int size; /* size for data blocks, mode for inodes */ 1254 allocfcn_t *allocator; 1255 { 1256 struct fs *fs; 1257 ufs2_daddr_t result; 1258 int i, icg = cg; 1259 1260 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1261 #ifdef DIAGNOSTIC 1262 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1263 panic("ffs_hashalloc: allocation on suspended filesystem"); 1264 #endif 1265 fs = ip->i_fs; 1266 /* 1267 * 1: preferred cylinder group 1268 */ 1269 result = (*allocator)(ip, cg, pref, size); 1270 if (result) 1271 return (result); 1272 /* 1273 * 2: quadratic rehash 1274 */ 1275 for (i = 1; i < fs->fs_ncg; i *= 2) { 1276 cg += i; 1277 if (cg >= fs->fs_ncg) 1278 cg -= fs->fs_ncg; 1279 result = (*allocator)(ip, cg, 0, size); 1280 if (result) 1281 return (result); 1282 } 1283 /* 1284 * 3: brute force search 1285 * Note that we start at i == 2, since 0 was checked initially, 1286 * and 1 is always checked in the quadratic rehash. 1287 */ 1288 cg = (icg + 2) % fs->fs_ncg; 1289 for (i = 2; i < fs->fs_ncg; i++) { 1290 result = (*allocator)(ip, cg, 0, size); 1291 if (result) 1292 return (result); 1293 cg++; 1294 if (cg == fs->fs_ncg) 1295 cg = 0; 1296 } 1297 return (0); 1298 } 1299 1300 /* 1301 * Determine whether a fragment can be extended. 1302 * 1303 * Check to see if the necessary fragments are available, and 1304 * if they are, allocate them. 1305 */ 1306 static ufs2_daddr_t 1307 ffs_fragextend(ip, cg, bprev, osize, nsize) 1308 struct inode *ip; 1309 int cg; 1310 ufs2_daddr_t bprev; 1311 int osize, nsize; 1312 { 1313 struct fs *fs; 1314 struct cg *cgp; 1315 struct buf *bp; 1316 struct ufsmount *ump; 1317 int nffree; 1318 long bno; 1319 int frags, bbase; 1320 int i, error; 1321 u_int8_t *blksfree; 1322 1323 ump = ip->i_ump; 1324 fs = ip->i_fs; 1325 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1326 return (0); 1327 frags = numfrags(fs, nsize); 1328 bbase = fragnum(fs, bprev); 1329 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1330 /* cannot extend across a block boundary */ 1331 return (0); 1332 } 1333 UFS_UNLOCK(ump); 1334 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1335 (int)fs->fs_cgsize, NOCRED, &bp); 1336 if (error) 1337 goto fail; 1338 cgp = (struct cg *)bp->b_data; 1339 if (!cg_chkmagic(cgp)) 1340 goto fail; 1341 bp->b_xflags |= BX_BKGRDWRITE; 1342 cgp->cg_old_time = cgp->cg_time = time_second; 1343 bno = dtogd(fs, bprev); 1344 blksfree = cg_blksfree(cgp); 1345 for (i = numfrags(fs, osize); i < frags; i++) 1346 if (isclr(blksfree, bno + i)) 1347 goto fail; 1348 /* 1349 * the current fragment can be extended 1350 * deduct the count on fragment being extended into 1351 * increase the count on the remaining fragment (if any) 1352 * allocate the extended piece 1353 */ 1354 for (i = frags; i < fs->fs_frag - bbase; i++) 1355 if (isclr(blksfree, bno + i)) 1356 break; 1357 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1358 if (i != frags) 1359 cgp->cg_frsum[i - frags]++; 1360 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1361 clrbit(blksfree, bno + i); 1362 cgp->cg_cs.cs_nffree--; 1363 nffree++; 1364 } 1365 UFS_LOCK(ump); 1366 fs->fs_cstotal.cs_nffree -= nffree; 1367 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1368 fs->fs_fmod = 1; 1369 ACTIVECLEAR(fs, cg); 1370 UFS_UNLOCK(ump); 1371 if (DOINGSOFTDEP(ITOV(ip))) 1372 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev); 1373 bdwrite(bp); 1374 return (bprev); 1375 1376 fail: 1377 brelse(bp); 1378 UFS_LOCK(ump); 1379 return (0); 1380 1381 } 1382 1383 /* 1384 * Determine whether a block can be allocated. 1385 * 1386 * Check to see if a block of the appropriate size is available, 1387 * and if it is, allocate it. 1388 */ 1389 static ufs2_daddr_t 1390 ffs_alloccg(ip, cg, bpref, size) 1391 struct inode *ip; 1392 int cg; 1393 ufs2_daddr_t bpref; 1394 int size; 1395 { 1396 struct fs *fs; 1397 struct cg *cgp; 1398 struct buf *bp; 1399 struct ufsmount *ump; 1400 ufs1_daddr_t bno; 1401 ufs2_daddr_t blkno; 1402 int i, allocsiz, error, frags; 1403 u_int8_t *blksfree; 1404 1405 ump = ip->i_ump; 1406 fs = ip->i_fs; 1407 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1408 return (0); 1409 UFS_UNLOCK(ump); 1410 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1411 (int)fs->fs_cgsize, NOCRED, &bp); 1412 if (error) 1413 goto fail; 1414 cgp = (struct cg *)bp->b_data; 1415 if (!cg_chkmagic(cgp) || 1416 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1417 goto fail; 1418 bp->b_xflags |= BX_BKGRDWRITE; 1419 cgp->cg_old_time = cgp->cg_time = time_second; 1420 if (size == fs->fs_bsize) { 1421 UFS_LOCK(ump); 1422 blkno = ffs_alloccgblk(ip, bp, bpref); 1423 ACTIVECLEAR(fs, cg); 1424 UFS_UNLOCK(ump); 1425 bdwrite(bp); 1426 return (blkno); 1427 } 1428 /* 1429 * check to see if any fragments are already available 1430 * allocsiz is the size which will be allocated, hacking 1431 * it down to a smaller size if necessary 1432 */ 1433 blksfree = cg_blksfree(cgp); 1434 frags = numfrags(fs, size); 1435 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1436 if (cgp->cg_frsum[allocsiz] != 0) 1437 break; 1438 if (allocsiz == fs->fs_frag) { 1439 /* 1440 * no fragments were available, so a block will be 1441 * allocated, and hacked up 1442 */ 1443 if (cgp->cg_cs.cs_nbfree == 0) 1444 goto fail; 1445 UFS_LOCK(ump); 1446 blkno = ffs_alloccgblk(ip, bp, bpref); 1447 bno = dtogd(fs, blkno); 1448 for (i = frags; i < fs->fs_frag; i++) 1449 setbit(blksfree, bno + i); 1450 i = fs->fs_frag - frags; 1451 cgp->cg_cs.cs_nffree += i; 1452 fs->fs_cstotal.cs_nffree += i; 1453 fs->fs_cs(fs, cg).cs_nffree += i; 1454 fs->fs_fmod = 1; 1455 cgp->cg_frsum[i]++; 1456 ACTIVECLEAR(fs, cg); 1457 UFS_UNLOCK(ump); 1458 bdwrite(bp); 1459 return (blkno); 1460 } 1461 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1462 if (bno < 0) 1463 goto fail; 1464 for (i = 0; i < frags; i++) 1465 clrbit(blksfree, bno + i); 1466 cgp->cg_cs.cs_nffree -= frags; 1467 cgp->cg_frsum[allocsiz]--; 1468 if (frags != allocsiz) 1469 cgp->cg_frsum[allocsiz - frags]++; 1470 UFS_LOCK(ump); 1471 fs->fs_cstotal.cs_nffree -= frags; 1472 fs->fs_cs(fs, cg).cs_nffree -= frags; 1473 fs->fs_fmod = 1; 1474 blkno = cgbase(fs, cg) + bno; 1475 ACTIVECLEAR(fs, cg); 1476 UFS_UNLOCK(ump); 1477 if (DOINGSOFTDEP(ITOV(ip))) 1478 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno); 1479 bdwrite(bp); 1480 return (blkno); 1481 1482 fail: 1483 brelse(bp); 1484 UFS_LOCK(ump); 1485 return (0); 1486 } 1487 1488 /* 1489 * Allocate a block in a cylinder group. 1490 * 1491 * This algorithm implements the following policy: 1492 * 1) allocate the requested block. 1493 * 2) allocate a rotationally optimal block in the same cylinder. 1494 * 3) allocate the next available block on the block rotor for the 1495 * specified cylinder group. 1496 * Note that this routine only allocates fs_bsize blocks; these 1497 * blocks may be fragmented by the routine that allocates them. 1498 */ 1499 static ufs2_daddr_t 1500 ffs_alloccgblk(ip, bp, bpref) 1501 struct inode *ip; 1502 struct buf *bp; 1503 ufs2_daddr_t bpref; 1504 { 1505 struct fs *fs; 1506 struct cg *cgp; 1507 struct ufsmount *ump; 1508 ufs1_daddr_t bno; 1509 ufs2_daddr_t blkno; 1510 u_int8_t *blksfree; 1511 1512 fs = ip->i_fs; 1513 ump = ip->i_ump; 1514 mtx_assert(UFS_MTX(ump), MA_OWNED); 1515 cgp = (struct cg *)bp->b_data; 1516 blksfree = cg_blksfree(cgp); 1517 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1518 bpref = cgp->cg_rotor; 1519 } else { 1520 bpref = blknum(fs, bpref); 1521 bno = dtogd(fs, bpref); 1522 /* 1523 * if the requested block is available, use it 1524 */ 1525 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1526 goto gotit; 1527 } 1528 /* 1529 * Take the next available block in this cylinder group. 1530 */ 1531 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1532 if (bno < 0) 1533 return (0); 1534 cgp->cg_rotor = bno; 1535 gotit: 1536 blkno = fragstoblks(fs, bno); 1537 ffs_clrblock(fs, blksfree, (long)blkno); 1538 ffs_clusteracct(ump, fs, cgp, blkno, -1); 1539 cgp->cg_cs.cs_nbfree--; 1540 fs->fs_cstotal.cs_nbfree--; 1541 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1542 fs->fs_fmod = 1; 1543 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1544 /* XXX Fixme. */ 1545 UFS_UNLOCK(ump); 1546 if (DOINGSOFTDEP(ITOV(ip))) 1547 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno); 1548 UFS_LOCK(ump); 1549 return (blkno); 1550 } 1551 1552 /* 1553 * Determine whether a cluster can be allocated. 1554 * 1555 * We do not currently check for optimal rotational layout if there 1556 * are multiple choices in the same cylinder group. Instead we just 1557 * take the first one that we find following bpref. 1558 */ 1559 static ufs2_daddr_t 1560 ffs_clusteralloc(ip, cg, bpref, len) 1561 struct inode *ip; 1562 int cg; 1563 ufs2_daddr_t bpref; 1564 int len; 1565 { 1566 struct fs *fs; 1567 struct cg *cgp; 1568 struct buf *bp; 1569 struct ufsmount *ump; 1570 int i, run, bit, map, got; 1571 ufs2_daddr_t bno; 1572 u_char *mapp; 1573 int32_t *lp; 1574 u_int8_t *blksfree; 1575 1576 fs = ip->i_fs; 1577 ump = ip->i_ump; 1578 if (fs->fs_maxcluster[cg] < len) 1579 return (0); 1580 UFS_UNLOCK(ump); 1581 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1582 NOCRED, &bp)) 1583 goto fail_lock; 1584 cgp = (struct cg *)bp->b_data; 1585 if (!cg_chkmagic(cgp)) 1586 goto fail_lock; 1587 bp->b_xflags |= BX_BKGRDWRITE; 1588 /* 1589 * Check to see if a cluster of the needed size (or bigger) is 1590 * available in this cylinder group. 1591 */ 1592 lp = &cg_clustersum(cgp)[len]; 1593 for (i = len; i <= fs->fs_contigsumsize; i++) 1594 if (*lp++ > 0) 1595 break; 1596 if (i > fs->fs_contigsumsize) { 1597 /* 1598 * This is the first time looking for a cluster in this 1599 * cylinder group. Update the cluster summary information 1600 * to reflect the true maximum sized cluster so that 1601 * future cluster allocation requests can avoid reading 1602 * the cylinder group map only to find no clusters. 1603 */ 1604 lp = &cg_clustersum(cgp)[len - 1]; 1605 for (i = len - 1; i > 0; i--) 1606 if (*lp-- > 0) 1607 break; 1608 UFS_LOCK(ump); 1609 fs->fs_maxcluster[cg] = i; 1610 goto fail; 1611 } 1612 /* 1613 * Search the cluster map to find a big enough cluster. 1614 * We take the first one that we find, even if it is larger 1615 * than we need as we prefer to get one close to the previous 1616 * block allocation. We do not search before the current 1617 * preference point as we do not want to allocate a block 1618 * that is allocated before the previous one (as we will 1619 * then have to wait for another pass of the elevator 1620 * algorithm before it will be read). We prefer to fail and 1621 * be recalled to try an allocation in the next cylinder group. 1622 */ 1623 if (dtog(fs, bpref) != cg) 1624 bpref = 0; 1625 else 1626 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1627 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1628 map = *mapp++; 1629 bit = 1 << (bpref % NBBY); 1630 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1631 if ((map & bit) == 0) { 1632 run = 0; 1633 } else { 1634 run++; 1635 if (run == len) 1636 break; 1637 } 1638 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1639 bit <<= 1; 1640 } else { 1641 map = *mapp++; 1642 bit = 1; 1643 } 1644 } 1645 if (got >= cgp->cg_nclusterblks) 1646 goto fail_lock; 1647 /* 1648 * Allocate the cluster that we have found. 1649 */ 1650 blksfree = cg_blksfree(cgp); 1651 for (i = 1; i <= len; i++) 1652 if (!ffs_isblock(fs, blksfree, got - run + i)) 1653 panic("ffs_clusteralloc: map mismatch"); 1654 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1655 if (dtog(fs, bno) != cg) 1656 panic("ffs_clusteralloc: allocated out of group"); 1657 len = blkstofrags(fs, len); 1658 UFS_LOCK(ump); 1659 for (i = 0; i < len; i += fs->fs_frag) 1660 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1661 panic("ffs_clusteralloc: lost block"); 1662 ACTIVECLEAR(fs, cg); 1663 UFS_UNLOCK(ump); 1664 bdwrite(bp); 1665 return (bno); 1666 1667 fail_lock: 1668 UFS_LOCK(ump); 1669 fail: 1670 brelse(bp); 1671 return (0); 1672 } 1673 1674 /* 1675 * Determine whether an inode can be allocated. 1676 * 1677 * Check to see if an inode is available, and if it is, 1678 * allocate it using the following policy: 1679 * 1) allocate the requested inode. 1680 * 2) allocate the next available inode after the requested 1681 * inode in the specified cylinder group. 1682 */ 1683 static ufs2_daddr_t 1684 ffs_nodealloccg(ip, cg, ipref, mode) 1685 struct inode *ip; 1686 int cg; 1687 ufs2_daddr_t ipref; 1688 int mode; 1689 { 1690 struct fs *fs; 1691 struct cg *cgp; 1692 struct buf *bp, *ibp; 1693 struct ufsmount *ump; 1694 u_int8_t *inosused; 1695 struct ufs2_dinode *dp2; 1696 int error, start, len, loc, map, i; 1697 1698 fs = ip->i_fs; 1699 ump = ip->i_ump; 1700 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1701 return (0); 1702 UFS_UNLOCK(ump); 1703 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1704 (int)fs->fs_cgsize, NOCRED, &bp); 1705 if (error) { 1706 brelse(bp); 1707 UFS_LOCK(ump); 1708 return (0); 1709 } 1710 cgp = (struct cg *)bp->b_data; 1711 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1712 brelse(bp); 1713 UFS_LOCK(ump); 1714 return (0); 1715 } 1716 bp->b_xflags |= BX_BKGRDWRITE; 1717 cgp->cg_old_time = cgp->cg_time = time_second; 1718 inosused = cg_inosused(cgp); 1719 if (ipref) { 1720 ipref %= fs->fs_ipg; 1721 if (isclr(inosused, ipref)) 1722 goto gotit; 1723 } 1724 start = cgp->cg_irotor / NBBY; 1725 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1726 loc = skpc(0xff, len, &inosused[start]); 1727 if (loc == 0) { 1728 len = start + 1; 1729 start = 0; 1730 loc = skpc(0xff, len, &inosused[0]); 1731 if (loc == 0) { 1732 printf("cg = %d, irotor = %ld, fs = %s\n", 1733 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1734 panic("ffs_nodealloccg: map corrupted"); 1735 /* NOTREACHED */ 1736 } 1737 } 1738 i = start + len - loc; 1739 map = inosused[i]; 1740 ipref = i * NBBY; 1741 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1742 if ((map & i) == 0) { 1743 cgp->cg_irotor = ipref; 1744 goto gotit; 1745 } 1746 } 1747 printf("fs = %s\n", fs->fs_fsmnt); 1748 panic("ffs_nodealloccg: block not in map"); 1749 /* NOTREACHED */ 1750 gotit: 1751 /* 1752 * Check to see if we need to initialize more inodes. 1753 */ 1754 ibp = NULL; 1755 if (fs->fs_magic == FS_UFS2_MAGIC && 1756 ipref + INOPB(fs) > cgp->cg_initediblk && 1757 cgp->cg_initediblk < cgp->cg_niblk) { 1758 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1759 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1760 (int)fs->fs_bsize, 0, 0, 0); 1761 bzero(ibp->b_data, (int)fs->fs_bsize); 1762 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1763 for (i = 0; i < INOPB(fs); i++) { 1764 dp2->di_gen = arc4random() / 2 + 1; 1765 dp2++; 1766 } 1767 cgp->cg_initediblk += INOPB(fs); 1768 } 1769 UFS_LOCK(ump); 1770 ACTIVECLEAR(fs, cg); 1771 setbit(inosused, ipref); 1772 cgp->cg_cs.cs_nifree--; 1773 fs->fs_cstotal.cs_nifree--; 1774 fs->fs_cs(fs, cg).cs_nifree--; 1775 fs->fs_fmod = 1; 1776 if ((mode & IFMT) == IFDIR) { 1777 cgp->cg_cs.cs_ndir++; 1778 fs->fs_cstotal.cs_ndir++; 1779 fs->fs_cs(fs, cg).cs_ndir++; 1780 } 1781 UFS_UNLOCK(ump); 1782 if (DOINGSOFTDEP(ITOV(ip))) 1783 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1784 bdwrite(bp); 1785 if (ibp != NULL) 1786 bawrite(ibp); 1787 return (cg * fs->fs_ipg + ipref); 1788 } 1789 1790 /* 1791 * check if a block is free 1792 */ 1793 static int 1794 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 1795 { 1796 1797 switch ((int)fs->fs_frag) { 1798 case 8: 1799 return (cp[h] == 0); 1800 case 4: 1801 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 1802 case 2: 1803 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 1804 case 1: 1805 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 1806 default: 1807 panic("ffs_isfreeblock"); 1808 } 1809 return (0); 1810 } 1811 1812 /* 1813 * Free a block or fragment. 1814 * 1815 * The specified block or fragment is placed back in the 1816 * free map. If a fragment is deallocated, a possible 1817 * block reassembly is checked. 1818 */ 1819 void 1820 ffs_blkfree(ump, fs, devvp, bno, size, inum) 1821 struct ufsmount *ump; 1822 struct fs *fs; 1823 struct vnode *devvp; 1824 ufs2_daddr_t bno; 1825 long size; 1826 ino_t inum; 1827 { 1828 struct cg *cgp; 1829 struct buf *bp; 1830 ufs1_daddr_t fragno, cgbno; 1831 ufs2_daddr_t cgblkno; 1832 int i, cg, blk, frags, bbase; 1833 u_int8_t *blksfree; 1834 struct cdev *dev; 1835 1836 cg = dtog(fs, bno); 1837 if (devvp->v_type != VCHR) { 1838 /* devvp is a snapshot */ 1839 dev = VTOI(devvp)->i_devvp->v_rdev; 1840 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1841 } else { 1842 /* devvp is a normal disk device */ 1843 dev = devvp->v_rdev; 1844 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1845 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1846 if ((devvp->v_vflag & VV_COPYONWRITE) && 1847 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1848 return; 1849 } 1850 #ifdef DIAGNOSTIC 1851 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1852 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1853 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1854 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1855 size, fs->fs_fsmnt); 1856 panic("ffs_blkfree: bad size"); 1857 } 1858 #endif 1859 if ((u_int)bno >= fs->fs_size) { 1860 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1861 (u_long)inum); 1862 ffs_fserr(fs, inum, "bad block"); 1863 return; 1864 } 1865 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 1866 brelse(bp); 1867 return; 1868 } 1869 cgp = (struct cg *)bp->b_data; 1870 if (!cg_chkmagic(cgp)) { 1871 brelse(bp); 1872 return; 1873 } 1874 bp->b_xflags |= BX_BKGRDWRITE; 1875 cgp->cg_old_time = cgp->cg_time = time_second; 1876 cgbno = dtogd(fs, bno); 1877 blksfree = cg_blksfree(cgp); 1878 UFS_LOCK(ump); 1879 if (size == fs->fs_bsize) { 1880 fragno = fragstoblks(fs, cgbno); 1881 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1882 if (devvp->v_type != VCHR) { 1883 UFS_UNLOCK(ump); 1884 /* devvp is a snapshot */ 1885 brelse(bp); 1886 return; 1887 } 1888 printf("dev = %s, block = %jd, fs = %s\n", 1889 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1890 panic("ffs_blkfree: freeing free block"); 1891 } 1892 ffs_setblock(fs, blksfree, fragno); 1893 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1894 cgp->cg_cs.cs_nbfree++; 1895 fs->fs_cstotal.cs_nbfree++; 1896 fs->fs_cs(fs, cg).cs_nbfree++; 1897 } else { 1898 bbase = cgbno - fragnum(fs, cgbno); 1899 /* 1900 * decrement the counts associated with the old frags 1901 */ 1902 blk = blkmap(fs, blksfree, bbase); 1903 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1904 /* 1905 * deallocate the fragment 1906 */ 1907 frags = numfrags(fs, size); 1908 for (i = 0; i < frags; i++) { 1909 if (isset(blksfree, cgbno + i)) { 1910 printf("dev = %s, block = %jd, fs = %s\n", 1911 devtoname(dev), (intmax_t)(bno + i), 1912 fs->fs_fsmnt); 1913 panic("ffs_blkfree: freeing free frag"); 1914 } 1915 setbit(blksfree, cgbno + i); 1916 } 1917 cgp->cg_cs.cs_nffree += i; 1918 fs->fs_cstotal.cs_nffree += i; 1919 fs->fs_cs(fs, cg).cs_nffree += i; 1920 /* 1921 * add back in counts associated with the new frags 1922 */ 1923 blk = blkmap(fs, blksfree, bbase); 1924 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1925 /* 1926 * if a complete block has been reassembled, account for it 1927 */ 1928 fragno = fragstoblks(fs, bbase); 1929 if (ffs_isblock(fs, blksfree, fragno)) { 1930 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1931 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1932 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1933 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1934 cgp->cg_cs.cs_nbfree++; 1935 fs->fs_cstotal.cs_nbfree++; 1936 fs->fs_cs(fs, cg).cs_nbfree++; 1937 } 1938 } 1939 fs->fs_fmod = 1; 1940 ACTIVECLEAR(fs, cg); 1941 UFS_UNLOCK(ump); 1942 bdwrite(bp); 1943 } 1944 1945 #ifdef DIAGNOSTIC 1946 /* 1947 * Verify allocation of a block or fragment. Returns true if block or 1948 * fragment is allocated, false if it is free. 1949 */ 1950 static int 1951 ffs_checkblk(ip, bno, size) 1952 struct inode *ip; 1953 ufs2_daddr_t bno; 1954 long size; 1955 { 1956 struct fs *fs; 1957 struct cg *cgp; 1958 struct buf *bp; 1959 ufs1_daddr_t cgbno; 1960 int i, error, frags, free; 1961 u_int8_t *blksfree; 1962 1963 fs = ip->i_fs; 1964 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1965 printf("bsize = %ld, size = %ld, fs = %s\n", 1966 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1967 panic("ffs_checkblk: bad size"); 1968 } 1969 if ((u_int)bno >= fs->fs_size) 1970 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 1971 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1972 (int)fs->fs_cgsize, NOCRED, &bp); 1973 if (error) 1974 panic("ffs_checkblk: cg bread failed"); 1975 cgp = (struct cg *)bp->b_data; 1976 if (!cg_chkmagic(cgp)) 1977 panic("ffs_checkblk: cg magic mismatch"); 1978 bp->b_xflags |= BX_BKGRDWRITE; 1979 blksfree = cg_blksfree(cgp); 1980 cgbno = dtogd(fs, bno); 1981 if (size == fs->fs_bsize) { 1982 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 1983 } else { 1984 frags = numfrags(fs, size); 1985 for (free = 0, i = 0; i < frags; i++) 1986 if (isset(blksfree, cgbno + i)) 1987 free++; 1988 if (free != 0 && free != frags) 1989 panic("ffs_checkblk: partially free fragment"); 1990 } 1991 brelse(bp); 1992 return (!free); 1993 } 1994 #endif /* DIAGNOSTIC */ 1995 1996 /* 1997 * Free an inode. 1998 */ 1999 int 2000 ffs_vfree(pvp, ino, mode) 2001 struct vnode *pvp; 2002 ino_t ino; 2003 int mode; 2004 { 2005 struct inode *ip; 2006 2007 if (DOINGSOFTDEP(pvp)) { 2008 softdep_freefile(pvp, ino, mode); 2009 return (0); 2010 } 2011 ip = VTOI(pvp); 2012 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode)); 2013 } 2014 2015 /* 2016 * Do the actual free operation. 2017 * The specified inode is placed back in the free map. 2018 */ 2019 int 2020 ffs_freefile(ump, fs, devvp, ino, mode) 2021 struct ufsmount *ump; 2022 struct fs *fs; 2023 struct vnode *devvp; 2024 ino_t ino; 2025 int mode; 2026 { 2027 struct cg *cgp; 2028 struct buf *bp; 2029 ufs2_daddr_t cgbno; 2030 int error, cg; 2031 u_int8_t *inosused; 2032 struct cdev *dev; 2033 2034 cg = ino_to_cg(fs, ino); 2035 if (devvp->v_type != VCHR) { 2036 /* devvp is a snapshot */ 2037 dev = VTOI(devvp)->i_devvp->v_rdev; 2038 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2039 } else { 2040 /* devvp is a normal disk device */ 2041 dev = devvp->v_rdev; 2042 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2043 } 2044 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2045 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 2046 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 2047 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2048 brelse(bp); 2049 return (error); 2050 } 2051 cgp = (struct cg *)bp->b_data; 2052 if (!cg_chkmagic(cgp)) { 2053 brelse(bp); 2054 return (0); 2055 } 2056 bp->b_xflags |= BX_BKGRDWRITE; 2057 cgp->cg_old_time = cgp->cg_time = time_second; 2058 inosused = cg_inosused(cgp); 2059 ino %= fs->fs_ipg; 2060 if (isclr(inosused, ino)) { 2061 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev), 2062 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt); 2063 if (fs->fs_ronly == 0) 2064 panic("ffs_freefile: freeing free inode"); 2065 } 2066 clrbit(inosused, ino); 2067 if (ino < cgp->cg_irotor) 2068 cgp->cg_irotor = ino; 2069 cgp->cg_cs.cs_nifree++; 2070 UFS_LOCK(ump); 2071 fs->fs_cstotal.cs_nifree++; 2072 fs->fs_cs(fs, cg).cs_nifree++; 2073 if ((mode & IFMT) == IFDIR) { 2074 cgp->cg_cs.cs_ndir--; 2075 fs->fs_cstotal.cs_ndir--; 2076 fs->fs_cs(fs, cg).cs_ndir--; 2077 } 2078 fs->fs_fmod = 1; 2079 ACTIVECLEAR(fs, cg); 2080 UFS_UNLOCK(ump); 2081 bdwrite(bp); 2082 return (0); 2083 } 2084 2085 /* 2086 * Check to see if a file is free. 2087 */ 2088 int 2089 ffs_checkfreefile(fs, devvp, ino) 2090 struct fs *fs; 2091 struct vnode *devvp; 2092 ino_t ino; 2093 { 2094 struct cg *cgp; 2095 struct buf *bp; 2096 ufs2_daddr_t cgbno; 2097 int ret, cg; 2098 u_int8_t *inosused; 2099 2100 cg = ino_to_cg(fs, ino); 2101 if (devvp->v_type != VCHR) { 2102 /* devvp is a snapshot */ 2103 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2104 } else { 2105 /* devvp is a normal disk device */ 2106 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2107 } 2108 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2109 return (1); 2110 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2111 brelse(bp); 2112 return (1); 2113 } 2114 cgp = (struct cg *)bp->b_data; 2115 if (!cg_chkmagic(cgp)) { 2116 brelse(bp); 2117 return (1); 2118 } 2119 inosused = cg_inosused(cgp); 2120 ino %= fs->fs_ipg; 2121 ret = isclr(inosused, ino); 2122 brelse(bp); 2123 return (ret); 2124 } 2125 2126 /* 2127 * Find a block of the specified size in the specified cylinder group. 2128 * 2129 * It is a panic if a request is made to find a block if none are 2130 * available. 2131 */ 2132 static ufs1_daddr_t 2133 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2134 struct fs *fs; 2135 struct cg *cgp; 2136 ufs2_daddr_t bpref; 2137 int allocsiz; 2138 { 2139 ufs1_daddr_t bno; 2140 int start, len, loc, i; 2141 int blk, field, subfield, pos; 2142 u_int8_t *blksfree; 2143 2144 /* 2145 * find the fragment by searching through the free block 2146 * map for an appropriate bit pattern 2147 */ 2148 if (bpref) 2149 start = dtogd(fs, bpref) / NBBY; 2150 else 2151 start = cgp->cg_frotor / NBBY; 2152 blksfree = cg_blksfree(cgp); 2153 len = howmany(fs->fs_fpg, NBBY) - start; 2154 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2155 fragtbl[fs->fs_frag], 2156 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2157 if (loc == 0) { 2158 len = start + 1; 2159 start = 0; 2160 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2161 fragtbl[fs->fs_frag], 2162 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2163 if (loc == 0) { 2164 printf("start = %d, len = %d, fs = %s\n", 2165 start, len, fs->fs_fsmnt); 2166 panic("ffs_alloccg: map corrupted"); 2167 /* NOTREACHED */ 2168 } 2169 } 2170 bno = (start + len - loc) * NBBY; 2171 cgp->cg_frotor = bno; 2172 /* 2173 * found the byte in the map 2174 * sift through the bits to find the selected frag 2175 */ 2176 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2177 blk = blkmap(fs, blksfree, bno); 2178 blk <<= 1; 2179 field = around[allocsiz]; 2180 subfield = inside[allocsiz]; 2181 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2182 if ((blk & field) == subfield) 2183 return (bno + pos); 2184 field <<= 1; 2185 subfield <<= 1; 2186 } 2187 } 2188 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2189 panic("ffs_alloccg: block not in map"); 2190 return (-1); 2191 } 2192 2193 /* 2194 * Update the cluster map because of an allocation or free. 2195 * 2196 * Cnt == 1 means free; cnt == -1 means allocating. 2197 */ 2198 void 2199 ffs_clusteracct(ump, fs, cgp, blkno, cnt) 2200 struct ufsmount *ump; 2201 struct fs *fs; 2202 struct cg *cgp; 2203 ufs1_daddr_t blkno; 2204 int cnt; 2205 { 2206 int32_t *sump; 2207 int32_t *lp; 2208 u_char *freemapp, *mapp; 2209 int i, start, end, forw, back, map, bit; 2210 2211 mtx_assert(UFS_MTX(ump), MA_OWNED); 2212 2213 if (fs->fs_contigsumsize <= 0) 2214 return; 2215 freemapp = cg_clustersfree(cgp); 2216 sump = cg_clustersum(cgp); 2217 /* 2218 * Allocate or clear the actual block. 2219 */ 2220 if (cnt > 0) 2221 setbit(freemapp, blkno); 2222 else 2223 clrbit(freemapp, blkno); 2224 /* 2225 * Find the size of the cluster going forward. 2226 */ 2227 start = blkno + 1; 2228 end = start + fs->fs_contigsumsize; 2229 if (end >= cgp->cg_nclusterblks) 2230 end = cgp->cg_nclusterblks; 2231 mapp = &freemapp[start / NBBY]; 2232 map = *mapp++; 2233 bit = 1 << (start % NBBY); 2234 for (i = start; i < end; i++) { 2235 if ((map & bit) == 0) 2236 break; 2237 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2238 bit <<= 1; 2239 } else { 2240 map = *mapp++; 2241 bit = 1; 2242 } 2243 } 2244 forw = i - start; 2245 /* 2246 * Find the size of the cluster going backward. 2247 */ 2248 start = blkno - 1; 2249 end = start - fs->fs_contigsumsize; 2250 if (end < 0) 2251 end = -1; 2252 mapp = &freemapp[start / NBBY]; 2253 map = *mapp--; 2254 bit = 1 << (start % NBBY); 2255 for (i = start; i > end; i--) { 2256 if ((map & bit) == 0) 2257 break; 2258 if ((i & (NBBY - 1)) != 0) { 2259 bit >>= 1; 2260 } else { 2261 map = *mapp--; 2262 bit = 1 << (NBBY - 1); 2263 } 2264 } 2265 back = start - i; 2266 /* 2267 * Account for old cluster and the possibly new forward and 2268 * back clusters. 2269 */ 2270 i = back + forw + 1; 2271 if (i > fs->fs_contigsumsize) 2272 i = fs->fs_contigsumsize; 2273 sump[i] += cnt; 2274 if (back > 0) 2275 sump[back] -= cnt; 2276 if (forw > 0) 2277 sump[forw] -= cnt; 2278 /* 2279 * Update cluster summary information. 2280 */ 2281 lp = &sump[fs->fs_contigsumsize]; 2282 for (i = fs->fs_contigsumsize; i > 0; i--) 2283 if (*lp-- > 0) 2284 break; 2285 fs->fs_maxcluster[cgp->cg_cgx] = i; 2286 } 2287 2288 /* 2289 * Fserr prints the name of a filesystem with an error diagnostic. 2290 * 2291 * The form of the error message is: 2292 * fs: error message 2293 */ 2294 static void 2295 ffs_fserr(fs, inum, cp) 2296 struct fs *fs; 2297 ino_t inum; 2298 char *cp; 2299 { 2300 struct thread *td = curthread; /* XXX */ 2301 struct proc *p = td->td_proc; 2302 2303 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2304 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp); 2305 } 2306 2307 /* 2308 * This function provides the capability for the fsck program to 2309 * update an active filesystem. Eleven operations are provided: 2310 * 2311 * adjrefcnt(inode, amt) - adjusts the reference count on the 2312 * specified inode by the specified amount. Under normal 2313 * operation the count should always go down. Decrementing 2314 * the count to zero will cause the inode to be freed. 2315 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2316 * by the specifed amount. 2317 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2318 * adjust the superblock summary. 2319 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2320 * are marked as free. Inodes should never have to be marked 2321 * as in use. 2322 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2323 * are marked as free. Inodes should never have to be marked 2324 * as in use. 2325 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2326 * are marked as free. Blocks should never have to be marked 2327 * as in use. 2328 * setflags(flags, set/clear) - the fs_flags field has the specified 2329 * flags set (second parameter +1) or cleared (second parameter -1). 2330 */ 2331 2332 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2333 2334 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2335 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2336 2337 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2338 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2339 2340 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2341 sysctl_ffs_fsck, "Adjust number of directories"); 2342 2343 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2344 sysctl_ffs_fsck, "Adjust number of free blocks"); 2345 2346 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2347 sysctl_ffs_fsck, "Adjust number of free inodes"); 2348 2349 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2350 sysctl_ffs_fsck, "Adjust number of free frags"); 2351 2352 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2353 sysctl_ffs_fsck, "Adjust number of free clusters"); 2354 2355 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2356 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2357 2358 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2359 sysctl_ffs_fsck, "Free Range of File Inodes"); 2360 2361 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2362 sysctl_ffs_fsck, "Free Range of Blocks"); 2363 2364 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2365 sysctl_ffs_fsck, "Change Filesystem Flags"); 2366 2367 #ifdef DEBUG 2368 static int fsckcmds = 0; 2369 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2370 #endif /* DEBUG */ 2371 2372 static int 2373 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2374 { 2375 struct fsck_cmd cmd; 2376 struct ufsmount *ump; 2377 struct vnode *vp; 2378 struct inode *ip; 2379 struct mount *mp; 2380 struct fs *fs; 2381 ufs2_daddr_t blkno; 2382 long blkcnt, blksize; 2383 struct file *fp; 2384 int filetype, error; 2385 2386 if (req->newlen > sizeof cmd) 2387 return (EBADRPC); 2388 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2389 return (error); 2390 if (cmd.version != FFS_CMD_VERSION) 2391 return (ERPCMISMATCH); 2392 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2393 return (error); 2394 vn_start_write(fp->f_data, &mp, V_WAIT); 2395 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2396 vn_finished_write(mp); 2397 fdrop(fp, curthread); 2398 return (EINVAL); 2399 } 2400 if (mp->mnt_flag & MNT_RDONLY) { 2401 vn_finished_write(mp); 2402 fdrop(fp, curthread); 2403 return (EROFS); 2404 } 2405 ump = VFSTOUFS(mp); 2406 fs = ump->um_fs; 2407 filetype = IFREG; 2408 2409 switch (oidp->oid_number) { 2410 2411 case FFS_SET_FLAGS: 2412 #ifdef DEBUG 2413 if (fsckcmds) 2414 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2415 cmd.size > 0 ? "set" : "clear"); 2416 #endif /* DEBUG */ 2417 if (cmd.size > 0) 2418 fs->fs_flags |= (long)cmd.value; 2419 else 2420 fs->fs_flags &= ~(long)cmd.value; 2421 break; 2422 2423 case FFS_ADJ_REFCNT: 2424 #ifdef DEBUG 2425 if (fsckcmds) { 2426 printf("%s: adjust inode %jd count by %jd\n", 2427 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2428 (intmax_t)cmd.size); 2429 } 2430 #endif /* DEBUG */ 2431 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2432 break; 2433 ip = VTOI(vp); 2434 ip->i_nlink += cmd.size; 2435 DIP_SET(ip, i_nlink, ip->i_nlink); 2436 ip->i_effnlink += cmd.size; 2437 ip->i_flag |= IN_CHANGE; 2438 if (DOINGSOFTDEP(vp)) 2439 softdep_change_linkcnt(ip); 2440 vput(vp); 2441 break; 2442 2443 case FFS_ADJ_BLKCNT: 2444 #ifdef DEBUG 2445 if (fsckcmds) { 2446 printf("%s: adjust inode %jd block count by %jd\n", 2447 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2448 (intmax_t)cmd.size); 2449 } 2450 #endif /* DEBUG */ 2451 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2452 break; 2453 ip = VTOI(vp); 2454 if (ip->i_flag & IN_SPACECOUNTED) { 2455 UFS_LOCK(ump); 2456 fs->fs_pendingblocks += cmd.size; 2457 UFS_UNLOCK(ump); 2458 } 2459 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2460 ip->i_flag |= IN_CHANGE; 2461 vput(vp); 2462 break; 2463 2464 case FFS_DIR_FREE: 2465 filetype = IFDIR; 2466 /* fall through */ 2467 2468 case FFS_FILE_FREE: 2469 #ifdef DEBUG 2470 if (fsckcmds) { 2471 if (cmd.size == 1) 2472 printf("%s: free %s inode %d\n", 2473 mp->mnt_stat.f_mntonname, 2474 filetype == IFDIR ? "directory" : "file", 2475 (ino_t)cmd.value); 2476 else 2477 printf("%s: free %s inodes %d-%d\n", 2478 mp->mnt_stat.f_mntonname, 2479 filetype == IFDIR ? "directory" : "file", 2480 (ino_t)cmd.value, 2481 (ino_t)(cmd.value + cmd.size - 1)); 2482 } 2483 #endif /* DEBUG */ 2484 while (cmd.size > 0) { 2485 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2486 cmd.value, filetype))) 2487 break; 2488 cmd.size -= 1; 2489 cmd.value += 1; 2490 } 2491 break; 2492 2493 case FFS_BLK_FREE: 2494 #ifdef DEBUG 2495 if (fsckcmds) { 2496 if (cmd.size == 1) 2497 printf("%s: free block %jd\n", 2498 mp->mnt_stat.f_mntonname, 2499 (intmax_t)cmd.value); 2500 else 2501 printf("%s: free blocks %jd-%jd\n", 2502 mp->mnt_stat.f_mntonname, 2503 (intmax_t)cmd.value, 2504 (intmax_t)cmd.value + cmd.size - 1); 2505 } 2506 #endif /* DEBUG */ 2507 blkno = cmd.value; 2508 blkcnt = cmd.size; 2509 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2510 while (blkcnt > 0) { 2511 if (blksize > blkcnt) 2512 blksize = blkcnt; 2513 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2514 blksize * fs->fs_fsize, ROOTINO); 2515 blkno += blksize; 2516 blkcnt -= blksize; 2517 blksize = fs->fs_frag; 2518 } 2519 break; 2520 2521 /* 2522 * Adjust superblock summaries. fsck(8) is expected to 2523 * submit deltas when necessary. 2524 */ 2525 case FFS_ADJ_NDIR: 2526 #ifdef DEBUG 2527 if (fsckcmds) { 2528 printf("%s: adjust number of directories by %jd\n", 2529 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2530 } 2531 #endif /* DEBUG */ 2532 fs->fs_cstotal.cs_ndir += cmd.value; 2533 break; 2534 case FFS_ADJ_NBFREE: 2535 #ifdef DEBUG 2536 if (fsckcmds) { 2537 printf("%s: adjust number of free blocks by %+jd\n", 2538 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2539 } 2540 #endif /* DEBUG */ 2541 fs->fs_cstotal.cs_nbfree += cmd.value; 2542 break; 2543 case FFS_ADJ_NIFREE: 2544 #ifdef DEBUG 2545 if (fsckcmds) { 2546 printf("%s: adjust number of free inodes by %+jd\n", 2547 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2548 } 2549 #endif /* DEBUG */ 2550 fs->fs_cstotal.cs_nifree += cmd.value; 2551 break; 2552 case FFS_ADJ_NFFREE: 2553 #ifdef DEBUG 2554 if (fsckcmds) { 2555 printf("%s: adjust number of free frags by %+jd\n", 2556 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2557 } 2558 #endif /* DEBUG */ 2559 fs->fs_cstotal.cs_nffree += cmd.value; 2560 break; 2561 case FFS_ADJ_NUMCLUSTERS: 2562 #ifdef DEBUG 2563 if (fsckcmds) { 2564 printf("%s: adjust number of free clusters by %+jd\n", 2565 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2566 } 2567 #endif /* DEBUG */ 2568 fs->fs_cstotal.cs_numclusters += cmd.value; 2569 break; 2570 2571 default: 2572 #ifdef DEBUG 2573 if (fsckcmds) { 2574 printf("Invalid request %d from fsck\n", 2575 oidp->oid_number); 2576 } 2577 #endif /* DEBUG */ 2578 error = EINVAL; 2579 break; 2580 2581 } 2582 fdrop(fp, curthread); 2583 vn_finished_write(mp); 2584 return (error); 2585 } 2586