1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/bio.h> 72 #include <sys/buf.h> 73 #include <sys/capsicum.h> 74 #include <sys/conf.h> 75 #include <sys/fcntl.h> 76 #include <sys/file.h> 77 #include <sys/filedesc.h> 78 #include <sys/gsb_crc32.h> 79 #include <sys/kernel.h> 80 #include <sys/mount.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/stat.h> 84 #include <sys/syscallsubr.h> 85 #include <sys/sysctl.h> 86 #include <sys/syslog.h> 87 #include <sys/taskqueue.h> 88 #include <sys/vnode.h> 89 90 #include <security/audit/audit.h> 91 92 #include <geom/geom.h> 93 #include <geom/geom_vfs.h> 94 95 #include <ufs/ufs/dir.h> 96 #include <ufs/ufs/extattr.h> 97 #include <ufs/ufs/quota.h> 98 #include <ufs/ufs/inode.h> 99 #include <ufs/ufs/ufs_extern.h> 100 #include <ufs/ufs/ufsmount.h> 101 102 #include <ufs/ffs/fs.h> 103 #include <ufs/ffs/ffs_extern.h> 104 #include <ufs/ffs/softdep.h> 105 106 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 107 int size, int rsize); 108 109 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 110 static ufs2_daddr_t 111 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 112 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 113 struct vnode *, ufs2_daddr_t, long, ino_t, 114 struct workhead *); 115 #ifdef INVARIANTS 116 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 117 #endif 118 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 119 static ino_t ffs_dirpref(struct inode *); 120 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 121 int, int); 122 static ufs2_daddr_t ffs_hashalloc 123 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 124 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 125 int); 126 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 127 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 128 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 129 static void ffs_ckhash_cg(struct buf *); 130 131 /* 132 * Allocate a block in the filesystem. 133 * 134 * The size of the requested block is given, which must be some 135 * multiple of fs_fsize and <= fs_bsize. 136 * A preference may be optionally specified. If a preference is given 137 * the following hierarchy is used to allocate a block: 138 * 1) allocate the requested block. 139 * 2) allocate a rotationally optimal block in the same cylinder. 140 * 3) allocate a block in the same cylinder group. 141 * 4) quadratically rehash into other cylinder groups, until an 142 * available block is located. 143 * If no block preference is given the following hierarchy is used 144 * to allocate a block: 145 * 1) allocate a block in the cylinder group that contains the 146 * inode for the file. 147 * 2) quadratically rehash into other cylinder groups, until an 148 * available block is located. 149 */ 150 int 151 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 152 struct inode *ip; 153 ufs2_daddr_t lbn, bpref; 154 int size, flags; 155 struct ucred *cred; 156 ufs2_daddr_t *bnp; 157 { 158 struct fs *fs; 159 struct ufsmount *ump; 160 ufs2_daddr_t bno; 161 u_int cg, reclaimed; 162 int64_t delta; 163 #ifdef QUOTA 164 int error; 165 #endif 166 167 *bnp = 0; 168 ump = ITOUMP(ip); 169 fs = ump->um_fs; 170 mtx_assert(UFS_MTX(ump), MA_OWNED); 171 #ifdef INVARIANTS 172 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 173 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 174 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 175 fs->fs_fsmnt); 176 panic("ffs_alloc: bad size"); 177 } 178 if (cred == NOCRED) 179 panic("ffs_alloc: missing credential"); 180 #endif /* INVARIANTS */ 181 reclaimed = 0; 182 retry: 183 #ifdef QUOTA 184 UFS_UNLOCK(ump); 185 error = chkdq(ip, btodb(size), cred, 0); 186 if (error) 187 return (error); 188 UFS_LOCK(ump); 189 #endif 190 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 191 goto nospace; 192 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 193 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 194 goto nospace; 195 if (bpref >= fs->fs_size) 196 bpref = 0; 197 if (bpref == 0) 198 cg = ino_to_cg(fs, ip->i_number); 199 else 200 cg = dtog(fs, bpref); 201 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 202 if (bno > 0) { 203 delta = btodb(size); 204 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 205 if (flags & IO_EXT) 206 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 207 else 208 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 209 *bnp = bno; 210 return (0); 211 } 212 nospace: 213 #ifdef QUOTA 214 UFS_UNLOCK(ump); 215 /* 216 * Restore user's disk quota because allocation failed. 217 */ 218 (void) chkdq(ip, -btodb(size), cred, FORCE); 219 UFS_LOCK(ump); 220 #endif 221 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 222 reclaimed = 1; 223 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 224 goto retry; 225 } 226 if (ffs_fsfail_cleanup_locked(ump, 0)) { 227 UFS_UNLOCK(ump); 228 return (ENXIO); 229 } 230 if (reclaimed > 0 && 231 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 232 UFS_UNLOCK(ump); 233 ffs_fserr(fs, ip->i_number, "filesystem full"); 234 uprintf("\n%s: write failed, filesystem is full\n", 235 fs->fs_fsmnt); 236 } else { 237 UFS_UNLOCK(ump); 238 } 239 return (ENOSPC); 240 } 241 242 /* 243 * Reallocate a fragment to a bigger size 244 * 245 * The number and size of the old block is given, and a preference 246 * and new size is also specified. The allocator attempts to extend 247 * the original block. Failing that, the regular block allocator is 248 * invoked to get an appropriate block. 249 */ 250 int 251 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 252 struct inode *ip; 253 ufs2_daddr_t lbprev; 254 ufs2_daddr_t bprev; 255 ufs2_daddr_t bpref; 256 int osize, nsize, flags; 257 struct ucred *cred; 258 struct buf **bpp; 259 { 260 struct vnode *vp; 261 struct fs *fs; 262 struct buf *bp; 263 struct ufsmount *ump; 264 u_int cg, request, reclaimed; 265 int error, gbflags; 266 ufs2_daddr_t bno; 267 int64_t delta; 268 269 vp = ITOV(ip); 270 ump = ITOUMP(ip); 271 fs = ump->um_fs; 272 bp = NULL; 273 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 274 #ifdef WITNESS 275 gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; 276 #endif 277 278 mtx_assert(UFS_MTX(ump), MA_OWNED); 279 #ifdef INVARIANTS 280 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 281 panic("ffs_realloccg: allocation on suspended filesystem"); 282 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 283 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 284 printf( 285 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 286 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 287 nsize, fs->fs_fsmnt); 288 panic("ffs_realloccg: bad size"); 289 } 290 if (cred == NOCRED) 291 panic("ffs_realloccg: missing credential"); 292 #endif /* INVARIANTS */ 293 reclaimed = 0; 294 retry: 295 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 296 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 297 goto nospace; 298 } 299 if (bprev == 0) { 300 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 301 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 302 fs->fs_fsmnt); 303 panic("ffs_realloccg: bad bprev"); 304 } 305 UFS_UNLOCK(ump); 306 /* 307 * Allocate the extra space in the buffer. 308 */ 309 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 310 if (error) { 311 return (error); 312 } 313 314 if (bp->b_blkno == bp->b_lblkno) { 315 if (lbprev >= UFS_NDADDR) 316 panic("ffs_realloccg: lbprev out of range"); 317 bp->b_blkno = fsbtodb(fs, bprev); 318 } 319 320 #ifdef QUOTA 321 error = chkdq(ip, btodb(nsize - osize), cred, 0); 322 if (error) { 323 brelse(bp); 324 return (error); 325 } 326 #endif 327 /* 328 * Check for extension in the existing location. 329 */ 330 *bpp = NULL; 331 cg = dtog(fs, bprev); 332 UFS_LOCK(ump); 333 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 334 if (bno) { 335 if (bp->b_blkno != fsbtodb(fs, bno)) 336 panic("ffs_realloccg: bad blockno"); 337 delta = btodb(nsize - osize); 338 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 339 if (flags & IO_EXT) 340 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 341 else 342 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 343 allocbuf(bp, nsize); 344 bp->b_flags |= B_DONE; 345 vfs_bio_bzero_buf(bp, osize, nsize - osize); 346 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 347 vfs_bio_set_valid(bp, osize, nsize - osize); 348 *bpp = bp; 349 return (0); 350 } 351 /* 352 * Allocate a new disk location. 353 */ 354 if (bpref >= fs->fs_size) 355 bpref = 0; 356 switch ((int)fs->fs_optim) { 357 case FS_OPTSPACE: 358 /* 359 * Allocate an exact sized fragment. Although this makes 360 * best use of space, we will waste time relocating it if 361 * the file continues to grow. If the fragmentation is 362 * less than half of the minimum free reserve, we choose 363 * to begin optimizing for time. 364 */ 365 request = nsize; 366 if (fs->fs_minfree <= 5 || 367 fs->fs_cstotal.cs_nffree > 368 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 369 break; 370 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 371 fs->fs_fsmnt); 372 fs->fs_optim = FS_OPTTIME; 373 break; 374 case FS_OPTTIME: 375 /* 376 * At this point we have discovered a file that is trying to 377 * grow a small fragment to a larger fragment. To save time, 378 * we allocate a full sized block, then free the unused portion. 379 * If the file continues to grow, the `ffs_fragextend' call 380 * above will be able to grow it in place without further 381 * copying. If aberrant programs cause disk fragmentation to 382 * grow within 2% of the free reserve, we choose to begin 383 * optimizing for space. 384 */ 385 request = fs->fs_bsize; 386 if (fs->fs_cstotal.cs_nffree < 387 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 388 break; 389 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 390 fs->fs_fsmnt); 391 fs->fs_optim = FS_OPTSPACE; 392 break; 393 default: 394 printf("dev = %s, optim = %ld, fs = %s\n", 395 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 396 panic("ffs_realloccg: bad optim"); 397 /* NOTREACHED */ 398 } 399 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 400 if (bno > 0) { 401 bp->b_blkno = fsbtodb(fs, bno); 402 if (!DOINGSOFTDEP(vp)) 403 /* 404 * The usual case is that a smaller fragment that 405 * was just allocated has been replaced with a bigger 406 * fragment or a full-size block. If it is marked as 407 * B_DELWRI, the current contents have not been written 408 * to disk. It is possible that the block was written 409 * earlier, but very uncommon. If the block has never 410 * been written, there is no need to send a BIO_DELETE 411 * for it when it is freed. The gain from avoiding the 412 * TRIMs for the common case of unwritten blocks far 413 * exceeds the cost of the write amplification for the 414 * uncommon case of failing to send a TRIM for a block 415 * that had been written. 416 */ 417 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 418 ip->i_number, vp->v_type, NULL, 419 (bp->b_flags & B_DELWRI) != 0 ? 420 NOTRIM_KEY : SINGLETON_KEY); 421 delta = btodb(nsize - osize); 422 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 423 if (flags & IO_EXT) 424 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 425 else 426 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 427 allocbuf(bp, nsize); 428 bp->b_flags |= B_DONE; 429 vfs_bio_bzero_buf(bp, osize, nsize - osize); 430 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 431 vfs_bio_set_valid(bp, osize, nsize - osize); 432 *bpp = bp; 433 return (0); 434 } 435 #ifdef QUOTA 436 UFS_UNLOCK(ump); 437 /* 438 * Restore user's disk quota because allocation failed. 439 */ 440 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 441 UFS_LOCK(ump); 442 #endif 443 nospace: 444 /* 445 * no space available 446 */ 447 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 448 reclaimed = 1; 449 UFS_UNLOCK(ump); 450 if (bp) { 451 brelse(bp); 452 bp = NULL; 453 } 454 UFS_LOCK(ump); 455 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 456 goto retry; 457 } 458 if (bp) 459 brelse(bp); 460 if (ffs_fsfail_cleanup_locked(ump, 0)) { 461 UFS_UNLOCK(ump); 462 return (ENXIO); 463 } 464 if (reclaimed > 0 && 465 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 466 UFS_UNLOCK(ump); 467 ffs_fserr(fs, ip->i_number, "filesystem full"); 468 uprintf("\n%s: write failed, filesystem is full\n", 469 fs->fs_fsmnt); 470 } else { 471 UFS_UNLOCK(ump); 472 } 473 return (ENOSPC); 474 } 475 476 /* 477 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 478 * 479 * The vnode and an array of buffer pointers for a range of sequential 480 * logical blocks to be made contiguous is given. The allocator attempts 481 * to find a range of sequential blocks starting as close as possible 482 * from the end of the allocation for the logical block immediately 483 * preceding the current range. If successful, the physical block numbers 484 * in the buffer pointers and in the inode are changed to reflect the new 485 * allocation. If unsuccessful, the allocation is left unchanged. The 486 * success in doing the reallocation is returned. Note that the error 487 * return is not reflected back to the user. Rather the previous block 488 * allocation will be used. 489 */ 490 491 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 492 "FFS filesystem"); 493 494 static int doasyncfree = 1; 495 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 496 "do not force synchronous writes when blocks are reallocated"); 497 498 static int doreallocblks = 1; 499 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 500 "enable block reallocation"); 501 502 static int dotrimcons = 1; 503 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 504 "enable BIO_DELETE / TRIM consolidation"); 505 506 static int maxclustersearch = 10; 507 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 508 0, "max number of cylinder group to search for contigous blocks"); 509 510 #ifdef DIAGNOSTIC 511 static int prtrealloc = 0; 512 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 513 "print out FFS filesystem block reallocation operations"); 514 #endif 515 516 int 517 ffs_reallocblks(ap) 518 struct vop_reallocblks_args /* { 519 struct vnode *a_vp; 520 struct cluster_save *a_buflist; 521 } */ *ap; 522 { 523 struct ufsmount *ump; 524 int error; 525 526 /* 527 * We used to skip reallocating the blocks of a file into a 528 * contiguous sequence if the underlying flash device requested 529 * BIO_DELETE notifications, because devices that benefit from 530 * BIO_DELETE also benefit from not moving the data. However, 531 * the destination for the data is usually moved before the data 532 * is written to the initially allocated location, so we rarely 533 * suffer the penalty of extra writes. With the addition of the 534 * consolidation of contiguous blocks into single BIO_DELETE 535 * operations, having fewer but larger contiguous blocks reduces 536 * the number of (slow and expensive) BIO_DELETE operations. So 537 * when doing BIO_DELETE consolidation, we do block reallocation. 538 * 539 * Skip if reallocblks has been disabled globally. 540 */ 541 ump = ap->a_vp->v_mount->mnt_data; 542 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 543 doreallocblks == 0) 544 return (ENOSPC); 545 546 /* 547 * We can't wait in softdep prealloc as it may fsync and recurse 548 * here. Instead we simply fail to reallocate blocks if this 549 * rare condition arises. 550 */ 551 if (DOINGSUJ(ap->a_vp)) 552 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 553 return (ENOSPC); 554 vn_seqc_write_begin(ap->a_vp); 555 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) : 556 ffs_reallocblks_ufs2(ap); 557 vn_seqc_write_end(ap->a_vp); 558 return (error); 559 } 560 561 static int 562 ffs_reallocblks_ufs1(ap) 563 struct vop_reallocblks_args /* { 564 struct vnode *a_vp; 565 struct cluster_save *a_buflist; 566 } */ *ap; 567 { 568 struct fs *fs; 569 struct inode *ip; 570 struct vnode *vp; 571 struct buf *sbp, *ebp, *bp; 572 ufs1_daddr_t *bap, *sbap, *ebap; 573 struct cluster_save *buflist; 574 struct ufsmount *ump; 575 ufs_lbn_t start_lbn, end_lbn; 576 ufs1_daddr_t soff, newblk, blkno; 577 ufs2_daddr_t pref; 578 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 579 int i, cg, len, start_lvl, end_lvl, ssize; 580 581 vp = ap->a_vp; 582 ip = VTOI(vp); 583 ump = ITOUMP(ip); 584 fs = ump->um_fs; 585 /* 586 * If we are not tracking block clusters or if we have less than 4% 587 * free blocks left, then do not attempt to cluster. Running with 588 * less than 5% free block reserve is not recommended and those that 589 * choose to do so do not expect to have good file layout. 590 */ 591 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 592 return (ENOSPC); 593 buflist = ap->a_buflist; 594 len = buflist->bs_nchildren; 595 start_lbn = buflist->bs_children[0]->b_lblkno; 596 end_lbn = start_lbn + len - 1; 597 #ifdef INVARIANTS 598 for (i = 0; i < len; i++) 599 if (!ffs_checkblk(ip, 600 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 601 panic("ffs_reallocblks: unallocated block 1"); 602 for (i = 1; i < len; i++) 603 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 604 panic("ffs_reallocblks: non-logical cluster"); 605 blkno = buflist->bs_children[0]->b_blkno; 606 ssize = fsbtodb(fs, fs->fs_frag); 607 for (i = 1; i < len - 1; i++) 608 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 609 panic("ffs_reallocblks: non-physical cluster %d", i); 610 #endif 611 /* 612 * If the cluster crosses the boundary for the first indirect 613 * block, leave space for the indirect block. Indirect blocks 614 * are initially laid out in a position after the last direct 615 * block. Block reallocation would usually destroy locality by 616 * moving the indirect block out of the way to make room for 617 * data blocks if we didn't compensate here. We should also do 618 * this for other indirect block boundaries, but it is only 619 * important for the first one. 620 */ 621 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 622 return (ENOSPC); 623 /* 624 * If the latest allocation is in a new cylinder group, assume that 625 * the filesystem has decided to move and do not force it back to 626 * the previous cylinder group. 627 */ 628 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 629 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 630 return (ENOSPC); 631 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 632 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 633 return (ENOSPC); 634 /* 635 * Get the starting offset and block map for the first block. 636 */ 637 if (start_lvl == 0) { 638 sbap = &ip->i_din1->di_db[0]; 639 soff = start_lbn; 640 } else { 641 idp = &start_ap[start_lvl - 1]; 642 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 643 brelse(sbp); 644 return (ENOSPC); 645 } 646 sbap = (ufs1_daddr_t *)sbp->b_data; 647 soff = idp->in_off; 648 } 649 /* 650 * If the block range spans two block maps, get the second map. 651 */ 652 ebap = NULL; 653 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 654 ssize = len; 655 } else { 656 #ifdef INVARIANTS 657 if (start_lvl > 0 && 658 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 659 panic("ffs_reallocblk: start == end"); 660 #endif 661 ssize = len - (idp->in_off + 1); 662 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 663 goto fail; 664 ebap = (ufs1_daddr_t *)ebp->b_data; 665 } 666 /* 667 * Find the preferred location for the cluster. If we have not 668 * previously failed at this endeavor, then follow our standard 669 * preference calculation. If we have failed at it, then pick up 670 * where we last ended our search. 671 */ 672 UFS_LOCK(ump); 673 if (ip->i_nextclustercg == -1) 674 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 675 else 676 pref = cgdata(fs, ip->i_nextclustercg); 677 /* 678 * Search the block map looking for an allocation of the desired size. 679 * To avoid wasting too much time, we limit the number of cylinder 680 * groups that we will search. 681 */ 682 cg = dtog(fs, pref); 683 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 684 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 685 break; 686 cg += 1; 687 if (cg >= fs->fs_ncg) 688 cg = 0; 689 } 690 /* 691 * If we have failed in our search, record where we gave up for 692 * next time. Otherwise, fall back to our usual search citerion. 693 */ 694 if (newblk == 0) { 695 ip->i_nextclustercg = cg; 696 UFS_UNLOCK(ump); 697 goto fail; 698 } 699 ip->i_nextclustercg = -1; 700 /* 701 * We have found a new contiguous block. 702 * 703 * First we have to replace the old block pointers with the new 704 * block pointers in the inode and indirect blocks associated 705 * with the file. 706 */ 707 #ifdef DIAGNOSTIC 708 if (prtrealloc) 709 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 710 (uintmax_t)ip->i_number, 711 (intmax_t)start_lbn, (intmax_t)end_lbn); 712 #endif 713 blkno = newblk; 714 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 715 if (i == ssize) { 716 bap = ebap; 717 soff = -i; 718 } 719 #ifdef INVARIANTS 720 if (!ffs_checkblk(ip, 721 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 722 panic("ffs_reallocblks: unallocated block 2"); 723 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 724 panic("ffs_reallocblks: alloc mismatch"); 725 #endif 726 #ifdef DIAGNOSTIC 727 if (prtrealloc) 728 printf(" %d,", *bap); 729 #endif 730 if (DOINGSOFTDEP(vp)) { 731 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 732 softdep_setup_allocdirect(ip, start_lbn + i, 733 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 734 buflist->bs_children[i]); 735 else 736 softdep_setup_allocindir_page(ip, start_lbn + i, 737 i < ssize ? sbp : ebp, soff + i, blkno, 738 *bap, buflist->bs_children[i]); 739 } 740 *bap++ = blkno; 741 } 742 /* 743 * Next we must write out the modified inode and indirect blocks. 744 * For strict correctness, the writes should be synchronous since 745 * the old block values may have been written to disk. In practise 746 * they are almost never written, but if we are concerned about 747 * strict correctness, the `doasyncfree' flag should be set to zero. 748 * 749 * The test on `doasyncfree' should be changed to test a flag 750 * that shows whether the associated buffers and inodes have 751 * been written. The flag should be set when the cluster is 752 * started and cleared whenever the buffer or inode is flushed. 753 * We can then check below to see if it is set, and do the 754 * synchronous write only when it has been cleared. 755 */ 756 if (sbap != &ip->i_din1->di_db[0]) { 757 if (doasyncfree) 758 bdwrite(sbp); 759 else 760 bwrite(sbp); 761 } else { 762 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 763 if (!doasyncfree) 764 ffs_update(vp, 1); 765 } 766 if (ssize < len) { 767 if (doasyncfree) 768 bdwrite(ebp); 769 else 770 bwrite(ebp); 771 } 772 /* 773 * Last, free the old blocks and assign the new blocks to the buffers. 774 */ 775 #ifdef DIAGNOSTIC 776 if (prtrealloc) 777 printf("\n\tnew:"); 778 #endif 779 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 780 bp = buflist->bs_children[i]; 781 if (!DOINGSOFTDEP(vp)) 782 /* 783 * The usual case is that a set of N-contiguous blocks 784 * that was just allocated has been replaced with a 785 * set of N+1-contiguous blocks. If they are marked as 786 * B_DELWRI, the current contents have not been written 787 * to disk. It is possible that the blocks were written 788 * earlier, but very uncommon. If the blocks have never 789 * been written, there is no need to send a BIO_DELETE 790 * for them when they are freed. The gain from avoiding 791 * the TRIMs for the common case of unwritten blocks 792 * far exceeds the cost of the write amplification for 793 * the uncommon case of failing to send a TRIM for the 794 * blocks that had been written. 795 */ 796 ffs_blkfree(ump, fs, ump->um_devvp, 797 dbtofsb(fs, bp->b_blkno), 798 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 799 (bp->b_flags & B_DELWRI) != 0 ? 800 NOTRIM_KEY : SINGLETON_KEY); 801 bp->b_blkno = fsbtodb(fs, blkno); 802 #ifdef INVARIANTS 803 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 804 panic("ffs_reallocblks: unallocated block 3"); 805 #endif 806 #ifdef DIAGNOSTIC 807 if (prtrealloc) 808 printf(" %d,", blkno); 809 #endif 810 } 811 #ifdef DIAGNOSTIC 812 if (prtrealloc) { 813 prtrealloc--; 814 printf("\n"); 815 } 816 #endif 817 return (0); 818 819 fail: 820 if (ssize < len) 821 brelse(ebp); 822 if (sbap != &ip->i_din1->di_db[0]) 823 brelse(sbp); 824 return (ENOSPC); 825 } 826 827 static int 828 ffs_reallocblks_ufs2(ap) 829 struct vop_reallocblks_args /* { 830 struct vnode *a_vp; 831 struct cluster_save *a_buflist; 832 } */ *ap; 833 { 834 struct fs *fs; 835 struct inode *ip; 836 struct vnode *vp; 837 struct buf *sbp, *ebp, *bp; 838 ufs2_daddr_t *bap, *sbap, *ebap; 839 struct cluster_save *buflist; 840 struct ufsmount *ump; 841 ufs_lbn_t start_lbn, end_lbn; 842 ufs2_daddr_t soff, newblk, blkno, pref; 843 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 844 int i, cg, len, start_lvl, end_lvl, ssize; 845 846 vp = ap->a_vp; 847 ip = VTOI(vp); 848 ump = ITOUMP(ip); 849 fs = ump->um_fs; 850 /* 851 * If we are not tracking block clusters or if we have less than 4% 852 * free blocks left, then do not attempt to cluster. Running with 853 * less than 5% free block reserve is not recommended and those that 854 * choose to do so do not expect to have good file layout. 855 */ 856 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 857 return (ENOSPC); 858 buflist = ap->a_buflist; 859 len = buflist->bs_nchildren; 860 start_lbn = buflist->bs_children[0]->b_lblkno; 861 end_lbn = start_lbn + len - 1; 862 #ifdef INVARIANTS 863 for (i = 0; i < len; i++) 864 if (!ffs_checkblk(ip, 865 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 866 panic("ffs_reallocblks: unallocated block 1"); 867 for (i = 1; i < len; i++) 868 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 869 panic("ffs_reallocblks: non-logical cluster"); 870 blkno = buflist->bs_children[0]->b_blkno; 871 ssize = fsbtodb(fs, fs->fs_frag); 872 for (i = 1; i < len - 1; i++) 873 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 874 panic("ffs_reallocblks: non-physical cluster %d", i); 875 #endif 876 /* 877 * If the cluster crosses the boundary for the first indirect 878 * block, do not move anything in it. Indirect blocks are 879 * usually initially laid out in a position between the data 880 * blocks. Block reallocation would usually destroy locality by 881 * moving the indirect block out of the way to make room for 882 * data blocks if we didn't compensate here. We should also do 883 * this for other indirect block boundaries, but it is only 884 * important for the first one. 885 */ 886 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 887 return (ENOSPC); 888 /* 889 * If the latest allocation is in a new cylinder group, assume that 890 * the filesystem has decided to move and do not force it back to 891 * the previous cylinder group. 892 */ 893 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 894 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 895 return (ENOSPC); 896 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 897 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 898 return (ENOSPC); 899 /* 900 * Get the starting offset and block map for the first block. 901 */ 902 if (start_lvl == 0) { 903 sbap = &ip->i_din2->di_db[0]; 904 soff = start_lbn; 905 } else { 906 idp = &start_ap[start_lvl - 1]; 907 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 908 brelse(sbp); 909 return (ENOSPC); 910 } 911 sbap = (ufs2_daddr_t *)sbp->b_data; 912 soff = idp->in_off; 913 } 914 /* 915 * If the block range spans two block maps, get the second map. 916 */ 917 ebap = NULL; 918 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 919 ssize = len; 920 } else { 921 #ifdef INVARIANTS 922 if (start_lvl > 0 && 923 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 924 panic("ffs_reallocblk: start == end"); 925 #endif 926 ssize = len - (idp->in_off + 1); 927 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 928 goto fail; 929 ebap = (ufs2_daddr_t *)ebp->b_data; 930 } 931 /* 932 * Find the preferred location for the cluster. If we have not 933 * previously failed at this endeavor, then follow our standard 934 * preference calculation. If we have failed at it, then pick up 935 * where we last ended our search. 936 */ 937 UFS_LOCK(ump); 938 if (ip->i_nextclustercg == -1) 939 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 940 else 941 pref = cgdata(fs, ip->i_nextclustercg); 942 /* 943 * Search the block map looking for an allocation of the desired size. 944 * To avoid wasting too much time, we limit the number of cylinder 945 * groups that we will search. 946 */ 947 cg = dtog(fs, pref); 948 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 949 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 950 break; 951 cg += 1; 952 if (cg >= fs->fs_ncg) 953 cg = 0; 954 } 955 /* 956 * If we have failed in our search, record where we gave up for 957 * next time. Otherwise, fall back to our usual search citerion. 958 */ 959 if (newblk == 0) { 960 ip->i_nextclustercg = cg; 961 UFS_UNLOCK(ump); 962 goto fail; 963 } 964 ip->i_nextclustercg = -1; 965 /* 966 * We have found a new contiguous block. 967 * 968 * First we have to replace the old block pointers with the new 969 * block pointers in the inode and indirect blocks associated 970 * with the file. 971 */ 972 #ifdef DIAGNOSTIC 973 if (prtrealloc) 974 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 975 (intmax_t)start_lbn, (intmax_t)end_lbn); 976 #endif 977 blkno = newblk; 978 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 979 if (i == ssize) { 980 bap = ebap; 981 soff = -i; 982 } 983 #ifdef INVARIANTS 984 if (!ffs_checkblk(ip, 985 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 986 panic("ffs_reallocblks: unallocated block 2"); 987 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 988 panic("ffs_reallocblks: alloc mismatch"); 989 #endif 990 #ifdef DIAGNOSTIC 991 if (prtrealloc) 992 printf(" %jd,", (intmax_t)*bap); 993 #endif 994 if (DOINGSOFTDEP(vp)) { 995 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 996 softdep_setup_allocdirect(ip, start_lbn + i, 997 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 998 buflist->bs_children[i]); 999 else 1000 softdep_setup_allocindir_page(ip, start_lbn + i, 1001 i < ssize ? sbp : ebp, soff + i, blkno, 1002 *bap, buflist->bs_children[i]); 1003 } 1004 *bap++ = blkno; 1005 } 1006 /* 1007 * Next we must write out the modified inode and indirect blocks. 1008 * For strict correctness, the writes should be synchronous since 1009 * the old block values may have been written to disk. In practise 1010 * they are almost never written, but if we are concerned about 1011 * strict correctness, the `doasyncfree' flag should be set to zero. 1012 * 1013 * The test on `doasyncfree' should be changed to test a flag 1014 * that shows whether the associated buffers and inodes have 1015 * been written. The flag should be set when the cluster is 1016 * started and cleared whenever the buffer or inode is flushed. 1017 * We can then check below to see if it is set, and do the 1018 * synchronous write only when it has been cleared. 1019 */ 1020 if (sbap != &ip->i_din2->di_db[0]) { 1021 if (doasyncfree) 1022 bdwrite(sbp); 1023 else 1024 bwrite(sbp); 1025 } else { 1026 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1027 if (!doasyncfree) 1028 ffs_update(vp, 1); 1029 } 1030 if (ssize < len) { 1031 if (doasyncfree) 1032 bdwrite(ebp); 1033 else 1034 bwrite(ebp); 1035 } 1036 /* 1037 * Last, free the old blocks and assign the new blocks to the buffers. 1038 */ 1039 #ifdef DIAGNOSTIC 1040 if (prtrealloc) 1041 printf("\n\tnew:"); 1042 #endif 1043 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1044 bp = buflist->bs_children[i]; 1045 if (!DOINGSOFTDEP(vp)) 1046 /* 1047 * The usual case is that a set of N-contiguous blocks 1048 * that was just allocated has been replaced with a 1049 * set of N+1-contiguous blocks. If they are marked as 1050 * B_DELWRI, the current contents have not been written 1051 * to disk. It is possible that the blocks were written 1052 * earlier, but very uncommon. If the blocks have never 1053 * been written, there is no need to send a BIO_DELETE 1054 * for them when they are freed. The gain from avoiding 1055 * the TRIMs for the common case of unwritten blocks 1056 * far exceeds the cost of the write amplification for 1057 * the uncommon case of failing to send a TRIM for the 1058 * blocks that had been written. 1059 */ 1060 ffs_blkfree(ump, fs, ump->um_devvp, 1061 dbtofsb(fs, bp->b_blkno), 1062 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1063 (bp->b_flags & B_DELWRI) != 0 ? 1064 NOTRIM_KEY : SINGLETON_KEY); 1065 bp->b_blkno = fsbtodb(fs, blkno); 1066 #ifdef INVARIANTS 1067 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1068 panic("ffs_reallocblks: unallocated block 3"); 1069 #endif 1070 #ifdef DIAGNOSTIC 1071 if (prtrealloc) 1072 printf(" %jd,", (intmax_t)blkno); 1073 #endif 1074 } 1075 #ifdef DIAGNOSTIC 1076 if (prtrealloc) { 1077 prtrealloc--; 1078 printf("\n"); 1079 } 1080 #endif 1081 return (0); 1082 1083 fail: 1084 if (ssize < len) 1085 brelse(ebp); 1086 if (sbap != &ip->i_din2->di_db[0]) 1087 brelse(sbp); 1088 return (ENOSPC); 1089 } 1090 1091 /* 1092 * Allocate an inode in the filesystem. 1093 * 1094 * If allocating a directory, use ffs_dirpref to select the inode. 1095 * If allocating in a directory, the following hierarchy is followed: 1096 * 1) allocate the preferred inode. 1097 * 2) allocate an inode in the same cylinder group. 1098 * 3) quadratically rehash into other cylinder groups, until an 1099 * available inode is located. 1100 * If no inode preference is given the following hierarchy is used 1101 * to allocate an inode: 1102 * 1) allocate an inode in cylinder group 0. 1103 * 2) quadratically rehash into other cylinder groups, until an 1104 * available inode is located. 1105 */ 1106 int 1107 ffs_valloc(pvp, mode, cred, vpp) 1108 struct vnode *pvp; 1109 int mode; 1110 struct ucred *cred; 1111 struct vnode **vpp; 1112 { 1113 struct inode *pip; 1114 struct fs *fs; 1115 struct inode *ip; 1116 struct timespec ts; 1117 struct ufsmount *ump; 1118 ino_t ino, ipref; 1119 u_int cg; 1120 int error, reclaimed; 1121 1122 *vpp = NULL; 1123 pip = VTOI(pvp); 1124 ump = ITOUMP(pip); 1125 fs = ump->um_fs; 1126 1127 UFS_LOCK(ump); 1128 reclaimed = 0; 1129 retry: 1130 if (fs->fs_cstotal.cs_nifree == 0) 1131 goto noinodes; 1132 1133 if ((mode & IFMT) == IFDIR) 1134 ipref = ffs_dirpref(pip); 1135 else 1136 ipref = pip->i_number; 1137 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1138 ipref = 0; 1139 cg = ino_to_cg(fs, ipref); 1140 /* 1141 * Track number of dirs created one after another 1142 * in a same cg without intervening by files. 1143 */ 1144 if ((mode & IFMT) == IFDIR) { 1145 if (fs->fs_contigdirs[cg] < 255) 1146 fs->fs_contigdirs[cg]++; 1147 } else { 1148 if (fs->fs_contigdirs[cg] > 0) 1149 fs->fs_contigdirs[cg]--; 1150 } 1151 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1152 (allocfcn_t *)ffs_nodealloccg); 1153 if (ino == 0) 1154 goto noinodes; 1155 /* 1156 * Get rid of the cached old vnode, force allocation of a new vnode 1157 * for this inode. If this fails, release the allocated ino and 1158 * return the error. 1159 */ 1160 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1161 FFSV_FORCEINSMQ | FFSV_REPLACE)) != 0) { 1162 ffs_vfree(pvp, ino, mode); 1163 return (error); 1164 } 1165 /* 1166 * We got an inode, so check mode and panic if it is already allocated. 1167 */ 1168 ip = VTOI(*vpp); 1169 if (ip->i_mode) { 1170 printf("mode = 0%o, inum = %ju, fs = %s\n", 1171 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1172 panic("ffs_valloc: dup alloc"); 1173 } 1174 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1175 printf("free inode %s/%lu had %ld blocks\n", 1176 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1177 DIP_SET(ip, i_blocks, 0); 1178 } 1179 ip->i_flags = 0; 1180 DIP_SET(ip, i_flags, 0); 1181 /* 1182 * Set up a new generation number for this inode. 1183 */ 1184 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1185 ip->i_gen = arc4random(); 1186 DIP_SET(ip, i_gen, ip->i_gen); 1187 if (fs->fs_magic == FS_UFS2_MAGIC) { 1188 vfs_timestamp(&ts); 1189 ip->i_din2->di_birthtime = ts.tv_sec; 1190 ip->i_din2->di_birthnsec = ts.tv_nsec; 1191 } 1192 ip->i_flag = 0; 1193 (*vpp)->v_vflag = 0; 1194 (*vpp)->v_type = VNON; 1195 if (fs->fs_magic == FS_UFS2_MAGIC) { 1196 (*vpp)->v_op = &ffs_vnodeops2; 1197 UFS_INODE_SET_FLAG(ip, IN_UFS2); 1198 } else { 1199 (*vpp)->v_op = &ffs_vnodeops1; 1200 } 1201 return (0); 1202 noinodes: 1203 if (reclaimed == 0) { 1204 reclaimed = 1; 1205 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1206 goto retry; 1207 } 1208 if (ffs_fsfail_cleanup_locked(ump, 0)) { 1209 UFS_UNLOCK(ump); 1210 return (ENXIO); 1211 } 1212 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 1213 UFS_UNLOCK(ump); 1214 ffs_fserr(fs, pip->i_number, "out of inodes"); 1215 uprintf("\n%s: create/symlink failed, no inodes free\n", 1216 fs->fs_fsmnt); 1217 } else { 1218 UFS_UNLOCK(ump); 1219 } 1220 return (ENOSPC); 1221 } 1222 1223 /* 1224 * Find a cylinder group to place a directory. 1225 * 1226 * The policy implemented by this algorithm is to allocate a 1227 * directory inode in the same cylinder group as its parent 1228 * directory, but also to reserve space for its files inodes 1229 * and data. Restrict the number of directories which may be 1230 * allocated one after another in the same cylinder group 1231 * without intervening allocation of files. 1232 * 1233 * If we allocate a first level directory then force allocation 1234 * in another cylinder group. 1235 */ 1236 static ino_t 1237 ffs_dirpref(pip) 1238 struct inode *pip; 1239 { 1240 struct fs *fs; 1241 int cg, prefcg, dirsize, cgsize; 1242 u_int avgifree, avgbfree, avgndir, curdirsize; 1243 u_int minifree, minbfree, maxndir; 1244 u_int mincg, minndir; 1245 u_int maxcontigdirs; 1246 1247 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1248 fs = ITOFS(pip); 1249 1250 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1251 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1252 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1253 1254 /* 1255 * Force allocation in another cg if creating a first level dir. 1256 */ 1257 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1258 if (ITOV(pip)->v_vflag & VV_ROOT) { 1259 prefcg = arc4random() % fs->fs_ncg; 1260 mincg = prefcg; 1261 minndir = fs->fs_ipg; 1262 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1263 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1264 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1265 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1266 mincg = cg; 1267 minndir = fs->fs_cs(fs, cg).cs_ndir; 1268 } 1269 for (cg = 0; cg < prefcg; cg++) 1270 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1271 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1272 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1273 mincg = cg; 1274 minndir = fs->fs_cs(fs, cg).cs_ndir; 1275 } 1276 return ((ino_t)(fs->fs_ipg * mincg)); 1277 } 1278 1279 /* 1280 * Count various limits which used for 1281 * optimal allocation of a directory inode. 1282 */ 1283 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1284 minifree = avgifree - avgifree / 4; 1285 if (minifree < 1) 1286 minifree = 1; 1287 minbfree = avgbfree - avgbfree / 4; 1288 if (minbfree < 1) 1289 minbfree = 1; 1290 cgsize = fs->fs_fsize * fs->fs_fpg; 1291 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1292 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1293 if (dirsize < curdirsize) 1294 dirsize = curdirsize; 1295 if (dirsize <= 0) 1296 maxcontigdirs = 0; /* dirsize overflowed */ 1297 else 1298 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1299 if (fs->fs_avgfpdir > 0) 1300 maxcontigdirs = min(maxcontigdirs, 1301 fs->fs_ipg / fs->fs_avgfpdir); 1302 if (maxcontigdirs == 0) 1303 maxcontigdirs = 1; 1304 1305 /* 1306 * Limit number of dirs in one cg and reserve space for 1307 * regular files, but only if we have no deficit in 1308 * inodes or space. 1309 * 1310 * We are trying to find a suitable cylinder group nearby 1311 * our preferred cylinder group to place a new directory. 1312 * We scan from our preferred cylinder group forward looking 1313 * for a cylinder group that meets our criterion. If we get 1314 * to the final cylinder group and do not find anything, 1315 * we start scanning forwards from the beginning of the 1316 * filesystem. While it might seem sensible to start scanning 1317 * backwards or even to alternate looking forward and backward, 1318 * this approach fails badly when the filesystem is nearly full. 1319 * Specifically, we first search all the areas that have no space 1320 * and finally try the one preceding that. We repeat this on 1321 * every request and in the case of the final block end up 1322 * searching the entire filesystem. By jumping to the front 1323 * of the filesystem, our future forward searches always look 1324 * in new cylinder groups so finds every possible block after 1325 * one pass over the filesystem. 1326 */ 1327 prefcg = ino_to_cg(fs, pip->i_number); 1328 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1329 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1330 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1331 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1332 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1333 return ((ino_t)(fs->fs_ipg * cg)); 1334 } 1335 for (cg = 0; cg < prefcg; cg++) 1336 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1337 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1338 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1339 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1340 return ((ino_t)(fs->fs_ipg * cg)); 1341 } 1342 /* 1343 * This is a backstop when we have deficit in space. 1344 */ 1345 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1346 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1347 return ((ino_t)(fs->fs_ipg * cg)); 1348 for (cg = 0; cg < prefcg; cg++) 1349 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1350 break; 1351 return ((ino_t)(fs->fs_ipg * cg)); 1352 } 1353 1354 /* 1355 * Select the desired position for the next block in a file. The file is 1356 * logically divided into sections. The first section is composed of the 1357 * direct blocks and the next fs_maxbpg blocks. Each additional section 1358 * contains fs_maxbpg blocks. 1359 * 1360 * If no blocks have been allocated in the first section, the policy is to 1361 * request a block in the same cylinder group as the inode that describes 1362 * the file. The first indirect is allocated immediately following the last 1363 * direct block and the data blocks for the first indirect immediately 1364 * follow it. 1365 * 1366 * If no blocks have been allocated in any other section, the indirect 1367 * block(s) are allocated in the same cylinder group as its inode in an 1368 * area reserved immediately following the inode blocks. The policy for 1369 * the data blocks is to place them in a cylinder group with a greater than 1370 * average number of free blocks. An appropriate cylinder group is found 1371 * by using a rotor that sweeps the cylinder groups. When a new group of 1372 * blocks is needed, the sweep begins in the cylinder group following the 1373 * cylinder group from which the previous allocation was made. The sweep 1374 * continues until a cylinder group with greater than the average number 1375 * of free blocks is found. If the allocation is for the first block in an 1376 * indirect block or the previous block is a hole, then the information on 1377 * the previous allocation is unavailable; here a best guess is made based 1378 * on the logical block number being allocated. 1379 * 1380 * If a section is already partially allocated, the policy is to 1381 * allocate blocks contiguously within the section if possible. 1382 */ 1383 ufs2_daddr_t 1384 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1385 struct inode *ip; 1386 ufs_lbn_t lbn; 1387 int indx; 1388 ufs1_daddr_t *bap; 1389 { 1390 struct fs *fs; 1391 u_int cg, inocg; 1392 u_int avgbfree, startcg; 1393 ufs2_daddr_t pref, prevbn; 1394 1395 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1396 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1397 fs = ITOFS(ip); 1398 /* 1399 * Allocation of indirect blocks is indicated by passing negative 1400 * values in indx: -1 for single indirect, -2 for double indirect, 1401 * -3 for triple indirect. As noted below, we attempt to allocate 1402 * the first indirect inline with the file data. For all later 1403 * indirect blocks, the data is often allocated in other cylinder 1404 * groups. However to speed random file access and to speed up 1405 * fsck, the filesystem reserves the first fs_metaspace blocks 1406 * (typically half of fs_minfree) of the data area of each cylinder 1407 * group to hold these later indirect blocks. 1408 */ 1409 inocg = ino_to_cg(fs, ip->i_number); 1410 if (indx < 0) { 1411 /* 1412 * Our preference for indirect blocks is the zone at the 1413 * beginning of the inode's cylinder group data area that 1414 * we try to reserve for indirect blocks. 1415 */ 1416 pref = cgmeta(fs, inocg); 1417 /* 1418 * If we are allocating the first indirect block, try to 1419 * place it immediately following the last direct block. 1420 */ 1421 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1422 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1423 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1424 return (pref); 1425 } 1426 /* 1427 * If we are allocating the first data block in the first indirect 1428 * block and the indirect has been allocated in the data block area, 1429 * try to place it immediately following the indirect block. 1430 */ 1431 if (lbn == UFS_NDADDR) { 1432 pref = ip->i_din1->di_ib[0]; 1433 if (pref != 0 && pref >= cgdata(fs, inocg) && 1434 pref < cgbase(fs, inocg + 1)) 1435 return (pref + fs->fs_frag); 1436 } 1437 /* 1438 * If we are at the beginning of a file, or we have already allocated 1439 * the maximum number of blocks per cylinder group, or we do not 1440 * have a block allocated immediately preceding us, then we need 1441 * to decide where to start allocating new blocks. 1442 */ 1443 if (indx == 0) { 1444 prevbn = 0; 1445 } else { 1446 prevbn = bap[indx - 1]; 1447 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1448 fs->fs_bsize) != 0) 1449 prevbn = 0; 1450 } 1451 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1452 /* 1453 * If we are allocating a directory data block, we want 1454 * to place it in the metadata area. 1455 */ 1456 if ((ip->i_mode & IFMT) == IFDIR) 1457 return (cgmeta(fs, inocg)); 1458 /* 1459 * Until we fill all the direct and all the first indirect's 1460 * blocks, we try to allocate in the data area of the inode's 1461 * cylinder group. 1462 */ 1463 if (lbn < UFS_NDADDR + NINDIR(fs)) 1464 return (cgdata(fs, inocg)); 1465 /* 1466 * Find a cylinder with greater than average number of 1467 * unused data blocks. 1468 */ 1469 if (indx == 0 || prevbn == 0) 1470 startcg = inocg + lbn / fs->fs_maxbpg; 1471 else 1472 startcg = dtog(fs, prevbn) + 1; 1473 startcg %= fs->fs_ncg; 1474 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1475 for (cg = startcg; cg < fs->fs_ncg; cg++) 1476 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1477 fs->fs_cgrotor = cg; 1478 return (cgdata(fs, cg)); 1479 } 1480 for (cg = 0; cg <= startcg; cg++) 1481 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1482 fs->fs_cgrotor = cg; 1483 return (cgdata(fs, cg)); 1484 } 1485 return (0); 1486 } 1487 /* 1488 * Otherwise, we just always try to lay things out contiguously. 1489 */ 1490 return (prevbn + fs->fs_frag); 1491 } 1492 1493 /* 1494 * Same as above, but for UFS2 1495 */ 1496 ufs2_daddr_t 1497 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1498 struct inode *ip; 1499 ufs_lbn_t lbn; 1500 int indx; 1501 ufs2_daddr_t *bap; 1502 { 1503 struct fs *fs; 1504 u_int cg, inocg; 1505 u_int avgbfree, startcg; 1506 ufs2_daddr_t pref, prevbn; 1507 1508 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1509 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1510 fs = ITOFS(ip); 1511 /* 1512 * Allocation of indirect blocks is indicated by passing negative 1513 * values in indx: -1 for single indirect, -2 for double indirect, 1514 * -3 for triple indirect. As noted below, we attempt to allocate 1515 * the first indirect inline with the file data. For all later 1516 * indirect blocks, the data is often allocated in other cylinder 1517 * groups. However to speed random file access and to speed up 1518 * fsck, the filesystem reserves the first fs_metaspace blocks 1519 * (typically half of fs_minfree) of the data area of each cylinder 1520 * group to hold these later indirect blocks. 1521 */ 1522 inocg = ino_to_cg(fs, ip->i_number); 1523 if (indx < 0) { 1524 /* 1525 * Our preference for indirect blocks is the zone at the 1526 * beginning of the inode's cylinder group data area that 1527 * we try to reserve for indirect blocks. 1528 */ 1529 pref = cgmeta(fs, inocg); 1530 /* 1531 * If we are allocating the first indirect block, try to 1532 * place it immediately following the last direct block. 1533 */ 1534 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1535 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1536 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1537 return (pref); 1538 } 1539 /* 1540 * If we are allocating the first data block in the first indirect 1541 * block and the indirect has been allocated in the data block area, 1542 * try to place it immediately following the indirect block. 1543 */ 1544 if (lbn == UFS_NDADDR) { 1545 pref = ip->i_din2->di_ib[0]; 1546 if (pref != 0 && pref >= cgdata(fs, inocg) && 1547 pref < cgbase(fs, inocg + 1)) 1548 return (pref + fs->fs_frag); 1549 } 1550 /* 1551 * If we are at the beginning of a file, or we have already allocated 1552 * the maximum number of blocks per cylinder group, or we do not 1553 * have a block allocated immediately preceding us, then we need 1554 * to decide where to start allocating new blocks. 1555 */ 1556 if (indx == 0) { 1557 prevbn = 0; 1558 } else { 1559 prevbn = bap[indx - 1]; 1560 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1561 fs->fs_bsize) != 0) 1562 prevbn = 0; 1563 } 1564 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1565 /* 1566 * If we are allocating a directory data block, we want 1567 * to place it in the metadata area. 1568 */ 1569 if ((ip->i_mode & IFMT) == IFDIR) 1570 return (cgmeta(fs, inocg)); 1571 /* 1572 * Until we fill all the direct and all the first indirect's 1573 * blocks, we try to allocate in the data area of the inode's 1574 * cylinder group. 1575 */ 1576 if (lbn < UFS_NDADDR + NINDIR(fs)) 1577 return (cgdata(fs, inocg)); 1578 /* 1579 * Find a cylinder with greater than average number of 1580 * unused data blocks. 1581 */ 1582 if (indx == 0 || prevbn == 0) 1583 startcg = inocg + lbn / fs->fs_maxbpg; 1584 else 1585 startcg = dtog(fs, prevbn) + 1; 1586 startcg %= fs->fs_ncg; 1587 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1588 for (cg = startcg; cg < fs->fs_ncg; cg++) 1589 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1590 fs->fs_cgrotor = cg; 1591 return (cgdata(fs, cg)); 1592 } 1593 for (cg = 0; cg <= startcg; cg++) 1594 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1595 fs->fs_cgrotor = cg; 1596 return (cgdata(fs, cg)); 1597 } 1598 return (0); 1599 } 1600 /* 1601 * Otherwise, we just always try to lay things out contiguously. 1602 */ 1603 return (prevbn + fs->fs_frag); 1604 } 1605 1606 /* 1607 * Implement the cylinder overflow algorithm. 1608 * 1609 * The policy implemented by this algorithm is: 1610 * 1) allocate the block in its requested cylinder group. 1611 * 2) quadratically rehash on the cylinder group number. 1612 * 3) brute force search for a free block. 1613 * 1614 * Must be called with the UFS lock held. Will release the lock on success 1615 * and return with it held on failure. 1616 */ 1617 /*VARARGS5*/ 1618 static ufs2_daddr_t 1619 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1620 struct inode *ip; 1621 u_int cg; 1622 ufs2_daddr_t pref; 1623 int size; /* Search size for data blocks, mode for inodes */ 1624 int rsize; /* Real allocated size. */ 1625 allocfcn_t *allocator; 1626 { 1627 struct fs *fs; 1628 ufs2_daddr_t result; 1629 u_int i, icg = cg; 1630 1631 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1632 #ifdef INVARIANTS 1633 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1634 panic("ffs_hashalloc: allocation on suspended filesystem"); 1635 #endif 1636 fs = ITOFS(ip); 1637 /* 1638 * 1: preferred cylinder group 1639 */ 1640 result = (*allocator)(ip, cg, pref, size, rsize); 1641 if (result) 1642 return (result); 1643 /* 1644 * 2: quadratic rehash 1645 */ 1646 for (i = 1; i < fs->fs_ncg; i *= 2) { 1647 cg += i; 1648 if (cg >= fs->fs_ncg) 1649 cg -= fs->fs_ncg; 1650 result = (*allocator)(ip, cg, 0, size, rsize); 1651 if (result) 1652 return (result); 1653 } 1654 /* 1655 * 3: brute force search 1656 * Note that we start at i == 2, since 0 was checked initially, 1657 * and 1 is always checked in the quadratic rehash. 1658 */ 1659 cg = (icg + 2) % fs->fs_ncg; 1660 for (i = 2; i < fs->fs_ncg; i++) { 1661 result = (*allocator)(ip, cg, 0, size, rsize); 1662 if (result) 1663 return (result); 1664 cg++; 1665 if (cg == fs->fs_ncg) 1666 cg = 0; 1667 } 1668 return (0); 1669 } 1670 1671 /* 1672 * Determine whether a fragment can be extended. 1673 * 1674 * Check to see if the necessary fragments are available, and 1675 * if they are, allocate them. 1676 */ 1677 static ufs2_daddr_t 1678 ffs_fragextend(ip, cg, bprev, osize, nsize) 1679 struct inode *ip; 1680 u_int cg; 1681 ufs2_daddr_t bprev; 1682 int osize, nsize; 1683 { 1684 struct fs *fs; 1685 struct cg *cgp; 1686 struct buf *bp; 1687 struct ufsmount *ump; 1688 int nffree; 1689 long bno; 1690 int frags, bbase; 1691 int i, error; 1692 u_int8_t *blksfree; 1693 1694 ump = ITOUMP(ip); 1695 fs = ump->um_fs; 1696 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1697 return (0); 1698 frags = numfrags(fs, nsize); 1699 bbase = fragnum(fs, bprev); 1700 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1701 /* cannot extend across a block boundary */ 1702 return (0); 1703 } 1704 UFS_UNLOCK(ump); 1705 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) 1706 goto fail; 1707 bno = dtogd(fs, bprev); 1708 blksfree = cg_blksfree(cgp); 1709 for (i = numfrags(fs, osize); i < frags; i++) 1710 if (isclr(blksfree, bno + i)) 1711 goto fail; 1712 /* 1713 * the current fragment can be extended 1714 * deduct the count on fragment being extended into 1715 * increase the count on the remaining fragment (if any) 1716 * allocate the extended piece 1717 */ 1718 for (i = frags; i < fs->fs_frag - bbase; i++) 1719 if (isclr(blksfree, bno + i)) 1720 break; 1721 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1722 if (i != frags) 1723 cgp->cg_frsum[i - frags]++; 1724 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1725 clrbit(blksfree, bno + i); 1726 cgp->cg_cs.cs_nffree--; 1727 nffree++; 1728 } 1729 UFS_LOCK(ump); 1730 fs->fs_cstotal.cs_nffree -= nffree; 1731 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1732 fs->fs_fmod = 1; 1733 ACTIVECLEAR(fs, cg); 1734 UFS_UNLOCK(ump); 1735 if (DOINGSOFTDEP(ITOV(ip))) 1736 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1737 frags, numfrags(fs, osize)); 1738 bdwrite(bp); 1739 return (bprev); 1740 1741 fail: 1742 brelse(bp); 1743 UFS_LOCK(ump); 1744 return (0); 1745 1746 } 1747 1748 /* 1749 * Determine whether a block can be allocated. 1750 * 1751 * Check to see if a block of the appropriate size is available, 1752 * and if it is, allocate it. 1753 */ 1754 static ufs2_daddr_t 1755 ffs_alloccg(ip, cg, bpref, size, rsize) 1756 struct inode *ip; 1757 u_int cg; 1758 ufs2_daddr_t bpref; 1759 int size; 1760 int rsize; 1761 { 1762 struct fs *fs; 1763 struct cg *cgp; 1764 struct buf *bp; 1765 struct ufsmount *ump; 1766 ufs1_daddr_t bno; 1767 ufs2_daddr_t blkno; 1768 int i, allocsiz, error, frags; 1769 u_int8_t *blksfree; 1770 1771 ump = ITOUMP(ip); 1772 fs = ump->um_fs; 1773 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1774 return (0); 1775 UFS_UNLOCK(ump); 1776 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 || 1777 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1778 goto fail; 1779 if (size == fs->fs_bsize) { 1780 UFS_LOCK(ump); 1781 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1782 ACTIVECLEAR(fs, cg); 1783 UFS_UNLOCK(ump); 1784 bdwrite(bp); 1785 return (blkno); 1786 } 1787 /* 1788 * check to see if any fragments are already available 1789 * allocsiz is the size which will be allocated, hacking 1790 * it down to a smaller size if necessary 1791 */ 1792 blksfree = cg_blksfree(cgp); 1793 frags = numfrags(fs, size); 1794 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1795 if (cgp->cg_frsum[allocsiz] != 0) 1796 break; 1797 if (allocsiz == fs->fs_frag) { 1798 /* 1799 * no fragments were available, so a block will be 1800 * allocated, and hacked up 1801 */ 1802 if (cgp->cg_cs.cs_nbfree == 0) 1803 goto fail; 1804 UFS_LOCK(ump); 1805 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1806 ACTIVECLEAR(fs, cg); 1807 UFS_UNLOCK(ump); 1808 bdwrite(bp); 1809 return (blkno); 1810 } 1811 KASSERT(size == rsize, 1812 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1813 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1814 if (bno < 0) 1815 goto fail; 1816 for (i = 0; i < frags; i++) 1817 clrbit(blksfree, bno + i); 1818 cgp->cg_cs.cs_nffree -= frags; 1819 cgp->cg_frsum[allocsiz]--; 1820 if (frags != allocsiz) 1821 cgp->cg_frsum[allocsiz - frags]++; 1822 UFS_LOCK(ump); 1823 fs->fs_cstotal.cs_nffree -= frags; 1824 fs->fs_cs(fs, cg).cs_nffree -= frags; 1825 fs->fs_fmod = 1; 1826 blkno = cgbase(fs, cg) + bno; 1827 ACTIVECLEAR(fs, cg); 1828 UFS_UNLOCK(ump); 1829 if (DOINGSOFTDEP(ITOV(ip))) 1830 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1831 bdwrite(bp); 1832 return (blkno); 1833 1834 fail: 1835 brelse(bp); 1836 UFS_LOCK(ump); 1837 return (0); 1838 } 1839 1840 /* 1841 * Allocate a block in a cylinder group. 1842 * 1843 * This algorithm implements the following policy: 1844 * 1) allocate the requested block. 1845 * 2) allocate a rotationally optimal block in the same cylinder. 1846 * 3) allocate the next available block on the block rotor for the 1847 * specified cylinder group. 1848 * Note that this routine only allocates fs_bsize blocks; these 1849 * blocks may be fragmented by the routine that allocates them. 1850 */ 1851 static ufs2_daddr_t 1852 ffs_alloccgblk(ip, bp, bpref, size) 1853 struct inode *ip; 1854 struct buf *bp; 1855 ufs2_daddr_t bpref; 1856 int size; 1857 { 1858 struct fs *fs; 1859 struct cg *cgp; 1860 struct ufsmount *ump; 1861 ufs1_daddr_t bno; 1862 ufs2_daddr_t blkno; 1863 u_int8_t *blksfree; 1864 int i, cgbpref; 1865 1866 ump = ITOUMP(ip); 1867 fs = ump->um_fs; 1868 mtx_assert(UFS_MTX(ump), MA_OWNED); 1869 cgp = (struct cg *)bp->b_data; 1870 blksfree = cg_blksfree(cgp); 1871 if (bpref == 0) { 1872 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1873 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1874 /* map bpref to correct zone in this cg */ 1875 if (bpref < cgdata(fs, cgbpref)) 1876 bpref = cgmeta(fs, cgp->cg_cgx); 1877 else 1878 bpref = cgdata(fs, cgp->cg_cgx); 1879 } 1880 /* 1881 * if the requested block is available, use it 1882 */ 1883 bno = dtogd(fs, blknum(fs, bpref)); 1884 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1885 goto gotit; 1886 /* 1887 * Take the next available block in this cylinder group. 1888 */ 1889 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1890 if (bno < 0) 1891 return (0); 1892 /* Update cg_rotor only if allocated from the data zone */ 1893 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1894 cgp->cg_rotor = bno; 1895 gotit: 1896 blkno = fragstoblks(fs, bno); 1897 ffs_clrblock(fs, blksfree, (long)blkno); 1898 ffs_clusteracct(fs, cgp, blkno, -1); 1899 cgp->cg_cs.cs_nbfree--; 1900 fs->fs_cstotal.cs_nbfree--; 1901 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1902 fs->fs_fmod = 1; 1903 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1904 /* 1905 * If the caller didn't want the whole block free the frags here. 1906 */ 1907 size = numfrags(fs, size); 1908 if (size != fs->fs_frag) { 1909 bno = dtogd(fs, blkno); 1910 for (i = size; i < fs->fs_frag; i++) 1911 setbit(blksfree, bno + i); 1912 i = fs->fs_frag - size; 1913 cgp->cg_cs.cs_nffree += i; 1914 fs->fs_cstotal.cs_nffree += i; 1915 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1916 fs->fs_fmod = 1; 1917 cgp->cg_frsum[i]++; 1918 } 1919 /* XXX Fixme. */ 1920 UFS_UNLOCK(ump); 1921 if (DOINGSOFTDEP(ITOV(ip))) 1922 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1923 UFS_LOCK(ump); 1924 return (blkno); 1925 } 1926 1927 /* 1928 * Determine whether a cluster can be allocated. 1929 * 1930 * We do not currently check for optimal rotational layout if there 1931 * are multiple choices in the same cylinder group. Instead we just 1932 * take the first one that we find following bpref. 1933 */ 1934 static ufs2_daddr_t 1935 ffs_clusteralloc(ip, cg, bpref, len) 1936 struct inode *ip; 1937 u_int cg; 1938 ufs2_daddr_t bpref; 1939 int len; 1940 { 1941 struct fs *fs; 1942 struct cg *cgp; 1943 struct buf *bp; 1944 struct ufsmount *ump; 1945 int i, run, bit, map, got, error; 1946 ufs2_daddr_t bno; 1947 u_char *mapp; 1948 int32_t *lp; 1949 u_int8_t *blksfree; 1950 1951 ump = ITOUMP(ip); 1952 fs = ump->um_fs; 1953 if (fs->fs_maxcluster[cg] < len) 1954 return (0); 1955 UFS_UNLOCK(ump); 1956 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 1957 UFS_LOCK(ump); 1958 return (0); 1959 } 1960 /* 1961 * Check to see if a cluster of the needed size (or bigger) is 1962 * available in this cylinder group. 1963 */ 1964 lp = &cg_clustersum(cgp)[len]; 1965 for (i = len; i <= fs->fs_contigsumsize; i++) 1966 if (*lp++ > 0) 1967 break; 1968 if (i > fs->fs_contigsumsize) { 1969 /* 1970 * This is the first time looking for a cluster in this 1971 * cylinder group. Update the cluster summary information 1972 * to reflect the true maximum sized cluster so that 1973 * future cluster allocation requests can avoid reading 1974 * the cylinder group map only to find no clusters. 1975 */ 1976 lp = &cg_clustersum(cgp)[len - 1]; 1977 for (i = len - 1; i > 0; i--) 1978 if (*lp-- > 0) 1979 break; 1980 UFS_LOCK(ump); 1981 fs->fs_maxcluster[cg] = i; 1982 brelse(bp); 1983 return (0); 1984 } 1985 /* 1986 * Search the cluster map to find a big enough cluster. 1987 * We take the first one that we find, even if it is larger 1988 * than we need as we prefer to get one close to the previous 1989 * block allocation. We do not search before the current 1990 * preference point as we do not want to allocate a block 1991 * that is allocated before the previous one (as we will 1992 * then have to wait for another pass of the elevator 1993 * algorithm before it will be read). We prefer to fail and 1994 * be recalled to try an allocation in the next cylinder group. 1995 */ 1996 if (dtog(fs, bpref) != cg) 1997 bpref = cgdata(fs, cg); 1998 else 1999 bpref = blknum(fs, bpref); 2000 bpref = fragstoblks(fs, dtogd(fs, bpref)); 2001 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 2002 map = *mapp++; 2003 bit = 1 << (bpref % NBBY); 2004 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 2005 if ((map & bit) == 0) { 2006 run = 0; 2007 } else { 2008 run++; 2009 if (run == len) 2010 break; 2011 } 2012 if ((got & (NBBY - 1)) != (NBBY - 1)) { 2013 bit <<= 1; 2014 } else { 2015 map = *mapp++; 2016 bit = 1; 2017 } 2018 } 2019 if (got >= cgp->cg_nclusterblks) { 2020 UFS_LOCK(ump); 2021 brelse(bp); 2022 return (0); 2023 } 2024 /* 2025 * Allocate the cluster that we have found. 2026 */ 2027 blksfree = cg_blksfree(cgp); 2028 for (i = 1; i <= len; i++) 2029 if (!ffs_isblock(fs, blksfree, got - run + i)) 2030 panic("ffs_clusteralloc: map mismatch"); 2031 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 2032 if (dtog(fs, bno) != cg) 2033 panic("ffs_clusteralloc: allocated out of group"); 2034 len = blkstofrags(fs, len); 2035 UFS_LOCK(ump); 2036 for (i = 0; i < len; i += fs->fs_frag) 2037 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2038 panic("ffs_clusteralloc: lost block"); 2039 ACTIVECLEAR(fs, cg); 2040 UFS_UNLOCK(ump); 2041 bdwrite(bp); 2042 return (bno); 2043 } 2044 2045 static inline struct buf * 2046 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 2047 { 2048 struct fs *fs; 2049 2050 fs = ITOFS(ip); 2051 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2052 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2053 gbflags)); 2054 } 2055 2056 /* 2057 * Synchronous inode initialization is needed only when barrier writes do not 2058 * work as advertised, and will impose a heavy cost on file creation in a newly 2059 * created filesystem. 2060 */ 2061 static int doasyncinodeinit = 1; 2062 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2063 &doasyncinodeinit, 0, 2064 "Perform inode block initialization using asynchronous writes"); 2065 2066 /* 2067 * Determine whether an inode can be allocated. 2068 * 2069 * Check to see if an inode is available, and if it is, 2070 * allocate it using the following policy: 2071 * 1) allocate the requested inode. 2072 * 2) allocate the next available inode after the requested 2073 * inode in the specified cylinder group. 2074 */ 2075 static ufs2_daddr_t 2076 ffs_nodealloccg(ip, cg, ipref, mode, unused) 2077 struct inode *ip; 2078 u_int cg; 2079 ufs2_daddr_t ipref; 2080 int mode; 2081 int unused; 2082 { 2083 struct fs *fs; 2084 struct cg *cgp; 2085 struct buf *bp, *ibp; 2086 struct ufsmount *ump; 2087 u_int8_t *inosused, *loc; 2088 struct ufs2_dinode *dp2; 2089 int error, start, len, i; 2090 u_int32_t old_initediblk; 2091 2092 ump = ITOUMP(ip); 2093 fs = ump->um_fs; 2094 check_nifree: 2095 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2096 return (0); 2097 UFS_UNLOCK(ump); 2098 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 2099 UFS_LOCK(ump); 2100 return (0); 2101 } 2102 restart: 2103 if (cgp->cg_cs.cs_nifree == 0) { 2104 brelse(bp); 2105 UFS_LOCK(ump); 2106 return (0); 2107 } 2108 inosused = cg_inosused(cgp); 2109 if (ipref) { 2110 ipref %= fs->fs_ipg; 2111 if (isclr(inosused, ipref)) 2112 goto gotit; 2113 } 2114 start = cgp->cg_irotor / NBBY; 2115 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2116 loc = memcchr(&inosused[start], 0xff, len); 2117 if (loc == NULL) { 2118 len = start + 1; 2119 start = 0; 2120 loc = memcchr(&inosused[start], 0xff, len); 2121 if (loc == NULL) { 2122 printf("cg = %d, irotor = %ld, fs = %s\n", 2123 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2124 panic("ffs_nodealloccg: map corrupted"); 2125 /* NOTREACHED */ 2126 } 2127 } 2128 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2129 gotit: 2130 /* 2131 * Check to see if we need to initialize more inodes. 2132 */ 2133 if (fs->fs_magic == FS_UFS2_MAGIC && 2134 ipref + INOPB(fs) > cgp->cg_initediblk && 2135 cgp->cg_initediblk < cgp->cg_niblk) { 2136 old_initediblk = cgp->cg_initediblk; 2137 2138 /* 2139 * Free the cylinder group lock before writing the 2140 * initialized inode block. Entering the 2141 * babarrierwrite() with the cylinder group lock 2142 * causes lock order violation between the lock and 2143 * snaplk. 2144 * 2145 * Another thread can decide to initialize the same 2146 * inode block, but whichever thread first gets the 2147 * cylinder group lock after writing the newly 2148 * allocated inode block will update it and the other 2149 * will realize that it has lost and leave the 2150 * cylinder group unchanged. 2151 */ 2152 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2153 brelse(bp); 2154 if (ibp == NULL) { 2155 /* 2156 * The inode block buffer is already owned by 2157 * another thread, which must initialize it. 2158 * Wait on the buffer to allow another thread 2159 * to finish the updates, with dropped cg 2160 * buffer lock, then retry. 2161 */ 2162 ibp = getinobuf(ip, cg, old_initediblk, 0); 2163 brelse(ibp); 2164 UFS_LOCK(ump); 2165 goto check_nifree; 2166 } 2167 bzero(ibp->b_data, (int)fs->fs_bsize); 2168 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2169 for (i = 0; i < INOPB(fs); i++) { 2170 while (dp2->di_gen == 0) 2171 dp2->di_gen = arc4random(); 2172 dp2++; 2173 } 2174 2175 /* 2176 * Rather than adding a soft updates dependency to ensure 2177 * that the new inode block is written before it is claimed 2178 * by the cylinder group map, we just do a barrier write 2179 * here. The barrier write will ensure that the inode block 2180 * gets written before the updated cylinder group map can be 2181 * written. The barrier write should only slow down bulk 2182 * loading of newly created filesystems. 2183 */ 2184 if (doasyncinodeinit) 2185 babarrierwrite(ibp); 2186 else 2187 bwrite(ibp); 2188 2189 /* 2190 * After the inode block is written, try to update the 2191 * cg initediblk pointer. If another thread beat us 2192 * to it, then leave it unchanged as the other thread 2193 * has already set it correctly. 2194 */ 2195 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2196 UFS_LOCK(ump); 2197 ACTIVECLEAR(fs, cg); 2198 UFS_UNLOCK(ump); 2199 if (error != 0) 2200 return (error); 2201 if (cgp->cg_initediblk == old_initediblk) 2202 cgp->cg_initediblk += INOPB(fs); 2203 goto restart; 2204 } 2205 cgp->cg_irotor = ipref; 2206 UFS_LOCK(ump); 2207 ACTIVECLEAR(fs, cg); 2208 setbit(inosused, ipref); 2209 cgp->cg_cs.cs_nifree--; 2210 fs->fs_cstotal.cs_nifree--; 2211 fs->fs_cs(fs, cg).cs_nifree--; 2212 fs->fs_fmod = 1; 2213 if ((mode & IFMT) == IFDIR) { 2214 cgp->cg_cs.cs_ndir++; 2215 fs->fs_cstotal.cs_ndir++; 2216 fs->fs_cs(fs, cg).cs_ndir++; 2217 } 2218 UFS_UNLOCK(ump); 2219 if (DOINGSOFTDEP(ITOV(ip))) 2220 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2221 bdwrite(bp); 2222 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2223 } 2224 2225 /* 2226 * Free a block or fragment. 2227 * 2228 * The specified block or fragment is placed back in the 2229 * free map. If a fragment is deallocated, a possible 2230 * block reassembly is checked. 2231 */ 2232 static void 2233 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2234 struct ufsmount *ump; 2235 struct fs *fs; 2236 struct vnode *devvp; 2237 ufs2_daddr_t bno; 2238 long size; 2239 ino_t inum; 2240 struct workhead *dephd; 2241 { 2242 struct mount *mp; 2243 struct cg *cgp; 2244 struct buf *bp; 2245 daddr_t dbn; 2246 ufs1_daddr_t fragno, cgbno; 2247 int i, blk, frags, bbase, error; 2248 u_int cg; 2249 u_int8_t *blksfree; 2250 struct cdev *dev; 2251 2252 cg = dtog(fs, bno); 2253 if (devvp->v_type == VREG) { 2254 /* devvp is a snapshot */ 2255 MPASS(devvp->v_mount->mnt_data == ump); 2256 dev = ump->um_devvp->v_rdev; 2257 } else if (devvp->v_type == VCHR) { 2258 /* 2259 * devvp is a normal disk device 2260 * XXXKIB: devvp is not locked there, v_rdev access depends on 2261 * busy mount, which prevents mntfs devvp from reclamation. 2262 */ 2263 dev = devvp->v_rdev; 2264 } else 2265 return; 2266 #ifdef INVARIANTS 2267 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2268 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2269 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2270 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2271 size, fs->fs_fsmnt); 2272 panic("ffs_blkfree_cg: bad size"); 2273 } 2274 #endif 2275 if ((u_int)bno >= fs->fs_size) { 2276 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2277 (u_long)inum); 2278 ffs_fserr(fs, inum, "bad block"); 2279 return; 2280 } 2281 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2282 if (!ffs_fsfail_cleanup(ump, error) || 2283 !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2284 return; 2285 if (devvp->v_type == VREG) 2286 dbn = fragstoblks(fs, cgtod(fs, cg)); 2287 else 2288 dbn = fsbtodb(fs, cgtod(fs, cg)); 2289 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2290 KASSERT(error == 0, ("getblkx failed")); 2291 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2292 numfrags(fs, size), dephd); 2293 bp->b_flags |= B_RELBUF | B_NOCACHE; 2294 bp->b_flags &= ~B_CACHE; 2295 bawrite(bp); 2296 return; 2297 } 2298 cgbno = dtogd(fs, bno); 2299 blksfree = cg_blksfree(cgp); 2300 UFS_LOCK(ump); 2301 if (size == fs->fs_bsize) { 2302 fragno = fragstoblks(fs, cgbno); 2303 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2304 if (devvp->v_type == VREG) { 2305 UFS_UNLOCK(ump); 2306 /* devvp is a snapshot */ 2307 brelse(bp); 2308 return; 2309 } 2310 printf("dev = %s, block = %jd, fs = %s\n", 2311 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2312 panic("ffs_blkfree_cg: freeing free block"); 2313 } 2314 ffs_setblock(fs, blksfree, fragno); 2315 ffs_clusteracct(fs, cgp, fragno, 1); 2316 cgp->cg_cs.cs_nbfree++; 2317 fs->fs_cstotal.cs_nbfree++; 2318 fs->fs_cs(fs, cg).cs_nbfree++; 2319 } else { 2320 bbase = cgbno - fragnum(fs, cgbno); 2321 /* 2322 * decrement the counts associated with the old frags 2323 */ 2324 blk = blkmap(fs, blksfree, bbase); 2325 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2326 /* 2327 * deallocate the fragment 2328 */ 2329 frags = numfrags(fs, size); 2330 for (i = 0; i < frags; i++) { 2331 if (isset(blksfree, cgbno + i)) { 2332 printf("dev = %s, block = %jd, fs = %s\n", 2333 devtoname(dev), (intmax_t)(bno + i), 2334 fs->fs_fsmnt); 2335 panic("ffs_blkfree_cg: freeing free frag"); 2336 } 2337 setbit(blksfree, cgbno + i); 2338 } 2339 cgp->cg_cs.cs_nffree += i; 2340 fs->fs_cstotal.cs_nffree += i; 2341 fs->fs_cs(fs, cg).cs_nffree += i; 2342 /* 2343 * add back in counts associated with the new frags 2344 */ 2345 blk = blkmap(fs, blksfree, bbase); 2346 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2347 /* 2348 * if a complete block has been reassembled, account for it 2349 */ 2350 fragno = fragstoblks(fs, bbase); 2351 if (ffs_isblock(fs, blksfree, fragno)) { 2352 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2353 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2354 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2355 ffs_clusteracct(fs, cgp, fragno, 1); 2356 cgp->cg_cs.cs_nbfree++; 2357 fs->fs_cstotal.cs_nbfree++; 2358 fs->fs_cs(fs, cg).cs_nbfree++; 2359 } 2360 } 2361 fs->fs_fmod = 1; 2362 ACTIVECLEAR(fs, cg); 2363 UFS_UNLOCK(ump); 2364 mp = UFSTOVFS(ump); 2365 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2366 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2367 numfrags(fs, size), dephd); 2368 bdwrite(bp); 2369 } 2370 2371 /* 2372 * Structures and routines associated with trim management. 2373 * 2374 * The following requests are passed to trim_lookup to indicate 2375 * the actions that should be taken. 2376 */ 2377 #define NEW 1 /* if found, error else allocate and hash it */ 2378 #define OLD 2 /* if not found, error, else return it */ 2379 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2380 #define DONE 4 /* if not found, error else unhash and return it */ 2381 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2382 2383 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2384 2385 #define TRIMLIST_HASH(ump, key) \ 2386 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2387 2388 /* 2389 * These structures describe each of the block free requests aggregated 2390 * together to make up a trim request. 2391 */ 2392 struct trim_blkreq { 2393 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2394 ufs2_daddr_t bno; 2395 long size; 2396 struct workhead *pdephd; 2397 struct workhead dephd; 2398 }; 2399 2400 /* 2401 * Description of a trim request. 2402 */ 2403 struct ffs_blkfree_trim_params { 2404 TAILQ_HEAD(, trim_blkreq) blklist; 2405 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2406 struct task task; 2407 struct ufsmount *ump; 2408 struct vnode *devvp; 2409 ino_t inum; 2410 ufs2_daddr_t bno; 2411 long size; 2412 long key; 2413 }; 2414 2415 static void ffs_blkfree_trim_completed(struct buf *); 2416 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2417 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2418 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int); 2419 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2420 2421 /* 2422 * Called on trim completion to start a task to free the associated block(s). 2423 */ 2424 static void 2425 ffs_blkfree_trim_completed(bp) 2426 struct buf *bp; 2427 { 2428 struct ffs_blkfree_trim_params *tp; 2429 2430 tp = bp->b_fsprivate1; 2431 free(bp, M_TRIM); 2432 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2433 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2434 } 2435 2436 /* 2437 * Trim completion task that free associated block(s). 2438 */ 2439 static void 2440 ffs_blkfree_trim_task(ctx, pending) 2441 void *ctx; 2442 int pending; 2443 { 2444 struct ffs_blkfree_trim_params *tp; 2445 struct trim_blkreq *blkelm; 2446 struct ufsmount *ump; 2447 2448 tp = ctx; 2449 ump = tp->ump; 2450 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2451 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2452 blkelm->size, tp->inum, blkelm->pdephd); 2453 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2454 free(blkelm, M_TRIM); 2455 } 2456 vn_finished_secondary_write(UFSTOVFS(ump)); 2457 UFS_LOCK(ump); 2458 ump->um_trim_inflight -= 1; 2459 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2460 UFS_UNLOCK(ump); 2461 free(tp, M_TRIM); 2462 } 2463 2464 /* 2465 * Lookup a trim request by inode number. 2466 * Allocate if requested (NEW, REPLACE, SINGLE). 2467 */ 2468 static struct ffs_blkfree_trim_params * 2469 trim_lookup(ump, devvp, bno, size, inum, key, alloctype) 2470 struct ufsmount *ump; 2471 struct vnode *devvp; 2472 ufs2_daddr_t bno; 2473 long size; 2474 ino_t inum; 2475 u_long key; 2476 int alloctype; 2477 { 2478 struct trimlist_hashhead *tphashhead; 2479 struct ffs_blkfree_trim_params *tp, *ntp; 2480 2481 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2482 if (alloctype != SINGLE) { 2483 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2484 UFS_LOCK(ump); 2485 tphashhead = TRIMLIST_HASH(ump, key); 2486 LIST_FOREACH(tp, tphashhead, hashlist) 2487 if (key == tp->key) 2488 break; 2489 } 2490 switch (alloctype) { 2491 case NEW: 2492 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2493 break; 2494 case OLD: 2495 KASSERT(tp != NULL, 2496 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2497 UFS_UNLOCK(ump); 2498 free(ntp, M_TRIM); 2499 return (tp); 2500 case REPLACE: 2501 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2502 LIST_REMOVE(tp, hashlist); 2503 /* tp will be freed by caller */ 2504 break; 2505 case DONE: 2506 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2507 LIST_REMOVE(tp, hashlist); 2508 UFS_UNLOCK(ump); 2509 free(ntp, M_TRIM); 2510 return (tp); 2511 } 2512 TAILQ_INIT(&ntp->blklist); 2513 ntp->ump = ump; 2514 ntp->devvp = devvp; 2515 ntp->bno = bno; 2516 ntp->size = size; 2517 ntp->inum = inum; 2518 ntp->key = key; 2519 if (alloctype != SINGLE) { 2520 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2521 UFS_UNLOCK(ump); 2522 } 2523 return (ntp); 2524 } 2525 2526 /* 2527 * Dispatch a trim request. 2528 */ 2529 static void 2530 ffs_blkfree_sendtrim(tp) 2531 struct ffs_blkfree_trim_params *tp; 2532 { 2533 struct ufsmount *ump; 2534 struct mount *mp; 2535 struct buf *bp; 2536 2537 /* 2538 * Postpone the set of the free bit in the cg bitmap until the 2539 * BIO_DELETE is completed. Otherwise, due to disk queue 2540 * reordering, TRIM might be issued after we reuse the block 2541 * and write some new data into it. 2542 */ 2543 ump = tp->ump; 2544 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2545 bp->b_iocmd = BIO_DELETE; 2546 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2547 bp->b_iodone = ffs_blkfree_trim_completed; 2548 bp->b_bcount = tp->size; 2549 bp->b_fsprivate1 = tp; 2550 UFS_LOCK(ump); 2551 ump->um_trim_total += 1; 2552 ump->um_trim_inflight += 1; 2553 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2554 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2555 UFS_UNLOCK(ump); 2556 2557 mp = UFSTOVFS(ump); 2558 vn_start_secondary_write(NULL, &mp, 0); 2559 g_vfs_strategy(ump->um_bo, bp); 2560 } 2561 2562 /* 2563 * Allocate a new key to use to identify a range of blocks. 2564 */ 2565 u_long 2566 ffs_blkrelease_start(ump, devvp, inum) 2567 struct ufsmount *ump; 2568 struct vnode *devvp; 2569 ino_t inum; 2570 { 2571 static u_long masterkey; 2572 u_long key; 2573 2574 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2575 return (SINGLETON_KEY); 2576 do { 2577 key = atomic_fetchadd_long(&masterkey, 1); 2578 } while (key < FIRST_VALID_KEY); 2579 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2580 return (key); 2581 } 2582 2583 /* 2584 * Deallocate a key that has been used to identify a range of blocks. 2585 */ 2586 void 2587 ffs_blkrelease_finish(ump, key) 2588 struct ufsmount *ump; 2589 u_long key; 2590 { 2591 struct ffs_blkfree_trim_params *tp; 2592 2593 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2594 return; 2595 /* 2596 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2597 * a file deletion is active, specifically after a call 2598 * to ffs_blkrelease_start() but before the call to 2599 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2600 * have handed out SINGLETON_KEY rather than starting a 2601 * collection sequence. Thus if we get a SINGLETON_KEY 2602 * passed to ffs_blkrelease_finish(), we just return rather 2603 * than trying to finish the nonexistent sequence. 2604 */ 2605 if (key == SINGLETON_KEY) { 2606 #ifdef INVARIANTS 2607 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2608 ump->um_mountp->mnt_stat.f_mntonname); 2609 #endif 2610 return; 2611 } 2612 /* 2613 * We are done with sending blocks using this key. Look up the key 2614 * using the DONE alloctype (in tp) to request that it be unhashed 2615 * as we will not be adding to it. If the key has never been used, 2616 * tp->size will be zero, so we can just free tp. Otherwise the call 2617 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2618 * tp to be issued (and then tp to be freed). 2619 */ 2620 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2621 if (tp->size == 0) 2622 free(tp, M_TRIM); 2623 else 2624 ffs_blkfree_sendtrim(tp); 2625 } 2626 2627 /* 2628 * Setup to free a block or fragment. 2629 * 2630 * Check for snapshots that might want to claim the block. 2631 * If trims are requested, prepare a trim request. Attempt to 2632 * aggregate consecutive blocks into a single trim request. 2633 */ 2634 void 2635 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key) 2636 struct ufsmount *ump; 2637 struct fs *fs; 2638 struct vnode *devvp; 2639 ufs2_daddr_t bno; 2640 long size; 2641 ino_t inum; 2642 enum vtype vtype; 2643 struct workhead *dephd; 2644 u_long key; 2645 { 2646 struct ffs_blkfree_trim_params *tp, *ntp; 2647 struct trim_blkreq *blkelm; 2648 2649 /* 2650 * Check to see if a snapshot wants to claim the block. 2651 * Check that devvp is a normal disk device, not a snapshot, 2652 * it has a snapshot(s) associated with it, and one of the 2653 * snapshots wants to claim the block. 2654 */ 2655 if (devvp->v_type == VCHR && 2656 (devvp->v_vflag & VV_COPYONWRITE) && 2657 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2658 return; 2659 } 2660 /* 2661 * Nothing to delay if TRIM is not required for this block or TRIM 2662 * is disabled or the operation is performed on a snapshot. 2663 */ 2664 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2665 devvp->v_type == VREG) { 2666 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2667 return; 2668 } 2669 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2670 blkelm->bno = bno; 2671 blkelm->size = size; 2672 if (dephd == NULL) { 2673 blkelm->pdephd = NULL; 2674 } else { 2675 LIST_INIT(&blkelm->dephd); 2676 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2677 blkelm->pdephd = &blkelm->dephd; 2678 } 2679 if (key == SINGLETON_KEY) { 2680 /* 2681 * Just a single non-contiguous piece. Use the SINGLE 2682 * alloctype to return a trim request that will not be 2683 * hashed for future lookup. 2684 */ 2685 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2686 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2687 ffs_blkfree_sendtrim(tp); 2688 return; 2689 } 2690 /* 2691 * The callers of this function are not tracking whether or not 2692 * the blocks are contiguous. They are just saying that they 2693 * are freeing a set of blocks. It is this code that determines 2694 * the pieces of that range that are actually contiguous. 2695 * 2696 * Calling ffs_blkrelease_start() will have created an entry 2697 * that we will use. 2698 */ 2699 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2700 if (tp->size == 0) { 2701 /* 2702 * First block of a potential range, set block and size 2703 * for the trim block. 2704 */ 2705 tp->bno = bno; 2706 tp->size = size; 2707 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2708 return; 2709 } 2710 /* 2711 * If this block is a continuation of the range (either 2712 * follows at the end or preceeds in the front) then we 2713 * add it to the front or back of the list and return. 2714 * 2715 * If it is not a continuation of the trim that we were 2716 * building, using the REPLACE alloctype, we request that 2717 * the old trim request (still in tp) be unhashed and a 2718 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2719 * call causes the block range described by tp to be issued 2720 * (and then tp to be freed). 2721 */ 2722 if (bno + numfrags(fs, size) == tp->bno) { 2723 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2724 tp->bno = bno; 2725 tp->size += size; 2726 return; 2727 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2728 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2729 tp->size += size; 2730 return; 2731 } 2732 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2733 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2734 ffs_blkfree_sendtrim(tp); 2735 } 2736 2737 #ifdef INVARIANTS 2738 /* 2739 * Verify allocation of a block or fragment. Returns true if block or 2740 * fragment is allocated, false if it is free. 2741 */ 2742 static int 2743 ffs_checkblk(ip, bno, size) 2744 struct inode *ip; 2745 ufs2_daddr_t bno; 2746 long size; 2747 { 2748 struct fs *fs; 2749 struct cg *cgp; 2750 struct buf *bp; 2751 ufs1_daddr_t cgbno; 2752 int i, error, frags, free; 2753 u_int8_t *blksfree; 2754 2755 fs = ITOFS(ip); 2756 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2757 printf("bsize = %ld, size = %ld, fs = %s\n", 2758 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2759 panic("ffs_checkblk: bad size"); 2760 } 2761 if ((u_int)bno >= fs->fs_size) 2762 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2763 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp); 2764 if (error) 2765 panic("ffs_checkblk: cylinder group read failed"); 2766 blksfree = cg_blksfree(cgp); 2767 cgbno = dtogd(fs, bno); 2768 if (size == fs->fs_bsize) { 2769 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2770 } else { 2771 frags = numfrags(fs, size); 2772 for (free = 0, i = 0; i < frags; i++) 2773 if (isset(blksfree, cgbno + i)) 2774 free++; 2775 if (free != 0 && free != frags) 2776 panic("ffs_checkblk: partially free fragment"); 2777 } 2778 brelse(bp); 2779 return (!free); 2780 } 2781 #endif /* INVARIANTS */ 2782 2783 /* 2784 * Free an inode. 2785 */ 2786 int 2787 ffs_vfree(pvp, ino, mode) 2788 struct vnode *pvp; 2789 ino_t ino; 2790 int mode; 2791 { 2792 struct ufsmount *ump; 2793 2794 if (DOINGSOFTDEP(pvp)) { 2795 softdep_freefile(pvp, ino, mode); 2796 return (0); 2797 } 2798 ump = VFSTOUFS(pvp->v_mount); 2799 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2800 } 2801 2802 /* 2803 * Do the actual free operation. 2804 * The specified inode is placed back in the free map. 2805 */ 2806 int 2807 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2808 struct ufsmount *ump; 2809 struct fs *fs; 2810 struct vnode *devvp; 2811 ino_t ino; 2812 int mode; 2813 struct workhead *wkhd; 2814 { 2815 struct cg *cgp; 2816 struct buf *bp; 2817 daddr_t dbn; 2818 int error; 2819 u_int cg; 2820 u_int8_t *inosused; 2821 struct cdev *dev; 2822 ino_t cgino; 2823 2824 cg = ino_to_cg(fs, ino); 2825 if (devvp->v_type == VREG) { 2826 /* devvp is a snapshot */ 2827 MPASS(devvp->v_mount->mnt_data == ump); 2828 dev = ump->um_devvp->v_rdev; 2829 } else if (devvp->v_type == VCHR) { 2830 /* devvp is a normal disk device */ 2831 dev = devvp->v_rdev; 2832 } else { 2833 bp = NULL; 2834 return (0); 2835 } 2836 if (ino >= fs->fs_ipg * fs->fs_ncg) 2837 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2838 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2839 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2840 if (!ffs_fsfail_cleanup(ump, error) || 2841 !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2842 return (error); 2843 if (devvp->v_type == VREG) 2844 dbn = fragstoblks(fs, cgtod(fs, cg)); 2845 else 2846 dbn = fsbtodb(fs, cgtod(fs, cg)); 2847 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2848 KASSERT(error == 0, ("getblkx failed")); 2849 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd); 2850 bp->b_flags |= B_RELBUF | B_NOCACHE; 2851 bp->b_flags &= ~B_CACHE; 2852 bawrite(bp); 2853 return (error); 2854 } 2855 inosused = cg_inosused(cgp); 2856 cgino = ino % fs->fs_ipg; 2857 if (isclr(inosused, cgino)) { 2858 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2859 (uintmax_t)ino, fs->fs_fsmnt); 2860 if (fs->fs_ronly == 0) 2861 panic("ffs_freefile: freeing free inode"); 2862 } 2863 clrbit(inosused, cgino); 2864 if (cgino < cgp->cg_irotor) 2865 cgp->cg_irotor = cgino; 2866 cgp->cg_cs.cs_nifree++; 2867 UFS_LOCK(ump); 2868 fs->fs_cstotal.cs_nifree++; 2869 fs->fs_cs(fs, cg).cs_nifree++; 2870 if ((mode & IFMT) == IFDIR) { 2871 cgp->cg_cs.cs_ndir--; 2872 fs->fs_cstotal.cs_ndir--; 2873 fs->fs_cs(fs, cg).cs_ndir--; 2874 } 2875 fs->fs_fmod = 1; 2876 ACTIVECLEAR(fs, cg); 2877 UFS_UNLOCK(ump); 2878 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2879 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd); 2880 bdwrite(bp); 2881 return (0); 2882 } 2883 2884 /* 2885 * Check to see if a file is free. 2886 * Used to check for allocated files in snapshots. 2887 */ 2888 int 2889 ffs_checkfreefile(fs, devvp, ino) 2890 struct fs *fs; 2891 struct vnode *devvp; 2892 ino_t ino; 2893 { 2894 struct cg *cgp; 2895 struct buf *bp; 2896 int ret, error; 2897 u_int cg; 2898 u_int8_t *inosused; 2899 2900 cg = ino_to_cg(fs, ino); 2901 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2902 return (1); 2903 if (ino >= fs->fs_ipg * fs->fs_ncg) 2904 return (1); 2905 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0) 2906 return (1); 2907 inosused = cg_inosused(cgp); 2908 ino %= fs->fs_ipg; 2909 ret = isclr(inosused, ino); 2910 brelse(bp); 2911 return (ret); 2912 } 2913 2914 /* 2915 * Find a block of the specified size in the specified cylinder group. 2916 * 2917 * It is a panic if a request is made to find a block if none are 2918 * available. 2919 */ 2920 static ufs1_daddr_t 2921 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2922 struct fs *fs; 2923 struct cg *cgp; 2924 ufs2_daddr_t bpref; 2925 int allocsiz; 2926 { 2927 ufs1_daddr_t bno; 2928 int start, len, loc, i; 2929 int blk, field, subfield, pos; 2930 u_int8_t *blksfree; 2931 2932 /* 2933 * find the fragment by searching through the free block 2934 * map for an appropriate bit pattern 2935 */ 2936 if (bpref) 2937 start = dtogd(fs, bpref) / NBBY; 2938 else 2939 start = cgp->cg_frotor / NBBY; 2940 blksfree = cg_blksfree(cgp); 2941 len = howmany(fs->fs_fpg, NBBY) - start; 2942 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2943 fragtbl[fs->fs_frag], 2944 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2945 if (loc == 0) { 2946 len = start + 1; 2947 start = 0; 2948 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2949 fragtbl[fs->fs_frag], 2950 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2951 if (loc == 0) { 2952 printf("start = %d, len = %d, fs = %s\n", 2953 start, len, fs->fs_fsmnt); 2954 panic("ffs_alloccg: map corrupted"); 2955 /* NOTREACHED */ 2956 } 2957 } 2958 bno = (start + len - loc) * NBBY; 2959 cgp->cg_frotor = bno; 2960 /* 2961 * found the byte in the map 2962 * sift through the bits to find the selected frag 2963 */ 2964 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2965 blk = blkmap(fs, blksfree, bno); 2966 blk <<= 1; 2967 field = around[allocsiz]; 2968 subfield = inside[allocsiz]; 2969 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2970 if ((blk & field) == subfield) 2971 return (bno + pos); 2972 field <<= 1; 2973 subfield <<= 1; 2974 } 2975 } 2976 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2977 panic("ffs_alloccg: block not in map"); 2978 return (-1); 2979 } 2980 2981 static const struct statfs * 2982 ffs_getmntstat(struct vnode *devvp) 2983 { 2984 2985 if (devvp->v_type == VCHR) 2986 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2987 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2988 } 2989 2990 /* 2991 * Fetch and verify a cylinder group. 2992 */ 2993 int 2994 ffs_getcg(fs, devvp, cg, flags, bpp, cgpp) 2995 struct fs *fs; 2996 struct vnode *devvp; 2997 u_int cg; 2998 int flags; 2999 struct buf **bpp; 3000 struct cg **cgpp; 3001 { 3002 struct buf *bp; 3003 struct cg *cgp; 3004 const struct statfs *sfs; 3005 daddr_t blkno; 3006 int error; 3007 3008 *bpp = NULL; 3009 *cgpp = NULL; 3010 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3011 flags |= GB_CKHASH; 3012 if (devvp->v_type == VREG) 3013 blkno = fragstoblks(fs, cgtod(fs, cg)); 3014 else 3015 blkno = fsbtodb(fs, cgtod(fs, cg)); 3016 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL, 3017 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp); 3018 if (error != 0) 3019 return (error); 3020 cgp = (struct cg *)bp->b_data; 3021 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 3022 (bp->b_flags & B_CKHASH) != 0 && 3023 cgp->cg_ckhash != bp->b_ckhash) { 3024 sfs = ffs_getmntstat(devvp); 3025 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 3026 "0x%x != bp: 0x%jx\n", 3027 devvp->v_type == VCHR ? "" : "snapshot of ", 3028 sfs->f_mntfromname, sfs->f_mntonname, 3029 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 3030 bp->b_flags &= ~B_CKHASH; 3031 bp->b_flags |= B_INVAL | B_NOCACHE; 3032 brelse(bp); 3033 return (EIO); 3034 } 3035 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 3036 sfs = ffs_getmntstat(devvp); 3037 printf("UFS %s%s (%s)", 3038 devvp->v_type == VCHR ? "" : "snapshot of ", 3039 sfs->f_mntfromname, sfs->f_mntonname); 3040 if (!cg_chkmagic(cgp)) 3041 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 3042 cg, cgp->cg_magic, CG_MAGIC); 3043 else 3044 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 3045 cgp->cg_cgx); 3046 bp->b_flags &= ~B_CKHASH; 3047 bp->b_flags |= B_INVAL | B_NOCACHE; 3048 brelse(bp); 3049 return (EIO); 3050 } 3051 bp->b_flags &= ~B_CKHASH; 3052 bp->b_xflags |= BX_BKGRDWRITE; 3053 /* 3054 * If we are using check hashes on the cylinder group then we want 3055 * to limit changing the cylinder group time to when we are actually 3056 * going to write it to disk so that its check hash remains correct 3057 * in memory. If the CK_CYLGRP flag is set the time is updated in 3058 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 3059 * update the time here as we have done historically. 3060 */ 3061 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3062 bp->b_xflags |= BX_CYLGRP; 3063 else 3064 cgp->cg_old_time = cgp->cg_time = time_second; 3065 *bpp = bp; 3066 *cgpp = cgp; 3067 return (0); 3068 } 3069 3070 static void 3071 ffs_ckhash_cg(bp) 3072 struct buf *bp; 3073 { 3074 uint32_t ckhash; 3075 struct cg *cgp; 3076 3077 cgp = (struct cg *)bp->b_data; 3078 ckhash = cgp->cg_ckhash; 3079 cgp->cg_ckhash = 0; 3080 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3081 cgp->cg_ckhash = ckhash; 3082 } 3083 3084 /* 3085 * Fserr prints the name of a filesystem with an error diagnostic. 3086 * 3087 * The form of the error message is: 3088 * fs: error message 3089 */ 3090 void 3091 ffs_fserr(fs, inum, cp) 3092 struct fs *fs; 3093 ino_t inum; 3094 char *cp; 3095 { 3096 struct thread *td = curthread; /* XXX */ 3097 struct proc *p = td->td_proc; 3098 3099 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3100 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3101 fs->fs_fsmnt, cp); 3102 } 3103 3104 /* 3105 * This function provides the capability for the fsck program to 3106 * update an active filesystem. Fourteen operations are provided: 3107 * 3108 * adjrefcnt(inode, amt) - adjusts the reference count on the 3109 * specified inode by the specified amount. Under normal 3110 * operation the count should always go down. Decrementing 3111 * the count to zero will cause the inode to be freed. 3112 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3113 * inode by the specified amount. 3114 * setsize(inode, size) - set the size of the inode to the 3115 * specified size. 3116 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3117 * adjust the superblock summary. 3118 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3119 * are marked as free. Inodes should never have to be marked 3120 * as in use. 3121 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3122 * are marked as free. Inodes should never have to be marked 3123 * as in use. 3124 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3125 * are marked as free. Blocks should never have to be marked 3126 * as in use. 3127 * setflags(flags, set/clear) - the fs_flags field has the specified 3128 * flags set (second parameter +1) or cleared (second parameter -1). 3129 * setcwd(dirinode) - set the current directory to dirinode in the 3130 * filesystem associated with the snapshot. 3131 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3132 * in the current directory is oldvalue then change it to newvalue. 3133 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3134 * with nameptr in the current directory is oldvalue then unlink it. 3135 */ 3136 3137 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3138 3139 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, 3140 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT, 3141 0, 0, sysctl_ffs_fsck, "S,fsck", 3142 "Adjust Inode Reference Count"); 3143 3144 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, 3145 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3146 "Adjust Inode Used Blocks Count"); 3147 3148 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, 3149 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3150 "Set the inode size"); 3151 3152 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, 3153 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3154 "Adjust number of directories"); 3155 3156 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, 3157 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3158 "Adjust number of free blocks"); 3159 3160 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, 3161 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3162 "Adjust number of free inodes"); 3163 3164 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, 3165 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3166 "Adjust number of free frags"); 3167 3168 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, 3169 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3170 "Adjust number of free clusters"); 3171 3172 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, 3173 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3174 "Free Range of Directory Inodes"); 3175 3176 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, 3177 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3178 "Free Range of File Inodes"); 3179 3180 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, 3181 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3182 "Free Range of Blocks"); 3183 3184 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, 3185 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3186 "Change Filesystem Flags"); 3187 3188 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, 3189 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3190 "Set Current Working Directory"); 3191 3192 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, 3193 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3194 "Change Value of .. Entry"); 3195 3196 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, 3197 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3198 "Unlink a Duplicate Name"); 3199 3200 #ifdef DIAGNOSTIC 3201 static int fsckcmds = 0; 3202 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3203 "print out fsck_ffs-based filesystem update commands"); 3204 #endif /* DIAGNOSTIC */ 3205 3206 static int 3207 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3208 { 3209 struct thread *td = curthread; 3210 struct fsck_cmd cmd; 3211 struct ufsmount *ump; 3212 struct vnode *vp, *dvp, *fdvp; 3213 struct inode *ip, *dp; 3214 struct mount *mp; 3215 struct fs *fs; 3216 struct pwd *pwd; 3217 ufs2_daddr_t blkno; 3218 long blkcnt, blksize; 3219 u_long key; 3220 struct file *fp; 3221 cap_rights_t rights; 3222 int filetype, error; 3223 3224 if (req->newptr == NULL || req->newlen > sizeof(cmd)) 3225 return (EBADRPC); 3226 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0) 3227 return (error); 3228 if (cmd.version != FFS_CMD_VERSION) 3229 return (ERPCMISMATCH); 3230 if ((error = getvnode(td, cmd.handle, 3231 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0) 3232 return (error); 3233 vp = fp->f_vnode; 3234 if (vp->v_type != VREG && vp->v_type != VDIR) { 3235 fdrop(fp, td); 3236 return (EINVAL); 3237 } 3238 vn_start_write(vp, &mp, V_WAIT); 3239 if (mp == NULL || 3240 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3241 vn_finished_write(mp); 3242 fdrop(fp, td); 3243 return (EINVAL); 3244 } 3245 ump = VFSTOUFS(mp); 3246 if (mp->mnt_flag & MNT_RDONLY) { 3247 vn_finished_write(mp); 3248 fdrop(fp, td); 3249 return (EROFS); 3250 } 3251 fs = ump->um_fs; 3252 filetype = IFREG; 3253 3254 switch (oidp->oid_number) { 3255 case FFS_SET_FLAGS: 3256 #ifdef DIAGNOSTIC 3257 if (fsckcmds) 3258 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3259 cmd.size > 0 ? "set" : "clear"); 3260 #endif /* DIAGNOSTIC */ 3261 if (cmd.size > 0) 3262 fs->fs_flags |= (long)cmd.value; 3263 else 3264 fs->fs_flags &= ~(long)cmd.value; 3265 break; 3266 3267 case FFS_ADJ_REFCNT: 3268 #ifdef DIAGNOSTIC 3269 if (fsckcmds) { 3270 printf("%s: adjust inode %jd link count by %jd\n", 3271 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3272 (intmax_t)cmd.size); 3273 } 3274 #endif /* DIAGNOSTIC */ 3275 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3276 break; 3277 ip = VTOI(vp); 3278 ip->i_nlink += cmd.size; 3279 DIP_SET(ip, i_nlink, ip->i_nlink); 3280 ip->i_effnlink += cmd.size; 3281 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3282 error = ffs_update(vp, 1); 3283 if (DOINGSOFTDEP(vp)) 3284 softdep_change_linkcnt(ip); 3285 vput(vp); 3286 break; 3287 3288 case FFS_ADJ_BLKCNT: 3289 #ifdef DIAGNOSTIC 3290 if (fsckcmds) { 3291 printf("%s: adjust inode %jd block count by %jd\n", 3292 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3293 (intmax_t)cmd.size); 3294 } 3295 #endif /* DIAGNOSTIC */ 3296 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3297 break; 3298 ip = VTOI(vp); 3299 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3300 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3301 error = ffs_update(vp, 1); 3302 vput(vp); 3303 break; 3304 3305 case FFS_SET_SIZE: 3306 #ifdef DIAGNOSTIC 3307 if (fsckcmds) { 3308 printf("%s: set inode %jd size to %jd\n", 3309 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3310 (intmax_t)cmd.size); 3311 } 3312 #endif /* DIAGNOSTIC */ 3313 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3314 break; 3315 ip = VTOI(vp); 3316 DIP_SET(ip, i_size, cmd.size); 3317 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED); 3318 error = ffs_update(vp, 1); 3319 vput(vp); 3320 break; 3321 3322 case FFS_DIR_FREE: 3323 filetype = IFDIR; 3324 /* fall through */ 3325 3326 case FFS_FILE_FREE: 3327 #ifdef DIAGNOSTIC 3328 if (fsckcmds) { 3329 if (cmd.size == 1) 3330 printf("%s: free %s inode %ju\n", 3331 mp->mnt_stat.f_mntonname, 3332 filetype == IFDIR ? "directory" : "file", 3333 (uintmax_t)cmd.value); 3334 else 3335 printf("%s: free %s inodes %ju-%ju\n", 3336 mp->mnt_stat.f_mntonname, 3337 filetype == IFDIR ? "directory" : "file", 3338 (uintmax_t)cmd.value, 3339 (uintmax_t)(cmd.value + cmd.size - 1)); 3340 } 3341 #endif /* DIAGNOSTIC */ 3342 while (cmd.size > 0) { 3343 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3344 cmd.value, filetype, NULL))) 3345 break; 3346 cmd.size -= 1; 3347 cmd.value += 1; 3348 } 3349 break; 3350 3351 case FFS_BLK_FREE: 3352 #ifdef DIAGNOSTIC 3353 if (fsckcmds) { 3354 if (cmd.size == 1) 3355 printf("%s: free block %jd\n", 3356 mp->mnt_stat.f_mntonname, 3357 (intmax_t)cmd.value); 3358 else 3359 printf("%s: free blocks %jd-%jd\n", 3360 mp->mnt_stat.f_mntonname, 3361 (intmax_t)cmd.value, 3362 (intmax_t)cmd.value + cmd.size - 1); 3363 } 3364 #endif /* DIAGNOSTIC */ 3365 blkno = cmd.value; 3366 blkcnt = cmd.size; 3367 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3368 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3369 while (blkcnt > 0) { 3370 if (blkcnt < blksize) 3371 blksize = blkcnt; 3372 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3373 blksize * fs->fs_fsize, UFS_ROOTINO, 3374 VDIR, NULL, key); 3375 blkno += blksize; 3376 blkcnt -= blksize; 3377 blksize = fs->fs_frag; 3378 } 3379 ffs_blkrelease_finish(ump, key); 3380 break; 3381 3382 /* 3383 * Adjust superblock summaries. fsck(8) is expected to 3384 * submit deltas when necessary. 3385 */ 3386 case FFS_ADJ_NDIR: 3387 #ifdef DIAGNOSTIC 3388 if (fsckcmds) { 3389 printf("%s: adjust number of directories by %jd\n", 3390 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3391 } 3392 #endif /* DIAGNOSTIC */ 3393 fs->fs_cstotal.cs_ndir += cmd.value; 3394 break; 3395 3396 case FFS_ADJ_NBFREE: 3397 #ifdef DIAGNOSTIC 3398 if (fsckcmds) { 3399 printf("%s: adjust number of free blocks by %+jd\n", 3400 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3401 } 3402 #endif /* DIAGNOSTIC */ 3403 fs->fs_cstotal.cs_nbfree += cmd.value; 3404 break; 3405 3406 case FFS_ADJ_NIFREE: 3407 #ifdef DIAGNOSTIC 3408 if (fsckcmds) { 3409 printf("%s: adjust number of free inodes by %+jd\n", 3410 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3411 } 3412 #endif /* DIAGNOSTIC */ 3413 fs->fs_cstotal.cs_nifree += cmd.value; 3414 break; 3415 3416 case FFS_ADJ_NFFREE: 3417 #ifdef DIAGNOSTIC 3418 if (fsckcmds) { 3419 printf("%s: adjust number of free frags by %+jd\n", 3420 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3421 } 3422 #endif /* DIAGNOSTIC */ 3423 fs->fs_cstotal.cs_nffree += cmd.value; 3424 break; 3425 3426 case FFS_ADJ_NUMCLUSTERS: 3427 #ifdef DIAGNOSTIC 3428 if (fsckcmds) { 3429 printf("%s: adjust number of free clusters by %+jd\n", 3430 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3431 } 3432 #endif /* DIAGNOSTIC */ 3433 fs->fs_cstotal.cs_numclusters += cmd.value; 3434 break; 3435 3436 case FFS_SET_CWD: 3437 #ifdef DIAGNOSTIC 3438 if (fsckcmds) { 3439 printf("%s: set current directory to inode %jd\n", 3440 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3441 } 3442 #endif /* DIAGNOSTIC */ 3443 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3444 break; 3445 AUDIT_ARG_VNODE1(vp); 3446 if ((error = change_dir(vp, td)) != 0) { 3447 vput(vp); 3448 break; 3449 } 3450 VOP_UNLOCK(vp); 3451 pwd_chdir(td, vp); 3452 break; 3453 3454 case FFS_SET_DOTDOT: 3455 #ifdef DIAGNOSTIC 3456 if (fsckcmds) { 3457 printf("%s: change .. in cwd from %jd to %jd\n", 3458 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3459 (intmax_t)cmd.size); 3460 } 3461 #endif /* DIAGNOSTIC */ 3462 /* 3463 * First we have to get and lock the parent directory 3464 * to which ".." points. 3465 */ 3466 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3467 if (error) 3468 break; 3469 /* 3470 * Now we get and lock the child directory containing "..". 3471 */ 3472 pwd = pwd_hold(td); 3473 dvp = pwd->pwd_cdir; 3474 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) { 3475 vput(fdvp); 3476 pwd_drop(pwd); 3477 break; 3478 } 3479 dp = VTOI(dvp); 3480 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */ 3481 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3482 DT_DIR, 0); 3483 cache_purge(fdvp); 3484 cache_purge(dvp); 3485 vput(dvp); 3486 vput(fdvp); 3487 pwd_drop(pwd); 3488 break; 3489 3490 case FFS_UNLINK: 3491 #ifdef DIAGNOSTIC 3492 if (fsckcmds) { 3493 char buf[32]; 3494 3495 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3496 strncpy(buf, "Name_too_long", 32); 3497 printf("%s: unlink %s (inode %jd)\n", 3498 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3499 } 3500 #endif /* DIAGNOSTIC */ 3501 /* 3502 * kern_funlinkat will do its own start/finish writes and 3503 * they do not nest, so drop ours here. Setting mp == NULL 3504 * indicates that vn_finished_write is not needed down below. 3505 */ 3506 vn_finished_write(mp); 3507 mp = NULL; 3508 error = kern_funlinkat(td, AT_FDCWD, 3509 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3510 0, (ino_t)cmd.size); 3511 break; 3512 3513 default: 3514 #ifdef DIAGNOSTIC 3515 if (fsckcmds) { 3516 printf("Invalid request %d from fsck\n", 3517 oidp->oid_number); 3518 } 3519 #endif /* DIAGNOSTIC */ 3520 error = EINVAL; 3521 break; 3522 } 3523 fdrop(fp, td); 3524 vn_finished_write(mp); 3525 return (error); 3526 } 3527