1 /* 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94 34 * $Id: ffs_alloc.c,v 1.6 1995/01/09 16:05:17 davidg Exp $ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/buf.h> 40 #include <sys/proc.h> 41 #include <sys/vnode.h> 42 #include <sys/mount.h> 43 #include <sys/kernel.h> 44 #include <sys/syslog.h> 45 46 #include <vm/vm.h> 47 48 #include <ufs/ufs/quota.h> 49 #include <ufs/ufs/inode.h> 50 #include <ufs/ufs/ufs_extern.h> /* YF - needed for ufs_getlbns() */ 51 52 #include <ufs/ffs/fs.h> 53 #include <ufs/ffs/ffs_extern.h> 54 55 extern u_long nextgennumber; 56 57 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int)); 58 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t)); 59 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int)); 60 static ino_t ffs_dirpref __P((struct fs *)); 61 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int)); 62 static void ffs_fserr __P((struct fs *, u_int, char *)); 63 static u_long ffs_hashalloc 64 __P((struct inode *, int, long, int, u_long (*)())); 65 static ino_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int)); 66 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int)); 67 68 void ffs_clusteracct __P((struct fs *, struct cg *, daddr_t, int)); 69 70 /* 71 * Allocate a block in the file system. 72 * 73 * The size of the requested block is given, which must be some 74 * multiple of fs_fsize and <= fs_bsize. 75 * A preference may be optionally specified. If a preference is given 76 * the following hierarchy is used to allocate a block: 77 * 1) allocate the requested block. 78 * 2) allocate a rotationally optimal block in the same cylinder. 79 * 3) allocate a block in the same cylinder group. 80 * 4) quadradically rehash into other cylinder groups, until an 81 * available block is located. 82 * If no block preference is given the following heirarchy is used 83 * to allocate a block: 84 * 1) allocate a block in the cylinder group that contains the 85 * inode for the file. 86 * 2) quadradically rehash into other cylinder groups, until an 87 * available block is located. 88 */ 89 int 90 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 91 register struct inode *ip; 92 daddr_t lbn, bpref; 93 int size; 94 struct ucred *cred; 95 daddr_t *bnp; 96 { 97 register struct fs *fs; 98 daddr_t bno; 99 int cg; 100 #ifdef QUOTA 101 int error; 102 #endif 103 104 105 *bnp = 0; 106 fs = ip->i_fs; 107 #ifdef DIAGNOSTIC 108 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 109 printf("dev = 0x%lx, bsize = %ld, size = %d, fs = %s\n", 110 (u_long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 111 panic("ffs_alloc: bad size"); 112 } 113 if (cred == NOCRED) 114 panic("ffs_alloc: missing credential\n"); 115 #endif /* DIAGNOSTIC */ 116 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 117 goto nospace; 118 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 119 goto nospace; 120 #ifdef QUOTA 121 error = chkdq(ip, (long)btodb(size), cred, 0); 122 if (error) 123 return (error); 124 #endif 125 if (bpref >= fs->fs_size) 126 bpref = 0; 127 if (bpref == 0) 128 cg = ino_to_cg(fs, ip->i_number); 129 else 130 cg = dtog(fs, bpref); 131 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, 132 (u_long (*)())ffs_alloccg); 133 if (bno > 0) { 134 ip->i_blocks += btodb(size); 135 ip->i_flag |= IN_CHANGE | IN_UPDATE; 136 *bnp = bno; 137 return (0); 138 } 139 #ifdef QUOTA 140 /* 141 * Restore user's disk quota because allocation failed. 142 */ 143 (void) chkdq(ip, (long)-btodb(size), cred, FORCE); 144 #endif 145 nospace: 146 ffs_fserr(fs, cred->cr_uid, "file system full"); 147 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 148 return (ENOSPC); 149 } 150 151 /* 152 * Reallocate a fragment to a bigger size 153 * 154 * The number and size of the old block is given, and a preference 155 * and new size is also specified. The allocator attempts to extend 156 * the original block. Failing that, the regular block allocator is 157 * invoked to get an appropriate block. 158 */ 159 int 160 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp) 161 register struct inode *ip; 162 daddr_t lbprev; 163 daddr_t bpref; 164 int osize, nsize; 165 struct ucred *cred; 166 struct buf **bpp; 167 { 168 register struct fs *fs; 169 struct buf *bp; 170 int cg, request, error; 171 daddr_t bprev, bno; 172 173 *bpp = 0; 174 fs = ip->i_fs; 175 #ifdef DIAGNOSTIC 176 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 177 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 178 printf( 179 "dev = 0x%lx, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 180 (u_long)ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 181 panic("ffs_realloccg: bad size"); 182 } 183 if (cred == NOCRED) 184 panic("ffs_realloccg: missing credential\n"); 185 #endif /* DIAGNOSTIC */ 186 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 187 goto nospace; 188 if ((bprev = ip->i_db[lbprev]) == 0) { 189 printf("dev = 0x%lx, bsize = %ld, bprev = %ld, fs = %s\n", 190 (u_long) ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 191 panic("ffs_realloccg: bad bprev"); 192 } 193 /* 194 * Allocate the extra space in the buffer. 195 */ 196 error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp); 197 if (error) { 198 brelse(bp); 199 return (error); 200 } 201 #ifdef QUOTA 202 error = chkdq(ip, (long)btodb(nsize - osize), cred, 0); 203 if (error) { 204 brelse(bp); 205 return (error); 206 } 207 #endif 208 /* 209 * Check for extension in the existing location. 210 */ 211 cg = dtog(fs, bprev); 212 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize); 213 if (bno) { 214 if (bp->b_blkno != fsbtodb(fs, bno)) 215 panic("bad blockno"); 216 ip->i_blocks += btodb(nsize - osize); 217 ip->i_flag |= IN_CHANGE | IN_UPDATE; 218 allocbuf(bp, nsize, 0); 219 bp->b_flags |= B_DONE; 220 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 221 *bpp = bp; 222 return (0); 223 } 224 /* 225 * Allocate a new disk location. 226 */ 227 if (bpref >= fs->fs_size) 228 bpref = 0; 229 switch ((int)fs->fs_optim) { 230 case FS_OPTSPACE: 231 /* 232 * Allocate an exact sized fragment. Although this makes 233 * best use of space, we will waste time relocating it if 234 * the file continues to grow. If the fragmentation is 235 * less than half of the minimum free reserve, we choose 236 * to begin optimizing for time. 237 */ 238 request = nsize; 239 if (fs->fs_minfree < 5 || 240 fs->fs_cstotal.cs_nffree > 241 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 242 break; 243 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 244 fs->fs_fsmnt); 245 fs->fs_optim = FS_OPTTIME; 246 break; 247 case FS_OPTTIME: 248 /* 249 * At this point we have discovered a file that is trying to 250 * grow a small fragment to a larger fragment. To save time, 251 * we allocate a full sized block, then free the unused portion. 252 * If the file continues to grow, the `ffs_fragextend' call 253 * above will be able to grow it in place without further 254 * copying. If aberrant programs cause disk fragmentation to 255 * grow within 2% of the free reserve, we choose to begin 256 * optimizing for space. 257 */ 258 request = fs->fs_bsize; 259 if (fs->fs_cstotal.cs_nffree < 260 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 261 break; 262 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 263 fs->fs_fsmnt); 264 fs->fs_optim = FS_OPTSPACE; 265 break; 266 default: 267 printf("dev = 0x%lx, optim = %ld, fs = %s\n", 268 (u_long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 269 panic("ffs_realloccg: bad optim"); 270 /* NOTREACHED */ 271 } 272 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request, 273 (u_long (*)())ffs_alloccg); 274 if (bno > 0) { 275 bp->b_blkno = fsbtodb(fs, bno); 276 /* (void) vnode_pager_uncache(ITOV(ip)); */ 277 ffs_blkfree(ip, bprev, (long)osize); 278 if (nsize < request) 279 ffs_blkfree(ip, bno + numfrags(fs, nsize), 280 (long)(request - nsize)); 281 ip->i_blocks += btodb(nsize - osize); 282 ip->i_flag |= IN_CHANGE | IN_UPDATE; 283 allocbuf(bp, nsize, 0); 284 bp->b_flags |= B_DONE; 285 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 286 *bpp = bp; 287 return (0); 288 } 289 #ifdef QUOTA 290 /* 291 * Restore user's disk quota because allocation failed. 292 */ 293 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); 294 #endif 295 brelse(bp); 296 nospace: 297 /* 298 * no space available 299 */ 300 ffs_fserr(fs, cred->cr_uid, "file system full"); 301 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 302 return (ENOSPC); 303 } 304 305 /* 306 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 307 * 308 * The vnode and an array of buffer pointers for a range of sequential 309 * logical blocks to be made contiguous is given. The allocator attempts 310 * to find a range of sequential blocks starting as close as possible to 311 * an fs_rotdelay offset from the end of the allocation for the logical 312 * block immediately preceeding the current range. If successful, the 313 * physical block numbers in the buffer pointers and in the inode are 314 * changed to reflect the new allocation. If unsuccessful, the allocation 315 * is left unchanged. The success in doing the reallocation is returned. 316 * Note that the error return is not reflected back to the user. Rather 317 * the previous block allocation will be used. 318 */ 319 #include <sys/sysctl.h> 320 int doasyncfree = 1; 321 #ifdef DEBUG 322 struct ctldebug debug14 = { "doasyncfree", &doasyncfree }; 323 #endif 324 int 325 ffs_reallocblks(ap) 326 struct vop_reallocblks_args /* { 327 struct vnode *a_vp; 328 struct cluster_save *a_buflist; 329 } */ *ap; 330 { 331 struct fs *fs; 332 struct inode *ip; 333 struct vnode *vp; 334 struct buf *sbp, *ebp; 335 daddr_t *bap, *sbap, *ebap = 0; 336 struct cluster_save *buflist; 337 daddr_t start_lbn, end_lbn, soff, newblk, blkno; 338 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 339 int i, len, start_lvl, end_lvl, pref, ssize; 340 341 vp = ap->a_vp; 342 ip = VTOI(vp); 343 fs = ip->i_fs; 344 if (fs->fs_contigsumsize <= 0) 345 return (ENOSPC); 346 buflist = ap->a_buflist; 347 len = buflist->bs_nchildren; 348 start_lbn = buflist->bs_children[0]->b_lblkno; 349 end_lbn = start_lbn + len - 1; 350 #ifdef DIAGNOSTIC 351 for (i = 1; i < len; i++) 352 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 353 panic("ffs_reallocblks: non-cluster"); 354 #endif 355 /* 356 * If the latest allocation is in a new cylinder group, assume that 357 * the filesystem has decided to move and do not force it back to 358 * the previous cylinder group. 359 */ 360 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 361 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 362 return (ENOSPC); 363 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 364 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 365 return (ENOSPC); 366 /* 367 * Get the starting offset and block map for the first block. 368 */ 369 if (start_lvl == 0) { 370 sbap = &ip->i_db[0]; 371 soff = start_lbn; 372 } else { 373 idp = &start_ap[start_lvl - 1]; 374 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 375 brelse(sbp); 376 return (ENOSPC); 377 } 378 sbap = (daddr_t *)sbp->b_data; 379 soff = idp->in_off; 380 } 381 /* 382 * Find the preferred location for the cluster. 383 */ 384 pref = ffs_blkpref(ip, start_lbn, soff, sbap); 385 /* 386 * If the block range spans two block maps, get the second map. 387 */ 388 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 389 ssize = len; 390 } else { 391 #ifdef DIAGNOSTIC 392 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 393 panic("ffs_reallocblk: start == end"); 394 #endif 395 ssize = len - (idp->in_off + 1); 396 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 397 goto fail; 398 ebap = (daddr_t *)ebp->b_data; 399 } 400 /* 401 * Search the block map looking for an allocation of the desired size. 402 */ 403 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref, 404 len, (u_long (*)())ffs_clusteralloc)) == 0) 405 goto fail; 406 /* 407 * We have found a new contiguous block. 408 * 409 * First we have to replace the old block pointers with the new 410 * block pointers in the inode and indirect blocks associated 411 * with the file. 412 */ 413 blkno = newblk; 414 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 415 if (i == ssize) 416 bap = ebap; 417 #ifdef DIAGNOSTIC 418 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap)) 419 panic("ffs_reallocblks: alloc mismatch"); 420 #endif 421 *bap++ = blkno; 422 } 423 /* 424 * Next we must write out the modified inode and indirect blocks. 425 * For strict correctness, the writes should be synchronous since 426 * the old block values may have been written to disk. In practise 427 * they are almost never written, but if we are concerned about 428 * strict correctness, the `doasyncfree' flag should be set to zero. 429 * 430 * The test on `doasyncfree' should be changed to test a flag 431 * that shows whether the associated buffers and inodes have 432 * been written. The flag should be set when the cluster is 433 * started and cleared whenever the buffer or inode is flushed. 434 * We can then check below to see if it is set, and do the 435 * synchronous write only when it has been cleared. 436 */ 437 if (sbap != &ip->i_db[0]) { 438 if (doasyncfree) 439 bdwrite(sbp); 440 else 441 bwrite(sbp); 442 } else { 443 ip->i_flag |= IN_CHANGE | IN_UPDATE; 444 if (!doasyncfree) 445 VOP_UPDATE(vp, &time, &time, 1); 446 } 447 if (ssize < len) 448 if (doasyncfree) 449 bdwrite(ebp); 450 else 451 bwrite(ebp); 452 /* 453 * Last, free the old blocks and assign the new blocks to the buffers. 454 */ 455 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 456 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), 457 fs->fs_bsize); 458 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 459 } 460 return (0); 461 462 fail: 463 if (ssize < len) 464 brelse(ebp); 465 if (sbap != &ip->i_db[0]) 466 brelse(sbp); 467 return (ENOSPC); 468 } 469 470 /* 471 * Allocate an inode in the file system. 472 * 473 * If allocating a directory, use ffs_dirpref to select the inode. 474 * If allocating in a directory, the following hierarchy is followed: 475 * 1) allocate the preferred inode. 476 * 2) allocate an inode in the same cylinder group. 477 * 3) quadradically rehash into other cylinder groups, until an 478 * available inode is located. 479 * If no inode preference is given the following heirarchy is used 480 * to allocate an inode: 481 * 1) allocate an inode in cylinder group 0. 482 * 2) quadradically rehash into other cylinder groups, until an 483 * available inode is located. 484 */ 485 int 486 ffs_valloc(ap) 487 struct vop_valloc_args /* { 488 struct vnode *a_pvp; 489 int a_mode; 490 struct ucred *a_cred; 491 struct vnode **a_vpp; 492 } */ *ap; 493 { 494 register struct vnode *pvp = ap->a_pvp; 495 register struct inode *pip; 496 register struct fs *fs; 497 register struct inode *ip; 498 mode_t mode = ap->a_mode; 499 ino_t ino, ipref; 500 int cg, error; 501 502 *ap->a_vpp = NULL; 503 pip = VTOI(pvp); 504 fs = pip->i_fs; 505 if (fs->fs_cstotal.cs_nifree == 0) 506 goto noinodes; 507 508 if ((mode & IFMT) == IFDIR) 509 ipref = ffs_dirpref(fs); 510 else 511 ipref = pip->i_number; 512 if (ipref >= fs->fs_ncg * fs->fs_ipg) 513 ipref = 0; 514 cg = ino_to_cg(fs, ipref); 515 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg); 516 if (ino == 0) 517 goto noinodes; 518 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp); 519 if (error) { 520 VOP_VFREE(pvp, ino, mode); 521 return (error); 522 } 523 ip = VTOI(*ap->a_vpp); 524 if (ip->i_mode) { 525 printf("mode = 0%o, inum = %ld, fs = %s\n", 526 ip->i_mode, ip->i_number, fs->fs_fsmnt); 527 panic("ffs_valloc: dup alloc"); 528 } 529 if (ip->i_blocks) { /* XXX */ 530 printf("free inode %s/%ld had %ld blocks\n", 531 fs->fs_fsmnt, ino, ip->i_blocks); 532 ip->i_blocks = 0; 533 } 534 ip->i_flags = 0; 535 /* 536 * Set up a new generation number for this inode. 537 */ 538 if (++nextgennumber < (u_long)time.tv_sec) 539 nextgennumber = time.tv_sec; 540 ip->i_gen = nextgennumber; 541 return (0); 542 noinodes: 543 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes"); 544 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 545 return (ENOSPC); 546 } 547 548 /* 549 * Find a cylinder to place a directory. 550 * 551 * The policy implemented by this algorithm is to select from 552 * among those cylinder groups with above the average number of 553 * free inodes, the one with the smallest number of directories. 554 */ 555 static ino_t 556 ffs_dirpref(fs) 557 register struct fs *fs; 558 { 559 int cg, minndir, mincg, avgifree; 560 561 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 562 minndir = fs->fs_ipg; 563 mincg = 0; 564 for (cg = 0; cg < fs->fs_ncg; cg++) 565 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 566 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 567 mincg = cg; 568 minndir = fs->fs_cs(fs, cg).cs_ndir; 569 } 570 return ((ino_t)(fs->fs_ipg * mincg)); 571 } 572 573 /* 574 * Select the desired position for the next block in a file. The file is 575 * logically divided into sections. The first section is composed of the 576 * direct blocks. Each additional section contains fs_maxbpg blocks. 577 * 578 * If no blocks have been allocated in the first section, the policy is to 579 * request a block in the same cylinder group as the inode that describes 580 * the file. If no blocks have been allocated in any other section, the 581 * policy is to place the section in a cylinder group with a greater than 582 * average number of free blocks. An appropriate cylinder group is found 583 * by using a rotor that sweeps the cylinder groups. When a new group of 584 * blocks is needed, the sweep begins in the cylinder group following the 585 * cylinder group from which the previous allocation was made. The sweep 586 * continues until a cylinder group with greater than the average number 587 * of free blocks is found. If the allocation is for the first block in an 588 * indirect block, the information on the previous allocation is unavailable; 589 * here a best guess is made based upon the logical block number being 590 * allocated. 591 * 592 * If a section is already partially allocated, the policy is to 593 * contiguously allocate fs_maxcontig blocks. The end of one of these 594 * contiguous blocks and the beginning of the next is physically separated 595 * so that the disk head will be in transit between them for at least 596 * fs_rotdelay milliseconds. This is to allow time for the processor to 597 * schedule another I/O transfer. 598 */ 599 daddr_t 600 ffs_blkpref(ip, lbn, indx, bap) 601 struct inode *ip; 602 daddr_t lbn; 603 int indx; 604 daddr_t *bap; 605 { 606 register struct fs *fs; 607 register int cg; 608 int avgbfree, startcg; 609 daddr_t nextblk; 610 611 fs = ip->i_fs; 612 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 613 if (lbn < NDADDR) { 614 cg = ino_to_cg(fs, ip->i_number); 615 return (fs->fs_fpg * cg + fs->fs_frag); 616 } 617 /* 618 * Find a cylinder with greater than average number of 619 * unused data blocks. 620 */ 621 if (indx == 0 || bap[indx - 1] == 0) 622 startcg = 623 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 624 else 625 startcg = dtog(fs, bap[indx - 1]) + 1; 626 startcg %= fs->fs_ncg; 627 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 628 for (cg = startcg; cg < fs->fs_ncg; cg++) 629 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 630 fs->fs_cgrotor = cg; 631 return (fs->fs_fpg * cg + fs->fs_frag); 632 } 633 for (cg = 0; cg <= startcg; cg++) 634 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 635 fs->fs_cgrotor = cg; 636 return (fs->fs_fpg * cg + fs->fs_frag); 637 } 638 return (NULL); 639 } 640 /* 641 * One or more previous blocks have been laid out. If less 642 * than fs_maxcontig previous blocks are contiguous, the 643 * next block is requested contiguously, otherwise it is 644 * requested rotationally delayed by fs_rotdelay milliseconds. 645 */ 646 nextblk = bap[indx - 1] + fs->fs_frag; 647 if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] + 648 blkstofrags(fs, fs->fs_maxcontig) != nextblk) 649 return (nextblk); 650 if (fs->fs_rotdelay != 0) 651 /* 652 * Here we convert ms of delay to frags as: 653 * (frags) = (ms) * (rev/sec) * (sect/rev) / 654 * ((sect/frag) * (ms/sec)) 655 * then round up to the next block. 656 */ 657 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 658 (NSPF(fs) * 1000), fs->fs_frag); 659 return (nextblk); 660 } 661 662 /* 663 * Implement the cylinder overflow algorithm. 664 * 665 * The policy implemented by this algorithm is: 666 * 1) allocate the block in its requested cylinder group. 667 * 2) quadradically rehash on the cylinder group number. 668 * 3) brute force search for a free block. 669 */ 670 /*VARARGS5*/ 671 static u_long 672 ffs_hashalloc(ip, cg, pref, size, allocator) 673 struct inode *ip; 674 int cg; 675 long pref; 676 int size; /* size for data blocks, mode for inodes */ 677 u_long (*allocator)(); 678 { 679 register struct fs *fs; 680 long result; 681 int i, icg = cg; 682 683 fs = ip->i_fs; 684 /* 685 * 1: preferred cylinder group 686 */ 687 result = (*allocator)(ip, cg, pref, size); 688 if (result) 689 return (result); 690 /* 691 * 2: quadratic rehash 692 */ 693 for (i = 1; i < fs->fs_ncg; i *= 2) { 694 cg += i; 695 if (cg >= fs->fs_ncg) 696 cg -= fs->fs_ncg; 697 result = (*allocator)(ip, cg, 0, size); 698 if (result) 699 return (result); 700 } 701 /* 702 * 3: brute force search 703 * Note that we start at i == 2, since 0 was checked initially, 704 * and 1 is always checked in the quadratic rehash. 705 */ 706 cg = (icg + 2) % fs->fs_ncg; 707 for (i = 2; i < fs->fs_ncg; i++) { 708 result = (*allocator)(ip, cg, 0, size); 709 if (result) 710 return (result); 711 cg++; 712 if (cg == fs->fs_ncg) 713 cg = 0; 714 } 715 return (NULL); 716 } 717 718 /* 719 * Determine whether a fragment can be extended. 720 * 721 * Check to see if the necessary fragments are available, and 722 * if they are, allocate them. 723 */ 724 static daddr_t 725 ffs_fragextend(ip, cg, bprev, osize, nsize) 726 struct inode *ip; 727 int cg; 728 long bprev; 729 int osize, nsize; 730 { 731 register struct fs *fs; 732 register struct cg *cgp; 733 struct buf *bp; 734 long bno; 735 int frags, bbase; 736 int i, error; 737 738 fs = ip->i_fs; 739 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 740 return (NULL); 741 frags = numfrags(fs, nsize); 742 bbase = fragnum(fs, bprev); 743 if (bbase > fragnum(fs, (bprev + frags - 1))) { 744 /* cannot extend across a block boundary */ 745 return (NULL); 746 } 747 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 748 (int)fs->fs_cgsize, NOCRED, &bp); 749 if (error) { 750 brelse(bp); 751 return (NULL); 752 } 753 cgp = (struct cg *)bp->b_data; 754 if (!cg_chkmagic(cgp)) { 755 brelse(bp); 756 return (NULL); 757 } 758 cgp->cg_time = time.tv_sec; 759 bno = dtogd(fs, bprev); 760 for (i = numfrags(fs, osize); i < frags; i++) 761 if (isclr(cg_blksfree(cgp), bno + i)) { 762 brelse(bp); 763 return (NULL); 764 } 765 /* 766 * the current fragment can be extended 767 * deduct the count on fragment being extended into 768 * increase the count on the remaining fragment (if any) 769 * allocate the extended piece 770 */ 771 for (i = frags; i < fs->fs_frag - bbase; i++) 772 if (isclr(cg_blksfree(cgp), bno + i)) 773 break; 774 cgp->cg_frsum[i - numfrags(fs, osize)]--; 775 if (i != frags) 776 cgp->cg_frsum[i - frags]++; 777 for (i = numfrags(fs, osize); i < frags; i++) { 778 clrbit(cg_blksfree(cgp), bno + i); 779 cgp->cg_cs.cs_nffree--; 780 fs->fs_cstotal.cs_nffree--; 781 fs->fs_cs(fs, cg).cs_nffree--; 782 } 783 fs->fs_fmod = 1; 784 bdwrite(bp); 785 return (bprev); 786 } 787 788 /* 789 * Determine whether a block can be allocated. 790 * 791 * Check to see if a block of the appropriate size is available, 792 * and if it is, allocate it. 793 */ 794 static daddr_t 795 ffs_alloccg(ip, cg, bpref, size) 796 struct inode *ip; 797 int cg; 798 daddr_t bpref; 799 int size; 800 { 801 register struct fs *fs; 802 register struct cg *cgp; 803 struct buf *bp; 804 register int i; 805 int error, bno, frags, allocsiz; 806 807 fs = ip->i_fs; 808 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 809 return (NULL); 810 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 811 (int)fs->fs_cgsize, NOCRED, &bp); 812 if (error) { 813 brelse(bp); 814 return (NULL); 815 } 816 cgp = (struct cg *)bp->b_data; 817 if (!cg_chkmagic(cgp) || 818 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 819 brelse(bp); 820 return (NULL); 821 } 822 cgp->cg_time = time.tv_sec; 823 if (size == fs->fs_bsize) { 824 bno = ffs_alloccgblk(fs, cgp, bpref); 825 bdwrite(bp); 826 return (bno); 827 } 828 /* 829 * check to see if any fragments are already available 830 * allocsiz is the size which will be allocated, hacking 831 * it down to a smaller size if necessary 832 */ 833 frags = numfrags(fs, size); 834 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 835 if (cgp->cg_frsum[allocsiz] != 0) 836 break; 837 if (allocsiz == fs->fs_frag) { 838 /* 839 * no fragments were available, so a block will be 840 * allocated, and hacked up 841 */ 842 if (cgp->cg_cs.cs_nbfree == 0) { 843 brelse(bp); 844 return (NULL); 845 } 846 bno = ffs_alloccgblk(fs, cgp, bpref); 847 bpref = dtogd(fs, bno); 848 for (i = frags; i < fs->fs_frag; i++) 849 setbit(cg_blksfree(cgp), bpref + i); 850 i = fs->fs_frag - frags; 851 cgp->cg_cs.cs_nffree += i; 852 fs->fs_cstotal.cs_nffree += i; 853 fs->fs_cs(fs, cg).cs_nffree += i; 854 fs->fs_fmod = 1; 855 cgp->cg_frsum[i]++; 856 bdwrite(bp); 857 return (bno); 858 } 859 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 860 if (bno < 0) { 861 brelse(bp); 862 return (NULL); 863 } 864 for (i = 0; i < frags; i++) 865 clrbit(cg_blksfree(cgp), bno + i); 866 cgp->cg_cs.cs_nffree -= frags; 867 fs->fs_cstotal.cs_nffree -= frags; 868 fs->fs_cs(fs, cg).cs_nffree -= frags; 869 fs->fs_fmod = 1; 870 cgp->cg_frsum[allocsiz]--; 871 if (frags != allocsiz) 872 cgp->cg_frsum[allocsiz - frags]++; 873 bdwrite(bp); 874 return (cg * fs->fs_fpg + bno); 875 } 876 877 /* 878 * Allocate a block in a cylinder group. 879 * 880 * This algorithm implements the following policy: 881 * 1) allocate the requested block. 882 * 2) allocate a rotationally optimal block in the same cylinder. 883 * 3) allocate the next available block on the block rotor for the 884 * specified cylinder group. 885 * Note that this routine only allocates fs_bsize blocks; these 886 * blocks may be fragmented by the routine that allocates them. 887 */ 888 static daddr_t 889 ffs_alloccgblk(fs, cgp, bpref) 890 register struct fs *fs; 891 register struct cg *cgp; 892 daddr_t bpref; 893 { 894 daddr_t bno, blkno; 895 int cylno, pos, delta; 896 short *cylbp; 897 register int i; 898 899 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 900 bpref = cgp->cg_rotor; 901 goto norot; 902 } 903 bpref = blknum(fs, bpref); 904 bpref = dtogd(fs, bpref); 905 /* 906 * if the requested block is available, use it 907 */ 908 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 909 bno = bpref; 910 goto gotit; 911 } 912 /* 913 * check for a block available on the same cylinder 914 */ 915 cylno = cbtocylno(fs, bpref); 916 if (cg_blktot(cgp)[cylno] == 0) 917 goto norot; 918 if (fs->fs_cpc == 0) { 919 /* 920 * Block layout information is not available. 921 * Leaving bpref unchanged means we take the 922 * next available free block following the one 923 * we just allocated. Hopefully this will at 924 * least hit a track cache on drives of unknown 925 * geometry (e.g. SCSI). 926 */ 927 goto norot; 928 } 929 /* 930 * check the summary information to see if a block is 931 * available in the requested cylinder starting at the 932 * requested rotational position and proceeding around. 933 */ 934 cylbp = cg_blks(fs, cgp, cylno); 935 pos = cbtorpos(fs, bpref); 936 for (i = pos; i < fs->fs_nrpos; i++) 937 if (cylbp[i] > 0) 938 break; 939 if (i == fs->fs_nrpos) 940 for (i = 0; i < pos; i++) 941 if (cylbp[i] > 0) 942 break; 943 if (cylbp[i] > 0) { 944 /* 945 * found a rotational position, now find the actual 946 * block. A panic if none is actually there. 947 */ 948 pos = cylno % fs->fs_cpc; 949 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 950 if (fs_postbl(fs, pos)[i] == -1) { 951 printf("pos = %d, i = %d, fs = %s\n", 952 pos, i, fs->fs_fsmnt); 953 panic("ffs_alloccgblk: cyl groups corrupted"); 954 } 955 for (i = fs_postbl(fs, pos)[i];; ) { 956 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) { 957 bno = blkstofrags(fs, (bno + i)); 958 goto gotit; 959 } 960 delta = fs_rotbl(fs)[i]; 961 if (delta <= 0 || 962 delta + i > fragstoblks(fs, fs->fs_fpg)) 963 break; 964 i += delta; 965 } 966 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 967 panic("ffs_alloccgblk: can't find blk in cyl"); 968 } 969 norot: 970 /* 971 * no blocks in the requested cylinder, so take next 972 * available one in this cylinder group. 973 */ 974 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 975 if (bno < 0) 976 return (NULL); 977 cgp->cg_rotor = bno; 978 gotit: 979 blkno = fragstoblks(fs, bno); 980 ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno); 981 ffs_clusteracct(fs, cgp, blkno, -1); 982 cgp->cg_cs.cs_nbfree--; 983 fs->fs_cstotal.cs_nbfree--; 984 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 985 cylno = cbtocylno(fs, bno); 986 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 987 cg_blktot(cgp)[cylno]--; 988 fs->fs_fmod = 1; 989 return (cgp->cg_cgx * fs->fs_fpg + bno); 990 } 991 992 /* 993 * Determine whether a cluster can be allocated. 994 * 995 * We do not currently check for optimal rotational layout if there 996 * are multiple choices in the same cylinder group. Instead we just 997 * take the first one that we find following bpref. 998 */ 999 static daddr_t 1000 ffs_clusteralloc(ip, cg, bpref, len) 1001 struct inode *ip; 1002 int cg; 1003 daddr_t bpref; 1004 int len; 1005 { 1006 register struct fs *fs; 1007 register struct cg *cgp; 1008 struct buf *bp; 1009 int i, run, bno, bit, map; 1010 u_char *mapp; 1011 1012 fs = ip->i_fs; 1013 if (fs->fs_cs(fs, cg).cs_nbfree < len) 1014 return (NULL); 1015 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1016 NOCRED, &bp)) 1017 goto fail; 1018 cgp = (struct cg *)bp->b_data; 1019 if (!cg_chkmagic(cgp)) 1020 goto fail; 1021 /* 1022 * Check to see if a cluster of the needed size (or bigger) is 1023 * available in this cylinder group. 1024 */ 1025 for (i = len; i <= fs->fs_contigsumsize; i++) 1026 if (cg_clustersum(cgp)[i] > 0) 1027 break; 1028 if (i > fs->fs_contigsumsize) 1029 goto fail; 1030 /* 1031 * Search the cluster map to find a big enough cluster. 1032 * We take the first one that we find, even if it is larger 1033 * than we need as we prefer to get one close to the previous 1034 * block allocation. We do not search before the current 1035 * preference point as we do not want to allocate a block 1036 * that is allocated before the previous one (as we will 1037 * then have to wait for another pass of the elevator 1038 * algorithm before it will be read). We prefer to fail and 1039 * be recalled to try an allocation in the next cylinder group. 1040 */ 1041 if (dtog(fs, bpref) != cg) 1042 bpref = 0; 1043 else 1044 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1045 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1046 map = *mapp++; 1047 bit = 1 << (bpref % NBBY); 1048 for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) { 1049 if ((map & bit) == 0) { 1050 run = 0; 1051 } else { 1052 run++; 1053 if (run == len) 1054 break; 1055 } 1056 if ((i & (NBBY - 1)) != (NBBY - 1)) { 1057 bit <<= 1; 1058 } else { 1059 map = *mapp++; 1060 bit = 1; 1061 } 1062 } 1063 if (i == cgp->cg_nclusterblks) 1064 goto fail; 1065 /* 1066 * Allocate the cluster that we have found. 1067 */ 1068 bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1); 1069 len = blkstofrags(fs, len); 1070 for (i = 0; i < len; i += fs->fs_frag) 1071 if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i) 1072 panic("ffs_clusteralloc: lost block"); 1073 brelse(bp); 1074 return (bno); 1075 1076 fail: 1077 brelse(bp); 1078 return (0); 1079 } 1080 1081 /* 1082 * Determine whether an inode can be allocated. 1083 * 1084 * Check to see if an inode is available, and if it is, 1085 * allocate it using the following policy: 1086 * 1) allocate the requested inode. 1087 * 2) allocate the next available inode after the requested 1088 * inode in the specified cylinder group. 1089 */ 1090 static ino_t 1091 ffs_nodealloccg(ip, cg, ipref, mode) 1092 struct inode *ip; 1093 int cg; 1094 daddr_t ipref; 1095 int mode; 1096 { 1097 register struct fs *fs; 1098 register struct cg *cgp; 1099 struct buf *bp; 1100 int error, start, len, loc, map, i; 1101 1102 fs = ip->i_fs; 1103 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1104 return (NULL); 1105 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1106 (int)fs->fs_cgsize, NOCRED, &bp); 1107 if (error) { 1108 brelse(bp); 1109 return (NULL); 1110 } 1111 cgp = (struct cg *)bp->b_data; 1112 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1113 brelse(bp); 1114 return (NULL); 1115 } 1116 cgp->cg_time = time.tv_sec; 1117 if (ipref) { 1118 ipref %= fs->fs_ipg; 1119 if (isclr(cg_inosused(cgp), ipref)) 1120 goto gotit; 1121 } 1122 start = cgp->cg_irotor / NBBY; 1123 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1124 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 1125 if (loc == 0) { 1126 len = start + 1; 1127 start = 0; 1128 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 1129 if (loc == 0) { 1130 printf("cg = %d, irotor = %ld, fs = %s\n", 1131 cg, cgp->cg_irotor, fs->fs_fsmnt); 1132 panic("ffs_nodealloccg: map corrupted"); 1133 /* NOTREACHED */ 1134 } 1135 } 1136 i = start + len - loc; 1137 map = cg_inosused(cgp)[i]; 1138 ipref = i * NBBY; 1139 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1140 if ((map & i) == 0) { 1141 cgp->cg_irotor = ipref; 1142 goto gotit; 1143 } 1144 } 1145 printf("fs = %s\n", fs->fs_fsmnt); 1146 panic("ffs_nodealloccg: block not in map"); 1147 /* NOTREACHED */ 1148 gotit: 1149 setbit(cg_inosused(cgp), ipref); 1150 cgp->cg_cs.cs_nifree--; 1151 fs->fs_cstotal.cs_nifree--; 1152 fs->fs_cs(fs, cg).cs_nifree--; 1153 fs->fs_fmod = 1; 1154 if ((mode & IFMT) == IFDIR) { 1155 cgp->cg_cs.cs_ndir++; 1156 fs->fs_cstotal.cs_ndir++; 1157 fs->fs_cs(fs, cg).cs_ndir++; 1158 } 1159 bdwrite(bp); 1160 return (cg * fs->fs_ipg + ipref); 1161 } 1162 1163 /* 1164 * Free a block or fragment. 1165 * 1166 * The specified block or fragment is placed back in the 1167 * free map. If a fragment is deallocated, a possible 1168 * block reassembly is checked. 1169 */ 1170 void 1171 ffs_blkfree(ip, bno, size) 1172 register struct inode *ip; 1173 daddr_t bno; 1174 long size; 1175 { 1176 register struct fs *fs; 1177 register struct cg *cgp; 1178 struct buf *bp; 1179 daddr_t blkno; 1180 int i, error, cg, blk, frags, bbase; 1181 1182 fs = ip->i_fs; 1183 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1184 printf("dev = 0x%lx, bsize = %ld, size = %ld, fs = %s\n", 1185 (u_long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 1186 panic("blkfree: bad size"); 1187 } 1188 cg = dtog(fs, bno); 1189 if ((u_int)bno >= fs->fs_size) { 1190 printf("bad block %ld, ino %ld\n", bno, ip->i_number); 1191 ffs_fserr(fs, ip->i_uid, "bad block"); 1192 return; 1193 } 1194 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1195 (int)fs->fs_cgsize, NOCRED, &bp); 1196 if (error) { 1197 brelse(bp); 1198 return; 1199 } 1200 cgp = (struct cg *)bp->b_data; 1201 if (!cg_chkmagic(cgp)) { 1202 brelse(bp); 1203 return; 1204 } 1205 cgp->cg_time = time.tv_sec; 1206 bno = dtogd(fs, bno); 1207 if (size == fs->fs_bsize) { 1208 blkno = fragstoblks(fs, bno); 1209 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) { 1210 printf("dev = 0x%lx, block = %ld, fs = %s\n", 1211 (u_long) ip->i_dev, bno, fs->fs_fsmnt); 1212 panic("blkfree: freeing free block"); 1213 } 1214 ffs_setblock(fs, cg_blksfree(cgp), blkno); 1215 ffs_clusteracct(fs, cgp, blkno, 1); 1216 cgp->cg_cs.cs_nbfree++; 1217 fs->fs_cstotal.cs_nbfree++; 1218 fs->fs_cs(fs, cg).cs_nbfree++; 1219 i = cbtocylno(fs, bno); 1220 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 1221 cg_blktot(cgp)[i]++; 1222 } else { 1223 bbase = bno - fragnum(fs, bno); 1224 /* 1225 * decrement the counts associated with the old frags 1226 */ 1227 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1228 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1229 /* 1230 * deallocate the fragment 1231 */ 1232 frags = numfrags(fs, size); 1233 for (i = 0; i < frags; i++) { 1234 if (isset(cg_blksfree(cgp), bno + i)) { 1235 printf("dev = 0x%lx, block = %ld, fs = %s\n", 1236 (u_long) ip->i_dev, bno + i, fs->fs_fsmnt); 1237 panic("blkfree: freeing free frag"); 1238 } 1239 setbit(cg_blksfree(cgp), bno + i); 1240 } 1241 cgp->cg_cs.cs_nffree += i; 1242 fs->fs_cstotal.cs_nffree += i; 1243 fs->fs_cs(fs, cg).cs_nffree += i; 1244 /* 1245 * add back in counts associated with the new frags 1246 */ 1247 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1248 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1249 /* 1250 * if a complete block has been reassembled, account for it 1251 */ 1252 blkno = fragstoblks(fs, bbase); 1253 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) { 1254 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1255 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1256 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1257 ffs_clusteracct(fs, cgp, blkno, 1); 1258 cgp->cg_cs.cs_nbfree++; 1259 fs->fs_cstotal.cs_nbfree++; 1260 fs->fs_cs(fs, cg).cs_nbfree++; 1261 i = cbtocylno(fs, bbase); 1262 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 1263 cg_blktot(cgp)[i]++; 1264 } 1265 } 1266 fs->fs_fmod = 1; 1267 bdwrite(bp); 1268 } 1269 1270 /* 1271 * Free an inode. 1272 * 1273 * The specified inode is placed back in the free map. 1274 */ 1275 int 1276 ffs_vfree(ap) 1277 struct vop_vfree_args /* { 1278 struct vnode *a_pvp; 1279 ino_t a_ino; 1280 int a_mode; 1281 } */ *ap; 1282 { 1283 register struct fs *fs; 1284 register struct cg *cgp; 1285 register struct inode *pip; 1286 ino_t ino = ap->a_ino; 1287 struct buf *bp; 1288 int error, cg; 1289 1290 pip = VTOI(ap->a_pvp); 1291 fs = pip->i_fs; 1292 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1293 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n", 1294 pip->i_dev, ino, fs->fs_fsmnt); 1295 cg = ino_to_cg(fs, ino); 1296 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1297 (int)fs->fs_cgsize, NOCRED, &bp); 1298 if (error) { 1299 brelse(bp); 1300 return (0); 1301 } 1302 cgp = (struct cg *)bp->b_data; 1303 if (!cg_chkmagic(cgp)) { 1304 brelse(bp); 1305 return (0); 1306 } 1307 cgp->cg_time = time.tv_sec; 1308 ino %= fs->fs_ipg; 1309 if (isclr(cg_inosused(cgp), ino)) { 1310 printf("dev = 0x%lx, ino = %ld, fs = %s\n", 1311 (u_long)pip->i_dev, ino, fs->fs_fsmnt); 1312 if (fs->fs_ronly == 0) 1313 panic("ifree: freeing free inode"); 1314 } 1315 clrbit(cg_inosused(cgp), ino); 1316 if (ino < cgp->cg_irotor) 1317 cgp->cg_irotor = ino; 1318 cgp->cg_cs.cs_nifree++; 1319 fs->fs_cstotal.cs_nifree++; 1320 fs->fs_cs(fs, cg).cs_nifree++; 1321 if ((ap->a_mode & IFMT) == IFDIR) { 1322 cgp->cg_cs.cs_ndir--; 1323 fs->fs_cstotal.cs_ndir--; 1324 fs->fs_cs(fs, cg).cs_ndir--; 1325 } 1326 fs->fs_fmod = 1; 1327 bdwrite(bp); 1328 return (0); 1329 } 1330 1331 /* 1332 * Find a block of the specified size in the specified cylinder group. 1333 * 1334 * It is a panic if a request is made to find a block if none are 1335 * available. 1336 */ 1337 static daddr_t 1338 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1339 register struct fs *fs; 1340 register struct cg *cgp; 1341 daddr_t bpref; 1342 int allocsiz; 1343 { 1344 daddr_t bno; 1345 int start, len, loc, i; 1346 int blk, field, subfield, pos; 1347 1348 /* 1349 * find the fragment by searching through the free block 1350 * map for an appropriate bit pattern 1351 */ 1352 if (bpref) 1353 start = dtogd(fs, bpref) / NBBY; 1354 else 1355 start = cgp->cg_frotor / NBBY; 1356 len = howmany(fs->fs_fpg, NBBY) - start; 1357 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start], 1358 (u_char *)fragtbl[fs->fs_frag], 1359 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1360 if (loc == 0) { 1361 len = start + 1; 1362 start = 0; 1363 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0], 1364 (u_char *)fragtbl[fs->fs_frag], 1365 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1366 if (loc == 0) { 1367 printf("start = %d, len = %d, fs = %s\n", 1368 start, len, fs->fs_fsmnt); 1369 panic("ffs_alloccg: map corrupted"); 1370 /* NOTREACHED */ 1371 } 1372 } 1373 bno = (start + len - loc) * NBBY; 1374 cgp->cg_frotor = bno; 1375 /* 1376 * found the byte in the map 1377 * sift through the bits to find the selected frag 1378 */ 1379 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1380 blk = blkmap(fs, cg_blksfree(cgp), bno); 1381 blk <<= 1; 1382 field = around[allocsiz]; 1383 subfield = inside[allocsiz]; 1384 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1385 if ((blk & field) == subfield) 1386 return (bno + pos); 1387 field <<= 1; 1388 subfield <<= 1; 1389 } 1390 } 1391 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 1392 panic("ffs_alloccg: block not in map"); 1393 return (-1); 1394 } 1395 1396 /* 1397 * Update the cluster map because of an allocation or free. 1398 * 1399 * Cnt == 1 means free; cnt == -1 means allocating. 1400 */ 1401 void 1402 ffs_clusteracct(fs, cgp, blkno, cnt) 1403 struct fs *fs; 1404 struct cg *cgp; 1405 daddr_t blkno; 1406 int cnt; 1407 { 1408 long *sump; 1409 u_char *freemapp, *mapp; 1410 int i, start, end, forw, back, map, bit; 1411 1412 if (fs->fs_contigsumsize <= 0) 1413 return; 1414 freemapp = cg_clustersfree(cgp); 1415 sump = cg_clustersum(cgp); 1416 /* 1417 * Allocate or clear the actual block. 1418 */ 1419 if (cnt > 0) 1420 setbit(freemapp, blkno); 1421 else 1422 clrbit(freemapp, blkno); 1423 /* 1424 * Find the size of the cluster going forward. 1425 */ 1426 start = blkno + 1; 1427 end = start + fs->fs_contigsumsize; 1428 if (end >= cgp->cg_nclusterblks) 1429 end = cgp->cg_nclusterblks; 1430 mapp = &freemapp[start / NBBY]; 1431 map = *mapp++; 1432 bit = 1 << (start % NBBY); 1433 for (i = start; i < end; i++) { 1434 if ((map & bit) == 0) 1435 break; 1436 if ((i & (NBBY - 1)) != (NBBY - 1)) { 1437 bit <<= 1; 1438 } else { 1439 map = *mapp++; 1440 bit = 1; 1441 } 1442 } 1443 forw = i - start; 1444 /* 1445 * Find the size of the cluster going backward. 1446 */ 1447 start = blkno - 1; 1448 end = start - fs->fs_contigsumsize; 1449 if (end < 0) 1450 end = -1; 1451 mapp = &freemapp[start / NBBY]; 1452 map = *mapp--; 1453 bit = 1 << (start % NBBY); 1454 for (i = start; i > end; i--) { 1455 if ((map & bit) == 0) 1456 break; 1457 if ((i & (NBBY - 1)) != 0) { 1458 bit >>= 1; 1459 } else { 1460 map = *mapp--; 1461 bit = 1 << (NBBY - 1); 1462 } 1463 } 1464 back = start - i; 1465 /* 1466 * Account for old cluster and the possibly new forward and 1467 * back clusters. 1468 */ 1469 i = back + forw + 1; 1470 if (i > fs->fs_contigsumsize) 1471 i = fs->fs_contigsumsize; 1472 sump[i] += cnt; 1473 if (back > 0) 1474 sump[back] -= cnt; 1475 if (forw > 0) 1476 sump[forw] -= cnt; 1477 } 1478 1479 /* 1480 * Fserr prints the name of a file system with an error diagnostic. 1481 * 1482 * The form of the error message is: 1483 * fs: error message 1484 */ 1485 static void 1486 ffs_fserr(fs, uid, cp) 1487 struct fs *fs; 1488 u_int uid; 1489 char *cp; 1490 { 1491 1492 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp); 1493 } 1494