1 /*- 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_quota.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bio.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/fcntl.h> 73 #include <sys/file.h> 74 #include <sys/filedesc.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/vnode.h> 78 #include <sys/mount.h> 79 #include <sys/kernel.h> 80 #include <sys/syscallsubr.h> 81 #include <sys/sysctl.h> 82 #include <sys/syslog.h> 83 84 #include <security/audit/audit.h> 85 86 #include <ufs/ufs/dir.h> 87 #include <ufs/ufs/extattr.h> 88 #include <ufs/ufs/quota.h> 89 #include <ufs/ufs/inode.h> 90 #include <ufs/ufs/ufs_extern.h> 91 #include <ufs/ufs/ufsmount.h> 92 93 #include <ufs/ffs/fs.h> 94 #include <ufs/ffs/ffs_extern.h> 95 96 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 97 int size, int rsize); 98 99 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 100 static ufs2_daddr_t 101 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 102 #ifdef INVARIANTS 103 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 104 #endif 105 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int, 106 int); 107 static ino_t ffs_dirpref(struct inode *); 108 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 109 int, int); 110 static void ffs_fserr(struct fs *, ino_t, char *); 111 static ufs2_daddr_t ffs_hashalloc 112 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 113 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 114 int); 115 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 116 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 117 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 118 119 /* 120 * Allocate a block in the filesystem. 121 * 122 * The size of the requested block is given, which must be some 123 * multiple of fs_fsize and <= fs_bsize. 124 * A preference may be optionally specified. If a preference is given 125 * the following hierarchy is used to allocate a block: 126 * 1) allocate the requested block. 127 * 2) allocate a rotationally optimal block in the same cylinder. 128 * 3) allocate a block in the same cylinder group. 129 * 4) quadradically rehash into other cylinder groups, until an 130 * available block is located. 131 * If no block preference is given the following hierarchy is used 132 * to allocate a block: 133 * 1) allocate a block in the cylinder group that contains the 134 * inode for the file. 135 * 2) quadradically rehash into other cylinder groups, until an 136 * available block is located. 137 */ 138 int 139 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 140 struct inode *ip; 141 ufs2_daddr_t lbn, bpref; 142 int size, flags; 143 struct ucred *cred; 144 ufs2_daddr_t *bnp; 145 { 146 struct fs *fs; 147 struct ufsmount *ump; 148 ufs2_daddr_t bno; 149 u_int cg, reclaimed; 150 static struct timeval lastfail; 151 static int curfail; 152 int64_t delta; 153 #ifdef QUOTA 154 int error; 155 #endif 156 157 *bnp = 0; 158 fs = ip->i_fs; 159 ump = ip->i_ump; 160 mtx_assert(UFS_MTX(ump), MA_OWNED); 161 #ifdef INVARIANTS 162 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 163 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 164 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 165 fs->fs_fsmnt); 166 panic("ffs_alloc: bad size"); 167 } 168 if (cred == NOCRED) 169 panic("ffs_alloc: missing credential"); 170 #endif /* INVARIANTS */ 171 reclaimed = 0; 172 retry: 173 #ifdef QUOTA 174 UFS_UNLOCK(ump); 175 error = chkdq(ip, btodb(size), cred, 0); 176 if (error) 177 return (error); 178 UFS_LOCK(ump); 179 #endif 180 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 181 goto nospace; 182 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 183 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 184 goto nospace; 185 if (bpref >= fs->fs_size) 186 bpref = 0; 187 if (bpref == 0) 188 cg = ino_to_cg(fs, ip->i_number); 189 else 190 cg = dtog(fs, bpref); 191 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 192 if (bno > 0) { 193 delta = btodb(size); 194 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 195 if (flags & IO_EXT) 196 ip->i_flag |= IN_CHANGE; 197 else 198 ip->i_flag |= IN_CHANGE | IN_UPDATE; 199 *bnp = bno; 200 return (0); 201 } 202 nospace: 203 #ifdef QUOTA 204 UFS_UNLOCK(ump); 205 /* 206 * Restore user's disk quota because allocation failed. 207 */ 208 (void) chkdq(ip, -btodb(size), cred, FORCE); 209 UFS_LOCK(ump); 210 #endif 211 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 212 reclaimed = 1; 213 softdep_request_cleanup(fs, ITOV(ip)); 214 goto retry; 215 } 216 UFS_UNLOCK(ump); 217 if (ppsratecheck(&lastfail, &curfail, 1)) { 218 ffs_fserr(fs, ip->i_number, "filesystem full"); 219 uprintf("\n%s: write failed, filesystem is full\n", 220 fs->fs_fsmnt); 221 } 222 return (ENOSPC); 223 } 224 225 /* 226 * Reallocate a fragment to a bigger size 227 * 228 * The number and size of the old block is given, and a preference 229 * and new size is also specified. The allocator attempts to extend 230 * the original block. Failing that, the regular block allocator is 231 * invoked to get an appropriate block. 232 */ 233 int 234 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 235 struct inode *ip; 236 ufs2_daddr_t lbprev; 237 ufs2_daddr_t bprev; 238 ufs2_daddr_t bpref; 239 int osize, nsize, flags; 240 struct ucred *cred; 241 struct buf **bpp; 242 { 243 struct vnode *vp; 244 struct fs *fs; 245 struct buf *bp; 246 struct ufsmount *ump; 247 u_int cg, request, reclaimed; 248 int error; 249 ufs2_daddr_t bno; 250 static struct timeval lastfail; 251 static int curfail; 252 int64_t delta; 253 254 *bpp = 0; 255 vp = ITOV(ip); 256 fs = ip->i_fs; 257 bp = NULL; 258 ump = ip->i_ump; 259 mtx_assert(UFS_MTX(ump), MA_OWNED); 260 #ifdef INVARIANTS 261 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 262 panic("ffs_realloccg: allocation on suspended filesystem"); 263 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 264 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 265 printf( 266 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 267 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 268 nsize, fs->fs_fsmnt); 269 panic("ffs_realloccg: bad size"); 270 } 271 if (cred == NOCRED) 272 panic("ffs_realloccg: missing credential"); 273 #endif /* INVARIANTS */ 274 reclaimed = 0; 275 retry: 276 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) && 277 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 278 goto nospace; 279 } 280 if (bprev == 0) { 281 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 282 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 283 fs->fs_fsmnt); 284 panic("ffs_realloccg: bad bprev"); 285 } 286 UFS_UNLOCK(ump); 287 /* 288 * Allocate the extra space in the buffer. 289 */ 290 error = bread(vp, lbprev, osize, NOCRED, &bp); 291 if (error) { 292 brelse(bp); 293 return (error); 294 } 295 296 if (bp->b_blkno == bp->b_lblkno) { 297 if (lbprev >= NDADDR) 298 panic("ffs_realloccg: lbprev out of range"); 299 bp->b_blkno = fsbtodb(fs, bprev); 300 } 301 302 #ifdef QUOTA 303 error = chkdq(ip, btodb(nsize - osize), cred, 0); 304 if (error) { 305 brelse(bp); 306 return (error); 307 } 308 #endif 309 /* 310 * Check for extension in the existing location. 311 */ 312 cg = dtog(fs, bprev); 313 UFS_LOCK(ump); 314 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 315 if (bno) { 316 if (bp->b_blkno != fsbtodb(fs, bno)) 317 panic("ffs_realloccg: bad blockno"); 318 delta = btodb(nsize - osize); 319 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 320 if (flags & IO_EXT) 321 ip->i_flag |= IN_CHANGE; 322 else 323 ip->i_flag |= IN_CHANGE | IN_UPDATE; 324 allocbuf(bp, nsize); 325 bp->b_flags |= B_DONE; 326 bzero(bp->b_data + osize, nsize - osize); 327 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 328 vfs_bio_set_valid(bp, osize, nsize - osize); 329 *bpp = bp; 330 return (0); 331 } 332 /* 333 * Allocate a new disk location. 334 */ 335 if (bpref >= fs->fs_size) 336 bpref = 0; 337 switch ((int)fs->fs_optim) { 338 case FS_OPTSPACE: 339 /* 340 * Allocate an exact sized fragment. Although this makes 341 * best use of space, we will waste time relocating it if 342 * the file continues to grow. If the fragmentation is 343 * less than half of the minimum free reserve, we choose 344 * to begin optimizing for time. 345 */ 346 request = nsize; 347 if (fs->fs_minfree <= 5 || 348 fs->fs_cstotal.cs_nffree > 349 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 350 break; 351 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 352 fs->fs_fsmnt); 353 fs->fs_optim = FS_OPTTIME; 354 break; 355 case FS_OPTTIME: 356 /* 357 * At this point we have discovered a file that is trying to 358 * grow a small fragment to a larger fragment. To save time, 359 * we allocate a full sized block, then free the unused portion. 360 * If the file continues to grow, the `ffs_fragextend' call 361 * above will be able to grow it in place without further 362 * copying. If aberrant programs cause disk fragmentation to 363 * grow within 2% of the free reserve, we choose to begin 364 * optimizing for space. 365 */ 366 request = fs->fs_bsize; 367 if (fs->fs_cstotal.cs_nffree < 368 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 369 break; 370 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 371 fs->fs_fsmnt); 372 fs->fs_optim = FS_OPTSPACE; 373 break; 374 default: 375 printf("dev = %s, optim = %ld, fs = %s\n", 376 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 377 panic("ffs_realloccg: bad optim"); 378 /* NOTREACHED */ 379 } 380 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 381 if (bno > 0) { 382 bp->b_blkno = fsbtodb(fs, bno); 383 if (!DOINGSOFTDEP(vp)) 384 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize, 385 ip->i_number, NULL); 386 delta = btodb(nsize - osize); 387 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 388 if (flags & IO_EXT) 389 ip->i_flag |= IN_CHANGE; 390 else 391 ip->i_flag |= IN_CHANGE | IN_UPDATE; 392 allocbuf(bp, nsize); 393 bp->b_flags |= B_DONE; 394 bzero(bp->b_data + osize, nsize - osize); 395 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 396 vfs_bio_set_valid(bp, osize, nsize - osize); 397 *bpp = bp; 398 return (0); 399 } 400 #ifdef QUOTA 401 UFS_UNLOCK(ump); 402 /* 403 * Restore user's disk quota because allocation failed. 404 */ 405 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 406 UFS_LOCK(ump); 407 #endif 408 nospace: 409 /* 410 * no space available 411 */ 412 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 413 reclaimed = 1; 414 softdep_request_cleanup(fs, vp); 415 UFS_UNLOCK(ump); 416 if (bp) { 417 brelse(bp); 418 bp = NULL; 419 } 420 UFS_LOCK(ump); 421 goto retry; 422 } 423 UFS_UNLOCK(ump); 424 if (bp) 425 brelse(bp); 426 if (ppsratecheck(&lastfail, &curfail, 1)) { 427 ffs_fserr(fs, ip->i_number, "filesystem full"); 428 uprintf("\n%s: write failed, filesystem is full\n", 429 fs->fs_fsmnt); 430 } 431 return (ENOSPC); 432 } 433 434 /* 435 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 436 * 437 * The vnode and an array of buffer pointers for a range of sequential 438 * logical blocks to be made contiguous is given. The allocator attempts 439 * to find a range of sequential blocks starting as close as possible 440 * from the end of the allocation for the logical block immediately 441 * preceding the current range. If successful, the physical block numbers 442 * in the buffer pointers and in the inode are changed to reflect the new 443 * allocation. If unsuccessful, the allocation is left unchanged. The 444 * success in doing the reallocation is returned. Note that the error 445 * return is not reflected back to the user. Rather the previous block 446 * allocation will be used. 447 */ 448 449 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 450 451 static int doasyncfree = 1; 452 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 453 454 static int doreallocblks = 1; 455 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 456 457 #ifdef DEBUG 458 static volatile int prtrealloc = 0; 459 #endif 460 461 int 462 ffs_reallocblks(ap) 463 struct vop_reallocblks_args /* { 464 struct vnode *a_vp; 465 struct cluster_save *a_buflist; 466 } */ *ap; 467 { 468 469 if (doreallocblks == 0) 470 return (ENOSPC); 471 /* 472 * We can't wait in softdep prealloc as it may fsync and recurse 473 * here. Instead we simply fail to reallocate blocks if this 474 * rare condition arises. 475 */ 476 if (DOINGSOFTDEP(ap->a_vp)) 477 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 478 return (ENOSPC); 479 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 480 return (ffs_reallocblks_ufs1(ap)); 481 return (ffs_reallocblks_ufs2(ap)); 482 } 483 484 static int 485 ffs_reallocblks_ufs1(ap) 486 struct vop_reallocblks_args /* { 487 struct vnode *a_vp; 488 struct cluster_save *a_buflist; 489 } */ *ap; 490 { 491 struct fs *fs; 492 struct inode *ip; 493 struct vnode *vp; 494 struct buf *sbp, *ebp; 495 ufs1_daddr_t *bap, *sbap, *ebap = 0; 496 struct cluster_save *buflist; 497 struct ufsmount *ump; 498 ufs_lbn_t start_lbn, end_lbn; 499 ufs1_daddr_t soff, newblk, blkno; 500 ufs2_daddr_t pref; 501 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 502 int i, len, start_lvl, end_lvl, ssize; 503 504 vp = ap->a_vp; 505 ip = VTOI(vp); 506 fs = ip->i_fs; 507 ump = ip->i_ump; 508 if (fs->fs_contigsumsize <= 0) 509 return (ENOSPC); 510 buflist = ap->a_buflist; 511 len = buflist->bs_nchildren; 512 start_lbn = buflist->bs_children[0]->b_lblkno; 513 end_lbn = start_lbn + len - 1; 514 #ifdef INVARIANTS 515 for (i = 0; i < len; i++) 516 if (!ffs_checkblk(ip, 517 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 518 panic("ffs_reallocblks: unallocated block 1"); 519 for (i = 1; i < len; i++) 520 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 521 panic("ffs_reallocblks: non-logical cluster"); 522 blkno = buflist->bs_children[0]->b_blkno; 523 ssize = fsbtodb(fs, fs->fs_frag); 524 for (i = 1; i < len - 1; i++) 525 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 526 panic("ffs_reallocblks: non-physical cluster %d", i); 527 #endif 528 /* 529 * If the latest allocation is in a new cylinder group, assume that 530 * the filesystem has decided to move and do not force it back to 531 * the previous cylinder group. 532 */ 533 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 534 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 535 return (ENOSPC); 536 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 537 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 538 return (ENOSPC); 539 /* 540 * Get the starting offset and block map for the first block. 541 */ 542 if (start_lvl == 0) { 543 sbap = &ip->i_din1->di_db[0]; 544 soff = start_lbn; 545 } else { 546 idp = &start_ap[start_lvl - 1]; 547 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 548 brelse(sbp); 549 return (ENOSPC); 550 } 551 sbap = (ufs1_daddr_t *)sbp->b_data; 552 soff = idp->in_off; 553 } 554 /* 555 * If the block range spans two block maps, get the second map. 556 */ 557 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 558 ssize = len; 559 } else { 560 #ifdef INVARIANTS 561 if (start_lvl > 0 && 562 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 563 panic("ffs_reallocblk: start == end"); 564 #endif 565 ssize = len - (idp->in_off + 1); 566 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 567 goto fail; 568 ebap = (ufs1_daddr_t *)ebp->b_data; 569 } 570 /* 571 * Find the preferred location for the cluster. 572 */ 573 UFS_LOCK(ump); 574 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 575 /* 576 * Search the block map looking for an allocation of the desired size. 577 */ 578 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 579 len, len, ffs_clusteralloc)) == 0) { 580 UFS_UNLOCK(ump); 581 goto fail; 582 } 583 /* 584 * We have found a new contiguous block. 585 * 586 * First we have to replace the old block pointers with the new 587 * block pointers in the inode and indirect blocks associated 588 * with the file. 589 */ 590 #ifdef DEBUG 591 if (prtrealloc) 592 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 593 (intmax_t)start_lbn, (intmax_t)end_lbn); 594 #endif 595 blkno = newblk; 596 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 597 if (i == ssize) { 598 bap = ebap; 599 soff = -i; 600 } 601 #ifdef INVARIANTS 602 if (!ffs_checkblk(ip, 603 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 604 panic("ffs_reallocblks: unallocated block 2"); 605 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 606 panic("ffs_reallocblks: alloc mismatch"); 607 #endif 608 #ifdef DEBUG 609 if (prtrealloc) 610 printf(" %d,", *bap); 611 #endif 612 if (DOINGSOFTDEP(vp)) { 613 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 614 softdep_setup_allocdirect(ip, start_lbn + i, 615 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 616 buflist->bs_children[i]); 617 else 618 softdep_setup_allocindir_page(ip, start_lbn + i, 619 i < ssize ? sbp : ebp, soff + i, blkno, 620 *bap, buflist->bs_children[i]); 621 } 622 *bap++ = blkno; 623 } 624 /* 625 * Next we must write out the modified inode and indirect blocks. 626 * For strict correctness, the writes should be synchronous since 627 * the old block values may have been written to disk. In practise 628 * they are almost never written, but if we are concerned about 629 * strict correctness, the `doasyncfree' flag should be set to zero. 630 * 631 * The test on `doasyncfree' should be changed to test a flag 632 * that shows whether the associated buffers and inodes have 633 * been written. The flag should be set when the cluster is 634 * started and cleared whenever the buffer or inode is flushed. 635 * We can then check below to see if it is set, and do the 636 * synchronous write only when it has been cleared. 637 */ 638 if (sbap != &ip->i_din1->di_db[0]) { 639 if (doasyncfree) 640 bdwrite(sbp); 641 else 642 bwrite(sbp); 643 } else { 644 ip->i_flag |= IN_CHANGE | IN_UPDATE; 645 if (!doasyncfree) 646 ffs_update(vp, 1); 647 } 648 if (ssize < len) { 649 if (doasyncfree) 650 bdwrite(ebp); 651 else 652 bwrite(ebp); 653 } 654 /* 655 * Last, free the old blocks and assign the new blocks to the buffers. 656 */ 657 #ifdef DEBUG 658 if (prtrealloc) 659 printf("\n\tnew:"); 660 #endif 661 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 662 if (!DOINGSOFTDEP(vp)) 663 ffs_blkfree(ump, fs, ip->i_devvp, 664 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 665 fs->fs_bsize, ip->i_number, NULL); 666 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 667 #ifdef INVARIANTS 668 if (!ffs_checkblk(ip, 669 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 670 panic("ffs_reallocblks: unallocated block 3"); 671 #endif 672 #ifdef DEBUG 673 if (prtrealloc) 674 printf(" %d,", blkno); 675 #endif 676 } 677 #ifdef DEBUG 678 if (prtrealloc) { 679 prtrealloc--; 680 printf("\n"); 681 } 682 #endif 683 return (0); 684 685 fail: 686 if (ssize < len) 687 brelse(ebp); 688 if (sbap != &ip->i_din1->di_db[0]) 689 brelse(sbp); 690 return (ENOSPC); 691 } 692 693 static int 694 ffs_reallocblks_ufs2(ap) 695 struct vop_reallocblks_args /* { 696 struct vnode *a_vp; 697 struct cluster_save *a_buflist; 698 } */ *ap; 699 { 700 struct fs *fs; 701 struct inode *ip; 702 struct vnode *vp; 703 struct buf *sbp, *ebp; 704 ufs2_daddr_t *bap, *sbap, *ebap = 0; 705 struct cluster_save *buflist; 706 struct ufsmount *ump; 707 ufs_lbn_t start_lbn, end_lbn; 708 ufs2_daddr_t soff, newblk, blkno, pref; 709 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 710 int i, len, start_lvl, end_lvl, ssize; 711 712 vp = ap->a_vp; 713 ip = VTOI(vp); 714 fs = ip->i_fs; 715 ump = ip->i_ump; 716 if (fs->fs_contigsumsize <= 0) 717 return (ENOSPC); 718 buflist = ap->a_buflist; 719 len = buflist->bs_nchildren; 720 start_lbn = buflist->bs_children[0]->b_lblkno; 721 end_lbn = start_lbn + len - 1; 722 #ifdef INVARIANTS 723 for (i = 0; i < len; i++) 724 if (!ffs_checkblk(ip, 725 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 726 panic("ffs_reallocblks: unallocated block 1"); 727 for (i = 1; i < len; i++) 728 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 729 panic("ffs_reallocblks: non-logical cluster"); 730 blkno = buflist->bs_children[0]->b_blkno; 731 ssize = fsbtodb(fs, fs->fs_frag); 732 for (i = 1; i < len - 1; i++) 733 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 734 panic("ffs_reallocblks: non-physical cluster %d", i); 735 #endif 736 /* 737 * If the latest allocation is in a new cylinder group, assume that 738 * the filesystem has decided to move and do not force it back to 739 * the previous cylinder group. 740 */ 741 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 742 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 743 return (ENOSPC); 744 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 745 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 746 return (ENOSPC); 747 /* 748 * Get the starting offset and block map for the first block. 749 */ 750 if (start_lvl == 0) { 751 sbap = &ip->i_din2->di_db[0]; 752 soff = start_lbn; 753 } else { 754 idp = &start_ap[start_lvl - 1]; 755 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 756 brelse(sbp); 757 return (ENOSPC); 758 } 759 sbap = (ufs2_daddr_t *)sbp->b_data; 760 soff = idp->in_off; 761 } 762 /* 763 * If the block range spans two block maps, get the second map. 764 */ 765 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 766 ssize = len; 767 } else { 768 #ifdef INVARIANTS 769 if (start_lvl > 0 && 770 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 771 panic("ffs_reallocblk: start == end"); 772 #endif 773 ssize = len - (idp->in_off + 1); 774 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 775 goto fail; 776 ebap = (ufs2_daddr_t *)ebp->b_data; 777 } 778 /* 779 * Find the preferred location for the cluster. 780 */ 781 UFS_LOCK(ump); 782 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 783 /* 784 * Search the block map looking for an allocation of the desired size. 785 */ 786 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 787 len, len, ffs_clusteralloc)) == 0) { 788 UFS_UNLOCK(ump); 789 goto fail; 790 } 791 /* 792 * We have found a new contiguous block. 793 * 794 * First we have to replace the old block pointers with the new 795 * block pointers in the inode and indirect blocks associated 796 * with the file. 797 */ 798 #ifdef DEBUG 799 if (prtrealloc) 800 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number, 801 (intmax_t)start_lbn, (intmax_t)end_lbn); 802 #endif 803 blkno = newblk; 804 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 805 if (i == ssize) { 806 bap = ebap; 807 soff = -i; 808 } 809 #ifdef INVARIANTS 810 if (!ffs_checkblk(ip, 811 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 812 panic("ffs_reallocblks: unallocated block 2"); 813 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 814 panic("ffs_reallocblks: alloc mismatch"); 815 #endif 816 #ifdef DEBUG 817 if (prtrealloc) 818 printf(" %jd,", (intmax_t)*bap); 819 #endif 820 if (DOINGSOFTDEP(vp)) { 821 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 822 softdep_setup_allocdirect(ip, start_lbn + i, 823 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 824 buflist->bs_children[i]); 825 else 826 softdep_setup_allocindir_page(ip, start_lbn + i, 827 i < ssize ? sbp : ebp, soff + i, blkno, 828 *bap, buflist->bs_children[i]); 829 } 830 *bap++ = blkno; 831 } 832 /* 833 * Next we must write out the modified inode and indirect blocks. 834 * For strict correctness, the writes should be synchronous since 835 * the old block values may have been written to disk. In practise 836 * they are almost never written, but if we are concerned about 837 * strict correctness, the `doasyncfree' flag should be set to zero. 838 * 839 * The test on `doasyncfree' should be changed to test a flag 840 * that shows whether the associated buffers and inodes have 841 * been written. The flag should be set when the cluster is 842 * started and cleared whenever the buffer or inode is flushed. 843 * We can then check below to see if it is set, and do the 844 * synchronous write only when it has been cleared. 845 */ 846 if (sbap != &ip->i_din2->di_db[0]) { 847 if (doasyncfree) 848 bdwrite(sbp); 849 else 850 bwrite(sbp); 851 } else { 852 ip->i_flag |= IN_CHANGE | IN_UPDATE; 853 if (!doasyncfree) 854 ffs_update(vp, 1); 855 } 856 if (ssize < len) { 857 if (doasyncfree) 858 bdwrite(ebp); 859 else 860 bwrite(ebp); 861 } 862 /* 863 * Last, free the old blocks and assign the new blocks to the buffers. 864 */ 865 #ifdef DEBUG 866 if (prtrealloc) 867 printf("\n\tnew:"); 868 #endif 869 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 870 if (!DOINGSOFTDEP(vp)) 871 ffs_blkfree(ump, fs, ip->i_devvp, 872 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 873 fs->fs_bsize, ip->i_number, NULL); 874 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 875 #ifdef INVARIANTS 876 if (!ffs_checkblk(ip, 877 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 878 panic("ffs_reallocblks: unallocated block 3"); 879 #endif 880 #ifdef DEBUG 881 if (prtrealloc) 882 printf(" %jd,", (intmax_t)blkno); 883 #endif 884 } 885 #ifdef DEBUG 886 if (prtrealloc) { 887 prtrealloc--; 888 printf("\n"); 889 } 890 #endif 891 return (0); 892 893 fail: 894 if (ssize < len) 895 brelse(ebp); 896 if (sbap != &ip->i_din2->di_db[0]) 897 brelse(sbp); 898 return (ENOSPC); 899 } 900 901 /* 902 * Allocate an inode in the filesystem. 903 * 904 * If allocating a directory, use ffs_dirpref to select the inode. 905 * If allocating in a directory, the following hierarchy is followed: 906 * 1) allocate the preferred inode. 907 * 2) allocate an inode in the same cylinder group. 908 * 3) quadradically rehash into other cylinder groups, until an 909 * available inode is located. 910 * If no inode preference is given the following hierarchy is used 911 * to allocate an inode: 912 * 1) allocate an inode in cylinder group 0. 913 * 2) quadradically rehash into other cylinder groups, until an 914 * available inode is located. 915 */ 916 int 917 ffs_valloc(pvp, mode, cred, vpp) 918 struct vnode *pvp; 919 int mode; 920 struct ucred *cred; 921 struct vnode **vpp; 922 { 923 struct inode *pip; 924 struct fs *fs; 925 struct inode *ip; 926 struct timespec ts; 927 struct ufsmount *ump; 928 ino_t ino, ipref; 929 u_int cg; 930 int error, error1; 931 static struct timeval lastfail; 932 static int curfail; 933 934 *vpp = NULL; 935 pip = VTOI(pvp); 936 fs = pip->i_fs; 937 ump = pip->i_ump; 938 939 UFS_LOCK(ump); 940 if (fs->fs_cstotal.cs_nifree == 0) 941 goto noinodes; 942 943 if ((mode & IFMT) == IFDIR) 944 ipref = ffs_dirpref(pip); 945 else 946 ipref = pip->i_number; 947 if (ipref >= fs->fs_ncg * fs->fs_ipg) 948 ipref = 0; 949 cg = ino_to_cg(fs, ipref); 950 /* 951 * Track number of dirs created one after another 952 * in a same cg without intervening by files. 953 */ 954 if ((mode & IFMT) == IFDIR) { 955 if (fs->fs_contigdirs[cg] < 255) 956 fs->fs_contigdirs[cg]++; 957 } else { 958 if (fs->fs_contigdirs[cg] > 0) 959 fs->fs_contigdirs[cg]--; 960 } 961 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 962 (allocfcn_t *)ffs_nodealloccg); 963 if (ino == 0) 964 goto noinodes; 965 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 966 if (error) { 967 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 968 FFSV_FORCEINSMQ); 969 ffs_vfree(pvp, ino, mode); 970 if (error1 == 0) { 971 ip = VTOI(*vpp); 972 if (ip->i_mode) 973 goto dup_alloc; 974 ip->i_flag |= IN_MODIFIED; 975 vput(*vpp); 976 } 977 return (error); 978 } 979 ip = VTOI(*vpp); 980 if (ip->i_mode) { 981 dup_alloc: 982 printf("mode = 0%o, inum = %lu, fs = %s\n", 983 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 984 panic("ffs_valloc: dup alloc"); 985 } 986 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 987 printf("free inode %s/%lu had %ld blocks\n", 988 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 989 DIP_SET(ip, i_blocks, 0); 990 } 991 ip->i_flags = 0; 992 DIP_SET(ip, i_flags, 0); 993 /* 994 * Set up a new generation number for this inode. 995 */ 996 if (ip->i_gen == 0 || ++ip->i_gen == 0) 997 ip->i_gen = arc4random() / 2 + 1; 998 DIP_SET(ip, i_gen, ip->i_gen); 999 if (fs->fs_magic == FS_UFS2_MAGIC) { 1000 vfs_timestamp(&ts); 1001 ip->i_din2->di_birthtime = ts.tv_sec; 1002 ip->i_din2->di_birthnsec = ts.tv_nsec; 1003 } 1004 ip->i_flag = 0; 1005 vnode_destroy_vobject(*vpp); 1006 (*vpp)->v_type = VNON; 1007 if (fs->fs_magic == FS_UFS2_MAGIC) 1008 (*vpp)->v_op = &ffs_vnodeops2; 1009 else 1010 (*vpp)->v_op = &ffs_vnodeops1; 1011 return (0); 1012 noinodes: 1013 UFS_UNLOCK(ump); 1014 if (ppsratecheck(&lastfail, &curfail, 1)) { 1015 ffs_fserr(fs, pip->i_number, "out of inodes"); 1016 uprintf("\n%s: create/symlink failed, no inodes free\n", 1017 fs->fs_fsmnt); 1018 } 1019 return (ENOSPC); 1020 } 1021 1022 /* 1023 * Find a cylinder group to place a directory. 1024 * 1025 * The policy implemented by this algorithm is to allocate a 1026 * directory inode in the same cylinder group as its parent 1027 * directory, but also to reserve space for its files inodes 1028 * and data. Restrict the number of directories which may be 1029 * allocated one after another in the same cylinder group 1030 * without intervening allocation of files. 1031 * 1032 * If we allocate a first level directory then force allocation 1033 * in another cylinder group. 1034 */ 1035 static ino_t 1036 ffs_dirpref(pip) 1037 struct inode *pip; 1038 { 1039 struct fs *fs; 1040 u_int cg, prefcg, dirsize, cgsize; 1041 u_int avgifree, avgbfree, avgndir, curdirsize; 1042 u_int minifree, minbfree, maxndir; 1043 u_int mincg, minndir; 1044 u_int maxcontigdirs; 1045 1046 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED); 1047 fs = pip->i_fs; 1048 1049 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1050 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1051 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1052 1053 /* 1054 * Force allocation in another cg if creating a first level dir. 1055 */ 1056 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1057 if (ITOV(pip)->v_vflag & VV_ROOT) { 1058 prefcg = arc4random() % fs->fs_ncg; 1059 mincg = prefcg; 1060 minndir = fs->fs_ipg; 1061 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1062 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1063 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1064 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1065 mincg = cg; 1066 minndir = fs->fs_cs(fs, cg).cs_ndir; 1067 } 1068 for (cg = 0; cg < prefcg; cg++) 1069 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1070 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1071 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1072 mincg = cg; 1073 minndir = fs->fs_cs(fs, cg).cs_ndir; 1074 } 1075 return ((ino_t)(fs->fs_ipg * mincg)); 1076 } 1077 1078 /* 1079 * Count various limits which used for 1080 * optimal allocation of a directory inode. 1081 */ 1082 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1083 minifree = avgifree - avgifree / 4; 1084 if (minifree < 1) 1085 minifree = 1; 1086 minbfree = avgbfree - avgbfree / 4; 1087 if (minbfree < 1) 1088 minbfree = 1; 1089 cgsize = fs->fs_fsize * fs->fs_fpg; 1090 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1091 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1092 if (dirsize < curdirsize) 1093 dirsize = curdirsize; 1094 if (dirsize <= 0) 1095 maxcontigdirs = 0; /* dirsize overflowed */ 1096 else 1097 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1098 if (fs->fs_avgfpdir > 0) 1099 maxcontigdirs = min(maxcontigdirs, 1100 fs->fs_ipg / fs->fs_avgfpdir); 1101 if (maxcontigdirs == 0) 1102 maxcontigdirs = 1; 1103 1104 /* 1105 * Limit number of dirs in one cg and reserve space for 1106 * regular files, but only if we have no deficit in 1107 * inodes or space. 1108 */ 1109 prefcg = ino_to_cg(fs, pip->i_number); 1110 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1111 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1112 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1113 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1114 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1115 return ((ino_t)(fs->fs_ipg * cg)); 1116 } 1117 for (cg = 0; cg < prefcg; cg++) 1118 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1119 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1120 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1121 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1122 return ((ino_t)(fs->fs_ipg * cg)); 1123 } 1124 /* 1125 * This is a backstop when we have deficit in space. 1126 */ 1127 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1128 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1129 return ((ino_t)(fs->fs_ipg * cg)); 1130 for (cg = 0; cg < prefcg; cg++) 1131 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1132 break; 1133 return ((ino_t)(fs->fs_ipg * cg)); 1134 } 1135 1136 /* 1137 * Select the desired position for the next block in a file. The file is 1138 * logically divided into sections. The first section is composed of the 1139 * direct blocks. Each additional section contains fs_maxbpg blocks. 1140 * 1141 * If no blocks have been allocated in the first section, the policy is to 1142 * request a block in the same cylinder group as the inode that describes 1143 * the file. If no blocks have been allocated in any other section, the 1144 * policy is to place the section in a cylinder group with a greater than 1145 * average number of free blocks. An appropriate cylinder group is found 1146 * by using a rotor that sweeps the cylinder groups. When a new group of 1147 * blocks is needed, the sweep begins in the cylinder group following the 1148 * cylinder group from which the previous allocation was made. The sweep 1149 * continues until a cylinder group with greater than the average number 1150 * of free blocks is found. If the allocation is for the first block in an 1151 * indirect block, the information on the previous allocation is unavailable; 1152 * here a best guess is made based upon the logical block number being 1153 * allocated. 1154 * 1155 * If a section is already partially allocated, the policy is to 1156 * contiguously allocate fs_maxcontig blocks. The end of one of these 1157 * contiguous blocks and the beginning of the next is laid out 1158 * contiguously if possible. 1159 */ 1160 ufs2_daddr_t 1161 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1162 struct inode *ip; 1163 ufs_lbn_t lbn; 1164 int indx; 1165 ufs1_daddr_t *bap; 1166 { 1167 struct fs *fs; 1168 u_int cg; 1169 u_int avgbfree, startcg; 1170 1171 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1172 fs = ip->i_fs; 1173 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1174 if (lbn < NDADDR + NINDIR(fs)) { 1175 cg = ino_to_cg(fs, ip->i_number); 1176 return (cgbase(fs, cg) + fs->fs_frag); 1177 } 1178 /* 1179 * Find a cylinder with greater than average number of 1180 * unused data blocks. 1181 */ 1182 if (indx == 0 || bap[indx - 1] == 0) 1183 startcg = 1184 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1185 else 1186 startcg = dtog(fs, bap[indx - 1]) + 1; 1187 startcg %= fs->fs_ncg; 1188 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1189 for (cg = startcg; cg < fs->fs_ncg; cg++) 1190 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1191 fs->fs_cgrotor = cg; 1192 return (cgbase(fs, cg) + fs->fs_frag); 1193 } 1194 for (cg = 0; cg <= startcg; cg++) 1195 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1196 fs->fs_cgrotor = cg; 1197 return (cgbase(fs, cg) + fs->fs_frag); 1198 } 1199 return (0); 1200 } 1201 /* 1202 * We just always try to lay things out contiguously. 1203 */ 1204 return (bap[indx - 1] + fs->fs_frag); 1205 } 1206 1207 /* 1208 * Same as above, but for UFS2 1209 */ 1210 ufs2_daddr_t 1211 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1212 struct inode *ip; 1213 ufs_lbn_t lbn; 1214 int indx; 1215 ufs2_daddr_t *bap; 1216 { 1217 struct fs *fs; 1218 u_int cg; 1219 u_int avgbfree, startcg; 1220 1221 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1222 fs = ip->i_fs; 1223 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1224 if (lbn < NDADDR + NINDIR(fs)) { 1225 cg = ino_to_cg(fs, ip->i_number); 1226 return (cgbase(fs, cg) + fs->fs_frag); 1227 } 1228 /* 1229 * Find a cylinder with greater than average number of 1230 * unused data blocks. 1231 */ 1232 if (indx == 0 || bap[indx - 1] == 0) 1233 startcg = 1234 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1235 else 1236 startcg = dtog(fs, bap[indx - 1]) + 1; 1237 startcg %= fs->fs_ncg; 1238 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1239 for (cg = startcg; cg < fs->fs_ncg; cg++) 1240 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1241 fs->fs_cgrotor = cg; 1242 return (cgbase(fs, cg) + fs->fs_frag); 1243 } 1244 for (cg = 0; cg <= startcg; cg++) 1245 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1246 fs->fs_cgrotor = cg; 1247 return (cgbase(fs, cg) + fs->fs_frag); 1248 } 1249 return (0); 1250 } 1251 /* 1252 * We just always try to lay things out contiguously. 1253 */ 1254 return (bap[indx - 1] + fs->fs_frag); 1255 } 1256 1257 /* 1258 * Implement the cylinder overflow algorithm. 1259 * 1260 * The policy implemented by this algorithm is: 1261 * 1) allocate the block in its requested cylinder group. 1262 * 2) quadradically rehash on the cylinder group number. 1263 * 3) brute force search for a free block. 1264 * 1265 * Must be called with the UFS lock held. Will release the lock on success 1266 * and return with it held on failure. 1267 */ 1268 /*VARARGS5*/ 1269 static ufs2_daddr_t 1270 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1271 struct inode *ip; 1272 u_int cg; 1273 ufs2_daddr_t pref; 1274 int size; /* Search size for data blocks, mode for inodes */ 1275 int rsize; /* Real allocated size. */ 1276 allocfcn_t *allocator; 1277 { 1278 struct fs *fs; 1279 ufs2_daddr_t result; 1280 u_int i, icg = cg; 1281 1282 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED); 1283 #ifdef INVARIANTS 1284 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1285 panic("ffs_hashalloc: allocation on suspended filesystem"); 1286 #endif 1287 fs = ip->i_fs; 1288 /* 1289 * 1: preferred cylinder group 1290 */ 1291 result = (*allocator)(ip, cg, pref, size, rsize); 1292 if (result) 1293 return (result); 1294 /* 1295 * 2: quadratic rehash 1296 */ 1297 for (i = 1; i < fs->fs_ncg; i *= 2) { 1298 cg += i; 1299 if (cg >= fs->fs_ncg) 1300 cg -= fs->fs_ncg; 1301 result = (*allocator)(ip, cg, 0, size, rsize); 1302 if (result) 1303 return (result); 1304 } 1305 /* 1306 * 3: brute force search 1307 * Note that we start at i == 2, since 0 was checked initially, 1308 * and 1 is always checked in the quadratic rehash. 1309 */ 1310 cg = (icg + 2) % fs->fs_ncg; 1311 for (i = 2; i < fs->fs_ncg; i++) { 1312 result = (*allocator)(ip, cg, 0, size, rsize); 1313 if (result) 1314 return (result); 1315 cg++; 1316 if (cg == fs->fs_ncg) 1317 cg = 0; 1318 } 1319 return (0); 1320 } 1321 1322 /* 1323 * Determine whether a fragment can be extended. 1324 * 1325 * Check to see if the necessary fragments are available, and 1326 * if they are, allocate them. 1327 */ 1328 static ufs2_daddr_t 1329 ffs_fragextend(ip, cg, bprev, osize, nsize) 1330 struct inode *ip; 1331 u_int cg; 1332 ufs2_daddr_t bprev; 1333 int osize, nsize; 1334 { 1335 struct fs *fs; 1336 struct cg *cgp; 1337 struct buf *bp; 1338 struct ufsmount *ump; 1339 int nffree; 1340 long bno; 1341 int frags, bbase; 1342 int i, error; 1343 u_int8_t *blksfree; 1344 1345 ump = ip->i_ump; 1346 fs = ip->i_fs; 1347 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1348 return (0); 1349 frags = numfrags(fs, nsize); 1350 bbase = fragnum(fs, bprev); 1351 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1352 /* cannot extend across a block boundary */ 1353 return (0); 1354 } 1355 UFS_UNLOCK(ump); 1356 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1357 (int)fs->fs_cgsize, NOCRED, &bp); 1358 if (error) 1359 goto fail; 1360 cgp = (struct cg *)bp->b_data; 1361 if (!cg_chkmagic(cgp)) 1362 goto fail; 1363 bp->b_xflags |= BX_BKGRDWRITE; 1364 cgp->cg_old_time = cgp->cg_time = time_second; 1365 bno = dtogd(fs, bprev); 1366 blksfree = cg_blksfree(cgp); 1367 for (i = numfrags(fs, osize); i < frags; i++) 1368 if (isclr(blksfree, bno + i)) 1369 goto fail; 1370 /* 1371 * the current fragment can be extended 1372 * deduct the count on fragment being extended into 1373 * increase the count on the remaining fragment (if any) 1374 * allocate the extended piece 1375 */ 1376 for (i = frags; i < fs->fs_frag - bbase; i++) 1377 if (isclr(blksfree, bno + i)) 1378 break; 1379 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1380 if (i != frags) 1381 cgp->cg_frsum[i - frags]++; 1382 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1383 clrbit(blksfree, bno + i); 1384 cgp->cg_cs.cs_nffree--; 1385 nffree++; 1386 } 1387 UFS_LOCK(ump); 1388 fs->fs_cstotal.cs_nffree -= nffree; 1389 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1390 fs->fs_fmod = 1; 1391 ACTIVECLEAR(fs, cg); 1392 UFS_UNLOCK(ump); 1393 if (DOINGSOFTDEP(ITOV(ip))) 1394 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1395 frags, numfrags(fs, osize)); 1396 bdwrite(bp); 1397 return (bprev); 1398 1399 fail: 1400 brelse(bp); 1401 UFS_LOCK(ump); 1402 return (0); 1403 1404 } 1405 1406 /* 1407 * Determine whether a block can be allocated. 1408 * 1409 * Check to see if a block of the appropriate size is available, 1410 * and if it is, allocate it. 1411 */ 1412 static ufs2_daddr_t 1413 ffs_alloccg(ip, cg, bpref, size, rsize) 1414 struct inode *ip; 1415 u_int cg; 1416 ufs2_daddr_t bpref; 1417 int size; 1418 int rsize; 1419 { 1420 struct fs *fs; 1421 struct cg *cgp; 1422 struct buf *bp; 1423 struct ufsmount *ump; 1424 ufs1_daddr_t bno; 1425 ufs2_daddr_t blkno; 1426 int i, allocsiz, error, frags; 1427 u_int8_t *blksfree; 1428 1429 ump = ip->i_ump; 1430 fs = ip->i_fs; 1431 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1432 return (0); 1433 UFS_UNLOCK(ump); 1434 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1435 (int)fs->fs_cgsize, NOCRED, &bp); 1436 if (error) 1437 goto fail; 1438 cgp = (struct cg *)bp->b_data; 1439 if (!cg_chkmagic(cgp) || 1440 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1441 goto fail; 1442 bp->b_xflags |= BX_BKGRDWRITE; 1443 cgp->cg_old_time = cgp->cg_time = time_second; 1444 if (size == fs->fs_bsize) { 1445 UFS_LOCK(ump); 1446 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1447 ACTIVECLEAR(fs, cg); 1448 UFS_UNLOCK(ump); 1449 bdwrite(bp); 1450 return (blkno); 1451 } 1452 /* 1453 * check to see if any fragments are already available 1454 * allocsiz is the size which will be allocated, hacking 1455 * it down to a smaller size if necessary 1456 */ 1457 blksfree = cg_blksfree(cgp); 1458 frags = numfrags(fs, size); 1459 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1460 if (cgp->cg_frsum[allocsiz] != 0) 1461 break; 1462 if (allocsiz == fs->fs_frag) { 1463 /* 1464 * no fragments were available, so a block will be 1465 * allocated, and hacked up 1466 */ 1467 if (cgp->cg_cs.cs_nbfree == 0) 1468 goto fail; 1469 UFS_LOCK(ump); 1470 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1471 ACTIVECLEAR(fs, cg); 1472 UFS_UNLOCK(ump); 1473 bdwrite(bp); 1474 return (blkno); 1475 } 1476 KASSERT(size == rsize, 1477 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1478 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1479 if (bno < 0) 1480 goto fail; 1481 for (i = 0; i < frags; i++) 1482 clrbit(blksfree, bno + i); 1483 cgp->cg_cs.cs_nffree -= frags; 1484 cgp->cg_frsum[allocsiz]--; 1485 if (frags != allocsiz) 1486 cgp->cg_frsum[allocsiz - frags]++; 1487 UFS_LOCK(ump); 1488 fs->fs_cstotal.cs_nffree -= frags; 1489 fs->fs_cs(fs, cg).cs_nffree -= frags; 1490 fs->fs_fmod = 1; 1491 blkno = cgbase(fs, cg) + bno; 1492 ACTIVECLEAR(fs, cg); 1493 UFS_UNLOCK(ump); 1494 if (DOINGSOFTDEP(ITOV(ip))) 1495 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1496 bdwrite(bp); 1497 return (blkno); 1498 1499 fail: 1500 brelse(bp); 1501 UFS_LOCK(ump); 1502 return (0); 1503 } 1504 1505 /* 1506 * Allocate a block in a cylinder group. 1507 * 1508 * This algorithm implements the following policy: 1509 * 1) allocate the requested block. 1510 * 2) allocate a rotationally optimal block in the same cylinder. 1511 * 3) allocate the next available block on the block rotor for the 1512 * specified cylinder group. 1513 * Note that this routine only allocates fs_bsize blocks; these 1514 * blocks may be fragmented by the routine that allocates them. 1515 */ 1516 static ufs2_daddr_t 1517 ffs_alloccgblk(ip, bp, bpref, size) 1518 struct inode *ip; 1519 struct buf *bp; 1520 ufs2_daddr_t bpref; 1521 int size; 1522 { 1523 struct fs *fs; 1524 struct cg *cgp; 1525 struct ufsmount *ump; 1526 ufs1_daddr_t bno; 1527 ufs2_daddr_t blkno; 1528 u_int8_t *blksfree; 1529 int i; 1530 1531 fs = ip->i_fs; 1532 ump = ip->i_ump; 1533 mtx_assert(UFS_MTX(ump), MA_OWNED); 1534 cgp = (struct cg *)bp->b_data; 1535 blksfree = cg_blksfree(cgp); 1536 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1537 bpref = cgp->cg_rotor; 1538 } else { 1539 bpref = blknum(fs, bpref); 1540 bno = dtogd(fs, bpref); 1541 /* 1542 * if the requested block is available, use it 1543 */ 1544 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1545 goto gotit; 1546 } 1547 /* 1548 * Take the next available block in this cylinder group. 1549 */ 1550 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1551 if (bno < 0) 1552 return (0); 1553 cgp->cg_rotor = bno; 1554 gotit: 1555 blkno = fragstoblks(fs, bno); 1556 ffs_clrblock(fs, blksfree, (long)blkno); 1557 ffs_clusteracct(fs, cgp, blkno, -1); 1558 cgp->cg_cs.cs_nbfree--; 1559 fs->fs_cstotal.cs_nbfree--; 1560 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1561 fs->fs_fmod = 1; 1562 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1563 /* 1564 * If the caller didn't want the whole block free the frags here. 1565 */ 1566 size = numfrags(fs, size); 1567 if (size != fs->fs_frag) { 1568 bno = dtogd(fs, blkno); 1569 for (i = size; i < fs->fs_frag; i++) 1570 setbit(blksfree, bno + i); 1571 i = fs->fs_frag - size; 1572 cgp->cg_cs.cs_nffree += i; 1573 fs->fs_cstotal.cs_nffree += i; 1574 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1575 fs->fs_fmod = 1; 1576 cgp->cg_frsum[i]++; 1577 } 1578 /* XXX Fixme. */ 1579 UFS_UNLOCK(ump); 1580 if (DOINGSOFTDEP(ITOV(ip))) 1581 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, 1582 size, 0); 1583 UFS_LOCK(ump); 1584 return (blkno); 1585 } 1586 1587 /* 1588 * Determine whether a cluster can be allocated. 1589 * 1590 * We do not currently check for optimal rotational layout if there 1591 * are multiple choices in the same cylinder group. Instead we just 1592 * take the first one that we find following bpref. 1593 */ 1594 static ufs2_daddr_t 1595 ffs_clusteralloc(ip, cg, bpref, len, unused) 1596 struct inode *ip; 1597 u_int cg; 1598 ufs2_daddr_t bpref; 1599 int len; 1600 int unused; 1601 { 1602 struct fs *fs; 1603 struct cg *cgp; 1604 struct buf *bp; 1605 struct ufsmount *ump; 1606 int i, run, bit, map, got; 1607 ufs2_daddr_t bno; 1608 u_char *mapp; 1609 int32_t *lp; 1610 u_int8_t *blksfree; 1611 1612 fs = ip->i_fs; 1613 ump = ip->i_ump; 1614 if (fs->fs_maxcluster[cg] < len) 1615 return (0); 1616 UFS_UNLOCK(ump); 1617 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1618 NOCRED, &bp)) 1619 goto fail_lock; 1620 cgp = (struct cg *)bp->b_data; 1621 if (!cg_chkmagic(cgp)) 1622 goto fail_lock; 1623 bp->b_xflags |= BX_BKGRDWRITE; 1624 /* 1625 * Check to see if a cluster of the needed size (or bigger) is 1626 * available in this cylinder group. 1627 */ 1628 lp = &cg_clustersum(cgp)[len]; 1629 for (i = len; i <= fs->fs_contigsumsize; i++) 1630 if (*lp++ > 0) 1631 break; 1632 if (i > fs->fs_contigsumsize) { 1633 /* 1634 * This is the first time looking for a cluster in this 1635 * cylinder group. Update the cluster summary information 1636 * to reflect the true maximum sized cluster so that 1637 * future cluster allocation requests can avoid reading 1638 * the cylinder group map only to find no clusters. 1639 */ 1640 lp = &cg_clustersum(cgp)[len - 1]; 1641 for (i = len - 1; i > 0; i--) 1642 if (*lp-- > 0) 1643 break; 1644 UFS_LOCK(ump); 1645 fs->fs_maxcluster[cg] = i; 1646 goto fail; 1647 } 1648 /* 1649 * Search the cluster map to find a big enough cluster. 1650 * We take the first one that we find, even if it is larger 1651 * than we need as we prefer to get one close to the previous 1652 * block allocation. We do not search before the current 1653 * preference point as we do not want to allocate a block 1654 * that is allocated before the previous one (as we will 1655 * then have to wait for another pass of the elevator 1656 * algorithm before it will be read). We prefer to fail and 1657 * be recalled to try an allocation in the next cylinder group. 1658 */ 1659 if (dtog(fs, bpref) != cg) 1660 bpref = 0; 1661 else 1662 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1663 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1664 map = *mapp++; 1665 bit = 1 << (bpref % NBBY); 1666 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1667 if ((map & bit) == 0) { 1668 run = 0; 1669 } else { 1670 run++; 1671 if (run == len) 1672 break; 1673 } 1674 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1675 bit <<= 1; 1676 } else { 1677 map = *mapp++; 1678 bit = 1; 1679 } 1680 } 1681 if (got >= cgp->cg_nclusterblks) 1682 goto fail_lock; 1683 /* 1684 * Allocate the cluster that we have found. 1685 */ 1686 blksfree = cg_blksfree(cgp); 1687 for (i = 1; i <= len; i++) 1688 if (!ffs_isblock(fs, blksfree, got - run + i)) 1689 panic("ffs_clusteralloc: map mismatch"); 1690 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1691 if (dtog(fs, bno) != cg) 1692 panic("ffs_clusteralloc: allocated out of group"); 1693 len = blkstofrags(fs, len); 1694 UFS_LOCK(ump); 1695 for (i = 0; i < len; i += fs->fs_frag) 1696 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 1697 panic("ffs_clusteralloc: lost block"); 1698 ACTIVECLEAR(fs, cg); 1699 UFS_UNLOCK(ump); 1700 bdwrite(bp); 1701 return (bno); 1702 1703 fail_lock: 1704 UFS_LOCK(ump); 1705 fail: 1706 brelse(bp); 1707 return (0); 1708 } 1709 1710 /* 1711 * Determine whether an inode can be allocated. 1712 * 1713 * Check to see if an inode is available, and if it is, 1714 * allocate it using the following policy: 1715 * 1) allocate the requested inode. 1716 * 2) allocate the next available inode after the requested 1717 * inode in the specified cylinder group. 1718 */ 1719 static ufs2_daddr_t 1720 ffs_nodealloccg(ip, cg, ipref, mode, unused) 1721 struct inode *ip; 1722 u_int cg; 1723 ufs2_daddr_t ipref; 1724 int mode; 1725 int unused; 1726 { 1727 struct fs *fs; 1728 struct cg *cgp; 1729 struct buf *bp, *ibp; 1730 struct ufsmount *ump; 1731 u_int8_t *inosused; 1732 struct ufs2_dinode *dp2; 1733 int error, start, len, loc, map, i; 1734 1735 fs = ip->i_fs; 1736 ump = ip->i_ump; 1737 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1738 return (0); 1739 UFS_UNLOCK(ump); 1740 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1741 (int)fs->fs_cgsize, NOCRED, &bp); 1742 if (error) { 1743 brelse(bp); 1744 UFS_LOCK(ump); 1745 return (0); 1746 } 1747 cgp = (struct cg *)bp->b_data; 1748 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1749 brelse(bp); 1750 UFS_LOCK(ump); 1751 return (0); 1752 } 1753 bp->b_xflags |= BX_BKGRDWRITE; 1754 cgp->cg_old_time = cgp->cg_time = time_second; 1755 inosused = cg_inosused(cgp); 1756 if (ipref) { 1757 ipref %= fs->fs_ipg; 1758 if (isclr(inosused, ipref)) 1759 goto gotit; 1760 } 1761 start = cgp->cg_irotor / NBBY; 1762 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1763 loc = skpc(0xff, len, &inosused[start]); 1764 if (loc == 0) { 1765 len = start + 1; 1766 start = 0; 1767 loc = skpc(0xff, len, &inosused[0]); 1768 if (loc == 0) { 1769 printf("cg = %d, irotor = %ld, fs = %s\n", 1770 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1771 panic("ffs_nodealloccg: map corrupted"); 1772 /* NOTREACHED */ 1773 } 1774 } 1775 i = start + len - loc; 1776 map = inosused[i]; 1777 ipref = i * NBBY; 1778 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1779 if ((map & i) == 0) { 1780 cgp->cg_irotor = ipref; 1781 goto gotit; 1782 } 1783 } 1784 printf("fs = %s\n", fs->fs_fsmnt); 1785 panic("ffs_nodealloccg: block not in map"); 1786 /* NOTREACHED */ 1787 gotit: 1788 /* 1789 * Check to see if we need to initialize more inodes. 1790 */ 1791 ibp = NULL; 1792 if (fs->fs_magic == FS_UFS2_MAGIC && 1793 ipref + INOPB(fs) > cgp->cg_initediblk && 1794 cgp->cg_initediblk < cgp->cg_niblk) { 1795 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1796 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1797 (int)fs->fs_bsize, 0, 0, 0); 1798 bzero(ibp->b_data, (int)fs->fs_bsize); 1799 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1800 for (i = 0; i < INOPB(fs); i++) { 1801 dp2->di_gen = arc4random() / 2 + 1; 1802 dp2++; 1803 } 1804 cgp->cg_initediblk += INOPB(fs); 1805 } 1806 UFS_LOCK(ump); 1807 ACTIVECLEAR(fs, cg); 1808 setbit(inosused, ipref); 1809 cgp->cg_cs.cs_nifree--; 1810 fs->fs_cstotal.cs_nifree--; 1811 fs->fs_cs(fs, cg).cs_nifree--; 1812 fs->fs_fmod = 1; 1813 if ((mode & IFMT) == IFDIR) { 1814 cgp->cg_cs.cs_ndir++; 1815 fs->fs_cstotal.cs_ndir++; 1816 fs->fs_cs(fs, cg).cs_ndir++; 1817 } 1818 UFS_UNLOCK(ump); 1819 if (DOINGSOFTDEP(ITOV(ip))) 1820 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1821 bdwrite(bp); 1822 if (ibp != NULL) 1823 bawrite(ibp); 1824 return ((ino_t)(cg * fs->fs_ipg + ipref)); 1825 } 1826 1827 /* 1828 * Free a block or fragment. 1829 * 1830 * The specified block or fragment is placed back in the 1831 * free map. If a fragment is deallocated, a possible 1832 * block reassembly is checked. 1833 */ 1834 void 1835 ffs_blkfree(ump, fs, devvp, bno, size, inum, dephd) 1836 struct ufsmount *ump; 1837 struct fs *fs; 1838 struct vnode *devvp; 1839 ufs2_daddr_t bno; 1840 long size; 1841 ino_t inum; 1842 struct workhead *dephd; 1843 { 1844 struct mount *mp; 1845 struct cg *cgp; 1846 struct buf *bp; 1847 ufs1_daddr_t fragno, cgbno; 1848 ufs2_daddr_t cgblkno; 1849 int i, blk, frags, bbase; 1850 u_int cg; 1851 u_int8_t *blksfree; 1852 struct cdev *dev; 1853 1854 cg = dtog(fs, bno); 1855 if (devvp->v_type == VREG) { 1856 /* devvp is a snapshot */ 1857 dev = VTOI(devvp)->i_devvp->v_rdev; 1858 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1859 } else { 1860 /* devvp is a normal disk device */ 1861 dev = devvp->v_rdev; 1862 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1863 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree"); 1864 if ((devvp->v_vflag & VV_COPYONWRITE) && 1865 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1866 return; 1867 } 1868 #ifdef INVARIANTS 1869 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1870 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1871 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 1872 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1873 size, fs->fs_fsmnt); 1874 panic("ffs_blkfree: bad size"); 1875 } 1876 #endif 1877 if ((u_int)bno >= fs->fs_size) { 1878 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1879 (u_long)inum); 1880 ffs_fserr(fs, inum, "bad block"); 1881 return; 1882 } 1883 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) { 1884 brelse(bp); 1885 return; 1886 } 1887 cgp = (struct cg *)bp->b_data; 1888 if (!cg_chkmagic(cgp)) { 1889 brelse(bp); 1890 return; 1891 } 1892 bp->b_xflags |= BX_BKGRDWRITE; 1893 cgp->cg_old_time = cgp->cg_time = time_second; 1894 cgbno = dtogd(fs, bno); 1895 blksfree = cg_blksfree(cgp); 1896 UFS_LOCK(ump); 1897 if (size == fs->fs_bsize) { 1898 fragno = fragstoblks(fs, cgbno); 1899 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1900 if (devvp->v_type == VREG) { 1901 UFS_UNLOCK(ump); 1902 /* devvp is a snapshot */ 1903 brelse(bp); 1904 return; 1905 } 1906 printf("dev = %s, block = %jd, fs = %s\n", 1907 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1908 panic("ffs_blkfree: freeing free block"); 1909 } 1910 ffs_setblock(fs, blksfree, fragno); 1911 ffs_clusteracct(fs, cgp, fragno, 1); 1912 cgp->cg_cs.cs_nbfree++; 1913 fs->fs_cstotal.cs_nbfree++; 1914 fs->fs_cs(fs, cg).cs_nbfree++; 1915 } else { 1916 bbase = cgbno - fragnum(fs, cgbno); 1917 /* 1918 * decrement the counts associated with the old frags 1919 */ 1920 blk = blkmap(fs, blksfree, bbase); 1921 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1922 /* 1923 * deallocate the fragment 1924 */ 1925 frags = numfrags(fs, size); 1926 for (i = 0; i < frags; i++) { 1927 if (isset(blksfree, cgbno + i)) { 1928 printf("dev = %s, block = %jd, fs = %s\n", 1929 devtoname(dev), (intmax_t)(bno + i), 1930 fs->fs_fsmnt); 1931 panic("ffs_blkfree: freeing free frag"); 1932 } 1933 setbit(blksfree, cgbno + i); 1934 } 1935 cgp->cg_cs.cs_nffree += i; 1936 fs->fs_cstotal.cs_nffree += i; 1937 fs->fs_cs(fs, cg).cs_nffree += i; 1938 /* 1939 * add back in counts associated with the new frags 1940 */ 1941 blk = blkmap(fs, blksfree, bbase); 1942 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1943 /* 1944 * if a complete block has been reassembled, account for it 1945 */ 1946 fragno = fragstoblks(fs, bbase); 1947 if (ffs_isblock(fs, blksfree, fragno)) { 1948 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1949 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1950 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1951 ffs_clusteracct(fs, cgp, fragno, 1); 1952 cgp->cg_cs.cs_nbfree++; 1953 fs->fs_cstotal.cs_nbfree++; 1954 fs->fs_cs(fs, cg).cs_nbfree++; 1955 } 1956 } 1957 fs->fs_fmod = 1; 1958 ACTIVECLEAR(fs, cg); 1959 UFS_UNLOCK(ump); 1960 mp = UFSTOVFS(ump); 1961 if (mp->mnt_flag & MNT_SOFTDEP && devvp->v_type != VREG) 1962 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 1963 numfrags(fs, size), dephd); 1964 bdwrite(bp); 1965 } 1966 1967 #ifdef INVARIANTS 1968 /* 1969 * Verify allocation of a block or fragment. Returns true if block or 1970 * fragment is allocated, false if it is free. 1971 */ 1972 static int 1973 ffs_checkblk(ip, bno, size) 1974 struct inode *ip; 1975 ufs2_daddr_t bno; 1976 long size; 1977 { 1978 struct fs *fs; 1979 struct cg *cgp; 1980 struct buf *bp; 1981 ufs1_daddr_t cgbno; 1982 int i, error, frags, free; 1983 u_int8_t *blksfree; 1984 1985 fs = ip->i_fs; 1986 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1987 printf("bsize = %ld, size = %ld, fs = %s\n", 1988 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1989 panic("ffs_checkblk: bad size"); 1990 } 1991 if ((u_int)bno >= fs->fs_size) 1992 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 1993 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1994 (int)fs->fs_cgsize, NOCRED, &bp); 1995 if (error) 1996 panic("ffs_checkblk: cg bread failed"); 1997 cgp = (struct cg *)bp->b_data; 1998 if (!cg_chkmagic(cgp)) 1999 panic("ffs_checkblk: cg magic mismatch"); 2000 bp->b_xflags |= BX_BKGRDWRITE; 2001 blksfree = cg_blksfree(cgp); 2002 cgbno = dtogd(fs, bno); 2003 if (size == fs->fs_bsize) { 2004 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2005 } else { 2006 frags = numfrags(fs, size); 2007 for (free = 0, i = 0; i < frags; i++) 2008 if (isset(blksfree, cgbno + i)) 2009 free++; 2010 if (free != 0 && free != frags) 2011 panic("ffs_checkblk: partially free fragment"); 2012 } 2013 brelse(bp); 2014 return (!free); 2015 } 2016 #endif /* INVARIANTS */ 2017 2018 /* 2019 * Free an inode. 2020 */ 2021 int 2022 ffs_vfree(pvp, ino, mode) 2023 struct vnode *pvp; 2024 ino_t ino; 2025 int mode; 2026 { 2027 struct inode *ip; 2028 2029 if (DOINGSOFTDEP(pvp)) { 2030 softdep_freefile(pvp, ino, mode); 2031 return (0); 2032 } 2033 ip = VTOI(pvp); 2034 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode, 2035 NULL)); 2036 } 2037 2038 /* 2039 * Do the actual free operation. 2040 * The specified inode is placed back in the free map. 2041 */ 2042 int 2043 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2044 struct ufsmount *ump; 2045 struct fs *fs; 2046 struct vnode *devvp; 2047 ino_t ino; 2048 int mode; 2049 struct workhead *wkhd; 2050 { 2051 struct cg *cgp; 2052 struct buf *bp; 2053 ufs2_daddr_t cgbno; 2054 int error; 2055 u_int cg; 2056 u_int8_t *inosused; 2057 struct cdev *dev; 2058 2059 cg = ino_to_cg(fs, ino); 2060 if (devvp->v_type == VREG) { 2061 /* devvp is a snapshot */ 2062 dev = VTOI(devvp)->i_devvp->v_rdev; 2063 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2064 } else { 2065 /* devvp is a normal disk device */ 2066 dev = devvp->v_rdev; 2067 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2068 } 2069 if (ino >= fs->fs_ipg * fs->fs_ncg) 2070 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s", 2071 devtoname(dev), (u_long)ino, fs->fs_fsmnt); 2072 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 2073 brelse(bp); 2074 return (error); 2075 } 2076 cgp = (struct cg *)bp->b_data; 2077 if (!cg_chkmagic(cgp)) { 2078 brelse(bp); 2079 return (0); 2080 } 2081 bp->b_xflags |= BX_BKGRDWRITE; 2082 cgp->cg_old_time = cgp->cg_time = time_second; 2083 inosused = cg_inosused(cgp); 2084 ino %= fs->fs_ipg; 2085 if (isclr(inosused, ino)) { 2086 printf("dev = %s, ino = %u, fs = %s\n", devtoname(dev), 2087 ino + cg * fs->fs_ipg, fs->fs_fsmnt); 2088 if (fs->fs_ronly == 0) 2089 panic("ffs_freefile: freeing free inode"); 2090 } 2091 clrbit(inosused, ino); 2092 if (ino < cgp->cg_irotor) 2093 cgp->cg_irotor = ino; 2094 cgp->cg_cs.cs_nifree++; 2095 UFS_LOCK(ump); 2096 fs->fs_cstotal.cs_nifree++; 2097 fs->fs_cs(fs, cg).cs_nifree++; 2098 if ((mode & IFMT) == IFDIR) { 2099 cgp->cg_cs.cs_ndir--; 2100 fs->fs_cstotal.cs_ndir--; 2101 fs->fs_cs(fs, cg).cs_ndir--; 2102 } 2103 fs->fs_fmod = 1; 2104 ACTIVECLEAR(fs, cg); 2105 UFS_UNLOCK(ump); 2106 if (UFSTOVFS(ump)->mnt_flag & MNT_SOFTDEP && devvp->v_type != VREG) 2107 softdep_setup_inofree(UFSTOVFS(ump), bp, 2108 ino + cg * fs->fs_ipg, wkhd); 2109 bdwrite(bp); 2110 return (0); 2111 } 2112 2113 /* 2114 * Check to see if a file is free. 2115 */ 2116 int 2117 ffs_checkfreefile(fs, devvp, ino) 2118 struct fs *fs; 2119 struct vnode *devvp; 2120 ino_t ino; 2121 { 2122 struct cg *cgp; 2123 struct buf *bp; 2124 ufs2_daddr_t cgbno; 2125 int ret; 2126 u_int cg; 2127 u_int8_t *inosused; 2128 2129 cg = ino_to_cg(fs, ino); 2130 if (devvp->v_type == VREG) { 2131 /* devvp is a snapshot */ 2132 cgbno = fragstoblks(fs, cgtod(fs, cg)); 2133 } else { 2134 /* devvp is a normal disk device */ 2135 cgbno = fsbtodb(fs, cgtod(fs, cg)); 2136 } 2137 if (ino >= fs->fs_ipg * fs->fs_ncg) 2138 return (1); 2139 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) { 2140 brelse(bp); 2141 return (1); 2142 } 2143 cgp = (struct cg *)bp->b_data; 2144 if (!cg_chkmagic(cgp)) { 2145 brelse(bp); 2146 return (1); 2147 } 2148 inosused = cg_inosused(cgp); 2149 ino %= fs->fs_ipg; 2150 ret = isclr(inosused, ino); 2151 brelse(bp); 2152 return (ret); 2153 } 2154 2155 /* 2156 * Find a block of the specified size in the specified cylinder group. 2157 * 2158 * It is a panic if a request is made to find a block if none are 2159 * available. 2160 */ 2161 static ufs1_daddr_t 2162 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2163 struct fs *fs; 2164 struct cg *cgp; 2165 ufs2_daddr_t bpref; 2166 int allocsiz; 2167 { 2168 ufs1_daddr_t bno; 2169 int start, len, loc, i; 2170 int blk, field, subfield, pos; 2171 u_int8_t *blksfree; 2172 2173 /* 2174 * find the fragment by searching through the free block 2175 * map for an appropriate bit pattern 2176 */ 2177 if (bpref) 2178 start = dtogd(fs, bpref) / NBBY; 2179 else 2180 start = cgp->cg_frotor / NBBY; 2181 blksfree = cg_blksfree(cgp); 2182 len = howmany(fs->fs_fpg, NBBY) - start; 2183 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2184 fragtbl[fs->fs_frag], 2185 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2186 if (loc == 0) { 2187 len = start + 1; 2188 start = 0; 2189 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2190 fragtbl[fs->fs_frag], 2191 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2192 if (loc == 0) { 2193 printf("start = %d, len = %d, fs = %s\n", 2194 start, len, fs->fs_fsmnt); 2195 panic("ffs_alloccg: map corrupted"); 2196 /* NOTREACHED */ 2197 } 2198 } 2199 bno = (start + len - loc) * NBBY; 2200 cgp->cg_frotor = bno; 2201 /* 2202 * found the byte in the map 2203 * sift through the bits to find the selected frag 2204 */ 2205 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2206 blk = blkmap(fs, blksfree, bno); 2207 blk <<= 1; 2208 field = around[allocsiz]; 2209 subfield = inside[allocsiz]; 2210 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2211 if ((blk & field) == subfield) 2212 return (bno + pos); 2213 field <<= 1; 2214 subfield <<= 1; 2215 } 2216 } 2217 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2218 panic("ffs_alloccg: block not in map"); 2219 return (-1); 2220 } 2221 2222 /* 2223 * Fserr prints the name of a filesystem with an error diagnostic. 2224 * 2225 * The form of the error message is: 2226 * fs: error message 2227 */ 2228 static void 2229 ffs_fserr(fs, inum, cp) 2230 struct fs *fs; 2231 ino_t inum; 2232 char *cp; 2233 { 2234 struct thread *td = curthread; /* XXX */ 2235 struct proc *p = td->td_proc; 2236 2237 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2238 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp); 2239 } 2240 2241 /* 2242 * This function provides the capability for the fsck program to 2243 * update an active filesystem. Fourteen operations are provided: 2244 * 2245 * adjrefcnt(inode, amt) - adjusts the reference count on the 2246 * specified inode by the specified amount. Under normal 2247 * operation the count should always go down. Decrementing 2248 * the count to zero will cause the inode to be freed. 2249 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2250 * by the specifed amount. 2251 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 2252 * adjust the superblock summary. 2253 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2254 * are marked as free. Inodes should never have to be marked 2255 * as in use. 2256 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2257 * are marked as free. Inodes should never have to be marked 2258 * as in use. 2259 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2260 * are marked as free. Blocks should never have to be marked 2261 * as in use. 2262 * setflags(flags, set/clear) - the fs_flags field has the specified 2263 * flags set (second parameter +1) or cleared (second parameter -1). 2264 * setcwd(dirinode) - set the current directory to dirinode in the 2265 * filesystem associated with the snapshot. 2266 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 2267 * in the current directory is oldvalue then change it to newvalue. 2268 * unlink(nameptr, oldvalue) - Verify that the inode number associated 2269 * with nameptr in the current directory is oldvalue then unlink it. 2270 */ 2271 2272 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2273 2274 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2275 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2276 2277 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2278 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2279 2280 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 2281 sysctl_ffs_fsck, "Adjust number of directories"); 2282 2283 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 2284 sysctl_ffs_fsck, "Adjust number of free blocks"); 2285 2286 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 2287 sysctl_ffs_fsck, "Adjust number of free inodes"); 2288 2289 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 2290 sysctl_ffs_fsck, "Adjust number of free frags"); 2291 2292 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 2293 sysctl_ffs_fsck, "Adjust number of free clusters"); 2294 2295 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2296 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2297 2298 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2299 sysctl_ffs_fsck, "Free Range of File Inodes"); 2300 2301 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2302 sysctl_ffs_fsck, "Free Range of Blocks"); 2303 2304 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2305 sysctl_ffs_fsck, "Change Filesystem Flags"); 2306 2307 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 2308 sysctl_ffs_fsck, "Set Current Working Directory"); 2309 2310 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 2311 sysctl_ffs_fsck, "Change Value of .. Entry"); 2312 2313 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 2314 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 2315 2316 #ifdef DEBUG 2317 static int fsckcmds = 0; 2318 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2319 #endif /* DEBUG */ 2320 2321 static int 2322 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2323 { 2324 struct thread *td = curthread; 2325 struct fsck_cmd cmd; 2326 struct ufsmount *ump; 2327 struct vnode *vp, *vpold, *dvp, *fdvp; 2328 struct inode *ip, *dp; 2329 struct mount *mp; 2330 struct fs *fs; 2331 ufs2_daddr_t blkno; 2332 long blkcnt, blksize; 2333 struct filedesc *fdp; 2334 struct file *fp; 2335 int vfslocked, filetype, error; 2336 2337 if (req->newlen > sizeof cmd) 2338 return (EBADRPC); 2339 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2340 return (error); 2341 if (cmd.version != FFS_CMD_VERSION) 2342 return (ERPCMISMATCH); 2343 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2344 return (error); 2345 vp = fp->f_data; 2346 if (vp->v_type != VREG && vp->v_type != VDIR) { 2347 fdrop(fp, td); 2348 return (EINVAL); 2349 } 2350 vn_start_write(vp, &mp, V_WAIT); 2351 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2352 vn_finished_write(mp); 2353 fdrop(fp, td); 2354 return (EINVAL); 2355 } 2356 if (mp->mnt_flag & MNT_RDONLY) { 2357 vn_finished_write(mp); 2358 fdrop(fp, td); 2359 return (EROFS); 2360 } 2361 ump = VFSTOUFS(mp); 2362 fs = ump->um_fs; 2363 filetype = IFREG; 2364 2365 switch (oidp->oid_number) { 2366 2367 case FFS_SET_FLAGS: 2368 #ifdef DEBUG 2369 if (fsckcmds) 2370 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2371 cmd.size > 0 ? "set" : "clear"); 2372 #endif /* DEBUG */ 2373 if (cmd.size > 0) 2374 fs->fs_flags |= (long)cmd.value; 2375 else 2376 fs->fs_flags &= ~(long)cmd.value; 2377 break; 2378 2379 case FFS_ADJ_REFCNT: 2380 #ifdef DEBUG 2381 if (fsckcmds) { 2382 printf("%s: adjust inode %jd count by %jd\n", 2383 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2384 (intmax_t)cmd.size); 2385 } 2386 #endif /* DEBUG */ 2387 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2388 break; 2389 ip = VTOI(vp); 2390 ip->i_nlink += cmd.size; 2391 DIP_SET(ip, i_nlink, ip->i_nlink); 2392 ip->i_effnlink += cmd.size; 2393 ip->i_flag |= IN_CHANGE; 2394 if (DOINGSOFTDEP(vp)) 2395 softdep_change_linkcnt(ip); 2396 vput(vp); 2397 break; 2398 2399 case FFS_ADJ_BLKCNT: 2400 #ifdef DEBUG 2401 if (fsckcmds) { 2402 printf("%s: adjust inode %jd block count by %jd\n", 2403 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2404 (intmax_t)cmd.size); 2405 } 2406 #endif /* DEBUG */ 2407 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2408 break; 2409 ip = VTOI(vp); 2410 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 2411 ip->i_flag |= IN_CHANGE; 2412 vput(vp); 2413 break; 2414 2415 case FFS_DIR_FREE: 2416 filetype = IFDIR; 2417 /* fall through */ 2418 2419 case FFS_FILE_FREE: 2420 #ifdef DEBUG 2421 if (fsckcmds) { 2422 if (cmd.size == 1) 2423 printf("%s: free %s inode %d\n", 2424 mp->mnt_stat.f_mntonname, 2425 filetype == IFDIR ? "directory" : "file", 2426 (ino_t)cmd.value); 2427 else 2428 printf("%s: free %s inodes %d-%d\n", 2429 mp->mnt_stat.f_mntonname, 2430 filetype == IFDIR ? "directory" : "file", 2431 (ino_t)cmd.value, 2432 (ino_t)(cmd.value + cmd.size - 1)); 2433 } 2434 #endif /* DEBUG */ 2435 while (cmd.size > 0) { 2436 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 2437 cmd.value, filetype, NULL))) 2438 break; 2439 cmd.size -= 1; 2440 cmd.value += 1; 2441 } 2442 break; 2443 2444 case FFS_BLK_FREE: 2445 #ifdef DEBUG 2446 if (fsckcmds) { 2447 if (cmd.size == 1) 2448 printf("%s: free block %jd\n", 2449 mp->mnt_stat.f_mntonname, 2450 (intmax_t)cmd.value); 2451 else 2452 printf("%s: free blocks %jd-%jd\n", 2453 mp->mnt_stat.f_mntonname, 2454 (intmax_t)cmd.value, 2455 (intmax_t)cmd.value + cmd.size - 1); 2456 } 2457 #endif /* DEBUG */ 2458 blkno = cmd.value; 2459 blkcnt = cmd.size; 2460 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2461 while (blkcnt > 0) { 2462 if (blksize > blkcnt) 2463 blksize = blkcnt; 2464 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 2465 blksize * fs->fs_fsize, ROOTINO, NULL); 2466 blkno += blksize; 2467 blkcnt -= blksize; 2468 blksize = fs->fs_frag; 2469 } 2470 break; 2471 2472 /* 2473 * Adjust superblock summaries. fsck(8) is expected to 2474 * submit deltas when necessary. 2475 */ 2476 case FFS_ADJ_NDIR: 2477 #ifdef DEBUG 2478 if (fsckcmds) { 2479 printf("%s: adjust number of directories by %jd\n", 2480 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2481 } 2482 #endif /* DEBUG */ 2483 fs->fs_cstotal.cs_ndir += cmd.value; 2484 break; 2485 2486 case FFS_ADJ_NBFREE: 2487 #ifdef DEBUG 2488 if (fsckcmds) { 2489 printf("%s: adjust number of free blocks by %+jd\n", 2490 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2491 } 2492 #endif /* DEBUG */ 2493 fs->fs_cstotal.cs_nbfree += cmd.value; 2494 break; 2495 2496 case FFS_ADJ_NIFREE: 2497 #ifdef DEBUG 2498 if (fsckcmds) { 2499 printf("%s: adjust number of free inodes by %+jd\n", 2500 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2501 } 2502 #endif /* DEBUG */ 2503 fs->fs_cstotal.cs_nifree += cmd.value; 2504 break; 2505 2506 case FFS_ADJ_NFFREE: 2507 #ifdef DEBUG 2508 if (fsckcmds) { 2509 printf("%s: adjust number of free frags by %+jd\n", 2510 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2511 } 2512 #endif /* DEBUG */ 2513 fs->fs_cstotal.cs_nffree += cmd.value; 2514 break; 2515 2516 case FFS_ADJ_NUMCLUSTERS: 2517 #ifdef DEBUG 2518 if (fsckcmds) { 2519 printf("%s: adjust number of free clusters by %+jd\n", 2520 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2521 } 2522 #endif /* DEBUG */ 2523 fs->fs_cstotal.cs_numclusters += cmd.value; 2524 break; 2525 2526 case FFS_SET_CWD: 2527 #ifdef DEBUG 2528 if (fsckcmds) { 2529 printf("%s: set current directory to inode %jd\n", 2530 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 2531 } 2532 #endif /* DEBUG */ 2533 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 2534 break; 2535 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2536 AUDIT_ARG_VNODE1(vp); 2537 if ((error = change_dir(vp, td)) != 0) { 2538 vput(vp); 2539 VFS_UNLOCK_GIANT(vfslocked); 2540 break; 2541 } 2542 VOP_UNLOCK(vp, 0); 2543 VFS_UNLOCK_GIANT(vfslocked); 2544 fdp = td->td_proc->p_fd; 2545 FILEDESC_XLOCK(fdp); 2546 vpold = fdp->fd_cdir; 2547 fdp->fd_cdir = vp; 2548 FILEDESC_XUNLOCK(fdp); 2549 vfslocked = VFS_LOCK_GIANT(vpold->v_mount); 2550 vrele(vpold); 2551 VFS_UNLOCK_GIANT(vfslocked); 2552 break; 2553 2554 case FFS_SET_DOTDOT: 2555 #ifdef DEBUG 2556 if (fsckcmds) { 2557 printf("%s: change .. in cwd from %jd to %jd\n", 2558 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 2559 (intmax_t)cmd.size); 2560 } 2561 #endif /* DEBUG */ 2562 /* 2563 * First we have to get and lock the parent directory 2564 * to which ".." points. 2565 */ 2566 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 2567 if (error) 2568 break; 2569 /* 2570 * Now we get and lock the child directory containing "..". 2571 */ 2572 FILEDESC_SLOCK(td->td_proc->p_fd); 2573 dvp = td->td_proc->p_fd->fd_cdir; 2574 FILEDESC_SUNLOCK(td->td_proc->p_fd); 2575 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 2576 vput(fdvp); 2577 break; 2578 } 2579 dp = VTOI(dvp); 2580 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 2581 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 2582 DT_DIR, 0); 2583 cache_purge(fdvp); 2584 cache_purge(dvp); 2585 vput(dvp); 2586 vput(fdvp); 2587 break; 2588 2589 case FFS_UNLINK: 2590 #ifdef DEBUG 2591 if (fsckcmds) { 2592 char buf[32]; 2593 2594 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 2595 strncpy(buf, "Name_too_long", 32); 2596 printf("%s: unlink %s (inode %jd)\n", 2597 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 2598 } 2599 #endif /* DEBUG */ 2600 /* 2601 * kern_unlinkat will do its own start/finish writes and 2602 * they do not nest, so drop ours here. Setting mp == NULL 2603 * indicates that vn_finished_write is not needed down below. 2604 */ 2605 vn_finished_write(mp); 2606 mp = NULL; 2607 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 2608 UIO_USERSPACE, (ino_t)cmd.size); 2609 break; 2610 2611 default: 2612 #ifdef DEBUG 2613 if (fsckcmds) { 2614 printf("Invalid request %d from fsck\n", 2615 oidp->oid_number); 2616 } 2617 #endif /* DEBUG */ 2618 error = EINVAL; 2619 break; 2620 2621 } 2622 fdrop(fp, td); 2623 vn_finished_write(mp); 2624 return (error); 2625 } 2626