xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision 119b75925c562202145d7bac7b676b98029c6cb9)
1 /*-
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * Copyright (c) 1982, 1986, 1989, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 4. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_quota.h"
66 
67 #include <sys/param.h>
68 #include <sys/capsicum.h>
69 #include <sys/systm.h>
70 #include <sys/bio.h>
71 #include <sys/buf.h>
72 #include <sys/conf.h>
73 #include <sys/fcntl.h>
74 #include <sys/file.h>
75 #include <sys/filedesc.h>
76 #include <sys/priv.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/syscallsubr.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/taskqueue.h>
85 
86 #include <security/audit/audit.h>
87 
88 #include <geom/geom.h>
89 
90 #include <ufs/ufs/dir.h>
91 #include <ufs/ufs/extattr.h>
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/ufs_extern.h>
95 #include <ufs/ufs/ufsmount.h>
96 
97 #include <ufs/ffs/fs.h>
98 #include <ufs/ffs/ffs_extern.h>
99 #include <ufs/ffs/softdep.h>
100 
101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
102 				  int size, int rsize);
103 
104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
105 static ufs2_daddr_t
106 	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
107 static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
108 		    struct vnode *, ufs2_daddr_t, long, ino_t,
109 		    struct workhead *);
110 static void	ffs_blkfree_trim_completed(struct bio *);
111 static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
112 #ifdef INVARIANTS
113 static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
114 #endif
115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
116 static ino_t	ffs_dirpref(struct inode *);
117 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
118 		    int, int);
119 static ufs2_daddr_t	ffs_hashalloc
120 		(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
121 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
122 		    int);
123 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
124 static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
125 static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
126 
127 /*
128  * Allocate a block in the filesystem.
129  *
130  * The size of the requested block is given, which must be some
131  * multiple of fs_fsize and <= fs_bsize.
132  * A preference may be optionally specified. If a preference is given
133  * the following hierarchy is used to allocate a block:
134  *   1) allocate the requested block.
135  *   2) allocate a rotationally optimal block in the same cylinder.
136  *   3) allocate a block in the same cylinder group.
137  *   4) quadradically rehash into other cylinder groups, until an
138  *      available block is located.
139  * If no block preference is given the following hierarchy is used
140  * to allocate a block:
141  *   1) allocate a block in the cylinder group that contains the
142  *      inode for the file.
143  *   2) quadradically rehash into other cylinder groups, until an
144  *      available block is located.
145  */
146 int
147 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
148 	struct inode *ip;
149 	ufs2_daddr_t lbn, bpref;
150 	int size, flags;
151 	struct ucred *cred;
152 	ufs2_daddr_t *bnp;
153 {
154 	struct fs *fs;
155 	struct ufsmount *ump;
156 	ufs2_daddr_t bno;
157 	u_int cg, reclaimed;
158 	static struct timeval lastfail;
159 	static int curfail;
160 	int64_t delta;
161 #ifdef QUOTA
162 	int error;
163 #endif
164 
165 	*bnp = 0;
166 	fs = ip->i_fs;
167 	ump = ip->i_ump;
168 	mtx_assert(UFS_MTX(ump), MA_OWNED);
169 #ifdef INVARIANTS
170 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
171 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
172 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
173 		    fs->fs_fsmnt);
174 		panic("ffs_alloc: bad size");
175 	}
176 	if (cred == NOCRED)
177 		panic("ffs_alloc: missing credential");
178 #endif /* INVARIANTS */
179 	reclaimed = 0;
180 retry:
181 #ifdef QUOTA
182 	UFS_UNLOCK(ump);
183 	error = chkdq(ip, btodb(size), cred, 0);
184 	if (error)
185 		return (error);
186 	UFS_LOCK(ump);
187 #endif
188 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
189 		goto nospace;
190 	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
191 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
192 		goto nospace;
193 	if (bpref >= fs->fs_size)
194 		bpref = 0;
195 	if (bpref == 0)
196 		cg = ino_to_cg(fs, ip->i_number);
197 	else
198 		cg = dtog(fs, bpref);
199 	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
200 	if (bno > 0) {
201 		delta = btodb(size);
202 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
203 		if (flags & IO_EXT)
204 			ip->i_flag |= IN_CHANGE;
205 		else
206 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
207 		*bnp = bno;
208 		return (0);
209 	}
210 nospace:
211 #ifdef QUOTA
212 	UFS_UNLOCK(ump);
213 	/*
214 	 * Restore user's disk quota because allocation failed.
215 	 */
216 	(void) chkdq(ip, -btodb(size), cred, FORCE);
217 	UFS_LOCK(ump);
218 #endif
219 	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
220 		reclaimed = 1;
221 		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
222 		goto retry;
223 	}
224 	UFS_UNLOCK(ump);
225 	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
226 		ffs_fserr(fs, ip->i_number, "filesystem full");
227 		uprintf("\n%s: write failed, filesystem is full\n",
228 		    fs->fs_fsmnt);
229 	}
230 	return (ENOSPC);
231 }
232 
233 /*
234  * Reallocate a fragment to a bigger size
235  *
236  * The number and size of the old block is given, and a preference
237  * and new size is also specified. The allocator attempts to extend
238  * the original block. Failing that, the regular block allocator is
239  * invoked to get an appropriate block.
240  */
241 int
242 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
243 	struct inode *ip;
244 	ufs2_daddr_t lbprev;
245 	ufs2_daddr_t bprev;
246 	ufs2_daddr_t bpref;
247 	int osize, nsize, flags;
248 	struct ucred *cred;
249 	struct buf **bpp;
250 {
251 	struct vnode *vp;
252 	struct fs *fs;
253 	struct buf *bp;
254 	struct ufsmount *ump;
255 	u_int cg, request, reclaimed;
256 	int error, gbflags;
257 	ufs2_daddr_t bno;
258 	static struct timeval lastfail;
259 	static int curfail;
260 	int64_t delta;
261 
262 	*bpp = 0;
263 	vp = ITOV(ip);
264 	fs = ip->i_fs;
265 	bp = NULL;
266 	ump = ip->i_ump;
267 	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
268 
269 	mtx_assert(UFS_MTX(ump), MA_OWNED);
270 #ifdef INVARIANTS
271 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
272 		panic("ffs_realloccg: allocation on suspended filesystem");
273 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
274 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
275 		printf(
276 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
277 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
278 		    nsize, fs->fs_fsmnt);
279 		panic("ffs_realloccg: bad size");
280 	}
281 	if (cred == NOCRED)
282 		panic("ffs_realloccg: missing credential");
283 #endif /* INVARIANTS */
284 	reclaimed = 0;
285 retry:
286 	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
287 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
288 		goto nospace;
289 	}
290 	if (bprev == 0) {
291 		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
292 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
293 		    fs->fs_fsmnt);
294 		panic("ffs_realloccg: bad bprev");
295 	}
296 	UFS_UNLOCK(ump);
297 	/*
298 	 * Allocate the extra space in the buffer.
299 	 */
300 	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
301 	if (error) {
302 		brelse(bp);
303 		return (error);
304 	}
305 
306 	if (bp->b_blkno == bp->b_lblkno) {
307 		if (lbprev >= NDADDR)
308 			panic("ffs_realloccg: lbprev out of range");
309 		bp->b_blkno = fsbtodb(fs, bprev);
310 	}
311 
312 #ifdef QUOTA
313 	error = chkdq(ip, btodb(nsize - osize), cred, 0);
314 	if (error) {
315 		brelse(bp);
316 		return (error);
317 	}
318 #endif
319 	/*
320 	 * Check for extension in the existing location.
321 	 */
322 	cg = dtog(fs, bprev);
323 	UFS_LOCK(ump);
324 	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
325 	if (bno) {
326 		if (bp->b_blkno != fsbtodb(fs, bno))
327 			panic("ffs_realloccg: bad blockno");
328 		delta = btodb(nsize - osize);
329 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
330 		if (flags & IO_EXT)
331 			ip->i_flag |= IN_CHANGE;
332 		else
333 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
334 		allocbuf(bp, nsize);
335 		bp->b_flags |= B_DONE;
336 		vfs_bio_bzero_buf(bp, osize, nsize - osize);
337 		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
338 			vfs_bio_set_valid(bp, osize, nsize - osize);
339 		*bpp = bp;
340 		return (0);
341 	}
342 	/*
343 	 * Allocate a new disk location.
344 	 */
345 	if (bpref >= fs->fs_size)
346 		bpref = 0;
347 	switch ((int)fs->fs_optim) {
348 	case FS_OPTSPACE:
349 		/*
350 		 * Allocate an exact sized fragment. Although this makes
351 		 * best use of space, we will waste time relocating it if
352 		 * the file continues to grow. If the fragmentation is
353 		 * less than half of the minimum free reserve, we choose
354 		 * to begin optimizing for time.
355 		 */
356 		request = nsize;
357 		if (fs->fs_minfree <= 5 ||
358 		    fs->fs_cstotal.cs_nffree >
359 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
360 			break;
361 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
362 			fs->fs_fsmnt);
363 		fs->fs_optim = FS_OPTTIME;
364 		break;
365 	case FS_OPTTIME:
366 		/*
367 		 * At this point we have discovered a file that is trying to
368 		 * grow a small fragment to a larger fragment. To save time,
369 		 * we allocate a full sized block, then free the unused portion.
370 		 * If the file continues to grow, the `ffs_fragextend' call
371 		 * above will be able to grow it in place without further
372 		 * copying. If aberrant programs cause disk fragmentation to
373 		 * grow within 2% of the free reserve, we choose to begin
374 		 * optimizing for space.
375 		 */
376 		request = fs->fs_bsize;
377 		if (fs->fs_cstotal.cs_nffree <
378 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
379 			break;
380 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
381 			fs->fs_fsmnt);
382 		fs->fs_optim = FS_OPTSPACE;
383 		break;
384 	default:
385 		printf("dev = %s, optim = %ld, fs = %s\n",
386 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
387 		panic("ffs_realloccg: bad optim");
388 		/* NOTREACHED */
389 	}
390 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
391 	if (bno > 0) {
392 		bp->b_blkno = fsbtodb(fs, bno);
393 		if (!DOINGSOFTDEP(vp))
394 			ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
395 			    ip->i_number, vp->v_type, NULL);
396 		delta = btodb(nsize - osize);
397 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
398 		if (flags & IO_EXT)
399 			ip->i_flag |= IN_CHANGE;
400 		else
401 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
402 		allocbuf(bp, nsize);
403 		bp->b_flags |= B_DONE;
404 		vfs_bio_bzero_buf(bp, osize, nsize - osize);
405 		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
406 			vfs_bio_set_valid(bp, osize, nsize - osize);
407 		*bpp = bp;
408 		return (0);
409 	}
410 #ifdef QUOTA
411 	UFS_UNLOCK(ump);
412 	/*
413 	 * Restore user's disk quota because allocation failed.
414 	 */
415 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
416 	UFS_LOCK(ump);
417 #endif
418 nospace:
419 	/*
420 	 * no space available
421 	 */
422 	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
423 		reclaimed = 1;
424 		UFS_UNLOCK(ump);
425 		if (bp) {
426 			brelse(bp);
427 			bp = NULL;
428 		}
429 		UFS_LOCK(ump);
430 		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
431 		goto retry;
432 	}
433 	UFS_UNLOCK(ump);
434 	if (bp)
435 		brelse(bp);
436 	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
437 		ffs_fserr(fs, ip->i_number, "filesystem full");
438 		uprintf("\n%s: write failed, filesystem is full\n",
439 		    fs->fs_fsmnt);
440 	}
441 	return (ENOSPC);
442 }
443 
444 /*
445  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
446  *
447  * The vnode and an array of buffer pointers for a range of sequential
448  * logical blocks to be made contiguous is given. The allocator attempts
449  * to find a range of sequential blocks starting as close as possible
450  * from the end of the allocation for the logical block immediately
451  * preceding the current range. If successful, the physical block numbers
452  * in the buffer pointers and in the inode are changed to reflect the new
453  * allocation. If unsuccessful, the allocation is left unchanged. The
454  * success in doing the reallocation is returned. Note that the error
455  * return is not reflected back to the user. Rather the previous block
456  * allocation will be used.
457  */
458 
459 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
460 
461 static int doasyncfree = 1;
462 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
463 "do not force synchronous writes when blocks are reallocated");
464 
465 static int doreallocblks = 1;
466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
467 "enable block reallocation");
468 
469 static int maxclustersearch = 10;
470 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
471 0, "max number of cylinder group to search for contigous blocks");
472 
473 #ifdef DEBUG
474 static volatile int prtrealloc = 0;
475 #endif
476 
477 int
478 ffs_reallocblks(ap)
479 	struct vop_reallocblks_args /* {
480 		struct vnode *a_vp;
481 		struct cluster_save *a_buflist;
482 	} */ *ap;
483 {
484 
485 	if (doreallocblks == 0)
486 		return (ENOSPC);
487 	/*
488 	 * We can't wait in softdep prealloc as it may fsync and recurse
489 	 * here.  Instead we simply fail to reallocate blocks if this
490 	 * rare condition arises.
491 	 */
492 	if (DOINGSOFTDEP(ap->a_vp))
493 		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
494 			return (ENOSPC);
495 	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
496 		return (ffs_reallocblks_ufs1(ap));
497 	return (ffs_reallocblks_ufs2(ap));
498 }
499 
500 static int
501 ffs_reallocblks_ufs1(ap)
502 	struct vop_reallocblks_args /* {
503 		struct vnode *a_vp;
504 		struct cluster_save *a_buflist;
505 	} */ *ap;
506 {
507 	struct fs *fs;
508 	struct inode *ip;
509 	struct vnode *vp;
510 	struct buf *sbp, *ebp;
511 	ufs1_daddr_t *bap, *sbap, *ebap = 0;
512 	struct cluster_save *buflist;
513 	struct ufsmount *ump;
514 	ufs_lbn_t start_lbn, end_lbn;
515 	ufs1_daddr_t soff, newblk, blkno;
516 	ufs2_daddr_t pref;
517 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
518 	int i, cg, len, start_lvl, end_lvl, ssize;
519 
520 	vp = ap->a_vp;
521 	ip = VTOI(vp);
522 	fs = ip->i_fs;
523 	ump = ip->i_ump;
524 	/*
525 	 * If we are not tracking block clusters or if we have less than 4%
526 	 * free blocks left, then do not attempt to cluster. Running with
527 	 * less than 5% free block reserve is not recommended and those that
528 	 * choose to do so do not expect to have good file layout.
529 	 */
530 	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
531 		return (ENOSPC);
532 	buflist = ap->a_buflist;
533 	len = buflist->bs_nchildren;
534 	start_lbn = buflist->bs_children[0]->b_lblkno;
535 	end_lbn = start_lbn + len - 1;
536 #ifdef INVARIANTS
537 	for (i = 0; i < len; i++)
538 		if (!ffs_checkblk(ip,
539 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
540 			panic("ffs_reallocblks: unallocated block 1");
541 	for (i = 1; i < len; i++)
542 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
543 			panic("ffs_reallocblks: non-logical cluster");
544 	blkno = buflist->bs_children[0]->b_blkno;
545 	ssize = fsbtodb(fs, fs->fs_frag);
546 	for (i = 1; i < len - 1; i++)
547 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
548 			panic("ffs_reallocblks: non-physical cluster %d", i);
549 #endif
550 	/*
551 	 * If the cluster crosses the boundary for the first indirect
552 	 * block, leave space for the indirect block. Indirect blocks
553 	 * are initially laid out in a position after the last direct
554 	 * block. Block reallocation would usually destroy locality by
555 	 * moving the indirect block out of the way to make room for
556 	 * data blocks if we didn't compensate here. We should also do
557 	 * this for other indirect block boundaries, but it is only
558 	 * important for the first one.
559 	 */
560 	if (start_lbn < NDADDR && end_lbn >= NDADDR)
561 		return (ENOSPC);
562 	/*
563 	 * If the latest allocation is in a new cylinder group, assume that
564 	 * the filesystem has decided to move and do not force it back to
565 	 * the previous cylinder group.
566 	 */
567 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
568 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
569 		return (ENOSPC);
570 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
571 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
572 		return (ENOSPC);
573 	/*
574 	 * Get the starting offset and block map for the first block.
575 	 */
576 	if (start_lvl == 0) {
577 		sbap = &ip->i_din1->di_db[0];
578 		soff = start_lbn;
579 	} else {
580 		idp = &start_ap[start_lvl - 1];
581 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
582 			brelse(sbp);
583 			return (ENOSPC);
584 		}
585 		sbap = (ufs1_daddr_t *)sbp->b_data;
586 		soff = idp->in_off;
587 	}
588 	/*
589 	 * If the block range spans two block maps, get the second map.
590 	 */
591 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
592 		ssize = len;
593 	} else {
594 #ifdef INVARIANTS
595 		if (start_lvl > 0 &&
596 		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
597 			panic("ffs_reallocblk: start == end");
598 #endif
599 		ssize = len - (idp->in_off + 1);
600 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
601 			goto fail;
602 		ebap = (ufs1_daddr_t *)ebp->b_data;
603 	}
604 	/*
605 	 * Find the preferred location for the cluster. If we have not
606 	 * previously failed at this endeavor, then follow our standard
607 	 * preference calculation. If we have failed at it, then pick up
608 	 * where we last ended our search.
609 	 */
610 	UFS_LOCK(ump);
611 	if (ip->i_nextclustercg == -1)
612 		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
613 	else
614 		pref = cgdata(fs, ip->i_nextclustercg);
615 	/*
616 	 * Search the block map looking for an allocation of the desired size.
617 	 * To avoid wasting too much time, we limit the number of cylinder
618 	 * groups that we will search.
619 	 */
620 	cg = dtog(fs, pref);
621 	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
622 		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
623 			break;
624 		cg += 1;
625 		if (cg >= fs->fs_ncg)
626 			cg = 0;
627 	}
628 	/*
629 	 * If we have failed in our search, record where we gave up for
630 	 * next time. Otherwise, fall back to our usual search citerion.
631 	 */
632 	if (newblk == 0) {
633 		ip->i_nextclustercg = cg;
634 		UFS_UNLOCK(ump);
635 		goto fail;
636 	}
637 	ip->i_nextclustercg = -1;
638 	/*
639 	 * We have found a new contiguous block.
640 	 *
641 	 * First we have to replace the old block pointers with the new
642 	 * block pointers in the inode and indirect blocks associated
643 	 * with the file.
644 	 */
645 #ifdef DEBUG
646 	if (prtrealloc)
647 		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
648 		    (uintmax_t)ip->i_number,
649 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
650 #endif
651 	blkno = newblk;
652 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
653 		if (i == ssize) {
654 			bap = ebap;
655 			soff = -i;
656 		}
657 #ifdef INVARIANTS
658 		if (!ffs_checkblk(ip,
659 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
660 			panic("ffs_reallocblks: unallocated block 2");
661 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
662 			panic("ffs_reallocblks: alloc mismatch");
663 #endif
664 #ifdef DEBUG
665 		if (prtrealloc)
666 			printf(" %d,", *bap);
667 #endif
668 		if (DOINGSOFTDEP(vp)) {
669 			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
670 				softdep_setup_allocdirect(ip, start_lbn + i,
671 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
672 				    buflist->bs_children[i]);
673 			else
674 				softdep_setup_allocindir_page(ip, start_lbn + i,
675 				    i < ssize ? sbp : ebp, soff + i, blkno,
676 				    *bap, buflist->bs_children[i]);
677 		}
678 		*bap++ = blkno;
679 	}
680 	/*
681 	 * Next we must write out the modified inode and indirect blocks.
682 	 * For strict correctness, the writes should be synchronous since
683 	 * the old block values may have been written to disk. In practise
684 	 * they are almost never written, but if we are concerned about
685 	 * strict correctness, the `doasyncfree' flag should be set to zero.
686 	 *
687 	 * The test on `doasyncfree' should be changed to test a flag
688 	 * that shows whether the associated buffers and inodes have
689 	 * been written. The flag should be set when the cluster is
690 	 * started and cleared whenever the buffer or inode is flushed.
691 	 * We can then check below to see if it is set, and do the
692 	 * synchronous write only when it has been cleared.
693 	 */
694 	if (sbap != &ip->i_din1->di_db[0]) {
695 		if (doasyncfree)
696 			bdwrite(sbp);
697 		else
698 			bwrite(sbp);
699 	} else {
700 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
701 		if (!doasyncfree)
702 			ffs_update(vp, 1);
703 	}
704 	if (ssize < len) {
705 		if (doasyncfree)
706 			bdwrite(ebp);
707 		else
708 			bwrite(ebp);
709 	}
710 	/*
711 	 * Last, free the old blocks and assign the new blocks to the buffers.
712 	 */
713 #ifdef DEBUG
714 	if (prtrealloc)
715 		printf("\n\tnew:");
716 #endif
717 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
718 		if (!DOINGSOFTDEP(vp))
719 			ffs_blkfree(ump, fs, ip->i_devvp,
720 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
721 			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
722 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
723 #ifdef INVARIANTS
724 		if (!ffs_checkblk(ip,
725 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
726 			panic("ffs_reallocblks: unallocated block 3");
727 #endif
728 #ifdef DEBUG
729 		if (prtrealloc)
730 			printf(" %d,", blkno);
731 #endif
732 	}
733 #ifdef DEBUG
734 	if (prtrealloc) {
735 		prtrealloc--;
736 		printf("\n");
737 	}
738 #endif
739 	return (0);
740 
741 fail:
742 	if (ssize < len)
743 		brelse(ebp);
744 	if (sbap != &ip->i_din1->di_db[0])
745 		brelse(sbp);
746 	return (ENOSPC);
747 }
748 
749 static int
750 ffs_reallocblks_ufs2(ap)
751 	struct vop_reallocblks_args /* {
752 		struct vnode *a_vp;
753 		struct cluster_save *a_buflist;
754 	} */ *ap;
755 {
756 	struct fs *fs;
757 	struct inode *ip;
758 	struct vnode *vp;
759 	struct buf *sbp, *ebp;
760 	ufs2_daddr_t *bap, *sbap, *ebap = 0;
761 	struct cluster_save *buflist;
762 	struct ufsmount *ump;
763 	ufs_lbn_t start_lbn, end_lbn;
764 	ufs2_daddr_t soff, newblk, blkno, pref;
765 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
766 	int i, cg, len, start_lvl, end_lvl, ssize;
767 
768 	vp = ap->a_vp;
769 	ip = VTOI(vp);
770 	fs = ip->i_fs;
771 	ump = ip->i_ump;
772 	/*
773 	 * If we are not tracking block clusters or if we have less than 4%
774 	 * free blocks left, then do not attempt to cluster. Running with
775 	 * less than 5% free block reserve is not recommended and those that
776 	 * choose to do so do not expect to have good file layout.
777 	 */
778 	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
779 		return (ENOSPC);
780 	buflist = ap->a_buflist;
781 	len = buflist->bs_nchildren;
782 	start_lbn = buflist->bs_children[0]->b_lblkno;
783 	end_lbn = start_lbn + len - 1;
784 #ifdef INVARIANTS
785 	for (i = 0; i < len; i++)
786 		if (!ffs_checkblk(ip,
787 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
788 			panic("ffs_reallocblks: unallocated block 1");
789 	for (i = 1; i < len; i++)
790 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
791 			panic("ffs_reallocblks: non-logical cluster");
792 	blkno = buflist->bs_children[0]->b_blkno;
793 	ssize = fsbtodb(fs, fs->fs_frag);
794 	for (i = 1; i < len - 1; i++)
795 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
796 			panic("ffs_reallocblks: non-physical cluster %d", i);
797 #endif
798 	/*
799 	 * If the cluster crosses the boundary for the first indirect
800 	 * block, do not move anything in it. Indirect blocks are
801 	 * usually initially laid out in a position between the data
802 	 * blocks. Block reallocation would usually destroy locality by
803 	 * moving the indirect block out of the way to make room for
804 	 * data blocks if we didn't compensate here. We should also do
805 	 * this for other indirect block boundaries, but it is only
806 	 * important for the first one.
807 	 */
808 	if (start_lbn < NDADDR && end_lbn >= NDADDR)
809 		return (ENOSPC);
810 	/*
811 	 * If the latest allocation is in a new cylinder group, assume that
812 	 * the filesystem has decided to move and do not force it back to
813 	 * the previous cylinder group.
814 	 */
815 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
816 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
817 		return (ENOSPC);
818 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
819 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
820 		return (ENOSPC);
821 	/*
822 	 * Get the starting offset and block map for the first block.
823 	 */
824 	if (start_lvl == 0) {
825 		sbap = &ip->i_din2->di_db[0];
826 		soff = start_lbn;
827 	} else {
828 		idp = &start_ap[start_lvl - 1];
829 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
830 			brelse(sbp);
831 			return (ENOSPC);
832 		}
833 		sbap = (ufs2_daddr_t *)sbp->b_data;
834 		soff = idp->in_off;
835 	}
836 	/*
837 	 * If the block range spans two block maps, get the second map.
838 	 */
839 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
840 		ssize = len;
841 	} else {
842 #ifdef INVARIANTS
843 		if (start_lvl > 0 &&
844 		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
845 			panic("ffs_reallocblk: start == end");
846 #endif
847 		ssize = len - (idp->in_off + 1);
848 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
849 			goto fail;
850 		ebap = (ufs2_daddr_t *)ebp->b_data;
851 	}
852 	/*
853 	 * Find the preferred location for the cluster. If we have not
854 	 * previously failed at this endeavor, then follow our standard
855 	 * preference calculation. If we have failed at it, then pick up
856 	 * where we last ended our search.
857 	 */
858 	UFS_LOCK(ump);
859 	if (ip->i_nextclustercg == -1)
860 		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
861 	else
862 		pref = cgdata(fs, ip->i_nextclustercg);
863 	/*
864 	 * Search the block map looking for an allocation of the desired size.
865 	 * To avoid wasting too much time, we limit the number of cylinder
866 	 * groups that we will search.
867 	 */
868 	cg = dtog(fs, pref);
869 	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
870 		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
871 			break;
872 		cg += 1;
873 		if (cg >= fs->fs_ncg)
874 			cg = 0;
875 	}
876 	/*
877 	 * If we have failed in our search, record where we gave up for
878 	 * next time. Otherwise, fall back to our usual search citerion.
879 	 */
880 	if (newblk == 0) {
881 		ip->i_nextclustercg = cg;
882 		UFS_UNLOCK(ump);
883 		goto fail;
884 	}
885 	ip->i_nextclustercg = -1;
886 	/*
887 	 * We have found a new contiguous block.
888 	 *
889 	 * First we have to replace the old block pointers with the new
890 	 * block pointers in the inode and indirect blocks associated
891 	 * with the file.
892 	 */
893 #ifdef DEBUG
894 	if (prtrealloc)
895 		printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
896 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
897 #endif
898 	blkno = newblk;
899 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
900 		if (i == ssize) {
901 			bap = ebap;
902 			soff = -i;
903 		}
904 #ifdef INVARIANTS
905 		if (!ffs_checkblk(ip,
906 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
907 			panic("ffs_reallocblks: unallocated block 2");
908 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
909 			panic("ffs_reallocblks: alloc mismatch");
910 #endif
911 #ifdef DEBUG
912 		if (prtrealloc)
913 			printf(" %jd,", (intmax_t)*bap);
914 #endif
915 		if (DOINGSOFTDEP(vp)) {
916 			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
917 				softdep_setup_allocdirect(ip, start_lbn + i,
918 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
919 				    buflist->bs_children[i]);
920 			else
921 				softdep_setup_allocindir_page(ip, start_lbn + i,
922 				    i < ssize ? sbp : ebp, soff + i, blkno,
923 				    *bap, buflist->bs_children[i]);
924 		}
925 		*bap++ = blkno;
926 	}
927 	/*
928 	 * Next we must write out the modified inode and indirect blocks.
929 	 * For strict correctness, the writes should be synchronous since
930 	 * the old block values may have been written to disk. In practise
931 	 * they are almost never written, but if we are concerned about
932 	 * strict correctness, the `doasyncfree' flag should be set to zero.
933 	 *
934 	 * The test on `doasyncfree' should be changed to test a flag
935 	 * that shows whether the associated buffers and inodes have
936 	 * been written. The flag should be set when the cluster is
937 	 * started and cleared whenever the buffer or inode is flushed.
938 	 * We can then check below to see if it is set, and do the
939 	 * synchronous write only when it has been cleared.
940 	 */
941 	if (sbap != &ip->i_din2->di_db[0]) {
942 		if (doasyncfree)
943 			bdwrite(sbp);
944 		else
945 			bwrite(sbp);
946 	} else {
947 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
948 		if (!doasyncfree)
949 			ffs_update(vp, 1);
950 	}
951 	if (ssize < len) {
952 		if (doasyncfree)
953 			bdwrite(ebp);
954 		else
955 			bwrite(ebp);
956 	}
957 	/*
958 	 * Last, free the old blocks and assign the new blocks to the buffers.
959 	 */
960 #ifdef DEBUG
961 	if (prtrealloc)
962 		printf("\n\tnew:");
963 #endif
964 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
965 		if (!DOINGSOFTDEP(vp))
966 			ffs_blkfree(ump, fs, ip->i_devvp,
967 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
968 			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
969 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
970 #ifdef INVARIANTS
971 		if (!ffs_checkblk(ip,
972 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
973 			panic("ffs_reallocblks: unallocated block 3");
974 #endif
975 #ifdef DEBUG
976 		if (prtrealloc)
977 			printf(" %jd,", (intmax_t)blkno);
978 #endif
979 	}
980 #ifdef DEBUG
981 	if (prtrealloc) {
982 		prtrealloc--;
983 		printf("\n");
984 	}
985 #endif
986 	return (0);
987 
988 fail:
989 	if (ssize < len)
990 		brelse(ebp);
991 	if (sbap != &ip->i_din2->di_db[0])
992 		brelse(sbp);
993 	return (ENOSPC);
994 }
995 
996 /*
997  * Allocate an inode in the filesystem.
998  *
999  * If allocating a directory, use ffs_dirpref to select the inode.
1000  * If allocating in a directory, the following hierarchy is followed:
1001  *   1) allocate the preferred inode.
1002  *   2) allocate an inode in the same cylinder group.
1003  *   3) quadradically rehash into other cylinder groups, until an
1004  *      available inode is located.
1005  * If no inode preference is given the following hierarchy is used
1006  * to allocate an inode:
1007  *   1) allocate an inode in cylinder group 0.
1008  *   2) quadradically rehash into other cylinder groups, until an
1009  *      available inode is located.
1010  */
1011 int
1012 ffs_valloc(pvp, mode, cred, vpp)
1013 	struct vnode *pvp;
1014 	int mode;
1015 	struct ucred *cred;
1016 	struct vnode **vpp;
1017 {
1018 	struct inode *pip;
1019 	struct fs *fs;
1020 	struct inode *ip;
1021 	struct timespec ts;
1022 	struct ufsmount *ump;
1023 	ino_t ino, ipref;
1024 	u_int cg;
1025 	int error, error1, reclaimed;
1026 	static struct timeval lastfail;
1027 	static int curfail;
1028 
1029 	*vpp = NULL;
1030 	pip = VTOI(pvp);
1031 	fs = pip->i_fs;
1032 	ump = pip->i_ump;
1033 
1034 	UFS_LOCK(ump);
1035 	reclaimed = 0;
1036 retry:
1037 	if (fs->fs_cstotal.cs_nifree == 0)
1038 		goto noinodes;
1039 
1040 	if ((mode & IFMT) == IFDIR)
1041 		ipref = ffs_dirpref(pip);
1042 	else
1043 		ipref = pip->i_number;
1044 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1045 		ipref = 0;
1046 	cg = ino_to_cg(fs, ipref);
1047 	/*
1048 	 * Track number of dirs created one after another
1049 	 * in a same cg without intervening by files.
1050 	 */
1051 	if ((mode & IFMT) == IFDIR) {
1052 		if (fs->fs_contigdirs[cg] < 255)
1053 			fs->fs_contigdirs[cg]++;
1054 	} else {
1055 		if (fs->fs_contigdirs[cg] > 0)
1056 			fs->fs_contigdirs[cg]--;
1057 	}
1058 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1059 					(allocfcn_t *)ffs_nodealloccg);
1060 	if (ino == 0)
1061 		goto noinodes;
1062 	error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1063 	if (error) {
1064 		error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1065 		    FFSV_FORCEINSMQ);
1066 		ffs_vfree(pvp, ino, mode);
1067 		if (error1 == 0) {
1068 			ip = VTOI(*vpp);
1069 			if (ip->i_mode)
1070 				goto dup_alloc;
1071 			ip->i_flag |= IN_MODIFIED;
1072 			vput(*vpp);
1073 		}
1074 		return (error);
1075 	}
1076 	ip = VTOI(*vpp);
1077 	if (ip->i_mode) {
1078 dup_alloc:
1079 		printf("mode = 0%o, inum = %ju, fs = %s\n",
1080 		    ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1081 		panic("ffs_valloc: dup alloc");
1082 	}
1083 	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1084 		printf("free inode %s/%lu had %ld blocks\n",
1085 		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1086 		DIP_SET(ip, i_blocks, 0);
1087 	}
1088 	ip->i_flags = 0;
1089 	DIP_SET(ip, i_flags, 0);
1090 	/*
1091 	 * Set up a new generation number for this inode.
1092 	 */
1093 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
1094 		ip->i_gen = arc4random() / 2 + 1;
1095 	DIP_SET(ip, i_gen, ip->i_gen);
1096 	if (fs->fs_magic == FS_UFS2_MAGIC) {
1097 		vfs_timestamp(&ts);
1098 		ip->i_din2->di_birthtime = ts.tv_sec;
1099 		ip->i_din2->di_birthnsec = ts.tv_nsec;
1100 	}
1101 	ufs_prepare_reclaim(*vpp);
1102 	ip->i_flag = 0;
1103 	(*vpp)->v_vflag = 0;
1104 	(*vpp)->v_type = VNON;
1105 	if (fs->fs_magic == FS_UFS2_MAGIC)
1106 		(*vpp)->v_op = &ffs_vnodeops2;
1107 	else
1108 		(*vpp)->v_op = &ffs_vnodeops1;
1109 	return (0);
1110 noinodes:
1111 	if (reclaimed == 0) {
1112 		reclaimed = 1;
1113 		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1114 		goto retry;
1115 	}
1116 	UFS_UNLOCK(ump);
1117 	if (ppsratecheck(&lastfail, &curfail, 1)) {
1118 		ffs_fserr(fs, pip->i_number, "out of inodes");
1119 		uprintf("\n%s: create/symlink failed, no inodes free\n",
1120 		    fs->fs_fsmnt);
1121 	}
1122 	return (ENOSPC);
1123 }
1124 
1125 /*
1126  * Find a cylinder group to place a directory.
1127  *
1128  * The policy implemented by this algorithm is to allocate a
1129  * directory inode in the same cylinder group as its parent
1130  * directory, but also to reserve space for its files inodes
1131  * and data. Restrict the number of directories which may be
1132  * allocated one after another in the same cylinder group
1133  * without intervening allocation of files.
1134  *
1135  * If we allocate a first level directory then force allocation
1136  * in another cylinder group.
1137  */
1138 static ino_t
1139 ffs_dirpref(pip)
1140 	struct inode *pip;
1141 {
1142 	struct fs *fs;
1143 	int cg, prefcg, dirsize, cgsize;
1144 	u_int avgifree, avgbfree, avgndir, curdirsize;
1145 	u_int minifree, minbfree, maxndir;
1146 	u_int mincg, minndir;
1147 	u_int maxcontigdirs;
1148 
1149 	mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
1150 	fs = pip->i_fs;
1151 
1152 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1153 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1154 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1155 
1156 	/*
1157 	 * Force allocation in another cg if creating a first level dir.
1158 	 */
1159 	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1160 	if (ITOV(pip)->v_vflag & VV_ROOT) {
1161 		prefcg = arc4random() % fs->fs_ncg;
1162 		mincg = prefcg;
1163 		minndir = fs->fs_ipg;
1164 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1165 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1166 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1167 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1168 				mincg = cg;
1169 				minndir = fs->fs_cs(fs, cg).cs_ndir;
1170 			}
1171 		for (cg = 0; cg < prefcg; cg++)
1172 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1173 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1174 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1175 				mincg = cg;
1176 				minndir = fs->fs_cs(fs, cg).cs_ndir;
1177 			}
1178 		return ((ino_t)(fs->fs_ipg * mincg));
1179 	}
1180 
1181 	/*
1182 	 * Count various limits which used for
1183 	 * optimal allocation of a directory inode.
1184 	 */
1185 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1186 	minifree = avgifree - avgifree / 4;
1187 	if (minifree < 1)
1188 		minifree = 1;
1189 	minbfree = avgbfree - avgbfree / 4;
1190 	if (minbfree < 1)
1191 		minbfree = 1;
1192 	cgsize = fs->fs_fsize * fs->fs_fpg;
1193 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1194 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1195 	if (dirsize < curdirsize)
1196 		dirsize = curdirsize;
1197 	if (dirsize <= 0)
1198 		maxcontigdirs = 0;		/* dirsize overflowed */
1199 	else
1200 		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1201 	if (fs->fs_avgfpdir > 0)
1202 		maxcontigdirs = min(maxcontigdirs,
1203 				    fs->fs_ipg / fs->fs_avgfpdir);
1204 	if (maxcontigdirs == 0)
1205 		maxcontigdirs = 1;
1206 
1207 	/*
1208 	 * Limit number of dirs in one cg and reserve space for
1209 	 * regular files, but only if we have no deficit in
1210 	 * inodes or space.
1211 	 *
1212 	 * We are trying to find a suitable cylinder group nearby
1213 	 * our preferred cylinder group to place a new directory.
1214 	 * We scan from our preferred cylinder group forward looking
1215 	 * for a cylinder group that meets our criterion. If we get
1216 	 * to the final cylinder group and do not find anything,
1217 	 * we start scanning forwards from the beginning of the
1218 	 * filesystem. While it might seem sensible to start scanning
1219 	 * backwards or even to alternate looking forward and backward,
1220 	 * this approach fails badly when the filesystem is nearly full.
1221 	 * Specifically, we first search all the areas that have no space
1222 	 * and finally try the one preceeding that. We repeat this on
1223 	 * every request and in the case of the final block end up
1224 	 * searching the entire filesystem. By jumping to the front
1225 	 * of the filesystem, our future forward searches always look
1226 	 * in new cylinder groups so finds every possible block after
1227 	 * one pass over the filesystem.
1228 	 */
1229 	prefcg = ino_to_cg(fs, pip->i_number);
1230 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1231 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1232 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1233 		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1234 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1235 				return ((ino_t)(fs->fs_ipg * cg));
1236 		}
1237 	for (cg = 0; cg < prefcg; cg++)
1238 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1239 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1240 		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1241 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1242 				return ((ino_t)(fs->fs_ipg * cg));
1243 		}
1244 	/*
1245 	 * This is a backstop when we have deficit in space.
1246 	 */
1247 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1248 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1249 			return ((ino_t)(fs->fs_ipg * cg));
1250 	for (cg = 0; cg < prefcg; cg++)
1251 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1252 			break;
1253 	return ((ino_t)(fs->fs_ipg * cg));
1254 }
1255 
1256 /*
1257  * Select the desired position for the next block in a file.  The file is
1258  * logically divided into sections. The first section is composed of the
1259  * direct blocks and the next fs_maxbpg blocks. Each additional section
1260  * contains fs_maxbpg blocks.
1261  *
1262  * If no blocks have been allocated in the first section, the policy is to
1263  * request a block in the same cylinder group as the inode that describes
1264  * the file. The first indirect is allocated immediately following the last
1265  * direct block and the data blocks for the first indirect immediately
1266  * follow it.
1267  *
1268  * If no blocks have been allocated in any other section, the indirect
1269  * block(s) are allocated in the same cylinder group as its inode in an
1270  * area reserved immediately following the inode blocks. The policy for
1271  * the data blocks is to place them in a cylinder group with a greater than
1272  * average number of free blocks. An appropriate cylinder group is found
1273  * by using a rotor that sweeps the cylinder groups. When a new group of
1274  * blocks is needed, the sweep begins in the cylinder group following the
1275  * cylinder group from which the previous allocation was made. The sweep
1276  * continues until a cylinder group with greater than the average number
1277  * of free blocks is found. If the allocation is for the first block in an
1278  * indirect block or the previous block is a hole, then the information on
1279  * the previous allocation is unavailable; here a best guess is made based
1280  * on the logical block number being allocated.
1281  *
1282  * If a section is already partially allocated, the policy is to
1283  * allocate blocks contiguously within the section if possible.
1284  */
1285 ufs2_daddr_t
1286 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1287 	struct inode *ip;
1288 	ufs_lbn_t lbn;
1289 	int indx;
1290 	ufs1_daddr_t *bap;
1291 {
1292 	struct fs *fs;
1293 	u_int cg, inocg;
1294 	u_int avgbfree, startcg;
1295 	ufs2_daddr_t pref;
1296 
1297 	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1298 	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1299 	fs = ip->i_fs;
1300 	/*
1301 	 * Allocation of indirect blocks is indicated by passing negative
1302 	 * values in indx: -1 for single indirect, -2 for double indirect,
1303 	 * -3 for triple indirect. As noted below, we attempt to allocate
1304 	 * the first indirect inline with the file data. For all later
1305 	 * indirect blocks, the data is often allocated in other cylinder
1306 	 * groups. However to speed random file access and to speed up
1307 	 * fsck, the filesystem reserves the first fs_metaspace blocks
1308 	 * (typically half of fs_minfree) of the data area of each cylinder
1309 	 * group to hold these later indirect blocks.
1310 	 */
1311 	inocg = ino_to_cg(fs, ip->i_number);
1312 	if (indx < 0) {
1313 		/*
1314 		 * Our preference for indirect blocks is the zone at the
1315 		 * beginning of the inode's cylinder group data area that
1316 		 * we try to reserve for indirect blocks.
1317 		 */
1318 		pref = cgmeta(fs, inocg);
1319 		/*
1320 		 * If we are allocating the first indirect block, try to
1321 		 * place it immediately following the last direct block.
1322 		 */
1323 		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1324 		    ip->i_din1->di_db[NDADDR - 1] != 0)
1325 			pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
1326 		return (pref);
1327 	}
1328 	/*
1329 	 * If we are allocating the first data block in the first indirect
1330 	 * block and the indirect has been allocated in the data block area,
1331 	 * try to place it immediately following the indirect block.
1332 	 */
1333 	if (lbn == NDADDR) {
1334 		pref = ip->i_din1->di_ib[0];
1335 		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1336 		    pref < cgbase(fs, inocg + 1))
1337 			return (pref + fs->fs_frag);
1338 	}
1339 	/*
1340 	 * If we are at the beginning of a file, or we have already allocated
1341 	 * the maximum number of blocks per cylinder group, or we do not
1342 	 * have a block allocated immediately preceeding us, then we need
1343 	 * to decide where to start allocating new blocks.
1344 	 */
1345 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1346 		/*
1347 		 * If we are allocating a directory data block, we want
1348 		 * to place it in the metadata area.
1349 		 */
1350 		if ((ip->i_mode & IFMT) == IFDIR)
1351 			return (cgmeta(fs, inocg));
1352 		/*
1353 		 * Until we fill all the direct and all the first indirect's
1354 		 * blocks, we try to allocate in the data area of the inode's
1355 		 * cylinder group.
1356 		 */
1357 		if (lbn < NDADDR + NINDIR(fs))
1358 			return (cgdata(fs, inocg));
1359 		/*
1360 		 * Find a cylinder with greater than average number of
1361 		 * unused data blocks.
1362 		 */
1363 		if (indx == 0 || bap[indx - 1] == 0)
1364 			startcg = inocg + lbn / fs->fs_maxbpg;
1365 		else
1366 			startcg = dtog(fs, bap[indx - 1]) + 1;
1367 		startcg %= fs->fs_ncg;
1368 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1369 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1370 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1371 				fs->fs_cgrotor = cg;
1372 				return (cgdata(fs, cg));
1373 			}
1374 		for (cg = 0; cg <= startcg; cg++)
1375 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1376 				fs->fs_cgrotor = cg;
1377 				return (cgdata(fs, cg));
1378 			}
1379 		return (0);
1380 	}
1381 	/*
1382 	 * Otherwise, we just always try to lay things out contiguously.
1383 	 */
1384 	return (bap[indx - 1] + fs->fs_frag);
1385 }
1386 
1387 /*
1388  * Same as above, but for UFS2
1389  */
1390 ufs2_daddr_t
1391 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1392 	struct inode *ip;
1393 	ufs_lbn_t lbn;
1394 	int indx;
1395 	ufs2_daddr_t *bap;
1396 {
1397 	struct fs *fs;
1398 	u_int cg, inocg;
1399 	u_int avgbfree, startcg;
1400 	ufs2_daddr_t pref;
1401 
1402 	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1403 	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1404 	fs = ip->i_fs;
1405 	/*
1406 	 * Allocation of indirect blocks is indicated by passing negative
1407 	 * values in indx: -1 for single indirect, -2 for double indirect,
1408 	 * -3 for triple indirect. As noted below, we attempt to allocate
1409 	 * the first indirect inline with the file data. For all later
1410 	 * indirect blocks, the data is often allocated in other cylinder
1411 	 * groups. However to speed random file access and to speed up
1412 	 * fsck, the filesystem reserves the first fs_metaspace blocks
1413 	 * (typically half of fs_minfree) of the data area of each cylinder
1414 	 * group to hold these later indirect blocks.
1415 	 */
1416 	inocg = ino_to_cg(fs, ip->i_number);
1417 	if (indx < 0) {
1418 		/*
1419 		 * Our preference for indirect blocks is the zone at the
1420 		 * beginning of the inode's cylinder group data area that
1421 		 * we try to reserve for indirect blocks.
1422 		 */
1423 		pref = cgmeta(fs, inocg);
1424 		/*
1425 		 * If we are allocating the first indirect block, try to
1426 		 * place it immediately following the last direct block.
1427 		 */
1428 		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1429 		    ip->i_din2->di_db[NDADDR - 1] != 0)
1430 			pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
1431 		return (pref);
1432 	}
1433 	/*
1434 	 * If we are allocating the first data block in the first indirect
1435 	 * block and the indirect has been allocated in the data block area,
1436 	 * try to place it immediately following the indirect block.
1437 	 */
1438 	if (lbn == NDADDR) {
1439 		pref = ip->i_din2->di_ib[0];
1440 		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1441 		    pref < cgbase(fs, inocg + 1))
1442 			return (pref + fs->fs_frag);
1443 	}
1444 	/*
1445 	 * If we are at the beginning of a file, or we have already allocated
1446 	 * the maximum number of blocks per cylinder group, or we do not
1447 	 * have a block allocated immediately preceeding us, then we need
1448 	 * to decide where to start allocating new blocks.
1449 	 */
1450 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1451 		/*
1452 		 * If we are allocating a directory data block, we want
1453 		 * to place it in the metadata area.
1454 		 */
1455 		if ((ip->i_mode & IFMT) == IFDIR)
1456 			return (cgmeta(fs, inocg));
1457 		/*
1458 		 * Until we fill all the direct and all the first indirect's
1459 		 * blocks, we try to allocate in the data area of the inode's
1460 		 * cylinder group.
1461 		 */
1462 		if (lbn < NDADDR + NINDIR(fs))
1463 			return (cgdata(fs, inocg));
1464 		/*
1465 		 * Find a cylinder with greater than average number of
1466 		 * unused data blocks.
1467 		 */
1468 		if (indx == 0 || bap[indx - 1] == 0)
1469 			startcg = inocg + lbn / fs->fs_maxbpg;
1470 		else
1471 			startcg = dtog(fs, bap[indx - 1]) + 1;
1472 		startcg %= fs->fs_ncg;
1473 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1474 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1475 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1476 				fs->fs_cgrotor = cg;
1477 				return (cgdata(fs, cg));
1478 			}
1479 		for (cg = 0; cg <= startcg; cg++)
1480 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1481 				fs->fs_cgrotor = cg;
1482 				return (cgdata(fs, cg));
1483 			}
1484 		return (0);
1485 	}
1486 	/*
1487 	 * Otherwise, we just always try to lay things out contiguously.
1488 	 */
1489 	return (bap[indx - 1] + fs->fs_frag);
1490 }
1491 
1492 /*
1493  * Implement the cylinder overflow algorithm.
1494  *
1495  * The policy implemented by this algorithm is:
1496  *   1) allocate the block in its requested cylinder group.
1497  *   2) quadradically rehash on the cylinder group number.
1498  *   3) brute force search for a free block.
1499  *
1500  * Must be called with the UFS lock held.  Will release the lock on success
1501  * and return with it held on failure.
1502  */
1503 /*VARARGS5*/
1504 static ufs2_daddr_t
1505 ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1506 	struct inode *ip;
1507 	u_int cg;
1508 	ufs2_daddr_t pref;
1509 	int size;	/* Search size for data blocks, mode for inodes */
1510 	int rsize;	/* Real allocated size. */
1511 	allocfcn_t *allocator;
1512 {
1513 	struct fs *fs;
1514 	ufs2_daddr_t result;
1515 	u_int i, icg = cg;
1516 
1517 	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1518 #ifdef INVARIANTS
1519 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1520 		panic("ffs_hashalloc: allocation on suspended filesystem");
1521 #endif
1522 	fs = ip->i_fs;
1523 	/*
1524 	 * 1: preferred cylinder group
1525 	 */
1526 	result = (*allocator)(ip, cg, pref, size, rsize);
1527 	if (result)
1528 		return (result);
1529 	/*
1530 	 * 2: quadratic rehash
1531 	 */
1532 	for (i = 1; i < fs->fs_ncg; i *= 2) {
1533 		cg += i;
1534 		if (cg >= fs->fs_ncg)
1535 			cg -= fs->fs_ncg;
1536 		result = (*allocator)(ip, cg, 0, size, rsize);
1537 		if (result)
1538 			return (result);
1539 	}
1540 	/*
1541 	 * 3: brute force search
1542 	 * Note that we start at i == 2, since 0 was checked initially,
1543 	 * and 1 is always checked in the quadratic rehash.
1544 	 */
1545 	cg = (icg + 2) % fs->fs_ncg;
1546 	for (i = 2; i < fs->fs_ncg; i++) {
1547 		result = (*allocator)(ip, cg, 0, size, rsize);
1548 		if (result)
1549 			return (result);
1550 		cg++;
1551 		if (cg == fs->fs_ncg)
1552 			cg = 0;
1553 	}
1554 	return (0);
1555 }
1556 
1557 /*
1558  * Determine whether a fragment can be extended.
1559  *
1560  * Check to see if the necessary fragments are available, and
1561  * if they are, allocate them.
1562  */
1563 static ufs2_daddr_t
1564 ffs_fragextend(ip, cg, bprev, osize, nsize)
1565 	struct inode *ip;
1566 	u_int cg;
1567 	ufs2_daddr_t bprev;
1568 	int osize, nsize;
1569 {
1570 	struct fs *fs;
1571 	struct cg *cgp;
1572 	struct buf *bp;
1573 	struct ufsmount *ump;
1574 	int nffree;
1575 	long bno;
1576 	int frags, bbase;
1577 	int i, error;
1578 	u_int8_t *blksfree;
1579 
1580 	ump = ip->i_ump;
1581 	fs = ip->i_fs;
1582 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1583 		return (0);
1584 	frags = numfrags(fs, nsize);
1585 	bbase = fragnum(fs, bprev);
1586 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1587 		/* cannot extend across a block boundary */
1588 		return (0);
1589 	}
1590 	UFS_UNLOCK(ump);
1591 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1592 		(int)fs->fs_cgsize, NOCRED, &bp);
1593 	if (error)
1594 		goto fail;
1595 	cgp = (struct cg *)bp->b_data;
1596 	if (!cg_chkmagic(cgp))
1597 		goto fail;
1598 	bp->b_xflags |= BX_BKGRDWRITE;
1599 	cgp->cg_old_time = cgp->cg_time = time_second;
1600 	bno = dtogd(fs, bprev);
1601 	blksfree = cg_blksfree(cgp);
1602 	for (i = numfrags(fs, osize); i < frags; i++)
1603 		if (isclr(blksfree, bno + i))
1604 			goto fail;
1605 	/*
1606 	 * the current fragment can be extended
1607 	 * deduct the count on fragment being extended into
1608 	 * increase the count on the remaining fragment (if any)
1609 	 * allocate the extended piece
1610 	 */
1611 	for (i = frags; i < fs->fs_frag - bbase; i++)
1612 		if (isclr(blksfree, bno + i))
1613 			break;
1614 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1615 	if (i != frags)
1616 		cgp->cg_frsum[i - frags]++;
1617 	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1618 		clrbit(blksfree, bno + i);
1619 		cgp->cg_cs.cs_nffree--;
1620 		nffree++;
1621 	}
1622 	UFS_LOCK(ump);
1623 	fs->fs_cstotal.cs_nffree -= nffree;
1624 	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1625 	fs->fs_fmod = 1;
1626 	ACTIVECLEAR(fs, cg);
1627 	UFS_UNLOCK(ump);
1628 	if (DOINGSOFTDEP(ITOV(ip)))
1629 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1630 		    frags, numfrags(fs, osize));
1631 	bdwrite(bp);
1632 	return (bprev);
1633 
1634 fail:
1635 	brelse(bp);
1636 	UFS_LOCK(ump);
1637 	return (0);
1638 
1639 }
1640 
1641 /*
1642  * Determine whether a block can be allocated.
1643  *
1644  * Check to see if a block of the appropriate size is available,
1645  * and if it is, allocate it.
1646  */
1647 static ufs2_daddr_t
1648 ffs_alloccg(ip, cg, bpref, size, rsize)
1649 	struct inode *ip;
1650 	u_int cg;
1651 	ufs2_daddr_t bpref;
1652 	int size;
1653 	int rsize;
1654 {
1655 	struct fs *fs;
1656 	struct cg *cgp;
1657 	struct buf *bp;
1658 	struct ufsmount *ump;
1659 	ufs1_daddr_t bno;
1660 	ufs2_daddr_t blkno;
1661 	int i, allocsiz, error, frags;
1662 	u_int8_t *blksfree;
1663 
1664 	ump = ip->i_ump;
1665 	fs = ip->i_fs;
1666 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1667 		return (0);
1668 	UFS_UNLOCK(ump);
1669 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1670 		(int)fs->fs_cgsize, NOCRED, &bp);
1671 	if (error)
1672 		goto fail;
1673 	cgp = (struct cg *)bp->b_data;
1674 	if (!cg_chkmagic(cgp) ||
1675 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1676 		goto fail;
1677 	bp->b_xflags |= BX_BKGRDWRITE;
1678 	cgp->cg_old_time = cgp->cg_time = time_second;
1679 	if (size == fs->fs_bsize) {
1680 		UFS_LOCK(ump);
1681 		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1682 		ACTIVECLEAR(fs, cg);
1683 		UFS_UNLOCK(ump);
1684 		bdwrite(bp);
1685 		return (blkno);
1686 	}
1687 	/*
1688 	 * check to see if any fragments are already available
1689 	 * allocsiz is the size which will be allocated, hacking
1690 	 * it down to a smaller size if necessary
1691 	 */
1692 	blksfree = cg_blksfree(cgp);
1693 	frags = numfrags(fs, size);
1694 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1695 		if (cgp->cg_frsum[allocsiz] != 0)
1696 			break;
1697 	if (allocsiz == fs->fs_frag) {
1698 		/*
1699 		 * no fragments were available, so a block will be
1700 		 * allocated, and hacked up
1701 		 */
1702 		if (cgp->cg_cs.cs_nbfree == 0)
1703 			goto fail;
1704 		UFS_LOCK(ump);
1705 		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1706 		ACTIVECLEAR(fs, cg);
1707 		UFS_UNLOCK(ump);
1708 		bdwrite(bp);
1709 		return (blkno);
1710 	}
1711 	KASSERT(size == rsize,
1712 	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1713 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1714 	if (bno < 0)
1715 		goto fail;
1716 	for (i = 0; i < frags; i++)
1717 		clrbit(blksfree, bno + i);
1718 	cgp->cg_cs.cs_nffree -= frags;
1719 	cgp->cg_frsum[allocsiz]--;
1720 	if (frags != allocsiz)
1721 		cgp->cg_frsum[allocsiz - frags]++;
1722 	UFS_LOCK(ump);
1723 	fs->fs_cstotal.cs_nffree -= frags;
1724 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1725 	fs->fs_fmod = 1;
1726 	blkno = cgbase(fs, cg) + bno;
1727 	ACTIVECLEAR(fs, cg);
1728 	UFS_UNLOCK(ump);
1729 	if (DOINGSOFTDEP(ITOV(ip)))
1730 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1731 	bdwrite(bp);
1732 	return (blkno);
1733 
1734 fail:
1735 	brelse(bp);
1736 	UFS_LOCK(ump);
1737 	return (0);
1738 }
1739 
1740 /*
1741  * Allocate a block in a cylinder group.
1742  *
1743  * This algorithm implements the following policy:
1744  *   1) allocate the requested block.
1745  *   2) allocate a rotationally optimal block in the same cylinder.
1746  *   3) allocate the next available block on the block rotor for the
1747  *      specified cylinder group.
1748  * Note that this routine only allocates fs_bsize blocks; these
1749  * blocks may be fragmented by the routine that allocates them.
1750  */
1751 static ufs2_daddr_t
1752 ffs_alloccgblk(ip, bp, bpref, size)
1753 	struct inode *ip;
1754 	struct buf *bp;
1755 	ufs2_daddr_t bpref;
1756 	int size;
1757 {
1758 	struct fs *fs;
1759 	struct cg *cgp;
1760 	struct ufsmount *ump;
1761 	ufs1_daddr_t bno;
1762 	ufs2_daddr_t blkno;
1763 	u_int8_t *blksfree;
1764 	int i, cgbpref;
1765 
1766 	fs = ip->i_fs;
1767 	ump = ip->i_ump;
1768 	mtx_assert(UFS_MTX(ump), MA_OWNED);
1769 	cgp = (struct cg *)bp->b_data;
1770 	blksfree = cg_blksfree(cgp);
1771 	if (bpref == 0) {
1772 		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1773 	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1774 		/* map bpref to correct zone in this cg */
1775 		if (bpref < cgdata(fs, cgbpref))
1776 			bpref = cgmeta(fs, cgp->cg_cgx);
1777 		else
1778 			bpref = cgdata(fs, cgp->cg_cgx);
1779 	}
1780 	/*
1781 	 * if the requested block is available, use it
1782 	 */
1783 	bno = dtogd(fs, blknum(fs, bpref));
1784 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1785 		goto gotit;
1786 	/*
1787 	 * Take the next available block in this cylinder group.
1788 	 */
1789 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1790 	if (bno < 0)
1791 		return (0);
1792 	/* Update cg_rotor only if allocated from the data zone */
1793 	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1794 		cgp->cg_rotor = bno;
1795 gotit:
1796 	blkno = fragstoblks(fs, bno);
1797 	ffs_clrblock(fs, blksfree, (long)blkno);
1798 	ffs_clusteracct(fs, cgp, blkno, -1);
1799 	cgp->cg_cs.cs_nbfree--;
1800 	fs->fs_cstotal.cs_nbfree--;
1801 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1802 	fs->fs_fmod = 1;
1803 	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1804 	/*
1805 	 * If the caller didn't want the whole block free the frags here.
1806 	 */
1807 	size = numfrags(fs, size);
1808 	if (size != fs->fs_frag) {
1809 		bno = dtogd(fs, blkno);
1810 		for (i = size; i < fs->fs_frag; i++)
1811 			setbit(blksfree, bno + i);
1812 		i = fs->fs_frag - size;
1813 		cgp->cg_cs.cs_nffree += i;
1814 		fs->fs_cstotal.cs_nffree += i;
1815 		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1816 		fs->fs_fmod = 1;
1817 		cgp->cg_frsum[i]++;
1818 	}
1819 	/* XXX Fixme. */
1820 	UFS_UNLOCK(ump);
1821 	if (DOINGSOFTDEP(ITOV(ip)))
1822 		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
1823 		    size, 0);
1824 	UFS_LOCK(ump);
1825 	return (blkno);
1826 }
1827 
1828 /*
1829  * Determine whether a cluster can be allocated.
1830  *
1831  * We do not currently check for optimal rotational layout if there
1832  * are multiple choices in the same cylinder group. Instead we just
1833  * take the first one that we find following bpref.
1834  */
1835 static ufs2_daddr_t
1836 ffs_clusteralloc(ip, cg, bpref, len)
1837 	struct inode *ip;
1838 	u_int cg;
1839 	ufs2_daddr_t bpref;
1840 	int len;
1841 {
1842 	struct fs *fs;
1843 	struct cg *cgp;
1844 	struct buf *bp;
1845 	struct ufsmount *ump;
1846 	int i, run, bit, map, got;
1847 	ufs2_daddr_t bno;
1848 	u_char *mapp;
1849 	int32_t *lp;
1850 	u_int8_t *blksfree;
1851 
1852 	fs = ip->i_fs;
1853 	ump = ip->i_ump;
1854 	if (fs->fs_maxcluster[cg] < len)
1855 		return (0);
1856 	UFS_UNLOCK(ump);
1857 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1858 	    NOCRED, &bp))
1859 		goto fail_lock;
1860 	cgp = (struct cg *)bp->b_data;
1861 	if (!cg_chkmagic(cgp))
1862 		goto fail_lock;
1863 	bp->b_xflags |= BX_BKGRDWRITE;
1864 	/*
1865 	 * Check to see if a cluster of the needed size (or bigger) is
1866 	 * available in this cylinder group.
1867 	 */
1868 	lp = &cg_clustersum(cgp)[len];
1869 	for (i = len; i <= fs->fs_contigsumsize; i++)
1870 		if (*lp++ > 0)
1871 			break;
1872 	if (i > fs->fs_contigsumsize) {
1873 		/*
1874 		 * This is the first time looking for a cluster in this
1875 		 * cylinder group. Update the cluster summary information
1876 		 * to reflect the true maximum sized cluster so that
1877 		 * future cluster allocation requests can avoid reading
1878 		 * the cylinder group map only to find no clusters.
1879 		 */
1880 		lp = &cg_clustersum(cgp)[len - 1];
1881 		for (i = len - 1; i > 0; i--)
1882 			if (*lp-- > 0)
1883 				break;
1884 		UFS_LOCK(ump);
1885 		fs->fs_maxcluster[cg] = i;
1886 		goto fail;
1887 	}
1888 	/*
1889 	 * Search the cluster map to find a big enough cluster.
1890 	 * We take the first one that we find, even if it is larger
1891 	 * than we need as we prefer to get one close to the previous
1892 	 * block allocation. We do not search before the current
1893 	 * preference point as we do not want to allocate a block
1894 	 * that is allocated before the previous one (as we will
1895 	 * then have to wait for another pass of the elevator
1896 	 * algorithm before it will be read). We prefer to fail and
1897 	 * be recalled to try an allocation in the next cylinder group.
1898 	 */
1899 	if (dtog(fs, bpref) != cg)
1900 		bpref = cgdata(fs, cg);
1901 	else
1902 		bpref = blknum(fs, bpref);
1903 	bpref = fragstoblks(fs, dtogd(fs, bpref));
1904 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1905 	map = *mapp++;
1906 	bit = 1 << (bpref % NBBY);
1907 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1908 		if ((map & bit) == 0) {
1909 			run = 0;
1910 		} else {
1911 			run++;
1912 			if (run == len)
1913 				break;
1914 		}
1915 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1916 			bit <<= 1;
1917 		} else {
1918 			map = *mapp++;
1919 			bit = 1;
1920 		}
1921 	}
1922 	if (got >= cgp->cg_nclusterblks)
1923 		goto fail_lock;
1924 	/*
1925 	 * Allocate the cluster that we have found.
1926 	 */
1927 	blksfree = cg_blksfree(cgp);
1928 	for (i = 1; i <= len; i++)
1929 		if (!ffs_isblock(fs, blksfree, got - run + i))
1930 			panic("ffs_clusteralloc: map mismatch");
1931 	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1932 	if (dtog(fs, bno) != cg)
1933 		panic("ffs_clusteralloc: allocated out of group");
1934 	len = blkstofrags(fs, len);
1935 	UFS_LOCK(ump);
1936 	for (i = 0; i < len; i += fs->fs_frag)
1937 		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
1938 			panic("ffs_clusteralloc: lost block");
1939 	ACTIVECLEAR(fs, cg);
1940 	UFS_UNLOCK(ump);
1941 	bdwrite(bp);
1942 	return (bno);
1943 
1944 fail_lock:
1945 	UFS_LOCK(ump);
1946 fail:
1947 	brelse(bp);
1948 	return (0);
1949 }
1950 
1951 static inline struct buf *
1952 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
1953 {
1954 	struct fs *fs;
1955 
1956 	fs = ip->i_fs;
1957 	return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs,
1958 	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
1959 	    gbflags));
1960 }
1961 
1962 /*
1963  * Determine whether an inode can be allocated.
1964  *
1965  * Check to see if an inode is available, and if it is,
1966  * allocate it using the following policy:
1967  *   1) allocate the requested inode.
1968  *   2) allocate the next available inode after the requested
1969  *      inode in the specified cylinder group.
1970  */
1971 static ufs2_daddr_t
1972 ffs_nodealloccg(ip, cg, ipref, mode, unused)
1973 	struct inode *ip;
1974 	u_int cg;
1975 	ufs2_daddr_t ipref;
1976 	int mode;
1977 	int unused;
1978 {
1979 	struct fs *fs;
1980 	struct cg *cgp;
1981 	struct buf *bp, *ibp;
1982 	struct ufsmount *ump;
1983 	u_int8_t *inosused, *loc;
1984 	struct ufs2_dinode *dp2;
1985 	int error, start, len, i;
1986 	u_int32_t old_initediblk;
1987 
1988 	fs = ip->i_fs;
1989 	ump = ip->i_ump;
1990 check_nifree:
1991 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1992 		return (0);
1993 	UFS_UNLOCK(ump);
1994 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1995 		(int)fs->fs_cgsize, NOCRED, &bp);
1996 	if (error) {
1997 		brelse(bp);
1998 		UFS_LOCK(ump);
1999 		return (0);
2000 	}
2001 	cgp = (struct cg *)bp->b_data;
2002 restart:
2003 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
2004 		brelse(bp);
2005 		UFS_LOCK(ump);
2006 		return (0);
2007 	}
2008 	bp->b_xflags |= BX_BKGRDWRITE;
2009 	inosused = cg_inosused(cgp);
2010 	if (ipref) {
2011 		ipref %= fs->fs_ipg;
2012 		if (isclr(inosused, ipref))
2013 			goto gotit;
2014 	}
2015 	start = cgp->cg_irotor / NBBY;
2016 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2017 	loc = memcchr(&inosused[start], 0xff, len);
2018 	if (loc == NULL) {
2019 		len = start + 1;
2020 		start = 0;
2021 		loc = memcchr(&inosused[start], 0xff, len);
2022 		if (loc == NULL) {
2023 			printf("cg = %d, irotor = %ld, fs = %s\n",
2024 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2025 			panic("ffs_nodealloccg: map corrupted");
2026 			/* NOTREACHED */
2027 		}
2028 	}
2029 	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2030 gotit:
2031 	/*
2032 	 * Check to see if we need to initialize more inodes.
2033 	 */
2034 	if (fs->fs_magic == FS_UFS2_MAGIC &&
2035 	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2036 	    cgp->cg_initediblk < cgp->cg_niblk) {
2037 		old_initediblk = cgp->cg_initediblk;
2038 
2039 		/*
2040 		 * Free the cylinder group lock before writing the
2041 		 * initialized inode block.  Entering the
2042 		 * babarrierwrite() with the cylinder group lock
2043 		 * causes lock order violation between the lock and
2044 		 * snaplk.
2045 		 *
2046 		 * Another thread can decide to initialize the same
2047 		 * inode block, but whichever thread first gets the
2048 		 * cylinder group lock after writing the newly
2049 		 * allocated inode block will update it and the other
2050 		 * will realize that it has lost and leave the
2051 		 * cylinder group unchanged.
2052 		 */
2053 		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2054 		brelse(bp);
2055 		if (ibp == NULL) {
2056 			/*
2057 			 * The inode block buffer is already owned by
2058 			 * another thread, which must initialize it.
2059 			 * Wait on the buffer to allow another thread
2060 			 * to finish the updates, with dropped cg
2061 			 * buffer lock, then retry.
2062 			 */
2063 			ibp = getinobuf(ip, cg, old_initediblk, 0);
2064 			brelse(ibp);
2065 			UFS_LOCK(ump);
2066 			goto check_nifree;
2067 		}
2068 		bzero(ibp->b_data, (int)fs->fs_bsize);
2069 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2070 		for (i = 0; i < INOPB(fs); i++) {
2071 			dp2->di_gen = arc4random() / 2 + 1;
2072 			dp2++;
2073 		}
2074 		/*
2075 		 * Rather than adding a soft updates dependency to ensure
2076 		 * that the new inode block is written before it is claimed
2077 		 * by the cylinder group map, we just do a barrier write
2078 		 * here. The barrier write will ensure that the inode block
2079 		 * gets written before the updated cylinder group map can be
2080 		 * written. The barrier write should only slow down bulk
2081 		 * loading of newly created filesystems.
2082 		 */
2083 		babarrierwrite(ibp);
2084 
2085 		/*
2086 		 * After the inode block is written, try to update the
2087 		 * cg initediblk pointer.  If another thread beat us
2088 		 * to it, then leave it unchanged as the other thread
2089 		 * has already set it correctly.
2090 		 */
2091 		error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
2092 		    (int)fs->fs_cgsize, NOCRED, &bp);
2093 		UFS_LOCK(ump);
2094 		ACTIVECLEAR(fs, cg);
2095 		UFS_UNLOCK(ump);
2096 		if (error != 0) {
2097 			brelse(bp);
2098 			return (error);
2099 		}
2100 		cgp = (struct cg *)bp->b_data;
2101 		if (cgp->cg_initediblk == old_initediblk)
2102 			cgp->cg_initediblk += INOPB(fs);
2103 		goto restart;
2104 	}
2105 	cgp->cg_old_time = cgp->cg_time = time_second;
2106 	cgp->cg_irotor = ipref;
2107 	UFS_LOCK(ump);
2108 	ACTIVECLEAR(fs, cg);
2109 	setbit(inosused, ipref);
2110 	cgp->cg_cs.cs_nifree--;
2111 	fs->fs_cstotal.cs_nifree--;
2112 	fs->fs_cs(fs, cg).cs_nifree--;
2113 	fs->fs_fmod = 1;
2114 	if ((mode & IFMT) == IFDIR) {
2115 		cgp->cg_cs.cs_ndir++;
2116 		fs->fs_cstotal.cs_ndir++;
2117 		fs->fs_cs(fs, cg).cs_ndir++;
2118 	}
2119 	UFS_UNLOCK(ump);
2120 	if (DOINGSOFTDEP(ITOV(ip)))
2121 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2122 	bdwrite(bp);
2123 	return ((ino_t)(cg * fs->fs_ipg + ipref));
2124 }
2125 
2126 /*
2127  * Free a block or fragment.
2128  *
2129  * The specified block or fragment is placed back in the
2130  * free map. If a fragment is deallocated, a possible
2131  * block reassembly is checked.
2132  */
2133 static void
2134 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2135 	struct ufsmount *ump;
2136 	struct fs *fs;
2137 	struct vnode *devvp;
2138 	ufs2_daddr_t bno;
2139 	long size;
2140 	ino_t inum;
2141 	struct workhead *dephd;
2142 {
2143 	struct mount *mp;
2144 	struct cg *cgp;
2145 	struct buf *bp;
2146 	ufs1_daddr_t fragno, cgbno;
2147 	ufs2_daddr_t cgblkno;
2148 	int i, blk, frags, bbase;
2149 	u_int cg;
2150 	u_int8_t *blksfree;
2151 	struct cdev *dev;
2152 
2153 	cg = dtog(fs, bno);
2154 	if (devvp->v_type == VREG) {
2155 		/* devvp is a snapshot */
2156 		dev = VTOI(devvp)->i_devvp->v_rdev;
2157 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
2158 	} else {
2159 		/* devvp is a normal disk device */
2160 		dev = devvp->v_rdev;
2161 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
2162 		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2163 	}
2164 #ifdef INVARIANTS
2165 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2166 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2167 		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2168 		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2169 		    size, fs->fs_fsmnt);
2170 		panic("ffs_blkfree_cg: bad size");
2171 	}
2172 #endif
2173 	if ((u_int)bno >= fs->fs_size) {
2174 		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2175 		    (u_long)inum);
2176 		ffs_fserr(fs, inum, "bad block");
2177 		return;
2178 	}
2179 	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2180 		brelse(bp);
2181 		return;
2182 	}
2183 	cgp = (struct cg *)bp->b_data;
2184 	if (!cg_chkmagic(cgp)) {
2185 		brelse(bp);
2186 		return;
2187 	}
2188 	bp->b_xflags |= BX_BKGRDWRITE;
2189 	cgp->cg_old_time = cgp->cg_time = time_second;
2190 	cgbno = dtogd(fs, bno);
2191 	blksfree = cg_blksfree(cgp);
2192 	UFS_LOCK(ump);
2193 	if (size == fs->fs_bsize) {
2194 		fragno = fragstoblks(fs, cgbno);
2195 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2196 			if (devvp->v_type == VREG) {
2197 				UFS_UNLOCK(ump);
2198 				/* devvp is a snapshot */
2199 				brelse(bp);
2200 				return;
2201 			}
2202 			printf("dev = %s, block = %jd, fs = %s\n",
2203 			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2204 			panic("ffs_blkfree_cg: freeing free block");
2205 		}
2206 		ffs_setblock(fs, blksfree, fragno);
2207 		ffs_clusteracct(fs, cgp, fragno, 1);
2208 		cgp->cg_cs.cs_nbfree++;
2209 		fs->fs_cstotal.cs_nbfree++;
2210 		fs->fs_cs(fs, cg).cs_nbfree++;
2211 	} else {
2212 		bbase = cgbno - fragnum(fs, cgbno);
2213 		/*
2214 		 * decrement the counts associated with the old frags
2215 		 */
2216 		blk = blkmap(fs, blksfree, bbase);
2217 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2218 		/*
2219 		 * deallocate the fragment
2220 		 */
2221 		frags = numfrags(fs, size);
2222 		for (i = 0; i < frags; i++) {
2223 			if (isset(blksfree, cgbno + i)) {
2224 				printf("dev = %s, block = %jd, fs = %s\n",
2225 				    devtoname(dev), (intmax_t)(bno + i),
2226 				    fs->fs_fsmnt);
2227 				panic("ffs_blkfree_cg: freeing free frag");
2228 			}
2229 			setbit(blksfree, cgbno + i);
2230 		}
2231 		cgp->cg_cs.cs_nffree += i;
2232 		fs->fs_cstotal.cs_nffree += i;
2233 		fs->fs_cs(fs, cg).cs_nffree += i;
2234 		/*
2235 		 * add back in counts associated with the new frags
2236 		 */
2237 		blk = blkmap(fs, blksfree, bbase);
2238 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2239 		/*
2240 		 * if a complete block has been reassembled, account for it
2241 		 */
2242 		fragno = fragstoblks(fs, bbase);
2243 		if (ffs_isblock(fs, blksfree, fragno)) {
2244 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2245 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2246 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2247 			ffs_clusteracct(fs, cgp, fragno, 1);
2248 			cgp->cg_cs.cs_nbfree++;
2249 			fs->fs_cstotal.cs_nbfree++;
2250 			fs->fs_cs(fs, cg).cs_nbfree++;
2251 		}
2252 	}
2253 	fs->fs_fmod = 1;
2254 	ACTIVECLEAR(fs, cg);
2255 	UFS_UNLOCK(ump);
2256 	mp = UFSTOVFS(ump);
2257 	if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG)
2258 		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2259 		    numfrags(fs, size), dephd);
2260 	bdwrite(bp);
2261 }
2262 
2263 TASKQUEUE_DEFINE_THREAD(ffs_trim);
2264 
2265 struct ffs_blkfree_trim_params {
2266 	struct task task;
2267 	struct ufsmount *ump;
2268 	struct vnode *devvp;
2269 	ufs2_daddr_t bno;
2270 	long size;
2271 	ino_t inum;
2272 	struct workhead *pdephd;
2273 	struct workhead dephd;
2274 };
2275 
2276 static void
2277 ffs_blkfree_trim_task(ctx, pending)
2278 	void *ctx;
2279 	int pending;
2280 {
2281 	struct ffs_blkfree_trim_params *tp;
2282 
2283 	tp = ctx;
2284 	ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
2285 	    tp->inum, tp->pdephd);
2286 	vn_finished_secondary_write(UFSTOVFS(tp->ump));
2287 	free(tp, M_TEMP);
2288 }
2289 
2290 static void
2291 ffs_blkfree_trim_completed(bip)
2292 	struct bio *bip;
2293 {
2294 	struct ffs_blkfree_trim_params *tp;
2295 
2296 	tp = bip->bio_caller2;
2297 	g_destroy_bio(bip);
2298 	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2299 	taskqueue_enqueue(taskqueue_ffs_trim, &tp->task);
2300 }
2301 
2302 void
2303 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
2304 	struct ufsmount *ump;
2305 	struct fs *fs;
2306 	struct vnode *devvp;
2307 	ufs2_daddr_t bno;
2308 	long size;
2309 	ino_t inum;
2310 	enum vtype vtype;
2311 	struct workhead *dephd;
2312 {
2313 	struct mount *mp;
2314 	struct bio *bip;
2315 	struct ffs_blkfree_trim_params *tp;
2316 
2317 	/*
2318 	 * Check to see if a snapshot wants to claim the block.
2319 	 * Check that devvp is a normal disk device, not a snapshot,
2320 	 * it has a snapshot(s) associated with it, and one of the
2321 	 * snapshots wants to claim the block.
2322 	 */
2323 	if (devvp->v_type != VREG &&
2324 	    (devvp->v_vflag & VV_COPYONWRITE) &&
2325 	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2326 		return;
2327 	}
2328 	/*
2329 	 * Nothing to delay if TRIM is disabled, or the operation is
2330 	 * performed on the snapshot.
2331 	 */
2332 	if (!ump->um_candelete || devvp->v_type == VREG) {
2333 		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2334 		return;
2335 	}
2336 
2337 	/*
2338 	 * Postpone the set of the free bit in the cg bitmap until the
2339 	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2340 	 * reordering, TRIM might be issued after we reuse the block
2341 	 * and write some new data into it.
2342 	 */
2343 	tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
2344 	tp->ump = ump;
2345 	tp->devvp = devvp;
2346 	tp->bno = bno;
2347 	tp->size = size;
2348 	tp->inum = inum;
2349 	if (dephd != NULL) {
2350 		LIST_INIT(&tp->dephd);
2351 		LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
2352 		tp->pdephd = &tp->dephd;
2353 	} else
2354 		tp->pdephd = NULL;
2355 
2356 	bip = g_alloc_bio();
2357 	bip->bio_cmd = BIO_DELETE;
2358 	bip->bio_offset = dbtob(fsbtodb(fs, bno));
2359 	bip->bio_done = ffs_blkfree_trim_completed;
2360 	bip->bio_length = size;
2361 	bip->bio_caller2 = tp;
2362 
2363 	mp = UFSTOVFS(ump);
2364 	vn_start_secondary_write(NULL, &mp, 0);
2365 	g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
2366 }
2367 
2368 #ifdef INVARIANTS
2369 /*
2370  * Verify allocation of a block or fragment. Returns true if block or
2371  * fragment is allocated, false if it is free.
2372  */
2373 static int
2374 ffs_checkblk(ip, bno, size)
2375 	struct inode *ip;
2376 	ufs2_daddr_t bno;
2377 	long size;
2378 {
2379 	struct fs *fs;
2380 	struct cg *cgp;
2381 	struct buf *bp;
2382 	ufs1_daddr_t cgbno;
2383 	int i, error, frags, free;
2384 	u_int8_t *blksfree;
2385 
2386 	fs = ip->i_fs;
2387 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2388 		printf("bsize = %ld, size = %ld, fs = %s\n",
2389 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2390 		panic("ffs_checkblk: bad size");
2391 	}
2392 	if ((u_int)bno >= fs->fs_size)
2393 		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2394 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2395 		(int)fs->fs_cgsize, NOCRED, &bp);
2396 	if (error)
2397 		panic("ffs_checkblk: cg bread failed");
2398 	cgp = (struct cg *)bp->b_data;
2399 	if (!cg_chkmagic(cgp))
2400 		panic("ffs_checkblk: cg magic mismatch");
2401 	bp->b_xflags |= BX_BKGRDWRITE;
2402 	blksfree = cg_blksfree(cgp);
2403 	cgbno = dtogd(fs, bno);
2404 	if (size == fs->fs_bsize) {
2405 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2406 	} else {
2407 		frags = numfrags(fs, size);
2408 		for (free = 0, i = 0; i < frags; i++)
2409 			if (isset(blksfree, cgbno + i))
2410 				free++;
2411 		if (free != 0 && free != frags)
2412 			panic("ffs_checkblk: partially free fragment");
2413 	}
2414 	brelse(bp);
2415 	return (!free);
2416 }
2417 #endif /* INVARIANTS */
2418 
2419 /*
2420  * Free an inode.
2421  */
2422 int
2423 ffs_vfree(pvp, ino, mode)
2424 	struct vnode *pvp;
2425 	ino_t ino;
2426 	int mode;
2427 {
2428 	struct inode *ip;
2429 
2430 	if (DOINGSOFTDEP(pvp)) {
2431 		softdep_freefile(pvp, ino, mode);
2432 		return (0);
2433 	}
2434 	ip = VTOI(pvp);
2435 	return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode,
2436 	    NULL));
2437 }
2438 
2439 /*
2440  * Do the actual free operation.
2441  * The specified inode is placed back in the free map.
2442  */
2443 int
2444 ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2445 	struct ufsmount *ump;
2446 	struct fs *fs;
2447 	struct vnode *devvp;
2448 	ino_t ino;
2449 	int mode;
2450 	struct workhead *wkhd;
2451 {
2452 	struct cg *cgp;
2453 	struct buf *bp;
2454 	ufs2_daddr_t cgbno;
2455 	int error;
2456 	u_int cg;
2457 	u_int8_t *inosused;
2458 	struct cdev *dev;
2459 
2460 	cg = ino_to_cg(fs, ino);
2461 	if (devvp->v_type == VREG) {
2462 		/* devvp is a snapshot */
2463 		dev = VTOI(devvp)->i_devvp->v_rdev;
2464 		cgbno = fragstoblks(fs, cgtod(fs, cg));
2465 	} else {
2466 		/* devvp is a normal disk device */
2467 		dev = devvp->v_rdev;
2468 		cgbno = fsbtodb(fs, cgtod(fs, cg));
2469 	}
2470 	if (ino >= fs->fs_ipg * fs->fs_ncg)
2471 		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2472 		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2473 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2474 		brelse(bp);
2475 		return (error);
2476 	}
2477 	cgp = (struct cg *)bp->b_data;
2478 	if (!cg_chkmagic(cgp)) {
2479 		brelse(bp);
2480 		return (0);
2481 	}
2482 	bp->b_xflags |= BX_BKGRDWRITE;
2483 	cgp->cg_old_time = cgp->cg_time = time_second;
2484 	inosused = cg_inosused(cgp);
2485 	ino %= fs->fs_ipg;
2486 	if (isclr(inosused, ino)) {
2487 		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2488 		    (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2489 		if (fs->fs_ronly == 0)
2490 			panic("ffs_freefile: freeing free inode");
2491 	}
2492 	clrbit(inosused, ino);
2493 	if (ino < cgp->cg_irotor)
2494 		cgp->cg_irotor = ino;
2495 	cgp->cg_cs.cs_nifree++;
2496 	UFS_LOCK(ump);
2497 	fs->fs_cstotal.cs_nifree++;
2498 	fs->fs_cs(fs, cg).cs_nifree++;
2499 	if ((mode & IFMT) == IFDIR) {
2500 		cgp->cg_cs.cs_ndir--;
2501 		fs->fs_cstotal.cs_ndir--;
2502 		fs->fs_cs(fs, cg).cs_ndir--;
2503 	}
2504 	fs->fs_fmod = 1;
2505 	ACTIVECLEAR(fs, cg);
2506 	UFS_UNLOCK(ump);
2507 	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG)
2508 		softdep_setup_inofree(UFSTOVFS(ump), bp,
2509 		    ino + cg * fs->fs_ipg, wkhd);
2510 	bdwrite(bp);
2511 	return (0);
2512 }
2513 
2514 /*
2515  * Check to see if a file is free.
2516  */
2517 int
2518 ffs_checkfreefile(fs, devvp, ino)
2519 	struct fs *fs;
2520 	struct vnode *devvp;
2521 	ino_t ino;
2522 {
2523 	struct cg *cgp;
2524 	struct buf *bp;
2525 	ufs2_daddr_t cgbno;
2526 	int ret;
2527 	u_int cg;
2528 	u_int8_t *inosused;
2529 
2530 	cg = ino_to_cg(fs, ino);
2531 	if (devvp->v_type == VREG) {
2532 		/* devvp is a snapshot */
2533 		cgbno = fragstoblks(fs, cgtod(fs, cg));
2534 	} else {
2535 		/* devvp is a normal disk device */
2536 		cgbno = fsbtodb(fs, cgtod(fs, cg));
2537 	}
2538 	if (ino >= fs->fs_ipg * fs->fs_ncg)
2539 		return (1);
2540 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2541 		brelse(bp);
2542 		return (1);
2543 	}
2544 	cgp = (struct cg *)bp->b_data;
2545 	if (!cg_chkmagic(cgp)) {
2546 		brelse(bp);
2547 		return (1);
2548 	}
2549 	inosused = cg_inosused(cgp);
2550 	ino %= fs->fs_ipg;
2551 	ret = isclr(inosused, ino);
2552 	brelse(bp);
2553 	return (ret);
2554 }
2555 
2556 /*
2557  * Find a block of the specified size in the specified cylinder group.
2558  *
2559  * It is a panic if a request is made to find a block if none are
2560  * available.
2561  */
2562 static ufs1_daddr_t
2563 ffs_mapsearch(fs, cgp, bpref, allocsiz)
2564 	struct fs *fs;
2565 	struct cg *cgp;
2566 	ufs2_daddr_t bpref;
2567 	int allocsiz;
2568 {
2569 	ufs1_daddr_t bno;
2570 	int start, len, loc, i;
2571 	int blk, field, subfield, pos;
2572 	u_int8_t *blksfree;
2573 
2574 	/*
2575 	 * find the fragment by searching through the free block
2576 	 * map for an appropriate bit pattern
2577 	 */
2578 	if (bpref)
2579 		start = dtogd(fs, bpref) / NBBY;
2580 	else
2581 		start = cgp->cg_frotor / NBBY;
2582 	blksfree = cg_blksfree(cgp);
2583 	len = howmany(fs->fs_fpg, NBBY) - start;
2584 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2585 		fragtbl[fs->fs_frag],
2586 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2587 	if (loc == 0) {
2588 		len = start + 1;
2589 		start = 0;
2590 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2591 			fragtbl[fs->fs_frag],
2592 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2593 		if (loc == 0) {
2594 			printf("start = %d, len = %d, fs = %s\n",
2595 			    start, len, fs->fs_fsmnt);
2596 			panic("ffs_alloccg: map corrupted");
2597 			/* NOTREACHED */
2598 		}
2599 	}
2600 	bno = (start + len - loc) * NBBY;
2601 	cgp->cg_frotor = bno;
2602 	/*
2603 	 * found the byte in the map
2604 	 * sift through the bits to find the selected frag
2605 	 */
2606 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2607 		blk = blkmap(fs, blksfree, bno);
2608 		blk <<= 1;
2609 		field = around[allocsiz];
2610 		subfield = inside[allocsiz];
2611 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2612 			if ((blk & field) == subfield)
2613 				return (bno + pos);
2614 			field <<= 1;
2615 			subfield <<= 1;
2616 		}
2617 	}
2618 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2619 	panic("ffs_alloccg: block not in map");
2620 	return (-1);
2621 }
2622 
2623 /*
2624  * Fserr prints the name of a filesystem with an error diagnostic.
2625  *
2626  * The form of the error message is:
2627  *	fs: error message
2628  */
2629 void
2630 ffs_fserr(fs, inum, cp)
2631 	struct fs *fs;
2632 	ino_t inum;
2633 	char *cp;
2634 {
2635 	struct thread *td = curthread;	/* XXX */
2636 	struct proc *p = td->td_proc;
2637 
2638 	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
2639 	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
2640 	    fs->fs_fsmnt, cp);
2641 }
2642 
2643 /*
2644  * This function provides the capability for the fsck program to
2645  * update an active filesystem. Fourteen operations are provided:
2646  *
2647  * adjrefcnt(inode, amt) - adjusts the reference count on the
2648  *	specified inode by the specified amount. Under normal
2649  *	operation the count should always go down. Decrementing
2650  *	the count to zero will cause the inode to be freed.
2651  * adjblkcnt(inode, amt) - adjust the number of blocks used by the
2652  *	inode by the specified amount.
2653  * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2654  *	adjust the superblock summary.
2655  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2656  *	are marked as free. Inodes should never have to be marked
2657  *	as in use.
2658  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2659  *	are marked as free. Inodes should never have to be marked
2660  *	as in use.
2661  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2662  *	are marked as free. Blocks should never have to be marked
2663  *	as in use.
2664  * setflags(flags, set/clear) - the fs_flags field has the specified
2665  *	flags set (second parameter +1) or cleared (second parameter -1).
2666  * setcwd(dirinode) - set the current directory to dirinode in the
2667  *	filesystem associated with the snapshot.
2668  * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
2669  *	in the current directory is oldvalue then change it to newvalue.
2670  * unlink(nameptr, oldvalue) - Verify that the inode number associated
2671  *	with nameptr in the current directory is oldvalue then unlink it.
2672  *
2673  * The following functions may only be used on a quiescent filesystem
2674  * by the soft updates journal. They are not safe to be run on an active
2675  * filesystem.
2676  *
2677  * setinode(inode, dip) - the specified disk inode is replaced with the
2678  *	contents pointed to by dip.
2679  * setbufoutput(fd, flags) - output associated with the specified file
2680  *	descriptor (which must reference the character device supporting
2681  *	the filesystem) switches from using physio to running through the
2682  *	buffer cache when flags is set to 1. The descriptor reverts to
2683  *	physio for output when flags is set to zero.
2684  */
2685 
2686 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2687 
2688 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2689 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2690 
2691 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2692 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2693 
2694 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2695 	sysctl_ffs_fsck, "Adjust number of directories");
2696 
2697 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2698 	sysctl_ffs_fsck, "Adjust number of free blocks");
2699 
2700 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2701 	sysctl_ffs_fsck, "Adjust number of free inodes");
2702 
2703 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2704 	sysctl_ffs_fsck, "Adjust number of free frags");
2705 
2706 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2707 	sysctl_ffs_fsck, "Adjust number of free clusters");
2708 
2709 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2710 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2711 
2712 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2713 	sysctl_ffs_fsck, "Free Range of File Inodes");
2714 
2715 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2716 	sysctl_ffs_fsck, "Free Range of Blocks");
2717 
2718 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2719 	sysctl_ffs_fsck, "Change Filesystem Flags");
2720 
2721 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
2722 	sysctl_ffs_fsck, "Set Current Working Directory");
2723 
2724 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
2725 	sysctl_ffs_fsck, "Change Value of .. Entry");
2726 
2727 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
2728 	sysctl_ffs_fsck, "Unlink a Duplicate Name");
2729 
2730 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
2731 	sysctl_ffs_fsck, "Update an On-Disk Inode");
2732 
2733 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
2734 	sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
2735 
2736 #define DEBUG 1
2737 #ifdef DEBUG
2738 static int fsckcmds = 0;
2739 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2740 #endif /* DEBUG */
2741 
2742 static int buffered_write(struct file *, struct uio *, struct ucred *,
2743 	int, struct thread *);
2744 
2745 static int
2746 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2747 {
2748 	struct thread *td = curthread;
2749 	struct fsck_cmd cmd;
2750 	struct ufsmount *ump;
2751 	struct vnode *vp, *dvp, *fdvp;
2752 	struct inode *ip, *dp;
2753 	struct mount *mp;
2754 	struct fs *fs;
2755 	ufs2_daddr_t blkno;
2756 	long blkcnt, blksize;
2757 	struct file *fp, *vfp;
2758 	cap_rights_t rights;
2759 	int filetype, error;
2760 	static struct fileops *origops, bufferedops;
2761 
2762 	if (req->newlen > sizeof cmd)
2763 		return (EBADRPC);
2764 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2765 		return (error);
2766 	if (cmd.version != FFS_CMD_VERSION)
2767 		return (ERPCMISMATCH);
2768 	if ((error = getvnode(td, cmd.handle,
2769 	    cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
2770 		return (error);
2771 	vp = fp->f_data;
2772 	if (vp->v_type != VREG && vp->v_type != VDIR) {
2773 		fdrop(fp, td);
2774 		return (EINVAL);
2775 	}
2776 	vn_start_write(vp, &mp, V_WAIT);
2777 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2778 		vn_finished_write(mp);
2779 		fdrop(fp, td);
2780 		return (EINVAL);
2781 	}
2782 	ump = VFSTOUFS(mp);
2783 	if ((mp->mnt_flag & MNT_RDONLY) &&
2784 	    ump->um_fsckpid != td->td_proc->p_pid) {
2785 		vn_finished_write(mp);
2786 		fdrop(fp, td);
2787 		return (EROFS);
2788 	}
2789 	fs = ump->um_fs;
2790 	filetype = IFREG;
2791 
2792 	switch (oidp->oid_number) {
2793 
2794 	case FFS_SET_FLAGS:
2795 #ifdef DEBUG
2796 		if (fsckcmds)
2797 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2798 			    cmd.size > 0 ? "set" : "clear");
2799 #endif /* DEBUG */
2800 		if (cmd.size > 0)
2801 			fs->fs_flags |= (long)cmd.value;
2802 		else
2803 			fs->fs_flags &= ~(long)cmd.value;
2804 		break;
2805 
2806 	case FFS_ADJ_REFCNT:
2807 #ifdef DEBUG
2808 		if (fsckcmds) {
2809 			printf("%s: adjust inode %jd link count by %jd\n",
2810 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2811 			    (intmax_t)cmd.size);
2812 		}
2813 #endif /* DEBUG */
2814 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2815 			break;
2816 		ip = VTOI(vp);
2817 		ip->i_nlink += cmd.size;
2818 		DIP_SET(ip, i_nlink, ip->i_nlink);
2819 		ip->i_effnlink += cmd.size;
2820 		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2821 		error = ffs_update(vp, 1);
2822 		if (DOINGSOFTDEP(vp))
2823 			softdep_change_linkcnt(ip);
2824 		vput(vp);
2825 		break;
2826 
2827 	case FFS_ADJ_BLKCNT:
2828 #ifdef DEBUG
2829 		if (fsckcmds) {
2830 			printf("%s: adjust inode %jd block count by %jd\n",
2831 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2832 			    (intmax_t)cmd.size);
2833 		}
2834 #endif /* DEBUG */
2835 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2836 			break;
2837 		ip = VTOI(vp);
2838 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2839 		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2840 		error = ffs_update(vp, 1);
2841 		vput(vp);
2842 		break;
2843 
2844 	case FFS_DIR_FREE:
2845 		filetype = IFDIR;
2846 		/* fall through */
2847 
2848 	case FFS_FILE_FREE:
2849 #ifdef DEBUG
2850 		if (fsckcmds) {
2851 			if (cmd.size == 1)
2852 				printf("%s: free %s inode %ju\n",
2853 				    mp->mnt_stat.f_mntonname,
2854 				    filetype == IFDIR ? "directory" : "file",
2855 				    (uintmax_t)cmd.value);
2856 			else
2857 				printf("%s: free %s inodes %ju-%ju\n",
2858 				    mp->mnt_stat.f_mntonname,
2859 				    filetype == IFDIR ? "directory" : "file",
2860 				    (uintmax_t)cmd.value,
2861 				    (uintmax_t)(cmd.value + cmd.size - 1));
2862 		}
2863 #endif /* DEBUG */
2864 		while (cmd.size > 0) {
2865 			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2866 			    cmd.value, filetype, NULL)))
2867 				break;
2868 			cmd.size -= 1;
2869 			cmd.value += 1;
2870 		}
2871 		break;
2872 
2873 	case FFS_BLK_FREE:
2874 #ifdef DEBUG
2875 		if (fsckcmds) {
2876 			if (cmd.size == 1)
2877 				printf("%s: free block %jd\n",
2878 				    mp->mnt_stat.f_mntonname,
2879 				    (intmax_t)cmd.value);
2880 			else
2881 				printf("%s: free blocks %jd-%jd\n",
2882 				    mp->mnt_stat.f_mntonname,
2883 				    (intmax_t)cmd.value,
2884 				    (intmax_t)cmd.value + cmd.size - 1);
2885 		}
2886 #endif /* DEBUG */
2887 		blkno = cmd.value;
2888 		blkcnt = cmd.size;
2889 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2890 		while (blkcnt > 0) {
2891 			if (blksize > blkcnt)
2892 				blksize = blkcnt;
2893 			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2894 			    blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
2895 			blkno += blksize;
2896 			blkcnt -= blksize;
2897 			blksize = fs->fs_frag;
2898 		}
2899 		break;
2900 
2901 	/*
2902 	 * Adjust superblock summaries.  fsck(8) is expected to
2903 	 * submit deltas when necessary.
2904 	 */
2905 	case FFS_ADJ_NDIR:
2906 #ifdef DEBUG
2907 		if (fsckcmds) {
2908 			printf("%s: adjust number of directories by %jd\n",
2909 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2910 		}
2911 #endif /* DEBUG */
2912 		fs->fs_cstotal.cs_ndir += cmd.value;
2913 		break;
2914 
2915 	case FFS_ADJ_NBFREE:
2916 #ifdef DEBUG
2917 		if (fsckcmds) {
2918 			printf("%s: adjust number of free blocks by %+jd\n",
2919 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2920 		}
2921 #endif /* DEBUG */
2922 		fs->fs_cstotal.cs_nbfree += cmd.value;
2923 		break;
2924 
2925 	case FFS_ADJ_NIFREE:
2926 #ifdef DEBUG
2927 		if (fsckcmds) {
2928 			printf("%s: adjust number of free inodes by %+jd\n",
2929 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2930 		}
2931 #endif /* DEBUG */
2932 		fs->fs_cstotal.cs_nifree += cmd.value;
2933 		break;
2934 
2935 	case FFS_ADJ_NFFREE:
2936 #ifdef DEBUG
2937 		if (fsckcmds) {
2938 			printf("%s: adjust number of free frags by %+jd\n",
2939 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2940 		}
2941 #endif /* DEBUG */
2942 		fs->fs_cstotal.cs_nffree += cmd.value;
2943 		break;
2944 
2945 	case FFS_ADJ_NUMCLUSTERS:
2946 #ifdef DEBUG
2947 		if (fsckcmds) {
2948 			printf("%s: adjust number of free clusters by %+jd\n",
2949 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2950 		}
2951 #endif /* DEBUG */
2952 		fs->fs_cstotal.cs_numclusters += cmd.value;
2953 		break;
2954 
2955 	case FFS_SET_CWD:
2956 #ifdef DEBUG
2957 		if (fsckcmds) {
2958 			printf("%s: set current directory to inode %jd\n",
2959 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2960 		}
2961 #endif /* DEBUG */
2962 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
2963 			break;
2964 		AUDIT_ARG_VNODE1(vp);
2965 		if ((error = change_dir(vp, td)) != 0) {
2966 			vput(vp);
2967 			break;
2968 		}
2969 		VOP_UNLOCK(vp, 0);
2970 		pwd_chdir(td, vp);
2971 		break;
2972 
2973 	case FFS_SET_DOTDOT:
2974 #ifdef DEBUG
2975 		if (fsckcmds) {
2976 			printf("%s: change .. in cwd from %jd to %jd\n",
2977 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2978 			    (intmax_t)cmd.size);
2979 		}
2980 #endif /* DEBUG */
2981 		/*
2982 		 * First we have to get and lock the parent directory
2983 		 * to which ".." points.
2984 		 */
2985 		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
2986 		if (error)
2987 			break;
2988 		/*
2989 		 * Now we get and lock the child directory containing "..".
2990 		 */
2991 		FILEDESC_SLOCK(td->td_proc->p_fd);
2992 		dvp = td->td_proc->p_fd->fd_cdir;
2993 		FILEDESC_SUNLOCK(td->td_proc->p_fd);
2994 		if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
2995 			vput(fdvp);
2996 			break;
2997 		}
2998 		dp = VTOI(dvp);
2999 		dp->i_offset = 12;	/* XXX mastertemplate.dot_reclen */
3000 		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3001 		    DT_DIR, 0);
3002 		cache_purge(fdvp);
3003 		cache_purge(dvp);
3004 		vput(dvp);
3005 		vput(fdvp);
3006 		break;
3007 
3008 	case FFS_UNLINK:
3009 #ifdef DEBUG
3010 		if (fsckcmds) {
3011 			char buf[32];
3012 
3013 			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3014 				strncpy(buf, "Name_too_long", 32);
3015 			printf("%s: unlink %s (inode %jd)\n",
3016 			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3017 		}
3018 #endif /* DEBUG */
3019 		/*
3020 		 * kern_unlinkat will do its own start/finish writes and
3021 		 * they do not nest, so drop ours here. Setting mp == NULL
3022 		 * indicates that vn_finished_write is not needed down below.
3023 		 */
3024 		vn_finished_write(mp);
3025 		mp = NULL;
3026 		error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
3027 		    UIO_USERSPACE, (ino_t)cmd.size);
3028 		break;
3029 
3030 	case FFS_SET_INODE:
3031 		if (ump->um_fsckpid != td->td_proc->p_pid) {
3032 			error = EPERM;
3033 			break;
3034 		}
3035 #ifdef DEBUG
3036 		if (fsckcmds) {
3037 			printf("%s: update inode %jd\n",
3038 			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3039 		}
3040 #endif /* DEBUG */
3041 		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3042 			break;
3043 		AUDIT_ARG_VNODE1(vp);
3044 		ip = VTOI(vp);
3045 		if (ip->i_ump->um_fstype == UFS1)
3046 			error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
3047 			    sizeof(struct ufs1_dinode));
3048 		else
3049 			error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
3050 			    sizeof(struct ufs2_dinode));
3051 		if (error) {
3052 			vput(vp);
3053 			break;
3054 		}
3055 		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3056 		error = ffs_update(vp, 1);
3057 		vput(vp);
3058 		break;
3059 
3060 	case FFS_SET_BUFOUTPUT:
3061 		if (ump->um_fsckpid != td->td_proc->p_pid) {
3062 			error = EPERM;
3063 			break;
3064 		}
3065 		if (VTOI(vp)->i_ump != ump) {
3066 			error = EINVAL;
3067 			break;
3068 		}
3069 #ifdef DEBUG
3070 		if (fsckcmds) {
3071 			printf("%s: %s buffered output for descriptor %jd\n",
3072 			    mp->mnt_stat.f_mntonname,
3073 			    cmd.size == 1 ? "enable" : "disable",
3074 			    (intmax_t)cmd.value);
3075 		}
3076 #endif /* DEBUG */
3077 		if ((error = getvnode(td, cmd.value,
3078 		    cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
3079 			break;
3080 		if (vfp->f_vnode->v_type != VCHR) {
3081 			fdrop(vfp, td);
3082 			error = EINVAL;
3083 			break;
3084 		}
3085 		if (origops == NULL) {
3086 			origops = vfp->f_ops;
3087 			bcopy((void *)origops, (void *)&bufferedops,
3088 			    sizeof(bufferedops));
3089 			bufferedops.fo_write = buffered_write;
3090 		}
3091 		if (cmd.size == 1)
3092 			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3093 			    (uintptr_t)&bufferedops);
3094 		else
3095 			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3096 			    (uintptr_t)origops);
3097 		fdrop(vfp, td);
3098 		break;
3099 
3100 	default:
3101 #ifdef DEBUG
3102 		if (fsckcmds) {
3103 			printf("Invalid request %d from fsck\n",
3104 			    oidp->oid_number);
3105 		}
3106 #endif /* DEBUG */
3107 		error = EINVAL;
3108 		break;
3109 
3110 	}
3111 	fdrop(fp, td);
3112 	vn_finished_write(mp);
3113 	return (error);
3114 }
3115 
3116 /*
3117  * Function to switch a descriptor to use the buffer cache to stage
3118  * its I/O. This is needed so that writes to the filesystem device
3119  * will give snapshots a chance to copy modified blocks for which it
3120  * needs to retain copies.
3121  */
3122 static int
3123 buffered_write(fp, uio, active_cred, flags, td)
3124 	struct file *fp;
3125 	struct uio *uio;
3126 	struct ucred *active_cred;
3127 	int flags;
3128 	struct thread *td;
3129 {
3130 	struct vnode *devvp, *vp;
3131 	struct inode *ip;
3132 	struct buf *bp;
3133 	struct fs *fs;
3134 	struct filedesc *fdp;
3135 	int error;
3136 	daddr_t lbn;
3137 
3138 	/*
3139 	 * The devvp is associated with the /dev filesystem. To discover
3140 	 * the filesystem with which the device is associated, we depend
3141 	 * on the application setting the current directory to a location
3142 	 * within the filesystem being written. Yes, this is an ugly hack.
3143 	 */
3144 	devvp = fp->f_vnode;
3145 	if (!vn_isdisk(devvp, NULL))
3146 		return (EINVAL);
3147 	fdp = td->td_proc->p_fd;
3148 	FILEDESC_SLOCK(fdp);
3149 	vp = fdp->fd_cdir;
3150 	vref(vp);
3151 	FILEDESC_SUNLOCK(fdp);
3152 	vn_lock(vp, LK_SHARED | LK_RETRY);
3153 	/*
3154 	 * Check that the current directory vnode indeed belongs to
3155 	 * UFS before trying to dereference UFS-specific v_data fields.
3156 	 */
3157 	if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3158 		vput(vp);
3159 		return (EINVAL);
3160 	}
3161 	ip = VTOI(vp);
3162 	if (ip->i_devvp != devvp) {
3163 		vput(vp);
3164 		return (EINVAL);
3165 	}
3166 	fs = ip->i_fs;
3167 	vput(vp);
3168 	foffset_lock_uio(fp, uio, flags);
3169 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3170 #ifdef DEBUG
3171 	if (fsckcmds) {
3172 		printf("%s: buffered write for block %jd\n",
3173 		    fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3174 	}
3175 #endif /* DEBUG */
3176 	/*
3177 	 * All I/O must be contained within a filesystem block, start on
3178 	 * a fragment boundary, and be a multiple of fragments in length.
3179 	 */
3180 	if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3181 	    fragoff(fs, uio->uio_offset) != 0 ||
3182 	    fragoff(fs, uio->uio_resid) != 0) {
3183 		error = EINVAL;
3184 		goto out;
3185 	}
3186 	lbn = numfrags(fs, uio->uio_offset);
3187 	bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3188 	bp->b_flags |= B_RELBUF;
3189 	if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3190 		brelse(bp);
3191 		goto out;
3192 	}
3193 	error = bwrite(bp);
3194 out:
3195 	VOP_UNLOCK(devvp, 0);
3196 	foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3197 	return (error);
3198 }
3199