1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 */ 61 62 #include <sys/cdefs.h> 63 #include "opt_quota.h" 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/bio.h> 68 #include <sys/buf.h> 69 #include <sys/capsicum.h> 70 #include <sys/conf.h> 71 #include <sys/fcntl.h> 72 #include <sys/file.h> 73 #include <sys/filedesc.h> 74 #include <sys/gsb_crc32.h> 75 #include <sys/kernel.h> 76 #include <sys/mount.h> 77 #include <sys/priv.h> 78 #include <sys/proc.h> 79 #include <sys/stat.h> 80 #include <sys/syscallsubr.h> 81 #include <sys/sysctl.h> 82 #include <sys/syslog.h> 83 #include <sys/taskqueue.h> 84 #include <sys/vnode.h> 85 86 #include <security/audit/audit.h> 87 88 #include <geom/geom.h> 89 #include <geom/geom_vfs.h> 90 91 #include <ufs/ufs/dir.h> 92 #include <ufs/ufs/extattr.h> 93 #include <ufs/ufs/quota.h> 94 #include <ufs/ufs/inode.h> 95 #include <ufs/ufs/ufs_extern.h> 96 #include <ufs/ufs/ufsmount.h> 97 98 #include <ufs/ffs/fs.h> 99 #include <ufs/ffs/ffs_extern.h> 100 #include <ufs/ffs/softdep.h> 101 102 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, uint64_t cg, 103 ufs2_daddr_t bpref, int size, int rsize); 104 105 static ufs2_daddr_t ffs_alloccg(struct inode *, uint64_t, ufs2_daddr_t, int, 106 int); 107 static ufs2_daddr_t 108 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 109 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 110 struct vnode *, ufs2_daddr_t, long, ino_t, 111 struct workhead *); 112 #ifdef INVARIANTS 113 static int ffs_checkfreeblk(struct inode *, ufs2_daddr_t, long); 114 #endif 115 static void ffs_checkcgintegrity(struct fs *, uint64_t, int); 116 static ufs2_daddr_t ffs_clusteralloc(struct inode *, uint64_t, ufs2_daddr_t, 117 int); 118 static ino_t ffs_dirpref(struct inode *); 119 static ufs2_daddr_t ffs_fragextend(struct inode *, uint64_t, ufs2_daddr_t, 120 int, int); 121 static ufs2_daddr_t ffs_hashalloc(struct inode *, uint64_t, ufs2_daddr_t, 122 int, int, allocfcn_t *); 123 static ufs2_daddr_t ffs_nodealloccg(struct inode *, uint64_t, ufs2_daddr_t, int, 124 int); 125 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 126 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 127 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 128 static void ffs_ckhash_cg(struct buf *); 129 130 /* 131 * Allocate a block in the filesystem. 132 * 133 * The size of the requested block is given, which must be some 134 * multiple of fs_fsize and <= fs_bsize. 135 * A preference may be optionally specified. If a preference is given 136 * the following hierarchy is used to allocate a block: 137 * 1) allocate the requested block. 138 * 2) allocate a rotationally optimal block in the same cylinder. 139 * 3) allocate a block in the same cylinder group. 140 * 4) quadratically rehash into other cylinder groups, until an 141 * available block is located. 142 * If no block preference is given the following hierarchy is used 143 * to allocate a block: 144 * 1) allocate a block in the cylinder group that contains the 145 * inode for the file. 146 * 2) quadratically rehash into other cylinder groups, until an 147 * available block is located. 148 */ 149 int 150 ffs_alloc(struct inode *ip, 151 ufs2_daddr_t lbn, 152 ufs2_daddr_t bpref, 153 int size, 154 int flags, 155 struct ucred *cred, 156 ufs2_daddr_t *bnp) 157 { 158 struct fs *fs; 159 struct ufsmount *ump; 160 ufs2_daddr_t bno; 161 uint64_t cg, reclaimed; 162 int64_t delta; 163 #ifdef QUOTA 164 int error; 165 #endif 166 167 *bnp = 0; 168 ump = ITOUMP(ip); 169 fs = ump->um_fs; 170 mtx_assert(UFS_MTX(ump), MA_OWNED); 171 #ifdef INVARIANTS 172 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) { 173 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 174 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 175 fs->fs_fsmnt); 176 panic("ffs_alloc: bad size"); 177 } 178 if (cred == NOCRED) 179 panic("ffs_alloc: missing credential"); 180 #endif /* INVARIANTS */ 181 reclaimed = 0; 182 retry: 183 #ifdef QUOTA 184 UFS_UNLOCK(ump); 185 error = chkdq(ip, btodb(size), cred, 0); 186 if (error) 187 return (error); 188 UFS_LOCK(ump); 189 #endif 190 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 191 goto nospace; 192 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 193 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 194 goto nospace; 195 if (bpref >= fs->fs_size) 196 bpref = 0; 197 if (bpref == 0) 198 cg = ino_to_cg(fs, ip->i_number); 199 else 200 cg = dtog(fs, bpref); 201 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 202 if (bno > 0) { 203 delta = btodb(size); 204 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 205 if (flags & IO_EXT) 206 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 207 else 208 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 209 *bnp = bno; 210 return (0); 211 } 212 nospace: 213 #ifdef QUOTA 214 UFS_UNLOCK(ump); 215 /* 216 * Restore user's disk quota because allocation failed. 217 */ 218 (void) chkdq(ip, -btodb(size), cred, FORCE); 219 UFS_LOCK(ump); 220 #endif 221 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 222 reclaimed = 1; 223 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 224 goto retry; 225 } 226 if (ffs_fsfail_cleanup_locked(ump, 0)) { 227 UFS_UNLOCK(ump); 228 return (ENXIO); 229 } 230 if (reclaimed > 0 && 231 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 232 UFS_UNLOCK(ump); 233 ffs_fserr(fs, ip->i_number, "filesystem full"); 234 uprintf("\n%s: write failed, filesystem is full\n", 235 fs->fs_fsmnt); 236 } else { 237 UFS_UNLOCK(ump); 238 } 239 return (ENOSPC); 240 } 241 242 /* 243 * Reallocate a fragment to a bigger size 244 * 245 * The number and size of the old block is given, and a preference 246 * and new size is also specified. The allocator attempts to extend 247 * the original block. Failing that, the regular block allocator is 248 * invoked to get an appropriate block. 249 */ 250 int 251 ffs_realloccg(struct inode *ip, 252 ufs2_daddr_t lbprev, 253 ufs2_daddr_t bprev, 254 ufs2_daddr_t bpref, 255 int osize, 256 int nsize, 257 int flags, 258 struct ucred *cred, 259 struct buf **bpp) 260 { 261 struct vnode *vp; 262 struct fs *fs; 263 struct buf *bp; 264 struct ufsmount *ump; 265 uint64_t cg, request, reclaimed; 266 int error, gbflags; 267 ufs2_daddr_t bno; 268 int64_t delta; 269 270 vp = ITOV(ip); 271 ump = ITOUMP(ip); 272 fs = ump->um_fs; 273 bp = NULL; 274 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 275 #ifdef WITNESS 276 gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; 277 #endif 278 279 mtx_assert(UFS_MTX(ump), MA_OWNED); 280 #ifdef INVARIANTS 281 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 282 panic("ffs_realloccg: allocation on suspended filesystem"); 283 if ((uint64_t)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 284 (uint64_t)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 285 printf( 286 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 287 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 288 nsize, fs->fs_fsmnt); 289 panic("ffs_realloccg: bad size"); 290 } 291 if (cred == NOCRED) 292 panic("ffs_realloccg: missing credential"); 293 #endif /* INVARIANTS */ 294 reclaimed = 0; 295 retry: 296 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 297 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 298 goto nospace; 299 } 300 if (bprev == 0) { 301 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 302 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 303 fs->fs_fsmnt); 304 panic("ffs_realloccg: bad bprev"); 305 } 306 UFS_UNLOCK(ump); 307 /* 308 * Allocate the extra space in the buffer. 309 */ 310 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 311 if (error) { 312 return (error); 313 } 314 315 if (bp->b_blkno == bp->b_lblkno) { 316 if (lbprev >= UFS_NDADDR) 317 panic("ffs_realloccg: lbprev out of range"); 318 bp->b_blkno = fsbtodb(fs, bprev); 319 } 320 321 #ifdef QUOTA 322 error = chkdq(ip, btodb(nsize - osize), cred, 0); 323 if (error) { 324 brelse(bp); 325 return (error); 326 } 327 #endif 328 /* 329 * Check for extension in the existing location. 330 */ 331 *bpp = NULL; 332 cg = dtog(fs, bprev); 333 UFS_LOCK(ump); 334 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 335 if (bno) { 336 if (bp->b_blkno != fsbtodb(fs, bno)) 337 panic("ffs_realloccg: bad blockno"); 338 delta = btodb(nsize - osize); 339 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 340 if (flags & IO_EXT) 341 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 342 else 343 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 344 allocbuf(bp, nsize); 345 bp->b_flags |= B_DONE; 346 vfs_bio_bzero_buf(bp, osize, nsize - osize); 347 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 348 vfs_bio_set_valid(bp, osize, nsize - osize); 349 *bpp = bp; 350 return (0); 351 } 352 /* 353 * Allocate a new disk location. 354 */ 355 if (bpref >= fs->fs_size) 356 bpref = 0; 357 switch ((int)fs->fs_optim) { 358 case FS_OPTSPACE: 359 /* 360 * Allocate an exact sized fragment. Although this makes 361 * best use of space, we will waste time relocating it if 362 * the file continues to grow. If the fragmentation is 363 * less than half of the minimum free reserve, we choose 364 * to begin optimizing for time. 365 */ 366 request = nsize; 367 if (fs->fs_minfree <= 5 || 368 fs->fs_cstotal.cs_nffree > 369 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 370 break; 371 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 372 fs->fs_fsmnt); 373 fs->fs_optim = FS_OPTTIME; 374 break; 375 case FS_OPTTIME: 376 /* 377 * At this point we have discovered a file that is trying to 378 * grow a small fragment to a larger fragment. To save time, 379 * we allocate a full sized block, then free the unused portion. 380 * If the file continues to grow, the `ffs_fragextend' call 381 * above will be able to grow it in place without further 382 * copying. If aberrant programs cause disk fragmentation to 383 * grow within 2% of the free reserve, we choose to begin 384 * optimizing for space. 385 */ 386 request = fs->fs_bsize; 387 if (fs->fs_cstotal.cs_nffree < 388 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 389 break; 390 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 391 fs->fs_fsmnt); 392 fs->fs_optim = FS_OPTSPACE; 393 break; 394 default: 395 printf("dev = %s, optim = %ld, fs = %s\n", 396 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 397 panic("ffs_realloccg: bad optim"); 398 /* NOTREACHED */ 399 } 400 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 401 if (bno > 0) { 402 bp->b_blkno = fsbtodb(fs, bno); 403 if (!DOINGSOFTDEP(vp)) 404 /* 405 * The usual case is that a smaller fragment that 406 * was just allocated has been replaced with a bigger 407 * fragment or a full-size block. If it is marked as 408 * B_DELWRI, the current contents have not been written 409 * to disk. It is possible that the block was written 410 * earlier, but very uncommon. If the block has never 411 * been written, there is no need to send a BIO_DELETE 412 * for it when it is freed. The gain from avoiding the 413 * TRIMs for the common case of unwritten blocks far 414 * exceeds the cost of the write amplification for the 415 * uncommon case of failing to send a TRIM for a block 416 * that had been written. 417 */ 418 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 419 ip->i_number, vp->v_type, NULL, 420 (bp->b_flags & B_DELWRI) != 0 ? 421 NOTRIM_KEY : SINGLETON_KEY); 422 delta = btodb(nsize - osize); 423 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 424 if (flags & IO_EXT) 425 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 426 else 427 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 428 allocbuf(bp, nsize); 429 bp->b_flags |= B_DONE; 430 vfs_bio_bzero_buf(bp, osize, nsize - osize); 431 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 432 vfs_bio_set_valid(bp, osize, nsize - osize); 433 *bpp = bp; 434 return (0); 435 } 436 #ifdef QUOTA 437 UFS_UNLOCK(ump); 438 /* 439 * Restore user's disk quota because allocation failed. 440 */ 441 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 442 UFS_LOCK(ump); 443 #endif 444 nospace: 445 /* 446 * no space available 447 */ 448 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 449 reclaimed = 1; 450 UFS_UNLOCK(ump); 451 if (bp) { 452 brelse(bp); 453 bp = NULL; 454 } 455 UFS_LOCK(ump); 456 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 457 goto retry; 458 } 459 if (bp) 460 brelse(bp); 461 if (ffs_fsfail_cleanup_locked(ump, 0)) { 462 UFS_UNLOCK(ump); 463 return (ENXIO); 464 } 465 if (reclaimed > 0 && 466 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 467 UFS_UNLOCK(ump); 468 ffs_fserr(fs, ip->i_number, "filesystem full"); 469 uprintf("\n%s: write failed, filesystem is full\n", 470 fs->fs_fsmnt); 471 } else { 472 UFS_UNLOCK(ump); 473 } 474 return (ENOSPC); 475 } 476 477 /* 478 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 479 * 480 * The vnode and an array of buffer pointers for a range of sequential 481 * logical blocks to be made contiguous is given. The allocator attempts 482 * to find a range of sequential blocks starting as close as possible 483 * from the end of the allocation for the logical block immediately 484 * preceding the current range. If successful, the physical block numbers 485 * in the buffer pointers and in the inode are changed to reflect the new 486 * allocation. If unsuccessful, the allocation is left unchanged. The 487 * success in doing the reallocation is returned. Note that the error 488 * return is not reflected back to the user. Rather the previous block 489 * allocation will be used. 490 */ 491 492 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 493 "FFS filesystem"); 494 495 static int doasyncfree = 1; 496 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 497 "do not force synchronous writes when blocks are reallocated"); 498 499 static int doreallocblks = 1; 500 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 501 "enable block reallocation"); 502 503 static int dotrimcons = 1; 504 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 505 "enable BIO_DELETE / TRIM consolidation"); 506 507 static int maxclustersearch = 10; 508 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 509 0, "max number of cylinder group to search for contigous blocks"); 510 511 #ifdef DIAGNOSTIC 512 static int prtrealloc = 0; 513 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 514 "print out FFS filesystem block reallocation operations"); 515 #endif 516 517 int 518 ffs_reallocblks( 519 struct vop_reallocblks_args /* { 520 struct vnode *a_vp; 521 struct cluster_save *a_buflist; 522 } */ *ap) 523 { 524 struct ufsmount *ump; 525 int error; 526 527 /* 528 * We used to skip reallocating the blocks of a file into a 529 * contiguous sequence if the underlying flash device requested 530 * BIO_DELETE notifications, because devices that benefit from 531 * BIO_DELETE also benefit from not moving the data. However, 532 * the destination for the data is usually moved before the data 533 * is written to the initially allocated location, so we rarely 534 * suffer the penalty of extra writes. With the addition of the 535 * consolidation of contiguous blocks into single BIO_DELETE 536 * operations, having fewer but larger contiguous blocks reduces 537 * the number of (slow and expensive) BIO_DELETE operations. So 538 * when doing BIO_DELETE consolidation, we do block reallocation. 539 * 540 * Skip if reallocblks has been disabled globally. 541 */ 542 ump = ap->a_vp->v_mount->mnt_data; 543 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 544 doreallocblks == 0) 545 return (ENOSPC); 546 547 /* 548 * We can't wait in softdep prealloc as it may fsync and recurse 549 * here. Instead we simply fail to reallocate blocks if this 550 * rare condition arises. 551 */ 552 if (DOINGSUJ(ap->a_vp)) 553 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 554 return (ENOSPC); 555 vn_seqc_write_begin(ap->a_vp); 556 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) : 557 ffs_reallocblks_ufs2(ap); 558 vn_seqc_write_end(ap->a_vp); 559 return (error); 560 } 561 562 static int 563 ffs_reallocblks_ufs1( 564 struct vop_reallocblks_args /* { 565 struct vnode *a_vp; 566 struct cluster_save *a_buflist; 567 } */ *ap) 568 { 569 struct fs *fs; 570 struct inode *ip; 571 struct vnode *vp; 572 struct buf *sbp, *ebp, *bp; 573 ufs1_daddr_t *bap, *sbap, *ebap; 574 struct cluster_save *buflist; 575 struct ufsmount *ump; 576 ufs_lbn_t start_lbn, end_lbn; 577 ufs1_daddr_t soff, newblk, blkno; 578 ufs2_daddr_t pref; 579 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 580 int i, cg, len, start_lvl, end_lvl, ssize; 581 582 vp = ap->a_vp; 583 ip = VTOI(vp); 584 ump = ITOUMP(ip); 585 fs = ump->um_fs; 586 /* 587 * If we are not tracking block clusters or if we have less than 4% 588 * free blocks left, then do not attempt to cluster. Running with 589 * less than 5% free block reserve is not recommended and those that 590 * choose to do so do not expect to have good file layout. 591 */ 592 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 593 return (ENOSPC); 594 buflist = ap->a_buflist; 595 len = buflist->bs_nchildren; 596 start_lbn = buflist->bs_children[0]->b_lblkno; 597 end_lbn = start_lbn + len - 1; 598 #ifdef INVARIANTS 599 for (i = 0; i < len; i++) 600 if (!ffs_checkfreeblk(ip, 601 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 602 panic("ffs_reallocblks: unallocated block 1"); 603 for (i = 1; i < len; i++) 604 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 605 panic("ffs_reallocblks: non-logical cluster"); 606 blkno = buflist->bs_children[0]->b_blkno; 607 ssize = fsbtodb(fs, fs->fs_frag); 608 for (i = 1; i < len - 1; i++) 609 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 610 panic("ffs_reallocblks: non-physical cluster %d", i); 611 #endif 612 /* 613 * If the cluster crosses the boundary for the first indirect 614 * block, leave space for the indirect block. Indirect blocks 615 * are initially laid out in a position after the last direct 616 * block. Block reallocation would usually destroy locality by 617 * moving the indirect block out of the way to make room for 618 * data blocks if we didn't compensate here. We should also do 619 * this for other indirect block boundaries, but it is only 620 * important for the first one. 621 */ 622 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 623 return (ENOSPC); 624 /* 625 * If the latest allocation is in a new cylinder group, assume that 626 * the filesystem has decided to move and do not force it back to 627 * the previous cylinder group. 628 */ 629 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 630 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 631 return (ENOSPC); 632 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 633 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 634 return (ENOSPC); 635 /* 636 * Get the starting offset and block map for the first block. 637 */ 638 if (start_lvl == 0) { 639 sbap = &ip->i_din1->di_db[0]; 640 soff = start_lbn; 641 } else { 642 idp = &start_ap[start_lvl - 1]; 643 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 644 brelse(sbp); 645 return (ENOSPC); 646 } 647 sbap = (ufs1_daddr_t *)sbp->b_data; 648 soff = idp->in_off; 649 } 650 /* 651 * If the block range spans two block maps, get the second map. 652 */ 653 ebap = NULL; 654 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 655 ssize = len; 656 } else { 657 #ifdef INVARIANTS 658 if (start_lvl > 0 && 659 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 660 panic("ffs_reallocblk: start == end"); 661 #endif 662 ssize = len - (idp->in_off + 1); 663 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 664 goto fail; 665 ebap = (ufs1_daddr_t *)ebp->b_data; 666 } 667 /* 668 * Find the preferred location for the cluster. If we have not 669 * previously failed at this endeavor, then follow our standard 670 * preference calculation. If we have failed at it, then pick up 671 * where we last ended our search. 672 */ 673 UFS_LOCK(ump); 674 if (ip->i_nextclustercg == -1) 675 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 676 else 677 pref = cgdata(fs, ip->i_nextclustercg); 678 /* 679 * Search the block map looking for an allocation of the desired size. 680 * To avoid wasting too much time, we limit the number of cylinder 681 * groups that we will search. 682 */ 683 cg = dtog(fs, pref); 684 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 685 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 686 break; 687 cg += 1; 688 if (cg >= fs->fs_ncg) 689 cg = 0; 690 } 691 /* 692 * If we have failed in our search, record where we gave up for 693 * next time. Otherwise, fall back to our usual search citerion. 694 */ 695 if (newblk == 0) { 696 ip->i_nextclustercg = cg; 697 UFS_UNLOCK(ump); 698 goto fail; 699 } 700 ip->i_nextclustercg = -1; 701 /* 702 * We have found a new contiguous block. 703 * 704 * First we have to replace the old block pointers with the new 705 * block pointers in the inode and indirect blocks associated 706 * with the file. 707 */ 708 #ifdef DIAGNOSTIC 709 if (prtrealloc) 710 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 711 (uintmax_t)ip->i_number, 712 (intmax_t)start_lbn, (intmax_t)end_lbn); 713 #endif 714 blkno = newblk; 715 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 716 if (i == ssize) { 717 bap = ebap; 718 soff = -i; 719 } 720 #ifdef INVARIANTS 721 if (!ffs_checkfreeblk(ip, 722 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 723 panic("ffs_reallocblks: unallocated block 2"); 724 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 725 panic("ffs_reallocblks: alloc mismatch"); 726 #endif 727 #ifdef DIAGNOSTIC 728 if (prtrealloc) 729 printf(" %d,", *bap); 730 #endif 731 if (DOINGSOFTDEP(vp)) { 732 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 733 softdep_setup_allocdirect(ip, start_lbn + i, 734 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 735 buflist->bs_children[i]); 736 else 737 softdep_setup_allocindir_page(ip, start_lbn + i, 738 i < ssize ? sbp : ebp, soff + i, blkno, 739 *bap, buflist->bs_children[i]); 740 } 741 *bap++ = blkno; 742 } 743 /* 744 * Next we must write out the modified inode and indirect blocks. 745 * For strict correctness, the writes should be synchronous since 746 * the old block values may have been written to disk. In practise 747 * they are almost never written, but if we are concerned about 748 * strict correctness, the `doasyncfree' flag should be set to zero. 749 * 750 * The test on `doasyncfree' should be changed to test a flag 751 * that shows whether the associated buffers and inodes have 752 * been written. The flag should be set when the cluster is 753 * started and cleared whenever the buffer or inode is flushed. 754 * We can then check below to see if it is set, and do the 755 * synchronous write only when it has been cleared. 756 */ 757 if (sbap != &ip->i_din1->di_db[0]) { 758 if (doasyncfree) 759 bdwrite(sbp); 760 else 761 bwrite(sbp); 762 } else { 763 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 764 if (!doasyncfree) 765 ffs_update(vp, 1); 766 } 767 if (ssize < len) { 768 if (doasyncfree) 769 bdwrite(ebp); 770 else 771 bwrite(ebp); 772 } 773 /* 774 * Last, free the old blocks and assign the new blocks to the buffers. 775 */ 776 #ifdef DIAGNOSTIC 777 if (prtrealloc) 778 printf("\n\tnew:"); 779 #endif 780 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 781 bp = buflist->bs_children[i]; 782 if (!DOINGSOFTDEP(vp)) 783 /* 784 * The usual case is that a set of N-contiguous blocks 785 * that was just allocated has been replaced with a 786 * set of N+1-contiguous blocks. If they are marked as 787 * B_DELWRI, the current contents have not been written 788 * to disk. It is possible that the blocks were written 789 * earlier, but very uncommon. If the blocks have never 790 * been written, there is no need to send a BIO_DELETE 791 * for them when they are freed. The gain from avoiding 792 * the TRIMs for the common case of unwritten blocks 793 * far exceeds the cost of the write amplification for 794 * the uncommon case of failing to send a TRIM for the 795 * blocks that had been written. 796 */ 797 ffs_blkfree(ump, fs, ump->um_devvp, 798 dbtofsb(fs, bp->b_blkno), 799 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 800 (bp->b_flags & B_DELWRI) != 0 ? 801 NOTRIM_KEY : SINGLETON_KEY); 802 bp->b_blkno = fsbtodb(fs, blkno); 803 #ifdef INVARIANTS 804 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno), 805 fs->fs_bsize)) 806 panic("ffs_reallocblks: unallocated block 3"); 807 #endif 808 #ifdef DIAGNOSTIC 809 if (prtrealloc) 810 printf(" %d,", blkno); 811 #endif 812 } 813 #ifdef DIAGNOSTIC 814 if (prtrealloc) { 815 prtrealloc--; 816 printf("\n"); 817 } 818 #endif 819 return (0); 820 821 fail: 822 if (ssize < len) 823 brelse(ebp); 824 if (sbap != &ip->i_din1->di_db[0]) 825 brelse(sbp); 826 return (ENOSPC); 827 } 828 829 static int 830 ffs_reallocblks_ufs2( 831 struct vop_reallocblks_args /* { 832 struct vnode *a_vp; 833 struct cluster_save *a_buflist; 834 } */ *ap) 835 { 836 struct fs *fs; 837 struct inode *ip; 838 struct vnode *vp; 839 struct buf *sbp, *ebp, *bp; 840 ufs2_daddr_t *bap, *sbap, *ebap; 841 struct cluster_save *buflist; 842 struct ufsmount *ump; 843 ufs_lbn_t start_lbn, end_lbn; 844 ufs2_daddr_t soff, newblk, blkno, pref; 845 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 846 int i, cg, len, start_lvl, end_lvl, ssize; 847 848 vp = ap->a_vp; 849 ip = VTOI(vp); 850 ump = ITOUMP(ip); 851 fs = ump->um_fs; 852 /* 853 * If we are not tracking block clusters or if we have less than 4% 854 * free blocks left, then do not attempt to cluster. Running with 855 * less than 5% free block reserve is not recommended and those that 856 * choose to do so do not expect to have good file layout. 857 */ 858 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 859 return (ENOSPC); 860 buflist = ap->a_buflist; 861 len = buflist->bs_nchildren; 862 start_lbn = buflist->bs_children[0]->b_lblkno; 863 end_lbn = start_lbn + len - 1; 864 #ifdef INVARIANTS 865 for (i = 0; i < len; i++) 866 if (!ffs_checkfreeblk(ip, 867 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 868 panic("ffs_reallocblks: unallocated block 1"); 869 for (i = 1; i < len; i++) 870 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 871 panic("ffs_reallocblks: non-logical cluster"); 872 blkno = buflist->bs_children[0]->b_blkno; 873 ssize = fsbtodb(fs, fs->fs_frag); 874 for (i = 1; i < len - 1; i++) 875 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 876 panic("ffs_reallocblks: non-physical cluster %d", i); 877 #endif 878 /* 879 * If the cluster crosses the boundary for the first indirect 880 * block, do not move anything in it. Indirect blocks are 881 * usually initially laid out in a position between the data 882 * blocks. Block reallocation would usually destroy locality by 883 * moving the indirect block out of the way to make room for 884 * data blocks if we didn't compensate here. We should also do 885 * this for other indirect block boundaries, but it is only 886 * important for the first one. 887 */ 888 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 889 return (ENOSPC); 890 /* 891 * If the latest allocation is in a new cylinder group, assume that 892 * the filesystem has decided to move and do not force it back to 893 * the previous cylinder group. 894 */ 895 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 896 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 897 return (ENOSPC); 898 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 899 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 900 return (ENOSPC); 901 /* 902 * Get the starting offset and block map for the first block. 903 */ 904 if (start_lvl == 0) { 905 sbap = &ip->i_din2->di_db[0]; 906 soff = start_lbn; 907 } else { 908 idp = &start_ap[start_lvl - 1]; 909 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 910 brelse(sbp); 911 return (ENOSPC); 912 } 913 sbap = (ufs2_daddr_t *)sbp->b_data; 914 soff = idp->in_off; 915 } 916 /* 917 * If the block range spans two block maps, get the second map. 918 */ 919 ebap = NULL; 920 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 921 ssize = len; 922 } else { 923 #ifdef INVARIANTS 924 if (start_lvl > 0 && 925 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 926 panic("ffs_reallocblk: start == end"); 927 #endif 928 ssize = len - (idp->in_off + 1); 929 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 930 goto fail; 931 ebap = (ufs2_daddr_t *)ebp->b_data; 932 } 933 /* 934 * Find the preferred location for the cluster. If we have not 935 * previously failed at this endeavor, then follow our standard 936 * preference calculation. If we have failed at it, then pick up 937 * where we last ended our search. 938 */ 939 UFS_LOCK(ump); 940 if (ip->i_nextclustercg == -1) 941 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 942 else 943 pref = cgdata(fs, ip->i_nextclustercg); 944 /* 945 * Search the block map looking for an allocation of the desired size. 946 * To avoid wasting too much time, we limit the number of cylinder 947 * groups that we will search. 948 */ 949 cg = dtog(fs, pref); 950 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 951 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 952 break; 953 cg += 1; 954 if (cg >= fs->fs_ncg) 955 cg = 0; 956 } 957 /* 958 * If we have failed in our search, record where we gave up for 959 * next time. Otherwise, fall back to our usual search citerion. 960 */ 961 if (newblk == 0) { 962 ip->i_nextclustercg = cg; 963 UFS_UNLOCK(ump); 964 goto fail; 965 } 966 ip->i_nextclustercg = -1; 967 /* 968 * We have found a new contiguous block. 969 * 970 * First we have to replace the old block pointers with the new 971 * block pointers in the inode and indirect blocks associated 972 * with the file. 973 */ 974 #ifdef DIAGNOSTIC 975 if (prtrealloc) 976 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 977 (intmax_t)start_lbn, (intmax_t)end_lbn); 978 #endif 979 blkno = newblk; 980 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 981 if (i == ssize) { 982 bap = ebap; 983 soff = -i; 984 } 985 #ifdef INVARIANTS 986 if (!ffs_checkfreeblk(ip, 987 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 988 panic("ffs_reallocblks: unallocated block 2"); 989 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 990 panic("ffs_reallocblks: alloc mismatch"); 991 #endif 992 #ifdef DIAGNOSTIC 993 if (prtrealloc) 994 printf(" %jd,", (intmax_t)*bap); 995 #endif 996 if (DOINGSOFTDEP(vp)) { 997 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 998 softdep_setup_allocdirect(ip, start_lbn + i, 999 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 1000 buflist->bs_children[i]); 1001 else 1002 softdep_setup_allocindir_page(ip, start_lbn + i, 1003 i < ssize ? sbp : ebp, soff + i, blkno, 1004 *bap, buflist->bs_children[i]); 1005 } 1006 *bap++ = blkno; 1007 } 1008 /* 1009 * Next we must write out the modified inode and indirect blocks. 1010 * For strict correctness, the writes should be synchronous since 1011 * the old block values may have been written to disk. In practise 1012 * they are almost never written, but if we are concerned about 1013 * strict correctness, the `doasyncfree' flag should be set to zero. 1014 * 1015 * The test on `doasyncfree' should be changed to test a flag 1016 * that shows whether the associated buffers and inodes have 1017 * been written. The flag should be set when the cluster is 1018 * started and cleared whenever the buffer or inode is flushed. 1019 * We can then check below to see if it is set, and do the 1020 * synchronous write only when it has been cleared. 1021 */ 1022 if (sbap != &ip->i_din2->di_db[0]) { 1023 if (doasyncfree) 1024 bdwrite(sbp); 1025 else 1026 bwrite(sbp); 1027 } else { 1028 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1029 if (!doasyncfree) 1030 ffs_update(vp, 1); 1031 } 1032 if (ssize < len) { 1033 if (doasyncfree) 1034 bdwrite(ebp); 1035 else 1036 bwrite(ebp); 1037 } 1038 /* 1039 * Last, free the old blocks and assign the new blocks to the buffers. 1040 */ 1041 #ifdef DIAGNOSTIC 1042 if (prtrealloc) 1043 printf("\n\tnew:"); 1044 #endif 1045 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1046 bp = buflist->bs_children[i]; 1047 if (!DOINGSOFTDEP(vp)) 1048 /* 1049 * The usual case is that a set of N-contiguous blocks 1050 * that was just allocated has been replaced with a 1051 * set of N+1-contiguous blocks. If they are marked as 1052 * B_DELWRI, the current contents have not been written 1053 * to disk. It is possible that the blocks were written 1054 * earlier, but very uncommon. If the blocks have never 1055 * been written, there is no need to send a BIO_DELETE 1056 * for them when they are freed. The gain from avoiding 1057 * the TRIMs for the common case of unwritten blocks 1058 * far exceeds the cost of the write amplification for 1059 * the uncommon case of failing to send a TRIM for the 1060 * blocks that had been written. 1061 */ 1062 ffs_blkfree(ump, fs, ump->um_devvp, 1063 dbtofsb(fs, bp->b_blkno), 1064 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1065 (bp->b_flags & B_DELWRI) != 0 ? 1066 NOTRIM_KEY : SINGLETON_KEY); 1067 bp->b_blkno = fsbtodb(fs, blkno); 1068 #ifdef INVARIANTS 1069 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno), 1070 fs->fs_bsize)) 1071 panic("ffs_reallocblks: unallocated block 3"); 1072 #endif 1073 #ifdef DIAGNOSTIC 1074 if (prtrealloc) 1075 printf(" %jd,", (intmax_t)blkno); 1076 #endif 1077 } 1078 #ifdef DIAGNOSTIC 1079 if (prtrealloc) { 1080 prtrealloc--; 1081 printf("\n"); 1082 } 1083 #endif 1084 return (0); 1085 1086 fail: 1087 if (ssize < len) 1088 brelse(ebp); 1089 if (sbap != &ip->i_din2->di_db[0]) 1090 brelse(sbp); 1091 return (ENOSPC); 1092 } 1093 1094 /* 1095 * Allocate an inode in the filesystem. 1096 * 1097 * If allocating a directory, use ffs_dirpref to select the inode. 1098 * If allocating in a directory, the following hierarchy is followed: 1099 * 1) allocate the preferred inode. 1100 * 2) allocate an inode in the same cylinder group. 1101 * 3) quadratically rehash into other cylinder groups, until an 1102 * available inode is located. 1103 * If no inode preference is given the following hierarchy is used 1104 * to allocate an inode: 1105 * 1) allocate an inode in cylinder group 0. 1106 * 2) quadratically rehash into other cylinder groups, until an 1107 * available inode is located. 1108 */ 1109 int 1110 ffs_valloc(struct vnode *pvp, 1111 int mode, 1112 struct ucred *cred, 1113 struct vnode **vpp) 1114 { 1115 struct inode *pip; 1116 struct fs *fs; 1117 struct inode *ip; 1118 struct timespec ts; 1119 struct ufsmount *ump; 1120 ino_t ino, ipref; 1121 uint64_t cg; 1122 int error, reclaimed; 1123 1124 *vpp = NULL; 1125 pip = VTOI(pvp); 1126 ump = ITOUMP(pip); 1127 fs = ump->um_fs; 1128 1129 UFS_LOCK(ump); 1130 reclaimed = 0; 1131 retry: 1132 if (fs->fs_cstotal.cs_nifree == 0) 1133 goto noinodes; 1134 1135 if ((mode & IFMT) == IFDIR) 1136 ipref = ffs_dirpref(pip); 1137 else 1138 ipref = pip->i_number; 1139 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1140 ipref = 0; 1141 cg = ino_to_cg(fs, ipref); 1142 /* 1143 * Track number of dirs created one after another 1144 * in a same cg without intervening by files. 1145 */ 1146 if ((mode & IFMT) == IFDIR) { 1147 if (fs->fs_contigdirs[cg] < 255) 1148 fs->fs_contigdirs[cg]++; 1149 } else { 1150 if (fs->fs_contigdirs[cg] > 0) 1151 fs->fs_contigdirs[cg]--; 1152 } 1153 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1154 (allocfcn_t *)ffs_nodealloccg); 1155 if (ino == 0) 1156 goto noinodes; 1157 /* 1158 * Get rid of the cached old vnode, force allocation of a new vnode 1159 * for this inode. If this fails, release the allocated ino and 1160 * return the error. 1161 */ 1162 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1163 FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) { 1164 ffs_vfree(pvp, ino, mode); 1165 return (error); 1166 } 1167 /* 1168 * We got an inode, so check mode and panic if it is already allocated. 1169 */ 1170 ip = VTOI(*vpp); 1171 if (ip->i_mode) { 1172 printf("mode = 0%o, inum = %ju, fs = %s\n", 1173 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1174 panic("ffs_valloc: dup alloc"); 1175 } 1176 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1177 printf("free inode %s/%ju had %ld blocks\n", 1178 fs->fs_fsmnt, (intmax_t)ino, (long)DIP(ip, i_blocks)); 1179 DIP_SET(ip, i_blocks, 0); 1180 } 1181 ip->i_flags = 0; 1182 DIP_SET(ip, i_flags, 0); 1183 if ((mode & IFMT) == IFDIR) 1184 DIP_SET(ip, i_dirdepth, DIP(pip, i_dirdepth) + 1); 1185 /* 1186 * Set up a new generation number for this inode. 1187 */ 1188 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1189 ip->i_gen = arc4random(); 1190 DIP_SET(ip, i_gen, ip->i_gen); 1191 if (fs->fs_magic == FS_UFS2_MAGIC) { 1192 vfs_timestamp(&ts); 1193 ip->i_din2->di_birthtime = ts.tv_sec; 1194 ip->i_din2->di_birthnsec = ts.tv_nsec; 1195 } 1196 ip->i_flag = 0; 1197 (*vpp)->v_vflag = 0; 1198 (*vpp)->v_type = VNON; 1199 if (fs->fs_magic == FS_UFS2_MAGIC) { 1200 (*vpp)->v_op = &ffs_vnodeops2; 1201 UFS_INODE_SET_FLAG(ip, IN_UFS2); 1202 } else { 1203 (*vpp)->v_op = &ffs_vnodeops1; 1204 } 1205 return (0); 1206 noinodes: 1207 if (reclaimed == 0) { 1208 reclaimed = 1; 1209 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1210 goto retry; 1211 } 1212 if (ffs_fsfail_cleanup_locked(ump, 0)) { 1213 UFS_UNLOCK(ump); 1214 return (ENXIO); 1215 } 1216 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 1217 UFS_UNLOCK(ump); 1218 ffs_fserr(fs, pip->i_number, "out of inodes"); 1219 uprintf("\n%s: create/symlink failed, no inodes free\n", 1220 fs->fs_fsmnt); 1221 } else { 1222 UFS_UNLOCK(ump); 1223 } 1224 return (ENOSPC); 1225 } 1226 1227 /* 1228 * Find a cylinder group to place a directory. 1229 * 1230 * The policy implemented by this algorithm is to allocate a 1231 * directory inode in the same cylinder group as its parent 1232 * directory, but also to reserve space for its files inodes 1233 * and data. Restrict the number of directories which may be 1234 * allocated one after another in the same cylinder group 1235 * without intervening allocation of files. 1236 * 1237 * If we allocate a first level directory then force allocation 1238 * in another cylinder group. 1239 */ 1240 static ino_t 1241 ffs_dirpref(struct inode *pip) 1242 { 1243 struct fs *fs; 1244 int cg, prefcg, curcg, dirsize, cgsize; 1245 int depth, range, start, end, numdirs, power, numerator, denominator; 1246 uint64_t avgifree, avgbfree, avgndir, curdirsize; 1247 uint64_t minifree, minbfree, maxndir; 1248 uint64_t maxcontigdirs; 1249 1250 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1251 fs = ITOFS(pip); 1252 1253 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1254 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1255 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1256 1257 /* 1258 * Select a preferred cylinder group to place a new directory. 1259 * If we are near the root of the filesystem we aim to spread 1260 * them out as much as possible. As we descend deeper from the 1261 * root we cluster them closer together around their parent as 1262 * we expect them to be more closely interactive. Higher-level 1263 * directories like usr/src/sys and usr/src/bin should be 1264 * separated while the directories in these areas are more 1265 * likely to be accessed together so should be closer. 1266 * 1267 * We pick a range of cylinder groups around the cylinder group 1268 * of the directory in which we are being created. The size of 1269 * the range for our search is based on our depth from the root 1270 * of our filesystem. We then probe that range based on how many 1271 * directories are already present. The first new directory is at 1272 * 1/2 (middle) of the range; the second is in the first 1/4 of the 1273 * range, then at 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, etc. 1274 */ 1275 depth = DIP(pip, i_dirdepth); 1276 range = fs->fs_ncg / (1 << depth); 1277 curcg = ino_to_cg(fs, pip->i_number); 1278 start = curcg - (range / 2); 1279 if (start < 0) 1280 start += fs->fs_ncg; 1281 end = curcg + (range / 2); 1282 if (end >= fs->fs_ncg) 1283 end -= fs->fs_ncg; 1284 numdirs = pip->i_effnlink - 1; 1285 power = fls(numdirs); 1286 numerator = (numdirs & ~(1 << (power - 1))) * 2 + 1; 1287 denominator = 1 << power; 1288 prefcg = (curcg - (range / 2) + (range * numerator / denominator)); 1289 if (prefcg < 0) 1290 prefcg += fs->fs_ncg; 1291 if (prefcg >= fs->fs_ncg) 1292 prefcg -= fs->fs_ncg; 1293 /* 1294 * If this filesystem is not tracking directory depths, 1295 * revert to the old algorithm. 1296 */ 1297 if (depth == 0 && pip->i_number != UFS_ROOTINO) 1298 prefcg = curcg; 1299 1300 /* 1301 * Count various limits which used for 1302 * optimal allocation of a directory inode. 1303 */ 1304 maxndir = min(avgndir + (1 << depth), fs->fs_ipg); 1305 minifree = avgifree - avgifree / 4; 1306 if (minifree < 1) 1307 minifree = 1; 1308 minbfree = avgbfree - avgbfree / 4; 1309 if (minbfree < 1) 1310 minbfree = 1; 1311 cgsize = fs->fs_fsize * fs->fs_fpg; 1312 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1313 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1314 if (dirsize < curdirsize) 1315 dirsize = curdirsize; 1316 if (dirsize <= 0) 1317 maxcontigdirs = 0; /* dirsize overflowed */ 1318 else 1319 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1320 if (fs->fs_avgfpdir > 0) 1321 maxcontigdirs = min(maxcontigdirs, 1322 fs->fs_ipg / fs->fs_avgfpdir); 1323 if (maxcontigdirs == 0) 1324 maxcontigdirs = 1; 1325 1326 /* 1327 * Limit number of dirs in one cg and reserve space for 1328 * regular files, but only if we have no deficit in 1329 * inodes or space. 1330 * 1331 * We are trying to find a suitable cylinder group nearby 1332 * our preferred cylinder group to place a new directory. 1333 * We scan from our preferred cylinder group forward looking 1334 * for a cylinder group that meets our criterion. If we get 1335 * to the final cylinder group and do not find anything, 1336 * we start scanning forwards from the beginning of the 1337 * filesystem. While it might seem sensible to start scanning 1338 * backwards or even to alternate looking forward and backward, 1339 * this approach fails badly when the filesystem is nearly full. 1340 * Specifically, we first search all the areas that have no space 1341 * and finally try the one preceding that. We repeat this on 1342 * every request and in the case of the final block end up 1343 * searching the entire filesystem. By jumping to the front 1344 * of the filesystem, our future forward searches always look 1345 * in new cylinder groups so finds every possible block after 1346 * one pass over the filesystem. 1347 */ 1348 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1349 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1350 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1351 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1352 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1353 return ((ino_t)(fs->fs_ipg * cg)); 1354 } 1355 for (cg = 0; cg < prefcg; cg++) 1356 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1357 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1358 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1359 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1360 return ((ino_t)(fs->fs_ipg * cg)); 1361 } 1362 /* 1363 * This is a backstop when we have deficit in space. 1364 */ 1365 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1366 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1367 return ((ino_t)(fs->fs_ipg * cg)); 1368 for (cg = 0; cg < prefcg; cg++) 1369 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1370 break; 1371 return ((ino_t)(fs->fs_ipg * cg)); 1372 } 1373 1374 /* 1375 * Select the desired position for the next block in a file. The file is 1376 * logically divided into sections. The first section is composed of the 1377 * direct blocks and the next fs_maxbpg blocks. Each additional section 1378 * contains fs_maxbpg blocks. 1379 * 1380 * If no blocks have been allocated in the first section, the policy is to 1381 * request a block in the same cylinder group as the inode that describes 1382 * the file. The first indirect is allocated immediately following the last 1383 * direct block and the data blocks for the first indirect immediately 1384 * follow it. 1385 * 1386 * If no blocks have been allocated in any other section, the indirect 1387 * block(s) are allocated in the same cylinder group as its inode in an 1388 * area reserved immediately following the inode blocks. The policy for 1389 * the data blocks is to place them in a cylinder group with a greater than 1390 * average number of free blocks. An appropriate cylinder group is found 1391 * by using a rotor that sweeps the cylinder groups. When a new group of 1392 * blocks is needed, the sweep begins in the cylinder group following the 1393 * cylinder group from which the previous allocation was made. The sweep 1394 * continues until a cylinder group with greater than the average number 1395 * of free blocks is found. If the allocation is for the first block in an 1396 * indirect block or the previous block is a hole, then the information on 1397 * the previous allocation is unavailable; here a best guess is made based 1398 * on the logical block number being allocated. 1399 * 1400 * If a section is already partially allocated, the policy is to 1401 * allocate blocks contiguously within the section if possible. 1402 */ 1403 ufs2_daddr_t 1404 ffs_blkpref_ufs1(struct inode *ip, 1405 ufs_lbn_t lbn, 1406 int indx, 1407 ufs1_daddr_t *bap) 1408 { 1409 struct fs *fs; 1410 uint64_t cg, inocg; 1411 uint64_t avgbfree, startcg; 1412 ufs2_daddr_t pref, prevbn; 1413 1414 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1415 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1416 fs = ITOFS(ip); 1417 /* 1418 * Allocation of indirect blocks is indicated by passing negative 1419 * values in indx: -1 for single indirect, -2 for double indirect, 1420 * -3 for triple indirect. As noted below, we attempt to allocate 1421 * the first indirect inline with the file data. For all later 1422 * indirect blocks, the data is often allocated in other cylinder 1423 * groups. However to speed random file access and to speed up 1424 * fsck, the filesystem reserves the first fs_metaspace blocks 1425 * (typically half of fs_minfree) of the data area of each cylinder 1426 * group to hold these later indirect blocks. 1427 */ 1428 inocg = ino_to_cg(fs, ip->i_number); 1429 if (indx < 0) { 1430 /* 1431 * Our preference for indirect blocks is the zone at the 1432 * beginning of the inode's cylinder group data area that 1433 * we try to reserve for indirect blocks. 1434 */ 1435 pref = cgmeta(fs, inocg); 1436 /* 1437 * If we are allocating the first indirect block, try to 1438 * place it immediately following the last direct block. 1439 */ 1440 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1441 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1442 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1443 return (pref); 1444 } 1445 /* 1446 * If we are allocating the first data block in the first indirect 1447 * block and the indirect has been allocated in the data block area, 1448 * try to place it immediately following the indirect block. 1449 */ 1450 if (lbn == UFS_NDADDR) { 1451 pref = ip->i_din1->di_ib[0]; 1452 if (pref != 0 && pref >= cgdata(fs, inocg) && 1453 pref < cgbase(fs, inocg + 1)) 1454 return (pref + fs->fs_frag); 1455 } 1456 /* 1457 * If we are at the beginning of a file, or we have already allocated 1458 * the maximum number of blocks per cylinder group, or we do not 1459 * have a block allocated immediately preceding us, then we need 1460 * to decide where to start allocating new blocks. 1461 */ 1462 if (indx == 0) { 1463 prevbn = 0; 1464 } else { 1465 prevbn = bap[indx - 1]; 1466 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1467 fs->fs_bsize) != 0) 1468 prevbn = 0; 1469 } 1470 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1471 /* 1472 * If we are allocating a directory data block, we want 1473 * to place it in the metadata area. 1474 */ 1475 if ((ip->i_mode & IFMT) == IFDIR) 1476 return (cgmeta(fs, inocg)); 1477 /* 1478 * Until we fill all the direct and all the first indirect's 1479 * blocks, we try to allocate in the data area of the inode's 1480 * cylinder group. 1481 */ 1482 if (lbn < UFS_NDADDR + NINDIR(fs)) 1483 return (cgdata(fs, inocg)); 1484 /* 1485 * Find a cylinder with greater than average number of 1486 * unused data blocks. 1487 */ 1488 if (indx == 0 || prevbn == 0) 1489 startcg = inocg + lbn / fs->fs_maxbpg; 1490 else 1491 startcg = dtog(fs, prevbn) + 1; 1492 startcg %= fs->fs_ncg; 1493 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1494 for (cg = startcg; cg < fs->fs_ncg; cg++) 1495 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1496 fs->fs_cgrotor = cg; 1497 return (cgdata(fs, cg)); 1498 } 1499 for (cg = 0; cg <= startcg; cg++) 1500 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1501 fs->fs_cgrotor = cg; 1502 return (cgdata(fs, cg)); 1503 } 1504 return (0); 1505 } 1506 /* 1507 * Otherwise, we just always try to lay things out contiguously. 1508 */ 1509 return (prevbn + fs->fs_frag); 1510 } 1511 1512 /* 1513 * Same as above, but for UFS2 1514 */ 1515 ufs2_daddr_t 1516 ffs_blkpref_ufs2(struct inode *ip, 1517 ufs_lbn_t lbn, 1518 int indx, 1519 ufs2_daddr_t *bap) 1520 { 1521 struct fs *fs; 1522 uint64_t cg, inocg; 1523 uint64_t avgbfree, startcg; 1524 ufs2_daddr_t pref, prevbn; 1525 1526 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1527 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1528 fs = ITOFS(ip); 1529 /* 1530 * Allocation of indirect blocks is indicated by passing negative 1531 * values in indx: -1 for single indirect, -2 for double indirect, 1532 * -3 for triple indirect. As noted below, we attempt to allocate 1533 * the first indirect inline with the file data. For all later 1534 * indirect blocks, the data is often allocated in other cylinder 1535 * groups. However to speed random file access and to speed up 1536 * fsck, the filesystem reserves the first fs_metaspace blocks 1537 * (typically half of fs_minfree) of the data area of each cylinder 1538 * group to hold these later indirect blocks. 1539 */ 1540 inocg = ino_to_cg(fs, ip->i_number); 1541 if (indx < 0) { 1542 /* 1543 * Our preference for indirect blocks is the zone at the 1544 * beginning of the inode's cylinder group data area that 1545 * we try to reserve for indirect blocks. 1546 */ 1547 pref = cgmeta(fs, inocg); 1548 /* 1549 * If we are allocating the first indirect block, try to 1550 * place it immediately following the last direct block. 1551 */ 1552 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1553 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1554 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1555 return (pref); 1556 } 1557 /* 1558 * If we are allocating the first data block in the first indirect 1559 * block and the indirect has been allocated in the data block area, 1560 * try to place it immediately following the indirect block. 1561 */ 1562 if (lbn == UFS_NDADDR) { 1563 pref = ip->i_din2->di_ib[0]; 1564 if (pref != 0 && pref >= cgdata(fs, inocg) && 1565 pref < cgbase(fs, inocg + 1)) 1566 return (pref + fs->fs_frag); 1567 } 1568 /* 1569 * If we are at the beginning of a file, or we have already allocated 1570 * the maximum number of blocks per cylinder group, or we do not 1571 * have a block allocated immediately preceding us, then we need 1572 * to decide where to start allocating new blocks. 1573 */ 1574 if (indx == 0) { 1575 prevbn = 0; 1576 } else { 1577 prevbn = bap[indx - 1]; 1578 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1579 fs->fs_bsize) != 0) 1580 prevbn = 0; 1581 } 1582 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1583 /* 1584 * If we are allocating a directory data block, we want 1585 * to place it in the metadata area. 1586 */ 1587 if ((ip->i_mode & IFMT) == IFDIR) 1588 return (cgmeta(fs, inocg)); 1589 /* 1590 * Until we fill all the direct and all the first indirect's 1591 * blocks, we try to allocate in the data area of the inode's 1592 * cylinder group. 1593 */ 1594 if (lbn < UFS_NDADDR + NINDIR(fs)) 1595 return (cgdata(fs, inocg)); 1596 /* 1597 * Find a cylinder with greater than average number of 1598 * unused data blocks. 1599 */ 1600 if (indx == 0 || prevbn == 0) 1601 startcg = inocg + lbn / fs->fs_maxbpg; 1602 else 1603 startcg = dtog(fs, prevbn) + 1; 1604 startcg %= fs->fs_ncg; 1605 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1606 for (cg = startcg; cg < fs->fs_ncg; cg++) 1607 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1608 fs->fs_cgrotor = cg; 1609 return (cgdata(fs, cg)); 1610 } 1611 for (cg = 0; cg <= startcg; cg++) 1612 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1613 fs->fs_cgrotor = cg; 1614 return (cgdata(fs, cg)); 1615 } 1616 return (0); 1617 } 1618 /* 1619 * Otherwise, we just always try to lay things out contiguously. 1620 */ 1621 return (prevbn + fs->fs_frag); 1622 } 1623 1624 /* 1625 * Implement the cylinder overflow algorithm. 1626 * 1627 * The policy implemented by this algorithm is: 1628 * 1) allocate the block in its requested cylinder group. 1629 * 2) quadratically rehash on the cylinder group number. 1630 * 3) brute force search for a free block. 1631 * 1632 * Must be called with the UFS lock held. Will release the lock on success 1633 * and return with it held on failure. 1634 */ 1635 /*VARARGS5*/ 1636 static ufs2_daddr_t 1637 ffs_hashalloc(struct inode *ip, 1638 uint64_t cg, 1639 ufs2_daddr_t pref, 1640 int size, /* Search size for data blocks, mode for inodes */ 1641 int rsize, /* Real allocated size. */ 1642 allocfcn_t *allocator) 1643 { 1644 struct fs *fs; 1645 ufs2_daddr_t result; 1646 uint64_t i, icg = cg; 1647 1648 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1649 #ifdef INVARIANTS 1650 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1651 panic("ffs_hashalloc: allocation on suspended filesystem"); 1652 #endif 1653 fs = ITOFS(ip); 1654 /* 1655 * 1: preferred cylinder group 1656 */ 1657 result = (*allocator)(ip, cg, pref, size, rsize); 1658 if (result) 1659 return (result); 1660 /* 1661 * 2: quadratic rehash 1662 */ 1663 for (i = 1; i < fs->fs_ncg; i *= 2) { 1664 cg += i; 1665 if (cg >= fs->fs_ncg) 1666 cg -= fs->fs_ncg; 1667 result = (*allocator)(ip, cg, 0, size, rsize); 1668 if (result) 1669 return (result); 1670 } 1671 /* 1672 * 3: brute force search 1673 * Note that we start at i == 2, since 0 was checked initially, 1674 * and 1 is always checked in the quadratic rehash. 1675 */ 1676 cg = (icg + 2) % fs->fs_ncg; 1677 for (i = 2; i < fs->fs_ncg; i++) { 1678 result = (*allocator)(ip, cg, 0, size, rsize); 1679 if (result) 1680 return (result); 1681 cg++; 1682 if (cg == fs->fs_ncg) 1683 cg = 0; 1684 } 1685 return (0); 1686 } 1687 1688 /* 1689 * Determine whether a fragment can be extended. 1690 * 1691 * Check to see if the necessary fragments are available, and 1692 * if they are, allocate them. 1693 */ 1694 static ufs2_daddr_t 1695 ffs_fragextend(struct inode *ip, 1696 uint64_t cg, 1697 ufs2_daddr_t bprev, 1698 int osize, 1699 int nsize) 1700 { 1701 struct fs *fs; 1702 struct cg *cgp; 1703 struct buf *bp; 1704 struct ufsmount *ump; 1705 int nffree; 1706 long bno; 1707 int frags, bbase; 1708 int i, error; 1709 uint8_t *blksfree; 1710 1711 ump = ITOUMP(ip); 1712 fs = ump->um_fs; 1713 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1714 return (0); 1715 frags = numfrags(fs, nsize); 1716 bbase = fragnum(fs, bprev); 1717 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1718 /* cannot extend across a block boundary */ 1719 return (0); 1720 } 1721 UFS_UNLOCK(ump); 1722 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 1723 ffs_checkcgintegrity(fs, cg, error); 1724 goto fail; 1725 } 1726 bno = dtogd(fs, bprev); 1727 blksfree = cg_blksfree(cgp); 1728 for (i = numfrags(fs, osize); i < frags; i++) 1729 if (isclr(blksfree, bno + i)) 1730 goto fail; 1731 /* 1732 * the current fragment can be extended 1733 * deduct the count on fragment being extended into 1734 * increase the count on the remaining fragment (if any) 1735 * allocate the extended piece 1736 */ 1737 for (i = frags; i < fs->fs_frag - bbase; i++) 1738 if (isclr(blksfree, bno + i)) 1739 break; 1740 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1741 if (i != frags) 1742 cgp->cg_frsum[i - frags]++; 1743 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1744 clrbit(blksfree, bno + i); 1745 cgp->cg_cs.cs_nffree--; 1746 nffree++; 1747 } 1748 UFS_LOCK(ump); 1749 fs->fs_cstotal.cs_nffree -= nffree; 1750 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1751 fs->fs_fmod = 1; 1752 ACTIVECLEAR(fs, cg); 1753 UFS_UNLOCK(ump); 1754 if (DOINGSOFTDEP(ITOV(ip))) 1755 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1756 frags, numfrags(fs, osize)); 1757 bdwrite(bp); 1758 return (bprev); 1759 1760 fail: 1761 brelse(bp); 1762 UFS_LOCK(ump); 1763 return (0); 1764 1765 } 1766 1767 /* 1768 * Determine whether a block can be allocated. 1769 * 1770 * Check to see if a block of the appropriate size is available, 1771 * and if it is, allocate it. 1772 */ 1773 static ufs2_daddr_t 1774 ffs_alloccg(struct inode *ip, 1775 uint64_t cg, 1776 ufs2_daddr_t bpref, 1777 int size, 1778 int rsize) 1779 { 1780 struct fs *fs; 1781 struct cg *cgp; 1782 struct buf *bp; 1783 struct ufsmount *ump; 1784 ufs1_daddr_t bno; 1785 ufs2_daddr_t blkno; 1786 int i, allocsiz, error, frags; 1787 uint8_t *blksfree; 1788 1789 ump = ITOUMP(ip); 1790 fs = ump->um_fs; 1791 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1792 return (0); 1793 UFS_UNLOCK(ump); 1794 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 || 1795 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 1796 ffs_checkcgintegrity(fs, cg, error); 1797 goto fail; 1798 } 1799 if (size == fs->fs_bsize) { 1800 UFS_LOCK(ump); 1801 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1802 ACTIVECLEAR(fs, cg); 1803 UFS_UNLOCK(ump); 1804 bdwrite(bp); 1805 return (blkno); 1806 } 1807 /* 1808 * check to see if any fragments are already available 1809 * allocsiz is the size which will be allocated, hacking 1810 * it down to a smaller size if necessary 1811 */ 1812 blksfree = cg_blksfree(cgp); 1813 frags = numfrags(fs, size); 1814 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1815 if (cgp->cg_frsum[allocsiz] != 0) 1816 break; 1817 if (allocsiz == fs->fs_frag) { 1818 /* 1819 * no fragments were available, so a block will be 1820 * allocated, and hacked up 1821 */ 1822 if (cgp->cg_cs.cs_nbfree == 0) 1823 goto fail; 1824 UFS_LOCK(ump); 1825 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1826 ACTIVECLEAR(fs, cg); 1827 UFS_UNLOCK(ump); 1828 bdwrite(bp); 1829 return (blkno); 1830 } 1831 KASSERT(size == rsize, 1832 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1833 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1834 if (bno < 0) 1835 goto fail; 1836 for (i = 0; i < frags; i++) 1837 clrbit(blksfree, bno + i); 1838 cgp->cg_cs.cs_nffree -= frags; 1839 cgp->cg_frsum[allocsiz]--; 1840 if (frags != allocsiz) 1841 cgp->cg_frsum[allocsiz - frags]++; 1842 UFS_LOCK(ump); 1843 fs->fs_cstotal.cs_nffree -= frags; 1844 fs->fs_cs(fs, cg).cs_nffree -= frags; 1845 fs->fs_fmod = 1; 1846 blkno = cgbase(fs, cg) + bno; 1847 ACTIVECLEAR(fs, cg); 1848 UFS_UNLOCK(ump); 1849 if (DOINGSOFTDEP(ITOV(ip))) 1850 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1851 bdwrite(bp); 1852 return (blkno); 1853 1854 fail: 1855 brelse(bp); 1856 UFS_LOCK(ump); 1857 return (0); 1858 } 1859 1860 /* 1861 * Allocate a block in a cylinder group. 1862 * 1863 * This algorithm implements the following policy: 1864 * 1) allocate the requested block. 1865 * 2) allocate a rotationally optimal block in the same cylinder. 1866 * 3) allocate the next available block on the block rotor for the 1867 * specified cylinder group. 1868 * Note that this routine only allocates fs_bsize blocks; these 1869 * blocks may be fragmented by the routine that allocates them. 1870 */ 1871 static ufs2_daddr_t 1872 ffs_alloccgblk(struct inode *ip, 1873 struct buf *bp, 1874 ufs2_daddr_t bpref, 1875 int size) 1876 { 1877 struct fs *fs; 1878 struct cg *cgp; 1879 struct ufsmount *ump; 1880 ufs1_daddr_t bno; 1881 ufs2_daddr_t blkno; 1882 uint8_t *blksfree; 1883 int i, cgbpref; 1884 1885 ump = ITOUMP(ip); 1886 fs = ump->um_fs; 1887 mtx_assert(UFS_MTX(ump), MA_OWNED); 1888 cgp = (struct cg *)bp->b_data; 1889 blksfree = cg_blksfree(cgp); 1890 if (bpref == 0) { 1891 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1892 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1893 /* map bpref to correct zone in this cg */ 1894 if (bpref < cgdata(fs, cgbpref)) 1895 bpref = cgmeta(fs, cgp->cg_cgx); 1896 else 1897 bpref = cgdata(fs, cgp->cg_cgx); 1898 } 1899 /* 1900 * if the requested block is available, use it 1901 */ 1902 bno = dtogd(fs, blknum(fs, bpref)); 1903 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1904 goto gotit; 1905 /* 1906 * Take the next available block in this cylinder group. 1907 */ 1908 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1909 if (bno < 0) 1910 return (0); 1911 /* Update cg_rotor only if allocated from the data zone */ 1912 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1913 cgp->cg_rotor = bno; 1914 gotit: 1915 blkno = fragstoblks(fs, bno); 1916 ffs_clrblock(fs, blksfree, (long)blkno); 1917 ffs_clusteracct(fs, cgp, blkno, -1); 1918 cgp->cg_cs.cs_nbfree--; 1919 fs->fs_cstotal.cs_nbfree--; 1920 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1921 fs->fs_fmod = 1; 1922 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1923 /* 1924 * If the caller didn't want the whole block free the frags here. 1925 */ 1926 size = numfrags(fs, size); 1927 if (size != fs->fs_frag) { 1928 bno = dtogd(fs, blkno); 1929 for (i = size; i < fs->fs_frag; i++) 1930 setbit(blksfree, bno + i); 1931 i = fs->fs_frag - size; 1932 cgp->cg_cs.cs_nffree += i; 1933 fs->fs_cstotal.cs_nffree += i; 1934 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1935 fs->fs_fmod = 1; 1936 cgp->cg_frsum[i]++; 1937 } 1938 /* XXX Fixme. */ 1939 UFS_UNLOCK(ump); 1940 if (DOINGSOFTDEP(ITOV(ip))) 1941 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1942 UFS_LOCK(ump); 1943 return (blkno); 1944 } 1945 1946 /* 1947 * Determine whether a cluster can be allocated. 1948 * 1949 * We do not currently check for optimal rotational layout if there 1950 * are multiple choices in the same cylinder group. Instead we just 1951 * take the first one that we find following bpref. 1952 */ 1953 static ufs2_daddr_t 1954 ffs_clusteralloc(struct inode *ip, 1955 uint64_t cg, 1956 ufs2_daddr_t bpref, 1957 int len) 1958 { 1959 struct fs *fs; 1960 struct cg *cgp; 1961 struct buf *bp; 1962 struct ufsmount *ump; 1963 int i, run, bit, map, got, error; 1964 ufs2_daddr_t bno; 1965 uint8_t *mapp; 1966 int32_t *lp; 1967 uint8_t *blksfree; 1968 1969 ump = ITOUMP(ip); 1970 fs = ump->um_fs; 1971 if (fs->fs_maxcluster[cg] < len) 1972 return (0); 1973 UFS_UNLOCK(ump); 1974 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 1975 ffs_checkcgintegrity(fs, cg, error); 1976 UFS_LOCK(ump); 1977 return (0); 1978 } 1979 /* 1980 * Check to see if a cluster of the needed size (or bigger) is 1981 * available in this cylinder group. 1982 */ 1983 lp = &cg_clustersum(cgp)[len]; 1984 for (i = len; i <= fs->fs_contigsumsize; i++) 1985 if (*lp++ > 0) 1986 break; 1987 if (i > fs->fs_contigsumsize) { 1988 /* 1989 * This is the first time looking for a cluster in this 1990 * cylinder group. Update the cluster summary information 1991 * to reflect the true maximum sized cluster so that 1992 * future cluster allocation requests can avoid reading 1993 * the cylinder group map only to find no clusters. 1994 */ 1995 lp = &cg_clustersum(cgp)[len - 1]; 1996 for (i = len - 1; i > 0; i--) 1997 if (*lp-- > 0) 1998 break; 1999 UFS_LOCK(ump); 2000 fs->fs_maxcluster[cg] = i; 2001 brelse(bp); 2002 return (0); 2003 } 2004 /* 2005 * Search the cluster map to find a big enough cluster. 2006 * We take the first one that we find, even if it is larger 2007 * than we need as we prefer to get one close to the previous 2008 * block allocation. We do not search before the current 2009 * preference point as we do not want to allocate a block 2010 * that is allocated before the previous one (as we will 2011 * then have to wait for another pass of the elevator 2012 * algorithm before it will be read). We prefer to fail and 2013 * be recalled to try an allocation in the next cylinder group. 2014 */ 2015 if (dtog(fs, bpref) != cg) 2016 bpref = cgdata(fs, cg); 2017 else 2018 bpref = blknum(fs, bpref); 2019 bpref = fragstoblks(fs, dtogd(fs, bpref)); 2020 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 2021 map = *mapp++; 2022 bit = 1 << (bpref % NBBY); 2023 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 2024 if ((map & bit) == 0) { 2025 run = 0; 2026 } else { 2027 run++; 2028 if (run == len) 2029 break; 2030 } 2031 if ((got & (NBBY - 1)) != (NBBY - 1)) { 2032 bit <<= 1; 2033 } else { 2034 map = *mapp++; 2035 bit = 1; 2036 } 2037 } 2038 if (got >= cgp->cg_nclusterblks) { 2039 UFS_LOCK(ump); 2040 brelse(bp); 2041 return (0); 2042 } 2043 /* 2044 * Allocate the cluster that we have found. 2045 */ 2046 blksfree = cg_blksfree(cgp); 2047 for (i = 1; i <= len; i++) 2048 if (!ffs_isblock(fs, blksfree, got - run + i)) 2049 panic("ffs_clusteralloc: map mismatch"); 2050 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 2051 if (dtog(fs, bno) != cg) 2052 panic("ffs_clusteralloc: allocated out of group"); 2053 len = blkstofrags(fs, len); 2054 UFS_LOCK(ump); 2055 for (i = 0; i < len; i += fs->fs_frag) 2056 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2057 panic("ffs_clusteralloc: lost block"); 2058 ACTIVECLEAR(fs, cg); 2059 UFS_UNLOCK(ump); 2060 bdwrite(bp); 2061 return (bno); 2062 } 2063 2064 static inline struct buf * 2065 getinobuf(struct inode *ip, 2066 uint64_t cg, 2067 uint32_t cginoblk, 2068 int gbflags) 2069 { 2070 struct fs *fs; 2071 2072 fs = ITOFS(ip); 2073 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2074 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2075 gbflags)); 2076 } 2077 2078 /* 2079 * Synchronous inode initialization is needed only when barrier writes do not 2080 * work as advertised, and will impose a heavy cost on file creation in a newly 2081 * created filesystem. 2082 */ 2083 static int doasyncinodeinit = 1; 2084 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2085 &doasyncinodeinit, 0, 2086 "Perform inode block initialization using asynchronous writes"); 2087 2088 /* 2089 * Determine whether an inode can be allocated. 2090 * 2091 * Check to see if an inode is available, and if it is, 2092 * allocate it using the following policy: 2093 * 1) allocate the requested inode. 2094 * 2) allocate the next available inode after the requested 2095 * inode in the specified cylinder group. 2096 */ 2097 static ufs2_daddr_t 2098 ffs_nodealloccg(struct inode *ip, 2099 uint64_t cg, 2100 ufs2_daddr_t ipref, 2101 int mode, 2102 int unused) 2103 { 2104 struct fs *fs; 2105 struct cg *cgp; 2106 struct buf *bp, *ibp; 2107 struct ufsmount *ump; 2108 uint8_t *inosused, *loc; 2109 struct ufs2_dinode *dp2; 2110 int error, start, len, i; 2111 uint32_t old_initediblk; 2112 2113 ump = ITOUMP(ip); 2114 fs = ump->um_fs; 2115 check_nifree: 2116 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2117 return (0); 2118 UFS_UNLOCK(ump); 2119 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 2120 ffs_checkcgintegrity(fs, cg, error); 2121 UFS_LOCK(ump); 2122 return (0); 2123 } 2124 restart: 2125 if (cgp->cg_cs.cs_nifree == 0) { 2126 brelse(bp); 2127 UFS_LOCK(ump); 2128 return (0); 2129 } 2130 inosused = cg_inosused(cgp); 2131 if (ipref) { 2132 ipref %= fs->fs_ipg; 2133 if (isclr(inosused, ipref)) 2134 goto gotit; 2135 } 2136 start = cgp->cg_irotor / NBBY; 2137 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2138 loc = memcchr(&inosused[start], 0xff, len); 2139 if (loc == NULL) { 2140 len = start + 1; 2141 start = 0; 2142 loc = memcchr(&inosused[start], 0xff, len); 2143 if (loc == NULL) { 2144 printf("cg = %ju, irotor = %ld, fs = %s\n", 2145 (intmax_t)cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2146 panic("ffs_nodealloccg: map corrupted"); 2147 /* NOTREACHED */ 2148 } 2149 } 2150 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2151 gotit: 2152 /* 2153 * Check to see if we need to initialize more inodes. 2154 */ 2155 if (fs->fs_magic == FS_UFS2_MAGIC && 2156 ipref + INOPB(fs) > cgp->cg_initediblk && 2157 cgp->cg_initediblk < cgp->cg_niblk) { 2158 old_initediblk = cgp->cg_initediblk; 2159 2160 /* 2161 * Free the cylinder group lock before writing the 2162 * initialized inode block. Entering the 2163 * babarrierwrite() with the cylinder group lock 2164 * causes lock order violation between the lock and 2165 * snaplk. 2166 * 2167 * Another thread can decide to initialize the same 2168 * inode block, but whichever thread first gets the 2169 * cylinder group lock after writing the newly 2170 * allocated inode block will update it and the other 2171 * will realize that it has lost and leave the 2172 * cylinder group unchanged. 2173 */ 2174 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2175 brelse(bp); 2176 if (ibp == NULL) { 2177 /* 2178 * The inode block buffer is already owned by 2179 * another thread, which must initialize it. 2180 * Wait on the buffer to allow another thread 2181 * to finish the updates, with dropped cg 2182 * buffer lock, then retry. 2183 */ 2184 ibp = getinobuf(ip, cg, old_initediblk, 0); 2185 brelse(ibp); 2186 UFS_LOCK(ump); 2187 goto check_nifree; 2188 } 2189 bzero(ibp->b_data, (int)fs->fs_bsize); 2190 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2191 for (i = 0; i < INOPB(fs); i++) { 2192 while (dp2->di_gen == 0) 2193 dp2->di_gen = arc4random(); 2194 dp2++; 2195 } 2196 2197 /* 2198 * Rather than adding a soft updates dependency to ensure 2199 * that the new inode block is written before it is claimed 2200 * by the cylinder group map, we just do a barrier write 2201 * here. The barrier write will ensure that the inode block 2202 * gets written before the updated cylinder group map can be 2203 * written. The barrier write should only slow down bulk 2204 * loading of newly created filesystems. 2205 */ 2206 if (doasyncinodeinit) 2207 babarrierwrite(ibp); 2208 else 2209 bwrite(ibp); 2210 2211 /* 2212 * After the inode block is written, try to update the 2213 * cg initediblk pointer. If another thread beat us 2214 * to it, then leave it unchanged as the other thread 2215 * has already set it correctly. 2216 */ 2217 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2218 UFS_LOCK(ump); 2219 ACTIVECLEAR(fs, cg); 2220 UFS_UNLOCK(ump); 2221 if (error != 0) 2222 return (error); 2223 if (cgp->cg_initediblk == old_initediblk) 2224 cgp->cg_initediblk += INOPB(fs); 2225 goto restart; 2226 } 2227 cgp->cg_irotor = ipref; 2228 UFS_LOCK(ump); 2229 ACTIVECLEAR(fs, cg); 2230 setbit(inosused, ipref); 2231 cgp->cg_cs.cs_nifree--; 2232 fs->fs_cstotal.cs_nifree--; 2233 fs->fs_cs(fs, cg).cs_nifree--; 2234 fs->fs_fmod = 1; 2235 if ((mode & IFMT) == IFDIR) { 2236 cgp->cg_cs.cs_ndir++; 2237 fs->fs_cstotal.cs_ndir++; 2238 fs->fs_cs(fs, cg).cs_ndir++; 2239 } 2240 UFS_UNLOCK(ump); 2241 if (DOINGSOFTDEP(ITOV(ip))) 2242 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2243 bdwrite(bp); 2244 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2245 } 2246 2247 /* 2248 * Free a block or fragment. 2249 * 2250 * The specified block or fragment is placed back in the 2251 * free map. If a fragment is deallocated, a possible 2252 * block reassembly is checked. 2253 */ 2254 static void 2255 ffs_blkfree_cg(struct ufsmount *ump, 2256 struct fs *fs, 2257 struct vnode *devvp, 2258 ufs2_daddr_t bno, 2259 long size, 2260 ino_t inum, 2261 struct workhead *dephd) 2262 { 2263 struct mount *mp; 2264 struct cg *cgp; 2265 struct buf *bp; 2266 daddr_t dbn; 2267 ufs1_daddr_t fragno, cgbno; 2268 int i, blk, frags, bbase, error; 2269 uint64_t cg; 2270 uint8_t *blksfree; 2271 struct cdev *dev; 2272 2273 cg = dtog(fs, bno); 2274 if (devvp->v_type == VREG) { 2275 /* devvp is a snapshot */ 2276 MPASS(devvp->v_mount->mnt_data == ump); 2277 dev = ump->um_devvp->v_rdev; 2278 } else if (devvp->v_type == VCHR) { 2279 /* 2280 * devvp is a normal disk device 2281 * XXXKIB: devvp is not locked there, v_rdev access depends on 2282 * busy mount, which prevents mntfs devvp from reclamation. 2283 */ 2284 dev = devvp->v_rdev; 2285 } else 2286 return; 2287 #ifdef INVARIANTS 2288 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2289 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2290 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2291 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2292 size, fs->fs_fsmnt); 2293 panic("ffs_blkfree_cg: invalid size"); 2294 } 2295 #endif 2296 if ((uint64_t)bno >= fs->fs_size) { 2297 printf("bad block %jd, ino %ju\n", (intmax_t)bno, 2298 (intmax_t)inum); 2299 ffs_fserr(fs, inum, "bad block"); 2300 return; 2301 } 2302 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2303 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2304 return; 2305 /* 2306 * Would like to just downgrade to read-only. Until that 2307 * capability is available, just toss the cylinder group 2308 * update and mark the filesystem as needing to run fsck. 2309 */ 2310 fs->fs_flags |= FS_NEEDSFSCK; 2311 if (devvp->v_type == VREG) 2312 dbn = fragstoblks(fs, cgtod(fs, cg)); 2313 else 2314 dbn = fsbtodb(fs, cgtod(fs, cg)); 2315 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2316 KASSERT(error == 0, ("getblkx failed")); 2317 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2318 numfrags(fs, size), dephd, true); 2319 bp->b_flags |= B_RELBUF | B_NOCACHE; 2320 bp->b_flags &= ~B_CACHE; 2321 bawrite(bp); 2322 return; 2323 } 2324 cgbno = dtogd(fs, bno); 2325 blksfree = cg_blksfree(cgp); 2326 UFS_LOCK(ump); 2327 if (size == fs->fs_bsize) { 2328 fragno = fragstoblks(fs, cgbno); 2329 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2330 if (devvp->v_type == VREG) { 2331 UFS_UNLOCK(ump); 2332 /* devvp is a snapshot */ 2333 brelse(bp); 2334 return; 2335 } 2336 printf("dev = %s, block = %jd, fs = %s\n", 2337 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2338 panic("ffs_blkfree_cg: freeing free block"); 2339 } 2340 ffs_setblock(fs, blksfree, fragno); 2341 ffs_clusteracct(fs, cgp, fragno, 1); 2342 cgp->cg_cs.cs_nbfree++; 2343 fs->fs_cstotal.cs_nbfree++; 2344 fs->fs_cs(fs, cg).cs_nbfree++; 2345 } else { 2346 bbase = cgbno - fragnum(fs, cgbno); 2347 /* 2348 * decrement the counts associated with the old frags 2349 */ 2350 blk = blkmap(fs, blksfree, bbase); 2351 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2352 /* 2353 * deallocate the fragment 2354 */ 2355 frags = numfrags(fs, size); 2356 for (i = 0; i < frags; i++) { 2357 if (isset(blksfree, cgbno + i)) { 2358 printf("dev = %s, block = %jd, fs = %s\n", 2359 devtoname(dev), (intmax_t)(bno + i), 2360 fs->fs_fsmnt); 2361 panic("ffs_blkfree_cg: freeing free frag"); 2362 } 2363 setbit(blksfree, cgbno + i); 2364 } 2365 cgp->cg_cs.cs_nffree += i; 2366 fs->fs_cstotal.cs_nffree += i; 2367 fs->fs_cs(fs, cg).cs_nffree += i; 2368 /* 2369 * add back in counts associated with the new frags 2370 */ 2371 blk = blkmap(fs, blksfree, bbase); 2372 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2373 /* 2374 * if a complete block has been reassembled, account for it 2375 */ 2376 fragno = fragstoblks(fs, bbase); 2377 if (ffs_isblock(fs, blksfree, fragno)) { 2378 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2379 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2380 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2381 ffs_clusteracct(fs, cgp, fragno, 1); 2382 cgp->cg_cs.cs_nbfree++; 2383 fs->fs_cstotal.cs_nbfree++; 2384 fs->fs_cs(fs, cg).cs_nbfree++; 2385 } 2386 } 2387 fs->fs_fmod = 1; 2388 ACTIVECLEAR(fs, cg); 2389 UFS_UNLOCK(ump); 2390 mp = UFSTOVFS(ump); 2391 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2392 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2393 numfrags(fs, size), dephd, false); 2394 bdwrite(bp); 2395 } 2396 2397 /* 2398 * Structures and routines associated with trim management. 2399 * 2400 * The following requests are passed to trim_lookup to indicate 2401 * the actions that should be taken. 2402 */ 2403 #define NEW 1 /* if found, error else allocate and hash it */ 2404 #define OLD 2 /* if not found, error, else return it */ 2405 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2406 #define DONE 4 /* if not found, error else unhash and return it */ 2407 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2408 2409 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2410 2411 #define TRIMLIST_HASH(ump, key) \ 2412 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2413 2414 /* 2415 * These structures describe each of the block free requests aggregated 2416 * together to make up a trim request. 2417 */ 2418 struct trim_blkreq { 2419 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2420 ufs2_daddr_t bno; 2421 long size; 2422 struct workhead *pdephd; 2423 struct workhead dephd; 2424 }; 2425 2426 /* 2427 * Description of a trim request. 2428 */ 2429 struct ffs_blkfree_trim_params { 2430 TAILQ_HEAD(, trim_blkreq) blklist; 2431 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2432 struct task task; 2433 struct ufsmount *ump; 2434 struct vnode *devvp; 2435 ino_t inum; 2436 ufs2_daddr_t bno; 2437 long size; 2438 long key; 2439 }; 2440 2441 static void ffs_blkfree_trim_completed(struct buf *); 2442 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2443 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2444 struct vnode *, ufs2_daddr_t, long, ino_t, uint64_t, int); 2445 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2446 2447 /* 2448 * Called on trim completion to start a task to free the associated block(s). 2449 */ 2450 static void 2451 ffs_blkfree_trim_completed(struct buf *bp) 2452 { 2453 struct ffs_blkfree_trim_params *tp; 2454 2455 tp = bp->b_fsprivate1; 2456 free(bp, M_TRIM); 2457 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2458 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2459 } 2460 2461 /* 2462 * Trim completion task that free associated block(s). 2463 */ 2464 static void 2465 ffs_blkfree_trim_task(void *ctx, int pending) 2466 { 2467 struct ffs_blkfree_trim_params *tp; 2468 struct trim_blkreq *blkelm; 2469 struct ufsmount *ump; 2470 2471 tp = ctx; 2472 ump = tp->ump; 2473 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2474 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2475 blkelm->size, tp->inum, blkelm->pdephd); 2476 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2477 free(blkelm, M_TRIM); 2478 } 2479 vn_finished_secondary_write(UFSTOVFS(ump)); 2480 UFS_LOCK(ump); 2481 ump->um_trim_inflight -= 1; 2482 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2483 UFS_UNLOCK(ump); 2484 free(tp, M_TRIM); 2485 } 2486 2487 /* 2488 * Lookup a trim request by inode number. 2489 * Allocate if requested (NEW, REPLACE, SINGLE). 2490 */ 2491 static struct ffs_blkfree_trim_params * 2492 trim_lookup(struct ufsmount *ump, 2493 struct vnode *devvp, 2494 ufs2_daddr_t bno, 2495 long size, 2496 ino_t inum, 2497 uint64_t key, 2498 int alloctype) 2499 { 2500 struct trimlist_hashhead *tphashhead; 2501 struct ffs_blkfree_trim_params *tp, *ntp; 2502 2503 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2504 if (alloctype != SINGLE) { 2505 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2506 UFS_LOCK(ump); 2507 tphashhead = TRIMLIST_HASH(ump, key); 2508 LIST_FOREACH(tp, tphashhead, hashlist) 2509 if (key == tp->key) 2510 break; 2511 } 2512 switch (alloctype) { 2513 case NEW: 2514 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2515 break; 2516 case OLD: 2517 KASSERT(tp != NULL, 2518 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2519 UFS_UNLOCK(ump); 2520 free(ntp, M_TRIM); 2521 return (tp); 2522 case REPLACE: 2523 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2524 LIST_REMOVE(tp, hashlist); 2525 /* tp will be freed by caller */ 2526 break; 2527 case DONE: 2528 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2529 LIST_REMOVE(tp, hashlist); 2530 UFS_UNLOCK(ump); 2531 free(ntp, M_TRIM); 2532 return (tp); 2533 } 2534 TAILQ_INIT(&ntp->blklist); 2535 ntp->ump = ump; 2536 ntp->devvp = devvp; 2537 ntp->bno = bno; 2538 ntp->size = size; 2539 ntp->inum = inum; 2540 ntp->key = key; 2541 if (alloctype != SINGLE) { 2542 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2543 UFS_UNLOCK(ump); 2544 } 2545 return (ntp); 2546 } 2547 2548 /* 2549 * Dispatch a trim request. 2550 */ 2551 static void 2552 ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp) 2553 { 2554 struct ufsmount *ump; 2555 struct mount *mp; 2556 struct buf *bp; 2557 2558 /* 2559 * Postpone the set of the free bit in the cg bitmap until the 2560 * BIO_DELETE is completed. Otherwise, due to disk queue 2561 * reordering, TRIM might be issued after we reuse the block 2562 * and write some new data into it. 2563 */ 2564 ump = tp->ump; 2565 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2566 bp->b_iocmd = BIO_DELETE; 2567 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2568 bp->b_iodone = ffs_blkfree_trim_completed; 2569 bp->b_bcount = tp->size; 2570 bp->b_fsprivate1 = tp; 2571 UFS_LOCK(ump); 2572 ump->um_trim_total += 1; 2573 ump->um_trim_inflight += 1; 2574 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2575 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2576 UFS_UNLOCK(ump); 2577 2578 mp = UFSTOVFS(ump); 2579 vn_start_secondary_write(NULL, &mp, 0); 2580 g_vfs_strategy(ump->um_bo, bp); 2581 } 2582 2583 /* 2584 * Allocate a new key to use to identify a range of blocks. 2585 */ 2586 uint64_t 2587 ffs_blkrelease_start(struct ufsmount *ump, 2588 struct vnode *devvp, 2589 ino_t inum) 2590 { 2591 static u_long masterkey; 2592 uint64_t key; 2593 2594 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2595 return (SINGLETON_KEY); 2596 do { 2597 key = atomic_fetchadd_long(&masterkey, 1); 2598 } while (key < FIRST_VALID_KEY); 2599 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2600 return (key); 2601 } 2602 2603 /* 2604 * Deallocate a key that has been used to identify a range of blocks. 2605 */ 2606 void 2607 ffs_blkrelease_finish(struct ufsmount *ump, uint64_t key) 2608 { 2609 struct ffs_blkfree_trim_params *tp; 2610 2611 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2612 return; 2613 /* 2614 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2615 * a file deletion is active, specifically after a call 2616 * to ffs_blkrelease_start() but before the call to 2617 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2618 * have handed out SINGLETON_KEY rather than starting a 2619 * collection sequence. Thus if we get a SINGLETON_KEY 2620 * passed to ffs_blkrelease_finish(), we just return rather 2621 * than trying to finish the nonexistent sequence. 2622 */ 2623 if (key == SINGLETON_KEY) { 2624 #ifdef INVARIANTS 2625 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2626 ump->um_mountp->mnt_stat.f_mntonname); 2627 #endif 2628 return; 2629 } 2630 /* 2631 * We are done with sending blocks using this key. Look up the key 2632 * using the DONE alloctype (in tp) to request that it be unhashed 2633 * as we will not be adding to it. If the key has never been used, 2634 * tp->size will be zero, so we can just free tp. Otherwise the call 2635 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2636 * tp to be issued (and then tp to be freed). 2637 */ 2638 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2639 if (tp->size == 0) 2640 free(tp, M_TRIM); 2641 else 2642 ffs_blkfree_sendtrim(tp); 2643 } 2644 2645 /* 2646 * Setup to free a block or fragment. 2647 * 2648 * Check for snapshots that might want to claim the block. 2649 * If trims are requested, prepare a trim request. Attempt to 2650 * aggregate consecutive blocks into a single trim request. 2651 */ 2652 void 2653 ffs_blkfree(struct ufsmount *ump, 2654 struct fs *fs, 2655 struct vnode *devvp, 2656 ufs2_daddr_t bno, 2657 long size, 2658 ino_t inum, 2659 __enum_uint8(vtype) vtype, 2660 struct workhead *dephd, 2661 uint64_t key) 2662 { 2663 struct ffs_blkfree_trim_params *tp, *ntp; 2664 struct trim_blkreq *blkelm; 2665 2666 /* 2667 * Check to see if a snapshot wants to claim the block. 2668 * Check that devvp is a normal disk device, not a snapshot, 2669 * it has a snapshot(s) associated with it, and one of the 2670 * snapshots wants to claim the block. 2671 */ 2672 if (devvp->v_type == VCHR && 2673 (devvp->v_vflag & VV_COPYONWRITE) && 2674 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2675 return; 2676 } 2677 /* 2678 * Nothing to delay if TRIM is not required for this block or TRIM 2679 * is disabled or the operation is performed on a snapshot. 2680 */ 2681 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2682 devvp->v_type == VREG) { 2683 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2684 return; 2685 } 2686 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2687 blkelm->bno = bno; 2688 blkelm->size = size; 2689 if (dephd == NULL) { 2690 blkelm->pdephd = NULL; 2691 } else { 2692 LIST_INIT(&blkelm->dephd); 2693 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2694 blkelm->pdephd = &blkelm->dephd; 2695 } 2696 if (key == SINGLETON_KEY) { 2697 /* 2698 * Just a single non-contiguous piece. Use the SINGLE 2699 * alloctype to return a trim request that will not be 2700 * hashed for future lookup. 2701 */ 2702 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2703 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2704 ffs_blkfree_sendtrim(tp); 2705 return; 2706 } 2707 /* 2708 * The callers of this function are not tracking whether or not 2709 * the blocks are contiguous. They are just saying that they 2710 * are freeing a set of blocks. It is this code that determines 2711 * the pieces of that range that are actually contiguous. 2712 * 2713 * Calling ffs_blkrelease_start() will have created an entry 2714 * that we will use. 2715 */ 2716 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2717 if (tp->size == 0) { 2718 /* 2719 * First block of a potential range, set block and size 2720 * for the trim block. 2721 */ 2722 tp->bno = bno; 2723 tp->size = size; 2724 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2725 return; 2726 } 2727 /* 2728 * If this block is a continuation of the range (either 2729 * follows at the end or preceeds in the front) then we 2730 * add it to the front or back of the list and return. 2731 * 2732 * If it is not a continuation of the trim that we were 2733 * building, using the REPLACE alloctype, we request that 2734 * the old trim request (still in tp) be unhashed and a 2735 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2736 * call causes the block range described by tp to be issued 2737 * (and then tp to be freed). 2738 */ 2739 if (bno + numfrags(fs, size) == tp->bno) { 2740 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2741 tp->bno = bno; 2742 tp->size += size; 2743 return; 2744 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2745 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2746 tp->size += size; 2747 return; 2748 } 2749 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2750 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2751 ffs_blkfree_sendtrim(tp); 2752 } 2753 2754 #ifdef INVARIANTS 2755 /* 2756 * Verify allocation of a block or fragment. 2757 * Return 1 if block or fragment is free. 2758 */ 2759 static int 2760 ffs_checkfreeblk(struct inode *ip, 2761 ufs2_daddr_t bno, 2762 long size) 2763 { 2764 struct fs *fs; 2765 struct cg *cgp; 2766 struct buf *bp; 2767 ufs1_daddr_t cgbno; 2768 int i, frags, blkalloced; 2769 uint8_t *blksfree; 2770 2771 fs = ITOFS(ip); 2772 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2773 printf("bsize = %ld, size = %ld, fs = %s\n", 2774 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2775 panic("ffs_checkfreeblk: bad size"); 2776 } 2777 if ((uint64_t)bno >= fs->fs_size) 2778 panic("ffs_checkfreeblk: too big block %jd", (intmax_t)bno); 2779 if (ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp) != 0) 2780 return (0); 2781 blksfree = cg_blksfree(cgp); 2782 cgbno = dtogd(fs, bno); 2783 if (size == fs->fs_bsize) { 2784 blkalloced = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2785 } else { 2786 frags = numfrags(fs, size); 2787 for (blkalloced = 0, i = 0; i < frags; i++) 2788 if (isset(blksfree, cgbno + i)) 2789 blkalloced++; 2790 if (blkalloced != 0 && blkalloced != frags) 2791 panic("ffs_checkfreeblk: partially free fragment"); 2792 } 2793 brelse(bp); 2794 return (blkalloced == 0); 2795 } 2796 #endif /* INVARIANTS */ 2797 2798 /* 2799 * Free an inode. 2800 */ 2801 int 2802 ffs_vfree(struct vnode *pvp, 2803 ino_t ino, 2804 int mode) 2805 { 2806 struct ufsmount *ump; 2807 2808 if (DOINGSOFTDEP(pvp)) { 2809 softdep_freefile(pvp, ino, mode); 2810 return (0); 2811 } 2812 ump = VFSTOUFS(pvp->v_mount); 2813 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2814 } 2815 2816 /* 2817 * Do the actual free operation. 2818 * The specified inode is placed back in the free map. 2819 */ 2820 int 2821 ffs_freefile(struct ufsmount *ump, 2822 struct fs *fs, 2823 struct vnode *devvp, 2824 ino_t ino, 2825 int mode, 2826 struct workhead *wkhd) 2827 { 2828 struct cg *cgp; 2829 struct buf *bp; 2830 daddr_t dbn; 2831 int error; 2832 uint64_t cg; 2833 uint8_t *inosused; 2834 struct cdev *dev; 2835 ino_t cgino; 2836 2837 cg = ino_to_cg(fs, ino); 2838 if (devvp->v_type == VREG) { 2839 /* devvp is a snapshot */ 2840 MPASS(devvp->v_mount->mnt_data == ump); 2841 dev = ump->um_devvp->v_rdev; 2842 } else if (devvp->v_type == VCHR) { 2843 /* devvp is a normal disk device */ 2844 dev = devvp->v_rdev; 2845 } else { 2846 bp = NULL; 2847 return (0); 2848 } 2849 if (ino >= fs->fs_ipg * fs->fs_ncg) 2850 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2851 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2852 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2853 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2854 return (error); 2855 /* 2856 * Would like to just downgrade to read-only. Until that 2857 * capability is available, just toss the cylinder group 2858 * update and mark the filesystem as needing to run fsck. 2859 */ 2860 fs->fs_flags |= FS_NEEDSFSCK; 2861 if (devvp->v_type == VREG) 2862 dbn = fragstoblks(fs, cgtod(fs, cg)); 2863 else 2864 dbn = fsbtodb(fs, cgtod(fs, cg)); 2865 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2866 KASSERT(error == 0, ("getblkx failed")); 2867 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, true); 2868 bp->b_flags |= B_RELBUF | B_NOCACHE; 2869 bp->b_flags &= ~B_CACHE; 2870 bawrite(bp); 2871 return (error); 2872 } 2873 inosused = cg_inosused(cgp); 2874 cgino = ino % fs->fs_ipg; 2875 if (isclr(inosused, cgino)) { 2876 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2877 (uintmax_t)ino, fs->fs_fsmnt); 2878 if (fs->fs_ronly == 0) 2879 panic("ffs_freefile: freeing free inode"); 2880 } 2881 clrbit(inosused, cgino); 2882 if (cgino < cgp->cg_irotor) 2883 cgp->cg_irotor = cgino; 2884 cgp->cg_cs.cs_nifree++; 2885 UFS_LOCK(ump); 2886 fs->fs_cstotal.cs_nifree++; 2887 fs->fs_cs(fs, cg).cs_nifree++; 2888 if ((mode & IFMT) == IFDIR) { 2889 cgp->cg_cs.cs_ndir--; 2890 fs->fs_cstotal.cs_ndir--; 2891 fs->fs_cs(fs, cg).cs_ndir--; 2892 } 2893 fs->fs_fmod = 1; 2894 ACTIVECLEAR(fs, cg); 2895 UFS_UNLOCK(ump); 2896 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2897 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, false); 2898 bdwrite(bp); 2899 return (0); 2900 } 2901 2902 /* 2903 * Check to see if a file is free. 2904 * Used to check for allocated files in snapshots. 2905 * Return 1 if file is free. 2906 */ 2907 int 2908 ffs_checkfreefile(struct fs *fs, 2909 struct vnode *devvp, 2910 ino_t ino) 2911 { 2912 struct cg *cgp; 2913 struct buf *bp; 2914 int ret, error; 2915 uint64_t cg; 2916 uint8_t *inosused; 2917 2918 cg = ino_to_cg(fs, ino); 2919 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2920 return (1); 2921 if (ino >= fs->fs_ipg * fs->fs_ncg) 2922 return (1); 2923 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0) 2924 return (1); 2925 inosused = cg_inosused(cgp); 2926 ino %= fs->fs_ipg; 2927 ret = isclr(inosused, ino); 2928 brelse(bp); 2929 return (ret); 2930 } 2931 2932 /* 2933 * Find a block of the specified size in the specified cylinder group. 2934 * 2935 * It is a panic if a request is made to find a block if none are 2936 * available. 2937 */ 2938 static ufs1_daddr_t 2939 ffs_mapsearch(struct fs *fs, 2940 struct cg *cgp, 2941 ufs2_daddr_t bpref, 2942 int allocsiz) 2943 { 2944 ufs1_daddr_t bno; 2945 int start, len, loc, i; 2946 int blk, field, subfield, pos; 2947 uint8_t *blksfree; 2948 2949 /* 2950 * find the fragment by searching through the free block 2951 * map for an appropriate bit pattern 2952 */ 2953 if (bpref) 2954 start = dtogd(fs, bpref) / NBBY; 2955 else 2956 start = cgp->cg_frotor / NBBY; 2957 blksfree = cg_blksfree(cgp); 2958 len = howmany(fs->fs_fpg, NBBY) - start; 2959 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[start], 2960 fragtbl[fs->fs_frag], 2961 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2962 if (loc == 0) { 2963 len = start + 1; 2964 start = 0; 2965 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[0], 2966 fragtbl[fs->fs_frag], 2967 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2968 if (loc == 0) { 2969 printf("start = %d, len = %d, fs = %s\n", 2970 start, len, fs->fs_fsmnt); 2971 panic("ffs_alloccg: map corrupted"); 2972 /* NOTREACHED */ 2973 } 2974 } 2975 bno = (start + len - loc) * NBBY; 2976 cgp->cg_frotor = bno; 2977 /* 2978 * found the byte in the map 2979 * sift through the bits to find the selected frag 2980 */ 2981 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2982 blk = blkmap(fs, blksfree, bno); 2983 blk <<= 1; 2984 field = around[allocsiz]; 2985 subfield = inside[allocsiz]; 2986 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2987 if ((blk & field) == subfield) 2988 return (bno + pos); 2989 field <<= 1; 2990 subfield <<= 1; 2991 } 2992 } 2993 printf("bno = %ju, fs = %s\n", (intmax_t)bno, fs->fs_fsmnt); 2994 panic("ffs_alloccg: block not in map"); 2995 return (-1); 2996 } 2997 2998 /* 2999 * Fetch and verify a cylinder group. 3000 */ 3001 int 3002 ffs_getcg(struct fs *fs, 3003 struct vnode *devvp, 3004 uint64_t cg, 3005 int flags, 3006 struct buf **bpp, 3007 struct cg **cgpp) 3008 { 3009 struct buf *bp; 3010 struct cg *cgp; 3011 struct mount *mp; 3012 const struct statfs *sfs; 3013 daddr_t blkno; 3014 int error; 3015 3016 *bpp = NULL; 3017 *cgpp = NULL; 3018 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3019 flags |= GB_CKHASH; 3020 if (devvp->v_type == VCHR) { 3021 blkno = fsbtodb(fs, cgtod(fs, cg)); 3022 mp = devvp->v_rdev->si_mountpt; 3023 } else { 3024 blkno = fragstoblks(fs, cgtod(fs, cg)); 3025 mp = devvp->v_mount; 3026 } 3027 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL, 3028 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp); 3029 if (error != 0) 3030 return (error); 3031 cgp = (struct cg *)bp->b_data; 3032 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 3033 (bp->b_flags & B_CKHASH) != 0 && 3034 cgp->cg_ckhash != bp->b_ckhash) { 3035 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg, 3036 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) { 3037 sfs = &mp->mnt_stat; 3038 printf("UFS %s%s (%s) cylinder checkhash failed: " 3039 "cg %ju, cgp: 0x%x != bp: 0x%jx\n", 3040 devvp->v_type == VCHR ? "" : "snapshot of ", 3041 sfs->f_mntfromname, sfs->f_mntonname, (intmax_t)cg, 3042 cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 3043 } 3044 bp->b_flags &= ~B_CKHASH; 3045 bp->b_flags |= B_INVAL | B_NOCACHE; 3046 brelse(bp); 3047 return (EINTEGRITY); 3048 } 3049 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 3050 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg, 3051 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) { 3052 sfs = &mp->mnt_stat; 3053 printf("UFS %s%s (%s)", 3054 devvp->v_type == VCHR ? "" : "snapshot of ", 3055 sfs->f_mntfromname, sfs->f_mntonname); 3056 if (!cg_chkmagic(cgp)) 3057 printf(" cg %ju: bad magic number 0x%x should " 3058 "be 0x%x\n", (intmax_t)cg, cgp->cg_magic, 3059 CG_MAGIC); 3060 else 3061 printf(": wrong cylinder group cg %ju != " 3062 "cgx %u\n", (intmax_t)cg, cgp->cg_cgx); 3063 } 3064 bp->b_flags &= ~B_CKHASH; 3065 bp->b_flags |= B_INVAL | B_NOCACHE; 3066 brelse(bp); 3067 return (EINTEGRITY); 3068 } 3069 bp->b_flags &= ~B_CKHASH; 3070 bp->b_xflags |= BX_BKGRDWRITE; 3071 /* 3072 * If we are using check hashes on the cylinder group then we want 3073 * to limit changing the cylinder group time to when we are actually 3074 * going to write it to disk so that its check hash remains correct 3075 * in memory. If the CK_CYLGRP flag is set the time is updated in 3076 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 3077 * update the time here as we have done historically. 3078 */ 3079 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3080 bp->b_xflags |= BX_CYLGRP; 3081 else 3082 cgp->cg_old_time = cgp->cg_time = time_second; 3083 *bpp = bp; 3084 *cgpp = cgp; 3085 return (0); 3086 } 3087 3088 static void 3089 ffs_ckhash_cg(struct buf *bp) 3090 { 3091 uint32_t ckhash; 3092 struct cg *cgp; 3093 3094 cgp = (struct cg *)bp->b_data; 3095 ckhash = cgp->cg_ckhash; 3096 cgp->cg_ckhash = 0; 3097 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3098 cgp->cg_ckhash = ckhash; 3099 } 3100 3101 /* 3102 * Called when a cylinder group read has failed. If an integrity check 3103 * is the cause of failure then the cylinder group will not be usable 3104 * until the filesystem has been unmounted and fsck has been run to 3105 * repair it. To avoid future attempts to allocate resources from the 3106 * cylinder group, its available resources are set to zero in the 3107 * superblock summary information. Since it will appear to have no 3108 * resources available, no further calls will be made to allocate 3109 * resources from it. When resources are freed to the cylinder group 3110 * the resource free routines will find the cylinder group unusable so 3111 * the resource will simply be discarded and thus will not show up in 3112 * the superblock summary information until they are recovered by fsck. 3113 */ 3114 static void 3115 ffs_checkcgintegrity(struct fs *fs, 3116 uint64_t cg, 3117 int error) 3118 { 3119 3120 if (error != EINTEGRITY) 3121 return; 3122 fs->fs_cstotal.cs_nffree -= fs->fs_cs(fs, cg).cs_nffree; 3123 fs->fs_cs(fs, cg).cs_nffree = 0; 3124 fs->fs_cstotal.cs_nbfree -= fs->fs_cs(fs, cg).cs_nbfree; 3125 fs->fs_cs(fs, cg).cs_nbfree = 0; 3126 fs->fs_cstotal.cs_nifree -= fs->fs_cs(fs, cg).cs_nifree; 3127 fs->fs_cs(fs, cg).cs_nifree = 0; 3128 fs->fs_maxcluster[cg] = 0; 3129 fs->fs_flags |= FS_NEEDSFSCK; 3130 fs->fs_fmod = 1; 3131 } 3132 3133 /* 3134 * Fserr prints the name of a filesystem with an error diagnostic. 3135 * 3136 * The form of the error message is: 3137 * fs: error message 3138 */ 3139 void 3140 ffs_fserr(struct fs *fs, 3141 ino_t inum, 3142 char *cp) 3143 { 3144 struct thread *td = curthread; /* XXX */ 3145 struct proc *p = td->td_proc; 3146 3147 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3148 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3149 fs->fs_fsmnt, cp); 3150 } 3151 3152 /* 3153 * This function provides the capability for the fsck program to 3154 * update an active filesystem. Sixteen operations are provided: 3155 * 3156 * adjrefcnt(inode, amt) - adjusts the reference count on the 3157 * specified inode by the specified amount. Under normal 3158 * operation the count should always go down. Decrementing 3159 * the count to zero will cause the inode to be freed. 3160 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3161 * inode by the specified amount. 3162 * adjdepth(inode, amt) - adjust the depth of the specified directory 3163 * inode by the specified amount. 3164 * setsize(inode, size) - set the size of the inode to the 3165 * specified size. 3166 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3167 * adjust the superblock summary. 3168 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3169 * are marked as free. Inodes should never have to be marked 3170 * as in use. 3171 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3172 * are marked as free. Inodes should never have to be marked 3173 * as in use. 3174 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3175 * are marked as free. Blocks should never have to be marked 3176 * as in use. 3177 * setflags(flags, set/clear) - the fs_flags field has the specified 3178 * flags set (second parameter +1) or cleared (second parameter -1). 3179 * setcwd(dirinode) - set the current directory to dirinode in the 3180 * filesystem associated with the snapshot. 3181 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3182 * in the current directory is oldvalue then change it to newvalue. 3183 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3184 * with nameptr in the current directory is oldvalue then unlink it. 3185 */ 3186 3187 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3188 3189 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, 3190 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT, 3191 0, 0, sysctl_ffs_fsck, "S,fsck", 3192 "Adjust Inode Reference Count"); 3193 3194 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, 3195 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3196 "Adjust Inode Used Blocks Count"); 3197 3198 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_DEPTH, adjdepth, 3199 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3200 "Adjust Directory Inode Depth"); 3201 3202 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, 3203 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3204 "Set the inode size"); 3205 3206 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, 3207 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3208 "Adjust number of directories"); 3209 3210 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, 3211 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3212 "Adjust number of free blocks"); 3213 3214 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, 3215 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3216 "Adjust number of free inodes"); 3217 3218 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, 3219 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3220 "Adjust number of free frags"); 3221 3222 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, 3223 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3224 "Adjust number of free clusters"); 3225 3226 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, 3227 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3228 "Free Range of Directory Inodes"); 3229 3230 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, 3231 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3232 "Free Range of File Inodes"); 3233 3234 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, 3235 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3236 "Free Range of Blocks"); 3237 3238 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, 3239 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3240 "Change Filesystem Flags"); 3241 3242 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, 3243 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3244 "Set Current Working Directory"); 3245 3246 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, 3247 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3248 "Change Value of .. Entry"); 3249 3250 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, 3251 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3252 "Unlink a Duplicate Name"); 3253 3254 #ifdef DIAGNOSTIC 3255 static int fsckcmds = 0; 3256 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3257 "print out fsck_ffs-based filesystem update commands"); 3258 #endif /* DIAGNOSTIC */ 3259 3260 static int 3261 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3262 { 3263 struct thread *td = curthread; 3264 struct fsck_cmd cmd; 3265 struct ufsmount *ump; 3266 struct vnode *vp, *dvp, *fdvp; 3267 struct inode *ip, *dp; 3268 struct mount *mp; 3269 struct fs *fs; 3270 struct pwd *pwd; 3271 ufs2_daddr_t blkno; 3272 long blkcnt, blksize; 3273 uint64_t key; 3274 struct file *fp; 3275 cap_rights_t rights; 3276 int filetype, error; 3277 3278 if (req->newptr == NULL || req->newlen > sizeof(cmd)) 3279 return (EBADRPC); 3280 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0) 3281 return (error); 3282 if (cmd.version != FFS_CMD_VERSION) 3283 return (ERPCMISMATCH); 3284 if ((error = getvnode(td, cmd.handle, 3285 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0) 3286 return (error); 3287 vp = fp->f_vnode; 3288 if (vp->v_type != VREG && vp->v_type != VDIR) { 3289 fdrop(fp, td); 3290 return (EINVAL); 3291 } 3292 vn_start_write(vp, &mp, V_WAIT); 3293 if (mp == NULL || 3294 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3295 vn_finished_write(mp); 3296 fdrop(fp, td); 3297 return (EINVAL); 3298 } 3299 ump = VFSTOUFS(mp); 3300 if (mp->mnt_flag & MNT_RDONLY) { 3301 vn_finished_write(mp); 3302 fdrop(fp, td); 3303 return (EROFS); 3304 } 3305 fs = ump->um_fs; 3306 filetype = IFREG; 3307 3308 switch (oidp->oid_number) { 3309 case FFS_SET_FLAGS: 3310 #ifdef DIAGNOSTIC 3311 if (fsckcmds) 3312 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3313 cmd.size > 0 ? "set" : "clear"); 3314 #endif /* DIAGNOSTIC */ 3315 if (cmd.size > 0) 3316 fs->fs_flags |= (long)cmd.value; 3317 else 3318 fs->fs_flags &= ~(long)cmd.value; 3319 break; 3320 3321 case FFS_ADJ_REFCNT: 3322 #ifdef DIAGNOSTIC 3323 if (fsckcmds) { 3324 printf("%s: adjust inode %jd link count by %jd\n", 3325 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3326 (intmax_t)cmd.size); 3327 } 3328 #endif /* DIAGNOSTIC */ 3329 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3330 break; 3331 ip = VTOI(vp); 3332 ip->i_nlink += cmd.size; 3333 DIP_SET_NLINK(ip, ip->i_nlink); 3334 ip->i_effnlink += cmd.size; 3335 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3336 error = ffs_update(vp, 1); 3337 if (DOINGSOFTDEP(vp)) 3338 softdep_change_linkcnt(ip); 3339 vput(vp); 3340 break; 3341 3342 case FFS_ADJ_BLKCNT: 3343 #ifdef DIAGNOSTIC 3344 if (fsckcmds) { 3345 printf("%s: adjust inode %jd block count by %jd\n", 3346 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3347 (intmax_t)cmd.size); 3348 } 3349 #endif /* DIAGNOSTIC */ 3350 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3351 break; 3352 ip = VTOI(vp); 3353 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3354 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3355 error = ffs_update(vp, 1); 3356 vput(vp); 3357 break; 3358 3359 case FFS_ADJ_DEPTH: 3360 #ifdef DIAGNOSTIC 3361 if (fsckcmds) { 3362 printf("%s: adjust directory inode %jd depth by %jd\n", 3363 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3364 (intmax_t)cmd.size); 3365 } 3366 #endif /* DIAGNOSTIC */ 3367 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3368 break; 3369 if (vp->v_type != VDIR) { 3370 vput(vp); 3371 error = ENOTDIR; 3372 break; 3373 } 3374 ip = VTOI(vp); 3375 DIP_SET(ip, i_dirdepth, DIP(ip, i_dirdepth) + cmd.size); 3376 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3377 error = ffs_update(vp, 1); 3378 vput(vp); 3379 break; 3380 3381 case FFS_SET_SIZE: 3382 #ifdef DIAGNOSTIC 3383 if (fsckcmds) { 3384 printf("%s: set inode %jd size to %jd\n", 3385 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3386 (intmax_t)cmd.size); 3387 } 3388 #endif /* DIAGNOSTIC */ 3389 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3390 break; 3391 ip = VTOI(vp); 3392 DIP_SET(ip, i_size, cmd.size); 3393 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED); 3394 error = ffs_update(vp, 1); 3395 vput(vp); 3396 break; 3397 3398 case FFS_DIR_FREE: 3399 filetype = IFDIR; 3400 /* fall through */ 3401 3402 case FFS_FILE_FREE: 3403 #ifdef DIAGNOSTIC 3404 if (fsckcmds) { 3405 if (cmd.size == 1) 3406 printf("%s: free %s inode %ju\n", 3407 mp->mnt_stat.f_mntonname, 3408 filetype == IFDIR ? "directory" : "file", 3409 (uintmax_t)cmd.value); 3410 else 3411 printf("%s: free %s inodes %ju-%ju\n", 3412 mp->mnt_stat.f_mntonname, 3413 filetype == IFDIR ? "directory" : "file", 3414 (uintmax_t)cmd.value, 3415 (uintmax_t)(cmd.value + cmd.size - 1)); 3416 } 3417 #endif /* DIAGNOSTIC */ 3418 while (cmd.size > 0) { 3419 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3420 cmd.value, filetype, NULL))) 3421 break; 3422 cmd.size -= 1; 3423 cmd.value += 1; 3424 } 3425 break; 3426 3427 case FFS_BLK_FREE: 3428 #ifdef DIAGNOSTIC 3429 if (fsckcmds) { 3430 if (cmd.size == 1) 3431 printf("%s: free block %jd\n", 3432 mp->mnt_stat.f_mntonname, 3433 (intmax_t)cmd.value); 3434 else 3435 printf("%s: free blocks %jd-%jd\n", 3436 mp->mnt_stat.f_mntonname, 3437 (intmax_t)cmd.value, 3438 (intmax_t)cmd.value + cmd.size - 1); 3439 } 3440 #endif /* DIAGNOSTIC */ 3441 blkno = cmd.value; 3442 blkcnt = cmd.size; 3443 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3444 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3445 while (blkcnt > 0) { 3446 if (blkcnt < blksize) 3447 blksize = blkcnt; 3448 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3449 blksize * fs->fs_fsize, UFS_ROOTINO, 3450 VDIR, NULL, key); 3451 blkno += blksize; 3452 blkcnt -= blksize; 3453 blksize = fs->fs_frag; 3454 } 3455 ffs_blkrelease_finish(ump, key); 3456 break; 3457 3458 /* 3459 * Adjust superblock summaries. fsck(8) is expected to 3460 * submit deltas when necessary. 3461 */ 3462 case FFS_ADJ_NDIR: 3463 #ifdef DIAGNOSTIC 3464 if (fsckcmds) { 3465 printf("%s: adjust number of directories by %jd\n", 3466 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3467 } 3468 #endif /* DIAGNOSTIC */ 3469 fs->fs_cstotal.cs_ndir += cmd.value; 3470 break; 3471 3472 case FFS_ADJ_NBFREE: 3473 #ifdef DIAGNOSTIC 3474 if (fsckcmds) { 3475 printf("%s: adjust number of free blocks by %+jd\n", 3476 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3477 } 3478 #endif /* DIAGNOSTIC */ 3479 fs->fs_cstotal.cs_nbfree += cmd.value; 3480 break; 3481 3482 case FFS_ADJ_NIFREE: 3483 #ifdef DIAGNOSTIC 3484 if (fsckcmds) { 3485 printf("%s: adjust number of free inodes by %+jd\n", 3486 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3487 } 3488 #endif /* DIAGNOSTIC */ 3489 fs->fs_cstotal.cs_nifree += cmd.value; 3490 break; 3491 3492 case FFS_ADJ_NFFREE: 3493 #ifdef DIAGNOSTIC 3494 if (fsckcmds) { 3495 printf("%s: adjust number of free frags by %+jd\n", 3496 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3497 } 3498 #endif /* DIAGNOSTIC */ 3499 fs->fs_cstotal.cs_nffree += cmd.value; 3500 break; 3501 3502 case FFS_ADJ_NUMCLUSTERS: 3503 #ifdef DIAGNOSTIC 3504 if (fsckcmds) { 3505 printf("%s: adjust number of free clusters by %+jd\n", 3506 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3507 } 3508 #endif /* DIAGNOSTIC */ 3509 fs->fs_cstotal.cs_numclusters += cmd.value; 3510 break; 3511 3512 case FFS_SET_CWD: 3513 #ifdef DIAGNOSTIC 3514 if (fsckcmds) { 3515 printf("%s: set current directory to inode %jd\n", 3516 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3517 } 3518 #endif /* DIAGNOSTIC */ 3519 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3520 break; 3521 AUDIT_ARG_VNODE1(vp); 3522 if ((error = change_dir(vp, td)) != 0) { 3523 vput(vp); 3524 break; 3525 } 3526 VOP_UNLOCK(vp); 3527 pwd_chdir(td, vp); 3528 break; 3529 3530 case FFS_SET_DOTDOT: 3531 #ifdef DIAGNOSTIC 3532 if (fsckcmds) { 3533 printf("%s: change .. in cwd from %jd to %jd\n", 3534 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3535 (intmax_t)cmd.size); 3536 } 3537 #endif /* DIAGNOSTIC */ 3538 /* 3539 * First we have to get and lock the parent directory 3540 * to which ".." points. 3541 */ 3542 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3543 if (error) 3544 break; 3545 /* 3546 * Now we get and lock the child directory containing "..". 3547 */ 3548 pwd = pwd_hold(td); 3549 dvp = pwd->pwd_cdir; 3550 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) { 3551 vput(fdvp); 3552 pwd_drop(pwd); 3553 break; 3554 } 3555 dp = VTOI(dvp); 3556 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */ 3557 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3558 DT_DIR, 0); 3559 cache_purge(fdvp); 3560 cache_purge(dvp); 3561 vput(dvp); 3562 vput(fdvp); 3563 pwd_drop(pwd); 3564 break; 3565 3566 case FFS_UNLINK: 3567 #ifdef DIAGNOSTIC 3568 if (fsckcmds) { 3569 char buf[32]; 3570 3571 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3572 strncpy(buf, "Name_too_long", 32); 3573 printf("%s: unlink %s (inode %jd)\n", 3574 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3575 } 3576 #endif /* DIAGNOSTIC */ 3577 /* 3578 * kern_funlinkat will do its own start/finish writes and 3579 * they do not nest, so drop ours here. Setting mp == NULL 3580 * indicates that vn_finished_write is not needed down below. 3581 */ 3582 vn_finished_write(mp); 3583 mp = NULL; 3584 error = kern_funlinkat(td, AT_FDCWD, 3585 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3586 0, (ino_t)cmd.size); 3587 break; 3588 3589 default: 3590 #ifdef DIAGNOSTIC 3591 if (fsckcmds) { 3592 printf("Invalid request %d from fsck\n", 3593 oidp->oid_number); 3594 } 3595 #endif /* DIAGNOSTIC */ 3596 error = EINVAL; 3597 break; 3598 } 3599 fdrop(fp, td); 3600 vn_finished_write(mp); 3601 return (error); 3602 } 3603