1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/capsicum.h> 69 #include <sys/systm.h> 70 #include <sys/bio.h> 71 #include <sys/buf.h> 72 #include <sys/conf.h> 73 #include <sys/fcntl.h> 74 #include <sys/file.h> 75 #include <sys/filedesc.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/vnode.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/syslog.h> 84 #include <sys/taskqueue.h> 85 86 #include <security/audit/audit.h> 87 88 #include <geom/geom.h> 89 90 #include <ufs/ufs/dir.h> 91 #include <ufs/ufs/extattr.h> 92 #include <ufs/ufs/quota.h> 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/ufs_extern.h> 95 #include <ufs/ufs/ufsmount.h> 96 97 #include <ufs/ffs/fs.h> 98 #include <ufs/ffs/ffs_extern.h> 99 #include <ufs/ffs/softdep.h> 100 101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 102 int size, int rsize); 103 104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 105 static ufs2_daddr_t 106 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 107 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 108 struct vnode *, ufs2_daddr_t, long, ino_t, 109 struct workhead *); 110 static void ffs_blkfree_trim_completed(struct bio *); 111 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 112 #ifdef INVARIANTS 113 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 114 #endif 115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 116 static ino_t ffs_dirpref(struct inode *); 117 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 118 int, int); 119 static ufs2_daddr_t ffs_hashalloc 120 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 121 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 122 int); 123 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 124 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 125 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 126 127 /* 128 * Allocate a block in the filesystem. 129 * 130 * The size of the requested block is given, which must be some 131 * multiple of fs_fsize and <= fs_bsize. 132 * A preference may be optionally specified. If a preference is given 133 * the following hierarchy is used to allocate a block: 134 * 1) allocate the requested block. 135 * 2) allocate a rotationally optimal block in the same cylinder. 136 * 3) allocate a block in the same cylinder group. 137 * 4) quadradically rehash into other cylinder groups, until an 138 * available block is located. 139 * If no block preference is given the following hierarchy is used 140 * to allocate a block: 141 * 1) allocate a block in the cylinder group that contains the 142 * inode for the file. 143 * 2) quadradically rehash into other cylinder groups, until an 144 * available block is located. 145 */ 146 int 147 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 148 struct inode *ip; 149 ufs2_daddr_t lbn, bpref; 150 int size, flags; 151 struct ucred *cred; 152 ufs2_daddr_t *bnp; 153 { 154 struct fs *fs; 155 struct ufsmount *ump; 156 ufs2_daddr_t bno; 157 u_int cg, reclaimed; 158 static struct timeval lastfail; 159 static int curfail; 160 int64_t delta; 161 #ifdef QUOTA 162 int error; 163 #endif 164 165 *bnp = 0; 166 fs = ip->i_fs; 167 ump = ip->i_ump; 168 mtx_assert(UFS_MTX(ump), MA_OWNED); 169 #ifdef INVARIANTS 170 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 171 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 172 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 173 fs->fs_fsmnt); 174 panic("ffs_alloc: bad size"); 175 } 176 if (cred == NOCRED) 177 panic("ffs_alloc: missing credential"); 178 #endif /* INVARIANTS */ 179 reclaimed = 0; 180 retry: 181 #ifdef QUOTA 182 UFS_UNLOCK(ump); 183 error = chkdq(ip, btodb(size), cred, 0); 184 if (error) 185 return (error); 186 UFS_LOCK(ump); 187 #endif 188 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 189 goto nospace; 190 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 191 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 192 goto nospace; 193 if (bpref >= fs->fs_size) 194 bpref = 0; 195 if (bpref == 0) 196 cg = ino_to_cg(fs, ip->i_number); 197 else 198 cg = dtog(fs, bpref); 199 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 200 if (bno > 0) { 201 delta = btodb(size); 202 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 203 if (flags & IO_EXT) 204 ip->i_flag |= IN_CHANGE; 205 else 206 ip->i_flag |= IN_CHANGE | IN_UPDATE; 207 *bnp = bno; 208 return (0); 209 } 210 nospace: 211 #ifdef QUOTA 212 UFS_UNLOCK(ump); 213 /* 214 * Restore user's disk quota because allocation failed. 215 */ 216 (void) chkdq(ip, -btodb(size), cred, FORCE); 217 UFS_LOCK(ump); 218 #endif 219 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 220 reclaimed = 1; 221 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 222 goto retry; 223 } 224 UFS_UNLOCK(ump); 225 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 226 ffs_fserr(fs, ip->i_number, "filesystem full"); 227 uprintf("\n%s: write failed, filesystem is full\n", 228 fs->fs_fsmnt); 229 } 230 return (ENOSPC); 231 } 232 233 /* 234 * Reallocate a fragment to a bigger size 235 * 236 * The number and size of the old block is given, and a preference 237 * and new size is also specified. The allocator attempts to extend 238 * the original block. Failing that, the regular block allocator is 239 * invoked to get an appropriate block. 240 */ 241 int 242 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 243 struct inode *ip; 244 ufs2_daddr_t lbprev; 245 ufs2_daddr_t bprev; 246 ufs2_daddr_t bpref; 247 int osize, nsize, flags; 248 struct ucred *cred; 249 struct buf **bpp; 250 { 251 struct vnode *vp; 252 struct fs *fs; 253 struct buf *bp; 254 struct ufsmount *ump; 255 u_int cg, request, reclaimed; 256 int error, gbflags; 257 ufs2_daddr_t bno; 258 static struct timeval lastfail; 259 static int curfail; 260 int64_t delta; 261 262 *bpp = 0; 263 vp = ITOV(ip); 264 fs = ip->i_fs; 265 bp = NULL; 266 ump = ip->i_ump; 267 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 268 269 mtx_assert(UFS_MTX(ump), MA_OWNED); 270 #ifdef INVARIANTS 271 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 272 panic("ffs_realloccg: allocation on suspended filesystem"); 273 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 274 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 275 printf( 276 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 277 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 278 nsize, fs->fs_fsmnt); 279 panic("ffs_realloccg: bad size"); 280 } 281 if (cred == NOCRED) 282 panic("ffs_realloccg: missing credential"); 283 #endif /* INVARIANTS */ 284 reclaimed = 0; 285 retry: 286 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 287 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 288 goto nospace; 289 } 290 if (bprev == 0) { 291 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 292 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 293 fs->fs_fsmnt); 294 panic("ffs_realloccg: bad bprev"); 295 } 296 UFS_UNLOCK(ump); 297 /* 298 * Allocate the extra space in the buffer. 299 */ 300 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 301 if (error) { 302 brelse(bp); 303 return (error); 304 } 305 306 if (bp->b_blkno == bp->b_lblkno) { 307 if (lbprev >= NDADDR) 308 panic("ffs_realloccg: lbprev out of range"); 309 bp->b_blkno = fsbtodb(fs, bprev); 310 } 311 312 #ifdef QUOTA 313 error = chkdq(ip, btodb(nsize - osize), cred, 0); 314 if (error) { 315 brelse(bp); 316 return (error); 317 } 318 #endif 319 /* 320 * Check for extension in the existing location. 321 */ 322 cg = dtog(fs, bprev); 323 UFS_LOCK(ump); 324 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 325 if (bno) { 326 if (bp->b_blkno != fsbtodb(fs, bno)) 327 panic("ffs_realloccg: bad blockno"); 328 delta = btodb(nsize - osize); 329 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 330 if (flags & IO_EXT) 331 ip->i_flag |= IN_CHANGE; 332 else 333 ip->i_flag |= IN_CHANGE | IN_UPDATE; 334 allocbuf(bp, nsize); 335 bp->b_flags |= B_DONE; 336 vfs_bio_bzero_buf(bp, osize, nsize - osize); 337 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 338 vfs_bio_set_valid(bp, osize, nsize - osize); 339 *bpp = bp; 340 return (0); 341 } 342 /* 343 * Allocate a new disk location. 344 */ 345 if (bpref >= fs->fs_size) 346 bpref = 0; 347 switch ((int)fs->fs_optim) { 348 case FS_OPTSPACE: 349 /* 350 * Allocate an exact sized fragment. Although this makes 351 * best use of space, we will waste time relocating it if 352 * the file continues to grow. If the fragmentation is 353 * less than half of the minimum free reserve, we choose 354 * to begin optimizing for time. 355 */ 356 request = nsize; 357 if (fs->fs_minfree <= 5 || 358 fs->fs_cstotal.cs_nffree > 359 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 360 break; 361 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 362 fs->fs_fsmnt); 363 fs->fs_optim = FS_OPTTIME; 364 break; 365 case FS_OPTTIME: 366 /* 367 * At this point we have discovered a file that is trying to 368 * grow a small fragment to a larger fragment. To save time, 369 * we allocate a full sized block, then free the unused portion. 370 * If the file continues to grow, the `ffs_fragextend' call 371 * above will be able to grow it in place without further 372 * copying. If aberrant programs cause disk fragmentation to 373 * grow within 2% of the free reserve, we choose to begin 374 * optimizing for space. 375 */ 376 request = fs->fs_bsize; 377 if (fs->fs_cstotal.cs_nffree < 378 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 379 break; 380 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 381 fs->fs_fsmnt); 382 fs->fs_optim = FS_OPTSPACE; 383 break; 384 default: 385 printf("dev = %s, optim = %ld, fs = %s\n", 386 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 387 panic("ffs_realloccg: bad optim"); 388 /* NOTREACHED */ 389 } 390 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 391 if (bno > 0) { 392 bp->b_blkno = fsbtodb(fs, bno); 393 if (!DOINGSOFTDEP(vp)) 394 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 395 ip->i_number, vp->v_type, NULL); 396 delta = btodb(nsize - osize); 397 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 398 if (flags & IO_EXT) 399 ip->i_flag |= IN_CHANGE; 400 else 401 ip->i_flag |= IN_CHANGE | IN_UPDATE; 402 allocbuf(bp, nsize); 403 bp->b_flags |= B_DONE; 404 vfs_bio_bzero_buf(bp, osize, nsize - osize); 405 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 406 vfs_bio_set_valid(bp, osize, nsize - osize); 407 *bpp = bp; 408 return (0); 409 } 410 #ifdef QUOTA 411 UFS_UNLOCK(ump); 412 /* 413 * Restore user's disk quota because allocation failed. 414 */ 415 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 416 UFS_LOCK(ump); 417 #endif 418 nospace: 419 /* 420 * no space available 421 */ 422 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 423 reclaimed = 1; 424 UFS_UNLOCK(ump); 425 if (bp) { 426 brelse(bp); 427 bp = NULL; 428 } 429 UFS_LOCK(ump); 430 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 431 goto retry; 432 } 433 UFS_UNLOCK(ump); 434 if (bp) 435 brelse(bp); 436 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 437 ffs_fserr(fs, ip->i_number, "filesystem full"); 438 uprintf("\n%s: write failed, filesystem is full\n", 439 fs->fs_fsmnt); 440 } 441 return (ENOSPC); 442 } 443 444 /* 445 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 446 * 447 * The vnode and an array of buffer pointers for a range of sequential 448 * logical blocks to be made contiguous is given. The allocator attempts 449 * to find a range of sequential blocks starting as close as possible 450 * from the end of the allocation for the logical block immediately 451 * preceding the current range. If successful, the physical block numbers 452 * in the buffer pointers and in the inode are changed to reflect the new 453 * allocation. If unsuccessful, the allocation is left unchanged. The 454 * success in doing the reallocation is returned. Note that the error 455 * return is not reflected back to the user. Rather the previous block 456 * allocation will be used. 457 */ 458 459 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 460 461 static int doasyncfree = 1; 462 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 463 "do not force synchronous writes when blocks are reallocated"); 464 465 static int doreallocblks = 1; 466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 467 "enable block reallocation"); 468 469 static int maxclustersearch = 10; 470 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 471 0, "max number of cylinder group to search for contigous blocks"); 472 473 #ifdef DEBUG 474 static volatile int prtrealloc = 0; 475 #endif 476 477 int 478 ffs_reallocblks(ap) 479 struct vop_reallocblks_args /* { 480 struct vnode *a_vp; 481 struct cluster_save *a_buflist; 482 } */ *ap; 483 { 484 struct ufsmount *ump; 485 486 /* 487 * If the underlying device can do deletes, then skip reallocating 488 * the blocks of this file into contiguous sequences. Devices that 489 * benefit from BIO_DELETE also benefit from not moving the data. 490 * These devices are flash and therefore work less well with this 491 * optimization. Also skip if reallocblks has been disabled globally. 492 */ 493 ump = VTOI(ap->a_vp)->i_ump; 494 if (ump->um_candelete || doreallocblks == 0) 495 return (ENOSPC); 496 497 /* 498 * We can't wait in softdep prealloc as it may fsync and recurse 499 * here. Instead we simply fail to reallocate blocks if this 500 * rare condition arises. 501 */ 502 if (DOINGSOFTDEP(ap->a_vp)) 503 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 504 return (ENOSPC); 505 if (ump->um_fstype == UFS1) 506 return (ffs_reallocblks_ufs1(ap)); 507 return (ffs_reallocblks_ufs2(ap)); 508 } 509 510 static int 511 ffs_reallocblks_ufs1(ap) 512 struct vop_reallocblks_args /* { 513 struct vnode *a_vp; 514 struct cluster_save *a_buflist; 515 } */ *ap; 516 { 517 struct fs *fs; 518 struct inode *ip; 519 struct vnode *vp; 520 struct buf *sbp, *ebp; 521 ufs1_daddr_t *bap, *sbap, *ebap = 0; 522 struct cluster_save *buflist; 523 struct ufsmount *ump; 524 ufs_lbn_t start_lbn, end_lbn; 525 ufs1_daddr_t soff, newblk, blkno; 526 ufs2_daddr_t pref; 527 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 528 int i, cg, len, start_lvl, end_lvl, ssize; 529 530 vp = ap->a_vp; 531 ip = VTOI(vp); 532 fs = ip->i_fs; 533 ump = ip->i_ump; 534 /* 535 * If we are not tracking block clusters or if we have less than 4% 536 * free blocks left, then do not attempt to cluster. Running with 537 * less than 5% free block reserve is not recommended and those that 538 * choose to do so do not expect to have good file layout. 539 */ 540 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 541 return (ENOSPC); 542 buflist = ap->a_buflist; 543 len = buflist->bs_nchildren; 544 start_lbn = buflist->bs_children[0]->b_lblkno; 545 end_lbn = start_lbn + len - 1; 546 #ifdef INVARIANTS 547 for (i = 0; i < len; i++) 548 if (!ffs_checkblk(ip, 549 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 550 panic("ffs_reallocblks: unallocated block 1"); 551 for (i = 1; i < len; i++) 552 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 553 panic("ffs_reallocblks: non-logical cluster"); 554 blkno = buflist->bs_children[0]->b_blkno; 555 ssize = fsbtodb(fs, fs->fs_frag); 556 for (i = 1; i < len - 1; i++) 557 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 558 panic("ffs_reallocblks: non-physical cluster %d", i); 559 #endif 560 /* 561 * If the cluster crosses the boundary for the first indirect 562 * block, leave space for the indirect block. Indirect blocks 563 * are initially laid out in a position after the last direct 564 * block. Block reallocation would usually destroy locality by 565 * moving the indirect block out of the way to make room for 566 * data blocks if we didn't compensate here. We should also do 567 * this for other indirect block boundaries, but it is only 568 * important for the first one. 569 */ 570 if (start_lbn < NDADDR && end_lbn >= NDADDR) 571 return (ENOSPC); 572 /* 573 * If the latest allocation is in a new cylinder group, assume that 574 * the filesystem has decided to move and do not force it back to 575 * the previous cylinder group. 576 */ 577 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 578 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 579 return (ENOSPC); 580 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 581 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 582 return (ENOSPC); 583 /* 584 * Get the starting offset and block map for the first block. 585 */ 586 if (start_lvl == 0) { 587 sbap = &ip->i_din1->di_db[0]; 588 soff = start_lbn; 589 } else { 590 idp = &start_ap[start_lvl - 1]; 591 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 592 brelse(sbp); 593 return (ENOSPC); 594 } 595 sbap = (ufs1_daddr_t *)sbp->b_data; 596 soff = idp->in_off; 597 } 598 /* 599 * If the block range spans two block maps, get the second map. 600 */ 601 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 602 ssize = len; 603 } else { 604 #ifdef INVARIANTS 605 if (start_lvl > 0 && 606 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 607 panic("ffs_reallocblk: start == end"); 608 #endif 609 ssize = len - (idp->in_off + 1); 610 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 611 goto fail; 612 ebap = (ufs1_daddr_t *)ebp->b_data; 613 } 614 /* 615 * Find the preferred location for the cluster. If we have not 616 * previously failed at this endeavor, then follow our standard 617 * preference calculation. If we have failed at it, then pick up 618 * where we last ended our search. 619 */ 620 UFS_LOCK(ump); 621 if (ip->i_nextclustercg == -1) 622 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 623 else 624 pref = cgdata(fs, ip->i_nextclustercg); 625 /* 626 * Search the block map looking for an allocation of the desired size. 627 * To avoid wasting too much time, we limit the number of cylinder 628 * groups that we will search. 629 */ 630 cg = dtog(fs, pref); 631 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 632 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 633 break; 634 cg += 1; 635 if (cg >= fs->fs_ncg) 636 cg = 0; 637 } 638 /* 639 * If we have failed in our search, record where we gave up for 640 * next time. Otherwise, fall back to our usual search citerion. 641 */ 642 if (newblk == 0) { 643 ip->i_nextclustercg = cg; 644 UFS_UNLOCK(ump); 645 goto fail; 646 } 647 ip->i_nextclustercg = -1; 648 /* 649 * We have found a new contiguous block. 650 * 651 * First we have to replace the old block pointers with the new 652 * block pointers in the inode and indirect blocks associated 653 * with the file. 654 */ 655 #ifdef DEBUG 656 if (prtrealloc) 657 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 658 (uintmax_t)ip->i_number, 659 (intmax_t)start_lbn, (intmax_t)end_lbn); 660 #endif 661 blkno = newblk; 662 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 663 if (i == ssize) { 664 bap = ebap; 665 soff = -i; 666 } 667 #ifdef INVARIANTS 668 if (!ffs_checkblk(ip, 669 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 670 panic("ffs_reallocblks: unallocated block 2"); 671 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 672 panic("ffs_reallocblks: alloc mismatch"); 673 #endif 674 #ifdef DEBUG 675 if (prtrealloc) 676 printf(" %d,", *bap); 677 #endif 678 if (DOINGSOFTDEP(vp)) { 679 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 680 softdep_setup_allocdirect(ip, start_lbn + i, 681 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 682 buflist->bs_children[i]); 683 else 684 softdep_setup_allocindir_page(ip, start_lbn + i, 685 i < ssize ? sbp : ebp, soff + i, blkno, 686 *bap, buflist->bs_children[i]); 687 } 688 *bap++ = blkno; 689 } 690 /* 691 * Next we must write out the modified inode and indirect blocks. 692 * For strict correctness, the writes should be synchronous since 693 * the old block values may have been written to disk. In practise 694 * they are almost never written, but if we are concerned about 695 * strict correctness, the `doasyncfree' flag should be set to zero. 696 * 697 * The test on `doasyncfree' should be changed to test a flag 698 * that shows whether the associated buffers and inodes have 699 * been written. The flag should be set when the cluster is 700 * started and cleared whenever the buffer or inode is flushed. 701 * We can then check below to see if it is set, and do the 702 * synchronous write only when it has been cleared. 703 */ 704 if (sbap != &ip->i_din1->di_db[0]) { 705 if (doasyncfree) 706 bdwrite(sbp); 707 else 708 bwrite(sbp); 709 } else { 710 ip->i_flag |= IN_CHANGE | IN_UPDATE; 711 if (!doasyncfree) 712 ffs_update(vp, 1); 713 } 714 if (ssize < len) { 715 if (doasyncfree) 716 bdwrite(ebp); 717 else 718 bwrite(ebp); 719 } 720 /* 721 * Last, free the old blocks and assign the new blocks to the buffers. 722 */ 723 #ifdef DEBUG 724 if (prtrealloc) 725 printf("\n\tnew:"); 726 #endif 727 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 728 if (!DOINGSOFTDEP(vp)) 729 ffs_blkfree(ump, fs, ip->i_devvp, 730 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 731 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 732 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 733 #ifdef INVARIANTS 734 if (!ffs_checkblk(ip, 735 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 736 panic("ffs_reallocblks: unallocated block 3"); 737 #endif 738 #ifdef DEBUG 739 if (prtrealloc) 740 printf(" %d,", blkno); 741 #endif 742 } 743 #ifdef DEBUG 744 if (prtrealloc) { 745 prtrealloc--; 746 printf("\n"); 747 } 748 #endif 749 return (0); 750 751 fail: 752 if (ssize < len) 753 brelse(ebp); 754 if (sbap != &ip->i_din1->di_db[0]) 755 brelse(sbp); 756 return (ENOSPC); 757 } 758 759 static int 760 ffs_reallocblks_ufs2(ap) 761 struct vop_reallocblks_args /* { 762 struct vnode *a_vp; 763 struct cluster_save *a_buflist; 764 } */ *ap; 765 { 766 struct fs *fs; 767 struct inode *ip; 768 struct vnode *vp; 769 struct buf *sbp, *ebp; 770 ufs2_daddr_t *bap, *sbap, *ebap = 0; 771 struct cluster_save *buflist; 772 struct ufsmount *ump; 773 ufs_lbn_t start_lbn, end_lbn; 774 ufs2_daddr_t soff, newblk, blkno, pref; 775 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 776 int i, cg, len, start_lvl, end_lvl, ssize; 777 778 vp = ap->a_vp; 779 ip = VTOI(vp); 780 fs = ip->i_fs; 781 ump = ip->i_ump; 782 /* 783 * If we are not tracking block clusters or if we have less than 4% 784 * free blocks left, then do not attempt to cluster. Running with 785 * less than 5% free block reserve is not recommended and those that 786 * choose to do so do not expect to have good file layout. 787 */ 788 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 789 return (ENOSPC); 790 buflist = ap->a_buflist; 791 len = buflist->bs_nchildren; 792 start_lbn = buflist->bs_children[0]->b_lblkno; 793 end_lbn = start_lbn + len - 1; 794 #ifdef INVARIANTS 795 for (i = 0; i < len; i++) 796 if (!ffs_checkblk(ip, 797 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 798 panic("ffs_reallocblks: unallocated block 1"); 799 for (i = 1; i < len; i++) 800 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 801 panic("ffs_reallocblks: non-logical cluster"); 802 blkno = buflist->bs_children[0]->b_blkno; 803 ssize = fsbtodb(fs, fs->fs_frag); 804 for (i = 1; i < len - 1; i++) 805 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 806 panic("ffs_reallocblks: non-physical cluster %d", i); 807 #endif 808 /* 809 * If the cluster crosses the boundary for the first indirect 810 * block, do not move anything in it. Indirect blocks are 811 * usually initially laid out in a position between the data 812 * blocks. Block reallocation would usually destroy locality by 813 * moving the indirect block out of the way to make room for 814 * data blocks if we didn't compensate here. We should also do 815 * this for other indirect block boundaries, but it is only 816 * important for the first one. 817 */ 818 if (start_lbn < NDADDR && end_lbn >= NDADDR) 819 return (ENOSPC); 820 /* 821 * If the latest allocation is in a new cylinder group, assume that 822 * the filesystem has decided to move and do not force it back to 823 * the previous cylinder group. 824 */ 825 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 826 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 827 return (ENOSPC); 828 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 829 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 830 return (ENOSPC); 831 /* 832 * Get the starting offset and block map for the first block. 833 */ 834 if (start_lvl == 0) { 835 sbap = &ip->i_din2->di_db[0]; 836 soff = start_lbn; 837 } else { 838 idp = &start_ap[start_lvl - 1]; 839 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 840 brelse(sbp); 841 return (ENOSPC); 842 } 843 sbap = (ufs2_daddr_t *)sbp->b_data; 844 soff = idp->in_off; 845 } 846 /* 847 * If the block range spans two block maps, get the second map. 848 */ 849 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 850 ssize = len; 851 } else { 852 #ifdef INVARIANTS 853 if (start_lvl > 0 && 854 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 855 panic("ffs_reallocblk: start == end"); 856 #endif 857 ssize = len - (idp->in_off + 1); 858 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 859 goto fail; 860 ebap = (ufs2_daddr_t *)ebp->b_data; 861 } 862 /* 863 * Find the preferred location for the cluster. If we have not 864 * previously failed at this endeavor, then follow our standard 865 * preference calculation. If we have failed at it, then pick up 866 * where we last ended our search. 867 */ 868 UFS_LOCK(ump); 869 if (ip->i_nextclustercg == -1) 870 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 871 else 872 pref = cgdata(fs, ip->i_nextclustercg); 873 /* 874 * Search the block map looking for an allocation of the desired size. 875 * To avoid wasting too much time, we limit the number of cylinder 876 * groups that we will search. 877 */ 878 cg = dtog(fs, pref); 879 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 880 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 881 break; 882 cg += 1; 883 if (cg >= fs->fs_ncg) 884 cg = 0; 885 } 886 /* 887 * If we have failed in our search, record where we gave up for 888 * next time. Otherwise, fall back to our usual search citerion. 889 */ 890 if (newblk == 0) { 891 ip->i_nextclustercg = cg; 892 UFS_UNLOCK(ump); 893 goto fail; 894 } 895 ip->i_nextclustercg = -1; 896 /* 897 * We have found a new contiguous block. 898 * 899 * First we have to replace the old block pointers with the new 900 * block pointers in the inode and indirect blocks associated 901 * with the file. 902 */ 903 #ifdef DEBUG 904 if (prtrealloc) 905 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 906 (intmax_t)start_lbn, (intmax_t)end_lbn); 907 #endif 908 blkno = newblk; 909 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 910 if (i == ssize) { 911 bap = ebap; 912 soff = -i; 913 } 914 #ifdef INVARIANTS 915 if (!ffs_checkblk(ip, 916 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 917 panic("ffs_reallocblks: unallocated block 2"); 918 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 919 panic("ffs_reallocblks: alloc mismatch"); 920 #endif 921 #ifdef DEBUG 922 if (prtrealloc) 923 printf(" %jd,", (intmax_t)*bap); 924 #endif 925 if (DOINGSOFTDEP(vp)) { 926 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 927 softdep_setup_allocdirect(ip, start_lbn + i, 928 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 929 buflist->bs_children[i]); 930 else 931 softdep_setup_allocindir_page(ip, start_lbn + i, 932 i < ssize ? sbp : ebp, soff + i, blkno, 933 *bap, buflist->bs_children[i]); 934 } 935 *bap++ = blkno; 936 } 937 /* 938 * Next we must write out the modified inode and indirect blocks. 939 * For strict correctness, the writes should be synchronous since 940 * the old block values may have been written to disk. In practise 941 * they are almost never written, but if we are concerned about 942 * strict correctness, the `doasyncfree' flag should be set to zero. 943 * 944 * The test on `doasyncfree' should be changed to test a flag 945 * that shows whether the associated buffers and inodes have 946 * been written. The flag should be set when the cluster is 947 * started and cleared whenever the buffer or inode is flushed. 948 * We can then check below to see if it is set, and do the 949 * synchronous write only when it has been cleared. 950 */ 951 if (sbap != &ip->i_din2->di_db[0]) { 952 if (doasyncfree) 953 bdwrite(sbp); 954 else 955 bwrite(sbp); 956 } else { 957 ip->i_flag |= IN_CHANGE | IN_UPDATE; 958 if (!doasyncfree) 959 ffs_update(vp, 1); 960 } 961 if (ssize < len) { 962 if (doasyncfree) 963 bdwrite(ebp); 964 else 965 bwrite(ebp); 966 } 967 /* 968 * Last, free the old blocks and assign the new blocks to the buffers. 969 */ 970 #ifdef DEBUG 971 if (prtrealloc) 972 printf("\n\tnew:"); 973 #endif 974 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 975 if (!DOINGSOFTDEP(vp)) 976 ffs_blkfree(ump, fs, ip->i_devvp, 977 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 978 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 979 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 980 #ifdef INVARIANTS 981 if (!ffs_checkblk(ip, 982 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 983 panic("ffs_reallocblks: unallocated block 3"); 984 #endif 985 #ifdef DEBUG 986 if (prtrealloc) 987 printf(" %jd,", (intmax_t)blkno); 988 #endif 989 } 990 #ifdef DEBUG 991 if (prtrealloc) { 992 prtrealloc--; 993 printf("\n"); 994 } 995 #endif 996 return (0); 997 998 fail: 999 if (ssize < len) 1000 brelse(ebp); 1001 if (sbap != &ip->i_din2->di_db[0]) 1002 brelse(sbp); 1003 return (ENOSPC); 1004 } 1005 1006 /* 1007 * Allocate an inode in the filesystem. 1008 * 1009 * If allocating a directory, use ffs_dirpref to select the inode. 1010 * If allocating in a directory, the following hierarchy is followed: 1011 * 1) allocate the preferred inode. 1012 * 2) allocate an inode in the same cylinder group. 1013 * 3) quadradically rehash into other cylinder groups, until an 1014 * available inode is located. 1015 * If no inode preference is given the following hierarchy is used 1016 * to allocate an inode: 1017 * 1) allocate an inode in cylinder group 0. 1018 * 2) quadradically rehash into other cylinder groups, until an 1019 * available inode is located. 1020 */ 1021 int 1022 ffs_valloc(pvp, mode, cred, vpp) 1023 struct vnode *pvp; 1024 int mode; 1025 struct ucred *cred; 1026 struct vnode **vpp; 1027 { 1028 struct inode *pip; 1029 struct fs *fs; 1030 struct inode *ip; 1031 struct timespec ts; 1032 struct ufsmount *ump; 1033 ino_t ino, ipref; 1034 u_int cg; 1035 int error, error1, reclaimed; 1036 static struct timeval lastfail; 1037 static int curfail; 1038 1039 *vpp = NULL; 1040 pip = VTOI(pvp); 1041 fs = pip->i_fs; 1042 ump = pip->i_ump; 1043 1044 UFS_LOCK(ump); 1045 reclaimed = 0; 1046 retry: 1047 if (fs->fs_cstotal.cs_nifree == 0) 1048 goto noinodes; 1049 1050 if ((mode & IFMT) == IFDIR) 1051 ipref = ffs_dirpref(pip); 1052 else 1053 ipref = pip->i_number; 1054 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1055 ipref = 0; 1056 cg = ino_to_cg(fs, ipref); 1057 /* 1058 * Track number of dirs created one after another 1059 * in a same cg without intervening by files. 1060 */ 1061 if ((mode & IFMT) == IFDIR) { 1062 if (fs->fs_contigdirs[cg] < 255) 1063 fs->fs_contigdirs[cg]++; 1064 } else { 1065 if (fs->fs_contigdirs[cg] > 0) 1066 fs->fs_contigdirs[cg]--; 1067 } 1068 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1069 (allocfcn_t *)ffs_nodealloccg); 1070 if (ino == 0) 1071 goto noinodes; 1072 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1073 if (error) { 1074 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1075 FFSV_FORCEINSMQ); 1076 ffs_vfree(pvp, ino, mode); 1077 if (error1 == 0) { 1078 ip = VTOI(*vpp); 1079 if (ip->i_mode) 1080 goto dup_alloc; 1081 ip->i_flag |= IN_MODIFIED; 1082 vput(*vpp); 1083 } 1084 return (error); 1085 } 1086 ip = VTOI(*vpp); 1087 if (ip->i_mode) { 1088 dup_alloc: 1089 printf("mode = 0%o, inum = %ju, fs = %s\n", 1090 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1091 panic("ffs_valloc: dup alloc"); 1092 } 1093 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1094 printf("free inode %s/%lu had %ld blocks\n", 1095 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1096 DIP_SET(ip, i_blocks, 0); 1097 } 1098 ip->i_flags = 0; 1099 DIP_SET(ip, i_flags, 0); 1100 /* 1101 * Set up a new generation number for this inode. 1102 */ 1103 if (ip->i_gen == 0 || ++ip->i_gen == 0) 1104 ip->i_gen = arc4random() / 2 + 1; 1105 DIP_SET(ip, i_gen, ip->i_gen); 1106 if (fs->fs_magic == FS_UFS2_MAGIC) { 1107 vfs_timestamp(&ts); 1108 ip->i_din2->di_birthtime = ts.tv_sec; 1109 ip->i_din2->di_birthnsec = ts.tv_nsec; 1110 } 1111 ufs_prepare_reclaim(*vpp); 1112 ip->i_flag = 0; 1113 (*vpp)->v_vflag = 0; 1114 (*vpp)->v_type = VNON; 1115 if (fs->fs_magic == FS_UFS2_MAGIC) 1116 (*vpp)->v_op = &ffs_vnodeops2; 1117 else 1118 (*vpp)->v_op = &ffs_vnodeops1; 1119 return (0); 1120 noinodes: 1121 if (reclaimed == 0) { 1122 reclaimed = 1; 1123 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1124 goto retry; 1125 } 1126 UFS_UNLOCK(ump); 1127 if (ppsratecheck(&lastfail, &curfail, 1)) { 1128 ffs_fserr(fs, pip->i_number, "out of inodes"); 1129 uprintf("\n%s: create/symlink failed, no inodes free\n", 1130 fs->fs_fsmnt); 1131 } 1132 return (ENOSPC); 1133 } 1134 1135 /* 1136 * Find a cylinder group to place a directory. 1137 * 1138 * The policy implemented by this algorithm is to allocate a 1139 * directory inode in the same cylinder group as its parent 1140 * directory, but also to reserve space for its files inodes 1141 * and data. Restrict the number of directories which may be 1142 * allocated one after another in the same cylinder group 1143 * without intervening allocation of files. 1144 * 1145 * If we allocate a first level directory then force allocation 1146 * in another cylinder group. 1147 */ 1148 static ino_t 1149 ffs_dirpref(pip) 1150 struct inode *pip; 1151 { 1152 struct fs *fs; 1153 int cg, prefcg, dirsize, cgsize; 1154 u_int avgifree, avgbfree, avgndir, curdirsize; 1155 u_int minifree, minbfree, maxndir; 1156 u_int mincg, minndir; 1157 u_int maxcontigdirs; 1158 1159 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1160 fs = pip->i_fs; 1161 1162 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1163 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1164 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1165 1166 /* 1167 * Force allocation in another cg if creating a first level dir. 1168 */ 1169 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1170 if (ITOV(pip)->v_vflag & VV_ROOT) { 1171 prefcg = arc4random() % fs->fs_ncg; 1172 mincg = prefcg; 1173 minndir = fs->fs_ipg; 1174 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1175 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1176 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1177 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1178 mincg = cg; 1179 minndir = fs->fs_cs(fs, cg).cs_ndir; 1180 } 1181 for (cg = 0; cg < prefcg; cg++) 1182 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1183 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1184 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1185 mincg = cg; 1186 minndir = fs->fs_cs(fs, cg).cs_ndir; 1187 } 1188 return ((ino_t)(fs->fs_ipg * mincg)); 1189 } 1190 1191 /* 1192 * Count various limits which used for 1193 * optimal allocation of a directory inode. 1194 */ 1195 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1196 minifree = avgifree - avgifree / 4; 1197 if (minifree < 1) 1198 minifree = 1; 1199 minbfree = avgbfree - avgbfree / 4; 1200 if (minbfree < 1) 1201 minbfree = 1; 1202 cgsize = fs->fs_fsize * fs->fs_fpg; 1203 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1204 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1205 if (dirsize < curdirsize) 1206 dirsize = curdirsize; 1207 if (dirsize <= 0) 1208 maxcontigdirs = 0; /* dirsize overflowed */ 1209 else 1210 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1211 if (fs->fs_avgfpdir > 0) 1212 maxcontigdirs = min(maxcontigdirs, 1213 fs->fs_ipg / fs->fs_avgfpdir); 1214 if (maxcontigdirs == 0) 1215 maxcontigdirs = 1; 1216 1217 /* 1218 * Limit number of dirs in one cg and reserve space for 1219 * regular files, but only if we have no deficit in 1220 * inodes or space. 1221 * 1222 * We are trying to find a suitable cylinder group nearby 1223 * our preferred cylinder group to place a new directory. 1224 * We scan from our preferred cylinder group forward looking 1225 * for a cylinder group that meets our criterion. If we get 1226 * to the final cylinder group and do not find anything, 1227 * we start scanning forwards from the beginning of the 1228 * filesystem. While it might seem sensible to start scanning 1229 * backwards or even to alternate looking forward and backward, 1230 * this approach fails badly when the filesystem is nearly full. 1231 * Specifically, we first search all the areas that have no space 1232 * and finally try the one preceeding that. We repeat this on 1233 * every request and in the case of the final block end up 1234 * searching the entire filesystem. By jumping to the front 1235 * of the filesystem, our future forward searches always look 1236 * in new cylinder groups so finds every possible block after 1237 * one pass over the filesystem. 1238 */ 1239 prefcg = ino_to_cg(fs, pip->i_number); 1240 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1241 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1242 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1243 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1244 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1245 return ((ino_t)(fs->fs_ipg * cg)); 1246 } 1247 for (cg = 0; cg < prefcg; cg++) 1248 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1249 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1250 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1251 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1252 return ((ino_t)(fs->fs_ipg * cg)); 1253 } 1254 /* 1255 * This is a backstop when we have deficit in space. 1256 */ 1257 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1258 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1259 return ((ino_t)(fs->fs_ipg * cg)); 1260 for (cg = 0; cg < prefcg; cg++) 1261 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1262 break; 1263 return ((ino_t)(fs->fs_ipg * cg)); 1264 } 1265 1266 /* 1267 * Select the desired position for the next block in a file. The file is 1268 * logically divided into sections. The first section is composed of the 1269 * direct blocks and the next fs_maxbpg blocks. Each additional section 1270 * contains fs_maxbpg blocks. 1271 * 1272 * If no blocks have been allocated in the first section, the policy is to 1273 * request a block in the same cylinder group as the inode that describes 1274 * the file. The first indirect is allocated immediately following the last 1275 * direct block and the data blocks for the first indirect immediately 1276 * follow it. 1277 * 1278 * If no blocks have been allocated in any other section, the indirect 1279 * block(s) are allocated in the same cylinder group as its inode in an 1280 * area reserved immediately following the inode blocks. The policy for 1281 * the data blocks is to place them in a cylinder group with a greater than 1282 * average number of free blocks. An appropriate cylinder group is found 1283 * by using a rotor that sweeps the cylinder groups. When a new group of 1284 * blocks is needed, the sweep begins in the cylinder group following the 1285 * cylinder group from which the previous allocation was made. The sweep 1286 * continues until a cylinder group with greater than the average number 1287 * of free blocks is found. If the allocation is for the first block in an 1288 * indirect block or the previous block is a hole, then the information on 1289 * the previous allocation is unavailable; here a best guess is made based 1290 * on the logical block number being allocated. 1291 * 1292 * If a section is already partially allocated, the policy is to 1293 * allocate blocks contiguously within the section if possible. 1294 */ 1295 ufs2_daddr_t 1296 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1297 struct inode *ip; 1298 ufs_lbn_t lbn; 1299 int indx; 1300 ufs1_daddr_t *bap; 1301 { 1302 struct fs *fs; 1303 u_int cg, inocg; 1304 u_int avgbfree, startcg; 1305 ufs2_daddr_t pref; 1306 1307 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1308 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1309 fs = ip->i_fs; 1310 /* 1311 * Allocation of indirect blocks is indicated by passing negative 1312 * values in indx: -1 for single indirect, -2 for double indirect, 1313 * -3 for triple indirect. As noted below, we attempt to allocate 1314 * the first indirect inline with the file data. For all later 1315 * indirect blocks, the data is often allocated in other cylinder 1316 * groups. However to speed random file access and to speed up 1317 * fsck, the filesystem reserves the first fs_metaspace blocks 1318 * (typically half of fs_minfree) of the data area of each cylinder 1319 * group to hold these later indirect blocks. 1320 */ 1321 inocg = ino_to_cg(fs, ip->i_number); 1322 if (indx < 0) { 1323 /* 1324 * Our preference for indirect blocks is the zone at the 1325 * beginning of the inode's cylinder group data area that 1326 * we try to reserve for indirect blocks. 1327 */ 1328 pref = cgmeta(fs, inocg); 1329 /* 1330 * If we are allocating the first indirect block, try to 1331 * place it immediately following the last direct block. 1332 */ 1333 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1334 ip->i_din1->di_db[NDADDR - 1] != 0) 1335 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag; 1336 return (pref); 1337 } 1338 /* 1339 * If we are allocating the first data block in the first indirect 1340 * block and the indirect has been allocated in the data block area, 1341 * try to place it immediately following the indirect block. 1342 */ 1343 if (lbn == NDADDR) { 1344 pref = ip->i_din1->di_ib[0]; 1345 if (pref != 0 && pref >= cgdata(fs, inocg) && 1346 pref < cgbase(fs, inocg + 1)) 1347 return (pref + fs->fs_frag); 1348 } 1349 /* 1350 * If we are at the beginning of a file, or we have already allocated 1351 * the maximum number of blocks per cylinder group, or we do not 1352 * have a block allocated immediately preceeding us, then we need 1353 * to decide where to start allocating new blocks. 1354 */ 1355 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1356 /* 1357 * If we are allocating a directory data block, we want 1358 * to place it in the metadata area. 1359 */ 1360 if ((ip->i_mode & IFMT) == IFDIR) 1361 return (cgmeta(fs, inocg)); 1362 /* 1363 * Until we fill all the direct and all the first indirect's 1364 * blocks, we try to allocate in the data area of the inode's 1365 * cylinder group. 1366 */ 1367 if (lbn < NDADDR + NINDIR(fs)) 1368 return (cgdata(fs, inocg)); 1369 /* 1370 * Find a cylinder with greater than average number of 1371 * unused data blocks. 1372 */ 1373 if (indx == 0 || bap[indx - 1] == 0) 1374 startcg = inocg + lbn / fs->fs_maxbpg; 1375 else 1376 startcg = dtog(fs, bap[indx - 1]) + 1; 1377 startcg %= fs->fs_ncg; 1378 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1379 for (cg = startcg; cg < fs->fs_ncg; cg++) 1380 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1381 fs->fs_cgrotor = cg; 1382 return (cgdata(fs, cg)); 1383 } 1384 for (cg = 0; cg <= startcg; cg++) 1385 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1386 fs->fs_cgrotor = cg; 1387 return (cgdata(fs, cg)); 1388 } 1389 return (0); 1390 } 1391 /* 1392 * Otherwise, we just always try to lay things out contiguously. 1393 */ 1394 return (bap[indx - 1] + fs->fs_frag); 1395 } 1396 1397 /* 1398 * Same as above, but for UFS2 1399 */ 1400 ufs2_daddr_t 1401 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1402 struct inode *ip; 1403 ufs_lbn_t lbn; 1404 int indx; 1405 ufs2_daddr_t *bap; 1406 { 1407 struct fs *fs; 1408 u_int cg, inocg; 1409 u_int avgbfree, startcg; 1410 ufs2_daddr_t pref; 1411 1412 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1413 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1414 fs = ip->i_fs; 1415 /* 1416 * Allocation of indirect blocks is indicated by passing negative 1417 * values in indx: -1 for single indirect, -2 for double indirect, 1418 * -3 for triple indirect. As noted below, we attempt to allocate 1419 * the first indirect inline with the file data. For all later 1420 * indirect blocks, the data is often allocated in other cylinder 1421 * groups. However to speed random file access and to speed up 1422 * fsck, the filesystem reserves the first fs_metaspace blocks 1423 * (typically half of fs_minfree) of the data area of each cylinder 1424 * group to hold these later indirect blocks. 1425 */ 1426 inocg = ino_to_cg(fs, ip->i_number); 1427 if (indx < 0) { 1428 /* 1429 * Our preference for indirect blocks is the zone at the 1430 * beginning of the inode's cylinder group data area that 1431 * we try to reserve for indirect blocks. 1432 */ 1433 pref = cgmeta(fs, inocg); 1434 /* 1435 * If we are allocating the first indirect block, try to 1436 * place it immediately following the last direct block. 1437 */ 1438 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1439 ip->i_din2->di_db[NDADDR - 1] != 0) 1440 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag; 1441 return (pref); 1442 } 1443 /* 1444 * If we are allocating the first data block in the first indirect 1445 * block and the indirect has been allocated in the data block area, 1446 * try to place it immediately following the indirect block. 1447 */ 1448 if (lbn == NDADDR) { 1449 pref = ip->i_din2->di_ib[0]; 1450 if (pref != 0 && pref >= cgdata(fs, inocg) && 1451 pref < cgbase(fs, inocg + 1)) 1452 return (pref + fs->fs_frag); 1453 } 1454 /* 1455 * If we are at the beginning of a file, or we have already allocated 1456 * the maximum number of blocks per cylinder group, or we do not 1457 * have a block allocated immediately preceeding us, then we need 1458 * to decide where to start allocating new blocks. 1459 */ 1460 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1461 /* 1462 * If we are allocating a directory data block, we want 1463 * to place it in the metadata area. 1464 */ 1465 if ((ip->i_mode & IFMT) == IFDIR) 1466 return (cgmeta(fs, inocg)); 1467 /* 1468 * Until we fill all the direct and all the first indirect's 1469 * blocks, we try to allocate in the data area of the inode's 1470 * cylinder group. 1471 */ 1472 if (lbn < NDADDR + NINDIR(fs)) 1473 return (cgdata(fs, inocg)); 1474 /* 1475 * Find a cylinder with greater than average number of 1476 * unused data blocks. 1477 */ 1478 if (indx == 0 || bap[indx - 1] == 0) 1479 startcg = inocg + lbn / fs->fs_maxbpg; 1480 else 1481 startcg = dtog(fs, bap[indx - 1]) + 1; 1482 startcg %= fs->fs_ncg; 1483 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1484 for (cg = startcg; cg < fs->fs_ncg; cg++) 1485 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1486 fs->fs_cgrotor = cg; 1487 return (cgdata(fs, cg)); 1488 } 1489 for (cg = 0; cg <= startcg; cg++) 1490 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1491 fs->fs_cgrotor = cg; 1492 return (cgdata(fs, cg)); 1493 } 1494 return (0); 1495 } 1496 /* 1497 * Otherwise, we just always try to lay things out contiguously. 1498 */ 1499 return (bap[indx - 1] + fs->fs_frag); 1500 } 1501 1502 /* 1503 * Implement the cylinder overflow algorithm. 1504 * 1505 * The policy implemented by this algorithm is: 1506 * 1) allocate the block in its requested cylinder group. 1507 * 2) quadradically rehash on the cylinder group number. 1508 * 3) brute force search for a free block. 1509 * 1510 * Must be called with the UFS lock held. Will release the lock on success 1511 * and return with it held on failure. 1512 */ 1513 /*VARARGS5*/ 1514 static ufs2_daddr_t 1515 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1516 struct inode *ip; 1517 u_int cg; 1518 ufs2_daddr_t pref; 1519 int size; /* Search size for data blocks, mode for inodes */ 1520 int rsize; /* Real allocated size. */ 1521 allocfcn_t *allocator; 1522 { 1523 struct fs *fs; 1524 ufs2_daddr_t result; 1525 u_int i, icg = cg; 1526 1527 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1528 #ifdef INVARIANTS 1529 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1530 panic("ffs_hashalloc: allocation on suspended filesystem"); 1531 #endif 1532 fs = ip->i_fs; 1533 /* 1534 * 1: preferred cylinder group 1535 */ 1536 result = (*allocator)(ip, cg, pref, size, rsize); 1537 if (result) 1538 return (result); 1539 /* 1540 * 2: quadratic rehash 1541 */ 1542 for (i = 1; i < fs->fs_ncg; i *= 2) { 1543 cg += i; 1544 if (cg >= fs->fs_ncg) 1545 cg -= fs->fs_ncg; 1546 result = (*allocator)(ip, cg, 0, size, rsize); 1547 if (result) 1548 return (result); 1549 } 1550 /* 1551 * 3: brute force search 1552 * Note that we start at i == 2, since 0 was checked initially, 1553 * and 1 is always checked in the quadratic rehash. 1554 */ 1555 cg = (icg + 2) % fs->fs_ncg; 1556 for (i = 2; i < fs->fs_ncg; i++) { 1557 result = (*allocator)(ip, cg, 0, size, rsize); 1558 if (result) 1559 return (result); 1560 cg++; 1561 if (cg == fs->fs_ncg) 1562 cg = 0; 1563 } 1564 return (0); 1565 } 1566 1567 /* 1568 * Determine whether a fragment can be extended. 1569 * 1570 * Check to see if the necessary fragments are available, and 1571 * if they are, allocate them. 1572 */ 1573 static ufs2_daddr_t 1574 ffs_fragextend(ip, cg, bprev, osize, nsize) 1575 struct inode *ip; 1576 u_int cg; 1577 ufs2_daddr_t bprev; 1578 int osize, nsize; 1579 { 1580 struct fs *fs; 1581 struct cg *cgp; 1582 struct buf *bp; 1583 struct ufsmount *ump; 1584 int nffree; 1585 long bno; 1586 int frags, bbase; 1587 int i, error; 1588 u_int8_t *blksfree; 1589 1590 ump = ip->i_ump; 1591 fs = ip->i_fs; 1592 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1593 return (0); 1594 frags = numfrags(fs, nsize); 1595 bbase = fragnum(fs, bprev); 1596 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1597 /* cannot extend across a block boundary */ 1598 return (0); 1599 } 1600 UFS_UNLOCK(ump); 1601 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1602 (int)fs->fs_cgsize, NOCRED, &bp); 1603 if (error) 1604 goto fail; 1605 cgp = (struct cg *)bp->b_data; 1606 if (!cg_chkmagic(cgp)) 1607 goto fail; 1608 bp->b_xflags |= BX_BKGRDWRITE; 1609 cgp->cg_old_time = cgp->cg_time = time_second; 1610 bno = dtogd(fs, bprev); 1611 blksfree = cg_blksfree(cgp); 1612 for (i = numfrags(fs, osize); i < frags; i++) 1613 if (isclr(blksfree, bno + i)) 1614 goto fail; 1615 /* 1616 * the current fragment can be extended 1617 * deduct the count on fragment being extended into 1618 * increase the count on the remaining fragment (if any) 1619 * allocate the extended piece 1620 */ 1621 for (i = frags; i < fs->fs_frag - bbase; i++) 1622 if (isclr(blksfree, bno + i)) 1623 break; 1624 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1625 if (i != frags) 1626 cgp->cg_frsum[i - frags]++; 1627 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1628 clrbit(blksfree, bno + i); 1629 cgp->cg_cs.cs_nffree--; 1630 nffree++; 1631 } 1632 UFS_LOCK(ump); 1633 fs->fs_cstotal.cs_nffree -= nffree; 1634 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1635 fs->fs_fmod = 1; 1636 ACTIVECLEAR(fs, cg); 1637 UFS_UNLOCK(ump); 1638 if (DOINGSOFTDEP(ITOV(ip))) 1639 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1640 frags, numfrags(fs, osize)); 1641 bdwrite(bp); 1642 return (bprev); 1643 1644 fail: 1645 brelse(bp); 1646 UFS_LOCK(ump); 1647 return (0); 1648 1649 } 1650 1651 /* 1652 * Determine whether a block can be allocated. 1653 * 1654 * Check to see if a block of the appropriate size is available, 1655 * and if it is, allocate it. 1656 */ 1657 static ufs2_daddr_t 1658 ffs_alloccg(ip, cg, bpref, size, rsize) 1659 struct inode *ip; 1660 u_int cg; 1661 ufs2_daddr_t bpref; 1662 int size; 1663 int rsize; 1664 { 1665 struct fs *fs; 1666 struct cg *cgp; 1667 struct buf *bp; 1668 struct ufsmount *ump; 1669 ufs1_daddr_t bno; 1670 ufs2_daddr_t blkno; 1671 int i, allocsiz, error, frags; 1672 u_int8_t *blksfree; 1673 1674 ump = ip->i_ump; 1675 fs = ip->i_fs; 1676 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1677 return (0); 1678 UFS_UNLOCK(ump); 1679 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1680 (int)fs->fs_cgsize, NOCRED, &bp); 1681 if (error) 1682 goto fail; 1683 cgp = (struct cg *)bp->b_data; 1684 if (!cg_chkmagic(cgp) || 1685 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1686 goto fail; 1687 bp->b_xflags |= BX_BKGRDWRITE; 1688 cgp->cg_old_time = cgp->cg_time = time_second; 1689 if (size == fs->fs_bsize) { 1690 UFS_LOCK(ump); 1691 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1692 ACTIVECLEAR(fs, cg); 1693 UFS_UNLOCK(ump); 1694 bdwrite(bp); 1695 return (blkno); 1696 } 1697 /* 1698 * check to see if any fragments are already available 1699 * allocsiz is the size which will be allocated, hacking 1700 * it down to a smaller size if necessary 1701 */ 1702 blksfree = cg_blksfree(cgp); 1703 frags = numfrags(fs, size); 1704 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1705 if (cgp->cg_frsum[allocsiz] != 0) 1706 break; 1707 if (allocsiz == fs->fs_frag) { 1708 /* 1709 * no fragments were available, so a block will be 1710 * allocated, and hacked up 1711 */ 1712 if (cgp->cg_cs.cs_nbfree == 0) 1713 goto fail; 1714 UFS_LOCK(ump); 1715 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1716 ACTIVECLEAR(fs, cg); 1717 UFS_UNLOCK(ump); 1718 bdwrite(bp); 1719 return (blkno); 1720 } 1721 KASSERT(size == rsize, 1722 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1723 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1724 if (bno < 0) 1725 goto fail; 1726 for (i = 0; i < frags; i++) 1727 clrbit(blksfree, bno + i); 1728 cgp->cg_cs.cs_nffree -= frags; 1729 cgp->cg_frsum[allocsiz]--; 1730 if (frags != allocsiz) 1731 cgp->cg_frsum[allocsiz - frags]++; 1732 UFS_LOCK(ump); 1733 fs->fs_cstotal.cs_nffree -= frags; 1734 fs->fs_cs(fs, cg).cs_nffree -= frags; 1735 fs->fs_fmod = 1; 1736 blkno = cgbase(fs, cg) + bno; 1737 ACTIVECLEAR(fs, cg); 1738 UFS_UNLOCK(ump); 1739 if (DOINGSOFTDEP(ITOV(ip))) 1740 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1741 bdwrite(bp); 1742 return (blkno); 1743 1744 fail: 1745 brelse(bp); 1746 UFS_LOCK(ump); 1747 return (0); 1748 } 1749 1750 /* 1751 * Allocate a block in a cylinder group. 1752 * 1753 * This algorithm implements the following policy: 1754 * 1) allocate the requested block. 1755 * 2) allocate a rotationally optimal block in the same cylinder. 1756 * 3) allocate the next available block on the block rotor for the 1757 * specified cylinder group. 1758 * Note that this routine only allocates fs_bsize blocks; these 1759 * blocks may be fragmented by the routine that allocates them. 1760 */ 1761 static ufs2_daddr_t 1762 ffs_alloccgblk(ip, bp, bpref, size) 1763 struct inode *ip; 1764 struct buf *bp; 1765 ufs2_daddr_t bpref; 1766 int size; 1767 { 1768 struct fs *fs; 1769 struct cg *cgp; 1770 struct ufsmount *ump; 1771 ufs1_daddr_t bno; 1772 ufs2_daddr_t blkno; 1773 u_int8_t *blksfree; 1774 int i, cgbpref; 1775 1776 fs = ip->i_fs; 1777 ump = ip->i_ump; 1778 mtx_assert(UFS_MTX(ump), MA_OWNED); 1779 cgp = (struct cg *)bp->b_data; 1780 blksfree = cg_blksfree(cgp); 1781 if (bpref == 0) { 1782 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1783 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1784 /* map bpref to correct zone in this cg */ 1785 if (bpref < cgdata(fs, cgbpref)) 1786 bpref = cgmeta(fs, cgp->cg_cgx); 1787 else 1788 bpref = cgdata(fs, cgp->cg_cgx); 1789 } 1790 /* 1791 * if the requested block is available, use it 1792 */ 1793 bno = dtogd(fs, blknum(fs, bpref)); 1794 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1795 goto gotit; 1796 /* 1797 * Take the next available block in this cylinder group. 1798 */ 1799 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1800 if (bno < 0) 1801 return (0); 1802 /* Update cg_rotor only if allocated from the data zone */ 1803 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1804 cgp->cg_rotor = bno; 1805 gotit: 1806 blkno = fragstoblks(fs, bno); 1807 ffs_clrblock(fs, blksfree, (long)blkno); 1808 ffs_clusteracct(fs, cgp, blkno, -1); 1809 cgp->cg_cs.cs_nbfree--; 1810 fs->fs_cstotal.cs_nbfree--; 1811 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1812 fs->fs_fmod = 1; 1813 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1814 /* 1815 * If the caller didn't want the whole block free the frags here. 1816 */ 1817 size = numfrags(fs, size); 1818 if (size != fs->fs_frag) { 1819 bno = dtogd(fs, blkno); 1820 for (i = size; i < fs->fs_frag; i++) 1821 setbit(blksfree, bno + i); 1822 i = fs->fs_frag - size; 1823 cgp->cg_cs.cs_nffree += i; 1824 fs->fs_cstotal.cs_nffree += i; 1825 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1826 fs->fs_fmod = 1; 1827 cgp->cg_frsum[i]++; 1828 } 1829 /* XXX Fixme. */ 1830 UFS_UNLOCK(ump); 1831 if (DOINGSOFTDEP(ITOV(ip))) 1832 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1833 size, 0); 1834 UFS_LOCK(ump); 1835 return (blkno); 1836 } 1837 1838 /* 1839 * Determine whether a cluster can be allocated. 1840 * 1841 * We do not currently check for optimal rotational layout if there 1842 * are multiple choices in the same cylinder group. Instead we just 1843 * take the first one that we find following bpref. 1844 */ 1845 static ufs2_daddr_t 1846 ffs_clusteralloc(ip, cg, bpref, len) 1847 struct inode *ip; 1848 u_int cg; 1849 ufs2_daddr_t bpref; 1850 int len; 1851 { 1852 struct fs *fs; 1853 struct cg *cgp; 1854 struct buf *bp; 1855 struct ufsmount *ump; 1856 int i, run, bit, map, got; 1857 ufs2_daddr_t bno; 1858 u_char *mapp; 1859 int32_t *lp; 1860 u_int8_t *blksfree; 1861 1862 fs = ip->i_fs; 1863 ump = ip->i_ump; 1864 if (fs->fs_maxcluster[cg] < len) 1865 return (0); 1866 UFS_UNLOCK(ump); 1867 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1868 NOCRED, &bp)) 1869 goto fail_lock; 1870 cgp = (struct cg *)bp->b_data; 1871 if (!cg_chkmagic(cgp)) 1872 goto fail_lock; 1873 bp->b_xflags |= BX_BKGRDWRITE; 1874 /* 1875 * Check to see if a cluster of the needed size (or bigger) is 1876 * available in this cylinder group. 1877 */ 1878 lp = &cg_clustersum(cgp)[len]; 1879 for (i = len; i <= fs->fs_contigsumsize; i++) 1880 if (*lp++ > 0) 1881 break; 1882 if (i > fs->fs_contigsumsize) { 1883 /* 1884 * This is the first time looking for a cluster in this 1885 * cylinder group. Update the cluster summary information 1886 * to reflect the true maximum sized cluster so that 1887 * future cluster allocation requests can avoid reading 1888 * the cylinder group map only to find no clusters. 1889 */ 1890 lp = &cg_clustersum(cgp)[len - 1]; 1891 for (i = len - 1; i > 0; i--) 1892 if (*lp-- > 0) 1893 break; 1894 UFS_LOCK(ump); 1895 fs->fs_maxcluster[cg] = i; 1896 goto fail; 1897 } 1898 /* 1899 * Search the cluster map to find a big enough cluster. 1900 * We take the first one that we find, even if it is larger 1901 * than we need as we prefer to get one close to the previous 1902 * block allocation. We do not search before the current 1903 * preference point as we do not want to allocate a block 1904 * that is allocated before the previous one (as we will 1905 * then have to wait for another pass of the elevator 1906 * algorithm before it will be read). We prefer to fail and 1907 * be recalled to try an allocation in the next cylinder group. 1908 */ 1909 if (dtog(fs, bpref) != cg) 1910 bpref = cgdata(fs, cg); 1911 else 1912 bpref = blknum(fs, bpref); 1913 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1914 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1915 map = *mapp++; 1916 bit = 1 << (bpref % NBBY); 1917 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1918 if ((map & bit) == 0) { 1919 run = 0; 1920 } else { 1921 run++; 1922 if (run == len) 1923 break; 1924 } 1925 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1926 bit <<= 1; 1927 } else { 1928 map = *mapp++; 1929 bit = 1; 1930 } 1931 } 1932 if (got >= cgp->cg_nclusterblks) 1933 goto fail_lock; 1934 /* 1935 * Allocate the cluster that we have found. 1936 */ 1937 blksfree = cg_blksfree(cgp); 1938 for (i = 1; i <= len; i++) 1939 if (!ffs_isblock(fs, blksfree, got - run + i)) 1940 panic("ffs_clusteralloc: map mismatch"); 1941 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1942 if (dtog(fs, bno) != cg) 1943 panic("ffs_clusteralloc: allocated out of group"); 1944 len = blkstofrags(fs, len); 1945 UFS_LOCK(ump); 1946 for (i = 0; i < len; i += fs->fs_frag) 1947 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1948 panic("ffs_clusteralloc: lost block"); 1949 ACTIVECLEAR(fs, cg); 1950 UFS_UNLOCK(ump); 1951 bdwrite(bp); 1952 return (bno); 1953 1954 fail_lock: 1955 UFS_LOCK(ump); 1956 fail: 1957 brelse(bp); 1958 return (0); 1959 } 1960 1961 static inline struct buf * 1962 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1963 { 1964 struct fs *fs; 1965 1966 fs = ip->i_fs; 1967 return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, 1968 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 1969 gbflags)); 1970 } 1971 1972 /* 1973 * Determine whether an inode can be allocated. 1974 * 1975 * Check to see if an inode is available, and if it is, 1976 * allocate it using the following policy: 1977 * 1) allocate the requested inode. 1978 * 2) allocate the next available inode after the requested 1979 * inode in the specified cylinder group. 1980 */ 1981 static ufs2_daddr_t 1982 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1983 struct inode *ip; 1984 u_int cg; 1985 ufs2_daddr_t ipref; 1986 int mode; 1987 int unused; 1988 { 1989 struct fs *fs; 1990 struct cg *cgp; 1991 struct buf *bp, *ibp; 1992 struct ufsmount *ump; 1993 u_int8_t *inosused, *loc; 1994 struct ufs2_dinode *dp2; 1995 int error, start, len, i; 1996 u_int32_t old_initediblk; 1997 1998 fs = ip->i_fs; 1999 ump = ip->i_ump; 2000 check_nifree: 2001 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2002 return (0); 2003 UFS_UNLOCK(ump); 2004 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 2005 (int)fs->fs_cgsize, NOCRED, &bp); 2006 if (error) { 2007 brelse(bp); 2008 UFS_LOCK(ump); 2009 return (0); 2010 } 2011 cgp = (struct cg *)bp->b_data; 2012 restart: 2013 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 2014 brelse(bp); 2015 UFS_LOCK(ump); 2016 return (0); 2017 } 2018 bp->b_xflags |= BX_BKGRDWRITE; 2019 inosused = cg_inosused(cgp); 2020 if (ipref) { 2021 ipref %= fs->fs_ipg; 2022 if (isclr(inosused, ipref)) 2023 goto gotit; 2024 } 2025 start = cgp->cg_irotor / NBBY; 2026 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2027 loc = memcchr(&inosused[start], 0xff, len); 2028 if (loc == NULL) { 2029 len = start + 1; 2030 start = 0; 2031 loc = memcchr(&inosused[start], 0xff, len); 2032 if (loc == NULL) { 2033 printf("cg = %d, irotor = %ld, fs = %s\n", 2034 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2035 panic("ffs_nodealloccg: map corrupted"); 2036 /* NOTREACHED */ 2037 } 2038 } 2039 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2040 gotit: 2041 /* 2042 * Check to see if we need to initialize more inodes. 2043 */ 2044 if (fs->fs_magic == FS_UFS2_MAGIC && 2045 ipref + INOPB(fs) > cgp->cg_initediblk && 2046 cgp->cg_initediblk < cgp->cg_niblk) { 2047 old_initediblk = cgp->cg_initediblk; 2048 2049 /* 2050 * Free the cylinder group lock before writing the 2051 * initialized inode block. Entering the 2052 * babarrierwrite() with the cylinder group lock 2053 * causes lock order violation between the lock and 2054 * snaplk. 2055 * 2056 * Another thread can decide to initialize the same 2057 * inode block, but whichever thread first gets the 2058 * cylinder group lock after writing the newly 2059 * allocated inode block will update it and the other 2060 * will realize that it has lost and leave the 2061 * cylinder group unchanged. 2062 */ 2063 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2064 brelse(bp); 2065 if (ibp == NULL) { 2066 /* 2067 * The inode block buffer is already owned by 2068 * another thread, which must initialize it. 2069 * Wait on the buffer to allow another thread 2070 * to finish the updates, with dropped cg 2071 * buffer lock, then retry. 2072 */ 2073 ibp = getinobuf(ip, cg, old_initediblk, 0); 2074 brelse(ibp); 2075 UFS_LOCK(ump); 2076 goto check_nifree; 2077 } 2078 bzero(ibp->b_data, (int)fs->fs_bsize); 2079 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2080 for (i = 0; i < INOPB(fs); i++) { 2081 dp2->di_gen = arc4random() / 2 + 1; 2082 dp2++; 2083 } 2084 /* 2085 * Rather than adding a soft updates dependency to ensure 2086 * that the new inode block is written before it is claimed 2087 * by the cylinder group map, we just do a barrier write 2088 * here. The barrier write will ensure that the inode block 2089 * gets written before the updated cylinder group map can be 2090 * written. The barrier write should only slow down bulk 2091 * loading of newly created filesystems. 2092 */ 2093 babarrierwrite(ibp); 2094 2095 /* 2096 * After the inode block is written, try to update the 2097 * cg initediblk pointer. If another thread beat us 2098 * to it, then leave it unchanged as the other thread 2099 * has already set it correctly. 2100 */ 2101 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 2102 (int)fs->fs_cgsize, NOCRED, &bp); 2103 UFS_LOCK(ump); 2104 ACTIVECLEAR(fs, cg); 2105 UFS_UNLOCK(ump); 2106 if (error != 0) { 2107 brelse(bp); 2108 return (error); 2109 } 2110 cgp = (struct cg *)bp->b_data; 2111 if (cgp->cg_initediblk == old_initediblk) 2112 cgp->cg_initediblk += INOPB(fs); 2113 goto restart; 2114 } 2115 cgp->cg_old_time = cgp->cg_time = time_second; 2116 cgp->cg_irotor = ipref; 2117 UFS_LOCK(ump); 2118 ACTIVECLEAR(fs, cg); 2119 setbit(inosused, ipref); 2120 cgp->cg_cs.cs_nifree--; 2121 fs->fs_cstotal.cs_nifree--; 2122 fs->fs_cs(fs, cg).cs_nifree--; 2123 fs->fs_fmod = 1; 2124 if ((mode & IFMT) == IFDIR) { 2125 cgp->cg_cs.cs_ndir++; 2126 fs->fs_cstotal.cs_ndir++; 2127 fs->fs_cs(fs, cg).cs_ndir++; 2128 } 2129 UFS_UNLOCK(ump); 2130 if (DOINGSOFTDEP(ITOV(ip))) 2131 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2132 bdwrite(bp); 2133 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2134 } 2135 2136 /* 2137 * Free a block or fragment. 2138 * 2139 * The specified block or fragment is placed back in the 2140 * free map. If a fragment is deallocated, a possible 2141 * block reassembly is checked. 2142 */ 2143 static void 2144 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2145 struct ufsmount *ump; 2146 struct fs *fs; 2147 struct vnode *devvp; 2148 ufs2_daddr_t bno; 2149 long size; 2150 ino_t inum; 2151 struct workhead *dephd; 2152 { 2153 struct mount *mp; 2154 struct cg *cgp; 2155 struct buf *bp; 2156 ufs1_daddr_t fragno, cgbno; 2157 ufs2_daddr_t cgblkno; 2158 int i, blk, frags, bbase; 2159 u_int cg; 2160 u_int8_t *blksfree; 2161 struct cdev *dev; 2162 2163 cg = dtog(fs, bno); 2164 if (devvp->v_type == VREG) { 2165 /* devvp is a snapshot */ 2166 dev = VTOI(devvp)->i_devvp->v_rdev; 2167 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 2168 } else { 2169 /* devvp is a normal disk device */ 2170 dev = devvp->v_rdev; 2171 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 2172 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2173 } 2174 #ifdef INVARIANTS 2175 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2176 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2177 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2178 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2179 size, fs->fs_fsmnt); 2180 panic("ffs_blkfree_cg: bad size"); 2181 } 2182 #endif 2183 if ((u_int)bno >= fs->fs_size) { 2184 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2185 (u_long)inum); 2186 ffs_fserr(fs, inum, "bad block"); 2187 return; 2188 } 2189 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2190 brelse(bp); 2191 return; 2192 } 2193 cgp = (struct cg *)bp->b_data; 2194 if (!cg_chkmagic(cgp)) { 2195 brelse(bp); 2196 return; 2197 } 2198 bp->b_xflags |= BX_BKGRDWRITE; 2199 cgp->cg_old_time = cgp->cg_time = time_second; 2200 cgbno = dtogd(fs, bno); 2201 blksfree = cg_blksfree(cgp); 2202 UFS_LOCK(ump); 2203 if (size == fs->fs_bsize) { 2204 fragno = fragstoblks(fs, cgbno); 2205 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2206 if (devvp->v_type == VREG) { 2207 UFS_UNLOCK(ump); 2208 /* devvp is a snapshot */ 2209 brelse(bp); 2210 return; 2211 } 2212 printf("dev = %s, block = %jd, fs = %s\n", 2213 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2214 panic("ffs_blkfree_cg: freeing free block"); 2215 } 2216 ffs_setblock(fs, blksfree, fragno); 2217 ffs_clusteracct(fs, cgp, fragno, 1); 2218 cgp->cg_cs.cs_nbfree++; 2219 fs->fs_cstotal.cs_nbfree++; 2220 fs->fs_cs(fs, cg).cs_nbfree++; 2221 } else { 2222 bbase = cgbno - fragnum(fs, cgbno); 2223 /* 2224 * decrement the counts associated with the old frags 2225 */ 2226 blk = blkmap(fs, blksfree, bbase); 2227 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2228 /* 2229 * deallocate the fragment 2230 */ 2231 frags = numfrags(fs, size); 2232 for (i = 0; i < frags; i++) { 2233 if (isset(blksfree, cgbno + i)) { 2234 printf("dev = %s, block = %jd, fs = %s\n", 2235 devtoname(dev), (intmax_t)(bno + i), 2236 fs->fs_fsmnt); 2237 panic("ffs_blkfree_cg: freeing free frag"); 2238 } 2239 setbit(blksfree, cgbno + i); 2240 } 2241 cgp->cg_cs.cs_nffree += i; 2242 fs->fs_cstotal.cs_nffree += i; 2243 fs->fs_cs(fs, cg).cs_nffree += i; 2244 /* 2245 * add back in counts associated with the new frags 2246 */ 2247 blk = blkmap(fs, blksfree, bbase); 2248 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2249 /* 2250 * if a complete block has been reassembled, account for it 2251 */ 2252 fragno = fragstoblks(fs, bbase); 2253 if (ffs_isblock(fs, blksfree, fragno)) { 2254 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2255 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2256 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2257 ffs_clusteracct(fs, cgp, fragno, 1); 2258 cgp->cg_cs.cs_nbfree++; 2259 fs->fs_cstotal.cs_nbfree++; 2260 fs->fs_cs(fs, cg).cs_nbfree++; 2261 } 2262 } 2263 fs->fs_fmod = 1; 2264 ACTIVECLEAR(fs, cg); 2265 UFS_UNLOCK(ump); 2266 mp = UFSTOVFS(ump); 2267 if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG) 2268 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2269 numfrags(fs, size), dephd); 2270 bdwrite(bp); 2271 } 2272 2273 TASKQUEUE_DEFINE_THREAD(ffs_trim); 2274 2275 struct ffs_blkfree_trim_params { 2276 struct task task; 2277 struct ufsmount *ump; 2278 struct vnode *devvp; 2279 ufs2_daddr_t bno; 2280 long size; 2281 ino_t inum; 2282 struct workhead *pdephd; 2283 struct workhead dephd; 2284 }; 2285 2286 static void 2287 ffs_blkfree_trim_task(ctx, pending) 2288 void *ctx; 2289 int pending; 2290 { 2291 struct ffs_blkfree_trim_params *tp; 2292 2293 tp = ctx; 2294 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2295 tp->inum, tp->pdephd); 2296 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2297 free(tp, M_TEMP); 2298 } 2299 2300 static void 2301 ffs_blkfree_trim_completed(bip) 2302 struct bio *bip; 2303 { 2304 struct ffs_blkfree_trim_params *tp; 2305 2306 tp = bip->bio_caller2; 2307 g_destroy_bio(bip); 2308 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2309 taskqueue_enqueue(taskqueue_ffs_trim, &tp->task); 2310 } 2311 2312 void 2313 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2314 struct ufsmount *ump; 2315 struct fs *fs; 2316 struct vnode *devvp; 2317 ufs2_daddr_t bno; 2318 long size; 2319 ino_t inum; 2320 enum vtype vtype; 2321 struct workhead *dephd; 2322 { 2323 struct mount *mp; 2324 struct bio *bip; 2325 struct ffs_blkfree_trim_params *tp; 2326 2327 /* 2328 * Check to see if a snapshot wants to claim the block. 2329 * Check that devvp is a normal disk device, not a snapshot, 2330 * it has a snapshot(s) associated with it, and one of the 2331 * snapshots wants to claim the block. 2332 */ 2333 if (devvp->v_type != VREG && 2334 (devvp->v_vflag & VV_COPYONWRITE) && 2335 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2336 return; 2337 } 2338 /* 2339 * Nothing to delay if TRIM is disabled, or the operation is 2340 * performed on the snapshot. 2341 */ 2342 if (!ump->um_candelete || devvp->v_type == VREG) { 2343 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2344 return; 2345 } 2346 2347 /* 2348 * Postpone the set of the free bit in the cg bitmap until the 2349 * BIO_DELETE is completed. Otherwise, due to disk queue 2350 * reordering, TRIM might be issued after we reuse the block 2351 * and write some new data into it. 2352 */ 2353 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2354 tp->ump = ump; 2355 tp->devvp = devvp; 2356 tp->bno = bno; 2357 tp->size = size; 2358 tp->inum = inum; 2359 if (dephd != NULL) { 2360 LIST_INIT(&tp->dephd); 2361 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2362 tp->pdephd = &tp->dephd; 2363 } else 2364 tp->pdephd = NULL; 2365 2366 bip = g_alloc_bio(); 2367 bip->bio_cmd = BIO_DELETE; 2368 bip->bio_offset = dbtob(fsbtodb(fs, bno)); 2369 bip->bio_done = ffs_blkfree_trim_completed; 2370 bip->bio_length = size; 2371 bip->bio_caller2 = tp; 2372 2373 mp = UFSTOVFS(ump); 2374 vn_start_secondary_write(NULL, &mp, 0); 2375 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private); 2376 } 2377 2378 #ifdef INVARIANTS 2379 /* 2380 * Verify allocation of a block or fragment. Returns true if block or 2381 * fragment is allocated, false if it is free. 2382 */ 2383 static int 2384 ffs_checkblk(ip, bno, size) 2385 struct inode *ip; 2386 ufs2_daddr_t bno; 2387 long size; 2388 { 2389 struct fs *fs; 2390 struct cg *cgp; 2391 struct buf *bp; 2392 ufs1_daddr_t cgbno; 2393 int i, error, frags, free; 2394 u_int8_t *blksfree; 2395 2396 fs = ip->i_fs; 2397 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2398 printf("bsize = %ld, size = %ld, fs = %s\n", 2399 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2400 panic("ffs_checkblk: bad size"); 2401 } 2402 if ((u_int)bno >= fs->fs_size) 2403 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2404 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 2405 (int)fs->fs_cgsize, NOCRED, &bp); 2406 if (error) 2407 panic("ffs_checkblk: cg bread failed"); 2408 cgp = (struct cg *)bp->b_data; 2409 if (!cg_chkmagic(cgp)) 2410 panic("ffs_checkblk: cg magic mismatch"); 2411 bp->b_xflags |= BX_BKGRDWRITE; 2412 blksfree = cg_blksfree(cgp); 2413 cgbno = dtogd(fs, bno); 2414 if (size == fs->fs_bsize) { 2415 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2416 } else { 2417 frags = numfrags(fs, size); 2418 for (free = 0, i = 0; i < frags; i++) 2419 if (isset(blksfree, cgbno + i)) 2420 free++; 2421 if (free != 0 && free != frags) 2422 panic("ffs_checkblk: partially free fragment"); 2423 } 2424 brelse(bp); 2425 return (!free); 2426 } 2427 #endif /* INVARIANTS */ 2428 2429 /* 2430 * Free an inode. 2431 */ 2432 int 2433 ffs_vfree(pvp, ino, mode) 2434 struct vnode *pvp; 2435 ino_t ino; 2436 int mode; 2437 { 2438 struct inode *ip; 2439 2440 if (DOINGSOFTDEP(pvp)) { 2441 softdep_freefile(pvp, ino, mode); 2442 return (0); 2443 } 2444 ip = VTOI(pvp); 2445 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode, 2446 NULL)); 2447 } 2448 2449 /* 2450 * Do the actual free operation. 2451 * The specified inode is placed back in the free map. 2452 */ 2453 int 2454 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2455 struct ufsmount *ump; 2456 struct fs *fs; 2457 struct vnode *devvp; 2458 ino_t ino; 2459 int mode; 2460 struct workhead *wkhd; 2461 { 2462 struct cg *cgp; 2463 struct buf *bp; 2464 ufs2_daddr_t cgbno; 2465 int error; 2466 u_int cg; 2467 u_int8_t *inosused; 2468 struct cdev *dev; 2469 2470 cg = ino_to_cg(fs, ino); 2471 if (devvp->v_type == VREG) { 2472 /* devvp is a snapshot */ 2473 dev = VTOI(devvp)->i_devvp->v_rdev; 2474 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2475 } else { 2476 /* devvp is a normal disk device */ 2477 dev = devvp->v_rdev; 2478 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2479 } 2480 if (ino >= fs->fs_ipg * fs->fs_ncg) 2481 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2482 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2483 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2484 brelse(bp); 2485 return (error); 2486 } 2487 cgp = (struct cg *)bp->b_data; 2488 if (!cg_chkmagic(cgp)) { 2489 brelse(bp); 2490 return (0); 2491 } 2492 bp->b_xflags |= BX_BKGRDWRITE; 2493 cgp->cg_old_time = cgp->cg_time = time_second; 2494 inosused = cg_inosused(cgp); 2495 ino %= fs->fs_ipg; 2496 if (isclr(inosused, ino)) { 2497 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2498 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2499 if (fs->fs_ronly == 0) 2500 panic("ffs_freefile: freeing free inode"); 2501 } 2502 clrbit(inosused, ino); 2503 if (ino < cgp->cg_irotor) 2504 cgp->cg_irotor = ino; 2505 cgp->cg_cs.cs_nifree++; 2506 UFS_LOCK(ump); 2507 fs->fs_cstotal.cs_nifree++; 2508 fs->fs_cs(fs, cg).cs_nifree++; 2509 if ((mode & IFMT) == IFDIR) { 2510 cgp->cg_cs.cs_ndir--; 2511 fs->fs_cstotal.cs_ndir--; 2512 fs->fs_cs(fs, cg).cs_ndir--; 2513 } 2514 fs->fs_fmod = 1; 2515 ACTIVECLEAR(fs, cg); 2516 UFS_UNLOCK(ump); 2517 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG) 2518 softdep_setup_inofree(UFSTOVFS(ump), bp, 2519 ino + cg * fs->fs_ipg, wkhd); 2520 bdwrite(bp); 2521 return (0); 2522 } 2523 2524 /* 2525 * Check to see if a file is free. 2526 */ 2527 int 2528 ffs_checkfreefile(fs, devvp, ino) 2529 struct fs *fs; 2530 struct vnode *devvp; 2531 ino_t ino; 2532 { 2533 struct cg *cgp; 2534 struct buf *bp; 2535 ufs2_daddr_t cgbno; 2536 int ret; 2537 u_int cg; 2538 u_int8_t *inosused; 2539 2540 cg = ino_to_cg(fs, ino); 2541 if (devvp->v_type == VREG) { 2542 /* devvp is a snapshot */ 2543 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2544 } else { 2545 /* devvp is a normal disk device */ 2546 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2547 } 2548 if (ino >= fs->fs_ipg * fs->fs_ncg) 2549 return (1); 2550 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2551 brelse(bp); 2552 return (1); 2553 } 2554 cgp = (struct cg *)bp->b_data; 2555 if (!cg_chkmagic(cgp)) { 2556 brelse(bp); 2557 return (1); 2558 } 2559 inosused = cg_inosused(cgp); 2560 ino %= fs->fs_ipg; 2561 ret = isclr(inosused, ino); 2562 brelse(bp); 2563 return (ret); 2564 } 2565 2566 /* 2567 * Find a block of the specified size in the specified cylinder group. 2568 * 2569 * It is a panic if a request is made to find a block if none are 2570 * available. 2571 */ 2572 static ufs1_daddr_t 2573 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2574 struct fs *fs; 2575 struct cg *cgp; 2576 ufs2_daddr_t bpref; 2577 int allocsiz; 2578 { 2579 ufs1_daddr_t bno; 2580 int start, len, loc, i; 2581 int blk, field, subfield, pos; 2582 u_int8_t *blksfree; 2583 2584 /* 2585 * find the fragment by searching through the free block 2586 * map for an appropriate bit pattern 2587 */ 2588 if (bpref) 2589 start = dtogd(fs, bpref) / NBBY; 2590 else 2591 start = cgp->cg_frotor / NBBY; 2592 blksfree = cg_blksfree(cgp); 2593 len = howmany(fs->fs_fpg, NBBY) - start; 2594 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2595 fragtbl[fs->fs_frag], 2596 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2597 if (loc == 0) { 2598 len = start + 1; 2599 start = 0; 2600 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2601 fragtbl[fs->fs_frag], 2602 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2603 if (loc == 0) { 2604 printf("start = %d, len = %d, fs = %s\n", 2605 start, len, fs->fs_fsmnt); 2606 panic("ffs_alloccg: map corrupted"); 2607 /* NOTREACHED */ 2608 } 2609 } 2610 bno = (start + len - loc) * NBBY; 2611 cgp->cg_frotor = bno; 2612 /* 2613 * found the byte in the map 2614 * sift through the bits to find the selected frag 2615 */ 2616 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2617 blk = blkmap(fs, blksfree, bno); 2618 blk <<= 1; 2619 field = around[allocsiz]; 2620 subfield = inside[allocsiz]; 2621 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2622 if ((blk & field) == subfield) 2623 return (bno + pos); 2624 field <<= 1; 2625 subfield <<= 1; 2626 } 2627 } 2628 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2629 panic("ffs_alloccg: block not in map"); 2630 return (-1); 2631 } 2632 2633 /* 2634 * Fserr prints the name of a filesystem with an error diagnostic. 2635 * 2636 * The form of the error message is: 2637 * fs: error message 2638 */ 2639 void 2640 ffs_fserr(fs, inum, cp) 2641 struct fs *fs; 2642 ino_t inum; 2643 char *cp; 2644 { 2645 struct thread *td = curthread; /* XXX */ 2646 struct proc *p = td->td_proc; 2647 2648 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2649 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2650 fs->fs_fsmnt, cp); 2651 } 2652 2653 /* 2654 * This function provides the capability for the fsck program to 2655 * update an active filesystem. Fourteen operations are provided: 2656 * 2657 * adjrefcnt(inode, amt) - adjusts the reference count on the 2658 * specified inode by the specified amount. Under normal 2659 * operation the count should always go down. Decrementing 2660 * the count to zero will cause the inode to be freed. 2661 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2662 * inode by the specified amount. 2663 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2664 * adjust the superblock summary. 2665 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2666 * are marked as free. Inodes should never have to be marked 2667 * as in use. 2668 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2669 * are marked as free. Inodes should never have to be marked 2670 * as in use. 2671 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2672 * are marked as free. Blocks should never have to be marked 2673 * as in use. 2674 * setflags(flags, set/clear) - the fs_flags field has the specified 2675 * flags set (second parameter +1) or cleared (second parameter -1). 2676 * setcwd(dirinode) - set the current directory to dirinode in the 2677 * filesystem associated with the snapshot. 2678 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2679 * in the current directory is oldvalue then change it to newvalue. 2680 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2681 * with nameptr in the current directory is oldvalue then unlink it. 2682 * 2683 * The following functions may only be used on a quiescent filesystem 2684 * by the soft updates journal. They are not safe to be run on an active 2685 * filesystem. 2686 * 2687 * setinode(inode, dip) - the specified disk inode is replaced with the 2688 * contents pointed to by dip. 2689 * setbufoutput(fd, flags) - output associated with the specified file 2690 * descriptor (which must reference the character device supporting 2691 * the filesystem) switches from using physio to running through the 2692 * buffer cache when flags is set to 1. The descriptor reverts to 2693 * physio for output when flags is set to zero. 2694 */ 2695 2696 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2697 2698 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2699 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2700 2701 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2702 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2703 2704 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2705 sysctl_ffs_fsck, "Adjust number of directories"); 2706 2707 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2708 sysctl_ffs_fsck, "Adjust number of free blocks"); 2709 2710 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2711 sysctl_ffs_fsck, "Adjust number of free inodes"); 2712 2713 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2714 sysctl_ffs_fsck, "Adjust number of free frags"); 2715 2716 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2717 sysctl_ffs_fsck, "Adjust number of free clusters"); 2718 2719 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2720 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2721 2722 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2723 sysctl_ffs_fsck, "Free Range of File Inodes"); 2724 2725 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2726 sysctl_ffs_fsck, "Free Range of Blocks"); 2727 2728 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2729 sysctl_ffs_fsck, "Change Filesystem Flags"); 2730 2731 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2732 sysctl_ffs_fsck, "Set Current Working Directory"); 2733 2734 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2735 sysctl_ffs_fsck, "Change Value of .. Entry"); 2736 2737 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2738 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2739 2740 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2741 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2742 2743 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2744 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2745 2746 #define DEBUG 1 2747 #ifdef DEBUG 2748 static int fsckcmds = 0; 2749 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2750 #endif /* DEBUG */ 2751 2752 static int buffered_write(struct file *, struct uio *, struct ucred *, 2753 int, struct thread *); 2754 2755 static int 2756 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2757 { 2758 struct thread *td = curthread; 2759 struct fsck_cmd cmd; 2760 struct ufsmount *ump; 2761 struct vnode *vp, *dvp, *fdvp; 2762 struct inode *ip, *dp; 2763 struct mount *mp; 2764 struct fs *fs; 2765 ufs2_daddr_t blkno; 2766 long blkcnt, blksize; 2767 struct file *fp, *vfp; 2768 cap_rights_t rights; 2769 int filetype, error; 2770 static struct fileops *origops, bufferedops; 2771 2772 if (req->newlen > sizeof cmd) 2773 return (EBADRPC); 2774 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2775 return (error); 2776 if (cmd.version != FFS_CMD_VERSION) 2777 return (ERPCMISMATCH); 2778 if ((error = getvnode(td, cmd.handle, 2779 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 2780 return (error); 2781 vp = fp->f_data; 2782 if (vp->v_type != VREG && vp->v_type != VDIR) { 2783 fdrop(fp, td); 2784 return (EINVAL); 2785 } 2786 vn_start_write(vp, &mp, V_WAIT); 2787 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2788 vn_finished_write(mp); 2789 fdrop(fp, td); 2790 return (EINVAL); 2791 } 2792 ump = VFSTOUFS(mp); 2793 if ((mp->mnt_flag & MNT_RDONLY) && 2794 ump->um_fsckpid != td->td_proc->p_pid) { 2795 vn_finished_write(mp); 2796 fdrop(fp, td); 2797 return (EROFS); 2798 } 2799 fs = ump->um_fs; 2800 filetype = IFREG; 2801 2802 switch (oidp->oid_number) { 2803 2804 case FFS_SET_FLAGS: 2805 #ifdef DEBUG 2806 if (fsckcmds) 2807 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2808 cmd.size > 0 ? "set" : "clear"); 2809 #endif /* DEBUG */ 2810 if (cmd.size > 0) 2811 fs->fs_flags |= (long)cmd.value; 2812 else 2813 fs->fs_flags &= ~(long)cmd.value; 2814 break; 2815 2816 case FFS_ADJ_REFCNT: 2817 #ifdef DEBUG 2818 if (fsckcmds) { 2819 printf("%s: adjust inode %jd link count by %jd\n", 2820 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2821 (intmax_t)cmd.size); 2822 } 2823 #endif /* DEBUG */ 2824 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2825 break; 2826 ip = VTOI(vp); 2827 ip->i_nlink += cmd.size; 2828 DIP_SET(ip, i_nlink, ip->i_nlink); 2829 ip->i_effnlink += cmd.size; 2830 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2831 error = ffs_update(vp, 1); 2832 if (DOINGSOFTDEP(vp)) 2833 softdep_change_linkcnt(ip); 2834 vput(vp); 2835 break; 2836 2837 case FFS_ADJ_BLKCNT: 2838 #ifdef DEBUG 2839 if (fsckcmds) { 2840 printf("%s: adjust inode %jd block count by %jd\n", 2841 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2842 (intmax_t)cmd.size); 2843 } 2844 #endif /* DEBUG */ 2845 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2846 break; 2847 ip = VTOI(vp); 2848 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2849 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2850 error = ffs_update(vp, 1); 2851 vput(vp); 2852 break; 2853 2854 case FFS_DIR_FREE: 2855 filetype = IFDIR; 2856 /* fall through */ 2857 2858 case FFS_FILE_FREE: 2859 #ifdef DEBUG 2860 if (fsckcmds) { 2861 if (cmd.size == 1) 2862 printf("%s: free %s inode %ju\n", 2863 mp->mnt_stat.f_mntonname, 2864 filetype == IFDIR ? "directory" : "file", 2865 (uintmax_t)cmd.value); 2866 else 2867 printf("%s: free %s inodes %ju-%ju\n", 2868 mp->mnt_stat.f_mntonname, 2869 filetype == IFDIR ? "directory" : "file", 2870 (uintmax_t)cmd.value, 2871 (uintmax_t)(cmd.value + cmd.size - 1)); 2872 } 2873 #endif /* DEBUG */ 2874 while (cmd.size > 0) { 2875 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2876 cmd.value, filetype, NULL))) 2877 break; 2878 cmd.size -= 1; 2879 cmd.value += 1; 2880 } 2881 break; 2882 2883 case FFS_BLK_FREE: 2884 #ifdef DEBUG 2885 if (fsckcmds) { 2886 if (cmd.size == 1) 2887 printf("%s: free block %jd\n", 2888 mp->mnt_stat.f_mntonname, 2889 (intmax_t)cmd.value); 2890 else 2891 printf("%s: free blocks %jd-%jd\n", 2892 mp->mnt_stat.f_mntonname, 2893 (intmax_t)cmd.value, 2894 (intmax_t)cmd.value + cmd.size - 1); 2895 } 2896 #endif /* DEBUG */ 2897 blkno = cmd.value; 2898 blkcnt = cmd.size; 2899 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2900 while (blkcnt > 0) { 2901 if (blksize > blkcnt) 2902 blksize = blkcnt; 2903 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2904 blksize * fs->fs_fsize, ROOTINO, VDIR, NULL); 2905 blkno += blksize; 2906 blkcnt -= blksize; 2907 blksize = fs->fs_frag; 2908 } 2909 break; 2910 2911 /* 2912 * Adjust superblock summaries. fsck(8) is expected to 2913 * submit deltas when necessary. 2914 */ 2915 case FFS_ADJ_NDIR: 2916 #ifdef DEBUG 2917 if (fsckcmds) { 2918 printf("%s: adjust number of directories by %jd\n", 2919 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2920 } 2921 #endif /* DEBUG */ 2922 fs->fs_cstotal.cs_ndir += cmd.value; 2923 break; 2924 2925 case FFS_ADJ_NBFREE: 2926 #ifdef DEBUG 2927 if (fsckcmds) { 2928 printf("%s: adjust number of free blocks by %+jd\n", 2929 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2930 } 2931 #endif /* DEBUG */ 2932 fs->fs_cstotal.cs_nbfree += cmd.value; 2933 break; 2934 2935 case FFS_ADJ_NIFREE: 2936 #ifdef DEBUG 2937 if (fsckcmds) { 2938 printf("%s: adjust number of free inodes by %+jd\n", 2939 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2940 } 2941 #endif /* DEBUG */ 2942 fs->fs_cstotal.cs_nifree += cmd.value; 2943 break; 2944 2945 case FFS_ADJ_NFFREE: 2946 #ifdef DEBUG 2947 if (fsckcmds) { 2948 printf("%s: adjust number of free frags by %+jd\n", 2949 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2950 } 2951 #endif /* DEBUG */ 2952 fs->fs_cstotal.cs_nffree += cmd.value; 2953 break; 2954 2955 case FFS_ADJ_NUMCLUSTERS: 2956 #ifdef DEBUG 2957 if (fsckcmds) { 2958 printf("%s: adjust number of free clusters by %+jd\n", 2959 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2960 } 2961 #endif /* DEBUG */ 2962 fs->fs_cstotal.cs_numclusters += cmd.value; 2963 break; 2964 2965 case FFS_SET_CWD: 2966 #ifdef DEBUG 2967 if (fsckcmds) { 2968 printf("%s: set current directory to inode %jd\n", 2969 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2970 } 2971 #endif /* DEBUG */ 2972 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2973 break; 2974 AUDIT_ARG_VNODE1(vp); 2975 if ((error = change_dir(vp, td)) != 0) { 2976 vput(vp); 2977 break; 2978 } 2979 VOP_UNLOCK(vp, 0); 2980 pwd_chdir(td, vp); 2981 break; 2982 2983 case FFS_SET_DOTDOT: 2984 #ifdef DEBUG 2985 if (fsckcmds) { 2986 printf("%s: change .. in cwd from %jd to %jd\n", 2987 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2988 (intmax_t)cmd.size); 2989 } 2990 #endif /* DEBUG */ 2991 /* 2992 * First we have to get and lock the parent directory 2993 * to which ".." points. 2994 */ 2995 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2996 if (error) 2997 break; 2998 /* 2999 * Now we get and lock the child directory containing "..". 3000 */ 3001 FILEDESC_SLOCK(td->td_proc->p_fd); 3002 dvp = td->td_proc->p_fd->fd_cdir; 3003 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3004 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3005 vput(fdvp); 3006 break; 3007 } 3008 dp = VTOI(dvp); 3009 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3010 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3011 DT_DIR, 0); 3012 cache_purge(fdvp); 3013 cache_purge(dvp); 3014 vput(dvp); 3015 vput(fdvp); 3016 break; 3017 3018 case FFS_UNLINK: 3019 #ifdef DEBUG 3020 if (fsckcmds) { 3021 char buf[32]; 3022 3023 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3024 strncpy(buf, "Name_too_long", 32); 3025 printf("%s: unlink %s (inode %jd)\n", 3026 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3027 } 3028 #endif /* DEBUG */ 3029 /* 3030 * kern_unlinkat will do its own start/finish writes and 3031 * they do not nest, so drop ours here. Setting mp == NULL 3032 * indicates that vn_finished_write is not needed down below. 3033 */ 3034 vn_finished_write(mp); 3035 mp = NULL; 3036 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 3037 UIO_USERSPACE, (ino_t)cmd.size); 3038 break; 3039 3040 case FFS_SET_INODE: 3041 if (ump->um_fsckpid != td->td_proc->p_pid) { 3042 error = EPERM; 3043 break; 3044 } 3045 #ifdef DEBUG 3046 if (fsckcmds) { 3047 printf("%s: update inode %jd\n", 3048 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3049 } 3050 #endif /* DEBUG */ 3051 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3052 break; 3053 AUDIT_ARG_VNODE1(vp); 3054 ip = VTOI(vp); 3055 if (ip->i_ump->um_fstype == UFS1) 3056 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3057 sizeof(struct ufs1_dinode)); 3058 else 3059 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3060 sizeof(struct ufs2_dinode)); 3061 if (error) { 3062 vput(vp); 3063 break; 3064 } 3065 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3066 error = ffs_update(vp, 1); 3067 vput(vp); 3068 break; 3069 3070 case FFS_SET_BUFOUTPUT: 3071 if (ump->um_fsckpid != td->td_proc->p_pid) { 3072 error = EPERM; 3073 break; 3074 } 3075 if (VTOI(vp)->i_ump != ump) { 3076 error = EINVAL; 3077 break; 3078 } 3079 #ifdef DEBUG 3080 if (fsckcmds) { 3081 printf("%s: %s buffered output for descriptor %jd\n", 3082 mp->mnt_stat.f_mntonname, 3083 cmd.size == 1 ? "enable" : "disable", 3084 (intmax_t)cmd.value); 3085 } 3086 #endif /* DEBUG */ 3087 if ((error = getvnode(td, cmd.value, 3088 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3089 break; 3090 if (vfp->f_vnode->v_type != VCHR) { 3091 fdrop(vfp, td); 3092 error = EINVAL; 3093 break; 3094 } 3095 if (origops == NULL) { 3096 origops = vfp->f_ops; 3097 bcopy((void *)origops, (void *)&bufferedops, 3098 sizeof(bufferedops)); 3099 bufferedops.fo_write = buffered_write; 3100 } 3101 if (cmd.size == 1) 3102 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3103 (uintptr_t)&bufferedops); 3104 else 3105 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3106 (uintptr_t)origops); 3107 fdrop(vfp, td); 3108 break; 3109 3110 default: 3111 #ifdef DEBUG 3112 if (fsckcmds) { 3113 printf("Invalid request %d from fsck\n", 3114 oidp->oid_number); 3115 } 3116 #endif /* DEBUG */ 3117 error = EINVAL; 3118 break; 3119 3120 } 3121 fdrop(fp, td); 3122 vn_finished_write(mp); 3123 return (error); 3124 } 3125 3126 /* 3127 * Function to switch a descriptor to use the buffer cache to stage 3128 * its I/O. This is needed so that writes to the filesystem device 3129 * will give snapshots a chance to copy modified blocks for which it 3130 * needs to retain copies. 3131 */ 3132 static int 3133 buffered_write(fp, uio, active_cred, flags, td) 3134 struct file *fp; 3135 struct uio *uio; 3136 struct ucred *active_cred; 3137 int flags; 3138 struct thread *td; 3139 { 3140 struct vnode *devvp, *vp; 3141 struct inode *ip; 3142 struct buf *bp; 3143 struct fs *fs; 3144 struct filedesc *fdp; 3145 int error; 3146 daddr_t lbn; 3147 3148 /* 3149 * The devvp is associated with the /dev filesystem. To discover 3150 * the filesystem with which the device is associated, we depend 3151 * on the application setting the current directory to a location 3152 * within the filesystem being written. Yes, this is an ugly hack. 3153 */ 3154 devvp = fp->f_vnode; 3155 if (!vn_isdisk(devvp, NULL)) 3156 return (EINVAL); 3157 fdp = td->td_proc->p_fd; 3158 FILEDESC_SLOCK(fdp); 3159 vp = fdp->fd_cdir; 3160 vref(vp); 3161 FILEDESC_SUNLOCK(fdp); 3162 vn_lock(vp, LK_SHARED | LK_RETRY); 3163 /* 3164 * Check that the current directory vnode indeed belongs to 3165 * UFS before trying to dereference UFS-specific v_data fields. 3166 */ 3167 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3168 vput(vp); 3169 return (EINVAL); 3170 } 3171 ip = VTOI(vp); 3172 if (ip->i_devvp != devvp) { 3173 vput(vp); 3174 return (EINVAL); 3175 } 3176 fs = ip->i_fs; 3177 vput(vp); 3178 foffset_lock_uio(fp, uio, flags); 3179 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3180 #ifdef DEBUG 3181 if (fsckcmds) { 3182 printf("%s: buffered write for block %jd\n", 3183 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3184 } 3185 #endif /* DEBUG */ 3186 /* 3187 * All I/O must be contained within a filesystem block, start on 3188 * a fragment boundary, and be a multiple of fragments in length. 3189 */ 3190 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3191 fragoff(fs, uio->uio_offset) != 0 || 3192 fragoff(fs, uio->uio_resid) != 0) { 3193 error = EINVAL; 3194 goto out; 3195 } 3196 lbn = numfrags(fs, uio->uio_offset); 3197 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3198 bp->b_flags |= B_RELBUF; 3199 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3200 brelse(bp); 3201 goto out; 3202 } 3203 error = bwrite(bp); 3204 out: 3205 VOP_UNLOCK(devvp, 0); 3206 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3207 return (error); 3208 } 3209