1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Copyright (c) 1982, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * (c) UNIX System Laboratories, Inc. 14 * Copyright (c) 1982, 1986, 1989, 1993 15 * The Regents of the University of California. All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions 19 * are met: 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 3. All advertising materials mentioning features or use of this software 26 * must display the following acknowledgement: 27 * This product includes software developed by the University of 28 * California, Berkeley and its contributors. 29 * 4. Neither the name of the University nor the names of its contributors 30 * may be used to endorse or promote products derived from this software 31 * without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 43 * SUCH DAMAGE. 44 * 45 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 46 * $FreeBSD$ 47 */ 48 49 #include "opt_quota.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/bio.h> 54 #include <sys/buf.h> 55 #include <sys/conf.h> 56 #include <sys/file.h> 57 #include <sys/proc.h> 58 #include <sys/vnode.h> 59 #include <sys/mount.h> 60 #include <sys/kernel.h> 61 #include <sys/stdint.h> 62 #include <sys/sysctl.h> 63 #include <sys/syslog.h> 64 65 #include <ufs/ufs/extattr.h> 66 #include <ufs/ufs/quota.h> 67 #include <ufs/ufs/inode.h> 68 #include <ufs/ufs/ufs_extern.h> 69 #include <ufs/ufs/ufsmount.h> 70 71 #include <ufs/ffs/fs.h> 72 #include <ufs/ffs/ffs_extern.h> 73 74 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref, 75 int size); 76 77 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int); 78 static ufs2_daddr_t 79 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t); 80 #ifdef DIAGNOSTIC 81 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 82 #endif 83 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int); 84 static ino_t ffs_dirpref(struct inode *); 85 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int); 86 static void ffs_fserr(struct fs *, ino_t, char *); 87 static ufs2_daddr_t ffs_hashalloc 88 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *); 89 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int); 90 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 91 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 92 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 93 94 /* 95 * Allocate a block in the filesystem. 96 * 97 * The size of the requested block is given, which must be some 98 * multiple of fs_fsize and <= fs_bsize. 99 * A preference may be optionally specified. If a preference is given 100 * the following hierarchy is used to allocate a block: 101 * 1) allocate the requested block. 102 * 2) allocate a rotationally optimal block in the same cylinder. 103 * 3) allocate a block in the same cylinder group. 104 * 4) quadradically rehash into other cylinder groups, until an 105 * available block is located. 106 * If no block preference is given the following heirarchy is used 107 * to allocate a block: 108 * 1) allocate a block in the cylinder group that contains the 109 * inode for the file. 110 * 2) quadradically rehash into other cylinder groups, until an 111 * available block is located. 112 */ 113 int 114 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 115 struct inode *ip; 116 ufs2_daddr_t lbn, bpref; 117 int size; 118 struct ucred *cred; 119 ufs2_daddr_t *bnp; 120 { 121 struct fs *fs; 122 ufs2_daddr_t bno; 123 int cg, reclaimed; 124 #ifdef QUOTA 125 int error; 126 #endif 127 128 *bnp = 0; 129 fs = ip->i_fs; 130 #ifdef DIAGNOSTIC 131 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 132 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 133 devtoname(ip->i_dev), (long)fs->fs_bsize, size, 134 fs->fs_fsmnt); 135 panic("ffs_alloc: bad size"); 136 } 137 if (cred == NOCRED) 138 panic("ffs_alloc: missing credential"); 139 #endif /* DIAGNOSTIC */ 140 reclaimed = 0; 141 retry: 142 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 143 goto nospace; 144 if (suser_cred(cred, PRISON_ROOT) && 145 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 146 goto nospace; 147 #ifdef QUOTA 148 error = chkdq(ip, btodb(size), cred, 0); 149 if (error) 150 return (error); 151 #endif 152 if (bpref >= fs->fs_size) 153 bpref = 0; 154 if (bpref == 0) 155 cg = ino_to_cg(fs, ip->i_number); 156 else 157 cg = dtog(fs, bpref); 158 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 159 if (bno > 0) { 160 DIP(ip, i_blocks) += btodb(size); 161 ip->i_flag |= IN_CHANGE | IN_UPDATE; 162 *bnp = bno; 163 return (0); 164 } 165 #ifdef QUOTA 166 /* 167 * Restore user's disk quota because allocation failed. 168 */ 169 (void) chkdq(ip, -btodb(size), cred, FORCE); 170 #endif 171 nospace: 172 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 173 reclaimed = 1; 174 softdep_request_cleanup(fs, ITOV(ip)); 175 goto retry; 176 } 177 ffs_fserr(fs, ip->i_number, "filesystem full"); 178 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); 179 return (ENOSPC); 180 } 181 182 /* 183 * Reallocate a fragment to a bigger size 184 * 185 * The number and size of the old block is given, and a preference 186 * and new size is also specified. The allocator attempts to extend 187 * the original block. Failing that, the regular block allocator is 188 * invoked to get an appropriate block. 189 */ 190 int 191 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp) 192 struct inode *ip; 193 ufs2_daddr_t lbprev; 194 ufs2_daddr_t bpref; 195 int osize, nsize; 196 struct ucred *cred; 197 struct buf **bpp; 198 { 199 struct vnode *vp; 200 struct fs *fs; 201 struct buf *bp; 202 int cg, request, error, reclaimed; 203 ufs2_daddr_t bprev, bno; 204 205 *bpp = 0; 206 vp = ITOV(ip); 207 fs = ip->i_fs; 208 #ifdef DIAGNOSTIC 209 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 210 panic("ffs_realloccg: allocation on suspended filesystem"); 211 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 212 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 213 printf( 214 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 215 devtoname(ip->i_dev), (long)fs->fs_bsize, osize, 216 nsize, fs->fs_fsmnt); 217 panic("ffs_realloccg: bad size"); 218 } 219 if (cred == NOCRED) 220 panic("ffs_realloccg: missing credential"); 221 #endif /* DIAGNOSTIC */ 222 reclaimed = 0; 223 retry: 224 if (suser_cred(cred, PRISON_ROOT) && 225 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) 226 goto nospace; 227 if ((bprev = DIP(ip, i_db[lbprev])) == 0) { 228 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 229 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev, 230 fs->fs_fsmnt); 231 panic("ffs_realloccg: bad bprev"); 232 } 233 /* 234 * Allocate the extra space in the buffer. 235 */ 236 error = bread(vp, lbprev, osize, NOCRED, &bp); 237 if (error) { 238 brelse(bp); 239 return (error); 240 } 241 242 if (bp->b_blkno == bp->b_lblkno) { 243 if (lbprev >= NDADDR) 244 panic("ffs_realloccg: lbprev out of range"); 245 bp->b_blkno = fsbtodb(fs, bprev); 246 } 247 248 #ifdef QUOTA 249 error = chkdq(ip, btodb(nsize - osize), cred, 0); 250 if (error) { 251 brelse(bp); 252 return (error); 253 } 254 #endif 255 /* 256 * Check for extension in the existing location. 257 */ 258 cg = dtog(fs, bprev); 259 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 260 if (bno) { 261 if (bp->b_blkno != fsbtodb(fs, bno)) 262 panic("ffs_realloccg: bad blockno"); 263 DIP(ip, i_blocks) += btodb(nsize - osize); 264 ip->i_flag |= IN_CHANGE | IN_UPDATE; 265 allocbuf(bp, nsize); 266 bp->b_flags |= B_DONE; 267 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 268 *bpp = bp; 269 return (0); 270 } 271 /* 272 * Allocate a new disk location. 273 */ 274 if (bpref >= fs->fs_size) 275 bpref = 0; 276 switch ((int)fs->fs_optim) { 277 case FS_OPTSPACE: 278 /* 279 * Allocate an exact sized fragment. Although this makes 280 * best use of space, we will waste time relocating it if 281 * the file continues to grow. If the fragmentation is 282 * less than half of the minimum free reserve, we choose 283 * to begin optimizing for time. 284 */ 285 request = nsize; 286 if (fs->fs_minfree <= 5 || 287 fs->fs_cstotal.cs_nffree > 288 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 289 break; 290 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 291 fs->fs_fsmnt); 292 fs->fs_optim = FS_OPTTIME; 293 break; 294 case FS_OPTTIME: 295 /* 296 * At this point we have discovered a file that is trying to 297 * grow a small fragment to a larger fragment. To save time, 298 * we allocate a full sized block, then free the unused portion. 299 * If the file continues to grow, the `ffs_fragextend' call 300 * above will be able to grow it in place without further 301 * copying. If aberrant programs cause disk fragmentation to 302 * grow within 2% of the free reserve, we choose to begin 303 * optimizing for space. 304 */ 305 request = fs->fs_bsize; 306 if (fs->fs_cstotal.cs_nffree < 307 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 308 break; 309 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 310 fs->fs_fsmnt); 311 fs->fs_optim = FS_OPTSPACE; 312 break; 313 default: 314 printf("dev = %s, optim = %ld, fs = %s\n", 315 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt); 316 panic("ffs_realloccg: bad optim"); 317 /* NOTREACHED */ 318 } 319 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 320 if (bno > 0) { 321 bp->b_blkno = fsbtodb(fs, bno); 322 if (!DOINGSOFTDEP(vp)) 323 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize, 324 ip->i_number); 325 if (nsize < request) 326 ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize), 327 (long)(request - nsize), ip->i_number); 328 DIP(ip, i_blocks) += btodb(nsize - osize); 329 ip->i_flag |= IN_CHANGE | IN_UPDATE; 330 allocbuf(bp, nsize); 331 bp->b_flags |= B_DONE; 332 bzero((char *)bp->b_data + osize, (u_int)nsize - osize); 333 *bpp = bp; 334 return (0); 335 } 336 #ifdef QUOTA 337 /* 338 * Restore user's disk quota because allocation failed. 339 */ 340 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 341 #endif 342 brelse(bp); 343 nospace: 344 /* 345 * no space available 346 */ 347 if (fs->fs_pendingblocks > 0 && reclaimed == 0) { 348 reclaimed = 1; 349 softdep_request_cleanup(fs, vp); 350 goto retry; 351 } 352 ffs_fserr(fs, ip->i_number, "filesystem full"); 353 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt); 354 return (ENOSPC); 355 } 356 357 /* 358 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 359 * 360 * The vnode and an array of buffer pointers for a range of sequential 361 * logical blocks to be made contiguous is given. The allocator attempts 362 * to find a range of sequential blocks starting as close as possible 363 * from the end of the allocation for the logical block immediately 364 * preceding the current range. If successful, the physical block numbers 365 * in the buffer pointers and in the inode are changed to reflect the new 366 * allocation. If unsuccessful, the allocation is left unchanged. The 367 * success in doing the reallocation is returned. Note that the error 368 * return is not reflected back to the user. Rather the previous block 369 * allocation will be used. 370 */ 371 372 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 373 374 static int doasyncfree = 1; 375 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, ""); 376 377 static int doreallocblks = 1; 378 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 379 380 #ifdef DEBUG 381 static volatile int prtrealloc = 0; 382 #endif 383 384 int 385 ffs_reallocblks(ap) 386 struct vop_reallocblks_args /* { 387 struct vnode *a_vp; 388 struct cluster_save *a_buflist; 389 } */ *ap; 390 { 391 392 if (doreallocblks == 0) 393 return (ENOSPC); 394 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1) 395 return (ffs_reallocblks_ufs1(ap)); 396 return (ffs_reallocblks_ufs2(ap)); 397 } 398 399 static int 400 ffs_reallocblks_ufs1(ap) 401 struct vop_reallocblks_args /* { 402 struct vnode *a_vp; 403 struct cluster_save *a_buflist; 404 } */ *ap; 405 { 406 struct fs *fs; 407 struct inode *ip; 408 struct vnode *vp; 409 struct buf *sbp, *ebp; 410 ufs1_daddr_t *bap, *sbap, *ebap = 0; 411 struct cluster_save *buflist; 412 ufs_lbn_t start_lbn, end_lbn; 413 ufs1_daddr_t soff, newblk, blkno; 414 ufs2_daddr_t pref; 415 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 416 int i, len, start_lvl, end_lvl, ssize; 417 418 vp = ap->a_vp; 419 ip = VTOI(vp); 420 fs = ip->i_fs; 421 if (fs->fs_contigsumsize <= 0) 422 return (ENOSPC); 423 buflist = ap->a_buflist; 424 len = buflist->bs_nchildren; 425 start_lbn = buflist->bs_children[0]->b_lblkno; 426 end_lbn = start_lbn + len - 1; 427 #ifdef DIAGNOSTIC 428 for (i = 0; i < len; i++) 429 if (!ffs_checkblk(ip, 430 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 431 panic("ffs_reallocblks: unallocated block 1"); 432 for (i = 1; i < len; i++) 433 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 434 panic("ffs_reallocblks: non-logical cluster"); 435 blkno = buflist->bs_children[0]->b_blkno; 436 ssize = fsbtodb(fs, fs->fs_frag); 437 for (i = 1; i < len - 1; i++) 438 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 439 panic("ffs_reallocblks: non-physical cluster %d", i); 440 #endif 441 /* 442 * If the latest allocation is in a new cylinder group, assume that 443 * the filesystem has decided to move and do not force it back to 444 * the previous cylinder group. 445 */ 446 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 447 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 448 return (ENOSPC); 449 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 450 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 451 return (ENOSPC); 452 /* 453 * Get the starting offset and block map for the first block. 454 */ 455 if (start_lvl == 0) { 456 sbap = &ip->i_din1->di_db[0]; 457 soff = start_lbn; 458 } else { 459 idp = &start_ap[start_lvl - 1]; 460 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 461 brelse(sbp); 462 return (ENOSPC); 463 } 464 sbap = (ufs1_daddr_t *)sbp->b_data; 465 soff = idp->in_off; 466 } 467 /* 468 * Find the preferred location for the cluster. 469 */ 470 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 471 /* 472 * If the block range spans two block maps, get the second map. 473 */ 474 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 475 ssize = len; 476 } else { 477 #ifdef DIAGNOSTIC 478 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 479 panic("ffs_reallocblk: start == end"); 480 #endif 481 ssize = len - (idp->in_off + 1); 482 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 483 goto fail; 484 ebap = (ufs1_daddr_t *)ebp->b_data; 485 } 486 /* 487 * Search the block map looking for an allocation of the desired size. 488 */ 489 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 490 len, ffs_clusteralloc)) == 0) 491 goto fail; 492 /* 493 * We have found a new contiguous block. 494 * 495 * First we have to replace the old block pointers with the new 496 * block pointers in the inode and indirect blocks associated 497 * with the file. 498 */ 499 #ifdef DEBUG 500 if (prtrealloc) 501 printf("realloc: ino %d, lbns %lld-%lld\n\told:", ip->i_number, 502 (intmax_t)start_lbn, (intmax_t)end_lbn); 503 #endif 504 blkno = newblk; 505 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 506 if (i == ssize) { 507 bap = ebap; 508 soff = -i; 509 } 510 #ifdef DIAGNOSTIC 511 if (!ffs_checkblk(ip, 512 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 513 panic("ffs_reallocblks: unallocated block 2"); 514 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 515 panic("ffs_reallocblks: alloc mismatch"); 516 #endif 517 #ifdef DEBUG 518 if (prtrealloc) 519 printf(" %d,", *bap); 520 #endif 521 if (DOINGSOFTDEP(vp)) { 522 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 523 softdep_setup_allocdirect(ip, start_lbn + i, 524 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 525 buflist->bs_children[i]); 526 else 527 softdep_setup_allocindir_page(ip, start_lbn + i, 528 i < ssize ? sbp : ebp, soff + i, blkno, 529 *bap, buflist->bs_children[i]); 530 } 531 *bap++ = blkno; 532 } 533 /* 534 * Next we must write out the modified inode and indirect blocks. 535 * For strict correctness, the writes should be synchronous since 536 * the old block values may have been written to disk. In practise 537 * they are almost never written, but if we are concerned about 538 * strict correctness, the `doasyncfree' flag should be set to zero. 539 * 540 * The test on `doasyncfree' should be changed to test a flag 541 * that shows whether the associated buffers and inodes have 542 * been written. The flag should be set when the cluster is 543 * started and cleared whenever the buffer or inode is flushed. 544 * We can then check below to see if it is set, and do the 545 * synchronous write only when it has been cleared. 546 */ 547 if (sbap != &ip->i_din1->di_db[0]) { 548 if (doasyncfree) 549 bdwrite(sbp); 550 else 551 bwrite(sbp); 552 } else { 553 ip->i_flag |= IN_CHANGE | IN_UPDATE; 554 if (!doasyncfree) 555 UFS_UPDATE(vp, 1); 556 } 557 if (ssize < len) { 558 if (doasyncfree) 559 bdwrite(ebp); 560 else 561 bwrite(ebp); 562 } 563 /* 564 * Last, free the old blocks and assign the new blocks to the buffers. 565 */ 566 #ifdef DEBUG 567 if (prtrealloc) 568 printf("\n\tnew:"); 569 #endif 570 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 571 if (!DOINGSOFTDEP(vp)) 572 ffs_blkfree(fs, ip->i_devvp, 573 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 574 fs->fs_bsize, ip->i_number); 575 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 576 #ifdef DIAGNOSTIC 577 if (!ffs_checkblk(ip, 578 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 579 panic("ffs_reallocblks: unallocated block 3"); 580 #endif 581 #ifdef DEBUG 582 if (prtrealloc) 583 printf(" %d,", blkno); 584 #endif 585 } 586 #ifdef DEBUG 587 if (prtrealloc) { 588 prtrealloc--; 589 printf("\n"); 590 } 591 #endif 592 return (0); 593 594 fail: 595 if (ssize < len) 596 brelse(ebp); 597 if (sbap != &ip->i_din1->di_db[0]) 598 brelse(sbp); 599 return (ENOSPC); 600 } 601 602 static int 603 ffs_reallocblks_ufs2(ap) 604 struct vop_reallocblks_args /* { 605 struct vnode *a_vp; 606 struct cluster_save *a_buflist; 607 } */ *ap; 608 { 609 struct fs *fs; 610 struct inode *ip; 611 struct vnode *vp; 612 struct buf *sbp, *ebp; 613 ufs2_daddr_t *bap, *sbap, *ebap = 0; 614 struct cluster_save *buflist; 615 ufs_lbn_t start_lbn, end_lbn; 616 ufs2_daddr_t soff, newblk, blkno, pref; 617 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 618 int i, len, start_lvl, end_lvl, ssize; 619 620 vp = ap->a_vp; 621 ip = VTOI(vp); 622 fs = ip->i_fs; 623 if (fs->fs_contigsumsize <= 0) 624 return (ENOSPC); 625 buflist = ap->a_buflist; 626 len = buflist->bs_nchildren; 627 start_lbn = buflist->bs_children[0]->b_lblkno; 628 end_lbn = start_lbn + len - 1; 629 #ifdef DIAGNOSTIC 630 for (i = 0; i < len; i++) 631 if (!ffs_checkblk(ip, 632 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 633 panic("ffs_reallocblks: unallocated block 1"); 634 for (i = 1; i < len; i++) 635 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 636 panic("ffs_reallocblks: non-logical cluster"); 637 blkno = buflist->bs_children[0]->b_blkno; 638 ssize = fsbtodb(fs, fs->fs_frag); 639 for (i = 1; i < len - 1; i++) 640 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 641 panic("ffs_reallocblks: non-physical cluster %d", i); 642 #endif 643 /* 644 * If the latest allocation is in a new cylinder group, assume that 645 * the filesystem has decided to move and do not force it back to 646 * the previous cylinder group. 647 */ 648 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 649 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 650 return (ENOSPC); 651 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 652 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 653 return (ENOSPC); 654 /* 655 * Get the starting offset and block map for the first block. 656 */ 657 if (start_lvl == 0) { 658 sbap = &ip->i_din2->di_db[0]; 659 soff = start_lbn; 660 } else { 661 idp = &start_ap[start_lvl - 1]; 662 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 663 brelse(sbp); 664 return (ENOSPC); 665 } 666 sbap = (ufs2_daddr_t *)sbp->b_data; 667 soff = idp->in_off; 668 } 669 /* 670 * Find the preferred location for the cluster. 671 */ 672 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 673 /* 674 * If the block range spans two block maps, get the second map. 675 */ 676 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 677 ssize = len; 678 } else { 679 #ifdef DIAGNOSTIC 680 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 681 panic("ffs_reallocblk: start == end"); 682 #endif 683 ssize = len - (idp->in_off + 1); 684 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 685 goto fail; 686 ebap = (ufs2_daddr_t *)ebp->b_data; 687 } 688 /* 689 * Search the block map looking for an allocation of the desired size. 690 */ 691 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 692 len, ffs_clusteralloc)) == 0) 693 goto fail; 694 /* 695 * We have found a new contiguous block. 696 * 697 * First we have to replace the old block pointers with the new 698 * block pointers in the inode and indirect blocks associated 699 * with the file. 700 */ 701 #ifdef DEBUG 702 if (prtrealloc) 703 printf("realloc: ino %d, lbns %lld-%lld\n\told:", ip->i_number, 704 (intmax_t)start_lbn, (intmax_t)end_lbn); 705 #endif 706 blkno = newblk; 707 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 708 if (i == ssize) { 709 bap = ebap; 710 soff = -i; 711 } 712 #ifdef DIAGNOSTIC 713 if (!ffs_checkblk(ip, 714 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 715 panic("ffs_reallocblks: unallocated block 2"); 716 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 717 panic("ffs_reallocblks: alloc mismatch"); 718 #endif 719 #ifdef DEBUG 720 if (prtrealloc) 721 printf(" %lld,", (intmax_t)*bap); 722 #endif 723 if (DOINGSOFTDEP(vp)) { 724 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 725 softdep_setup_allocdirect(ip, start_lbn + i, 726 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 727 buflist->bs_children[i]); 728 else 729 softdep_setup_allocindir_page(ip, start_lbn + i, 730 i < ssize ? sbp : ebp, soff + i, blkno, 731 *bap, buflist->bs_children[i]); 732 } 733 *bap++ = blkno; 734 } 735 /* 736 * Next we must write out the modified inode and indirect blocks. 737 * For strict correctness, the writes should be synchronous since 738 * the old block values may have been written to disk. In practise 739 * they are almost never written, but if we are concerned about 740 * strict correctness, the `doasyncfree' flag should be set to zero. 741 * 742 * The test on `doasyncfree' should be changed to test a flag 743 * that shows whether the associated buffers and inodes have 744 * been written. The flag should be set when the cluster is 745 * started and cleared whenever the buffer or inode is flushed. 746 * We can then check below to see if it is set, and do the 747 * synchronous write only when it has been cleared. 748 */ 749 if (sbap != &ip->i_din2->di_db[0]) { 750 if (doasyncfree) 751 bdwrite(sbp); 752 else 753 bwrite(sbp); 754 } else { 755 ip->i_flag |= IN_CHANGE | IN_UPDATE; 756 if (!doasyncfree) 757 UFS_UPDATE(vp, 1); 758 } 759 if (ssize < len) { 760 if (doasyncfree) 761 bdwrite(ebp); 762 else 763 bwrite(ebp); 764 } 765 /* 766 * Last, free the old blocks and assign the new blocks to the buffers. 767 */ 768 #ifdef DEBUG 769 if (prtrealloc) 770 printf("\n\tnew:"); 771 #endif 772 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 773 if (!DOINGSOFTDEP(vp)) 774 ffs_blkfree(fs, ip->i_devvp, 775 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 776 fs->fs_bsize, ip->i_number); 777 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 778 #ifdef DIAGNOSTIC 779 if (!ffs_checkblk(ip, 780 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 781 panic("ffs_reallocblks: unallocated block 3"); 782 #endif 783 #ifdef DEBUG 784 if (prtrealloc) 785 printf(" %d,", blkno); 786 #endif 787 } 788 #ifdef DEBUG 789 if (prtrealloc) { 790 prtrealloc--; 791 printf("\n"); 792 } 793 #endif 794 return (0); 795 796 fail: 797 if (ssize < len) 798 brelse(ebp); 799 if (sbap != &ip->i_din2->di_db[0]) 800 brelse(sbp); 801 return (ENOSPC); 802 } 803 804 /* 805 * Allocate an inode in the filesystem. 806 * 807 * If allocating a directory, use ffs_dirpref to select the inode. 808 * If allocating in a directory, the following hierarchy is followed: 809 * 1) allocate the preferred inode. 810 * 2) allocate an inode in the same cylinder group. 811 * 3) quadradically rehash into other cylinder groups, until an 812 * available inode is located. 813 * If no inode preference is given the following heirarchy is used 814 * to allocate an inode: 815 * 1) allocate an inode in cylinder group 0. 816 * 2) quadradically rehash into other cylinder groups, until an 817 * available inode is located. 818 */ 819 int 820 ffs_valloc(pvp, mode, cred, vpp) 821 struct vnode *pvp; 822 int mode; 823 struct ucred *cred; 824 struct vnode **vpp; 825 { 826 struct inode *pip; 827 struct fs *fs; 828 struct inode *ip; 829 struct timespec ts; 830 ino_t ino, ipref; 831 int cg, error; 832 833 *vpp = NULL; 834 pip = VTOI(pvp); 835 fs = pip->i_fs; 836 if (fs->fs_cstotal.cs_nifree == 0) 837 goto noinodes; 838 839 if ((mode & IFMT) == IFDIR) 840 ipref = ffs_dirpref(pip); 841 else 842 ipref = pip->i_number; 843 if (ipref >= fs->fs_ncg * fs->fs_ipg) 844 ipref = 0; 845 cg = ino_to_cg(fs, ipref); 846 /* 847 * Track number of dirs created one after another 848 * in a same cg without intervening by files. 849 */ 850 if ((mode & IFMT) == IFDIR) { 851 if (fs->fs_contigdirs[cg] < 255) 852 fs->fs_contigdirs[cg]++; 853 } else { 854 if (fs->fs_contigdirs[cg] > 0) 855 fs->fs_contigdirs[cg]--; 856 } 857 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 858 (allocfcn_t *)ffs_nodealloccg); 859 if (ino == 0) 860 goto noinodes; 861 error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 862 if (error) { 863 UFS_VFREE(pvp, ino, mode); 864 return (error); 865 } 866 ip = VTOI(*vpp); 867 if (ip->i_mode) { 868 printf("mode = 0%o, inum = %lu, fs = %s\n", 869 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt); 870 panic("ffs_valloc: dup alloc"); 871 } 872 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 873 printf("free inode %s/%lu had %ld blocks\n", 874 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 875 DIP(ip, i_blocks) = 0; 876 } 877 ip->i_flags = 0; 878 DIP(ip, i_flags) = 0; 879 /* 880 * Set up a new generation number for this inode. 881 */ 882 if (ip->i_gen == 0 || ++ip->i_gen == 0) 883 ip->i_gen = random() / 2 + 1; 884 DIP(ip, i_gen) = ip->i_gen; 885 if (fs->fs_magic == FS_UFS2_MAGIC) { 886 vfs_timestamp(&ts); 887 ip->i_din2->di_createtime = ts.tv_sec; 888 ip->i_din2->di_creatensec = ts.tv_nsec; 889 } 890 return (0); 891 noinodes: 892 ffs_fserr(fs, pip->i_number, "out of inodes"); 893 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 894 return (ENOSPC); 895 } 896 897 /* 898 * Find a cylinder group to place a directory. 899 * 900 * The policy implemented by this algorithm is to allocate a 901 * directory inode in the same cylinder group as its parent 902 * directory, but also to reserve space for its files inodes 903 * and data. Restrict the number of directories which may be 904 * allocated one after another in the same cylinder group 905 * without intervening allocation of files. 906 * 907 * If we allocate a first level directory then force allocation 908 * in another cylinder group. 909 */ 910 static ino_t 911 ffs_dirpref(pip) 912 struct inode *pip; 913 { 914 struct fs *fs; 915 int cg, prefcg, dirsize, cgsize; 916 int avgifree, avgbfree, avgndir, curdirsize; 917 int minifree, minbfree, maxndir; 918 int mincg, minndir; 919 int maxcontigdirs; 920 921 fs = pip->i_fs; 922 923 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 924 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 925 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 926 927 /* 928 * Force allocation in another cg if creating a first level dir. 929 */ 930 if (ITOV(pip)->v_flag & VROOT) { 931 prefcg = arc4random() % fs->fs_ncg; 932 mincg = prefcg; 933 minndir = fs->fs_ipg; 934 for (cg = prefcg; cg < fs->fs_ncg; cg++) 935 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 936 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 937 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 938 mincg = cg; 939 minndir = fs->fs_cs(fs, cg).cs_ndir; 940 } 941 for (cg = 0; cg < prefcg; cg++) 942 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 943 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 944 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 945 mincg = cg; 946 minndir = fs->fs_cs(fs, cg).cs_ndir; 947 } 948 return ((ino_t)(fs->fs_ipg * mincg)); 949 } 950 951 /* 952 * Count various limits which used for 953 * optimal allocation of a directory inode. 954 */ 955 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 956 minifree = avgifree - fs->fs_ipg / 4; 957 if (minifree < 0) 958 minifree = 0; 959 minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4; 960 if (minbfree < 0) 961 minbfree = 0; 962 cgsize = fs->fs_fsize * fs->fs_fpg; 963 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 964 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 965 if (dirsize < curdirsize) 966 dirsize = curdirsize; 967 maxcontigdirs = min(cgsize / dirsize, 255); 968 if (fs->fs_avgfpdir > 0) 969 maxcontigdirs = min(maxcontigdirs, 970 fs->fs_ipg / fs->fs_avgfpdir); 971 if (maxcontigdirs == 0) 972 maxcontigdirs = 1; 973 974 /* 975 * Limit number of dirs in one cg and reserve space for 976 * regular files, but only if we have no deficit in 977 * inodes or space. 978 */ 979 prefcg = ino_to_cg(fs, pip->i_number); 980 for (cg = prefcg; cg < fs->fs_ncg; cg++) 981 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 982 fs->fs_cs(fs, cg).cs_nifree >= minifree && 983 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 984 if (fs->fs_contigdirs[cg] < maxcontigdirs) 985 return ((ino_t)(fs->fs_ipg * cg)); 986 } 987 for (cg = 0; cg < prefcg; cg++) 988 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 989 fs->fs_cs(fs, cg).cs_nifree >= minifree && 990 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 991 if (fs->fs_contigdirs[cg] < maxcontigdirs) 992 return ((ino_t)(fs->fs_ipg * cg)); 993 } 994 /* 995 * This is a backstop when we have deficit in space. 996 */ 997 for (cg = prefcg; cg < fs->fs_ncg; cg++) 998 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 999 return ((ino_t)(fs->fs_ipg * cg)); 1000 for (cg = 0; cg < prefcg; cg++) 1001 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1002 break; 1003 return ((ino_t)(fs->fs_ipg * cg)); 1004 } 1005 1006 /* 1007 * Select the desired position for the next block in a file. The file is 1008 * logically divided into sections. The first section is composed of the 1009 * direct blocks. Each additional section contains fs_maxbpg blocks. 1010 * 1011 * If no blocks have been allocated in the first section, the policy is to 1012 * request a block in the same cylinder group as the inode that describes 1013 * the file. If no blocks have been allocated in any other section, the 1014 * policy is to place the section in a cylinder group with a greater than 1015 * average number of free blocks. An appropriate cylinder group is found 1016 * by using a rotor that sweeps the cylinder groups. When a new group of 1017 * blocks is needed, the sweep begins in the cylinder group following the 1018 * cylinder group from which the previous allocation was made. The sweep 1019 * continues until a cylinder group with greater than the average number 1020 * of free blocks is found. If the allocation is for the first block in an 1021 * indirect block, the information on the previous allocation is unavailable; 1022 * here a best guess is made based upon the logical block number being 1023 * allocated. 1024 * 1025 * If a section is already partially allocated, the policy is to 1026 * contiguously allocate fs_maxcontig blocks. The end of one of these 1027 * contiguous blocks and the beginning of the next is laid out 1028 * contiguously if possible. 1029 */ 1030 ufs2_daddr_t 1031 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1032 struct inode *ip; 1033 ufs_lbn_t lbn; 1034 int indx; 1035 ufs1_daddr_t *bap; 1036 { 1037 struct fs *fs; 1038 int cg; 1039 int avgbfree, startcg; 1040 1041 fs = ip->i_fs; 1042 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1043 if (lbn < NDADDR + NINDIR(fs)) { 1044 cg = ino_to_cg(fs, ip->i_number); 1045 return (fs->fs_fpg * cg + fs->fs_frag); 1046 } 1047 /* 1048 * Find a cylinder with greater than average number of 1049 * unused data blocks. 1050 */ 1051 if (indx == 0 || bap[indx - 1] == 0) 1052 startcg = 1053 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1054 else 1055 startcg = dtog(fs, bap[indx - 1]) + 1; 1056 startcg %= fs->fs_ncg; 1057 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1058 for (cg = startcg; cg < fs->fs_ncg; cg++) 1059 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1060 fs->fs_cgrotor = cg; 1061 return (fs->fs_fpg * cg + fs->fs_frag); 1062 } 1063 for (cg = 0; cg <= startcg; cg++) 1064 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1065 fs->fs_cgrotor = cg; 1066 return (fs->fs_fpg * cg + fs->fs_frag); 1067 } 1068 return (0); 1069 } 1070 /* 1071 * We just always try to lay things out contiguously. 1072 */ 1073 return (bap[indx - 1] + fs->fs_frag); 1074 } 1075 1076 /* 1077 * Same as above, but for UFS2 1078 */ 1079 ufs2_daddr_t 1080 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1081 struct inode *ip; 1082 ufs_lbn_t lbn; 1083 int indx; 1084 ufs2_daddr_t *bap; 1085 { 1086 struct fs *fs; 1087 int cg; 1088 int avgbfree, startcg; 1089 1090 fs = ip->i_fs; 1091 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1092 if (lbn < NDADDR + NINDIR(fs)) { 1093 cg = ino_to_cg(fs, ip->i_number); 1094 return (fs->fs_fpg * cg + fs->fs_frag); 1095 } 1096 /* 1097 * Find a cylinder with greater than average number of 1098 * unused data blocks. 1099 */ 1100 if (indx == 0 || bap[indx - 1] == 0) 1101 startcg = 1102 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; 1103 else 1104 startcg = dtog(fs, bap[indx - 1]) + 1; 1105 startcg %= fs->fs_ncg; 1106 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1107 for (cg = startcg; cg < fs->fs_ncg; cg++) 1108 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1109 fs->fs_cgrotor = cg; 1110 return (fs->fs_fpg * cg + fs->fs_frag); 1111 } 1112 for (cg = 0; cg <= startcg; cg++) 1113 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1114 fs->fs_cgrotor = cg; 1115 return (fs->fs_fpg * cg + fs->fs_frag); 1116 } 1117 return (0); 1118 } 1119 /* 1120 * We just always try to lay things out contiguously. 1121 */ 1122 return (bap[indx - 1] + fs->fs_frag); 1123 } 1124 1125 /* 1126 * Implement the cylinder overflow algorithm. 1127 * 1128 * The policy implemented by this algorithm is: 1129 * 1) allocate the block in its requested cylinder group. 1130 * 2) quadradically rehash on the cylinder group number. 1131 * 3) brute force search for a free block. 1132 */ 1133 /*VARARGS5*/ 1134 static ufs2_daddr_t 1135 ffs_hashalloc(ip, cg, pref, size, allocator) 1136 struct inode *ip; 1137 int cg; 1138 ufs2_daddr_t pref; 1139 int size; /* size for data blocks, mode for inodes */ 1140 allocfcn_t *allocator; 1141 { 1142 struct fs *fs; 1143 ufs2_daddr_t result; 1144 int i, icg = cg; 1145 1146 #ifdef DIAGNOSTIC 1147 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1148 panic("ffs_hashalloc: allocation on suspended filesystem"); 1149 #endif 1150 fs = ip->i_fs; 1151 /* 1152 * 1: preferred cylinder group 1153 */ 1154 result = (*allocator)(ip, cg, pref, size); 1155 if (result) 1156 return (result); 1157 /* 1158 * 2: quadratic rehash 1159 */ 1160 for (i = 1; i < fs->fs_ncg; i *= 2) { 1161 cg += i; 1162 if (cg >= fs->fs_ncg) 1163 cg -= fs->fs_ncg; 1164 result = (*allocator)(ip, cg, 0, size); 1165 if (result) 1166 return (result); 1167 } 1168 /* 1169 * 3: brute force search 1170 * Note that we start at i == 2, since 0 was checked initially, 1171 * and 1 is always checked in the quadratic rehash. 1172 */ 1173 cg = (icg + 2) % fs->fs_ncg; 1174 for (i = 2; i < fs->fs_ncg; i++) { 1175 result = (*allocator)(ip, cg, 0, size); 1176 if (result) 1177 return (result); 1178 cg++; 1179 if (cg == fs->fs_ncg) 1180 cg = 0; 1181 } 1182 return (0); 1183 } 1184 1185 /* 1186 * Determine whether a fragment can be extended. 1187 * 1188 * Check to see if the necessary fragments are available, and 1189 * if they are, allocate them. 1190 */ 1191 static ufs2_daddr_t 1192 ffs_fragextend(ip, cg, bprev, osize, nsize) 1193 struct inode *ip; 1194 int cg; 1195 ufs2_daddr_t bprev; 1196 int osize, nsize; 1197 { 1198 struct fs *fs; 1199 struct cg *cgp; 1200 struct buf *bp; 1201 long bno; 1202 int frags, bbase; 1203 int i, error; 1204 u_int8_t *blksfree; 1205 1206 fs = ip->i_fs; 1207 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1208 return (0); 1209 frags = numfrags(fs, nsize); 1210 bbase = fragnum(fs, bprev); 1211 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1212 /* cannot extend across a block boundary */ 1213 return (0); 1214 } 1215 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1216 (int)fs->fs_cgsize, NOCRED, &bp); 1217 if (error) { 1218 brelse(bp); 1219 return (0); 1220 } 1221 cgp = (struct cg *)bp->b_data; 1222 if (!cg_chkmagic(cgp)) { 1223 brelse(bp); 1224 return (0); 1225 } 1226 bp->b_xflags |= BX_BKGRDWRITE; 1227 cgp->cg_old_time = cgp->cg_time = time_second; 1228 bno = dtogd(fs, bprev); 1229 blksfree = cg_blksfree(cgp); 1230 for (i = numfrags(fs, osize); i < frags; i++) 1231 if (isclr(blksfree, bno + i)) { 1232 brelse(bp); 1233 return (0); 1234 } 1235 /* 1236 * the current fragment can be extended 1237 * deduct the count on fragment being extended into 1238 * increase the count on the remaining fragment (if any) 1239 * allocate the extended piece 1240 */ 1241 for (i = frags; i < fs->fs_frag - bbase; i++) 1242 if (isclr(blksfree, bno + i)) 1243 break; 1244 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1245 if (i != frags) 1246 cgp->cg_frsum[i - frags]++; 1247 for (i = numfrags(fs, osize); i < frags; i++) { 1248 clrbit(blksfree, bno + i); 1249 cgp->cg_cs.cs_nffree--; 1250 fs->fs_cstotal.cs_nffree--; 1251 fs->fs_cs(fs, cg).cs_nffree--; 1252 } 1253 fs->fs_fmod = 1; 1254 if (DOINGSOFTDEP(ITOV(ip))) 1255 softdep_setup_blkmapdep(bp, fs, bprev); 1256 if (fs->fs_active != 0) 1257 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1258 bdwrite(bp); 1259 return (bprev); 1260 } 1261 1262 /* 1263 * Determine whether a block can be allocated. 1264 * 1265 * Check to see if a block of the appropriate size is available, 1266 * and if it is, allocate it. 1267 */ 1268 static ufs2_daddr_t 1269 ffs_alloccg(ip, cg, bpref, size) 1270 struct inode *ip; 1271 int cg; 1272 ufs2_daddr_t bpref; 1273 int size; 1274 { 1275 struct fs *fs; 1276 struct cg *cgp; 1277 struct buf *bp; 1278 ufs1_daddr_t bno; 1279 ufs2_daddr_t blkno; 1280 int i, allocsiz, error, frags; 1281 u_int8_t *blksfree; 1282 1283 fs = ip->i_fs; 1284 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1285 return (0); 1286 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1287 (int)fs->fs_cgsize, NOCRED, &bp); 1288 if (error) { 1289 brelse(bp); 1290 return (0); 1291 } 1292 cgp = (struct cg *)bp->b_data; 1293 if (!cg_chkmagic(cgp) || 1294 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 1295 brelse(bp); 1296 return (0); 1297 } 1298 bp->b_xflags |= BX_BKGRDWRITE; 1299 cgp->cg_old_time = cgp->cg_time = time_second; 1300 if (size == fs->fs_bsize) { 1301 blkno = ffs_alloccgblk(ip, bp, bpref); 1302 if (fs->fs_active != 0) 1303 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1304 bdwrite(bp); 1305 return (blkno); 1306 } 1307 /* 1308 * check to see if any fragments are already available 1309 * allocsiz is the size which will be allocated, hacking 1310 * it down to a smaller size if necessary 1311 */ 1312 blksfree = cg_blksfree(cgp); 1313 frags = numfrags(fs, size); 1314 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1315 if (cgp->cg_frsum[allocsiz] != 0) 1316 break; 1317 if (allocsiz == fs->fs_frag) { 1318 /* 1319 * no fragments were available, so a block will be 1320 * allocated, and hacked up 1321 */ 1322 if (cgp->cg_cs.cs_nbfree == 0) { 1323 brelse(bp); 1324 return (0); 1325 } 1326 blkno = ffs_alloccgblk(ip, bp, bpref); 1327 bno = dtogd(fs, blkno); 1328 for (i = frags; i < fs->fs_frag; i++) 1329 setbit(blksfree, bno + i); 1330 i = fs->fs_frag - frags; 1331 cgp->cg_cs.cs_nffree += i; 1332 fs->fs_cstotal.cs_nffree += i; 1333 fs->fs_cs(fs, cg).cs_nffree += i; 1334 fs->fs_fmod = 1; 1335 cgp->cg_frsum[i]++; 1336 if (fs->fs_active != 0) 1337 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1338 bdwrite(bp); 1339 return (blkno); 1340 } 1341 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1342 if (bno < 0) { 1343 brelse(bp); 1344 return (0); 1345 } 1346 for (i = 0; i < frags; i++) 1347 clrbit(blksfree, bno + i); 1348 cgp->cg_cs.cs_nffree -= frags; 1349 fs->fs_cstotal.cs_nffree -= frags; 1350 fs->fs_cs(fs, cg).cs_nffree -= frags; 1351 fs->fs_fmod = 1; 1352 cgp->cg_frsum[allocsiz]--; 1353 if (frags != allocsiz) 1354 cgp->cg_frsum[allocsiz - frags]++; 1355 blkno = cg * fs->fs_fpg + bno; 1356 if (DOINGSOFTDEP(ITOV(ip))) 1357 softdep_setup_blkmapdep(bp, fs, blkno); 1358 if (fs->fs_active != 0) 1359 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1360 bdwrite(bp); 1361 return (blkno); 1362 } 1363 1364 /* 1365 * Allocate a block in a cylinder group. 1366 * 1367 * This algorithm implements the following policy: 1368 * 1) allocate the requested block. 1369 * 2) allocate a rotationally optimal block in the same cylinder. 1370 * 3) allocate the next available block on the block rotor for the 1371 * specified cylinder group. 1372 * Note that this routine only allocates fs_bsize blocks; these 1373 * blocks may be fragmented by the routine that allocates them. 1374 */ 1375 static ufs2_daddr_t 1376 ffs_alloccgblk(ip, bp, bpref) 1377 struct inode *ip; 1378 struct buf *bp; 1379 ufs2_daddr_t bpref; 1380 { 1381 struct fs *fs; 1382 struct cg *cgp; 1383 ufs1_daddr_t bno; 1384 ufs2_daddr_t blkno; 1385 u_int8_t *blksfree; 1386 1387 fs = ip->i_fs; 1388 cgp = (struct cg *)bp->b_data; 1389 blksfree = cg_blksfree(cgp); 1390 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { 1391 bpref = cgp->cg_rotor; 1392 } else { 1393 bpref = blknum(fs, bpref); 1394 bno = dtogd(fs, bpref); 1395 /* 1396 * if the requested block is available, use it 1397 */ 1398 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1399 goto gotit; 1400 } 1401 /* 1402 * Take the next available block in this cylinder group. 1403 */ 1404 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1405 if (bno < 0) 1406 return (0); 1407 cgp->cg_rotor = bno; 1408 gotit: 1409 blkno = fragstoblks(fs, bno); 1410 ffs_clrblock(fs, blksfree, (long)blkno); 1411 ffs_clusteracct(fs, cgp, blkno, -1); 1412 cgp->cg_cs.cs_nbfree--; 1413 fs->fs_cstotal.cs_nbfree--; 1414 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1415 fs->fs_fmod = 1; 1416 blkno = cgp->cg_cgx * fs->fs_fpg + bno; 1417 if (DOINGSOFTDEP(ITOV(ip))) 1418 softdep_setup_blkmapdep(bp, fs, blkno); 1419 return (blkno); 1420 } 1421 1422 /* 1423 * Determine whether a cluster can be allocated. 1424 * 1425 * We do not currently check for optimal rotational layout if there 1426 * are multiple choices in the same cylinder group. Instead we just 1427 * take the first one that we find following bpref. 1428 */ 1429 static ufs2_daddr_t 1430 ffs_clusteralloc(ip, cg, bpref, len) 1431 struct inode *ip; 1432 int cg; 1433 ufs2_daddr_t bpref; 1434 int len; 1435 { 1436 struct fs *fs; 1437 struct cg *cgp; 1438 struct buf *bp; 1439 int i, run, bit, map, got; 1440 ufs2_daddr_t bno; 1441 u_char *mapp; 1442 int32_t *lp; 1443 u_int8_t *blksfree; 1444 1445 fs = ip->i_fs; 1446 if (fs->fs_maxcluster[cg] < len) 1447 return (0); 1448 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, 1449 NOCRED, &bp)) 1450 goto fail; 1451 cgp = (struct cg *)bp->b_data; 1452 if (!cg_chkmagic(cgp)) 1453 goto fail; 1454 bp->b_xflags |= BX_BKGRDWRITE; 1455 /* 1456 * Check to see if a cluster of the needed size (or bigger) is 1457 * available in this cylinder group. 1458 */ 1459 lp = &cg_clustersum(cgp)[len]; 1460 for (i = len; i <= fs->fs_contigsumsize; i++) 1461 if (*lp++ > 0) 1462 break; 1463 if (i > fs->fs_contigsumsize) { 1464 /* 1465 * This is the first time looking for a cluster in this 1466 * cylinder group. Update the cluster summary information 1467 * to reflect the true maximum sized cluster so that 1468 * future cluster allocation requests can avoid reading 1469 * the cylinder group map only to find no clusters. 1470 */ 1471 lp = &cg_clustersum(cgp)[len - 1]; 1472 for (i = len - 1; i > 0; i--) 1473 if (*lp-- > 0) 1474 break; 1475 fs->fs_maxcluster[cg] = i; 1476 goto fail; 1477 } 1478 /* 1479 * Search the cluster map to find a big enough cluster. 1480 * We take the first one that we find, even if it is larger 1481 * than we need as we prefer to get one close to the previous 1482 * block allocation. We do not search before the current 1483 * preference point as we do not want to allocate a block 1484 * that is allocated before the previous one (as we will 1485 * then have to wait for another pass of the elevator 1486 * algorithm before it will be read). We prefer to fail and 1487 * be recalled to try an allocation in the next cylinder group. 1488 */ 1489 if (dtog(fs, bpref) != cg) 1490 bpref = 0; 1491 else 1492 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); 1493 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1494 map = *mapp++; 1495 bit = 1 << (bpref % NBBY); 1496 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1497 if ((map & bit) == 0) { 1498 run = 0; 1499 } else { 1500 run++; 1501 if (run == len) 1502 break; 1503 } 1504 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1505 bit <<= 1; 1506 } else { 1507 map = *mapp++; 1508 bit = 1; 1509 } 1510 } 1511 if (got >= cgp->cg_nclusterblks) 1512 goto fail; 1513 /* 1514 * Allocate the cluster that we have found. 1515 */ 1516 blksfree = cg_blksfree(cgp); 1517 for (i = 1; i <= len; i++) 1518 if (!ffs_isblock(fs, blksfree, got - run + i)) 1519 panic("ffs_clusteralloc: map mismatch"); 1520 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1); 1521 if (dtog(fs, bno) != cg) 1522 panic("ffs_clusteralloc: allocated out of group"); 1523 len = blkstofrags(fs, len); 1524 for (i = 0; i < len; i += fs->fs_frag) 1525 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1526 panic("ffs_clusteralloc: lost block"); 1527 if (fs->fs_active != 0) 1528 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1529 bdwrite(bp); 1530 return (bno); 1531 1532 fail: 1533 brelse(bp); 1534 return (0); 1535 } 1536 1537 /* 1538 * Determine whether an inode can be allocated. 1539 * 1540 * Check to see if an inode is available, and if it is, 1541 * allocate it using the following policy: 1542 * 1) allocate the requested inode. 1543 * 2) allocate the next available inode after the requested 1544 * inode in the specified cylinder group. 1545 */ 1546 static ufs2_daddr_t 1547 ffs_nodealloccg(ip, cg, ipref, mode) 1548 struct inode *ip; 1549 int cg; 1550 ufs2_daddr_t ipref; 1551 int mode; 1552 { 1553 struct fs *fs; 1554 struct cg *cgp; 1555 struct buf *bp, *ibp; 1556 u_int8_t *inosused; 1557 struct ufs2_dinode *dp2; 1558 int error, start, len, loc, map, i; 1559 1560 fs = ip->i_fs; 1561 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1562 return (0); 1563 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1564 (int)fs->fs_cgsize, NOCRED, &bp); 1565 if (error) { 1566 brelse(bp); 1567 return (0); 1568 } 1569 cgp = (struct cg *)bp->b_data; 1570 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 1571 brelse(bp); 1572 return (0); 1573 } 1574 bp->b_xflags |= BX_BKGRDWRITE; 1575 cgp->cg_old_time = cgp->cg_time = time_second; 1576 inosused = cg_inosused(cgp); 1577 if (ipref) { 1578 ipref %= fs->fs_ipg; 1579 if (isclr(inosused, ipref)) 1580 goto gotit; 1581 } 1582 start = cgp->cg_irotor / NBBY; 1583 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1584 loc = skpc(0xff, len, &inosused[start]); 1585 if (loc == 0) { 1586 len = start + 1; 1587 start = 0; 1588 loc = skpc(0xff, len, &inosused[0]); 1589 if (loc == 0) { 1590 printf("cg = %d, irotor = %ld, fs = %s\n", 1591 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 1592 panic("ffs_nodealloccg: map corrupted"); 1593 /* NOTREACHED */ 1594 } 1595 } 1596 i = start + len - loc; 1597 map = inosused[i]; 1598 ipref = i * NBBY; 1599 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1600 if ((map & i) == 0) { 1601 cgp->cg_irotor = ipref; 1602 goto gotit; 1603 } 1604 } 1605 printf("fs = %s\n", fs->fs_fsmnt); 1606 panic("ffs_nodealloccg: block not in map"); 1607 /* NOTREACHED */ 1608 gotit: 1609 if (DOINGSOFTDEP(ITOV(ip))) 1610 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1611 setbit(inosused, ipref); 1612 cgp->cg_cs.cs_nifree--; 1613 fs->fs_cstotal.cs_nifree--; 1614 fs->fs_cs(fs, cg).cs_nifree--; 1615 fs->fs_fmod = 1; 1616 if ((mode & IFMT) == IFDIR) { 1617 cgp->cg_cs.cs_ndir++; 1618 fs->fs_cstotal.cs_ndir++; 1619 fs->fs_cs(fs, cg).cs_ndir++; 1620 } 1621 /* 1622 * Check to see if we need to initialize more inodes. 1623 */ 1624 if (fs->fs_magic == FS_UFS2_MAGIC && 1625 ipref + INOPB(fs) > cgp->cg_initediblk && 1626 cgp->cg_initediblk < cgp->cg_niblk) { 1627 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1628 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1629 (int)fs->fs_bsize, 0, 0); 1630 bzero(ibp->b_data, (int)fs->fs_bsize); 1631 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1632 for (i = 0; i < INOPB(fs); i++) { 1633 dp2->di_gen = random() / 2 + 1; 1634 dp2++; 1635 } 1636 bawrite(ibp); 1637 cgp->cg_initediblk += INOPB(fs); 1638 } 1639 if (fs->fs_active != 0) 1640 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1641 bdwrite(bp); 1642 return (cg * fs->fs_ipg + ipref); 1643 } 1644 1645 /* 1646 * Free a block or fragment. 1647 * 1648 * The specified block or fragment is placed back in the 1649 * free map. If a fragment is deallocated, a possible 1650 * block reassembly is checked. 1651 */ 1652 void 1653 ffs_blkfree(fs, devvp, bno, size, inum) 1654 struct fs *fs; 1655 struct vnode *devvp; 1656 ufs2_daddr_t bno; 1657 long size; 1658 ino_t inum; 1659 { 1660 struct cg *cgp; 1661 struct buf *bp; 1662 ufs1_daddr_t fragno, cgbno; 1663 ufs2_daddr_t cgblkno; 1664 int i, error, cg, blk, frags, bbase; 1665 u_int8_t *blksfree; 1666 dev_t dev; 1667 1668 cg = dtog(fs, bno); 1669 if (devvp->v_type != VCHR) { 1670 /* devvp is a snapshot */ 1671 dev = VTOI(devvp)->i_devvp->v_rdev; 1672 cgblkno = fragstoblks(fs, cgtod(fs, cg)); 1673 } else { 1674 /* devvp is a normal disk device */ 1675 dev = devvp->v_rdev; 1676 cgblkno = fsbtodb(fs, cgtod(fs, cg)); 1677 if ((devvp->v_flag & VCOPYONWRITE) && 1678 ffs_snapblkfree(fs, devvp, bno, size, inum)) 1679 return; 1680 VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size); 1681 } 1682 #ifdef DIAGNOSTIC 1683 if (dev->si_mountpoint && 1684 (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED)) 1685 panic("ffs_blkfree: deallocation on suspended filesystem"); 1686 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1687 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1688 printf("dev=%s, bno = %lld, bsize = %ld, size = %ld, fs = %s\n", 1689 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 1690 size, fs->fs_fsmnt); 1691 panic("ffs_blkfree: bad size"); 1692 } 1693 #endif 1694 if ((u_int)bno >= fs->fs_size) { 1695 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 1696 (u_long)inum); 1697 ffs_fserr(fs, inum, "bad block"); 1698 return; 1699 } 1700 if ((error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp))) { 1701 brelse(bp); 1702 return; 1703 } 1704 cgp = (struct cg *)bp->b_data; 1705 if (!cg_chkmagic(cgp)) { 1706 brelse(bp); 1707 return; 1708 } 1709 bp->b_xflags |= BX_BKGRDWRITE; 1710 cgp->cg_old_time = cgp->cg_time = time_second; 1711 cgbno = dtogd(fs, bno); 1712 blksfree = cg_blksfree(cgp); 1713 if (size == fs->fs_bsize) { 1714 fragno = fragstoblks(fs, cgbno); 1715 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 1716 if (devvp->v_type != VCHR) { 1717 /* devvp is a snapshot */ 1718 brelse(bp); 1719 return; 1720 } 1721 printf("dev = %s, block = %jd, fs = %s\n", 1722 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 1723 panic("ffs_blkfree: freeing free block"); 1724 } 1725 ffs_setblock(fs, blksfree, fragno); 1726 ffs_clusteracct(fs, cgp, fragno, 1); 1727 cgp->cg_cs.cs_nbfree++; 1728 fs->fs_cstotal.cs_nbfree++; 1729 fs->fs_cs(fs, cg).cs_nbfree++; 1730 } else { 1731 bbase = cgbno - fragnum(fs, cgbno); 1732 /* 1733 * decrement the counts associated with the old frags 1734 */ 1735 blk = blkmap(fs, blksfree, bbase); 1736 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1737 /* 1738 * deallocate the fragment 1739 */ 1740 frags = numfrags(fs, size); 1741 for (i = 0; i < frags; i++) { 1742 if (isset(blksfree, cgbno + i)) { 1743 printf("dev = %s, block = %jd, fs = %s\n", 1744 devtoname(dev), (intmax_t)(bno + i), 1745 fs->fs_fsmnt); 1746 panic("ffs_blkfree: freeing free frag"); 1747 } 1748 setbit(blksfree, cgbno + i); 1749 } 1750 cgp->cg_cs.cs_nffree += i; 1751 fs->fs_cstotal.cs_nffree += i; 1752 fs->fs_cs(fs, cg).cs_nffree += i; 1753 /* 1754 * add back in counts associated with the new frags 1755 */ 1756 blk = blkmap(fs, blksfree, bbase); 1757 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1758 /* 1759 * if a complete block has been reassembled, account for it 1760 */ 1761 fragno = fragstoblks(fs, bbase); 1762 if (ffs_isblock(fs, blksfree, fragno)) { 1763 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1764 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1765 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1766 ffs_clusteracct(fs, cgp, fragno, 1); 1767 cgp->cg_cs.cs_nbfree++; 1768 fs->fs_cstotal.cs_nbfree++; 1769 fs->fs_cs(fs, cg).cs_nbfree++; 1770 } 1771 } 1772 fs->fs_fmod = 1; 1773 if (fs->fs_active != 0) 1774 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1775 bdwrite(bp); 1776 } 1777 1778 #ifdef DIAGNOSTIC 1779 /* 1780 * Verify allocation of a block or fragment. Returns true if block or 1781 * fragment is allocated, false if it is free. 1782 */ 1783 static int 1784 ffs_checkblk(ip, bno, size) 1785 struct inode *ip; 1786 ufs2_daddr_t bno; 1787 long size; 1788 { 1789 struct fs *fs; 1790 struct cg *cgp; 1791 struct buf *bp; 1792 ufs1_daddr_t cgbno; 1793 int i, error, frags, free; 1794 u_int8_t *blksfree; 1795 1796 fs = ip->i_fs; 1797 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 1798 printf("bsize = %ld, size = %ld, fs = %s\n", 1799 (long)fs->fs_bsize, size, fs->fs_fsmnt); 1800 panic("ffs_checkblk: bad size"); 1801 } 1802 if ((u_int)bno >= fs->fs_size) 1803 panic("ffs_checkblk: bad block %lld", (intmax_t)bno); 1804 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))), 1805 (int)fs->fs_cgsize, NOCRED, &bp); 1806 if (error) 1807 panic("ffs_checkblk: cg bread failed"); 1808 cgp = (struct cg *)bp->b_data; 1809 if (!cg_chkmagic(cgp)) 1810 panic("ffs_checkblk: cg magic mismatch"); 1811 bp->b_xflags |= BX_BKGRDWRITE; 1812 blksfree = cg_blksfree(cgp); 1813 cgbno = dtogd(fs, bno); 1814 if (size == fs->fs_bsize) { 1815 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 1816 } else { 1817 frags = numfrags(fs, size); 1818 for (free = 0, i = 0; i < frags; i++) 1819 if (isset(blksfree, cgbno + i)) 1820 free++; 1821 if (free != 0 && free != frags) 1822 panic("ffs_checkblk: partially free fragment"); 1823 } 1824 brelse(bp); 1825 return (!free); 1826 } 1827 #endif /* DIAGNOSTIC */ 1828 1829 /* 1830 * Free an inode. 1831 */ 1832 int 1833 ffs_vfree(pvp, ino, mode) 1834 struct vnode *pvp; 1835 ino_t ino; 1836 int mode; 1837 { 1838 if (DOINGSOFTDEP(pvp)) { 1839 softdep_freefile(pvp, ino, mode); 1840 return (0); 1841 } 1842 return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode)); 1843 } 1844 1845 /* 1846 * Do the actual free operation. 1847 * The specified inode is placed back in the free map. 1848 */ 1849 int 1850 ffs_freefile(fs, devvp, ino, mode) 1851 struct fs *fs; 1852 struct vnode *devvp; 1853 ino_t ino; 1854 int mode; 1855 { 1856 struct cg *cgp; 1857 struct buf *bp; 1858 ufs2_daddr_t cgbno; 1859 int error, cg; 1860 u_int8_t *inosused; 1861 dev_t dev; 1862 1863 cg = ino_to_cg(fs, ino); 1864 if (devvp->v_type != VCHR) { 1865 /* devvp is a snapshot */ 1866 dev = VTOI(devvp)->i_devvp->v_rdev; 1867 cgbno = fragstoblks(fs, cgtod(fs, cg)); 1868 } else { 1869 /* devvp is a normal disk device */ 1870 dev = devvp->v_rdev; 1871 cgbno = fsbtodb(fs, cgtod(fs, cg)); 1872 } 1873 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1874 panic("ffs_vfree: range: dev = %s, ino = %d, fs = %s", 1875 devtoname(dev), ino, fs->fs_fsmnt); 1876 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) { 1877 brelse(bp); 1878 return (error); 1879 } 1880 cgp = (struct cg *)bp->b_data; 1881 if (!cg_chkmagic(cgp)) { 1882 brelse(bp); 1883 return (0); 1884 } 1885 bp->b_xflags |= BX_BKGRDWRITE; 1886 cgp->cg_old_time = cgp->cg_time = time_second; 1887 inosused = cg_inosused(cgp); 1888 ino %= fs->fs_ipg; 1889 if (isclr(inosused, ino)) { 1890 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev), 1891 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt); 1892 if (fs->fs_ronly == 0) 1893 panic("ffs_vfree: freeing free inode"); 1894 } 1895 clrbit(inosused, ino); 1896 if (ino < cgp->cg_irotor) 1897 cgp->cg_irotor = ino; 1898 cgp->cg_cs.cs_nifree++; 1899 fs->fs_cstotal.cs_nifree++; 1900 fs->fs_cs(fs, cg).cs_nifree++; 1901 if ((mode & IFMT) == IFDIR) { 1902 cgp->cg_cs.cs_ndir--; 1903 fs->fs_cstotal.cs_ndir--; 1904 fs->fs_cs(fs, cg).cs_ndir--; 1905 } 1906 fs->fs_fmod = 1; 1907 if (fs->fs_active != 0) 1908 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg)); 1909 bdwrite(bp); 1910 return (0); 1911 } 1912 1913 /* 1914 * Find a block of the specified size in the specified cylinder group. 1915 * 1916 * It is a panic if a request is made to find a block if none are 1917 * available. 1918 */ 1919 static ufs1_daddr_t 1920 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1921 struct fs *fs; 1922 struct cg *cgp; 1923 ufs2_daddr_t bpref; 1924 int allocsiz; 1925 { 1926 ufs1_daddr_t bno; 1927 int start, len, loc, i; 1928 int blk, field, subfield, pos; 1929 u_int8_t *blksfree; 1930 1931 /* 1932 * find the fragment by searching through the free block 1933 * map for an appropriate bit pattern 1934 */ 1935 if (bpref) 1936 start = dtogd(fs, bpref) / NBBY; 1937 else 1938 start = cgp->cg_frotor / NBBY; 1939 blksfree = cg_blksfree(cgp); 1940 len = howmany(fs->fs_fpg, NBBY) - start; 1941 loc = scanc((u_int)len, (u_char *)&blksfree[start], 1942 (u_char *)fragtbl[fs->fs_frag], 1943 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1944 if (loc == 0) { 1945 len = start + 1; 1946 start = 0; 1947 loc = scanc((u_int)len, (u_char *)&blksfree[0], 1948 (u_char *)fragtbl[fs->fs_frag], 1949 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1950 if (loc == 0) { 1951 printf("start = %d, len = %d, fs = %s\n", 1952 start, len, fs->fs_fsmnt); 1953 panic("ffs_alloccg: map corrupted"); 1954 /* NOTREACHED */ 1955 } 1956 } 1957 bno = (start + len - loc) * NBBY; 1958 cgp->cg_frotor = bno; 1959 /* 1960 * found the byte in the map 1961 * sift through the bits to find the selected frag 1962 */ 1963 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1964 blk = blkmap(fs, blksfree, bno); 1965 blk <<= 1; 1966 field = around[allocsiz]; 1967 subfield = inside[allocsiz]; 1968 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1969 if ((blk & field) == subfield) 1970 return (bno + pos); 1971 field <<= 1; 1972 subfield <<= 1; 1973 } 1974 } 1975 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 1976 panic("ffs_alloccg: block not in map"); 1977 return (-1); 1978 } 1979 1980 /* 1981 * Update the cluster map because of an allocation or free. 1982 * 1983 * Cnt == 1 means free; cnt == -1 means allocating. 1984 */ 1985 void 1986 ffs_clusteracct(fs, cgp, blkno, cnt) 1987 struct fs *fs; 1988 struct cg *cgp; 1989 ufs1_daddr_t blkno; 1990 int cnt; 1991 { 1992 int32_t *sump; 1993 int32_t *lp; 1994 u_char *freemapp, *mapp; 1995 int i, start, end, forw, back, map, bit; 1996 1997 if (fs->fs_contigsumsize <= 0) 1998 return; 1999 freemapp = cg_clustersfree(cgp); 2000 sump = cg_clustersum(cgp); 2001 /* 2002 * Allocate or clear the actual block. 2003 */ 2004 if (cnt > 0) 2005 setbit(freemapp, blkno); 2006 else 2007 clrbit(freemapp, blkno); 2008 /* 2009 * Find the size of the cluster going forward. 2010 */ 2011 start = blkno + 1; 2012 end = start + fs->fs_contigsumsize; 2013 if (end >= cgp->cg_nclusterblks) 2014 end = cgp->cg_nclusterblks; 2015 mapp = &freemapp[start / NBBY]; 2016 map = *mapp++; 2017 bit = 1 << (start % NBBY); 2018 for (i = start; i < end; i++) { 2019 if ((map & bit) == 0) 2020 break; 2021 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2022 bit <<= 1; 2023 } else { 2024 map = *mapp++; 2025 bit = 1; 2026 } 2027 } 2028 forw = i - start; 2029 /* 2030 * Find the size of the cluster going backward. 2031 */ 2032 start = blkno - 1; 2033 end = start - fs->fs_contigsumsize; 2034 if (end < 0) 2035 end = -1; 2036 mapp = &freemapp[start / NBBY]; 2037 map = *mapp--; 2038 bit = 1 << (start % NBBY); 2039 for (i = start; i > end; i--) { 2040 if ((map & bit) == 0) 2041 break; 2042 if ((i & (NBBY - 1)) != 0) { 2043 bit >>= 1; 2044 } else { 2045 map = *mapp--; 2046 bit = 1 << (NBBY - 1); 2047 } 2048 } 2049 back = start - i; 2050 /* 2051 * Account for old cluster and the possibly new forward and 2052 * back clusters. 2053 */ 2054 i = back + forw + 1; 2055 if (i > fs->fs_contigsumsize) 2056 i = fs->fs_contigsumsize; 2057 sump[i] += cnt; 2058 if (back > 0) 2059 sump[back] -= cnt; 2060 if (forw > 0) 2061 sump[forw] -= cnt; 2062 /* 2063 * Update cluster summary information. 2064 */ 2065 lp = &sump[fs->fs_contigsumsize]; 2066 for (i = fs->fs_contigsumsize; i > 0; i--) 2067 if (*lp-- > 0) 2068 break; 2069 fs->fs_maxcluster[cgp->cg_cgx] = i; 2070 } 2071 2072 /* 2073 * Fserr prints the name of a filesystem with an error diagnostic. 2074 * 2075 * The form of the error message is: 2076 * fs: error message 2077 */ 2078 static void 2079 ffs_fserr(fs, inum, cp) 2080 struct fs *fs; 2081 ino_t inum; 2082 char *cp; 2083 { 2084 struct proc *p = curproc; /* XXX */ 2085 2086 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n", 2087 p ? p->p_pid : -1, p ? p->p_comm : "-", 2088 p ? p->p_ucred->cr_uid : 0, inum, fs->fs_fsmnt, cp); 2089 } 2090 2091 /* 2092 * This function provides the capability for the fsck program to 2093 * update an active filesystem. Six operations are provided: 2094 * 2095 * adjrefcnt(inode, amt) - adjusts the reference count on the 2096 * specified inode by the specified amount. Under normal 2097 * operation the count should always go down. Decrementing 2098 * the count to zero will cause the inode to be freed. 2099 * adjblkcnt(inode, amt) - adjust the number of blocks used to 2100 * by the specifed amount. 2101 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 2102 * are marked as free. Inodes should never have to be marked 2103 * as in use. 2104 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 2105 * are marked as free. Inodes should never have to be marked 2106 * as in use. 2107 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 2108 * are marked as free. Blocks should never have to be marked 2109 * as in use. 2110 * setflags(flags, set/clear) - the fs_flags field has the specified 2111 * flags set (second parameter +1) or cleared (second parameter -1). 2112 */ 2113 2114 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 2115 2116 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 2117 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 2118 2119 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 2120 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 2121 2122 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 2123 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 2124 2125 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 2126 sysctl_ffs_fsck, "Free Range of File Inodes"); 2127 2128 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 2129 sysctl_ffs_fsck, "Free Range of Blocks"); 2130 2131 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 2132 sysctl_ffs_fsck, "Change Filesystem Flags"); 2133 2134 #ifdef DEBUG 2135 static int fsckcmds = 0; 2136 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 2137 #endif /* DEBUG */ 2138 2139 static int 2140 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 2141 { 2142 struct fsck_cmd cmd; 2143 struct ufsmount *ump; 2144 struct vnode *vp; 2145 struct inode *ip; 2146 struct mount *mp; 2147 struct fs *fs; 2148 ufs2_daddr_t blkno; 2149 long blkcnt, blksize; 2150 struct file *fp; 2151 int filetype, error; 2152 2153 if (req->newlen > sizeof cmd) 2154 return (EBADRPC); 2155 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 2156 return (error); 2157 if (cmd.version != FFS_CMD_VERSION) 2158 return (ERPCMISMATCH); 2159 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0) 2160 return (error); 2161 vn_start_write((struct vnode *)fp->f_data, &mp, V_WAIT); 2162 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 2163 vn_finished_write(mp); 2164 fdrop(fp, curthread); 2165 return (EINVAL); 2166 } 2167 if (mp->mnt_flag & MNT_RDONLY) { 2168 vn_finished_write(mp); 2169 fdrop(fp, curthread); 2170 return (EROFS); 2171 } 2172 ump = VFSTOUFS(mp); 2173 fs = ump->um_fs; 2174 filetype = IFREG; 2175 2176 switch (oidp->oid_number) { 2177 2178 case FFS_SET_FLAGS: 2179 #ifdef DEBUG 2180 if (fsckcmds) 2181 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 2182 cmd.size > 0 ? "set" : "clear"); 2183 #endif /* DEBUG */ 2184 if (cmd.size > 0) 2185 fs->fs_flags |= (long)cmd.value; 2186 else 2187 fs->fs_flags &= ~(long)cmd.value; 2188 break; 2189 2190 case FFS_ADJ_REFCNT: 2191 #ifdef DEBUG 2192 if (fsckcmds) { 2193 printf("%s: adjust inode %d count by %ld\n", 2194 mp->mnt_stat.f_mntonname, (ino_t)cmd.value, 2195 cmd.size); 2196 } 2197 #endif /* DEBUG */ 2198 if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2199 break; 2200 ip = VTOI(vp); 2201 ip->i_nlink += cmd.size; 2202 DIP(ip, i_nlink) = ip->i_nlink; 2203 ip->i_effnlink += cmd.size; 2204 ip->i_flag |= IN_CHANGE; 2205 if (DOINGSOFTDEP(vp)) 2206 softdep_change_linkcnt(ip); 2207 vput(vp); 2208 break; 2209 2210 case FFS_ADJ_BLKCNT: 2211 #ifdef DEBUG 2212 if (fsckcmds) { 2213 printf("%s: adjust inode %d block count by %ld\n", 2214 mp->mnt_stat.f_mntonname, (ino_t)cmd.value, 2215 cmd.size); 2216 } 2217 #endif /* DEBUG */ 2218 if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 2219 break; 2220 ip = VTOI(vp); 2221 DIP(ip, i_blocks) += cmd.size; 2222 ip->i_flag |= IN_CHANGE; 2223 vput(vp); 2224 break; 2225 2226 case FFS_DIR_FREE: 2227 filetype = IFDIR; 2228 /* fall through */ 2229 2230 case FFS_FILE_FREE: 2231 #ifdef DEBUG 2232 if (fsckcmds) { 2233 if (cmd.size == 1) 2234 printf("%s: free %s inode %d\n", 2235 mp->mnt_stat.f_mntonname, 2236 filetype == IFDIR ? "directory" : "file", 2237 (ino_t)cmd.value); 2238 else 2239 printf("%s: free %s inodes %d-%d\n", 2240 mp->mnt_stat.f_mntonname, 2241 filetype == IFDIR ? "directory" : "file", 2242 (ino_t)cmd.value, 2243 (ino_t)(cmd.value + cmd.size - 1)); 2244 } 2245 #endif /* DEBUG */ 2246 while (cmd.size > 0) { 2247 if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value, 2248 filetype))) 2249 break; 2250 cmd.size -= 1; 2251 cmd.value += 1; 2252 } 2253 break; 2254 2255 case FFS_BLK_FREE: 2256 #ifdef DEBUG 2257 if (fsckcmds) { 2258 if (cmd.size == 1) 2259 printf("%s: free block %lld\n", 2260 mp->mnt_stat.f_mntonname, 2261 (intmax_t)cmd.value); 2262 else 2263 printf("%s: free blocks %lld-%lld\n", 2264 mp->mnt_stat.f_mntonname, 2265 (intmax_t)cmd.value, 2266 (intmax_t)cmd.value + cmd.size - 1); 2267 } 2268 #endif /* DEBUG */ 2269 blkno = cmd.value; 2270 blkcnt = cmd.size; 2271 blksize = fs->fs_frag - (blkno % fs->fs_frag); 2272 while (blkcnt > 0) { 2273 if (blksize > blkcnt) 2274 blksize = blkcnt; 2275 ffs_blkfree(fs, ump->um_devvp, blkno, 2276 blksize * fs->fs_fsize, ROOTINO); 2277 blkno += blksize; 2278 blkcnt -= blksize; 2279 blksize = fs->fs_frag; 2280 } 2281 break; 2282 2283 default: 2284 #ifdef DEBUG 2285 if (fsckcmds) { 2286 printf("Invalid request %d from fsck\n", 2287 oidp->oid_number); 2288 } 2289 #endif /* DEBUG */ 2290 error = EINVAL; 2291 break; 2292 2293 } 2294 fdrop(fp, curthread); 2295 vn_finished_write(mp); 2296 return (error); 2297 } 2298