xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Copyright (c) 1982, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  * (c) UNIX System Laboratories, Inc.
14  * Copyright (c) 1982, 1986, 1989, 1993
15  *	The Regents of the University of California.  All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
46  * $FreeBSD$
47  */
48 
49 #include "opt_quota.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/bio.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/file.h>
57 #include <sys/proc.h>
58 #include <sys/vnode.h>
59 #include <sys/mount.h>
60 #include <sys/kernel.h>
61 #include <sys/stdint.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 
65 #include <ufs/ufs/extattr.h>
66 #include <ufs/ufs/quota.h>
67 #include <ufs/ufs/inode.h>
68 #include <ufs/ufs/ufs_extern.h>
69 #include <ufs/ufs/ufsmount.h>
70 
71 #include <ufs/ffs/fs.h>
72 #include <ufs/ffs/ffs_extern.h>
73 
74 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
75 				  int size);
76 
77 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
78 static ufs2_daddr_t
79 	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
80 #ifdef DIAGNOSTIC
81 static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
82 #endif
83 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
84 static ino_t	ffs_dirpref(struct inode *);
85 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
86 static void	ffs_fserr(struct fs *, ino_t, char *);
87 static ufs2_daddr_t	ffs_hashalloc
88 		(struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
89 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
90 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
91 static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
92 static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
93 
94 /*
95  * Allocate a block in the filesystem.
96  *
97  * The size of the requested block is given, which must be some
98  * multiple of fs_fsize and <= fs_bsize.
99  * A preference may be optionally specified. If a preference is given
100  * the following hierarchy is used to allocate a block:
101  *   1) allocate the requested block.
102  *   2) allocate a rotationally optimal block in the same cylinder.
103  *   3) allocate a block in the same cylinder group.
104  *   4) quadradically rehash into other cylinder groups, until an
105  *      available block is located.
106  * If no block preference is given the following heirarchy is used
107  * to allocate a block:
108  *   1) allocate a block in the cylinder group that contains the
109  *      inode for the file.
110  *   2) quadradically rehash into other cylinder groups, until an
111  *      available block is located.
112  */
113 int
114 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
115 	struct inode *ip;
116 	ufs2_daddr_t lbn, bpref;
117 	int size;
118 	struct ucred *cred;
119 	ufs2_daddr_t *bnp;
120 {
121 	struct fs *fs;
122 	ufs2_daddr_t bno;
123 	int cg, reclaimed;
124 #ifdef QUOTA
125 	int error;
126 #endif
127 
128 	*bnp = 0;
129 	fs = ip->i_fs;
130 #ifdef DIAGNOSTIC
131 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
132 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
133 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
134 		    fs->fs_fsmnt);
135 		panic("ffs_alloc: bad size");
136 	}
137 	if (cred == NOCRED)
138 		panic("ffs_alloc: missing credential");
139 #endif /* DIAGNOSTIC */
140 	reclaimed = 0;
141 retry:
142 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
143 		goto nospace;
144 	if (suser_cred(cred, PRISON_ROOT) &&
145 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
146 		goto nospace;
147 #ifdef QUOTA
148 	error = chkdq(ip, btodb(size), cred, 0);
149 	if (error)
150 		return (error);
151 #endif
152 	if (bpref >= fs->fs_size)
153 		bpref = 0;
154 	if (bpref == 0)
155 		cg = ino_to_cg(fs, ip->i_number);
156 	else
157 		cg = dtog(fs, bpref);
158 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
159 	if (bno > 0) {
160 		DIP(ip, i_blocks) += btodb(size);
161 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
162 		*bnp = bno;
163 		return (0);
164 	}
165 #ifdef QUOTA
166 	/*
167 	 * Restore user's disk quota because allocation failed.
168 	 */
169 	(void) chkdq(ip, -btodb(size), cred, FORCE);
170 #endif
171 nospace:
172 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
173 		reclaimed = 1;
174 		softdep_request_cleanup(fs, ITOV(ip));
175 		goto retry;
176 	}
177 	ffs_fserr(fs, ip->i_number, "filesystem full");
178 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
179 	return (ENOSPC);
180 }
181 
182 /*
183  * Reallocate a fragment to a bigger size
184  *
185  * The number and size of the old block is given, and a preference
186  * and new size is also specified. The allocator attempts to extend
187  * the original block. Failing that, the regular block allocator is
188  * invoked to get an appropriate block.
189  */
190 int
191 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
192 	struct inode *ip;
193 	ufs2_daddr_t lbprev;
194 	ufs2_daddr_t bpref;
195 	int osize, nsize;
196 	struct ucred *cred;
197 	struct buf **bpp;
198 {
199 	struct vnode *vp;
200 	struct fs *fs;
201 	struct buf *bp;
202 	int cg, request, error, reclaimed;
203 	ufs2_daddr_t bprev, bno;
204 
205 	*bpp = 0;
206 	vp = ITOV(ip);
207 	fs = ip->i_fs;
208 #ifdef DIAGNOSTIC
209 	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
210 		panic("ffs_realloccg: allocation on suspended filesystem");
211 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
212 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
213 		printf(
214 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
215 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
216 		    nsize, fs->fs_fsmnt);
217 		panic("ffs_realloccg: bad size");
218 	}
219 	if (cred == NOCRED)
220 		panic("ffs_realloccg: missing credential");
221 #endif /* DIAGNOSTIC */
222 	reclaimed = 0;
223 retry:
224 	if (suser_cred(cred, PRISON_ROOT) &&
225 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
226 		goto nospace;
227 	if ((bprev = DIP(ip, i_db[lbprev])) == 0) {
228 		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
229 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
230 		    fs->fs_fsmnt);
231 		panic("ffs_realloccg: bad bprev");
232 	}
233 	/*
234 	 * Allocate the extra space in the buffer.
235 	 */
236 	error = bread(vp, lbprev, osize, NOCRED, &bp);
237 	if (error) {
238 		brelse(bp);
239 		return (error);
240 	}
241 
242 	if (bp->b_blkno == bp->b_lblkno) {
243 		if (lbprev >= NDADDR)
244 			panic("ffs_realloccg: lbprev out of range");
245 		bp->b_blkno = fsbtodb(fs, bprev);
246 	}
247 
248 #ifdef QUOTA
249 	error = chkdq(ip, btodb(nsize - osize), cred, 0);
250 	if (error) {
251 		brelse(bp);
252 		return (error);
253 	}
254 #endif
255 	/*
256 	 * Check for extension in the existing location.
257 	 */
258 	cg = dtog(fs, bprev);
259 	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
260 	if (bno) {
261 		if (bp->b_blkno != fsbtodb(fs, bno))
262 			panic("ffs_realloccg: bad blockno");
263 		DIP(ip, i_blocks) += btodb(nsize - osize);
264 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
265 		allocbuf(bp, nsize);
266 		bp->b_flags |= B_DONE;
267 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
268 		*bpp = bp;
269 		return (0);
270 	}
271 	/*
272 	 * Allocate a new disk location.
273 	 */
274 	if (bpref >= fs->fs_size)
275 		bpref = 0;
276 	switch ((int)fs->fs_optim) {
277 	case FS_OPTSPACE:
278 		/*
279 		 * Allocate an exact sized fragment. Although this makes
280 		 * best use of space, we will waste time relocating it if
281 		 * the file continues to grow. If the fragmentation is
282 		 * less than half of the minimum free reserve, we choose
283 		 * to begin optimizing for time.
284 		 */
285 		request = nsize;
286 		if (fs->fs_minfree <= 5 ||
287 		    fs->fs_cstotal.cs_nffree >
288 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
289 			break;
290 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
291 			fs->fs_fsmnt);
292 		fs->fs_optim = FS_OPTTIME;
293 		break;
294 	case FS_OPTTIME:
295 		/*
296 		 * At this point we have discovered a file that is trying to
297 		 * grow a small fragment to a larger fragment. To save time,
298 		 * we allocate a full sized block, then free the unused portion.
299 		 * If the file continues to grow, the `ffs_fragextend' call
300 		 * above will be able to grow it in place without further
301 		 * copying. If aberrant programs cause disk fragmentation to
302 		 * grow within 2% of the free reserve, we choose to begin
303 		 * optimizing for space.
304 		 */
305 		request = fs->fs_bsize;
306 		if (fs->fs_cstotal.cs_nffree <
307 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
308 			break;
309 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
310 			fs->fs_fsmnt);
311 		fs->fs_optim = FS_OPTSPACE;
312 		break;
313 	default:
314 		printf("dev = %s, optim = %ld, fs = %s\n",
315 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
316 		panic("ffs_realloccg: bad optim");
317 		/* NOTREACHED */
318 	}
319 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
320 	if (bno > 0) {
321 		bp->b_blkno = fsbtodb(fs, bno);
322 		if (!DOINGSOFTDEP(vp))
323 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
324 			    ip->i_number);
325 		if (nsize < request)
326 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
327 			    (long)(request - nsize), ip->i_number);
328 		DIP(ip, i_blocks) += btodb(nsize - osize);
329 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
330 		allocbuf(bp, nsize);
331 		bp->b_flags |= B_DONE;
332 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
333 		*bpp = bp;
334 		return (0);
335 	}
336 #ifdef QUOTA
337 	/*
338 	 * Restore user's disk quota because allocation failed.
339 	 */
340 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
341 #endif
342 	brelse(bp);
343 nospace:
344 	/*
345 	 * no space available
346 	 */
347 	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
348 		reclaimed = 1;
349 		softdep_request_cleanup(fs, vp);
350 		goto retry;
351 	}
352 	ffs_fserr(fs, ip->i_number, "filesystem full");
353 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
354 	return (ENOSPC);
355 }
356 
357 /*
358  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
359  *
360  * The vnode and an array of buffer pointers for a range of sequential
361  * logical blocks to be made contiguous is given. The allocator attempts
362  * to find a range of sequential blocks starting as close as possible
363  * from the end of the allocation for the logical block immediately
364  * preceding the current range. If successful, the physical block numbers
365  * in the buffer pointers and in the inode are changed to reflect the new
366  * allocation. If unsuccessful, the allocation is left unchanged. The
367  * success in doing the reallocation is returned. Note that the error
368  * return is not reflected back to the user. Rather the previous block
369  * allocation will be used.
370  */
371 
372 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
373 
374 static int doasyncfree = 1;
375 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
376 
377 static int doreallocblks = 1;
378 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
379 
380 #ifdef DEBUG
381 static volatile int prtrealloc = 0;
382 #endif
383 
384 int
385 ffs_reallocblks(ap)
386 	struct vop_reallocblks_args /* {
387 		struct vnode *a_vp;
388 		struct cluster_save *a_buflist;
389 	} */ *ap;
390 {
391 
392 	if (doreallocblks == 0)
393 		return (ENOSPC);
394 	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
395 		return (ffs_reallocblks_ufs1(ap));
396 	return (ffs_reallocblks_ufs2(ap));
397 }
398 
399 static int
400 ffs_reallocblks_ufs1(ap)
401 	struct vop_reallocblks_args /* {
402 		struct vnode *a_vp;
403 		struct cluster_save *a_buflist;
404 	} */ *ap;
405 {
406 	struct fs *fs;
407 	struct inode *ip;
408 	struct vnode *vp;
409 	struct buf *sbp, *ebp;
410 	ufs1_daddr_t *bap, *sbap, *ebap = 0;
411 	struct cluster_save *buflist;
412 	ufs_lbn_t start_lbn, end_lbn;
413 	ufs1_daddr_t soff, newblk, blkno;
414 	ufs2_daddr_t pref;
415 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
416 	int i, len, start_lvl, end_lvl, ssize;
417 
418 	vp = ap->a_vp;
419 	ip = VTOI(vp);
420 	fs = ip->i_fs;
421 	if (fs->fs_contigsumsize <= 0)
422 		return (ENOSPC);
423 	buflist = ap->a_buflist;
424 	len = buflist->bs_nchildren;
425 	start_lbn = buflist->bs_children[0]->b_lblkno;
426 	end_lbn = start_lbn + len - 1;
427 #ifdef DIAGNOSTIC
428 	for (i = 0; i < len; i++)
429 		if (!ffs_checkblk(ip,
430 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
431 			panic("ffs_reallocblks: unallocated block 1");
432 	for (i = 1; i < len; i++)
433 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
434 			panic("ffs_reallocblks: non-logical cluster");
435 	blkno = buflist->bs_children[0]->b_blkno;
436 	ssize = fsbtodb(fs, fs->fs_frag);
437 	for (i = 1; i < len - 1; i++)
438 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
439 			panic("ffs_reallocblks: non-physical cluster %d", i);
440 #endif
441 	/*
442 	 * If the latest allocation is in a new cylinder group, assume that
443 	 * the filesystem has decided to move and do not force it back to
444 	 * the previous cylinder group.
445 	 */
446 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
447 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
448 		return (ENOSPC);
449 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
450 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
451 		return (ENOSPC);
452 	/*
453 	 * Get the starting offset and block map for the first block.
454 	 */
455 	if (start_lvl == 0) {
456 		sbap = &ip->i_din1->di_db[0];
457 		soff = start_lbn;
458 	} else {
459 		idp = &start_ap[start_lvl - 1];
460 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
461 			brelse(sbp);
462 			return (ENOSPC);
463 		}
464 		sbap = (ufs1_daddr_t *)sbp->b_data;
465 		soff = idp->in_off;
466 	}
467 	/*
468 	 * Find the preferred location for the cluster.
469 	 */
470 	pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
471 	/*
472 	 * If the block range spans two block maps, get the second map.
473 	 */
474 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
475 		ssize = len;
476 	} else {
477 #ifdef DIAGNOSTIC
478 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
479 			panic("ffs_reallocblk: start == end");
480 #endif
481 		ssize = len - (idp->in_off + 1);
482 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
483 			goto fail;
484 		ebap = (ufs1_daddr_t *)ebp->b_data;
485 	}
486 	/*
487 	 * Search the block map looking for an allocation of the desired size.
488 	 */
489 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
490 	    len, ffs_clusteralloc)) == 0)
491 		goto fail;
492 	/*
493 	 * We have found a new contiguous block.
494 	 *
495 	 * First we have to replace the old block pointers with the new
496 	 * block pointers in the inode and indirect blocks associated
497 	 * with the file.
498 	 */
499 #ifdef DEBUG
500 	if (prtrealloc)
501 		printf("realloc: ino %d, lbns %lld-%lld\n\told:", ip->i_number,
502 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
503 #endif
504 	blkno = newblk;
505 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
506 		if (i == ssize) {
507 			bap = ebap;
508 			soff = -i;
509 		}
510 #ifdef DIAGNOSTIC
511 		if (!ffs_checkblk(ip,
512 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
513 			panic("ffs_reallocblks: unallocated block 2");
514 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
515 			panic("ffs_reallocblks: alloc mismatch");
516 #endif
517 #ifdef DEBUG
518 		if (prtrealloc)
519 			printf(" %d,", *bap);
520 #endif
521 		if (DOINGSOFTDEP(vp)) {
522 			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
523 				softdep_setup_allocdirect(ip, start_lbn + i,
524 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
525 				    buflist->bs_children[i]);
526 			else
527 				softdep_setup_allocindir_page(ip, start_lbn + i,
528 				    i < ssize ? sbp : ebp, soff + i, blkno,
529 				    *bap, buflist->bs_children[i]);
530 		}
531 		*bap++ = blkno;
532 	}
533 	/*
534 	 * Next we must write out the modified inode and indirect blocks.
535 	 * For strict correctness, the writes should be synchronous since
536 	 * the old block values may have been written to disk. In practise
537 	 * they are almost never written, but if we are concerned about
538 	 * strict correctness, the `doasyncfree' flag should be set to zero.
539 	 *
540 	 * The test on `doasyncfree' should be changed to test a flag
541 	 * that shows whether the associated buffers and inodes have
542 	 * been written. The flag should be set when the cluster is
543 	 * started and cleared whenever the buffer or inode is flushed.
544 	 * We can then check below to see if it is set, and do the
545 	 * synchronous write only when it has been cleared.
546 	 */
547 	if (sbap != &ip->i_din1->di_db[0]) {
548 		if (doasyncfree)
549 			bdwrite(sbp);
550 		else
551 			bwrite(sbp);
552 	} else {
553 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
554 		if (!doasyncfree)
555 			UFS_UPDATE(vp, 1);
556 	}
557 	if (ssize < len) {
558 		if (doasyncfree)
559 			bdwrite(ebp);
560 		else
561 			bwrite(ebp);
562 	}
563 	/*
564 	 * Last, free the old blocks and assign the new blocks to the buffers.
565 	 */
566 #ifdef DEBUG
567 	if (prtrealloc)
568 		printf("\n\tnew:");
569 #endif
570 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
571 		if (!DOINGSOFTDEP(vp))
572 			ffs_blkfree(fs, ip->i_devvp,
573 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
574 			    fs->fs_bsize, ip->i_number);
575 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
576 #ifdef DIAGNOSTIC
577 		if (!ffs_checkblk(ip,
578 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
579 			panic("ffs_reallocblks: unallocated block 3");
580 #endif
581 #ifdef DEBUG
582 		if (prtrealloc)
583 			printf(" %d,", blkno);
584 #endif
585 	}
586 #ifdef DEBUG
587 	if (prtrealloc) {
588 		prtrealloc--;
589 		printf("\n");
590 	}
591 #endif
592 	return (0);
593 
594 fail:
595 	if (ssize < len)
596 		brelse(ebp);
597 	if (sbap != &ip->i_din1->di_db[0])
598 		brelse(sbp);
599 	return (ENOSPC);
600 }
601 
602 static int
603 ffs_reallocblks_ufs2(ap)
604 	struct vop_reallocblks_args /* {
605 		struct vnode *a_vp;
606 		struct cluster_save *a_buflist;
607 	} */ *ap;
608 {
609 	struct fs *fs;
610 	struct inode *ip;
611 	struct vnode *vp;
612 	struct buf *sbp, *ebp;
613 	ufs2_daddr_t *bap, *sbap, *ebap = 0;
614 	struct cluster_save *buflist;
615 	ufs_lbn_t start_lbn, end_lbn;
616 	ufs2_daddr_t soff, newblk, blkno, pref;
617 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
618 	int i, len, start_lvl, end_lvl, ssize;
619 
620 	vp = ap->a_vp;
621 	ip = VTOI(vp);
622 	fs = ip->i_fs;
623 	if (fs->fs_contigsumsize <= 0)
624 		return (ENOSPC);
625 	buflist = ap->a_buflist;
626 	len = buflist->bs_nchildren;
627 	start_lbn = buflist->bs_children[0]->b_lblkno;
628 	end_lbn = start_lbn + len - 1;
629 #ifdef DIAGNOSTIC
630 	for (i = 0; i < len; i++)
631 		if (!ffs_checkblk(ip,
632 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
633 			panic("ffs_reallocblks: unallocated block 1");
634 	for (i = 1; i < len; i++)
635 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
636 			panic("ffs_reallocblks: non-logical cluster");
637 	blkno = buflist->bs_children[0]->b_blkno;
638 	ssize = fsbtodb(fs, fs->fs_frag);
639 	for (i = 1; i < len - 1; i++)
640 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
641 			panic("ffs_reallocblks: non-physical cluster %d", i);
642 #endif
643 	/*
644 	 * If the latest allocation is in a new cylinder group, assume that
645 	 * the filesystem has decided to move and do not force it back to
646 	 * the previous cylinder group.
647 	 */
648 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
649 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
650 		return (ENOSPC);
651 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
652 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
653 		return (ENOSPC);
654 	/*
655 	 * Get the starting offset and block map for the first block.
656 	 */
657 	if (start_lvl == 0) {
658 		sbap = &ip->i_din2->di_db[0];
659 		soff = start_lbn;
660 	} else {
661 		idp = &start_ap[start_lvl - 1];
662 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
663 			brelse(sbp);
664 			return (ENOSPC);
665 		}
666 		sbap = (ufs2_daddr_t *)sbp->b_data;
667 		soff = idp->in_off;
668 	}
669 	/*
670 	 * Find the preferred location for the cluster.
671 	 */
672 	pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
673 	/*
674 	 * If the block range spans two block maps, get the second map.
675 	 */
676 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
677 		ssize = len;
678 	} else {
679 #ifdef DIAGNOSTIC
680 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
681 			panic("ffs_reallocblk: start == end");
682 #endif
683 		ssize = len - (idp->in_off + 1);
684 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
685 			goto fail;
686 		ebap = (ufs2_daddr_t *)ebp->b_data;
687 	}
688 	/*
689 	 * Search the block map looking for an allocation of the desired size.
690 	 */
691 	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
692 	    len, ffs_clusteralloc)) == 0)
693 		goto fail;
694 	/*
695 	 * We have found a new contiguous block.
696 	 *
697 	 * First we have to replace the old block pointers with the new
698 	 * block pointers in the inode and indirect blocks associated
699 	 * with the file.
700 	 */
701 #ifdef DEBUG
702 	if (prtrealloc)
703 		printf("realloc: ino %d, lbns %lld-%lld\n\told:", ip->i_number,
704 		    (intmax_t)start_lbn, (intmax_t)end_lbn);
705 #endif
706 	blkno = newblk;
707 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
708 		if (i == ssize) {
709 			bap = ebap;
710 			soff = -i;
711 		}
712 #ifdef DIAGNOSTIC
713 		if (!ffs_checkblk(ip,
714 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
715 			panic("ffs_reallocblks: unallocated block 2");
716 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
717 			panic("ffs_reallocblks: alloc mismatch");
718 #endif
719 #ifdef DEBUG
720 		if (prtrealloc)
721 			printf(" %lld,", (intmax_t)*bap);
722 #endif
723 		if (DOINGSOFTDEP(vp)) {
724 			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
725 				softdep_setup_allocdirect(ip, start_lbn + i,
726 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
727 				    buflist->bs_children[i]);
728 			else
729 				softdep_setup_allocindir_page(ip, start_lbn + i,
730 				    i < ssize ? sbp : ebp, soff + i, blkno,
731 				    *bap, buflist->bs_children[i]);
732 		}
733 		*bap++ = blkno;
734 	}
735 	/*
736 	 * Next we must write out the modified inode and indirect blocks.
737 	 * For strict correctness, the writes should be synchronous since
738 	 * the old block values may have been written to disk. In practise
739 	 * they are almost never written, but if we are concerned about
740 	 * strict correctness, the `doasyncfree' flag should be set to zero.
741 	 *
742 	 * The test on `doasyncfree' should be changed to test a flag
743 	 * that shows whether the associated buffers and inodes have
744 	 * been written. The flag should be set when the cluster is
745 	 * started and cleared whenever the buffer or inode is flushed.
746 	 * We can then check below to see if it is set, and do the
747 	 * synchronous write only when it has been cleared.
748 	 */
749 	if (sbap != &ip->i_din2->di_db[0]) {
750 		if (doasyncfree)
751 			bdwrite(sbp);
752 		else
753 			bwrite(sbp);
754 	} else {
755 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
756 		if (!doasyncfree)
757 			UFS_UPDATE(vp, 1);
758 	}
759 	if (ssize < len) {
760 		if (doasyncfree)
761 			bdwrite(ebp);
762 		else
763 			bwrite(ebp);
764 	}
765 	/*
766 	 * Last, free the old blocks and assign the new blocks to the buffers.
767 	 */
768 #ifdef DEBUG
769 	if (prtrealloc)
770 		printf("\n\tnew:");
771 #endif
772 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
773 		if (!DOINGSOFTDEP(vp))
774 			ffs_blkfree(fs, ip->i_devvp,
775 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
776 			    fs->fs_bsize, ip->i_number);
777 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
778 #ifdef DIAGNOSTIC
779 		if (!ffs_checkblk(ip,
780 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
781 			panic("ffs_reallocblks: unallocated block 3");
782 #endif
783 #ifdef DEBUG
784 		if (prtrealloc)
785 			printf(" %d,", blkno);
786 #endif
787 	}
788 #ifdef DEBUG
789 	if (prtrealloc) {
790 		prtrealloc--;
791 		printf("\n");
792 	}
793 #endif
794 	return (0);
795 
796 fail:
797 	if (ssize < len)
798 		brelse(ebp);
799 	if (sbap != &ip->i_din2->di_db[0])
800 		brelse(sbp);
801 	return (ENOSPC);
802 }
803 
804 /*
805  * Allocate an inode in the filesystem.
806  *
807  * If allocating a directory, use ffs_dirpref to select the inode.
808  * If allocating in a directory, the following hierarchy is followed:
809  *   1) allocate the preferred inode.
810  *   2) allocate an inode in the same cylinder group.
811  *   3) quadradically rehash into other cylinder groups, until an
812  *      available inode is located.
813  * If no inode preference is given the following heirarchy is used
814  * to allocate an inode:
815  *   1) allocate an inode in cylinder group 0.
816  *   2) quadradically rehash into other cylinder groups, until an
817  *      available inode is located.
818  */
819 int
820 ffs_valloc(pvp, mode, cred, vpp)
821 	struct vnode *pvp;
822 	int mode;
823 	struct ucred *cred;
824 	struct vnode **vpp;
825 {
826 	struct inode *pip;
827 	struct fs *fs;
828 	struct inode *ip;
829 	struct timespec ts;
830 	ino_t ino, ipref;
831 	int cg, error;
832 
833 	*vpp = NULL;
834 	pip = VTOI(pvp);
835 	fs = pip->i_fs;
836 	if (fs->fs_cstotal.cs_nifree == 0)
837 		goto noinodes;
838 
839 	if ((mode & IFMT) == IFDIR)
840 		ipref = ffs_dirpref(pip);
841 	else
842 		ipref = pip->i_number;
843 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
844 		ipref = 0;
845 	cg = ino_to_cg(fs, ipref);
846 	/*
847 	 * Track number of dirs created one after another
848 	 * in a same cg without intervening by files.
849 	 */
850 	if ((mode & IFMT) == IFDIR) {
851 		if (fs->fs_contigdirs[cg] < 255)
852 			fs->fs_contigdirs[cg]++;
853 	} else {
854 		if (fs->fs_contigdirs[cg] > 0)
855 			fs->fs_contigdirs[cg]--;
856 	}
857 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
858 					(allocfcn_t *)ffs_nodealloccg);
859 	if (ino == 0)
860 		goto noinodes;
861 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
862 	if (error) {
863 		UFS_VFREE(pvp, ino, mode);
864 		return (error);
865 	}
866 	ip = VTOI(*vpp);
867 	if (ip->i_mode) {
868 		printf("mode = 0%o, inum = %lu, fs = %s\n",
869 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
870 		panic("ffs_valloc: dup alloc");
871 	}
872 	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
873 		printf("free inode %s/%lu had %ld blocks\n",
874 		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
875 		DIP(ip, i_blocks) = 0;
876 	}
877 	ip->i_flags = 0;
878 	DIP(ip, i_flags) = 0;
879 	/*
880 	 * Set up a new generation number for this inode.
881 	 */
882 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
883 		ip->i_gen = random() / 2 + 1;
884 	DIP(ip, i_gen) = ip->i_gen;
885 	if (fs->fs_magic == FS_UFS2_MAGIC) {
886 		vfs_timestamp(&ts);
887 		ip->i_din2->di_createtime = ts.tv_sec;
888 		ip->i_din2->di_creatensec = ts.tv_nsec;
889 	}
890 	return (0);
891 noinodes:
892 	ffs_fserr(fs, pip->i_number, "out of inodes");
893 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
894 	return (ENOSPC);
895 }
896 
897 /*
898  * Find a cylinder group to place a directory.
899  *
900  * The policy implemented by this algorithm is to allocate a
901  * directory inode in the same cylinder group as its parent
902  * directory, but also to reserve space for its files inodes
903  * and data. Restrict the number of directories which may be
904  * allocated one after another in the same cylinder group
905  * without intervening allocation of files.
906  *
907  * If we allocate a first level directory then force allocation
908  * in another cylinder group.
909  */
910 static ino_t
911 ffs_dirpref(pip)
912 	struct inode *pip;
913 {
914 	struct fs *fs;
915 	int cg, prefcg, dirsize, cgsize;
916 	int avgifree, avgbfree, avgndir, curdirsize;
917 	int minifree, minbfree, maxndir;
918 	int mincg, minndir;
919 	int maxcontigdirs;
920 
921 	fs = pip->i_fs;
922 
923 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
924 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
925 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
926 
927 	/*
928 	 * Force allocation in another cg if creating a first level dir.
929 	 */
930 	if (ITOV(pip)->v_flag & VROOT) {
931 		prefcg = arc4random() % fs->fs_ncg;
932 		mincg = prefcg;
933 		minndir = fs->fs_ipg;
934 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
935 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
936 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
937 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
938 				mincg = cg;
939 				minndir = fs->fs_cs(fs, cg).cs_ndir;
940 			}
941 		for (cg = 0; cg < prefcg; cg++)
942 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
943 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
944 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
945 				mincg = cg;
946 				minndir = fs->fs_cs(fs, cg).cs_ndir;
947 			}
948 		return ((ino_t)(fs->fs_ipg * mincg));
949 	}
950 
951 	/*
952 	 * Count various limits which used for
953 	 * optimal allocation of a directory inode.
954 	 */
955 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
956 	minifree = avgifree - fs->fs_ipg / 4;
957 	if (minifree < 0)
958 		minifree = 0;
959 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
960 	if (minbfree < 0)
961 		minbfree = 0;
962 	cgsize = fs->fs_fsize * fs->fs_fpg;
963 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
964 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
965 	if (dirsize < curdirsize)
966 		dirsize = curdirsize;
967 	maxcontigdirs = min(cgsize / dirsize, 255);
968 	if (fs->fs_avgfpdir > 0)
969 		maxcontigdirs = min(maxcontigdirs,
970 				    fs->fs_ipg / fs->fs_avgfpdir);
971 	if (maxcontigdirs == 0)
972 		maxcontigdirs = 1;
973 
974 	/*
975 	 * Limit number of dirs in one cg and reserve space for
976 	 * regular files, but only if we have no deficit in
977 	 * inodes or space.
978 	 */
979 	prefcg = ino_to_cg(fs, pip->i_number);
980 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
981 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
982 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
983 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
984 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
985 				return ((ino_t)(fs->fs_ipg * cg));
986 		}
987 	for (cg = 0; cg < prefcg; cg++)
988 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
989 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
990 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
991 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
992 				return ((ino_t)(fs->fs_ipg * cg));
993 		}
994 	/*
995 	 * This is a backstop when we have deficit in space.
996 	 */
997 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
998 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
999 			return ((ino_t)(fs->fs_ipg * cg));
1000 	for (cg = 0; cg < prefcg; cg++)
1001 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1002 			break;
1003 	return ((ino_t)(fs->fs_ipg * cg));
1004 }
1005 
1006 /*
1007  * Select the desired position for the next block in a file.  The file is
1008  * logically divided into sections. The first section is composed of the
1009  * direct blocks. Each additional section contains fs_maxbpg blocks.
1010  *
1011  * If no blocks have been allocated in the first section, the policy is to
1012  * request a block in the same cylinder group as the inode that describes
1013  * the file. If no blocks have been allocated in any other section, the
1014  * policy is to place the section in a cylinder group with a greater than
1015  * average number of free blocks.  An appropriate cylinder group is found
1016  * by using a rotor that sweeps the cylinder groups. When a new group of
1017  * blocks is needed, the sweep begins in the cylinder group following the
1018  * cylinder group from which the previous allocation was made. The sweep
1019  * continues until a cylinder group with greater than the average number
1020  * of free blocks is found. If the allocation is for the first block in an
1021  * indirect block, the information on the previous allocation is unavailable;
1022  * here a best guess is made based upon the logical block number being
1023  * allocated.
1024  *
1025  * If a section is already partially allocated, the policy is to
1026  * contiguously allocate fs_maxcontig blocks. The end of one of these
1027  * contiguous blocks and the beginning of the next is laid out
1028  * contiguously if possible.
1029  */
1030 ufs2_daddr_t
1031 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1032 	struct inode *ip;
1033 	ufs_lbn_t lbn;
1034 	int indx;
1035 	ufs1_daddr_t *bap;
1036 {
1037 	struct fs *fs;
1038 	int cg;
1039 	int avgbfree, startcg;
1040 
1041 	fs = ip->i_fs;
1042 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1043 		if (lbn < NDADDR + NINDIR(fs)) {
1044 			cg = ino_to_cg(fs, ip->i_number);
1045 			return (fs->fs_fpg * cg + fs->fs_frag);
1046 		}
1047 		/*
1048 		 * Find a cylinder with greater than average number of
1049 		 * unused data blocks.
1050 		 */
1051 		if (indx == 0 || bap[indx - 1] == 0)
1052 			startcg =
1053 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1054 		else
1055 			startcg = dtog(fs, bap[indx - 1]) + 1;
1056 		startcg %= fs->fs_ncg;
1057 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1058 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1059 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1060 				fs->fs_cgrotor = cg;
1061 				return (fs->fs_fpg * cg + fs->fs_frag);
1062 			}
1063 		for (cg = 0; cg <= startcg; cg++)
1064 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1065 				fs->fs_cgrotor = cg;
1066 				return (fs->fs_fpg * cg + fs->fs_frag);
1067 			}
1068 		return (0);
1069 	}
1070 	/*
1071 	 * We just always try to lay things out contiguously.
1072 	 */
1073 	return (bap[indx - 1] + fs->fs_frag);
1074 }
1075 
1076 /*
1077  * Same as above, but for UFS2
1078  */
1079 ufs2_daddr_t
1080 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1081 	struct inode *ip;
1082 	ufs_lbn_t lbn;
1083 	int indx;
1084 	ufs2_daddr_t *bap;
1085 {
1086 	struct fs *fs;
1087 	int cg;
1088 	int avgbfree, startcg;
1089 
1090 	fs = ip->i_fs;
1091 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1092 		if (lbn < NDADDR + NINDIR(fs)) {
1093 			cg = ino_to_cg(fs, ip->i_number);
1094 			return (fs->fs_fpg * cg + fs->fs_frag);
1095 		}
1096 		/*
1097 		 * Find a cylinder with greater than average number of
1098 		 * unused data blocks.
1099 		 */
1100 		if (indx == 0 || bap[indx - 1] == 0)
1101 			startcg =
1102 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1103 		else
1104 			startcg = dtog(fs, bap[indx - 1]) + 1;
1105 		startcg %= fs->fs_ncg;
1106 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1107 		for (cg = startcg; cg < fs->fs_ncg; cg++)
1108 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1109 				fs->fs_cgrotor = cg;
1110 				return (fs->fs_fpg * cg + fs->fs_frag);
1111 			}
1112 		for (cg = 0; cg <= startcg; cg++)
1113 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1114 				fs->fs_cgrotor = cg;
1115 				return (fs->fs_fpg * cg + fs->fs_frag);
1116 			}
1117 		return (0);
1118 	}
1119 	/*
1120 	 * We just always try to lay things out contiguously.
1121 	 */
1122 	return (bap[indx - 1] + fs->fs_frag);
1123 }
1124 
1125 /*
1126  * Implement the cylinder overflow algorithm.
1127  *
1128  * The policy implemented by this algorithm is:
1129  *   1) allocate the block in its requested cylinder group.
1130  *   2) quadradically rehash on the cylinder group number.
1131  *   3) brute force search for a free block.
1132  */
1133 /*VARARGS5*/
1134 static ufs2_daddr_t
1135 ffs_hashalloc(ip, cg, pref, size, allocator)
1136 	struct inode *ip;
1137 	int cg;
1138 	ufs2_daddr_t pref;
1139 	int size;	/* size for data blocks, mode for inodes */
1140 	allocfcn_t *allocator;
1141 {
1142 	struct fs *fs;
1143 	ufs2_daddr_t result;
1144 	int i, icg = cg;
1145 
1146 #ifdef DIAGNOSTIC
1147 	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1148 		panic("ffs_hashalloc: allocation on suspended filesystem");
1149 #endif
1150 	fs = ip->i_fs;
1151 	/*
1152 	 * 1: preferred cylinder group
1153 	 */
1154 	result = (*allocator)(ip, cg, pref, size);
1155 	if (result)
1156 		return (result);
1157 	/*
1158 	 * 2: quadratic rehash
1159 	 */
1160 	for (i = 1; i < fs->fs_ncg; i *= 2) {
1161 		cg += i;
1162 		if (cg >= fs->fs_ncg)
1163 			cg -= fs->fs_ncg;
1164 		result = (*allocator)(ip, cg, 0, size);
1165 		if (result)
1166 			return (result);
1167 	}
1168 	/*
1169 	 * 3: brute force search
1170 	 * Note that we start at i == 2, since 0 was checked initially,
1171 	 * and 1 is always checked in the quadratic rehash.
1172 	 */
1173 	cg = (icg + 2) % fs->fs_ncg;
1174 	for (i = 2; i < fs->fs_ncg; i++) {
1175 		result = (*allocator)(ip, cg, 0, size);
1176 		if (result)
1177 			return (result);
1178 		cg++;
1179 		if (cg == fs->fs_ncg)
1180 			cg = 0;
1181 	}
1182 	return (0);
1183 }
1184 
1185 /*
1186  * Determine whether a fragment can be extended.
1187  *
1188  * Check to see if the necessary fragments are available, and
1189  * if they are, allocate them.
1190  */
1191 static ufs2_daddr_t
1192 ffs_fragextend(ip, cg, bprev, osize, nsize)
1193 	struct inode *ip;
1194 	int cg;
1195 	ufs2_daddr_t bprev;
1196 	int osize, nsize;
1197 {
1198 	struct fs *fs;
1199 	struct cg *cgp;
1200 	struct buf *bp;
1201 	long bno;
1202 	int frags, bbase;
1203 	int i, error;
1204 	u_int8_t *blksfree;
1205 
1206 	fs = ip->i_fs;
1207 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1208 		return (0);
1209 	frags = numfrags(fs, nsize);
1210 	bbase = fragnum(fs, bprev);
1211 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1212 		/* cannot extend across a block boundary */
1213 		return (0);
1214 	}
1215 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1216 		(int)fs->fs_cgsize, NOCRED, &bp);
1217 	if (error) {
1218 		brelse(bp);
1219 		return (0);
1220 	}
1221 	cgp = (struct cg *)bp->b_data;
1222 	if (!cg_chkmagic(cgp)) {
1223 		brelse(bp);
1224 		return (0);
1225 	}
1226 	bp->b_xflags |= BX_BKGRDWRITE;
1227 	cgp->cg_old_time = cgp->cg_time = time_second;
1228 	bno = dtogd(fs, bprev);
1229 	blksfree = cg_blksfree(cgp);
1230 	for (i = numfrags(fs, osize); i < frags; i++)
1231 		if (isclr(blksfree, bno + i)) {
1232 			brelse(bp);
1233 			return (0);
1234 		}
1235 	/*
1236 	 * the current fragment can be extended
1237 	 * deduct the count on fragment being extended into
1238 	 * increase the count on the remaining fragment (if any)
1239 	 * allocate the extended piece
1240 	 */
1241 	for (i = frags; i < fs->fs_frag - bbase; i++)
1242 		if (isclr(blksfree, bno + i))
1243 			break;
1244 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1245 	if (i != frags)
1246 		cgp->cg_frsum[i - frags]++;
1247 	for (i = numfrags(fs, osize); i < frags; i++) {
1248 		clrbit(blksfree, bno + i);
1249 		cgp->cg_cs.cs_nffree--;
1250 		fs->fs_cstotal.cs_nffree--;
1251 		fs->fs_cs(fs, cg).cs_nffree--;
1252 	}
1253 	fs->fs_fmod = 1;
1254 	if (DOINGSOFTDEP(ITOV(ip)))
1255 		softdep_setup_blkmapdep(bp, fs, bprev);
1256 	if (fs->fs_active != 0)
1257 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1258 	bdwrite(bp);
1259 	return (bprev);
1260 }
1261 
1262 /*
1263  * Determine whether a block can be allocated.
1264  *
1265  * Check to see if a block of the appropriate size is available,
1266  * and if it is, allocate it.
1267  */
1268 static ufs2_daddr_t
1269 ffs_alloccg(ip, cg, bpref, size)
1270 	struct inode *ip;
1271 	int cg;
1272 	ufs2_daddr_t bpref;
1273 	int size;
1274 {
1275 	struct fs *fs;
1276 	struct cg *cgp;
1277 	struct buf *bp;
1278 	ufs1_daddr_t bno;
1279 	ufs2_daddr_t blkno;
1280 	int i, allocsiz, error, frags;
1281 	u_int8_t *blksfree;
1282 
1283 	fs = ip->i_fs;
1284 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1285 		return (0);
1286 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1287 		(int)fs->fs_cgsize, NOCRED, &bp);
1288 	if (error) {
1289 		brelse(bp);
1290 		return (0);
1291 	}
1292 	cgp = (struct cg *)bp->b_data;
1293 	if (!cg_chkmagic(cgp) ||
1294 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1295 		brelse(bp);
1296 		return (0);
1297 	}
1298 	bp->b_xflags |= BX_BKGRDWRITE;
1299 	cgp->cg_old_time = cgp->cg_time = time_second;
1300 	if (size == fs->fs_bsize) {
1301 		blkno = ffs_alloccgblk(ip, bp, bpref);
1302 		if (fs->fs_active != 0)
1303 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1304 		bdwrite(bp);
1305 		return (blkno);
1306 	}
1307 	/*
1308 	 * check to see if any fragments are already available
1309 	 * allocsiz is the size which will be allocated, hacking
1310 	 * it down to a smaller size if necessary
1311 	 */
1312 	blksfree = cg_blksfree(cgp);
1313 	frags = numfrags(fs, size);
1314 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1315 		if (cgp->cg_frsum[allocsiz] != 0)
1316 			break;
1317 	if (allocsiz == fs->fs_frag) {
1318 		/*
1319 		 * no fragments were available, so a block will be
1320 		 * allocated, and hacked up
1321 		 */
1322 		if (cgp->cg_cs.cs_nbfree == 0) {
1323 			brelse(bp);
1324 			return (0);
1325 		}
1326 		blkno = ffs_alloccgblk(ip, bp, bpref);
1327 		bno = dtogd(fs, blkno);
1328 		for (i = frags; i < fs->fs_frag; i++)
1329 			setbit(blksfree, bno + i);
1330 		i = fs->fs_frag - frags;
1331 		cgp->cg_cs.cs_nffree += i;
1332 		fs->fs_cstotal.cs_nffree += i;
1333 		fs->fs_cs(fs, cg).cs_nffree += i;
1334 		fs->fs_fmod = 1;
1335 		cgp->cg_frsum[i]++;
1336 		if (fs->fs_active != 0)
1337 			atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1338 		bdwrite(bp);
1339 		return (blkno);
1340 	}
1341 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1342 	if (bno < 0) {
1343 		brelse(bp);
1344 		return (0);
1345 	}
1346 	for (i = 0; i < frags; i++)
1347 		clrbit(blksfree, bno + i);
1348 	cgp->cg_cs.cs_nffree -= frags;
1349 	fs->fs_cstotal.cs_nffree -= frags;
1350 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1351 	fs->fs_fmod = 1;
1352 	cgp->cg_frsum[allocsiz]--;
1353 	if (frags != allocsiz)
1354 		cgp->cg_frsum[allocsiz - frags]++;
1355 	blkno = cg * fs->fs_fpg + bno;
1356 	if (DOINGSOFTDEP(ITOV(ip)))
1357 		softdep_setup_blkmapdep(bp, fs, blkno);
1358 	if (fs->fs_active != 0)
1359 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1360 	bdwrite(bp);
1361 	return (blkno);
1362 }
1363 
1364 /*
1365  * Allocate a block in a cylinder group.
1366  *
1367  * This algorithm implements the following policy:
1368  *   1) allocate the requested block.
1369  *   2) allocate a rotationally optimal block in the same cylinder.
1370  *   3) allocate the next available block on the block rotor for the
1371  *      specified cylinder group.
1372  * Note that this routine only allocates fs_bsize blocks; these
1373  * blocks may be fragmented by the routine that allocates them.
1374  */
1375 static ufs2_daddr_t
1376 ffs_alloccgblk(ip, bp, bpref)
1377 	struct inode *ip;
1378 	struct buf *bp;
1379 	ufs2_daddr_t bpref;
1380 {
1381 	struct fs *fs;
1382 	struct cg *cgp;
1383 	ufs1_daddr_t bno;
1384 	ufs2_daddr_t blkno;
1385 	u_int8_t *blksfree;
1386 
1387 	fs = ip->i_fs;
1388 	cgp = (struct cg *)bp->b_data;
1389 	blksfree = cg_blksfree(cgp);
1390 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1391 		bpref = cgp->cg_rotor;
1392 	} else {
1393 		bpref = blknum(fs, bpref);
1394 		bno = dtogd(fs, bpref);
1395 		/*
1396 		 * if the requested block is available, use it
1397 		 */
1398 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1399 			goto gotit;
1400 	}
1401 	/*
1402 	 * Take the next available block in this cylinder group.
1403 	 */
1404 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1405 	if (bno < 0)
1406 		return (0);
1407 	cgp->cg_rotor = bno;
1408 gotit:
1409 	blkno = fragstoblks(fs, bno);
1410 	ffs_clrblock(fs, blksfree, (long)blkno);
1411 	ffs_clusteracct(fs, cgp, blkno, -1);
1412 	cgp->cg_cs.cs_nbfree--;
1413 	fs->fs_cstotal.cs_nbfree--;
1414 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1415 	fs->fs_fmod = 1;
1416 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1417 	if (DOINGSOFTDEP(ITOV(ip)))
1418 		softdep_setup_blkmapdep(bp, fs, blkno);
1419 	return (blkno);
1420 }
1421 
1422 /*
1423  * Determine whether a cluster can be allocated.
1424  *
1425  * We do not currently check for optimal rotational layout if there
1426  * are multiple choices in the same cylinder group. Instead we just
1427  * take the first one that we find following bpref.
1428  */
1429 static ufs2_daddr_t
1430 ffs_clusteralloc(ip, cg, bpref, len)
1431 	struct inode *ip;
1432 	int cg;
1433 	ufs2_daddr_t bpref;
1434 	int len;
1435 {
1436 	struct fs *fs;
1437 	struct cg *cgp;
1438 	struct buf *bp;
1439 	int i, run, bit, map, got;
1440 	ufs2_daddr_t bno;
1441 	u_char *mapp;
1442 	int32_t *lp;
1443 	u_int8_t *blksfree;
1444 
1445 	fs = ip->i_fs;
1446 	if (fs->fs_maxcluster[cg] < len)
1447 		return (0);
1448 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1449 	    NOCRED, &bp))
1450 		goto fail;
1451 	cgp = (struct cg *)bp->b_data;
1452 	if (!cg_chkmagic(cgp))
1453 		goto fail;
1454 	bp->b_xflags |= BX_BKGRDWRITE;
1455 	/*
1456 	 * Check to see if a cluster of the needed size (or bigger) is
1457 	 * available in this cylinder group.
1458 	 */
1459 	lp = &cg_clustersum(cgp)[len];
1460 	for (i = len; i <= fs->fs_contigsumsize; i++)
1461 		if (*lp++ > 0)
1462 			break;
1463 	if (i > fs->fs_contigsumsize) {
1464 		/*
1465 		 * This is the first time looking for a cluster in this
1466 		 * cylinder group. Update the cluster summary information
1467 		 * to reflect the true maximum sized cluster so that
1468 		 * future cluster allocation requests can avoid reading
1469 		 * the cylinder group map only to find no clusters.
1470 		 */
1471 		lp = &cg_clustersum(cgp)[len - 1];
1472 		for (i = len - 1; i > 0; i--)
1473 			if (*lp-- > 0)
1474 				break;
1475 		fs->fs_maxcluster[cg] = i;
1476 		goto fail;
1477 	}
1478 	/*
1479 	 * Search the cluster map to find a big enough cluster.
1480 	 * We take the first one that we find, even if it is larger
1481 	 * than we need as we prefer to get one close to the previous
1482 	 * block allocation. We do not search before the current
1483 	 * preference point as we do not want to allocate a block
1484 	 * that is allocated before the previous one (as we will
1485 	 * then have to wait for another pass of the elevator
1486 	 * algorithm before it will be read). We prefer to fail and
1487 	 * be recalled to try an allocation in the next cylinder group.
1488 	 */
1489 	if (dtog(fs, bpref) != cg)
1490 		bpref = 0;
1491 	else
1492 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1493 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1494 	map = *mapp++;
1495 	bit = 1 << (bpref % NBBY);
1496 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1497 		if ((map & bit) == 0) {
1498 			run = 0;
1499 		} else {
1500 			run++;
1501 			if (run == len)
1502 				break;
1503 		}
1504 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1505 			bit <<= 1;
1506 		} else {
1507 			map = *mapp++;
1508 			bit = 1;
1509 		}
1510 	}
1511 	if (got >= cgp->cg_nclusterblks)
1512 		goto fail;
1513 	/*
1514 	 * Allocate the cluster that we have found.
1515 	 */
1516 	blksfree = cg_blksfree(cgp);
1517 	for (i = 1; i <= len; i++)
1518 		if (!ffs_isblock(fs, blksfree, got - run + i))
1519 			panic("ffs_clusteralloc: map mismatch");
1520 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1521 	if (dtog(fs, bno) != cg)
1522 		panic("ffs_clusteralloc: allocated out of group");
1523 	len = blkstofrags(fs, len);
1524 	for (i = 0; i < len; i += fs->fs_frag)
1525 		if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
1526 			panic("ffs_clusteralloc: lost block");
1527 	if (fs->fs_active != 0)
1528 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1529 	bdwrite(bp);
1530 	return (bno);
1531 
1532 fail:
1533 	brelse(bp);
1534 	return (0);
1535 }
1536 
1537 /*
1538  * Determine whether an inode can be allocated.
1539  *
1540  * Check to see if an inode is available, and if it is,
1541  * allocate it using the following policy:
1542  *   1) allocate the requested inode.
1543  *   2) allocate the next available inode after the requested
1544  *      inode in the specified cylinder group.
1545  */
1546 static ufs2_daddr_t
1547 ffs_nodealloccg(ip, cg, ipref, mode)
1548 	struct inode *ip;
1549 	int cg;
1550 	ufs2_daddr_t ipref;
1551 	int mode;
1552 {
1553 	struct fs *fs;
1554 	struct cg *cgp;
1555 	struct buf *bp, *ibp;
1556 	u_int8_t *inosused;
1557 	struct ufs2_dinode *dp2;
1558 	int error, start, len, loc, map, i;
1559 
1560 	fs = ip->i_fs;
1561 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1562 		return (0);
1563 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1564 		(int)fs->fs_cgsize, NOCRED, &bp);
1565 	if (error) {
1566 		brelse(bp);
1567 		return (0);
1568 	}
1569 	cgp = (struct cg *)bp->b_data;
1570 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1571 		brelse(bp);
1572 		return (0);
1573 	}
1574 	bp->b_xflags |= BX_BKGRDWRITE;
1575 	cgp->cg_old_time = cgp->cg_time = time_second;
1576 	inosused = cg_inosused(cgp);
1577 	if (ipref) {
1578 		ipref %= fs->fs_ipg;
1579 		if (isclr(inosused, ipref))
1580 			goto gotit;
1581 	}
1582 	start = cgp->cg_irotor / NBBY;
1583 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1584 	loc = skpc(0xff, len, &inosused[start]);
1585 	if (loc == 0) {
1586 		len = start + 1;
1587 		start = 0;
1588 		loc = skpc(0xff, len, &inosused[0]);
1589 		if (loc == 0) {
1590 			printf("cg = %d, irotor = %ld, fs = %s\n",
1591 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1592 			panic("ffs_nodealloccg: map corrupted");
1593 			/* NOTREACHED */
1594 		}
1595 	}
1596 	i = start + len - loc;
1597 	map = inosused[i];
1598 	ipref = i * NBBY;
1599 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1600 		if ((map & i) == 0) {
1601 			cgp->cg_irotor = ipref;
1602 			goto gotit;
1603 		}
1604 	}
1605 	printf("fs = %s\n", fs->fs_fsmnt);
1606 	panic("ffs_nodealloccg: block not in map");
1607 	/* NOTREACHED */
1608 gotit:
1609 	if (DOINGSOFTDEP(ITOV(ip)))
1610 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1611 	setbit(inosused, ipref);
1612 	cgp->cg_cs.cs_nifree--;
1613 	fs->fs_cstotal.cs_nifree--;
1614 	fs->fs_cs(fs, cg).cs_nifree--;
1615 	fs->fs_fmod = 1;
1616 	if ((mode & IFMT) == IFDIR) {
1617 		cgp->cg_cs.cs_ndir++;
1618 		fs->fs_cstotal.cs_ndir++;
1619 		fs->fs_cs(fs, cg).cs_ndir++;
1620 	}
1621 	/*
1622 	 * Check to see if we need to initialize more inodes.
1623 	 */
1624 	if (fs->fs_magic == FS_UFS2_MAGIC &&
1625 	    ipref + INOPB(fs) > cgp->cg_initediblk &&
1626 	    cgp->cg_initediblk < cgp->cg_niblk) {
1627 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
1628 		    ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
1629 		    (int)fs->fs_bsize, 0, 0);
1630 		bzero(ibp->b_data, (int)fs->fs_bsize);
1631 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
1632 		for (i = 0; i < INOPB(fs); i++) {
1633 			dp2->di_gen = random() / 2 + 1;
1634 			dp2++;
1635 		}
1636 		bawrite(ibp);
1637 		cgp->cg_initediblk += INOPB(fs);
1638 	}
1639 	if (fs->fs_active != 0)
1640 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1641 	bdwrite(bp);
1642 	return (cg * fs->fs_ipg + ipref);
1643 }
1644 
1645 /*
1646  * Free a block or fragment.
1647  *
1648  * The specified block or fragment is placed back in the
1649  * free map. If a fragment is deallocated, a possible
1650  * block reassembly is checked.
1651  */
1652 void
1653 ffs_blkfree(fs, devvp, bno, size, inum)
1654 	struct fs *fs;
1655 	struct vnode *devvp;
1656 	ufs2_daddr_t bno;
1657 	long size;
1658 	ino_t inum;
1659 {
1660 	struct cg *cgp;
1661 	struct buf *bp;
1662 	ufs1_daddr_t fragno, cgbno;
1663 	ufs2_daddr_t cgblkno;
1664 	int i, error, cg, blk, frags, bbase;
1665 	u_int8_t *blksfree;
1666 	dev_t dev;
1667 
1668 	cg = dtog(fs, bno);
1669 	if (devvp->v_type != VCHR) {
1670 		/* devvp is a snapshot */
1671 		dev = VTOI(devvp)->i_devvp->v_rdev;
1672 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
1673 	} else {
1674 		/* devvp is a normal disk device */
1675 		dev = devvp->v_rdev;
1676 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
1677 		if ((devvp->v_flag & VCOPYONWRITE) &&
1678 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
1679 			return;
1680 		VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size);
1681 	}
1682 #ifdef DIAGNOSTIC
1683 	if (dev->si_mountpoint &&
1684 	    (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED))
1685 		panic("ffs_blkfree: deallocation on suspended filesystem");
1686 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1687 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1688 		printf("dev=%s, bno = %lld, bsize = %ld, size = %ld, fs = %s\n",
1689 		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
1690 		    size, fs->fs_fsmnt);
1691 		panic("ffs_blkfree: bad size");
1692 	}
1693 #endif
1694 	if ((u_int)bno >= fs->fs_size) {
1695 		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
1696 		    (u_long)inum);
1697 		ffs_fserr(fs, inum, "bad block");
1698 		return;
1699 	}
1700 	if ((error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1701 		brelse(bp);
1702 		return;
1703 	}
1704 	cgp = (struct cg *)bp->b_data;
1705 	if (!cg_chkmagic(cgp)) {
1706 		brelse(bp);
1707 		return;
1708 	}
1709 	bp->b_xflags |= BX_BKGRDWRITE;
1710 	cgp->cg_old_time = cgp->cg_time = time_second;
1711 	cgbno = dtogd(fs, bno);
1712 	blksfree = cg_blksfree(cgp);
1713 	if (size == fs->fs_bsize) {
1714 		fragno = fragstoblks(fs, cgbno);
1715 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1716 			if (devvp->v_type != VCHR) {
1717 				/* devvp is a snapshot */
1718 				brelse(bp);
1719 				return;
1720 			}
1721 			printf("dev = %s, block = %jd, fs = %s\n",
1722 			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
1723 			panic("ffs_blkfree: freeing free block");
1724 		}
1725 		ffs_setblock(fs, blksfree, fragno);
1726 		ffs_clusteracct(fs, cgp, fragno, 1);
1727 		cgp->cg_cs.cs_nbfree++;
1728 		fs->fs_cstotal.cs_nbfree++;
1729 		fs->fs_cs(fs, cg).cs_nbfree++;
1730 	} else {
1731 		bbase = cgbno - fragnum(fs, cgbno);
1732 		/*
1733 		 * decrement the counts associated with the old frags
1734 		 */
1735 		blk = blkmap(fs, blksfree, bbase);
1736 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1737 		/*
1738 		 * deallocate the fragment
1739 		 */
1740 		frags = numfrags(fs, size);
1741 		for (i = 0; i < frags; i++) {
1742 			if (isset(blksfree, cgbno + i)) {
1743 				printf("dev = %s, block = %jd, fs = %s\n",
1744 				    devtoname(dev), (intmax_t)(bno + i),
1745 				    fs->fs_fsmnt);
1746 				panic("ffs_blkfree: freeing free frag");
1747 			}
1748 			setbit(blksfree, cgbno + i);
1749 		}
1750 		cgp->cg_cs.cs_nffree += i;
1751 		fs->fs_cstotal.cs_nffree += i;
1752 		fs->fs_cs(fs, cg).cs_nffree += i;
1753 		/*
1754 		 * add back in counts associated with the new frags
1755 		 */
1756 		blk = blkmap(fs, blksfree, bbase);
1757 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1758 		/*
1759 		 * if a complete block has been reassembled, account for it
1760 		 */
1761 		fragno = fragstoblks(fs, bbase);
1762 		if (ffs_isblock(fs, blksfree, fragno)) {
1763 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1764 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1765 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1766 			ffs_clusteracct(fs, cgp, fragno, 1);
1767 			cgp->cg_cs.cs_nbfree++;
1768 			fs->fs_cstotal.cs_nbfree++;
1769 			fs->fs_cs(fs, cg).cs_nbfree++;
1770 		}
1771 	}
1772 	fs->fs_fmod = 1;
1773 	if (fs->fs_active != 0)
1774 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1775 	bdwrite(bp);
1776 }
1777 
1778 #ifdef DIAGNOSTIC
1779 /*
1780  * Verify allocation of a block or fragment. Returns true if block or
1781  * fragment is allocated, false if it is free.
1782  */
1783 static int
1784 ffs_checkblk(ip, bno, size)
1785 	struct inode *ip;
1786 	ufs2_daddr_t bno;
1787 	long size;
1788 {
1789 	struct fs *fs;
1790 	struct cg *cgp;
1791 	struct buf *bp;
1792 	ufs1_daddr_t cgbno;
1793 	int i, error, frags, free;
1794 	u_int8_t *blksfree;
1795 
1796 	fs = ip->i_fs;
1797 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1798 		printf("bsize = %ld, size = %ld, fs = %s\n",
1799 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1800 		panic("ffs_checkblk: bad size");
1801 	}
1802 	if ((u_int)bno >= fs->fs_size)
1803 		panic("ffs_checkblk: bad block %lld", (intmax_t)bno);
1804 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1805 		(int)fs->fs_cgsize, NOCRED, &bp);
1806 	if (error)
1807 		panic("ffs_checkblk: cg bread failed");
1808 	cgp = (struct cg *)bp->b_data;
1809 	if (!cg_chkmagic(cgp))
1810 		panic("ffs_checkblk: cg magic mismatch");
1811 	bp->b_xflags |= BX_BKGRDWRITE;
1812 	blksfree = cg_blksfree(cgp);
1813 	cgbno = dtogd(fs, bno);
1814 	if (size == fs->fs_bsize) {
1815 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
1816 	} else {
1817 		frags = numfrags(fs, size);
1818 		for (free = 0, i = 0; i < frags; i++)
1819 			if (isset(blksfree, cgbno + i))
1820 				free++;
1821 		if (free != 0 && free != frags)
1822 			panic("ffs_checkblk: partially free fragment");
1823 	}
1824 	brelse(bp);
1825 	return (!free);
1826 }
1827 #endif /* DIAGNOSTIC */
1828 
1829 /*
1830  * Free an inode.
1831  */
1832 int
1833 ffs_vfree(pvp, ino, mode)
1834 	struct vnode *pvp;
1835 	ino_t ino;
1836 	int mode;
1837 {
1838 	if (DOINGSOFTDEP(pvp)) {
1839 		softdep_freefile(pvp, ino, mode);
1840 		return (0);
1841 	}
1842 	return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode));
1843 }
1844 
1845 /*
1846  * Do the actual free operation.
1847  * The specified inode is placed back in the free map.
1848  */
1849 int
1850 ffs_freefile(fs, devvp, ino, mode)
1851 	struct fs *fs;
1852 	struct vnode *devvp;
1853 	ino_t ino;
1854 	int mode;
1855 {
1856 	struct cg *cgp;
1857 	struct buf *bp;
1858 	ufs2_daddr_t cgbno;
1859 	int error, cg;
1860 	u_int8_t *inosused;
1861 	dev_t dev;
1862 
1863 	cg = ino_to_cg(fs, ino);
1864 	if (devvp->v_type != VCHR) {
1865 		/* devvp is a snapshot */
1866 		dev = VTOI(devvp)->i_devvp->v_rdev;
1867 		cgbno = fragstoblks(fs, cgtod(fs, cg));
1868 	} else {
1869 		/* devvp is a normal disk device */
1870 		dev = devvp->v_rdev;
1871 		cgbno = fsbtodb(fs, cgtod(fs, cg));
1872 	}
1873 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1874 		panic("ffs_vfree: range: dev = %s, ino = %d, fs = %s",
1875 		    devtoname(dev), ino, fs->fs_fsmnt);
1876 	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
1877 		brelse(bp);
1878 		return (error);
1879 	}
1880 	cgp = (struct cg *)bp->b_data;
1881 	if (!cg_chkmagic(cgp)) {
1882 		brelse(bp);
1883 		return (0);
1884 	}
1885 	bp->b_xflags |= BX_BKGRDWRITE;
1886 	cgp->cg_old_time = cgp->cg_time = time_second;
1887 	inosused = cg_inosused(cgp);
1888 	ino %= fs->fs_ipg;
1889 	if (isclr(inosused, ino)) {
1890 		printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
1891 		    (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1892 		if (fs->fs_ronly == 0)
1893 			panic("ffs_vfree: freeing free inode");
1894 	}
1895 	clrbit(inosused, ino);
1896 	if (ino < cgp->cg_irotor)
1897 		cgp->cg_irotor = ino;
1898 	cgp->cg_cs.cs_nifree++;
1899 	fs->fs_cstotal.cs_nifree++;
1900 	fs->fs_cs(fs, cg).cs_nifree++;
1901 	if ((mode & IFMT) == IFDIR) {
1902 		cgp->cg_cs.cs_ndir--;
1903 		fs->fs_cstotal.cs_ndir--;
1904 		fs->fs_cs(fs, cg).cs_ndir--;
1905 	}
1906 	fs->fs_fmod = 1;
1907 	if (fs->fs_active != 0)
1908 		atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
1909 	bdwrite(bp);
1910 	return (0);
1911 }
1912 
1913 /*
1914  * Find a block of the specified size in the specified cylinder group.
1915  *
1916  * It is a panic if a request is made to find a block if none are
1917  * available.
1918  */
1919 static ufs1_daddr_t
1920 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1921 	struct fs *fs;
1922 	struct cg *cgp;
1923 	ufs2_daddr_t bpref;
1924 	int allocsiz;
1925 {
1926 	ufs1_daddr_t bno;
1927 	int start, len, loc, i;
1928 	int blk, field, subfield, pos;
1929 	u_int8_t *blksfree;
1930 
1931 	/*
1932 	 * find the fragment by searching through the free block
1933 	 * map for an appropriate bit pattern
1934 	 */
1935 	if (bpref)
1936 		start = dtogd(fs, bpref) / NBBY;
1937 	else
1938 		start = cgp->cg_frotor / NBBY;
1939 	blksfree = cg_blksfree(cgp);
1940 	len = howmany(fs->fs_fpg, NBBY) - start;
1941 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
1942 		(u_char *)fragtbl[fs->fs_frag],
1943 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1944 	if (loc == 0) {
1945 		len = start + 1;
1946 		start = 0;
1947 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
1948 			(u_char *)fragtbl[fs->fs_frag],
1949 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1950 		if (loc == 0) {
1951 			printf("start = %d, len = %d, fs = %s\n",
1952 			    start, len, fs->fs_fsmnt);
1953 			panic("ffs_alloccg: map corrupted");
1954 			/* NOTREACHED */
1955 		}
1956 	}
1957 	bno = (start + len - loc) * NBBY;
1958 	cgp->cg_frotor = bno;
1959 	/*
1960 	 * found the byte in the map
1961 	 * sift through the bits to find the selected frag
1962 	 */
1963 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1964 		blk = blkmap(fs, blksfree, bno);
1965 		blk <<= 1;
1966 		field = around[allocsiz];
1967 		subfield = inside[allocsiz];
1968 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1969 			if ((blk & field) == subfield)
1970 				return (bno + pos);
1971 			field <<= 1;
1972 			subfield <<= 1;
1973 		}
1974 	}
1975 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1976 	panic("ffs_alloccg: block not in map");
1977 	return (-1);
1978 }
1979 
1980 /*
1981  * Update the cluster map because of an allocation or free.
1982  *
1983  * Cnt == 1 means free; cnt == -1 means allocating.
1984  */
1985 void
1986 ffs_clusteracct(fs, cgp, blkno, cnt)
1987 	struct fs *fs;
1988 	struct cg *cgp;
1989 	ufs1_daddr_t blkno;
1990 	int cnt;
1991 {
1992 	int32_t *sump;
1993 	int32_t *lp;
1994 	u_char *freemapp, *mapp;
1995 	int i, start, end, forw, back, map, bit;
1996 
1997 	if (fs->fs_contigsumsize <= 0)
1998 		return;
1999 	freemapp = cg_clustersfree(cgp);
2000 	sump = cg_clustersum(cgp);
2001 	/*
2002 	 * Allocate or clear the actual block.
2003 	 */
2004 	if (cnt > 0)
2005 		setbit(freemapp, blkno);
2006 	else
2007 		clrbit(freemapp, blkno);
2008 	/*
2009 	 * Find the size of the cluster going forward.
2010 	 */
2011 	start = blkno + 1;
2012 	end = start + fs->fs_contigsumsize;
2013 	if (end >= cgp->cg_nclusterblks)
2014 		end = cgp->cg_nclusterblks;
2015 	mapp = &freemapp[start / NBBY];
2016 	map = *mapp++;
2017 	bit = 1 << (start % NBBY);
2018 	for (i = start; i < end; i++) {
2019 		if ((map & bit) == 0)
2020 			break;
2021 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
2022 			bit <<= 1;
2023 		} else {
2024 			map = *mapp++;
2025 			bit = 1;
2026 		}
2027 	}
2028 	forw = i - start;
2029 	/*
2030 	 * Find the size of the cluster going backward.
2031 	 */
2032 	start = blkno - 1;
2033 	end = start - fs->fs_contigsumsize;
2034 	if (end < 0)
2035 		end = -1;
2036 	mapp = &freemapp[start / NBBY];
2037 	map = *mapp--;
2038 	bit = 1 << (start % NBBY);
2039 	for (i = start; i > end; i--) {
2040 		if ((map & bit) == 0)
2041 			break;
2042 		if ((i & (NBBY - 1)) != 0) {
2043 			bit >>= 1;
2044 		} else {
2045 			map = *mapp--;
2046 			bit = 1 << (NBBY - 1);
2047 		}
2048 	}
2049 	back = start - i;
2050 	/*
2051 	 * Account for old cluster and the possibly new forward and
2052 	 * back clusters.
2053 	 */
2054 	i = back + forw + 1;
2055 	if (i > fs->fs_contigsumsize)
2056 		i = fs->fs_contigsumsize;
2057 	sump[i] += cnt;
2058 	if (back > 0)
2059 		sump[back] -= cnt;
2060 	if (forw > 0)
2061 		sump[forw] -= cnt;
2062 	/*
2063 	 * Update cluster summary information.
2064 	 */
2065 	lp = &sump[fs->fs_contigsumsize];
2066 	for (i = fs->fs_contigsumsize; i > 0; i--)
2067 		if (*lp-- > 0)
2068 			break;
2069 	fs->fs_maxcluster[cgp->cg_cgx] = i;
2070 }
2071 
2072 /*
2073  * Fserr prints the name of a filesystem with an error diagnostic.
2074  *
2075  * The form of the error message is:
2076  *	fs: error message
2077  */
2078 static void
2079 ffs_fserr(fs, inum, cp)
2080 	struct fs *fs;
2081 	ino_t inum;
2082 	char *cp;
2083 {
2084 	struct proc *p = curproc;	/* XXX */
2085 
2086 	log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
2087 	    p ? p->p_pid : -1, p ? p->p_comm : "-",
2088 	    p ? p->p_ucred->cr_uid : 0, inum, fs->fs_fsmnt, cp);
2089 }
2090 
2091 /*
2092  * This function provides the capability for the fsck program to
2093  * update an active filesystem. Six operations are provided:
2094  *
2095  * adjrefcnt(inode, amt) - adjusts the reference count on the
2096  *	specified inode by the specified amount. Under normal
2097  *	operation the count should always go down. Decrementing
2098  *	the count to zero will cause the inode to be freed.
2099  * adjblkcnt(inode, amt) - adjust the number of blocks used to
2100  *	by the specifed amount.
2101  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2102  *	are marked as free. Inodes should never have to be marked
2103  *	as in use.
2104  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2105  *	are marked as free. Inodes should never have to be marked
2106  *	as in use.
2107  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2108  *	are marked as free. Blocks should never have to be marked
2109  *	as in use.
2110  * setflags(flags, set/clear) - the fs_flags field has the specified
2111  *	flags set (second parameter +1) or cleared (second parameter -1).
2112  */
2113 
2114 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2115 
2116 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2117 	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2118 
2119 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2120 	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2121 
2122 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2123 	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2124 
2125 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2126 	sysctl_ffs_fsck, "Free Range of File Inodes");
2127 
2128 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2129 	sysctl_ffs_fsck, "Free Range of Blocks");
2130 
2131 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2132 	sysctl_ffs_fsck, "Change Filesystem Flags");
2133 
2134 #ifdef DEBUG
2135 static int fsckcmds = 0;
2136 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2137 #endif /* DEBUG */
2138 
2139 static int
2140 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2141 {
2142 	struct fsck_cmd cmd;
2143 	struct ufsmount *ump;
2144 	struct vnode *vp;
2145 	struct inode *ip;
2146 	struct mount *mp;
2147 	struct fs *fs;
2148 	ufs2_daddr_t blkno;
2149 	long blkcnt, blksize;
2150 	struct file *fp;
2151 	int filetype, error;
2152 
2153 	if (req->newlen > sizeof cmd)
2154 		return (EBADRPC);
2155 	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2156 		return (error);
2157 	if (cmd.version != FFS_CMD_VERSION)
2158 		return (ERPCMISMATCH);
2159 	if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
2160 		return (error);
2161 	vn_start_write((struct vnode *)fp->f_data, &mp, V_WAIT);
2162 	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2163 		vn_finished_write(mp);
2164 		fdrop(fp, curthread);
2165 		return (EINVAL);
2166 	}
2167 	if (mp->mnt_flag & MNT_RDONLY) {
2168 		vn_finished_write(mp);
2169 		fdrop(fp, curthread);
2170 		return (EROFS);
2171 	}
2172 	ump = VFSTOUFS(mp);
2173 	fs = ump->um_fs;
2174 	filetype = IFREG;
2175 
2176 	switch (oidp->oid_number) {
2177 
2178 	case FFS_SET_FLAGS:
2179 #ifdef DEBUG
2180 		if (fsckcmds)
2181 			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2182 			    cmd.size > 0 ? "set" : "clear");
2183 #endif /* DEBUG */
2184 		if (cmd.size > 0)
2185 			fs->fs_flags |= (long)cmd.value;
2186 		else
2187 			fs->fs_flags &= ~(long)cmd.value;
2188 		break;
2189 
2190 	case FFS_ADJ_REFCNT:
2191 #ifdef DEBUG
2192 		if (fsckcmds) {
2193 			printf("%s: adjust inode %d count by %ld\n",
2194 			    mp->mnt_stat.f_mntonname, (ino_t)cmd.value,
2195 			    cmd.size);
2196 		}
2197 #endif /* DEBUG */
2198 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2199 			break;
2200 		ip = VTOI(vp);
2201 		ip->i_nlink += cmd.size;
2202 		DIP(ip, i_nlink) = ip->i_nlink;
2203 		ip->i_effnlink += cmd.size;
2204 		ip->i_flag |= IN_CHANGE;
2205 		if (DOINGSOFTDEP(vp))
2206 			softdep_change_linkcnt(ip);
2207 		vput(vp);
2208 		break;
2209 
2210 	case FFS_ADJ_BLKCNT:
2211 #ifdef DEBUG
2212 		if (fsckcmds) {
2213 			printf("%s: adjust inode %d block count by %ld\n",
2214 			    mp->mnt_stat.f_mntonname, (ino_t)cmd.value,
2215 			    cmd.size);
2216 		}
2217 #endif /* DEBUG */
2218 		if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2219 			break;
2220 		ip = VTOI(vp);
2221 		DIP(ip, i_blocks) += cmd.size;
2222 		ip->i_flag |= IN_CHANGE;
2223 		vput(vp);
2224 		break;
2225 
2226 	case FFS_DIR_FREE:
2227 		filetype = IFDIR;
2228 		/* fall through */
2229 
2230 	case FFS_FILE_FREE:
2231 #ifdef DEBUG
2232 		if (fsckcmds) {
2233 			if (cmd.size == 1)
2234 				printf("%s: free %s inode %d\n",
2235 				    mp->mnt_stat.f_mntonname,
2236 				    filetype == IFDIR ? "directory" : "file",
2237 				    (ino_t)cmd.value);
2238 			else
2239 				printf("%s: free %s inodes %d-%d\n",
2240 				    mp->mnt_stat.f_mntonname,
2241 				    filetype == IFDIR ? "directory" : "file",
2242 				    (ino_t)cmd.value,
2243 				    (ino_t)(cmd.value + cmd.size - 1));
2244 		}
2245 #endif /* DEBUG */
2246 		while (cmd.size > 0) {
2247 			if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value,
2248 			    filetype)))
2249 				break;
2250 			cmd.size -= 1;
2251 			cmd.value += 1;
2252 		}
2253 		break;
2254 
2255 	case FFS_BLK_FREE:
2256 #ifdef DEBUG
2257 		if (fsckcmds) {
2258 			if (cmd.size == 1)
2259 				printf("%s: free block %lld\n",
2260 				    mp->mnt_stat.f_mntonname,
2261 				    (intmax_t)cmd.value);
2262 			else
2263 				printf("%s: free blocks %lld-%lld\n",
2264 				    mp->mnt_stat.f_mntonname,
2265 				    (intmax_t)cmd.value,
2266 				    (intmax_t)cmd.value + cmd.size - 1);
2267 		}
2268 #endif /* DEBUG */
2269 		blkno = cmd.value;
2270 		blkcnt = cmd.size;
2271 		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2272 		while (blkcnt > 0) {
2273 			if (blksize > blkcnt)
2274 				blksize = blkcnt;
2275 			ffs_blkfree(fs, ump->um_devvp, blkno,
2276 			    blksize * fs->fs_fsize, ROOTINO);
2277 			blkno += blksize;
2278 			blkcnt -= blksize;
2279 			blksize = fs->fs_frag;
2280 		}
2281 		break;
2282 
2283 	default:
2284 #ifdef DEBUG
2285 		if (fsckcmds) {
2286 			printf("Invalid request %d from fsck\n",
2287 			    oidp->oid_number);
2288 		}
2289 #endif /* DEBUG */
2290 		error = EINVAL;
2291 		break;
2292 
2293 	}
2294 	fdrop(fp, curthread);
2295 	vn_finished_write(mp);
2296 	return (error);
2297 }
2298