1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bio.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/file.h> 73 #include <sys/filedesc.h> 74 #include <sys/priv.h> 75 #include <sys/proc.h> 76 #include <sys/vnode.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 82 #include <ufs/ufs/extattr.h> 83 #include <ufs/ufs/quota.h> 84 #include <ufs/ufs/inode.h> 85 #include <ufs/ufs/ufs_extern.h> 86 #include <ufs/ufs/ufsmount.h> 87 88 #include <ufs/ffs/fs.h> 89 #include <ufs/ffs/ffs_extern.h> 90 91 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref, 92 int size); 93 94 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int); 95 static ufs2_daddr_t 96 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t); 97 #ifdef INVARIANTS 98 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 99 #endif 100 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int); 101 static void ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *, 102 ufs1_daddr_t, int); 103 static ino_t ffs_dirpref(struct inode *); 104 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int); 105 static void ffs_fserr(struct fs *, ino_t, char *); 106 static ufs2_daddr_t ffs_hashalloc 107 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *); 108 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int); 109 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 110 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 111 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 112 113 /* 114 * Allocate a block in the filesystem. 115 * 116 * The size of the requested block is given, which must be some 117 * multiple of fs_fsize and <= fs_bsize. 118 * A preference may be optionally specified. If a preference is given 119 * the following hierarchy is used to allocate a block: 120 * 1) allocate the requested block. 121 * 2) allocate a rotationally optimal block in the same cylinder. 122 * 3) allocate a block in the same cylinder group. 123 * 4) quadradically rehash into other cylinder groups, until an 124 * available block is located. 125 * If no block preference is given the following hierarchy is used 126 * to allocate a block: 127 * 1) allocate a block in the cylinder group that contains the 128 * inode for the file. 129 * 2) quadradically rehash into other cylinder groups, until an 130 * available block is located. 131 */ 132 int 133 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 134 struct inode *ip; 135 ufs2_daddr_t lbn, bpref; 136 int size; 137 struct ucred *cred; 138 ufs2_daddr_t *bnp; 139 { 140 struct fs *fs; 141 struct ufsmount *ump; 142 ufs2_daddr_t bno; 143 int cg, reclaimed; 144 static struct timeval lastfail; 145 static int curfail; 146 int64_t delta; 147 #ifdef QUOTA 148 int error; 149 #endif 150 151 *bnp = 0; 152 fs = ip->i_fs; 153 ump = ip->i_ump; 154 mtx_assert(UFS_MTX(ump), MA_OWNED); 155 #ifdef INVARIANTS 156 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 157 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 158 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 159 fs->fs_fsmnt); 160 panic("ffs_alloc: bad size"); 161 } 162 if (cred == NOCRED) 163 panic("ffs_alloc: missing credential"); 164 #endif /* INVARIANTS */ 165 reclaimed = 0; 166 retry: 167 #ifdef QUOTA 168 UFS_UNLOCK(ump); 169 error = chkdq(ip, btodb(size), cred, 0); 170 if (error) 171 return (error); 172 UFS_LOCK(ump); 173 #endif 174 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 175 goto nospace; 176 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 177 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 178 goto nospace; 179 if (bpref >= fs->fs_size) 180 bpref = 0; 181 if (bpref == 0) 182 cg = ino_to_cg(fs, ip->i_number); 183 else 184 cg = dtog(fs, bpref); 185 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 186 if (bno > 0) { 187 delta = btodb(size); 188 if (ip->i_flag & IN_SPACECOUNTED) { 189 UFS_LOCK(ump); 190 fs->fs_pendingblocks += delta; 191 UFS_UNLOCK(ump); 192 } 193 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 194 ip->i_flag |= IN_CHANGE | IN_UPDATE; 195 *bnp = bno; 196 return (0); 197 } 198 nospace: 199 #ifdef QUOTA 200 UFS_UNLOCK(ump); 201 /* 202 * Restore user's disk quota because allocation failed. 203 */ 204 (void) chkdq(ip, -btodb(size), cred, FORCE); 205 UFS_LOCK(ump); 206 #endif 207 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 208 reclaimed = 1; 209 softdep_request_cleanup(fs, ITOV(ip)); 210 goto retry; 211 } 212 UFS_UNLOCK(ump); 213 if (ppsratecheck(&lastfail, &curfail, 1)) { 214 ffs_fserr(fs, ip->i_number, "filesystem full"); 215 uprintf("\n%s: write failed, filesystem is full\n", 216 fs->fs_fsmnt); 217 } 218 return (ENOSPC); 219 } 220 221 /* 222 * Reallocate a fragment to a bigger size 223 * 224 * The number and size of the old block is given, and a preference 225 * and new size is also specified. The allocator attempts to extend 226 * the original block. Failing that, the regular block allocator is 227 * invoked to get an appropriate block. 228 */ 229 int 230 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp) 231 struct inode *ip; 232 ufs2_daddr_t lbprev; 233 ufs2_daddr_t bprev; 234 ufs2_daddr_t bpref; 235 int osize, nsize; 236 struct ucred *cred; 237 struct buf **bpp; 238 { 239 struct vnode *vp; 240 struct fs *fs; 241 struct buf *bp; 242 struct ufsmount *ump; 243 int cg, request, error, reclaimed; 244 ufs2_daddr_t bno; 245 static struct timeval lastfail; 246 static int curfail; 247 int64_t delta; 248 249 *bpp = 0; 250 vp = ITOV(ip); 251 fs = ip->i_fs; 252 bp = NULL; 253 ump = ip->i_ump; 254 mtx_assert(UFS_MTX(ump), MA_OWNED); 255 #ifdef INVARIANTS 256 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 257 panic("ffs_realloccg: allocation on suspended filesystem"); 258 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 259 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 260 printf( 261 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 262 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 263 nsize, fs->fs_fsmnt); 264 panic("ffs_realloccg: bad size"); 265 } 266 if (cred == NOCRED) 267 panic("ffs_realloccg: missing credential"); 268 #endif /* INVARIANTS */ 269 reclaimed = 0; 270 retry: 271 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 272 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 273 goto nospace; 274 } 275 if (bprev == 0) { 276 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 277 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 278 fs->fs_fsmnt); 279 panic("ffs_realloccg: bad bprev"); 280 } 281 UFS_UNLOCK(ump); 282 /* 283 * Allocate the extra space in the buffer. 284 */ 285 error = bread(vp, lbprev, osize, NOCRED, &bp); 286 if (error) { 287 brelse(bp); 288 return (error); 289 } 290 291 if (bp->b_blkno == bp->b_lblkno) { 292 if (lbprev >= NDADDR) 293 panic("ffs_realloccg: lbprev out of range"); 294 bp->b_blkno = fsbtodb(fs, bprev); 295 } 296 297 #ifdef QUOTA 298 error = chkdq(ip, btodb(nsize - osize), cred, 0); 299 if (error) { 300 brelse(bp); 301 return (error); 302 } 303 #endif 304 /* 305 * Check for extension in the existing location. 306 */ 307 cg = dtog(fs, bprev); 308 UFS_LOCK(ump); 309 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 310 if (bno) { 311 if (bp->b_blkno != fsbtodb(fs, bno)) 312 panic("ffs_realloccg: bad blockno"); 313 delta = btodb(nsize - osize); 314 if (ip->i_flag & IN_SPACECOUNTED) { 315 UFS_LOCK(ump); 316 fs->fs_pendingblocks += delta; 317 UFS_UNLOCK(ump); 318 } 319 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 320 ip->i_flag |= IN_CHANGE | IN_UPDATE; 321 allocbuf(bp, nsize); 322 bp->b_flags |= B_DONE; 323 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO) 324 bzero((char *)bp->b_data + osize, nsize - osize); 325 else 326 vfs_bio_clrbuf(bp); 327 *bpp = bp; 328 return (0); 329 } 330 /* 331 * Allocate a new disk location. 332 */ 333 if (bpref >= fs->fs_size) 334 bpref = 0; 335 switch ((int)fs->fs_optim) { 336 case FS_OPTSPACE: 337 /* 338 * Allocate an exact sized fragment. Although this makes 339 * best use of space, we will waste time relocating it if 340 * the file continues to grow. If the fragmentation is 341 * less than half of the minimum free reserve, we choose 342 * to begin optimizing for time. 343 */ 344 request = nsize; 345 if (fs->fs_minfree <= 5 || 346 fs->fs_cstotal.cs_nffree > 347 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 348 break; 349 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 350 fs->fs_fsmnt); 351 fs->fs_optim = FS_OPTTIME; 352 break; 353 case FS_OPTTIME: 354 /* 355 * At this point we have discovered a file that is trying to 356 * grow a small fragment to a larger fragment. To save time, 357 * we allocate a full sized block, then free the unused portion. 358 * If the file continues to grow, the `ffs_fragextend' call 359 * above will be able to grow it in place without further 360 * copying. If aberrant programs cause disk fragmentation to 361 * grow within 2% of the free reserve, we choose to begin 362 * optimizing for space. 363 */ 364 request = fs->fs_bsize; 365 if (fs->fs_cstotal.cs_nffree < 366 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 367 break; 368 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 369 fs->fs_fsmnt); 370 fs->fs_optim = FS_OPTSPACE; 371 break; 372 default: 373 printf("dev = %s, optim = %ld, fs = %s\n", 374 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 375 panic("ffs_realloccg: bad optim"); 376 /* NOTREACHED */ 377 } 378 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 379 if (bno > 0) { 380 bp->b_blkno = fsbtodb(fs, bno); 381 if (!DOINGSOFTDEP(vp)) 382 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 383 ip->i_number); 384 if (nsize < request) 385 ffs_blkfree(ump, fs, ip->i_devvp, 386 bno + numfrags(fs, nsize), 387 (long)(request - nsize), ip->i_number); 388 delta = btodb(nsize - osize); 389 if (ip->i_flag & IN_SPACECOUNTED) { 390 UFS_LOCK(ump); 391 fs->fs_pendingblocks += delta; 392 UFS_UNLOCK(ump); 393 } 394 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 395 ip->i_flag |= IN_CHANGE | IN_UPDATE; 396 allocbuf(bp, nsize); 397 bp->b_flags |= B_DONE; 398 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO) 399 bzero((char *)bp->b_data + osize, nsize - osize); 400 else 401 vfs_bio_clrbuf(bp); 402 *bpp = bp; 403 return (0); 404 } 405 #ifdef QUOTA 406 UFS_UNLOCK(ump); 407 /* 408 * Restore user's disk quota because allocation failed. 409 */ 410 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 411 UFS_LOCK(ump); 412 #endif 413 nospace: 414 /* 415 * no space available 416 */ 417 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 418 reclaimed = 1; 419 softdep_request_cleanup(fs, vp); 420 UFS_UNLOCK(ump); 421 if (bp) 422 brelse(bp); 423 UFS_LOCK(ump); 424 goto retry; 425 } 426 UFS_UNLOCK(ump); 427 if (bp) 428 brelse(bp); 429 if (ppsratecheck(&lastfail, &curfail, 1)) { 430 ffs_fserr(fs, ip->i_number, "filesystem full"); 431 uprintf("\n%s: write failed, filesystem is full\n", 432 fs->fs_fsmnt); 433 } 434 return (ENOSPC); 435 } 436 437 /* 438 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 439 * 440 * The vnode and an array of buffer pointers for a range of sequential 441 * logical blocks to be made contiguous is given. The allocator attempts 442 * to find a range of sequential blocks starting as close as possible 443 * from the end of the allocation for the logical block immediately 444 * preceding the current range. If successful, the physical block numbers 445 * in the buffer pointers and in the inode are changed to reflect the new 446 * allocation. If unsuccessful, the allocation is left unchanged. The 447 * success in doing the reallocation is returned. Note that the error 448 * return is not reflected back to the user. Rather the previous block 449 * allocation will be used. 450 */ 451 452 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 453 454 static int doasyncfree = 1; 455 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 456 457 static int doreallocblks = 1; 458 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 459 460 #ifdef DEBUG 461 static volatile int prtrealloc = 0; 462 #endif 463 464 int 465 ffs_reallocblks(ap) 466 struct vop_reallocblks_args /* { 467 struct vnode *a_vp; 468 struct cluster_save *a_buflist; 469 } */ *ap; 470 { 471 472 if (doreallocblks == 0) 473 return (ENOSPC); 474 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 475 return (ffs_reallocblks_ufs1(ap)); 476 return (ffs_reallocblks_ufs2(ap)); 477 } 478 479 static int 480 ffs_reallocblks_ufs1(ap) 481 struct vop_reallocblks_args /* { 482 struct vnode *a_vp; 483 struct cluster_save *a_buflist; 484 } */ *ap; 485 { 486 struct fs *fs; 487 struct inode *ip; 488 struct vnode *vp; 489 struct buf *sbp, *ebp; 490 ufs1_daddr_t *bap, *sbap, *ebap = 0; 491 struct cluster_save *buflist; 492 struct ufsmount *ump; 493 ufs_lbn_t start_lbn, end_lbn; 494 ufs1_daddr_t soff, newblk, blkno; 495 ufs2_daddr_t pref; 496 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 497 int i, len, start_lvl, end_lvl, ssize; 498 499 vp = ap->a_vp; 500 ip = VTOI(vp); 501 fs = ip->i_fs; 502 ump = ip->i_ump; 503 if (fs->fs_contigsumsize <= 0) 504 return (ENOSPC); 505 buflist = ap->a_buflist; 506 len = buflist->bs_nchildren; 507 start_lbn = buflist->bs_children[0]->b_lblkno; 508 end_lbn = start_lbn + len - 1; 509 #ifdef INVARIANTS 510 for (i = 0; i < len; i++) 511 if (!ffs_checkblk(ip, 512 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 513 panic("ffs_reallocblks: unallocated block 1"); 514 for (i = 1; i < len; i++) 515 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 516 panic("ffs_reallocblks: non-logical cluster"); 517 blkno = buflist->bs_children[0]->b_blkno; 518 ssize = fsbtodb(fs, fs->fs_frag); 519 for (i = 1; i < len - 1; i++) 520 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 521 panic("ffs_reallocblks: non-physical cluster %d", i); 522 #endif 523 /* 524 * If the latest allocation is in a new cylinder group, assume that 525 * the filesystem has decided to move and do not force it back to 526 * the previous cylinder group. 527 */ 528 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 529 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 530 return (ENOSPC); 531 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 532 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 533 return (ENOSPC); 534 /* 535 * Get the starting offset and block map for the first block. 536 */ 537 if (start_lvl == 0) { 538 sbap = &ip->i_din1->di_db[0]; 539 soff = start_lbn; 540 } else { 541 idp = &start_ap[start_lvl - 1]; 542 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 543 brelse(sbp); 544 return (ENOSPC); 545 } 546 sbap = (ufs1_daddr_t *)sbp->b_data; 547 soff = idp->in_off; 548 } 549 /* 550 * If the block range spans two block maps, get the second map. 551 */ 552 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 553 ssize = len; 554 } else { 555 #ifdef INVARIANTS 556 if (start_lvl > 0 && 557 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 558 panic("ffs_reallocblk: start == end"); 559 #endif 560 ssize = len - (idp->in_off + 1); 561 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 562 goto fail; 563 ebap = (ufs1_daddr_t *)ebp->b_data; 564 } 565 /* 566 * Find the preferred location for the cluster. 567 */ 568 UFS_LOCK(ump); 569 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 570 /* 571 * Search the block map looking for an allocation of the desired size. 572 */ 573 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 574 len, ffs_clusteralloc)) == 0) { 575 UFS_UNLOCK(ump); 576 goto fail; 577 } 578 /* 579 * We have found a new contiguous block. 580 * 581 * First we have to replace the old block pointers with the new 582 * block pointers in the inode and indirect blocks associated 583 * with the file. 584 */ 585 #ifdef DEBUG 586 if (prtrealloc) 587 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 588 (intmax_t)start_lbn, (intmax_t)end_lbn); 589 #endif 590 blkno = newblk; 591 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 592 if (i == ssize) { 593 bap = ebap; 594 soff = -i; 595 } 596 #ifdef INVARIANTS 597 if (!ffs_checkblk(ip, 598 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 599 panic("ffs_reallocblks: unallocated block 2"); 600 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 601 panic("ffs_reallocblks: alloc mismatch"); 602 #endif 603 #ifdef DEBUG 604 if (prtrealloc) 605 printf(" %d,", *bap); 606 #endif 607 if (DOINGSOFTDEP(vp)) { 608 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 609 softdep_setup_allocdirect(ip, start_lbn + i, 610 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 611 buflist->bs_children[i]); 612 else 613 softdep_setup_allocindir_page(ip, start_lbn + i, 614 i < ssize ? sbp : ebp, soff + i, blkno, 615 *bap, buflist->bs_children[i]); 616 } 617 *bap++ = blkno; 618 } 619 /* 620 * Next we must write out the modified inode and indirect blocks. 621 * For strict correctness, the writes should be synchronous since 622 * the old block values may have been written to disk. In practise 623 * they are almost never written, but if we are concerned about 624 * strict correctness, the `doasyncfree' flag should be set to zero. 625 * 626 * The test on `doasyncfree' should be changed to test a flag 627 * that shows whether the associated buffers and inodes have 628 * been written. The flag should be set when the cluster is 629 * started and cleared whenever the buffer or inode is flushed. 630 * We can then check below to see if it is set, and do the 631 * synchronous write only when it has been cleared. 632 */ 633 if (sbap != &ip->i_din1->di_db[0]) { 634 if (doasyncfree) 635 bdwrite(sbp); 636 else 637 bwrite(sbp); 638 } else { 639 ip->i_flag |= IN_CHANGE | IN_UPDATE; 640 if (!doasyncfree) 641 ffs_update(vp, 1); 642 } 643 if (ssize < len) { 644 if (doasyncfree) 645 bdwrite(ebp); 646 else 647 bwrite(ebp); 648 } 649 /* 650 * Last, free the old blocks and assign the new blocks to the buffers. 651 */ 652 #ifdef DEBUG 653 if (prtrealloc) 654 printf("\n\tnew:"); 655 #endif 656 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 657 if (!DOINGSOFTDEP(vp)) 658 ffs_blkfree(ump, fs, ip->i_devvp, 659 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 660 fs->fs_bsize, ip->i_number); 661 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 662 #ifdef INVARIANTS 663 if (!ffs_checkblk(ip, 664 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 665 panic("ffs_reallocblks: unallocated block 3"); 666 #endif 667 #ifdef DEBUG 668 if (prtrealloc) 669 printf(" %d,", blkno); 670 #endif 671 } 672 #ifdef DEBUG 673 if (prtrealloc) { 674 prtrealloc--; 675 printf("\n"); 676 } 677 #endif 678 return (0); 679 680 fail: 681 if (ssize < len) 682 brelse(ebp); 683 if (sbap != &ip->i_din1->di_db[0]) 684 brelse(sbp); 685 return (ENOSPC); 686 } 687 688 static int 689 ffs_reallocblks_ufs2(ap) 690 struct vop_reallocblks_args /* { 691 struct vnode *a_vp; 692 struct cluster_save *a_buflist; 693 } */ *ap; 694 { 695 struct fs *fs; 696 struct inode *ip; 697 struct vnode *vp; 698 struct buf *sbp, *ebp; 699 ufs2_daddr_t *bap, *sbap, *ebap = 0; 700 struct cluster_save *buflist; 701 struct ufsmount *ump; 702 ufs_lbn_t start_lbn, end_lbn; 703 ufs2_daddr_t soff, newblk, blkno, pref; 704 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 705 int i, len, start_lvl, end_lvl, ssize; 706 707 vp = ap->a_vp; 708 ip = VTOI(vp); 709 fs = ip->i_fs; 710 ump = ip->i_ump; 711 if (fs->fs_contigsumsize <= 0) 712 return (ENOSPC); 713 buflist = ap->a_buflist; 714 len = buflist->bs_nchildren; 715 start_lbn = buflist->bs_children[0]->b_lblkno; 716 end_lbn = start_lbn + len - 1; 717 #ifdef INVARIANTS 718 for (i = 0; i < len; i++) 719 if (!ffs_checkblk(ip, 720 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 721 panic("ffs_reallocblks: unallocated block 1"); 722 for (i = 1; i < len; i++) 723 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 724 panic("ffs_reallocblks: non-logical cluster"); 725 blkno = buflist->bs_children[0]->b_blkno; 726 ssize = fsbtodb(fs, fs->fs_frag); 727 for (i = 1; i < len - 1; i++) 728 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 729 panic("ffs_reallocblks: non-physical cluster %d", i); 730 #endif 731 /* 732 * If the latest allocation is in a new cylinder group, assume that 733 * the filesystem has decided to move and do not force it back to 734 * the previous cylinder group. 735 */ 736 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 737 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 738 return (ENOSPC); 739 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 740 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 741 return (ENOSPC); 742 /* 743 * Get the starting offset and block map for the first block. 744 */ 745 if (start_lvl == 0) { 746 sbap = &ip->i_din2->di_db[0]; 747 soff = start_lbn; 748 } else { 749 idp = &start_ap[start_lvl - 1]; 750 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 751 brelse(sbp); 752 return (ENOSPC); 753 } 754 sbap = (ufs2_daddr_t *)sbp->b_data; 755 soff = idp->in_off; 756 } 757 /* 758 * If the block range spans two block maps, get the second map. 759 */ 760 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 761 ssize = len; 762 } else { 763 #ifdef INVARIANTS 764 if (start_lvl > 0 && 765 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 766 panic("ffs_reallocblk: start == end"); 767 #endif 768 ssize = len - (idp->in_off + 1); 769 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 770 goto fail; 771 ebap = (ufs2_daddr_t *)ebp->b_data; 772 } 773 /* 774 * Find the preferred location for the cluster. 775 */ 776 UFS_LOCK(ump); 777 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 778 /* 779 * Search the block map looking for an allocation of the desired size. 780 */ 781 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 782 len, ffs_clusteralloc)) == 0) { 783 UFS_UNLOCK(ump); 784 goto fail; 785 } 786 /* 787 * We have found a new contiguous block. 788 * 789 * First we have to replace the old block pointers with the new 790 * block pointers in the inode and indirect blocks associated 791 * with the file. 792 */ 793 #ifdef DEBUG 794 if (prtrealloc) 795 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 796 (intmax_t)start_lbn, (intmax_t)end_lbn); 797 #endif 798 blkno = newblk; 799 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 800 if (i == ssize) { 801 bap = ebap; 802 soff = -i; 803 } 804 #ifdef INVARIANTS 805 if (!ffs_checkblk(ip, 806 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 807 panic("ffs_reallocblks: unallocated block 2"); 808 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 809 panic("ffs_reallocblks: alloc mismatch"); 810 #endif 811 #ifdef DEBUG 812 if (prtrealloc) 813 printf(" %jd,", (intmax_t)*bap); 814 #endif 815 if (DOINGSOFTDEP(vp)) { 816 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 817 softdep_setup_allocdirect(ip, start_lbn + i, 818 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 819 buflist->bs_children[i]); 820 else 821 softdep_setup_allocindir_page(ip, start_lbn + i, 822 i < ssize ? sbp : ebp, soff + i, blkno, 823 *bap, buflist->bs_children[i]); 824 } 825 *bap++ = blkno; 826 } 827 /* 828 * Next we must write out the modified inode and indirect blocks. 829 * For strict correctness, the writes should be synchronous since 830 * the old block values may have been written to disk. In practise 831 * they are almost never written, but if we are concerned about 832 * strict correctness, the `doasyncfree' flag should be set to zero. 833 * 834 * The test on `doasyncfree' should be changed to test a flag 835 * that shows whether the associated buffers and inodes have 836 * been written. The flag should be set when the cluster is 837 * started and cleared whenever the buffer or inode is flushed. 838 * We can then check below to see if it is set, and do the 839 * synchronous write only when it has been cleared. 840 */ 841 if (sbap != &ip->i_din2->di_db[0]) { 842 if (doasyncfree) 843 bdwrite(sbp); 844 else 845 bwrite(sbp); 846 } else { 847 ip->i_flag |= IN_CHANGE | IN_UPDATE; 848 if (!doasyncfree) 849 ffs_update(vp, 1); 850 } 851 if (ssize < len) { 852 if (doasyncfree) 853 bdwrite(ebp); 854 else 855 bwrite(ebp); 856 } 857 /* 858 * Last, free the old blocks and assign the new blocks to the buffers. 859 */ 860 #ifdef DEBUG 861 if (prtrealloc) 862 printf("\n\tnew:"); 863 #endif 864 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 865 if (!DOINGSOFTDEP(vp)) 866 ffs_blkfree(ump, fs, ip->i_devvp, 867 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 868 fs->fs_bsize, ip->i_number); 869 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 870 #ifdef INVARIANTS 871 if (!ffs_checkblk(ip, 872 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 873 panic("ffs_reallocblks: unallocated block 3"); 874 #endif 875 #ifdef DEBUG 876 if (prtrealloc) 877 printf(" %jd,", (intmax_t)blkno); 878 #endif 879 } 880 #ifdef DEBUG 881 if (prtrealloc) { 882 prtrealloc--; 883 printf("\n"); 884 } 885 #endif 886 return (0); 887 888 fail: 889 if (ssize < len) 890 brelse(ebp); 891 if (sbap != &ip->i_din2->di_db[0]) 892 brelse(sbp); 893 return (ENOSPC); 894 } 895 896 /* 897 * Allocate an inode in the filesystem. 898 * 899 * If allocating a directory, use ffs_dirpref to select the inode. 900 * If allocating in a directory, the following hierarchy is followed: 901 * 1) allocate the preferred inode. 902 * 2) allocate an inode in the same cylinder group. 903 * 3) quadradically rehash into other cylinder groups, until an 904 * available inode is located. 905 * If no inode preference is given the following hierarchy is used 906 * to allocate an inode: 907 * 1) allocate an inode in cylinder group 0. 908 * 2) quadradically rehash into other cylinder groups, until an 909 * available inode is located. 910 */ 911 int 912 ffs_valloc(pvp, mode, cred, vpp) 913 struct vnode *pvp; 914 int mode; 915 struct ucred *cred; 916 struct vnode **vpp; 917 { 918 struct inode *pip; 919 struct fs *fs; 920 struct inode *ip; 921 struct timespec ts; 922 struct ufsmount *ump; 923 ino_t ino, ipref; 924 int cg, error; 925 static struct timeval lastfail; 926 static int curfail; 927 928 *vpp = NULL; 929 pip = VTOI(pvp); 930 fs = pip->i_fs; 931 ump = pip->i_ump; 932 933 UFS_LOCK(ump); 934 if (fs->fs_cstotal.cs_nifree == 0) 935 goto noinodes; 936 937 if ((mode & IFMT) == IFDIR) 938 ipref = ffs_dirpref(pip); 939 else 940 ipref = pip->i_number; 941 if (ipref >= fs->fs_ncg * fs->fs_ipg) 942 ipref = 0; 943 cg = ino_to_cg(fs, ipref); 944 /* 945 * Track number of dirs created one after another 946 * in a same cg without intervening by files. 947 */ 948 if ((mode & IFMT) == IFDIR) { 949 if (fs->fs_contigdirs[cg] < 255) 950 fs->fs_contigdirs[cg]++; 951 } else { 952 if (fs->fs_contigdirs[cg] > 0) 953 fs->fs_contigdirs[cg]--; 954 } 955 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 956 (allocfcn_t *)ffs_nodealloccg); 957 if (ino == 0) 958 goto noinodes; 959 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 960 if (error) { 961 ffs_vfree(pvp, ino, mode); 962 return (error); 963 } 964 ip = VTOI(*vpp); 965 if (ip->i_mode) { 966 printf("mode = 0%o, inum = %lu, fs = %s\n", 967 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 968 panic("ffs_valloc: dup alloc"); 969 } 970 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 971 printf("free inode %s/%lu had %ld blocks\n", 972 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 973 DIP_SET(ip, i_blocks, 0); 974 } 975 ip->i_flags = 0; 976 DIP_SET(ip, i_flags, 0); 977 /* 978 * Set up a new generation number for this inode. 979 */ 980 if (ip->i_gen == 0 || ++ip->i_gen == 0) 981 ip->i_gen = arc4random() / 2 + 1; 982 DIP_SET(ip, i_gen, ip->i_gen); 983 if (fs->fs_magic == FS_UFS2_MAGIC) { 984 vfs_timestamp(&ts); 985 ip->i_din2->di_birthtime = ts.tv_sec; 986 ip->i_din2->di_birthnsec = ts.tv_nsec; 987 } 988 ip->i_flag = 0; 989 vnode_destroy_vobject(*vpp); 990 (*vpp)->v_type = VNON; 991 if (fs->fs_magic == FS_UFS2_MAGIC) 992 (*vpp)->v_op = &ffs_vnodeops2; 993 else 994 (*vpp)->v_op = &ffs_vnodeops1; 995 return (0); 996 noinodes: 997 UFS_UNLOCK(ump); 998 if (ppsratecheck(&lastfail, &curfail, 1)) { 999 ffs_fserr(fs, pip->i_number, "out of inodes"); 1000 uprintf("\n%s: create/symlink failed, no inodes free\n", 1001 fs->fs_fsmnt); 1002 } 1003 return (ENOSPC); 1004 } 1005 1006 /* 1007 * Find a cylinder group to place a directory. 1008 * 1009 * The policy implemented by this algorithm is to allocate a 1010 * directory inode in the same cylinder group as its parent 1011 * directory, but also to reserve space for its files inodes 1012 * and data. Restrict the number of directories which may be 1013 * allocated one after another in the same cylinder group 1014 * without intervening allocation of files. 1015 * 1016 * If we allocate a first level directory then force allocation 1017 * in another cylinder group. 1018 */ 1019 static ino_t 1020 ffs_dirpref(pip) 1021 struct inode *pip; 1022 { 1023 struct fs *fs; 1024 int cg, prefcg, dirsize, cgsize; 1025 int avgifree, avgbfree, avgndir, curdirsize; 1026 int minifree, minbfree, maxndir; 1027 int mincg, minndir; 1028 int maxcontigdirs; 1029 1030 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1031 fs = pip->i_fs; 1032 1033 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1034 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1035 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1036 1037 /* 1038 * Force allocation in another cg if creating a first level dir. 1039 */ 1040 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1041 if (ITOV(pip)->v_vflag & VV_ROOT) { 1042 prefcg = arc4random() % fs->fs_ncg; 1043 mincg = prefcg; 1044 minndir = fs->fs_ipg; 1045 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1046 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1047 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1048 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1049 mincg = cg; 1050 minndir = fs->fs_cs(fs, cg).cs_ndir; 1051 } 1052 for (cg = 0; cg < prefcg; cg++) 1053 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1054 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1055 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1056 mincg = cg; 1057 minndir = fs->fs_cs(fs, cg).cs_ndir; 1058 } 1059 return ((ino_t)(fs->fs_ipg * mincg)); 1060 } 1061 1062 /* 1063 * Count various limits which used for 1064 * optimal allocation of a directory inode. 1065 */ 1066 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1067 minifree = avgifree - avgifree / 4; 1068 if (minifree < 1) 1069 minifree = 1; 1070 minbfree = avgbfree - avgbfree / 4; 1071 if (minbfree < 1) 1072 minbfree = 1; 1073 cgsize = fs->fs_fsize * fs->fs_fpg; 1074 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1075 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1076 if (dirsize < curdirsize) 1077 dirsize = curdirsize; 1078 if (dirsize <= 0) 1079 maxcontigdirs = 0; /* dirsize overflowed */ 1080 else 1081 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1082 if (fs->fs_avgfpdir > 0) 1083 maxcontigdirs = min(maxcontigdirs, 1084 fs->fs_ipg / fs->fs_avgfpdir); 1085 if (maxcontigdirs == 0) 1086 maxcontigdirs = 1; 1087 1088 /* 1089 * Limit number of dirs in one cg and reserve space for 1090 * regular files, but only if we have no deficit in 1091 * inodes or space. 1092 */ 1093 prefcg = ino_to_cg(fs, pip->i_number); 1094 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1095 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1096 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1097 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1098 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1099 return ((ino_t)(fs->fs_ipg * cg)); 1100 } 1101 for (cg = 0; cg < prefcg; cg++) 1102 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1103 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1104 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1105 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1106 return ((ino_t)(fs->fs_ipg * cg)); 1107 } 1108 /* 1109 * This is a backstop when we have deficit in space. 1110 */ 1111 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1112 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1113 return ((ino_t)(fs->fs_ipg * cg)); 1114 for (cg = 0; cg < prefcg; cg++) 1115 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1116 break; 1117 return ((ino_t)(fs->fs_ipg * cg)); 1118 } 1119 1120 /* 1121 * Select the desired position for the next block in a file. The file is 1122 * logically divided into sections. The first section is composed of the 1123 * direct blocks. Each additional section contains fs_maxbpg blocks. 1124 * 1125 * If no blocks have been allocated in the first section, the policy is to 1126 * request a block in the same cylinder group as the inode that describes 1127 * the file. If no blocks have been allocated in any other section, the 1128 * policy is to place the section in a cylinder group with a greater than 1129 * average number of free blocks. An appropriate cylinder group is found 1130 * by using a rotor that sweeps the cylinder groups. When a new group of 1131 * blocks is needed, the sweep begins in the cylinder group following the 1132 * cylinder group from which the previous allocation was made. The sweep 1133 * continues until a cylinder group with greater than the average number 1134 * of free blocks is found. If the allocation is for the first block in an 1135 * indirect block, the information on the previous allocation is unavailable; 1136 * here a best guess is made based upon the logical block number being 1137 * allocated. 1138 * 1139 * If a section is already partially allocated, the policy is to 1140 * contiguously allocate fs_maxcontig blocks. The end of one of these 1141 * contiguous blocks and the beginning of the next is laid out 1142 * contiguously if possible. 1143 */ 1144 ufs2_daddr_t 1145 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1146 struct inode *ip; 1147 ufs_lbn_t lbn; 1148 int indx; 1149 ufs1_daddr_t *bap; 1150 { 1151 struct fs *fs; 1152 int cg; 1153 int avgbfree, startcg; 1154 1155 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1156 fs = ip->i_fs; 1157 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1158 if (lbn < NDADDR + NINDIR(fs)) { 1159 cg = ino_to_cg(fs, ip->i_number); 1160 return (cgbase(fs, cg) + fs->fs_frag); 1161 } 1162 /* 1163 * Find a cylinder with greater than average number of 1164 * unused data blocks. 1165 */ 1166 if (indx == 0 || bap[indx - 1] == 0) 1167 startcg = 1168 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1169 else 1170 startcg = dtog(fs, bap[indx - 1]) + 1; 1171 startcg %= fs->fs_ncg; 1172 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1173 for (cg = startcg; cg < fs->fs_ncg; cg++) 1174 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1175 fs->fs_cgrotor = cg; 1176 return (cgbase(fs, cg) + fs->fs_frag); 1177 } 1178 for (cg = 0; cg <= startcg; cg++) 1179 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1180 fs->fs_cgrotor = cg; 1181 return (cgbase(fs, cg) + fs->fs_frag); 1182 } 1183 return (0); 1184 } 1185 /* 1186 * We just always try to lay things out contiguously. 1187 */ 1188 return (bap[indx - 1] + fs->fs_frag); 1189 } 1190 1191 /* 1192 * Same as above, but for UFS2 1193 */ 1194 ufs2_daddr_t 1195 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1196 struct inode *ip; 1197 ufs_lbn_t lbn; 1198 int indx; 1199 ufs2_daddr_t *bap; 1200 { 1201 struct fs *fs; 1202 int cg; 1203 int avgbfree, startcg; 1204 1205 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1206 fs = ip->i_fs; 1207 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1208 if (lbn < NDADDR + NINDIR(fs)) { 1209 cg = ino_to_cg(fs, ip->i_number); 1210 return (cgbase(fs, cg) + fs->fs_frag); 1211 } 1212 /* 1213 * Find a cylinder with greater than average number of 1214 * unused data blocks. 1215 */ 1216 if (indx == 0 || bap[indx - 1] == 0) 1217 startcg = 1218 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1219 else 1220 startcg = dtog(fs, bap[indx - 1]) + 1; 1221 startcg %= fs->fs_ncg; 1222 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1223 for (cg = startcg; cg < fs->fs_ncg; cg++) 1224 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1225 fs->fs_cgrotor = cg; 1226 return (cgbase(fs, cg) + fs->fs_frag); 1227 } 1228 for (cg = 0; cg <= startcg; cg++) 1229 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1230 fs->fs_cgrotor = cg; 1231 return (cgbase(fs, cg) + fs->fs_frag); 1232 } 1233 return (0); 1234 } 1235 /* 1236 * We just always try to lay things out contiguously. 1237 */ 1238 return (bap[indx - 1] + fs->fs_frag); 1239 } 1240 1241 /* 1242 * Implement the cylinder overflow algorithm. 1243 * 1244 * The policy implemented by this algorithm is: 1245 * 1) allocate the block in its requested cylinder group. 1246 * 2) quadradically rehash on the cylinder group number. 1247 * 3) brute force search for a free block. 1248 * 1249 * Must be called with the UFS lock held. Will release the lock on success 1250 * and return with it held on failure. 1251 */ 1252 /*VARARGS5*/ 1253 static ufs2_daddr_t 1254 ffs_hashalloc(ip, cg, pref, size, allocator) 1255 struct inode *ip; 1256 int cg; 1257 ufs2_daddr_t pref; 1258 int size; /* size for data blocks, mode for inodes */ 1259 allocfcn_t *allocator; 1260 { 1261 struct fs *fs; 1262 ufs2_daddr_t result; 1263 int i, icg = cg; 1264 1265 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1266 #ifdef INVARIANTS 1267 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1268 panic("ffs_hashalloc: allocation on suspended filesystem"); 1269 #endif 1270 fs = ip->i_fs; 1271 /* 1272 * 1: preferred cylinder group 1273 */ 1274 result = (*allocator)(ip, cg, pref, size); 1275 if (result) 1276 return (result); 1277 /* 1278 * 2: quadratic rehash 1279 */ 1280 for (i = 1; i < fs->fs_ncg; i *= 2) { 1281 cg += i; 1282 if (cg >= fs->fs_ncg) 1283 cg -= fs->fs_ncg; 1284 result = (*allocator)(ip, cg, 0, size); 1285 if (result) 1286 return (result); 1287 } 1288 /* 1289 * 3: brute force search 1290 * Note that we start at i == 2, since 0 was checked initially, 1291 * and 1 is always checked in the quadratic rehash. 1292 */ 1293 cg = (icg + 2) % fs->fs_ncg; 1294 for (i = 2; i < fs->fs_ncg; i++) { 1295 result = (*allocator)(ip, cg, 0, size); 1296 if (result) 1297 return (result); 1298 cg++; 1299 if (cg == fs->fs_ncg) 1300 cg = 0; 1301 } 1302 return (0); 1303 } 1304 1305 /* 1306 * Determine whether a fragment can be extended. 1307 * 1308 * Check to see if the necessary fragments are available, and 1309 * if they are, allocate them. 1310 */ 1311 static ufs2_daddr_t 1312 ffs_fragextend(ip, cg, bprev, osize, nsize) 1313 struct inode *ip; 1314 int cg; 1315 ufs2_daddr_t bprev; 1316 int osize, nsize; 1317 { 1318 struct fs *fs; 1319 struct cg *cgp; 1320 struct buf *bp; 1321 struct ufsmount *ump; 1322 int nffree; 1323 long bno; 1324 int frags, bbase; 1325 int i, error; 1326 u_int8_t *blksfree; 1327 1328 ump = ip->i_ump; 1329 fs = ip->i_fs; 1330 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1331 return (0); 1332 frags = numfrags(fs, nsize); 1333 bbase = fragnum(fs, bprev); 1334 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1335 /* cannot extend across a block boundary */ 1336 return (0); 1337 } 1338 UFS_UNLOCK(ump); 1339 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1340 (int)fs->fs_cgsize, NOCRED, &bp); 1341 if (error) 1342 goto fail; 1343 cgp = (struct cg *)bp->b_data; 1344 if (!cg_chkmagic(cgp)) 1345 goto fail; 1346 bp->b_xflags |= BX_BKGRDWRITE; 1347 cgp->cg_old_time = cgp->cg_time = time_second; 1348 bno = dtogd(fs, bprev); 1349 blksfree = cg_blksfree(cgp); 1350 for (i = numfrags(fs, osize); i < frags; i++) 1351 if (isclr(blksfree, bno + i)) 1352 goto fail; 1353 /* 1354 * the current fragment can be extended 1355 * deduct the count on fragment being extended into 1356 * increase the count on the remaining fragment (if any) 1357 * allocate the extended piece 1358 */ 1359 for (i = frags; i < fs->fs_frag - bbase; i++) 1360 if (isclr(blksfree, bno + i)) 1361 break; 1362 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1363 if (i != frags) 1364 cgp->cg_frsum[i - frags]++; 1365 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1366 clrbit(blksfree, bno + i); 1367 cgp->cg_cs.cs_nffree--; 1368 nffree++; 1369 } 1370 UFS_LOCK(ump); 1371 fs->fs_cstotal.cs_nffree -= nffree; 1372 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1373 fs->fs_fmod = 1; 1374 ACTIVECLEAR(fs, cg); 1375 UFS_UNLOCK(ump); 1376 if (DOINGSOFTDEP(ITOV(ip))) 1377 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev); 1378 bdwrite(bp); 1379 return (bprev); 1380 1381 fail: 1382 brelse(bp); 1383 UFS_LOCK(ump); 1384 return (0); 1385 1386 } 1387 1388 /* 1389 * Determine whether a block can be allocated. 1390 * 1391 * Check to see if a block of the appropriate size is available, 1392 * and if it is, allocate it. 1393 */ 1394 static ufs2_daddr_t 1395 ffs_alloccg(ip, cg, bpref, size) 1396 struct inode *ip; 1397 int cg; 1398 ufs2_daddr_t bpref; 1399 int size; 1400 { 1401 struct fs *fs; 1402 struct cg *cgp; 1403 struct buf *bp; 1404 struct ufsmount *ump; 1405 ufs1_daddr_t bno; 1406 ufs2_daddr_t blkno; 1407 int i, allocsiz, error, frags; 1408 u_int8_t *blksfree; 1409 1410 ump = ip->i_ump; 1411 fs = ip->i_fs; 1412 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1413 return (0); 1414 UFS_UNLOCK(ump); 1415 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1416 (int)fs->fs_cgsize, NOCRED, &bp); 1417 if (error) 1418 goto fail; 1419 cgp = (struct cg *)bp->b_data; 1420 if (!cg_chkmagic(cgp) || 1421 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1422 goto fail; 1423 bp->b_xflags |= BX_BKGRDWRITE; 1424 cgp->cg_old_time = cgp->cg_time = time_second; 1425 if (size == fs->fs_bsize) { 1426 UFS_LOCK(ump); 1427 blkno = ffs_alloccgblk(ip, bp, bpref); 1428 ACTIVECLEAR(fs, cg); 1429 UFS_UNLOCK(ump); 1430 bdwrite(bp); 1431 return (blkno); 1432 } 1433 /* 1434 * check to see if any fragments are already available 1435 * allocsiz is the size which will be allocated, hacking 1436 * it down to a smaller size if necessary 1437 */ 1438 blksfree = cg_blksfree(cgp); 1439 frags = numfrags(fs, size); 1440 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1441 if (cgp->cg_frsum[allocsiz] != 0) 1442 break; 1443 if (allocsiz == fs->fs_frag) { 1444 /* 1445 * no fragments were available, so a block will be 1446 * allocated, and hacked up 1447 */ 1448 if (cgp->cg_cs.cs_nbfree == 0) 1449 goto fail; 1450 UFS_LOCK(ump); 1451 blkno = ffs_alloccgblk(ip, bp, bpref); 1452 bno = dtogd(fs, blkno); 1453 for (i = frags; i < fs->fs_frag; i++) 1454 setbit(blksfree, bno + i); 1455 i = fs->fs_frag - frags; 1456 cgp->cg_cs.cs_nffree += i; 1457 fs->fs_cstotal.cs_nffree += i; 1458 fs->fs_cs(fs, cg).cs_nffree += i; 1459 fs->fs_fmod = 1; 1460 cgp->cg_frsum[i]++; 1461 ACTIVECLEAR(fs, cg); 1462 UFS_UNLOCK(ump); 1463 bdwrite(bp); 1464 return (blkno); 1465 } 1466 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1467 if (bno < 0) 1468 goto fail; 1469 for (i = 0; i < frags; i++) 1470 clrbit(blksfree, bno + i); 1471 cgp->cg_cs.cs_nffree -= frags; 1472 cgp->cg_frsum[allocsiz]--; 1473 if (frags != allocsiz) 1474 cgp->cg_frsum[allocsiz - frags]++; 1475 UFS_LOCK(ump); 1476 fs->fs_cstotal.cs_nffree -= frags; 1477 fs->fs_cs(fs, cg).cs_nffree -= frags; 1478 fs->fs_fmod = 1; 1479 blkno = cgbase(fs, cg) + bno; 1480 ACTIVECLEAR(fs, cg); 1481 UFS_UNLOCK(ump); 1482 if (DOINGSOFTDEP(ITOV(ip))) 1483 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno); 1484 bdwrite(bp); 1485 return (blkno); 1486 1487 fail: 1488 brelse(bp); 1489 UFS_LOCK(ump); 1490 return (0); 1491 } 1492 1493 /* 1494 * Allocate a block in a cylinder group. 1495 * 1496 * This algorithm implements the following policy: 1497 * 1) allocate the requested block. 1498 * 2) allocate a rotationally optimal block in the same cylinder. 1499 * 3) allocate the next available block on the block rotor for the 1500 * specified cylinder group. 1501 * Note that this routine only allocates fs_bsize blocks; these 1502 * blocks may be fragmented by the routine that allocates them. 1503 */ 1504 static ufs2_daddr_t 1505 ffs_alloccgblk(ip, bp, bpref) 1506 struct inode *ip; 1507 struct buf *bp; 1508 ufs2_daddr_t bpref; 1509 { 1510 struct fs *fs; 1511 struct cg *cgp; 1512 struct ufsmount *ump; 1513 ufs1_daddr_t bno; 1514 ufs2_daddr_t blkno; 1515 u_int8_t *blksfree; 1516 1517 fs = ip->i_fs; 1518 ump = ip->i_ump; 1519 mtx_assert(UFS_MTX(ump), MA_OWNED); 1520 cgp = (struct cg *)bp->b_data; 1521 blksfree = cg_blksfree(cgp); 1522 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1523 bpref = cgp->cg_rotor; 1524 } else { 1525 bpref = blknum(fs, bpref); 1526 bno = dtogd(fs, bpref); 1527 /* 1528 * if the requested block is available, use it 1529 */ 1530 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1531 goto gotit; 1532 } 1533 /* 1534 * Take the next available block in this cylinder group. 1535 */ 1536 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1537 if (bno < 0) 1538 return (0); 1539 cgp->cg_rotor = bno; 1540 gotit: 1541 blkno = fragstoblks(fs, bno); 1542 ffs_clrblock(fs, blksfree, (long)blkno); 1543 ffs_clusteracct(ump, fs, cgp, blkno, -1); 1544 cgp->cg_cs.cs_nbfree--; 1545 fs->fs_cstotal.cs_nbfree--; 1546 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1547 fs->fs_fmod = 1; 1548 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1549 /* XXX Fixme. */ 1550 UFS_UNLOCK(ump); 1551 if (DOINGSOFTDEP(ITOV(ip))) 1552 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno); 1553 UFS_LOCK(ump); 1554 return (blkno); 1555 } 1556 1557 /* 1558 * Determine whether a cluster can be allocated. 1559 * 1560 * We do not currently check for optimal rotational layout if there 1561 * are multiple choices in the same cylinder group. Instead we just 1562 * take the first one that we find following bpref. 1563 */ 1564 static ufs2_daddr_t 1565 ffs_clusteralloc(ip, cg, bpref, len) 1566 struct inode *ip; 1567 int cg; 1568 ufs2_daddr_t bpref; 1569 int len; 1570 { 1571 struct fs *fs; 1572 struct cg *cgp; 1573 struct buf *bp; 1574 struct ufsmount *ump; 1575 int i, run, bit, map, got; 1576 ufs2_daddr_t bno; 1577 u_char *mapp; 1578 int32_t *lp; 1579 u_int8_t *blksfree; 1580 1581 fs = ip->i_fs; 1582 ump = ip->i_ump; 1583 if (fs->fs_maxcluster[cg] < len) 1584 return (0); 1585 UFS_UNLOCK(ump); 1586 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1587 NOCRED, &bp)) 1588 goto fail_lock; 1589 cgp = (struct cg *)bp->b_data; 1590 if (!cg_chkmagic(cgp)) 1591 goto fail_lock; 1592 bp->b_xflags |= BX_BKGRDWRITE; 1593 /* 1594 * Check to see if a cluster of the needed size (or bigger) is 1595 * available in this cylinder group. 1596 */ 1597 lp = &cg_clustersum(cgp)[len]; 1598 for (i = len; i <= fs->fs_contigsumsize; i++) 1599 if (*lp++ > 0) 1600 break; 1601 if (i > fs->fs_contigsumsize) { 1602 /* 1603 * This is the first time looking for a cluster in this 1604 * cylinder group. Update the cluster summary information 1605 * to reflect the true maximum sized cluster so that 1606 * future cluster allocation requests can avoid reading 1607 * the cylinder group map only to find no clusters. 1608 */ 1609 lp = &cg_clustersum(cgp)[len - 1]; 1610 for (i = len - 1; i > 0; i--) 1611 if (*lp-- > 0) 1612 break; 1613 UFS_LOCK(ump); 1614 fs->fs_maxcluster[cg] = i; 1615 goto fail; 1616 } 1617 /* 1618 * Search the cluster map to find a big enough cluster. 1619 * We take the first one that we find, even if it is larger 1620 * than we need as we prefer to get one close to the previous 1621 * block allocation. We do not search before the current 1622 * preference point as we do not want to allocate a block 1623 * that is allocated before the previous one (as we will 1624 * then have to wait for another pass of the elevator 1625 * algorithm before it will be read). We prefer to fail and 1626 * be recalled to try an allocation in the next cylinder group. 1627 */ 1628 if (dtog(fs, bpref) != cg) 1629 bpref = 0; 1630 else 1631 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1632 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1633 map = *mapp++; 1634 bit = 1 << (bpref % NBBY); 1635 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1636 if ((map & bit) == 0) { 1637 run = 0; 1638 } else { 1639 run++; 1640 if (run == len) 1641 break; 1642 } 1643 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1644 bit <<= 1; 1645 } else { 1646 map = *mapp++; 1647 bit = 1; 1648 } 1649 } 1650 if (got >= cgp->cg_nclusterblks) 1651 goto fail_lock; 1652 /* 1653 * Allocate the cluster that we have found. 1654 */ 1655 blksfree = cg_blksfree(cgp); 1656 for (i = 1; i <= len; i++) 1657 if (!ffs_isblock(fs, blksfree, got - run + i)) 1658 panic("ffs_clusteralloc: map mismatch"); 1659 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1660 if (dtog(fs, bno) != cg) 1661 panic("ffs_clusteralloc: allocated out of group"); 1662 len = blkstofrags(fs, len); 1663 UFS_LOCK(ump); 1664 for (i = 0; i < len; i += fs->fs_frag) 1665 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1666 panic("ffs_clusteralloc: lost block"); 1667 ACTIVECLEAR(fs, cg); 1668 UFS_UNLOCK(ump); 1669 bdwrite(bp); 1670 return (bno); 1671 1672 fail_lock: 1673 UFS_LOCK(ump); 1674 fail: 1675 brelse(bp); 1676 return (0); 1677 } 1678 1679 /* 1680 * Determine whether an inode can be allocated. 1681 * 1682 * Check to see if an inode is available, and if it is, 1683 * allocate it using the following policy: 1684 * 1) allocate the requested inode. 1685 * 2) allocate the next available inode after the requested 1686 * inode in the specified cylinder group. 1687 */ 1688 static ufs2_daddr_t 1689 ffs_nodealloccg(ip, cg, ipref, mode) 1690 struct inode *ip; 1691 int cg; 1692 ufs2_daddr_t ipref; 1693 int mode; 1694 { 1695 struct fs *fs; 1696 struct cg *cgp; 1697 struct buf *bp, *ibp; 1698 struct ufsmount *ump; 1699 u_int8_t *inosused; 1700 struct ufs2_dinode *dp2; 1701 int error, start, len, loc, map, i; 1702 1703 fs = ip->i_fs; 1704 ump = ip->i_ump; 1705 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1706 return (0); 1707 UFS_UNLOCK(ump); 1708 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1709 (int)fs->fs_cgsize, NOCRED, &bp); 1710 if (error) { 1711 brelse(bp); 1712 UFS_LOCK(ump); 1713 return (0); 1714 } 1715 cgp = (struct cg *)bp->b_data; 1716 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1717 brelse(bp); 1718 UFS_LOCK(ump); 1719 return (0); 1720 } 1721 bp->b_xflags |= BX_BKGRDWRITE; 1722 cgp->cg_old_time = cgp->cg_time = time_second; 1723 inosused = cg_inosused(cgp); 1724 if (ipref) { 1725 ipref %= fs->fs_ipg; 1726 if (isclr(inosused, ipref)) 1727 goto gotit; 1728 } 1729 start = cgp->cg_irotor / NBBY; 1730 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1731 loc = skpc(0xff, len, &inosused[start]); 1732 if (loc == 0) { 1733 len = start + 1; 1734 start = 0; 1735 loc = skpc(0xff, len, &inosused[0]); 1736 if (loc == 0) { 1737 printf("cg = %d, irotor = %ld, fs = %s\n", 1738 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1739 panic("ffs_nodealloccg: map corrupted"); 1740 /* NOTREACHED */ 1741 } 1742 } 1743 i = start + len - loc; 1744 map = inosused[i]; 1745 ipref = i * NBBY; 1746 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1747 if ((map & i) == 0) { 1748 cgp->cg_irotor = ipref; 1749 goto gotit; 1750 } 1751 } 1752 printf("fs = %s\n", fs->fs_fsmnt); 1753 panic("ffs_nodealloccg: block not in map"); 1754 /* NOTREACHED */ 1755 gotit: 1756 /* 1757 * Check to see if we need to initialize more inodes. 1758 */ 1759 ibp = NULL; 1760 if (fs->fs_magic == FS_UFS2_MAGIC && 1761 ipref + INOPB(fs) > cgp->cg_initediblk && 1762 cgp->cg_initediblk < cgp->cg_niblk) { 1763 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1764 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1765 (int)fs->fs_bsize, 0, 0, 0); 1766 bzero(ibp->b_data, (int)fs->fs_bsize); 1767 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1768 for (i = 0; i < INOPB(fs); i++) { 1769 dp2->di_gen = arc4random() / 2 + 1; 1770 dp2++; 1771 } 1772 cgp->cg_initediblk += INOPB(fs); 1773 } 1774 UFS_LOCK(ump); 1775 ACTIVECLEAR(fs, cg); 1776 setbit(inosused, ipref); 1777 cgp->cg_cs.cs_nifree--; 1778 fs->fs_cstotal.cs_nifree--; 1779 fs->fs_cs(fs, cg).cs_nifree--; 1780 fs->fs_fmod = 1; 1781 if ((mode & IFMT) == IFDIR) { 1782 cgp->cg_cs.cs_ndir++; 1783 fs->fs_cstotal.cs_ndir++; 1784 fs->fs_cs(fs, cg).cs_ndir++; 1785 } 1786 UFS_UNLOCK(ump); 1787 if (DOINGSOFTDEP(ITOV(ip))) 1788 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1789 bdwrite(bp); 1790 if (ibp != NULL) 1791 bawrite(ibp); 1792 return (cg * fs->fs_ipg + ipref); 1793 } 1794 1795 /* 1796 * check if a block is free 1797 */ 1798 static int 1799 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 1800 { 1801 1802 switch ((int)fs->fs_frag) { 1803 case 8: 1804 return (cp[h] == 0); 1805 case 4: 1806 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 1807 case 2: 1808 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 1809 case 1: 1810 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 1811 default: 1812 panic("ffs_isfreeblock"); 1813 } 1814 return (0); 1815 } 1816 1817 /* 1818 * Free a block or fragment. 1819 * 1820 * The specified block or fragment is placed back in the 1821 * free map. If a fragment is deallocated, a possible 1822 * block reassembly is checked. 1823 */ 1824 void 1825 ffs_blkfree(ump, fs, devvp, bno, size, inum) 1826 struct ufsmount *ump; 1827 struct fs *fs; 1828 struct vnode *devvp; 1829 ufs2_daddr_t bno; 1830 long size; 1831 ino_t inum; 1832 { 1833 struct cg *cgp; 1834 struct buf *bp; 1835 ufs1_daddr_t fragno, cgbno; 1836 ufs2_daddr_t cgblkno; 1837 int i, cg, blk, frags, bbase; 1838 u_int8_t *blksfree; 1839 struct cdev *dev; 1840 1841 cg = dtog(fs, bno); 1842 if (devvp->v_type != VCHR) { 1843 /* devvp is a snapshot */ 1844 dev = VTOI(devvp)->i_devvp->v_rdev; 1845 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1846 } else { 1847 /* devvp is a normal disk device */ 1848 dev = devvp->v_rdev; 1849 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1850 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1851 if ((devvp->v_vflag & VV_COPYONWRITE) && 1852 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1853 return; 1854 } 1855 #ifdef INVARIANTS 1856 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1857 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1858 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1859 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1860 size, fs->fs_fsmnt); 1861 panic("ffs_blkfree: bad size"); 1862 } 1863 #endif 1864 if ((u_int)bno >= fs->fs_size) { 1865 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1866 (u_long)inum); 1867 ffs_fserr(fs, inum, "bad block"); 1868 return; 1869 } 1870 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 1871 brelse(bp); 1872 return; 1873 } 1874 cgp = (struct cg *)bp->b_data; 1875 if (!cg_chkmagic(cgp)) { 1876 brelse(bp); 1877 return; 1878 } 1879 bp->b_xflags |= BX_BKGRDWRITE; 1880 cgp->cg_old_time = cgp->cg_time = time_second; 1881 cgbno = dtogd(fs, bno); 1882 blksfree = cg_blksfree(cgp); 1883 UFS_LOCK(ump); 1884 if (size == fs->fs_bsize) { 1885 fragno = fragstoblks(fs, cgbno); 1886 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1887 if (devvp->v_type != VCHR) { 1888 UFS_UNLOCK(ump); 1889 /* devvp is a snapshot */ 1890 brelse(bp); 1891 return; 1892 } 1893 printf("dev = %s, block = %jd, fs = %s\n", 1894 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1895 panic("ffs_blkfree: freeing free block"); 1896 } 1897 ffs_setblock(fs, blksfree, fragno); 1898 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1899 cgp->cg_cs.cs_nbfree++; 1900 fs->fs_cstotal.cs_nbfree++; 1901 fs->fs_cs(fs, cg).cs_nbfree++; 1902 } else { 1903 bbase = cgbno - fragnum(fs, cgbno); 1904 /* 1905 * decrement the counts associated with the old frags 1906 */ 1907 blk = blkmap(fs, blksfree, bbase); 1908 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1909 /* 1910 * deallocate the fragment 1911 */ 1912 frags = numfrags(fs, size); 1913 for (i = 0; i < frags; i++) { 1914 if (isset(blksfree, cgbno + i)) { 1915 printf("dev = %s, block = %jd, fs = %s\n", 1916 devtoname(dev), (intmax_t)(bno + i), 1917 fs->fs_fsmnt); 1918 panic("ffs_blkfree: freeing free frag"); 1919 } 1920 setbit(blksfree, cgbno + i); 1921 } 1922 cgp->cg_cs.cs_nffree += i; 1923 fs->fs_cstotal.cs_nffree += i; 1924 fs->fs_cs(fs, cg).cs_nffree += i; 1925 /* 1926 * add back in counts associated with the new frags 1927 */ 1928 blk = blkmap(fs, blksfree, bbase); 1929 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1930 /* 1931 * if a complete block has been reassembled, account for it 1932 */ 1933 fragno = fragstoblks(fs, bbase); 1934 if (ffs_isblock(fs, blksfree, fragno)) { 1935 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1936 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1937 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1938 ffs_clusteracct(ump, fs, cgp, fragno, 1); 1939 cgp->cg_cs.cs_nbfree++; 1940 fs->fs_cstotal.cs_nbfree++; 1941 fs->fs_cs(fs, cg).cs_nbfree++; 1942 } 1943 } 1944 fs->fs_fmod = 1; 1945 ACTIVECLEAR(fs, cg); 1946 UFS_UNLOCK(ump); 1947 bdwrite(bp); 1948 } 1949 1950 #ifdef INVARIANTS 1951 /* 1952 * Verify allocation of a block or fragment. Returns true if block or 1953 * fragment is allocated, false if it is free. 1954 */ 1955 static int 1956 ffs_checkblk(ip, bno, size) 1957 struct inode *ip; 1958 ufs2_daddr_t bno; 1959 long size; 1960 { 1961 struct fs *fs; 1962 struct cg *cgp; 1963 struct buf *bp; 1964 ufs1_daddr_t cgbno; 1965 int i, error, frags, free; 1966 u_int8_t *blksfree; 1967 1968 fs = ip->i_fs; 1969 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1970 printf("bsize = %ld, size = %ld, fs = %s\n", 1971 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1972 panic("ffs_checkblk: bad size"); 1973 } 1974 if ((u_int)bno >= fs->fs_size) 1975 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 1976 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1977 (int)fs->fs_cgsize, NOCRED, &bp); 1978 if (error) 1979 panic("ffs_checkblk: cg bread failed"); 1980 cgp = (struct cg *)bp->b_data; 1981 if (!cg_chkmagic(cgp)) 1982 panic("ffs_checkblk: cg magic mismatch"); 1983 bp->b_xflags |= BX_BKGRDWRITE; 1984 blksfree = cg_blksfree(cgp); 1985 cgbno = dtogd(fs, bno); 1986 if (size == fs->fs_bsize) { 1987 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 1988 } else { 1989 frags = numfrags(fs, size); 1990 for (free = 0, i = 0; i < frags; i++) 1991 if (isset(blksfree, cgbno + i)) 1992 free++; 1993 if (free != 0 && free != frags) 1994 panic("ffs_checkblk: partially free fragment"); 1995 } 1996 brelse(bp); 1997 return (!free); 1998 } 1999 #endif /* INVARIANTS */ 2000 2001 /* 2002 * Free an inode. 2003 */ 2004 int 2005 ffs_vfree(pvp, ino, mode) 2006 struct vnode *pvp; 2007 ino_t ino; 2008 int mode; 2009 { 2010 struct inode *ip; 2011 2012 if (DOINGSOFTDEP(pvp)) { 2013 softdep_freefile(pvp, ino, mode); 2014 return (0); 2015 } 2016 ip = VTOI(pvp); 2017 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode)); 2018 } 2019 2020 /* 2021 * Do the actual free operation. 2022 * The specified inode is placed back in the free map. 2023 */ 2024 int 2025 ffs_freefile(ump, fs, devvp, ino, mode) 2026 struct ufsmount *ump; 2027 struct fs *fs; 2028 struct vnode *devvp; 2029 ino_t ino; 2030 int mode; 2031 { 2032 struct cg *cgp; 2033 struct buf *bp; 2034 ufs2_daddr_t cgbno; 2035 int error, cg; 2036 u_int8_t *inosused; 2037 struct cdev *dev; 2038 2039 cg = ino_to_cg(fs, ino); 2040 if (devvp->v_type != VCHR) { 2041 /* devvp is a snapshot */ 2042 dev = VTOI(devvp)->i_devvp->v_rdev; 2043 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2044 } else { 2045 /* devvp is a normal disk device */ 2046 dev = devvp->v_rdev; 2047 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2048 } 2049 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2050 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 2051 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 2052 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2053 brelse(bp); 2054 return (error); 2055 } 2056 cgp = (struct cg *)bp->b_data; 2057 if (!cg_chkmagic(cgp)) { 2058 brelse(bp); 2059 return (0); 2060 } 2061 bp->b_xflags |= BX_BKGRDWRITE; 2062 cgp->cg_old_time = cgp->cg_time = time_second; 2063 inosused = cg_inosused(cgp); 2064 ino %= fs->fs_ipg; 2065 if (isclr(inosused, ino)) { 2066 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev), 2067 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt); 2068 if (fs->fs_ronly == 0) 2069 panic("ffs_freefile: freeing free inode"); 2070 } 2071 clrbit(inosused, ino); 2072 if (ino < cgp->cg_irotor) 2073 cgp->cg_irotor = ino; 2074 cgp->cg_cs.cs_nifree++; 2075 UFS_LOCK(ump); 2076 fs->fs_cstotal.cs_nifree++; 2077 fs->fs_cs(fs, cg).cs_nifree++; 2078 if ((mode & IFMT) == IFDIR) { 2079 cgp->cg_cs.cs_ndir--; 2080 fs->fs_cstotal.cs_ndir--; 2081 fs->fs_cs(fs, cg).cs_ndir--; 2082 } 2083 fs->fs_fmod = 1; 2084 ACTIVECLEAR(fs, cg); 2085 UFS_UNLOCK(ump); 2086 bdwrite(bp); 2087 return (0); 2088 } 2089 2090 /* 2091 * Check to see if a file is free. 2092 */ 2093 int 2094 ffs_checkfreefile(fs, devvp, ino) 2095 struct fs *fs; 2096 struct vnode *devvp; 2097 ino_t ino; 2098 { 2099 struct cg *cgp; 2100 struct buf *bp; 2101 ufs2_daddr_t cgbno; 2102 int ret, cg; 2103 u_int8_t *inosused; 2104 2105 cg = ino_to_cg(fs, ino); 2106 if (devvp->v_type != VCHR) { 2107 /* devvp is a snapshot */ 2108 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2109 } else { 2110 /* devvp is a normal disk device */ 2111 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2112 } 2113 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 2114 return (1); 2115 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2116 brelse(bp); 2117 return (1); 2118 } 2119 cgp = (struct cg *)bp->b_data; 2120 if (!cg_chkmagic(cgp)) { 2121 brelse(bp); 2122 return (1); 2123 } 2124 inosused = cg_inosused(cgp); 2125 ino %= fs->fs_ipg; 2126 ret = isclr(inosused, ino); 2127 brelse(bp); 2128 return (ret); 2129 } 2130 2131 /* 2132 * Find a block of the specified size in the specified cylinder group. 2133 * 2134 * It is a panic if a request is made to find a block if none are 2135 * available. 2136 */ 2137 static ufs1_daddr_t 2138 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2139 struct fs *fs; 2140 struct cg *cgp; 2141 ufs2_daddr_t bpref; 2142 int allocsiz; 2143 { 2144 ufs1_daddr_t bno; 2145 int start, len, loc, i; 2146 int blk, field, subfield, pos; 2147 u_int8_t *blksfree; 2148 2149 /* 2150 * find the fragment by searching through the free block 2151 * map for an appropriate bit pattern 2152 */ 2153 if (bpref) 2154 start = dtogd(fs, bpref) / NBBY; 2155 else 2156 start = cgp->cg_frotor / NBBY; 2157 blksfree = cg_blksfree(cgp); 2158 len = howmany(fs->fs_fpg, NBBY) - start; 2159 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2160 fragtbl[fs->fs_frag], 2161 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2162 if (loc == 0) { 2163 len = start + 1; 2164 start = 0; 2165 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2166 fragtbl[fs->fs_frag], 2167 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2168 if (loc == 0) { 2169 printf("start = %d, len = %d, fs = %s\n", 2170 start, len, fs->fs_fsmnt); 2171 panic("ffs_alloccg: map corrupted"); 2172 /* NOTREACHED */ 2173 } 2174 } 2175 bno = (start + len - loc) * NBBY; 2176 cgp->cg_frotor = bno; 2177 /* 2178 * found the byte in the map 2179 * sift through the bits to find the selected frag 2180 */ 2181 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2182 blk = blkmap(fs, blksfree, bno); 2183 blk <<= 1; 2184 field = around[allocsiz]; 2185 subfield = inside[allocsiz]; 2186 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2187 if ((blk & field) == subfield) 2188 return (bno + pos); 2189 field <<= 1; 2190 subfield <<= 1; 2191 } 2192 } 2193 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2194 panic("ffs_alloccg: block not in map"); 2195 return (-1); 2196 } 2197 2198 /* 2199 * Update the cluster map because of an allocation or free. 2200 * 2201 * Cnt == 1 means free; cnt == -1 means allocating. 2202 */ 2203 void 2204 ffs_clusteracct(ump, fs, cgp, blkno, cnt) 2205 struct ufsmount *ump; 2206 struct fs *fs; 2207 struct cg *cgp; 2208 ufs1_daddr_t blkno; 2209 int cnt; 2210 { 2211 int32_t *sump; 2212 int32_t *lp; 2213 u_char *freemapp, *mapp; 2214 int i, start, end, forw, back, map, bit; 2215 2216 mtx_assert(UFS_MTX(ump), MA_OWNED); 2217 2218 if (fs->fs_contigsumsize <= 0) 2219 return; 2220 freemapp = cg_clustersfree(cgp); 2221 sump = cg_clustersum(cgp); 2222 /* 2223 * Allocate or clear the actual block. 2224 */ 2225 if (cnt > 0) 2226 setbit(freemapp, blkno); 2227 else 2228 clrbit(freemapp, blkno); 2229 /* 2230 * Find the size of the cluster going forward. 2231 */ 2232 start = blkno + 1; 2233 end = start + fs->fs_contigsumsize; 2234 if (end >= cgp->cg_nclusterblks) 2235 end = cgp->cg_nclusterblks; 2236 mapp = &freemapp[start / NBBY]; 2237 map = *mapp++; 2238 bit = 1 << (start % NBBY); 2239 for (i = start; i < end; i++) { 2240 if ((map & bit) == 0) 2241 break; 2242 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2243 bit <<= 1; 2244 } else { 2245 map = *mapp++; 2246 bit = 1; 2247 } 2248 } 2249 forw = i - start; 2250 /* 2251 * Find the size of the cluster going backward. 2252 */ 2253 start = blkno - 1; 2254 end = start - fs->fs_contigsumsize; 2255 if (end < 0) 2256 end = -1; 2257 mapp = &freemapp[start / NBBY]; 2258 map = *mapp--; 2259 bit = 1 << (start % NBBY); 2260 for (i = start; i > end; i--) { 2261 if ((map & bit) == 0) 2262 break; 2263 if ((i & (NBBY - 1)) != 0) { 2264 bit >>= 1; 2265 } else { 2266 map = *mapp--; 2267 bit = 1 << (NBBY - 1); 2268 } 2269 } 2270 back = start - i; 2271 /* 2272 * Account for old cluster and the possibly new forward and 2273 * back clusters. 2274 */ 2275 i = back + forw + 1; 2276 if (i > fs->fs_contigsumsize) 2277 i = fs->fs_contigsumsize; 2278 sump[i] += cnt; 2279 if (back > 0) 2280 sump[back] -= cnt; 2281 if (forw > 0) 2282 sump[forw] -= cnt; 2283 /* 2284 * Update cluster summary information. 2285 */ 2286 lp = &sump[fs->fs_contigsumsize]; 2287 for (i = fs->fs_contigsumsize; i > 0; i--) 2288 if (*lp-- > 0) 2289 break; 2290 fs->fs_maxcluster[cgp->cg_cgx] = i; 2291 } 2292 2293 /* 2294 * Fserr prints the name of a filesystem with an error diagnostic. 2295 * 2296 * The form of the error message is: 2297 * fs: error message 2298 */ 2299 static void 2300 ffs_fserr(fs, inum, cp) 2301 struct fs *fs; 2302 ino_t inum; 2303 char *cp; 2304 { 2305 struct thread *td = curthread; /* XXX */ 2306 struct proc *p = td->td_proc; 2307 2308 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2309 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp); 2310 } 2311 2312 /* 2313 * This function provides the capability for the fsck program to 2314 * update an active filesystem. Eleven operations are provided: 2315 * 2316 * adjrefcnt(inode, amt) - adjusts the reference count on the 2317 * specified inode by the specified amount. Under normal 2318 * operation the count should always go down. Decrementing 2319 * the count to zero will cause the inode to be freed. 2320 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2321 * by the specifed amount. 2322 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2323 * adjust the superblock summary. 2324 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2325 * are marked as free. Inodes should never have to be marked 2326 * as in use. 2327 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2328 * are marked as free. Inodes should never have to be marked 2329 * as in use. 2330 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2331 * are marked as free. Blocks should never have to be marked 2332 * as in use. 2333 * setflags(flags, set/clear) - the fs_flags field has the specified 2334 * flags set (second parameter +1) or cleared (second parameter -1). 2335 */ 2336 2337 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2338 2339 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2340 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2341 2342 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2343 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2344 2345 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2346 sysctl_ffs_fsck, "Adjust number of directories"); 2347 2348 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2349 sysctl_ffs_fsck, "Adjust number of free blocks"); 2350 2351 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2352 sysctl_ffs_fsck, "Adjust number of free inodes"); 2353 2354 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2355 sysctl_ffs_fsck, "Adjust number of free frags"); 2356 2357 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2358 sysctl_ffs_fsck, "Adjust number of free clusters"); 2359 2360 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2361 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2362 2363 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2364 sysctl_ffs_fsck, "Free Range of File Inodes"); 2365 2366 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2367 sysctl_ffs_fsck, "Free Range of Blocks"); 2368 2369 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2370 sysctl_ffs_fsck, "Change Filesystem Flags"); 2371 2372 #ifdef DEBUG 2373 static int fsckcmds = 0; 2374 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2375 #endif /* DEBUG */ 2376 2377 static int 2378 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2379 { 2380 struct fsck_cmd cmd; 2381 struct ufsmount *ump; 2382 struct vnode *vp; 2383 struct inode *ip; 2384 struct mount *mp; 2385 struct fs *fs; 2386 ufs2_daddr_t blkno; 2387 long blkcnt, blksize; 2388 struct file *fp; 2389 int filetype, error; 2390 2391 if (req->newlen > sizeof cmd) 2392 return (EBADRPC); 2393 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2394 return (error); 2395 if (cmd.version != FFS_CMD_VERSION) 2396 return (ERPCMISMATCH); 2397 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2398 return (error); 2399 vn_start_write(fp->f_data, &mp, V_WAIT); 2400 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2401 vn_finished_write(mp); 2402 fdrop(fp, curthread); 2403 return (EINVAL); 2404 } 2405 if (mp->mnt_flag & MNT_RDONLY) { 2406 vn_finished_write(mp); 2407 fdrop(fp, curthread); 2408 return (EROFS); 2409 } 2410 ump = VFSTOUFS(mp); 2411 fs = ump->um_fs; 2412 filetype = IFREG; 2413 2414 switch (oidp->oid_number) { 2415 2416 case FFS_SET_FLAGS: 2417 #ifdef DEBUG 2418 if (fsckcmds) 2419 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2420 cmd.size > 0 ? "set" : "clear"); 2421 #endif /* DEBUG */ 2422 if (cmd.size > 0) 2423 fs->fs_flags |= (long)cmd.value; 2424 else 2425 fs->fs_flags &= ~(long)cmd.value; 2426 break; 2427 2428 case FFS_ADJ_REFCNT: 2429 #ifdef DEBUG 2430 if (fsckcmds) { 2431 printf("%s: adjust inode %jd count by %jd\n", 2432 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2433 (intmax_t)cmd.size); 2434 } 2435 #endif /* DEBUG */ 2436 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2437 break; 2438 ip = VTOI(vp); 2439 ip->i_nlink += cmd.size; 2440 DIP_SET(ip, i_nlink, ip->i_nlink); 2441 ip->i_effnlink += cmd.size; 2442 ip->i_flag |= IN_CHANGE; 2443 if (DOINGSOFTDEP(vp)) 2444 softdep_change_linkcnt(ip); 2445 vput(vp); 2446 break; 2447 2448 case FFS_ADJ_BLKCNT: 2449 #ifdef DEBUG 2450 if (fsckcmds) { 2451 printf("%s: adjust inode %jd block count by %jd\n", 2452 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2453 (intmax_t)cmd.size); 2454 } 2455 #endif /* DEBUG */ 2456 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2457 break; 2458 ip = VTOI(vp); 2459 if (ip->i_flag & IN_SPACECOUNTED) { 2460 UFS_LOCK(ump); 2461 fs->fs_pendingblocks += cmd.size; 2462 UFS_UNLOCK(ump); 2463 } 2464 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2465 ip->i_flag |= IN_CHANGE; 2466 vput(vp); 2467 break; 2468 2469 case FFS_DIR_FREE: 2470 filetype = IFDIR; 2471 /* fall through */ 2472 2473 case FFS_FILE_FREE: 2474 #ifdef DEBUG 2475 if (fsckcmds) { 2476 if (cmd.size == 1) 2477 printf("%s: free %s inode %d\n", 2478 mp->mnt_stat.f_mntonname, 2479 filetype == IFDIR ? "directory" : "file", 2480 (ino_t)cmd.value); 2481 else 2482 printf("%s: free %s inodes %d-%d\n", 2483 mp->mnt_stat.f_mntonname, 2484 filetype == IFDIR ? "directory" : "file", 2485 (ino_t)cmd.value, 2486 (ino_t)(cmd.value + cmd.size - 1)); 2487 } 2488 #endif /* DEBUG */ 2489 while (cmd.size > 0) { 2490 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2491 cmd.value, filetype))) 2492 break; 2493 cmd.size -= 1; 2494 cmd.value += 1; 2495 } 2496 break; 2497 2498 case FFS_BLK_FREE: 2499 #ifdef DEBUG 2500 if (fsckcmds) { 2501 if (cmd.size == 1) 2502 printf("%s: free block %jd\n", 2503 mp->mnt_stat.f_mntonname, 2504 (intmax_t)cmd.value); 2505 else 2506 printf("%s: free blocks %jd-%jd\n", 2507 mp->mnt_stat.f_mntonname, 2508 (intmax_t)cmd.value, 2509 (intmax_t)cmd.value + cmd.size - 1); 2510 } 2511 #endif /* DEBUG */ 2512 blkno = cmd.value; 2513 blkcnt = cmd.size; 2514 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2515 while (blkcnt > 0) { 2516 if (blksize > blkcnt) 2517 blksize = blkcnt; 2518 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2519 blksize * fs->fs_fsize, ROOTINO); 2520 blkno += blksize; 2521 blkcnt -= blksize; 2522 blksize = fs->fs_frag; 2523 } 2524 break; 2525 2526 /* 2527 * Adjust superblock summaries. fsck(8) is expected to 2528 * submit deltas when necessary. 2529 */ 2530 case FFS_ADJ_NDIR: 2531 #ifdef DEBUG 2532 if (fsckcmds) { 2533 printf("%s: adjust number of directories by %jd\n", 2534 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2535 } 2536 #endif /* DEBUG */ 2537 fs->fs_cstotal.cs_ndir += cmd.value; 2538 break; 2539 case FFS_ADJ_NBFREE: 2540 #ifdef DEBUG 2541 if (fsckcmds) { 2542 printf("%s: adjust number of free blocks by %+jd\n", 2543 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2544 } 2545 #endif /* DEBUG */ 2546 fs->fs_cstotal.cs_nbfree += cmd.value; 2547 break; 2548 case FFS_ADJ_NIFREE: 2549 #ifdef DEBUG 2550 if (fsckcmds) { 2551 printf("%s: adjust number of free inodes by %+jd\n", 2552 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2553 } 2554 #endif /* DEBUG */ 2555 fs->fs_cstotal.cs_nifree += cmd.value; 2556 break; 2557 case FFS_ADJ_NFFREE: 2558 #ifdef DEBUG 2559 if (fsckcmds) { 2560 printf("%s: adjust number of free frags by %+jd\n", 2561 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2562 } 2563 #endif /* DEBUG */ 2564 fs->fs_cstotal.cs_nffree += cmd.value; 2565 break; 2566 case FFS_ADJ_NUMCLUSTERS: 2567 #ifdef DEBUG 2568 if (fsckcmds) { 2569 printf("%s: adjust number of free clusters by %+jd\n", 2570 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2571 } 2572 #endif /* DEBUG */ 2573 fs->fs_cstotal.cs_numclusters += cmd.value; 2574 break; 2575 2576 default: 2577 #ifdef DEBUG 2578 if (fsckcmds) { 2579 printf("Invalid request %d from fsck\n", 2580 oidp->oid_number); 2581 } 2582 #endif /* DEBUG */ 2583 error = EINVAL; 2584 break; 2585 2586 } 2587 fdrop(fp, curthread); 2588 vn_finished_write(mp); 2589 return (error); 2590 } 2591