1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/capsicum.h> 69 #include <sys/systm.h> 70 #include <sys/bio.h> 71 #include <sys/buf.h> 72 #include <sys/conf.h> 73 #include <sys/fcntl.h> 74 #include <sys/file.h> 75 #include <sys/filedesc.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/vnode.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/syslog.h> 84 #include <sys/taskqueue.h> 85 86 #include <security/audit/audit.h> 87 88 #include <geom/geom.h> 89 90 #include <ufs/ufs/dir.h> 91 #include <ufs/ufs/extattr.h> 92 #include <ufs/ufs/quota.h> 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/ufs_extern.h> 95 #include <ufs/ufs/ufsmount.h> 96 97 #include <ufs/ffs/fs.h> 98 #include <ufs/ffs/ffs_extern.h> 99 #include <ufs/ffs/softdep.h> 100 101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 102 int size, int rsize); 103 104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 105 static ufs2_daddr_t 106 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 107 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 108 struct vnode *, ufs2_daddr_t, long, ino_t, 109 struct workhead *); 110 static void ffs_blkfree_trim_completed(struct bio *); 111 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 112 #ifdef INVARIANTS 113 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 114 #endif 115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 116 static ino_t ffs_dirpref(struct inode *); 117 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 118 int, int); 119 static ufs2_daddr_t ffs_hashalloc 120 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 121 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 122 int); 123 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 124 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 125 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 126 127 /* 128 * Allocate a block in the filesystem. 129 * 130 * The size of the requested block is given, which must be some 131 * multiple of fs_fsize and <= fs_bsize. 132 * A preference may be optionally specified. If a preference is given 133 * the following hierarchy is used to allocate a block: 134 * 1) allocate the requested block. 135 * 2) allocate a rotationally optimal block in the same cylinder. 136 * 3) allocate a block in the same cylinder group. 137 * 4) quadradically rehash into other cylinder groups, until an 138 * available block is located. 139 * If no block preference is given the following hierarchy is used 140 * to allocate a block: 141 * 1) allocate a block in the cylinder group that contains the 142 * inode for the file. 143 * 2) quadradically rehash into other cylinder groups, until an 144 * available block is located. 145 */ 146 int 147 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 148 struct inode *ip; 149 ufs2_daddr_t lbn, bpref; 150 int size, flags; 151 struct ucred *cred; 152 ufs2_daddr_t *bnp; 153 { 154 struct fs *fs; 155 struct ufsmount *ump; 156 ufs2_daddr_t bno; 157 u_int cg, reclaimed; 158 static struct timeval lastfail; 159 static int curfail; 160 int64_t delta; 161 #ifdef QUOTA 162 int error; 163 #endif 164 165 *bnp = 0; 166 fs = ip->i_fs; 167 ump = ip->i_ump; 168 mtx_assert(UFS_MTX(ump), MA_OWNED); 169 #ifdef INVARIANTS 170 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 171 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 172 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 173 fs->fs_fsmnt); 174 panic("ffs_alloc: bad size"); 175 } 176 if (cred == NOCRED) 177 panic("ffs_alloc: missing credential"); 178 #endif /* INVARIANTS */ 179 reclaimed = 0; 180 retry: 181 #ifdef QUOTA 182 UFS_UNLOCK(ump); 183 error = chkdq(ip, btodb(size), cred, 0); 184 if (error) 185 return (error); 186 UFS_LOCK(ump); 187 #endif 188 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 189 goto nospace; 190 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 191 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 192 goto nospace; 193 if (bpref >= fs->fs_size) 194 bpref = 0; 195 if (bpref == 0) 196 cg = ino_to_cg(fs, ip->i_number); 197 else 198 cg = dtog(fs, bpref); 199 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 200 if (bno > 0) { 201 delta = btodb(size); 202 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 203 if (flags & IO_EXT) 204 ip->i_flag |= IN_CHANGE; 205 else 206 ip->i_flag |= IN_CHANGE | IN_UPDATE; 207 *bnp = bno; 208 return (0); 209 } 210 nospace: 211 #ifdef QUOTA 212 UFS_UNLOCK(ump); 213 /* 214 * Restore user's disk quota because allocation failed. 215 */ 216 (void) chkdq(ip, -btodb(size), cred, FORCE); 217 UFS_LOCK(ump); 218 #endif 219 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 220 reclaimed = 1; 221 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 222 goto retry; 223 } 224 UFS_UNLOCK(ump); 225 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 226 ffs_fserr(fs, ip->i_number, "filesystem full"); 227 uprintf("\n%s: write failed, filesystem is full\n", 228 fs->fs_fsmnt); 229 } 230 return (ENOSPC); 231 } 232 233 /* 234 * Reallocate a fragment to a bigger size 235 * 236 * The number and size of the old block is given, and a preference 237 * and new size is also specified. The allocator attempts to extend 238 * the original block. Failing that, the regular block allocator is 239 * invoked to get an appropriate block. 240 */ 241 int 242 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 243 struct inode *ip; 244 ufs2_daddr_t lbprev; 245 ufs2_daddr_t bprev; 246 ufs2_daddr_t bpref; 247 int osize, nsize, flags; 248 struct ucred *cred; 249 struct buf **bpp; 250 { 251 struct vnode *vp; 252 struct fs *fs; 253 struct buf *bp; 254 struct ufsmount *ump; 255 u_int cg, request, reclaimed; 256 int error, gbflags; 257 ufs2_daddr_t bno; 258 static struct timeval lastfail; 259 static int curfail; 260 int64_t delta; 261 262 vp = ITOV(ip); 263 fs = ip->i_fs; 264 bp = NULL; 265 ump = ip->i_ump; 266 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 267 268 mtx_assert(UFS_MTX(ump), MA_OWNED); 269 #ifdef INVARIANTS 270 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 271 panic("ffs_realloccg: allocation on suspended filesystem"); 272 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 273 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 274 printf( 275 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 276 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 277 nsize, fs->fs_fsmnt); 278 panic("ffs_realloccg: bad size"); 279 } 280 if (cred == NOCRED) 281 panic("ffs_realloccg: missing credential"); 282 #endif /* INVARIANTS */ 283 reclaimed = 0; 284 retry: 285 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 286 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 287 goto nospace; 288 } 289 if (bprev == 0) { 290 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 291 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 292 fs->fs_fsmnt); 293 panic("ffs_realloccg: bad bprev"); 294 } 295 UFS_UNLOCK(ump); 296 /* 297 * Allocate the extra space in the buffer. 298 */ 299 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 300 if (error) { 301 brelse(bp); 302 return (error); 303 } 304 305 if (bp->b_blkno == bp->b_lblkno) { 306 if (lbprev >= NDADDR) 307 panic("ffs_realloccg: lbprev out of range"); 308 bp->b_blkno = fsbtodb(fs, bprev); 309 } 310 311 #ifdef QUOTA 312 error = chkdq(ip, btodb(nsize - osize), cred, 0); 313 if (error) { 314 brelse(bp); 315 return (error); 316 } 317 #endif 318 /* 319 * Check for extension in the existing location. 320 */ 321 *bpp = NULL; 322 cg = dtog(fs, bprev); 323 UFS_LOCK(ump); 324 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 325 if (bno) { 326 if (bp->b_blkno != fsbtodb(fs, bno)) 327 panic("ffs_realloccg: bad blockno"); 328 delta = btodb(nsize - osize); 329 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 330 if (flags & IO_EXT) 331 ip->i_flag |= IN_CHANGE; 332 else 333 ip->i_flag |= IN_CHANGE | IN_UPDATE; 334 allocbuf(bp, nsize); 335 bp->b_flags |= B_DONE; 336 vfs_bio_bzero_buf(bp, osize, nsize - osize); 337 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 338 vfs_bio_set_valid(bp, osize, nsize - osize); 339 *bpp = bp; 340 return (0); 341 } 342 /* 343 * Allocate a new disk location. 344 */ 345 if (bpref >= fs->fs_size) 346 bpref = 0; 347 switch ((int)fs->fs_optim) { 348 case FS_OPTSPACE: 349 /* 350 * Allocate an exact sized fragment. Although this makes 351 * best use of space, we will waste time relocating it if 352 * the file continues to grow. If the fragmentation is 353 * less than half of the minimum free reserve, we choose 354 * to begin optimizing for time. 355 */ 356 request = nsize; 357 if (fs->fs_minfree <= 5 || 358 fs->fs_cstotal.cs_nffree > 359 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 360 break; 361 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 362 fs->fs_fsmnt); 363 fs->fs_optim = FS_OPTTIME; 364 break; 365 case FS_OPTTIME: 366 /* 367 * At this point we have discovered a file that is trying to 368 * grow a small fragment to a larger fragment. To save time, 369 * we allocate a full sized block, then free the unused portion. 370 * If the file continues to grow, the `ffs_fragextend' call 371 * above will be able to grow it in place without further 372 * copying. If aberrant programs cause disk fragmentation to 373 * grow within 2% of the free reserve, we choose to begin 374 * optimizing for space. 375 */ 376 request = fs->fs_bsize; 377 if (fs->fs_cstotal.cs_nffree < 378 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 379 break; 380 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 381 fs->fs_fsmnt); 382 fs->fs_optim = FS_OPTSPACE; 383 break; 384 default: 385 printf("dev = %s, optim = %ld, fs = %s\n", 386 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 387 panic("ffs_realloccg: bad optim"); 388 /* NOTREACHED */ 389 } 390 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 391 if (bno > 0) { 392 bp->b_blkno = fsbtodb(fs, bno); 393 if (!DOINGSOFTDEP(vp)) 394 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 395 ip->i_number, vp->v_type, NULL); 396 delta = btodb(nsize - osize); 397 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 398 if (flags & IO_EXT) 399 ip->i_flag |= IN_CHANGE; 400 else 401 ip->i_flag |= IN_CHANGE | IN_UPDATE; 402 allocbuf(bp, nsize); 403 bp->b_flags |= B_DONE; 404 vfs_bio_bzero_buf(bp, osize, nsize - osize); 405 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 406 vfs_bio_set_valid(bp, osize, nsize - osize); 407 *bpp = bp; 408 return (0); 409 } 410 #ifdef QUOTA 411 UFS_UNLOCK(ump); 412 /* 413 * Restore user's disk quota because allocation failed. 414 */ 415 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 416 UFS_LOCK(ump); 417 #endif 418 nospace: 419 /* 420 * no space available 421 */ 422 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 423 reclaimed = 1; 424 UFS_UNLOCK(ump); 425 if (bp) { 426 brelse(bp); 427 bp = NULL; 428 } 429 UFS_LOCK(ump); 430 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 431 goto retry; 432 } 433 UFS_UNLOCK(ump); 434 if (bp) 435 brelse(bp); 436 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 437 ffs_fserr(fs, ip->i_number, "filesystem full"); 438 uprintf("\n%s: write failed, filesystem is full\n", 439 fs->fs_fsmnt); 440 } 441 return (ENOSPC); 442 } 443 444 /* 445 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 446 * 447 * The vnode and an array of buffer pointers for a range of sequential 448 * logical blocks to be made contiguous is given. The allocator attempts 449 * to find a range of sequential blocks starting as close as possible 450 * from the end of the allocation for the logical block immediately 451 * preceding the current range. If successful, the physical block numbers 452 * in the buffer pointers and in the inode are changed to reflect the new 453 * allocation. If unsuccessful, the allocation is left unchanged. The 454 * success in doing the reallocation is returned. Note that the error 455 * return is not reflected back to the user. Rather the previous block 456 * allocation will be used. 457 */ 458 459 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 460 461 static int doasyncfree = 1; 462 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 463 "do not force synchronous writes when blocks are reallocated"); 464 465 static int doreallocblks = 1; 466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 467 "enable block reallocation"); 468 469 static int maxclustersearch = 10; 470 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 471 0, "max number of cylinder group to search for contigous blocks"); 472 473 #ifdef DEBUG 474 static volatile int prtrealloc = 0; 475 #endif 476 477 int 478 ffs_reallocblks(ap) 479 struct vop_reallocblks_args /* { 480 struct vnode *a_vp; 481 struct cluster_save *a_buflist; 482 } */ *ap; 483 { 484 struct ufsmount *ump; 485 486 /* 487 * If the underlying device can do deletes, then skip reallocating 488 * the blocks of this file into contiguous sequences. Devices that 489 * benefit from BIO_DELETE also benefit from not moving the data. 490 * These devices are flash and therefore work less well with this 491 * optimization. Also skip if reallocblks has been disabled globally. 492 */ 493 ump = VTOI(ap->a_vp)->i_ump; 494 if (ump->um_candelete || doreallocblks == 0) 495 return (ENOSPC); 496 497 /* 498 * We can't wait in softdep prealloc as it may fsync and recurse 499 * here. Instead we simply fail to reallocate blocks if this 500 * rare condition arises. 501 */ 502 if (DOINGSOFTDEP(ap->a_vp)) 503 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 504 return (ENOSPC); 505 if (ump->um_fstype == UFS1) 506 return (ffs_reallocblks_ufs1(ap)); 507 return (ffs_reallocblks_ufs2(ap)); 508 } 509 510 static int 511 ffs_reallocblks_ufs1(ap) 512 struct vop_reallocblks_args /* { 513 struct vnode *a_vp; 514 struct cluster_save *a_buflist; 515 } */ *ap; 516 { 517 struct fs *fs; 518 struct inode *ip; 519 struct vnode *vp; 520 struct buf *sbp, *ebp; 521 ufs1_daddr_t *bap, *sbap, *ebap; 522 struct cluster_save *buflist; 523 struct ufsmount *ump; 524 ufs_lbn_t start_lbn, end_lbn; 525 ufs1_daddr_t soff, newblk, blkno; 526 ufs2_daddr_t pref; 527 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 528 int i, cg, len, start_lvl, end_lvl, ssize; 529 530 vp = ap->a_vp; 531 ip = VTOI(vp); 532 fs = ip->i_fs; 533 ump = ip->i_ump; 534 /* 535 * If we are not tracking block clusters or if we have less than 4% 536 * free blocks left, then do not attempt to cluster. Running with 537 * less than 5% free block reserve is not recommended and those that 538 * choose to do so do not expect to have good file layout. 539 */ 540 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 541 return (ENOSPC); 542 buflist = ap->a_buflist; 543 len = buflist->bs_nchildren; 544 start_lbn = buflist->bs_children[0]->b_lblkno; 545 end_lbn = start_lbn + len - 1; 546 #ifdef INVARIANTS 547 for (i = 0; i < len; i++) 548 if (!ffs_checkblk(ip, 549 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 550 panic("ffs_reallocblks: unallocated block 1"); 551 for (i = 1; i < len; i++) 552 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 553 panic("ffs_reallocblks: non-logical cluster"); 554 blkno = buflist->bs_children[0]->b_blkno; 555 ssize = fsbtodb(fs, fs->fs_frag); 556 for (i = 1; i < len - 1; i++) 557 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 558 panic("ffs_reallocblks: non-physical cluster %d", i); 559 #endif 560 /* 561 * If the cluster crosses the boundary for the first indirect 562 * block, leave space for the indirect block. Indirect blocks 563 * are initially laid out in a position after the last direct 564 * block. Block reallocation would usually destroy locality by 565 * moving the indirect block out of the way to make room for 566 * data blocks if we didn't compensate here. We should also do 567 * this for other indirect block boundaries, but it is only 568 * important for the first one. 569 */ 570 if (start_lbn < NDADDR && end_lbn >= NDADDR) 571 return (ENOSPC); 572 /* 573 * If the latest allocation is in a new cylinder group, assume that 574 * the filesystem has decided to move and do not force it back to 575 * the previous cylinder group. 576 */ 577 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 578 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 579 return (ENOSPC); 580 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 581 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 582 return (ENOSPC); 583 /* 584 * Get the starting offset and block map for the first block. 585 */ 586 if (start_lvl == 0) { 587 sbap = &ip->i_din1->di_db[0]; 588 soff = start_lbn; 589 } else { 590 idp = &start_ap[start_lvl - 1]; 591 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 592 brelse(sbp); 593 return (ENOSPC); 594 } 595 sbap = (ufs1_daddr_t *)sbp->b_data; 596 soff = idp->in_off; 597 } 598 /* 599 * If the block range spans two block maps, get the second map. 600 */ 601 ebap = NULL; 602 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 603 ssize = len; 604 } else { 605 #ifdef INVARIANTS 606 if (start_lvl > 0 && 607 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 608 panic("ffs_reallocblk: start == end"); 609 #endif 610 ssize = len - (idp->in_off + 1); 611 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 612 goto fail; 613 ebap = (ufs1_daddr_t *)ebp->b_data; 614 } 615 /* 616 * Find the preferred location for the cluster. If we have not 617 * previously failed at this endeavor, then follow our standard 618 * preference calculation. If we have failed at it, then pick up 619 * where we last ended our search. 620 */ 621 UFS_LOCK(ump); 622 if (ip->i_nextclustercg == -1) 623 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 624 else 625 pref = cgdata(fs, ip->i_nextclustercg); 626 /* 627 * Search the block map looking for an allocation of the desired size. 628 * To avoid wasting too much time, we limit the number of cylinder 629 * groups that we will search. 630 */ 631 cg = dtog(fs, pref); 632 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 633 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 634 break; 635 cg += 1; 636 if (cg >= fs->fs_ncg) 637 cg = 0; 638 } 639 /* 640 * If we have failed in our search, record where we gave up for 641 * next time. Otherwise, fall back to our usual search citerion. 642 */ 643 if (newblk == 0) { 644 ip->i_nextclustercg = cg; 645 UFS_UNLOCK(ump); 646 goto fail; 647 } 648 ip->i_nextclustercg = -1; 649 /* 650 * We have found a new contiguous block. 651 * 652 * First we have to replace the old block pointers with the new 653 * block pointers in the inode and indirect blocks associated 654 * with the file. 655 */ 656 #ifdef DEBUG 657 if (prtrealloc) 658 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 659 (uintmax_t)ip->i_number, 660 (intmax_t)start_lbn, (intmax_t)end_lbn); 661 #endif 662 blkno = newblk; 663 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 664 if (i == ssize) { 665 bap = ebap; 666 soff = -i; 667 } 668 #ifdef INVARIANTS 669 if (!ffs_checkblk(ip, 670 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 671 panic("ffs_reallocblks: unallocated block 2"); 672 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 673 panic("ffs_reallocblks: alloc mismatch"); 674 #endif 675 #ifdef DEBUG 676 if (prtrealloc) 677 printf(" %d,", *bap); 678 #endif 679 if (DOINGSOFTDEP(vp)) { 680 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 681 softdep_setup_allocdirect(ip, start_lbn + i, 682 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 683 buflist->bs_children[i]); 684 else 685 softdep_setup_allocindir_page(ip, start_lbn + i, 686 i < ssize ? sbp : ebp, soff + i, blkno, 687 *bap, buflist->bs_children[i]); 688 } 689 *bap++ = blkno; 690 } 691 /* 692 * Next we must write out the modified inode and indirect blocks. 693 * For strict correctness, the writes should be synchronous since 694 * the old block values may have been written to disk. In practise 695 * they are almost never written, but if we are concerned about 696 * strict correctness, the `doasyncfree' flag should be set to zero. 697 * 698 * The test on `doasyncfree' should be changed to test a flag 699 * that shows whether the associated buffers and inodes have 700 * been written. The flag should be set when the cluster is 701 * started and cleared whenever the buffer or inode is flushed. 702 * We can then check below to see if it is set, and do the 703 * synchronous write only when it has been cleared. 704 */ 705 if (sbap != &ip->i_din1->di_db[0]) { 706 if (doasyncfree) 707 bdwrite(sbp); 708 else 709 bwrite(sbp); 710 } else { 711 ip->i_flag |= IN_CHANGE | IN_UPDATE; 712 if (!doasyncfree) 713 ffs_update(vp, 1); 714 } 715 if (ssize < len) { 716 if (doasyncfree) 717 bdwrite(ebp); 718 else 719 bwrite(ebp); 720 } 721 /* 722 * Last, free the old blocks and assign the new blocks to the buffers. 723 */ 724 #ifdef DEBUG 725 if (prtrealloc) 726 printf("\n\tnew:"); 727 #endif 728 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 729 if (!DOINGSOFTDEP(vp)) 730 ffs_blkfree(ump, fs, ip->i_devvp, 731 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 732 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 733 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 734 #ifdef INVARIANTS 735 if (!ffs_checkblk(ip, 736 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 737 panic("ffs_reallocblks: unallocated block 3"); 738 #endif 739 #ifdef DEBUG 740 if (prtrealloc) 741 printf(" %d,", blkno); 742 #endif 743 } 744 #ifdef DEBUG 745 if (prtrealloc) { 746 prtrealloc--; 747 printf("\n"); 748 } 749 #endif 750 return (0); 751 752 fail: 753 if (ssize < len) 754 brelse(ebp); 755 if (sbap != &ip->i_din1->di_db[0]) 756 brelse(sbp); 757 return (ENOSPC); 758 } 759 760 static int 761 ffs_reallocblks_ufs2(ap) 762 struct vop_reallocblks_args /* { 763 struct vnode *a_vp; 764 struct cluster_save *a_buflist; 765 } */ *ap; 766 { 767 struct fs *fs; 768 struct inode *ip; 769 struct vnode *vp; 770 struct buf *sbp, *ebp; 771 ufs2_daddr_t *bap, *sbap, *ebap; 772 struct cluster_save *buflist; 773 struct ufsmount *ump; 774 ufs_lbn_t start_lbn, end_lbn; 775 ufs2_daddr_t soff, newblk, blkno, pref; 776 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 777 int i, cg, len, start_lvl, end_lvl, ssize; 778 779 vp = ap->a_vp; 780 ip = VTOI(vp); 781 fs = ip->i_fs; 782 ump = ip->i_ump; 783 /* 784 * If we are not tracking block clusters or if we have less than 4% 785 * free blocks left, then do not attempt to cluster. Running with 786 * less than 5% free block reserve is not recommended and those that 787 * choose to do so do not expect to have good file layout. 788 */ 789 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 790 return (ENOSPC); 791 buflist = ap->a_buflist; 792 len = buflist->bs_nchildren; 793 start_lbn = buflist->bs_children[0]->b_lblkno; 794 end_lbn = start_lbn + len - 1; 795 #ifdef INVARIANTS 796 for (i = 0; i < len; i++) 797 if (!ffs_checkblk(ip, 798 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 799 panic("ffs_reallocblks: unallocated block 1"); 800 for (i = 1; i < len; i++) 801 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 802 panic("ffs_reallocblks: non-logical cluster"); 803 blkno = buflist->bs_children[0]->b_blkno; 804 ssize = fsbtodb(fs, fs->fs_frag); 805 for (i = 1; i < len - 1; i++) 806 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 807 panic("ffs_reallocblks: non-physical cluster %d", i); 808 #endif 809 /* 810 * If the cluster crosses the boundary for the first indirect 811 * block, do not move anything in it. Indirect blocks are 812 * usually initially laid out in a position between the data 813 * blocks. Block reallocation would usually destroy locality by 814 * moving the indirect block out of the way to make room for 815 * data blocks if we didn't compensate here. We should also do 816 * this for other indirect block boundaries, but it is only 817 * important for the first one. 818 */ 819 if (start_lbn < NDADDR && end_lbn >= NDADDR) 820 return (ENOSPC); 821 /* 822 * If the latest allocation is in a new cylinder group, assume that 823 * the filesystem has decided to move and do not force it back to 824 * the previous cylinder group. 825 */ 826 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 827 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 828 return (ENOSPC); 829 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 830 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 831 return (ENOSPC); 832 /* 833 * Get the starting offset and block map for the first block. 834 */ 835 if (start_lvl == 0) { 836 sbap = &ip->i_din2->di_db[0]; 837 soff = start_lbn; 838 } else { 839 idp = &start_ap[start_lvl - 1]; 840 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 841 brelse(sbp); 842 return (ENOSPC); 843 } 844 sbap = (ufs2_daddr_t *)sbp->b_data; 845 soff = idp->in_off; 846 } 847 /* 848 * If the block range spans two block maps, get the second map. 849 */ 850 ebap = NULL; 851 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 852 ssize = len; 853 } else { 854 #ifdef INVARIANTS 855 if (start_lvl > 0 && 856 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 857 panic("ffs_reallocblk: start == end"); 858 #endif 859 ssize = len - (idp->in_off + 1); 860 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 861 goto fail; 862 ebap = (ufs2_daddr_t *)ebp->b_data; 863 } 864 /* 865 * Find the preferred location for the cluster. If we have not 866 * previously failed at this endeavor, then follow our standard 867 * preference calculation. If we have failed at it, then pick up 868 * where we last ended our search. 869 */ 870 UFS_LOCK(ump); 871 if (ip->i_nextclustercg == -1) 872 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 873 else 874 pref = cgdata(fs, ip->i_nextclustercg); 875 /* 876 * Search the block map looking for an allocation of the desired size. 877 * To avoid wasting too much time, we limit the number of cylinder 878 * groups that we will search. 879 */ 880 cg = dtog(fs, pref); 881 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 882 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 883 break; 884 cg += 1; 885 if (cg >= fs->fs_ncg) 886 cg = 0; 887 } 888 /* 889 * If we have failed in our search, record where we gave up for 890 * next time. Otherwise, fall back to our usual search citerion. 891 */ 892 if (newblk == 0) { 893 ip->i_nextclustercg = cg; 894 UFS_UNLOCK(ump); 895 goto fail; 896 } 897 ip->i_nextclustercg = -1; 898 /* 899 * We have found a new contiguous block. 900 * 901 * First we have to replace the old block pointers with the new 902 * block pointers in the inode and indirect blocks associated 903 * with the file. 904 */ 905 #ifdef DEBUG 906 if (prtrealloc) 907 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 908 (intmax_t)start_lbn, (intmax_t)end_lbn); 909 #endif 910 blkno = newblk; 911 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 912 if (i == ssize) { 913 bap = ebap; 914 soff = -i; 915 } 916 #ifdef INVARIANTS 917 if (!ffs_checkblk(ip, 918 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 919 panic("ffs_reallocblks: unallocated block 2"); 920 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 921 panic("ffs_reallocblks: alloc mismatch"); 922 #endif 923 #ifdef DEBUG 924 if (prtrealloc) 925 printf(" %jd,", (intmax_t)*bap); 926 #endif 927 if (DOINGSOFTDEP(vp)) { 928 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 929 softdep_setup_allocdirect(ip, start_lbn + i, 930 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 931 buflist->bs_children[i]); 932 else 933 softdep_setup_allocindir_page(ip, start_lbn + i, 934 i < ssize ? sbp : ebp, soff + i, blkno, 935 *bap, buflist->bs_children[i]); 936 } 937 *bap++ = blkno; 938 } 939 /* 940 * Next we must write out the modified inode and indirect blocks. 941 * For strict correctness, the writes should be synchronous since 942 * the old block values may have been written to disk. In practise 943 * they are almost never written, but if we are concerned about 944 * strict correctness, the `doasyncfree' flag should be set to zero. 945 * 946 * The test on `doasyncfree' should be changed to test a flag 947 * that shows whether the associated buffers and inodes have 948 * been written. The flag should be set when the cluster is 949 * started and cleared whenever the buffer or inode is flushed. 950 * We can then check below to see if it is set, and do the 951 * synchronous write only when it has been cleared. 952 */ 953 if (sbap != &ip->i_din2->di_db[0]) { 954 if (doasyncfree) 955 bdwrite(sbp); 956 else 957 bwrite(sbp); 958 } else { 959 ip->i_flag |= IN_CHANGE | IN_UPDATE; 960 if (!doasyncfree) 961 ffs_update(vp, 1); 962 } 963 if (ssize < len) { 964 if (doasyncfree) 965 bdwrite(ebp); 966 else 967 bwrite(ebp); 968 } 969 /* 970 * Last, free the old blocks and assign the new blocks to the buffers. 971 */ 972 #ifdef DEBUG 973 if (prtrealloc) 974 printf("\n\tnew:"); 975 #endif 976 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 977 if (!DOINGSOFTDEP(vp)) 978 ffs_blkfree(ump, fs, ip->i_devvp, 979 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 980 fs->fs_bsize, ip->i_number, vp->v_type, NULL); 981 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 982 #ifdef INVARIANTS 983 if (!ffs_checkblk(ip, 984 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 985 panic("ffs_reallocblks: unallocated block 3"); 986 #endif 987 #ifdef DEBUG 988 if (prtrealloc) 989 printf(" %jd,", (intmax_t)blkno); 990 #endif 991 } 992 #ifdef DEBUG 993 if (prtrealloc) { 994 prtrealloc--; 995 printf("\n"); 996 } 997 #endif 998 return (0); 999 1000 fail: 1001 if (ssize < len) 1002 brelse(ebp); 1003 if (sbap != &ip->i_din2->di_db[0]) 1004 brelse(sbp); 1005 return (ENOSPC); 1006 } 1007 1008 /* 1009 * Allocate an inode in the filesystem. 1010 * 1011 * If allocating a directory, use ffs_dirpref to select the inode. 1012 * If allocating in a directory, the following hierarchy is followed: 1013 * 1) allocate the preferred inode. 1014 * 2) allocate an inode in the same cylinder group. 1015 * 3) quadradically rehash into other cylinder groups, until an 1016 * available inode is located. 1017 * If no inode preference is given the following hierarchy is used 1018 * to allocate an inode: 1019 * 1) allocate an inode in cylinder group 0. 1020 * 2) quadradically rehash into other cylinder groups, until an 1021 * available inode is located. 1022 */ 1023 int 1024 ffs_valloc(pvp, mode, cred, vpp) 1025 struct vnode *pvp; 1026 int mode; 1027 struct ucred *cred; 1028 struct vnode **vpp; 1029 { 1030 struct inode *pip; 1031 struct fs *fs; 1032 struct inode *ip; 1033 struct timespec ts; 1034 struct ufsmount *ump; 1035 ino_t ino, ipref; 1036 u_int cg; 1037 int error, error1, reclaimed; 1038 static struct timeval lastfail; 1039 static int curfail; 1040 1041 *vpp = NULL; 1042 pip = VTOI(pvp); 1043 fs = pip->i_fs; 1044 ump = pip->i_ump; 1045 1046 UFS_LOCK(ump); 1047 reclaimed = 0; 1048 retry: 1049 if (fs->fs_cstotal.cs_nifree == 0) 1050 goto noinodes; 1051 1052 if ((mode & IFMT) == IFDIR) 1053 ipref = ffs_dirpref(pip); 1054 else 1055 ipref = pip->i_number; 1056 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1057 ipref = 0; 1058 cg = ino_to_cg(fs, ipref); 1059 /* 1060 * Track number of dirs created one after another 1061 * in a same cg without intervening by files. 1062 */ 1063 if ((mode & IFMT) == IFDIR) { 1064 if (fs->fs_contigdirs[cg] < 255) 1065 fs->fs_contigdirs[cg]++; 1066 } else { 1067 if (fs->fs_contigdirs[cg] > 0) 1068 fs->fs_contigdirs[cg]--; 1069 } 1070 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1071 (allocfcn_t *)ffs_nodealloccg); 1072 if (ino == 0) 1073 goto noinodes; 1074 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1075 if (error) { 1076 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1077 FFSV_FORCEINSMQ); 1078 ffs_vfree(pvp, ino, mode); 1079 if (error1 == 0) { 1080 ip = VTOI(*vpp); 1081 if (ip->i_mode) 1082 goto dup_alloc; 1083 ip->i_flag |= IN_MODIFIED; 1084 vput(*vpp); 1085 } 1086 return (error); 1087 } 1088 ip = VTOI(*vpp); 1089 if (ip->i_mode) { 1090 dup_alloc: 1091 printf("mode = 0%o, inum = %ju, fs = %s\n", 1092 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1093 panic("ffs_valloc: dup alloc"); 1094 } 1095 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1096 printf("free inode %s/%lu had %ld blocks\n", 1097 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1098 DIP_SET(ip, i_blocks, 0); 1099 } 1100 ip->i_flags = 0; 1101 DIP_SET(ip, i_flags, 0); 1102 /* 1103 * Set up a new generation number for this inode. 1104 */ 1105 if (ip->i_gen == 0 || ++ip->i_gen == 0) 1106 ip->i_gen = arc4random() / 2 + 1; 1107 DIP_SET(ip, i_gen, ip->i_gen); 1108 if (fs->fs_magic == FS_UFS2_MAGIC) { 1109 vfs_timestamp(&ts); 1110 ip->i_din2->di_birthtime = ts.tv_sec; 1111 ip->i_din2->di_birthnsec = ts.tv_nsec; 1112 } 1113 ufs_prepare_reclaim(*vpp); 1114 ip->i_flag = 0; 1115 (*vpp)->v_vflag = 0; 1116 (*vpp)->v_type = VNON; 1117 if (fs->fs_magic == FS_UFS2_MAGIC) 1118 (*vpp)->v_op = &ffs_vnodeops2; 1119 else 1120 (*vpp)->v_op = &ffs_vnodeops1; 1121 return (0); 1122 noinodes: 1123 if (reclaimed == 0) { 1124 reclaimed = 1; 1125 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1126 goto retry; 1127 } 1128 UFS_UNLOCK(ump); 1129 if (ppsratecheck(&lastfail, &curfail, 1)) { 1130 ffs_fserr(fs, pip->i_number, "out of inodes"); 1131 uprintf("\n%s: create/symlink failed, no inodes free\n", 1132 fs->fs_fsmnt); 1133 } 1134 return (ENOSPC); 1135 } 1136 1137 /* 1138 * Find a cylinder group to place a directory. 1139 * 1140 * The policy implemented by this algorithm is to allocate a 1141 * directory inode in the same cylinder group as its parent 1142 * directory, but also to reserve space for its files inodes 1143 * and data. Restrict the number of directories which may be 1144 * allocated one after another in the same cylinder group 1145 * without intervening allocation of files. 1146 * 1147 * If we allocate a first level directory then force allocation 1148 * in another cylinder group. 1149 */ 1150 static ino_t 1151 ffs_dirpref(pip) 1152 struct inode *pip; 1153 { 1154 struct fs *fs; 1155 int cg, prefcg, dirsize, cgsize; 1156 u_int avgifree, avgbfree, avgndir, curdirsize; 1157 u_int minifree, minbfree, maxndir; 1158 u_int mincg, minndir; 1159 u_int maxcontigdirs; 1160 1161 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1162 fs = pip->i_fs; 1163 1164 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1165 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1166 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1167 1168 /* 1169 * Force allocation in another cg if creating a first level dir. 1170 */ 1171 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1172 if (ITOV(pip)->v_vflag & VV_ROOT) { 1173 prefcg = arc4random() % fs->fs_ncg; 1174 mincg = prefcg; 1175 minndir = fs->fs_ipg; 1176 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1177 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1178 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1179 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1180 mincg = cg; 1181 minndir = fs->fs_cs(fs, cg).cs_ndir; 1182 } 1183 for (cg = 0; cg < prefcg; cg++) 1184 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1185 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1186 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1187 mincg = cg; 1188 minndir = fs->fs_cs(fs, cg).cs_ndir; 1189 } 1190 return ((ino_t)(fs->fs_ipg * mincg)); 1191 } 1192 1193 /* 1194 * Count various limits which used for 1195 * optimal allocation of a directory inode. 1196 */ 1197 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1198 minifree = avgifree - avgifree / 4; 1199 if (minifree < 1) 1200 minifree = 1; 1201 minbfree = avgbfree - avgbfree / 4; 1202 if (minbfree < 1) 1203 minbfree = 1; 1204 cgsize = fs->fs_fsize * fs->fs_fpg; 1205 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1206 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1207 if (dirsize < curdirsize) 1208 dirsize = curdirsize; 1209 if (dirsize <= 0) 1210 maxcontigdirs = 0; /* dirsize overflowed */ 1211 else 1212 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1213 if (fs->fs_avgfpdir > 0) 1214 maxcontigdirs = min(maxcontigdirs, 1215 fs->fs_ipg / fs->fs_avgfpdir); 1216 if (maxcontigdirs == 0) 1217 maxcontigdirs = 1; 1218 1219 /* 1220 * Limit number of dirs in one cg and reserve space for 1221 * regular files, but only if we have no deficit in 1222 * inodes or space. 1223 * 1224 * We are trying to find a suitable cylinder group nearby 1225 * our preferred cylinder group to place a new directory. 1226 * We scan from our preferred cylinder group forward looking 1227 * for a cylinder group that meets our criterion. If we get 1228 * to the final cylinder group and do not find anything, 1229 * we start scanning forwards from the beginning of the 1230 * filesystem. While it might seem sensible to start scanning 1231 * backwards or even to alternate looking forward and backward, 1232 * this approach fails badly when the filesystem is nearly full. 1233 * Specifically, we first search all the areas that have no space 1234 * and finally try the one preceding that. We repeat this on 1235 * every request and in the case of the final block end up 1236 * searching the entire filesystem. By jumping to the front 1237 * of the filesystem, our future forward searches always look 1238 * in new cylinder groups so finds every possible block after 1239 * one pass over the filesystem. 1240 */ 1241 prefcg = ino_to_cg(fs, pip->i_number); 1242 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1243 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1244 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1245 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1246 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1247 return ((ino_t)(fs->fs_ipg * cg)); 1248 } 1249 for (cg = 0; cg < prefcg; cg++) 1250 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1251 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1252 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1253 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1254 return ((ino_t)(fs->fs_ipg * cg)); 1255 } 1256 /* 1257 * This is a backstop when we have deficit in space. 1258 */ 1259 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1260 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1261 return ((ino_t)(fs->fs_ipg * cg)); 1262 for (cg = 0; cg < prefcg; cg++) 1263 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1264 break; 1265 return ((ino_t)(fs->fs_ipg * cg)); 1266 } 1267 1268 /* 1269 * Select the desired position for the next block in a file. The file is 1270 * logically divided into sections. The first section is composed of the 1271 * direct blocks and the next fs_maxbpg blocks. Each additional section 1272 * contains fs_maxbpg blocks. 1273 * 1274 * If no blocks have been allocated in the first section, the policy is to 1275 * request a block in the same cylinder group as the inode that describes 1276 * the file. The first indirect is allocated immediately following the last 1277 * direct block and the data blocks for the first indirect immediately 1278 * follow it. 1279 * 1280 * If no blocks have been allocated in any other section, the indirect 1281 * block(s) are allocated in the same cylinder group as its inode in an 1282 * area reserved immediately following the inode blocks. The policy for 1283 * the data blocks is to place them in a cylinder group with a greater than 1284 * average number of free blocks. An appropriate cylinder group is found 1285 * by using a rotor that sweeps the cylinder groups. When a new group of 1286 * blocks is needed, the sweep begins in the cylinder group following the 1287 * cylinder group from which the previous allocation was made. The sweep 1288 * continues until a cylinder group with greater than the average number 1289 * of free blocks is found. If the allocation is for the first block in an 1290 * indirect block or the previous block is a hole, then the information on 1291 * the previous allocation is unavailable; here a best guess is made based 1292 * on the logical block number being allocated. 1293 * 1294 * If a section is already partially allocated, the policy is to 1295 * allocate blocks contiguously within the section if possible. 1296 */ 1297 ufs2_daddr_t 1298 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1299 struct inode *ip; 1300 ufs_lbn_t lbn; 1301 int indx; 1302 ufs1_daddr_t *bap; 1303 { 1304 struct fs *fs; 1305 u_int cg, inocg; 1306 u_int avgbfree, startcg; 1307 ufs2_daddr_t pref; 1308 1309 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1310 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1311 fs = ip->i_fs; 1312 /* 1313 * Allocation of indirect blocks is indicated by passing negative 1314 * values in indx: -1 for single indirect, -2 for double indirect, 1315 * -3 for triple indirect. As noted below, we attempt to allocate 1316 * the first indirect inline with the file data. For all later 1317 * indirect blocks, the data is often allocated in other cylinder 1318 * groups. However to speed random file access and to speed up 1319 * fsck, the filesystem reserves the first fs_metaspace blocks 1320 * (typically half of fs_minfree) of the data area of each cylinder 1321 * group to hold these later indirect blocks. 1322 */ 1323 inocg = ino_to_cg(fs, ip->i_number); 1324 if (indx < 0) { 1325 /* 1326 * Our preference for indirect blocks is the zone at the 1327 * beginning of the inode's cylinder group data area that 1328 * we try to reserve for indirect blocks. 1329 */ 1330 pref = cgmeta(fs, inocg); 1331 /* 1332 * If we are allocating the first indirect block, try to 1333 * place it immediately following the last direct block. 1334 */ 1335 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1336 ip->i_din1->di_db[NDADDR - 1] != 0) 1337 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag; 1338 return (pref); 1339 } 1340 /* 1341 * If we are allocating the first data block in the first indirect 1342 * block and the indirect has been allocated in the data block area, 1343 * try to place it immediately following the indirect block. 1344 */ 1345 if (lbn == NDADDR) { 1346 pref = ip->i_din1->di_ib[0]; 1347 if (pref != 0 && pref >= cgdata(fs, inocg) && 1348 pref < cgbase(fs, inocg + 1)) 1349 return (pref + fs->fs_frag); 1350 } 1351 /* 1352 * If we are at the beginning of a file, or we have already allocated 1353 * the maximum number of blocks per cylinder group, or we do not 1354 * have a block allocated immediately preceding us, then we need 1355 * to decide where to start allocating new blocks. 1356 */ 1357 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1358 /* 1359 * If we are allocating a directory data block, we want 1360 * to place it in the metadata area. 1361 */ 1362 if ((ip->i_mode & IFMT) == IFDIR) 1363 return (cgmeta(fs, inocg)); 1364 /* 1365 * Until we fill all the direct and all the first indirect's 1366 * blocks, we try to allocate in the data area of the inode's 1367 * cylinder group. 1368 */ 1369 if (lbn < NDADDR + NINDIR(fs)) 1370 return (cgdata(fs, inocg)); 1371 /* 1372 * Find a cylinder with greater than average number of 1373 * unused data blocks. 1374 */ 1375 if (indx == 0 || bap[indx - 1] == 0) 1376 startcg = inocg + lbn / fs->fs_maxbpg; 1377 else 1378 startcg = dtog(fs, bap[indx - 1]) + 1; 1379 startcg %= fs->fs_ncg; 1380 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1381 for (cg = startcg; cg < fs->fs_ncg; cg++) 1382 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1383 fs->fs_cgrotor = cg; 1384 return (cgdata(fs, cg)); 1385 } 1386 for (cg = 0; cg <= startcg; cg++) 1387 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1388 fs->fs_cgrotor = cg; 1389 return (cgdata(fs, cg)); 1390 } 1391 return (0); 1392 } 1393 /* 1394 * Otherwise, we just always try to lay things out contiguously. 1395 */ 1396 return (bap[indx - 1] + fs->fs_frag); 1397 } 1398 1399 /* 1400 * Same as above, but for UFS2 1401 */ 1402 ufs2_daddr_t 1403 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1404 struct inode *ip; 1405 ufs_lbn_t lbn; 1406 int indx; 1407 ufs2_daddr_t *bap; 1408 { 1409 struct fs *fs; 1410 u_int cg, inocg; 1411 u_int avgbfree, startcg; 1412 ufs2_daddr_t pref; 1413 1414 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1415 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1416 fs = ip->i_fs; 1417 /* 1418 * Allocation of indirect blocks is indicated by passing negative 1419 * values in indx: -1 for single indirect, -2 for double indirect, 1420 * -3 for triple indirect. As noted below, we attempt to allocate 1421 * the first indirect inline with the file data. For all later 1422 * indirect blocks, the data is often allocated in other cylinder 1423 * groups. However to speed random file access and to speed up 1424 * fsck, the filesystem reserves the first fs_metaspace blocks 1425 * (typically half of fs_minfree) of the data area of each cylinder 1426 * group to hold these later indirect blocks. 1427 */ 1428 inocg = ino_to_cg(fs, ip->i_number); 1429 if (indx < 0) { 1430 /* 1431 * Our preference for indirect blocks is the zone at the 1432 * beginning of the inode's cylinder group data area that 1433 * we try to reserve for indirect blocks. 1434 */ 1435 pref = cgmeta(fs, inocg); 1436 /* 1437 * If we are allocating the first indirect block, try to 1438 * place it immediately following the last direct block. 1439 */ 1440 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1441 ip->i_din2->di_db[NDADDR - 1] != 0) 1442 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag; 1443 return (pref); 1444 } 1445 /* 1446 * If we are allocating the first data block in the first indirect 1447 * block and the indirect has been allocated in the data block area, 1448 * try to place it immediately following the indirect block. 1449 */ 1450 if (lbn == NDADDR) { 1451 pref = ip->i_din2->di_ib[0]; 1452 if (pref != 0 && pref >= cgdata(fs, inocg) && 1453 pref < cgbase(fs, inocg + 1)) 1454 return (pref + fs->fs_frag); 1455 } 1456 /* 1457 * If we are at the beginning of a file, or we have already allocated 1458 * the maximum number of blocks per cylinder group, or we do not 1459 * have a block allocated immediately preceding us, then we need 1460 * to decide where to start allocating new blocks. 1461 */ 1462 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1463 /* 1464 * If we are allocating a directory data block, we want 1465 * to place it in the metadata area. 1466 */ 1467 if ((ip->i_mode & IFMT) == IFDIR) 1468 return (cgmeta(fs, inocg)); 1469 /* 1470 * Until we fill all the direct and all the first indirect's 1471 * blocks, we try to allocate in the data area of the inode's 1472 * cylinder group. 1473 */ 1474 if (lbn < NDADDR + NINDIR(fs)) 1475 return (cgdata(fs, inocg)); 1476 /* 1477 * Find a cylinder with greater than average number of 1478 * unused data blocks. 1479 */ 1480 if (indx == 0 || bap[indx - 1] == 0) 1481 startcg = inocg + lbn / fs->fs_maxbpg; 1482 else 1483 startcg = dtog(fs, bap[indx - 1]) + 1; 1484 startcg %= fs->fs_ncg; 1485 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1486 for (cg = startcg; cg < fs->fs_ncg; cg++) 1487 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1488 fs->fs_cgrotor = cg; 1489 return (cgdata(fs, cg)); 1490 } 1491 for (cg = 0; cg <= startcg; cg++) 1492 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1493 fs->fs_cgrotor = cg; 1494 return (cgdata(fs, cg)); 1495 } 1496 return (0); 1497 } 1498 /* 1499 * Otherwise, we just always try to lay things out contiguously. 1500 */ 1501 return (bap[indx - 1] + fs->fs_frag); 1502 } 1503 1504 /* 1505 * Implement the cylinder overflow algorithm. 1506 * 1507 * The policy implemented by this algorithm is: 1508 * 1) allocate the block in its requested cylinder group. 1509 * 2) quadradically rehash on the cylinder group number. 1510 * 3) brute force search for a free block. 1511 * 1512 * Must be called with the UFS lock held. Will release the lock on success 1513 * and return with it held on failure. 1514 */ 1515 /*VARARGS5*/ 1516 static ufs2_daddr_t 1517 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1518 struct inode *ip; 1519 u_int cg; 1520 ufs2_daddr_t pref; 1521 int size; /* Search size for data blocks, mode for inodes */ 1522 int rsize; /* Real allocated size. */ 1523 allocfcn_t *allocator; 1524 { 1525 struct fs *fs; 1526 ufs2_daddr_t result; 1527 u_int i, icg = cg; 1528 1529 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1530 #ifdef INVARIANTS 1531 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1532 panic("ffs_hashalloc: allocation on suspended filesystem"); 1533 #endif 1534 fs = ip->i_fs; 1535 /* 1536 * 1: preferred cylinder group 1537 */ 1538 result = (*allocator)(ip, cg, pref, size, rsize); 1539 if (result) 1540 return (result); 1541 /* 1542 * 2: quadratic rehash 1543 */ 1544 for (i = 1; i < fs->fs_ncg; i *= 2) { 1545 cg += i; 1546 if (cg >= fs->fs_ncg) 1547 cg -= fs->fs_ncg; 1548 result = (*allocator)(ip, cg, 0, size, rsize); 1549 if (result) 1550 return (result); 1551 } 1552 /* 1553 * 3: brute force search 1554 * Note that we start at i == 2, since 0 was checked initially, 1555 * and 1 is always checked in the quadratic rehash. 1556 */ 1557 cg = (icg + 2) % fs->fs_ncg; 1558 for (i = 2; i < fs->fs_ncg; i++) { 1559 result = (*allocator)(ip, cg, 0, size, rsize); 1560 if (result) 1561 return (result); 1562 cg++; 1563 if (cg == fs->fs_ncg) 1564 cg = 0; 1565 } 1566 return (0); 1567 } 1568 1569 /* 1570 * Determine whether a fragment can be extended. 1571 * 1572 * Check to see if the necessary fragments are available, and 1573 * if they are, allocate them. 1574 */ 1575 static ufs2_daddr_t 1576 ffs_fragextend(ip, cg, bprev, osize, nsize) 1577 struct inode *ip; 1578 u_int cg; 1579 ufs2_daddr_t bprev; 1580 int osize, nsize; 1581 { 1582 struct fs *fs; 1583 struct cg *cgp; 1584 struct buf *bp; 1585 struct ufsmount *ump; 1586 int nffree; 1587 long bno; 1588 int frags, bbase; 1589 int i, error; 1590 u_int8_t *blksfree; 1591 1592 ump = ip->i_ump; 1593 fs = ip->i_fs; 1594 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1595 return (0); 1596 frags = numfrags(fs, nsize); 1597 bbase = fragnum(fs, bprev); 1598 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1599 /* cannot extend across a block boundary */ 1600 return (0); 1601 } 1602 UFS_UNLOCK(ump); 1603 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1604 (int)fs->fs_cgsize, NOCRED, &bp); 1605 if (error) 1606 goto fail; 1607 cgp = (struct cg *)bp->b_data; 1608 if (!cg_chkmagic(cgp)) 1609 goto fail; 1610 bp->b_xflags |= BX_BKGRDWRITE; 1611 cgp->cg_old_time = cgp->cg_time = time_second; 1612 bno = dtogd(fs, bprev); 1613 blksfree = cg_blksfree(cgp); 1614 for (i = numfrags(fs, osize); i < frags; i++) 1615 if (isclr(blksfree, bno + i)) 1616 goto fail; 1617 /* 1618 * the current fragment can be extended 1619 * deduct the count on fragment being extended into 1620 * increase the count on the remaining fragment (if any) 1621 * allocate the extended piece 1622 */ 1623 for (i = frags; i < fs->fs_frag - bbase; i++) 1624 if (isclr(blksfree, bno + i)) 1625 break; 1626 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1627 if (i != frags) 1628 cgp->cg_frsum[i - frags]++; 1629 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1630 clrbit(blksfree, bno + i); 1631 cgp->cg_cs.cs_nffree--; 1632 nffree++; 1633 } 1634 UFS_LOCK(ump); 1635 fs->fs_cstotal.cs_nffree -= nffree; 1636 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1637 fs->fs_fmod = 1; 1638 ACTIVECLEAR(fs, cg); 1639 UFS_UNLOCK(ump); 1640 if (DOINGSOFTDEP(ITOV(ip))) 1641 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1642 frags, numfrags(fs, osize)); 1643 bdwrite(bp); 1644 return (bprev); 1645 1646 fail: 1647 brelse(bp); 1648 UFS_LOCK(ump); 1649 return (0); 1650 1651 } 1652 1653 /* 1654 * Determine whether a block can be allocated. 1655 * 1656 * Check to see if a block of the appropriate size is available, 1657 * and if it is, allocate it. 1658 */ 1659 static ufs2_daddr_t 1660 ffs_alloccg(ip, cg, bpref, size, rsize) 1661 struct inode *ip; 1662 u_int cg; 1663 ufs2_daddr_t bpref; 1664 int size; 1665 int rsize; 1666 { 1667 struct fs *fs; 1668 struct cg *cgp; 1669 struct buf *bp; 1670 struct ufsmount *ump; 1671 ufs1_daddr_t bno; 1672 ufs2_daddr_t blkno; 1673 int i, allocsiz, error, frags; 1674 u_int8_t *blksfree; 1675 1676 ump = ip->i_ump; 1677 fs = ip->i_fs; 1678 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1679 return (0); 1680 UFS_UNLOCK(ump); 1681 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1682 (int)fs->fs_cgsize, NOCRED, &bp); 1683 if (error) 1684 goto fail; 1685 cgp = (struct cg *)bp->b_data; 1686 if (!cg_chkmagic(cgp) || 1687 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1688 goto fail; 1689 bp->b_xflags |= BX_BKGRDWRITE; 1690 cgp->cg_old_time = cgp->cg_time = time_second; 1691 if (size == fs->fs_bsize) { 1692 UFS_LOCK(ump); 1693 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1694 ACTIVECLEAR(fs, cg); 1695 UFS_UNLOCK(ump); 1696 bdwrite(bp); 1697 return (blkno); 1698 } 1699 /* 1700 * check to see if any fragments are already available 1701 * allocsiz is the size which will be allocated, hacking 1702 * it down to a smaller size if necessary 1703 */ 1704 blksfree = cg_blksfree(cgp); 1705 frags = numfrags(fs, size); 1706 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1707 if (cgp->cg_frsum[allocsiz] != 0) 1708 break; 1709 if (allocsiz == fs->fs_frag) { 1710 /* 1711 * no fragments were available, so a block will be 1712 * allocated, and hacked up 1713 */ 1714 if (cgp->cg_cs.cs_nbfree == 0) 1715 goto fail; 1716 UFS_LOCK(ump); 1717 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1718 ACTIVECLEAR(fs, cg); 1719 UFS_UNLOCK(ump); 1720 bdwrite(bp); 1721 return (blkno); 1722 } 1723 KASSERT(size == rsize, 1724 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1725 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1726 if (bno < 0) 1727 goto fail; 1728 for (i = 0; i < frags; i++) 1729 clrbit(blksfree, bno + i); 1730 cgp->cg_cs.cs_nffree -= frags; 1731 cgp->cg_frsum[allocsiz]--; 1732 if (frags != allocsiz) 1733 cgp->cg_frsum[allocsiz - frags]++; 1734 UFS_LOCK(ump); 1735 fs->fs_cstotal.cs_nffree -= frags; 1736 fs->fs_cs(fs, cg).cs_nffree -= frags; 1737 fs->fs_fmod = 1; 1738 blkno = cgbase(fs, cg) + bno; 1739 ACTIVECLEAR(fs, cg); 1740 UFS_UNLOCK(ump); 1741 if (DOINGSOFTDEP(ITOV(ip))) 1742 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1743 bdwrite(bp); 1744 return (blkno); 1745 1746 fail: 1747 brelse(bp); 1748 UFS_LOCK(ump); 1749 return (0); 1750 } 1751 1752 /* 1753 * Allocate a block in a cylinder group. 1754 * 1755 * This algorithm implements the following policy: 1756 * 1) allocate the requested block. 1757 * 2) allocate a rotationally optimal block in the same cylinder. 1758 * 3) allocate the next available block on the block rotor for the 1759 * specified cylinder group. 1760 * Note that this routine only allocates fs_bsize blocks; these 1761 * blocks may be fragmented by the routine that allocates them. 1762 */ 1763 static ufs2_daddr_t 1764 ffs_alloccgblk(ip, bp, bpref, size) 1765 struct inode *ip; 1766 struct buf *bp; 1767 ufs2_daddr_t bpref; 1768 int size; 1769 { 1770 struct fs *fs; 1771 struct cg *cgp; 1772 struct ufsmount *ump; 1773 ufs1_daddr_t bno; 1774 ufs2_daddr_t blkno; 1775 u_int8_t *blksfree; 1776 int i, cgbpref; 1777 1778 fs = ip->i_fs; 1779 ump = ip->i_ump; 1780 mtx_assert(UFS_MTX(ump), MA_OWNED); 1781 cgp = (struct cg *)bp->b_data; 1782 blksfree = cg_blksfree(cgp); 1783 if (bpref == 0) { 1784 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1785 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1786 /* map bpref to correct zone in this cg */ 1787 if (bpref < cgdata(fs, cgbpref)) 1788 bpref = cgmeta(fs, cgp->cg_cgx); 1789 else 1790 bpref = cgdata(fs, cgp->cg_cgx); 1791 } 1792 /* 1793 * if the requested block is available, use it 1794 */ 1795 bno = dtogd(fs, blknum(fs, bpref)); 1796 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1797 goto gotit; 1798 /* 1799 * Take the next available block in this cylinder group. 1800 */ 1801 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1802 if (bno < 0) 1803 return (0); 1804 /* Update cg_rotor only if allocated from the data zone */ 1805 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1806 cgp->cg_rotor = bno; 1807 gotit: 1808 blkno = fragstoblks(fs, bno); 1809 ffs_clrblock(fs, blksfree, (long)blkno); 1810 ffs_clusteracct(fs, cgp, blkno, -1); 1811 cgp->cg_cs.cs_nbfree--; 1812 fs->fs_cstotal.cs_nbfree--; 1813 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1814 fs->fs_fmod = 1; 1815 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1816 /* 1817 * If the caller didn't want the whole block free the frags here. 1818 */ 1819 size = numfrags(fs, size); 1820 if (size != fs->fs_frag) { 1821 bno = dtogd(fs, blkno); 1822 for (i = size; i < fs->fs_frag; i++) 1823 setbit(blksfree, bno + i); 1824 i = fs->fs_frag - size; 1825 cgp->cg_cs.cs_nffree += i; 1826 fs->fs_cstotal.cs_nffree += i; 1827 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1828 fs->fs_fmod = 1; 1829 cgp->cg_frsum[i]++; 1830 } 1831 /* XXX Fixme. */ 1832 UFS_UNLOCK(ump); 1833 if (DOINGSOFTDEP(ITOV(ip))) 1834 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1835 size, 0); 1836 UFS_LOCK(ump); 1837 return (blkno); 1838 } 1839 1840 /* 1841 * Determine whether a cluster can be allocated. 1842 * 1843 * We do not currently check for optimal rotational layout if there 1844 * are multiple choices in the same cylinder group. Instead we just 1845 * take the first one that we find following bpref. 1846 */ 1847 static ufs2_daddr_t 1848 ffs_clusteralloc(ip, cg, bpref, len) 1849 struct inode *ip; 1850 u_int cg; 1851 ufs2_daddr_t bpref; 1852 int len; 1853 { 1854 struct fs *fs; 1855 struct cg *cgp; 1856 struct buf *bp; 1857 struct ufsmount *ump; 1858 int i, run, bit, map, got; 1859 ufs2_daddr_t bno; 1860 u_char *mapp; 1861 int32_t *lp; 1862 u_int8_t *blksfree; 1863 1864 fs = ip->i_fs; 1865 ump = ip->i_ump; 1866 if (fs->fs_maxcluster[cg] < len) 1867 return (0); 1868 UFS_UNLOCK(ump); 1869 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1870 NOCRED, &bp)) 1871 goto fail_lock; 1872 cgp = (struct cg *)bp->b_data; 1873 if (!cg_chkmagic(cgp)) 1874 goto fail_lock; 1875 bp->b_xflags |= BX_BKGRDWRITE; 1876 /* 1877 * Check to see if a cluster of the needed size (or bigger) is 1878 * available in this cylinder group. 1879 */ 1880 lp = &cg_clustersum(cgp)[len]; 1881 for (i = len; i <= fs->fs_contigsumsize; i++) 1882 if (*lp++ > 0) 1883 break; 1884 if (i > fs->fs_contigsumsize) { 1885 /* 1886 * This is the first time looking for a cluster in this 1887 * cylinder group. Update the cluster summary information 1888 * to reflect the true maximum sized cluster so that 1889 * future cluster allocation requests can avoid reading 1890 * the cylinder group map only to find no clusters. 1891 */ 1892 lp = &cg_clustersum(cgp)[len - 1]; 1893 for (i = len - 1; i > 0; i--) 1894 if (*lp-- > 0) 1895 break; 1896 UFS_LOCK(ump); 1897 fs->fs_maxcluster[cg] = i; 1898 goto fail; 1899 } 1900 /* 1901 * Search the cluster map to find a big enough cluster. 1902 * We take the first one that we find, even if it is larger 1903 * than we need as we prefer to get one close to the previous 1904 * block allocation. We do not search before the current 1905 * preference point as we do not want to allocate a block 1906 * that is allocated before the previous one (as we will 1907 * then have to wait for another pass of the elevator 1908 * algorithm before it will be read). We prefer to fail and 1909 * be recalled to try an allocation in the next cylinder group. 1910 */ 1911 if (dtog(fs, bpref) != cg) 1912 bpref = cgdata(fs, cg); 1913 else 1914 bpref = blknum(fs, bpref); 1915 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1916 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1917 map = *mapp++; 1918 bit = 1 << (bpref % NBBY); 1919 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1920 if ((map & bit) == 0) { 1921 run = 0; 1922 } else { 1923 run++; 1924 if (run == len) 1925 break; 1926 } 1927 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1928 bit <<= 1; 1929 } else { 1930 map = *mapp++; 1931 bit = 1; 1932 } 1933 } 1934 if (got >= cgp->cg_nclusterblks) 1935 goto fail_lock; 1936 /* 1937 * Allocate the cluster that we have found. 1938 */ 1939 blksfree = cg_blksfree(cgp); 1940 for (i = 1; i <= len; i++) 1941 if (!ffs_isblock(fs, blksfree, got - run + i)) 1942 panic("ffs_clusteralloc: map mismatch"); 1943 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1944 if (dtog(fs, bno) != cg) 1945 panic("ffs_clusteralloc: allocated out of group"); 1946 len = blkstofrags(fs, len); 1947 UFS_LOCK(ump); 1948 for (i = 0; i < len; i += fs->fs_frag) 1949 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1950 panic("ffs_clusteralloc: lost block"); 1951 ACTIVECLEAR(fs, cg); 1952 UFS_UNLOCK(ump); 1953 bdwrite(bp); 1954 return (bno); 1955 1956 fail_lock: 1957 UFS_LOCK(ump); 1958 fail: 1959 brelse(bp); 1960 return (0); 1961 } 1962 1963 static inline struct buf * 1964 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 1965 { 1966 struct fs *fs; 1967 1968 fs = ip->i_fs; 1969 return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, 1970 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 1971 gbflags)); 1972 } 1973 1974 /* 1975 * Determine whether an inode can be allocated. 1976 * 1977 * Check to see if an inode is available, and if it is, 1978 * allocate it using the following policy: 1979 * 1) allocate the requested inode. 1980 * 2) allocate the next available inode after the requested 1981 * inode in the specified cylinder group. 1982 */ 1983 static ufs2_daddr_t 1984 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1985 struct inode *ip; 1986 u_int cg; 1987 ufs2_daddr_t ipref; 1988 int mode; 1989 int unused; 1990 { 1991 struct fs *fs; 1992 struct cg *cgp; 1993 struct buf *bp, *ibp; 1994 struct ufsmount *ump; 1995 u_int8_t *inosused, *loc; 1996 struct ufs2_dinode *dp2; 1997 int error, start, len, i; 1998 u_int32_t old_initediblk; 1999 2000 fs = ip->i_fs; 2001 ump = ip->i_ump; 2002 check_nifree: 2003 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2004 return (0); 2005 UFS_UNLOCK(ump); 2006 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 2007 (int)fs->fs_cgsize, NOCRED, &bp); 2008 if (error) { 2009 brelse(bp); 2010 UFS_LOCK(ump); 2011 return (0); 2012 } 2013 cgp = (struct cg *)bp->b_data; 2014 restart: 2015 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 2016 brelse(bp); 2017 UFS_LOCK(ump); 2018 return (0); 2019 } 2020 bp->b_xflags |= BX_BKGRDWRITE; 2021 inosused = cg_inosused(cgp); 2022 if (ipref) { 2023 ipref %= fs->fs_ipg; 2024 if (isclr(inosused, ipref)) 2025 goto gotit; 2026 } 2027 start = cgp->cg_irotor / NBBY; 2028 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2029 loc = memcchr(&inosused[start], 0xff, len); 2030 if (loc == NULL) { 2031 len = start + 1; 2032 start = 0; 2033 loc = memcchr(&inosused[start], 0xff, len); 2034 if (loc == NULL) { 2035 printf("cg = %d, irotor = %ld, fs = %s\n", 2036 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2037 panic("ffs_nodealloccg: map corrupted"); 2038 /* NOTREACHED */ 2039 } 2040 } 2041 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2042 gotit: 2043 /* 2044 * Check to see if we need to initialize more inodes. 2045 */ 2046 if (fs->fs_magic == FS_UFS2_MAGIC && 2047 ipref + INOPB(fs) > cgp->cg_initediblk && 2048 cgp->cg_initediblk < cgp->cg_niblk) { 2049 old_initediblk = cgp->cg_initediblk; 2050 2051 /* 2052 * Free the cylinder group lock before writing the 2053 * initialized inode block. Entering the 2054 * babarrierwrite() with the cylinder group lock 2055 * causes lock order violation between the lock and 2056 * snaplk. 2057 * 2058 * Another thread can decide to initialize the same 2059 * inode block, but whichever thread first gets the 2060 * cylinder group lock after writing the newly 2061 * allocated inode block will update it and the other 2062 * will realize that it has lost and leave the 2063 * cylinder group unchanged. 2064 */ 2065 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2066 brelse(bp); 2067 if (ibp == NULL) { 2068 /* 2069 * The inode block buffer is already owned by 2070 * another thread, which must initialize it. 2071 * Wait on the buffer to allow another thread 2072 * to finish the updates, with dropped cg 2073 * buffer lock, then retry. 2074 */ 2075 ibp = getinobuf(ip, cg, old_initediblk, 0); 2076 brelse(ibp); 2077 UFS_LOCK(ump); 2078 goto check_nifree; 2079 } 2080 bzero(ibp->b_data, (int)fs->fs_bsize); 2081 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2082 for (i = 0; i < INOPB(fs); i++) { 2083 dp2->di_gen = arc4random() / 2 + 1; 2084 dp2++; 2085 } 2086 /* 2087 * Rather than adding a soft updates dependency to ensure 2088 * that the new inode block is written before it is claimed 2089 * by the cylinder group map, we just do a barrier write 2090 * here. The barrier write will ensure that the inode block 2091 * gets written before the updated cylinder group map can be 2092 * written. The barrier write should only slow down bulk 2093 * loading of newly created filesystems. 2094 */ 2095 babarrierwrite(ibp); 2096 2097 /* 2098 * After the inode block is written, try to update the 2099 * cg initediblk pointer. If another thread beat us 2100 * to it, then leave it unchanged as the other thread 2101 * has already set it correctly. 2102 */ 2103 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 2104 (int)fs->fs_cgsize, NOCRED, &bp); 2105 UFS_LOCK(ump); 2106 ACTIVECLEAR(fs, cg); 2107 UFS_UNLOCK(ump); 2108 if (error != 0) { 2109 brelse(bp); 2110 return (error); 2111 } 2112 cgp = (struct cg *)bp->b_data; 2113 if (cgp->cg_initediblk == old_initediblk) 2114 cgp->cg_initediblk += INOPB(fs); 2115 goto restart; 2116 } 2117 cgp->cg_old_time = cgp->cg_time = time_second; 2118 cgp->cg_irotor = ipref; 2119 UFS_LOCK(ump); 2120 ACTIVECLEAR(fs, cg); 2121 setbit(inosused, ipref); 2122 cgp->cg_cs.cs_nifree--; 2123 fs->fs_cstotal.cs_nifree--; 2124 fs->fs_cs(fs, cg).cs_nifree--; 2125 fs->fs_fmod = 1; 2126 if ((mode & IFMT) == IFDIR) { 2127 cgp->cg_cs.cs_ndir++; 2128 fs->fs_cstotal.cs_ndir++; 2129 fs->fs_cs(fs, cg).cs_ndir++; 2130 } 2131 UFS_UNLOCK(ump); 2132 if (DOINGSOFTDEP(ITOV(ip))) 2133 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2134 bdwrite(bp); 2135 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2136 } 2137 2138 /* 2139 * Free a block or fragment. 2140 * 2141 * The specified block or fragment is placed back in the 2142 * free map. If a fragment is deallocated, a possible 2143 * block reassembly is checked. 2144 */ 2145 static void 2146 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2147 struct ufsmount *ump; 2148 struct fs *fs; 2149 struct vnode *devvp; 2150 ufs2_daddr_t bno; 2151 long size; 2152 ino_t inum; 2153 struct workhead *dephd; 2154 { 2155 struct mount *mp; 2156 struct cg *cgp; 2157 struct buf *bp; 2158 ufs1_daddr_t fragno, cgbno; 2159 ufs2_daddr_t cgblkno; 2160 int i, blk, frags, bbase; 2161 u_int cg; 2162 u_int8_t *blksfree; 2163 struct cdev *dev; 2164 2165 cg = dtog(fs, bno); 2166 if (devvp->v_type == VREG) { 2167 /* devvp is a snapshot */ 2168 dev = VTOI(devvp)->i_devvp->v_rdev; 2169 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 2170 } else { 2171 /* devvp is a normal disk device */ 2172 dev = devvp->v_rdev; 2173 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 2174 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2175 } 2176 #ifdef INVARIANTS 2177 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2178 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2179 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2180 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2181 size, fs->fs_fsmnt); 2182 panic("ffs_blkfree_cg: bad size"); 2183 } 2184 #endif 2185 if ((u_int)bno >= fs->fs_size) { 2186 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2187 (u_long)inum); 2188 ffs_fserr(fs, inum, "bad block"); 2189 return; 2190 } 2191 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2192 brelse(bp); 2193 return; 2194 } 2195 cgp = (struct cg *)bp->b_data; 2196 if (!cg_chkmagic(cgp)) { 2197 brelse(bp); 2198 return; 2199 } 2200 bp->b_xflags |= BX_BKGRDWRITE; 2201 cgp->cg_old_time = cgp->cg_time = time_second; 2202 cgbno = dtogd(fs, bno); 2203 blksfree = cg_blksfree(cgp); 2204 UFS_LOCK(ump); 2205 if (size == fs->fs_bsize) { 2206 fragno = fragstoblks(fs, cgbno); 2207 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2208 if (devvp->v_type == VREG) { 2209 UFS_UNLOCK(ump); 2210 /* devvp is a snapshot */ 2211 brelse(bp); 2212 return; 2213 } 2214 printf("dev = %s, block = %jd, fs = %s\n", 2215 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2216 panic("ffs_blkfree_cg: freeing free block"); 2217 } 2218 ffs_setblock(fs, blksfree, fragno); 2219 ffs_clusteracct(fs, cgp, fragno, 1); 2220 cgp->cg_cs.cs_nbfree++; 2221 fs->fs_cstotal.cs_nbfree++; 2222 fs->fs_cs(fs, cg).cs_nbfree++; 2223 } else { 2224 bbase = cgbno - fragnum(fs, cgbno); 2225 /* 2226 * decrement the counts associated with the old frags 2227 */ 2228 blk = blkmap(fs, blksfree, bbase); 2229 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2230 /* 2231 * deallocate the fragment 2232 */ 2233 frags = numfrags(fs, size); 2234 for (i = 0; i < frags; i++) { 2235 if (isset(blksfree, cgbno + i)) { 2236 printf("dev = %s, block = %jd, fs = %s\n", 2237 devtoname(dev), (intmax_t)(bno + i), 2238 fs->fs_fsmnt); 2239 panic("ffs_blkfree_cg: freeing free frag"); 2240 } 2241 setbit(blksfree, cgbno + i); 2242 } 2243 cgp->cg_cs.cs_nffree += i; 2244 fs->fs_cstotal.cs_nffree += i; 2245 fs->fs_cs(fs, cg).cs_nffree += i; 2246 /* 2247 * add back in counts associated with the new frags 2248 */ 2249 blk = blkmap(fs, blksfree, bbase); 2250 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2251 /* 2252 * if a complete block has been reassembled, account for it 2253 */ 2254 fragno = fragstoblks(fs, bbase); 2255 if (ffs_isblock(fs, blksfree, fragno)) { 2256 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2257 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2258 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2259 ffs_clusteracct(fs, cgp, fragno, 1); 2260 cgp->cg_cs.cs_nbfree++; 2261 fs->fs_cstotal.cs_nbfree++; 2262 fs->fs_cs(fs, cg).cs_nbfree++; 2263 } 2264 } 2265 fs->fs_fmod = 1; 2266 ACTIVECLEAR(fs, cg); 2267 UFS_UNLOCK(ump); 2268 mp = UFSTOVFS(ump); 2269 if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG) 2270 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2271 numfrags(fs, size), dephd); 2272 bdwrite(bp); 2273 } 2274 2275 struct ffs_blkfree_trim_params { 2276 struct task task; 2277 struct ufsmount *ump; 2278 struct vnode *devvp; 2279 ufs2_daddr_t bno; 2280 long size; 2281 ino_t inum; 2282 struct workhead *pdephd; 2283 struct workhead dephd; 2284 }; 2285 2286 static void 2287 ffs_blkfree_trim_task(ctx, pending) 2288 void *ctx; 2289 int pending; 2290 { 2291 struct ffs_blkfree_trim_params *tp; 2292 2293 tp = ctx; 2294 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size, 2295 tp->inum, tp->pdephd); 2296 vn_finished_secondary_write(UFSTOVFS(tp->ump)); 2297 atomic_add_int(&tp->ump->um_trim_inflight, -1); 2298 free(tp, M_TEMP); 2299 } 2300 2301 static void 2302 ffs_blkfree_trim_completed(bip) 2303 struct bio *bip; 2304 { 2305 struct ffs_blkfree_trim_params *tp; 2306 2307 tp = bip->bio_caller2; 2308 g_destroy_bio(bip); 2309 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2310 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2311 } 2312 2313 void 2314 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd) 2315 struct ufsmount *ump; 2316 struct fs *fs; 2317 struct vnode *devvp; 2318 ufs2_daddr_t bno; 2319 long size; 2320 ino_t inum; 2321 enum vtype vtype; 2322 struct workhead *dephd; 2323 { 2324 struct mount *mp; 2325 struct bio *bip; 2326 struct ffs_blkfree_trim_params *tp; 2327 2328 /* 2329 * Check to see if a snapshot wants to claim the block. 2330 * Check that devvp is a normal disk device, not a snapshot, 2331 * it has a snapshot(s) associated with it, and one of the 2332 * snapshots wants to claim the block. 2333 */ 2334 if (devvp->v_type != VREG && 2335 (devvp->v_vflag & VV_COPYONWRITE) && 2336 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2337 return; 2338 } 2339 /* 2340 * Nothing to delay if TRIM is disabled, or the operation is 2341 * performed on the snapshot. 2342 */ 2343 if (!ump->um_candelete || devvp->v_type == VREG) { 2344 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2345 return; 2346 } 2347 2348 /* 2349 * Postpone the set of the free bit in the cg bitmap until the 2350 * BIO_DELETE is completed. Otherwise, due to disk queue 2351 * reordering, TRIM might be issued after we reuse the block 2352 * and write some new data into it. 2353 */ 2354 atomic_add_int(&ump->um_trim_inflight, 1); 2355 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK); 2356 tp->ump = ump; 2357 tp->devvp = devvp; 2358 tp->bno = bno; 2359 tp->size = size; 2360 tp->inum = inum; 2361 if (dephd != NULL) { 2362 LIST_INIT(&tp->dephd); 2363 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list); 2364 tp->pdephd = &tp->dephd; 2365 } else 2366 tp->pdephd = NULL; 2367 2368 bip = g_alloc_bio(); 2369 bip->bio_cmd = BIO_DELETE; 2370 bip->bio_offset = dbtob(fsbtodb(fs, bno)); 2371 bip->bio_done = ffs_blkfree_trim_completed; 2372 bip->bio_length = size; 2373 bip->bio_caller2 = tp; 2374 2375 mp = UFSTOVFS(ump); 2376 vn_start_secondary_write(NULL, &mp, 0); 2377 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private); 2378 } 2379 2380 #ifdef INVARIANTS 2381 /* 2382 * Verify allocation of a block or fragment. Returns true if block or 2383 * fragment is allocated, false if it is free. 2384 */ 2385 static int 2386 ffs_checkblk(ip, bno, size) 2387 struct inode *ip; 2388 ufs2_daddr_t bno; 2389 long size; 2390 { 2391 struct fs *fs; 2392 struct cg *cgp; 2393 struct buf *bp; 2394 ufs1_daddr_t cgbno; 2395 int i, error, frags, free; 2396 u_int8_t *blksfree; 2397 2398 fs = ip->i_fs; 2399 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2400 printf("bsize = %ld, size = %ld, fs = %s\n", 2401 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2402 panic("ffs_checkblk: bad size"); 2403 } 2404 if ((u_int)bno >= fs->fs_size) 2405 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2406 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 2407 (int)fs->fs_cgsize, NOCRED, &bp); 2408 if (error) 2409 panic("ffs_checkblk: cg bread failed"); 2410 cgp = (struct cg *)bp->b_data; 2411 if (!cg_chkmagic(cgp)) 2412 panic("ffs_checkblk: cg magic mismatch"); 2413 bp->b_xflags |= BX_BKGRDWRITE; 2414 blksfree = cg_blksfree(cgp); 2415 cgbno = dtogd(fs, bno); 2416 if (size == fs->fs_bsize) { 2417 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2418 } else { 2419 frags = numfrags(fs, size); 2420 for (free = 0, i = 0; i < frags; i++) 2421 if (isset(blksfree, cgbno + i)) 2422 free++; 2423 if (free != 0 && free != frags) 2424 panic("ffs_checkblk: partially free fragment"); 2425 } 2426 brelse(bp); 2427 return (!free); 2428 } 2429 #endif /* INVARIANTS */ 2430 2431 /* 2432 * Free an inode. 2433 */ 2434 int 2435 ffs_vfree(pvp, ino, mode) 2436 struct vnode *pvp; 2437 ino_t ino; 2438 int mode; 2439 { 2440 struct inode *ip; 2441 2442 if (DOINGSOFTDEP(pvp)) { 2443 softdep_freefile(pvp, ino, mode); 2444 return (0); 2445 } 2446 ip = VTOI(pvp); 2447 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode, 2448 NULL)); 2449 } 2450 2451 /* 2452 * Do the actual free operation. 2453 * The specified inode is placed back in the free map. 2454 */ 2455 int 2456 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2457 struct ufsmount *ump; 2458 struct fs *fs; 2459 struct vnode *devvp; 2460 ino_t ino; 2461 int mode; 2462 struct workhead *wkhd; 2463 { 2464 struct cg *cgp; 2465 struct buf *bp; 2466 ufs2_daddr_t cgbno; 2467 int error; 2468 u_int cg; 2469 u_int8_t *inosused; 2470 struct cdev *dev; 2471 2472 cg = ino_to_cg(fs, ino); 2473 if (devvp->v_type == VREG) { 2474 /* devvp is a snapshot */ 2475 dev = VTOI(devvp)->i_devvp->v_rdev; 2476 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2477 } else { 2478 /* devvp is a normal disk device */ 2479 dev = devvp->v_rdev; 2480 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2481 } 2482 if (ino >= fs->fs_ipg * fs->fs_ncg) 2483 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2484 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2485 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2486 brelse(bp); 2487 return (error); 2488 } 2489 cgp = (struct cg *)bp->b_data; 2490 if (!cg_chkmagic(cgp)) { 2491 brelse(bp); 2492 return (0); 2493 } 2494 bp->b_xflags |= BX_BKGRDWRITE; 2495 cgp->cg_old_time = cgp->cg_time = time_second; 2496 inosused = cg_inosused(cgp); 2497 ino %= fs->fs_ipg; 2498 if (isclr(inosused, ino)) { 2499 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2500 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2501 if (fs->fs_ronly == 0) 2502 panic("ffs_freefile: freeing free inode"); 2503 } 2504 clrbit(inosused, ino); 2505 if (ino < cgp->cg_irotor) 2506 cgp->cg_irotor = ino; 2507 cgp->cg_cs.cs_nifree++; 2508 UFS_LOCK(ump); 2509 fs->fs_cstotal.cs_nifree++; 2510 fs->fs_cs(fs, cg).cs_nifree++; 2511 if ((mode & IFMT) == IFDIR) { 2512 cgp->cg_cs.cs_ndir--; 2513 fs->fs_cstotal.cs_ndir--; 2514 fs->fs_cs(fs, cg).cs_ndir--; 2515 } 2516 fs->fs_fmod = 1; 2517 ACTIVECLEAR(fs, cg); 2518 UFS_UNLOCK(ump); 2519 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG) 2520 softdep_setup_inofree(UFSTOVFS(ump), bp, 2521 ino + cg * fs->fs_ipg, wkhd); 2522 bdwrite(bp); 2523 return (0); 2524 } 2525 2526 /* 2527 * Check to see if a file is free. 2528 */ 2529 int 2530 ffs_checkfreefile(fs, devvp, ino) 2531 struct fs *fs; 2532 struct vnode *devvp; 2533 ino_t ino; 2534 { 2535 struct cg *cgp; 2536 struct buf *bp; 2537 ufs2_daddr_t cgbno; 2538 int ret; 2539 u_int cg; 2540 u_int8_t *inosused; 2541 2542 cg = ino_to_cg(fs, ino); 2543 if (devvp->v_type == VREG) { 2544 /* devvp is a snapshot */ 2545 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2546 } else { 2547 /* devvp is a normal disk device */ 2548 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2549 } 2550 if (ino >= fs->fs_ipg * fs->fs_ncg) 2551 return (1); 2552 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2553 brelse(bp); 2554 return (1); 2555 } 2556 cgp = (struct cg *)bp->b_data; 2557 if (!cg_chkmagic(cgp)) { 2558 brelse(bp); 2559 return (1); 2560 } 2561 inosused = cg_inosused(cgp); 2562 ino %= fs->fs_ipg; 2563 ret = isclr(inosused, ino); 2564 brelse(bp); 2565 return (ret); 2566 } 2567 2568 /* 2569 * Find a block of the specified size in the specified cylinder group. 2570 * 2571 * It is a panic if a request is made to find a block if none are 2572 * available. 2573 */ 2574 static ufs1_daddr_t 2575 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2576 struct fs *fs; 2577 struct cg *cgp; 2578 ufs2_daddr_t bpref; 2579 int allocsiz; 2580 { 2581 ufs1_daddr_t bno; 2582 int start, len, loc, i; 2583 int blk, field, subfield, pos; 2584 u_int8_t *blksfree; 2585 2586 /* 2587 * find the fragment by searching through the free block 2588 * map for an appropriate bit pattern 2589 */ 2590 if (bpref) 2591 start = dtogd(fs, bpref) / NBBY; 2592 else 2593 start = cgp->cg_frotor / NBBY; 2594 blksfree = cg_blksfree(cgp); 2595 len = howmany(fs->fs_fpg, NBBY) - start; 2596 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2597 fragtbl[fs->fs_frag], 2598 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2599 if (loc == 0) { 2600 len = start + 1; 2601 start = 0; 2602 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2603 fragtbl[fs->fs_frag], 2604 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2605 if (loc == 0) { 2606 printf("start = %d, len = %d, fs = %s\n", 2607 start, len, fs->fs_fsmnt); 2608 panic("ffs_alloccg: map corrupted"); 2609 /* NOTREACHED */ 2610 } 2611 } 2612 bno = (start + len - loc) * NBBY; 2613 cgp->cg_frotor = bno; 2614 /* 2615 * found the byte in the map 2616 * sift through the bits to find the selected frag 2617 */ 2618 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2619 blk = blkmap(fs, blksfree, bno); 2620 blk <<= 1; 2621 field = around[allocsiz]; 2622 subfield = inside[allocsiz]; 2623 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2624 if ((blk & field) == subfield) 2625 return (bno + pos); 2626 field <<= 1; 2627 subfield <<= 1; 2628 } 2629 } 2630 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2631 panic("ffs_alloccg: block not in map"); 2632 return (-1); 2633 } 2634 2635 /* 2636 * Fserr prints the name of a filesystem with an error diagnostic. 2637 * 2638 * The form of the error message is: 2639 * fs: error message 2640 */ 2641 void 2642 ffs_fserr(fs, inum, cp) 2643 struct fs *fs; 2644 ino_t inum; 2645 char *cp; 2646 { 2647 struct thread *td = curthread; /* XXX */ 2648 struct proc *p = td->td_proc; 2649 2650 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 2651 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 2652 fs->fs_fsmnt, cp); 2653 } 2654 2655 /* 2656 * This function provides the capability for the fsck program to 2657 * update an active filesystem. Fourteen operations are provided: 2658 * 2659 * adjrefcnt(inode, amt) - adjusts the reference count on the 2660 * specified inode by the specified amount. Under normal 2661 * operation the count should always go down. Decrementing 2662 * the count to zero will cause the inode to be freed. 2663 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 2664 * inode by the specified amount. 2665 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2666 * adjust the superblock summary. 2667 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2668 * are marked as free. Inodes should never have to be marked 2669 * as in use. 2670 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2671 * are marked as free. Inodes should never have to be marked 2672 * as in use. 2673 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2674 * are marked as free. Blocks should never have to be marked 2675 * as in use. 2676 * setflags(flags, set/clear) - the fs_flags field has the specified 2677 * flags set (second parameter +1) or cleared (second parameter -1). 2678 * setcwd(dirinode) - set the current directory to dirinode in the 2679 * filesystem associated with the snapshot. 2680 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2681 * in the current directory is oldvalue then change it to newvalue. 2682 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2683 * with nameptr in the current directory is oldvalue then unlink it. 2684 * 2685 * The following functions may only be used on a quiescent filesystem 2686 * by the soft updates journal. They are not safe to be run on an active 2687 * filesystem. 2688 * 2689 * setinode(inode, dip) - the specified disk inode is replaced with the 2690 * contents pointed to by dip. 2691 * setbufoutput(fd, flags) - output associated with the specified file 2692 * descriptor (which must reference the character device supporting 2693 * the filesystem) switches from using physio to running through the 2694 * buffer cache when flags is set to 1. The descriptor reverts to 2695 * physio for output when flags is set to zero. 2696 */ 2697 2698 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2699 2700 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2701 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2702 2703 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2704 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2705 2706 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2707 sysctl_ffs_fsck, "Adjust number of directories"); 2708 2709 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2710 sysctl_ffs_fsck, "Adjust number of free blocks"); 2711 2712 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2713 sysctl_ffs_fsck, "Adjust number of free inodes"); 2714 2715 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2716 sysctl_ffs_fsck, "Adjust number of free frags"); 2717 2718 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2719 sysctl_ffs_fsck, "Adjust number of free clusters"); 2720 2721 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2722 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2723 2724 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2725 sysctl_ffs_fsck, "Free Range of File Inodes"); 2726 2727 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2728 sysctl_ffs_fsck, "Free Range of Blocks"); 2729 2730 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2731 sysctl_ffs_fsck, "Change Filesystem Flags"); 2732 2733 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2734 sysctl_ffs_fsck, "Set Current Working Directory"); 2735 2736 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2737 sysctl_ffs_fsck, "Change Value of .. Entry"); 2738 2739 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2740 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2741 2742 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 2743 sysctl_ffs_fsck, "Update an On-Disk Inode"); 2744 2745 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 2746 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 2747 2748 #define DEBUG 1 2749 #ifdef DEBUG 2750 static int fsckcmds = 0; 2751 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2752 #endif /* DEBUG */ 2753 2754 static int buffered_write(struct file *, struct uio *, struct ucred *, 2755 int, struct thread *); 2756 2757 static int 2758 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2759 { 2760 struct thread *td = curthread; 2761 struct fsck_cmd cmd; 2762 struct ufsmount *ump; 2763 struct vnode *vp, *dvp, *fdvp; 2764 struct inode *ip, *dp; 2765 struct mount *mp; 2766 struct fs *fs; 2767 ufs2_daddr_t blkno; 2768 long blkcnt, blksize; 2769 struct file *fp, *vfp; 2770 cap_rights_t rights; 2771 int filetype, error; 2772 static struct fileops *origops, bufferedops; 2773 2774 if (req->newlen > sizeof cmd) 2775 return (EBADRPC); 2776 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2777 return (error); 2778 if (cmd.version != FFS_CMD_VERSION) 2779 return (ERPCMISMATCH); 2780 if ((error = getvnode(td, cmd.handle, 2781 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 2782 return (error); 2783 vp = fp->f_data; 2784 if (vp->v_type != VREG && vp->v_type != VDIR) { 2785 fdrop(fp, td); 2786 return (EINVAL); 2787 } 2788 vn_start_write(vp, &mp, V_WAIT); 2789 if (mp == NULL || 2790 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2791 vn_finished_write(mp); 2792 fdrop(fp, td); 2793 return (EINVAL); 2794 } 2795 ump = VFSTOUFS(mp); 2796 if ((mp->mnt_flag & MNT_RDONLY) && 2797 ump->um_fsckpid != td->td_proc->p_pid) { 2798 vn_finished_write(mp); 2799 fdrop(fp, td); 2800 return (EROFS); 2801 } 2802 fs = ump->um_fs; 2803 filetype = IFREG; 2804 2805 switch (oidp->oid_number) { 2806 2807 case FFS_SET_FLAGS: 2808 #ifdef DEBUG 2809 if (fsckcmds) 2810 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2811 cmd.size > 0 ? "set" : "clear"); 2812 #endif /* DEBUG */ 2813 if (cmd.size > 0) 2814 fs->fs_flags |= (long)cmd.value; 2815 else 2816 fs->fs_flags &= ~(long)cmd.value; 2817 break; 2818 2819 case FFS_ADJ_REFCNT: 2820 #ifdef DEBUG 2821 if (fsckcmds) { 2822 printf("%s: adjust inode %jd link count by %jd\n", 2823 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2824 (intmax_t)cmd.size); 2825 } 2826 #endif /* DEBUG */ 2827 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2828 break; 2829 ip = VTOI(vp); 2830 ip->i_nlink += cmd.size; 2831 DIP_SET(ip, i_nlink, ip->i_nlink); 2832 ip->i_effnlink += cmd.size; 2833 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2834 error = ffs_update(vp, 1); 2835 if (DOINGSOFTDEP(vp)) 2836 softdep_change_linkcnt(ip); 2837 vput(vp); 2838 break; 2839 2840 case FFS_ADJ_BLKCNT: 2841 #ifdef DEBUG 2842 if (fsckcmds) { 2843 printf("%s: adjust inode %jd block count by %jd\n", 2844 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2845 (intmax_t)cmd.size); 2846 } 2847 #endif /* DEBUG */ 2848 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2849 break; 2850 ip = VTOI(vp); 2851 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2852 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 2853 error = ffs_update(vp, 1); 2854 vput(vp); 2855 break; 2856 2857 case FFS_DIR_FREE: 2858 filetype = IFDIR; 2859 /* fall through */ 2860 2861 case FFS_FILE_FREE: 2862 #ifdef DEBUG 2863 if (fsckcmds) { 2864 if (cmd.size == 1) 2865 printf("%s: free %s inode %ju\n", 2866 mp->mnt_stat.f_mntonname, 2867 filetype == IFDIR ? "directory" : "file", 2868 (uintmax_t)cmd.value); 2869 else 2870 printf("%s: free %s inodes %ju-%ju\n", 2871 mp->mnt_stat.f_mntonname, 2872 filetype == IFDIR ? "directory" : "file", 2873 (uintmax_t)cmd.value, 2874 (uintmax_t)(cmd.value + cmd.size - 1)); 2875 } 2876 #endif /* DEBUG */ 2877 while (cmd.size > 0) { 2878 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2879 cmd.value, filetype, NULL))) 2880 break; 2881 cmd.size -= 1; 2882 cmd.value += 1; 2883 } 2884 break; 2885 2886 case FFS_BLK_FREE: 2887 #ifdef DEBUG 2888 if (fsckcmds) { 2889 if (cmd.size == 1) 2890 printf("%s: free block %jd\n", 2891 mp->mnt_stat.f_mntonname, 2892 (intmax_t)cmd.value); 2893 else 2894 printf("%s: free blocks %jd-%jd\n", 2895 mp->mnt_stat.f_mntonname, 2896 (intmax_t)cmd.value, 2897 (intmax_t)cmd.value + cmd.size - 1); 2898 } 2899 #endif /* DEBUG */ 2900 blkno = cmd.value; 2901 blkcnt = cmd.size; 2902 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2903 while (blkcnt > 0) { 2904 if (blksize > blkcnt) 2905 blksize = blkcnt; 2906 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2907 blksize * fs->fs_fsize, ROOTINO, VDIR, NULL); 2908 blkno += blksize; 2909 blkcnt -= blksize; 2910 blksize = fs->fs_frag; 2911 } 2912 break; 2913 2914 /* 2915 * Adjust superblock summaries. fsck(8) is expected to 2916 * submit deltas when necessary. 2917 */ 2918 case FFS_ADJ_NDIR: 2919 #ifdef DEBUG 2920 if (fsckcmds) { 2921 printf("%s: adjust number of directories by %jd\n", 2922 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2923 } 2924 #endif /* DEBUG */ 2925 fs->fs_cstotal.cs_ndir += cmd.value; 2926 break; 2927 2928 case FFS_ADJ_NBFREE: 2929 #ifdef DEBUG 2930 if (fsckcmds) { 2931 printf("%s: adjust number of free blocks by %+jd\n", 2932 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2933 } 2934 #endif /* DEBUG */ 2935 fs->fs_cstotal.cs_nbfree += cmd.value; 2936 break; 2937 2938 case FFS_ADJ_NIFREE: 2939 #ifdef DEBUG 2940 if (fsckcmds) { 2941 printf("%s: adjust number of free inodes by %+jd\n", 2942 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2943 } 2944 #endif /* DEBUG */ 2945 fs->fs_cstotal.cs_nifree += cmd.value; 2946 break; 2947 2948 case FFS_ADJ_NFFREE: 2949 #ifdef DEBUG 2950 if (fsckcmds) { 2951 printf("%s: adjust number of free frags by %+jd\n", 2952 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2953 } 2954 #endif /* DEBUG */ 2955 fs->fs_cstotal.cs_nffree += cmd.value; 2956 break; 2957 2958 case FFS_ADJ_NUMCLUSTERS: 2959 #ifdef DEBUG 2960 if (fsckcmds) { 2961 printf("%s: adjust number of free clusters by %+jd\n", 2962 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2963 } 2964 #endif /* DEBUG */ 2965 fs->fs_cstotal.cs_numclusters += cmd.value; 2966 break; 2967 2968 case FFS_SET_CWD: 2969 #ifdef DEBUG 2970 if (fsckcmds) { 2971 printf("%s: set current directory to inode %jd\n", 2972 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2973 } 2974 #endif /* DEBUG */ 2975 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2976 break; 2977 AUDIT_ARG_VNODE1(vp); 2978 if ((error = change_dir(vp, td)) != 0) { 2979 vput(vp); 2980 break; 2981 } 2982 VOP_UNLOCK(vp, 0); 2983 pwd_chdir(td, vp); 2984 break; 2985 2986 case FFS_SET_DOTDOT: 2987 #ifdef DEBUG 2988 if (fsckcmds) { 2989 printf("%s: change .. in cwd from %jd to %jd\n", 2990 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2991 (intmax_t)cmd.size); 2992 } 2993 #endif /* DEBUG */ 2994 /* 2995 * First we have to get and lock the parent directory 2996 * to which ".." points. 2997 */ 2998 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2999 if (error) 3000 break; 3001 /* 3002 * Now we get and lock the child directory containing "..". 3003 */ 3004 FILEDESC_SLOCK(td->td_proc->p_fd); 3005 dvp = td->td_proc->p_fd->fd_cdir; 3006 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3007 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3008 vput(fdvp); 3009 break; 3010 } 3011 dp = VTOI(dvp); 3012 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3013 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3014 DT_DIR, 0); 3015 cache_purge(fdvp); 3016 cache_purge(dvp); 3017 vput(dvp); 3018 vput(fdvp); 3019 break; 3020 3021 case FFS_UNLINK: 3022 #ifdef DEBUG 3023 if (fsckcmds) { 3024 char buf[32]; 3025 3026 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3027 strncpy(buf, "Name_too_long", 32); 3028 printf("%s: unlink %s (inode %jd)\n", 3029 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3030 } 3031 #endif /* DEBUG */ 3032 /* 3033 * kern_unlinkat will do its own start/finish writes and 3034 * they do not nest, so drop ours here. Setting mp == NULL 3035 * indicates that vn_finished_write is not needed down below. 3036 */ 3037 vn_finished_write(mp); 3038 mp = NULL; 3039 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 3040 UIO_USERSPACE, (ino_t)cmd.size); 3041 break; 3042 3043 case FFS_SET_INODE: 3044 if (ump->um_fsckpid != td->td_proc->p_pid) { 3045 error = EPERM; 3046 break; 3047 } 3048 #ifdef DEBUG 3049 if (fsckcmds) { 3050 printf("%s: update inode %jd\n", 3051 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3052 } 3053 #endif /* DEBUG */ 3054 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3055 break; 3056 AUDIT_ARG_VNODE1(vp); 3057 ip = VTOI(vp); 3058 if (ip->i_ump->um_fstype == UFS1) 3059 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3060 sizeof(struct ufs1_dinode)); 3061 else 3062 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3063 sizeof(struct ufs2_dinode)); 3064 if (error) { 3065 vput(vp); 3066 break; 3067 } 3068 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3069 error = ffs_update(vp, 1); 3070 vput(vp); 3071 break; 3072 3073 case FFS_SET_BUFOUTPUT: 3074 if (ump->um_fsckpid != td->td_proc->p_pid) { 3075 error = EPERM; 3076 break; 3077 } 3078 if (VTOI(vp)->i_ump != ump) { 3079 error = EINVAL; 3080 break; 3081 } 3082 #ifdef DEBUG 3083 if (fsckcmds) { 3084 printf("%s: %s buffered output for descriptor %jd\n", 3085 mp->mnt_stat.f_mntonname, 3086 cmd.size == 1 ? "enable" : "disable", 3087 (intmax_t)cmd.value); 3088 } 3089 #endif /* DEBUG */ 3090 if ((error = getvnode(td, cmd.value, 3091 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3092 break; 3093 if (vfp->f_vnode->v_type != VCHR) { 3094 fdrop(vfp, td); 3095 error = EINVAL; 3096 break; 3097 } 3098 if (origops == NULL) { 3099 origops = vfp->f_ops; 3100 bcopy((void *)origops, (void *)&bufferedops, 3101 sizeof(bufferedops)); 3102 bufferedops.fo_write = buffered_write; 3103 } 3104 if (cmd.size == 1) 3105 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3106 (uintptr_t)&bufferedops); 3107 else 3108 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3109 (uintptr_t)origops); 3110 fdrop(vfp, td); 3111 break; 3112 3113 default: 3114 #ifdef DEBUG 3115 if (fsckcmds) { 3116 printf("Invalid request %d from fsck\n", 3117 oidp->oid_number); 3118 } 3119 #endif /* DEBUG */ 3120 error = EINVAL; 3121 break; 3122 3123 } 3124 fdrop(fp, td); 3125 vn_finished_write(mp); 3126 return (error); 3127 } 3128 3129 /* 3130 * Function to switch a descriptor to use the buffer cache to stage 3131 * its I/O. This is needed so that writes to the filesystem device 3132 * will give snapshots a chance to copy modified blocks for which it 3133 * needs to retain copies. 3134 */ 3135 static int 3136 buffered_write(fp, uio, active_cred, flags, td) 3137 struct file *fp; 3138 struct uio *uio; 3139 struct ucred *active_cred; 3140 int flags; 3141 struct thread *td; 3142 { 3143 struct vnode *devvp, *vp; 3144 struct inode *ip; 3145 struct buf *bp; 3146 struct fs *fs; 3147 struct filedesc *fdp; 3148 int error; 3149 daddr_t lbn; 3150 3151 /* 3152 * The devvp is associated with the /dev filesystem. To discover 3153 * the filesystem with which the device is associated, we depend 3154 * on the application setting the current directory to a location 3155 * within the filesystem being written. Yes, this is an ugly hack. 3156 */ 3157 devvp = fp->f_vnode; 3158 if (!vn_isdisk(devvp, NULL)) 3159 return (EINVAL); 3160 fdp = td->td_proc->p_fd; 3161 FILEDESC_SLOCK(fdp); 3162 vp = fdp->fd_cdir; 3163 vref(vp); 3164 FILEDESC_SUNLOCK(fdp); 3165 vn_lock(vp, LK_SHARED | LK_RETRY); 3166 /* 3167 * Check that the current directory vnode indeed belongs to 3168 * UFS before trying to dereference UFS-specific v_data fields. 3169 */ 3170 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3171 vput(vp); 3172 return (EINVAL); 3173 } 3174 ip = VTOI(vp); 3175 if (ip->i_devvp != devvp) { 3176 vput(vp); 3177 return (EINVAL); 3178 } 3179 fs = ip->i_fs; 3180 vput(vp); 3181 foffset_lock_uio(fp, uio, flags); 3182 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3183 #ifdef DEBUG 3184 if (fsckcmds) { 3185 printf("%s: buffered write for block %jd\n", 3186 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3187 } 3188 #endif /* DEBUG */ 3189 /* 3190 * All I/O must be contained within a filesystem block, start on 3191 * a fragment boundary, and be a multiple of fragments in length. 3192 */ 3193 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3194 fragoff(fs, uio->uio_offset) != 0 || 3195 fragoff(fs, uio->uio_resid) != 0) { 3196 error = EINVAL; 3197 goto out; 3198 } 3199 lbn = numfrags(fs, uio->uio_offset); 3200 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3201 bp->b_flags |= B_RELBUF; 3202 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3203 brelse(bp); 3204 goto out; 3205 } 3206 error = bwrite(bp); 3207 out: 3208 VOP_UNLOCK(devvp, 0); 3209 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3210 return (error); 3211 } 3212